WorldWideScience

Sample records for agglomerating ash process

  1. Effects of gas conditions on ASH induced agglomeration

    DEFF Research Database (Denmark)

    Ma, T.; Fan, C. G.; Hao, L. F.

    2016-01-01

    Agglomeration is a serious problem for gasification and combustion of biomass in fluidized bed. Agglomeration characteristics may be affected by gas condition, but the literature is quite vague in this regard. This study focuses on the effects of gasification and combustion condition...... on agglomeration tendency with two types of biomass ash, including rice straw and wheat straw ash. The agglomerates are analyzed by SEM-EDS for morphology and elemental composition. Defluidization temperature (Td) in those two types of gas conditions is quite different. Tdin gasification condition is much lower...

  2. Automated Manufacture of Fertilizing Agglomerates from Burnt Wood Ash

    Energy Technology Data Exchange (ETDEWEB)

    Svantesson, Thomas

    2002-12-01

    In Sweden, extensive research is conducted to find alternative sources of energy that should partly replace the electric power production from nuclear power. With the ambition to create a sustainable system for producing energy, the use of renewable energy is expected to grow further and biofuels are expected to account for a significant part of this increase. However, when biofuels are burned or gasified, ash appears as a by-product. In order to overcome the problems related to deposition in land fills, the idea is to transform the ashes into a product - agglomerates - that easily could be recycled back to the forest grounds; as a fertilizer, or as a tool to reduce the acidification in the forest soil at the spreading area. This work considers the control of a transformation process, which transforms wood ash produced at a district heating plant into fertilizing agglomerates. A robust machine, built to comply with the industrial requirements for continuous operation, has been developed and is controlled by an industrial control system in order to enable an automated manufacture.

  3. Process for agglomerating fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Austin, L J; Misbach, P

    1976-06-24

    The invention concerns a process for agglomerating black coal in mud or powder form in the presence of a mineral oil product dispersed in water. During this process, the nutty slack is added to a portion - approximately 5 - 15% of its weight in the case of anhydrous coal - of a bitumen emulsion and thoroughly mixed. The emulsion should contain mineral oil bitumen with a penetration value 25/sup 0/ less than 5, or a Conradson value of over 35. In a further finishing process the emulsion contains alkaline naphthenate.

  4. An Automated Processing Method for Agglomeration Areas

    Directory of Open Access Journals (Sweden)

    Chengming Li

    2018-05-01

    Full Text Available Agglomeration operations are a core component of the automated generalization of aggregated area groups. However, because geographical elements that possess agglomeration features are relatively scarce, the current literature has not given sufficient attention to agglomeration operations. Furthermore, most reports on the subject are limited to the general conceptual level. Consequently, current agglomeration methods are highly reliant on subjective determinations and cannot support intelligent computer processing. This paper proposes an automated processing method for agglomeration areas. Firstly, the proposed method automatically identifies agglomeration areas based on the width of the striped bridging area, distribution pattern index (DPI, shape similarity index (SSI, and overlap index (OI. Next, the progressive agglomeration operation is carried out, including the computation of the external boundary outlines and the extraction of agglomeration lines. The effectiveness and rationality of the proposed method has been validated by using actual census data of Chinese geographical conditions in the Jiangsu Province.

  5. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  6. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  7. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  8. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  9. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  10. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  11. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  12. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  13. Influence of the composition and agglomeration pressure on the compaction level of the fertilizers based on biomass ash and digestate

    Directory of Open Access Journals (Sweden)

    Wróbel Marek

    2018-01-01

    Full Text Available The paper presents the results of research aimed at determining the influence of the composition of the fertilizer mixtures and the compaction pressure on the specific density and density index of fertilizer granules. Investigated mixtures were prepared from fly ash from power plant fuelled by biomass and digestate from biogas plant. The urea, sulfur and phosphorite were also added as enhancing additives. For granule samples made on a strength machine, their specific density was determined on a quasifluid-pycnometer. To determine the effect of agglomerate pressure on the compaction process, the absolute density of the materials was omitted. In such case it was needed to introduce a density index AI. Such a presentation of the results obtained has made it possible to clearly determine how the density of the test mixture results in the applied agglomeration pressure. The specific density of the resulting granules was in the range of 0.85-1.27 g/cm3. The determined density index for the given pressure was in the following ranges: 0.44-0.49 g/cm3 (pressure 100MPa, 0.47-0.51 g/cm3 (pressure 150MPa 0.51 - 0.59 g/cm3 (200MPa pressure. This means that, regardless of the contribution of components to the mixture at the given pressure, a similar degree of compaction was obtained.

  14. The Influence of Particle Size, Fluidization Velocity, and Fuel Type on Ash-Induced Agglomeration in Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gatternig, Bernhard, E-mail: bernhard.gatternig@cbi.uni-erlangen.de; Karl, Jürgen [Chair of Energy Process Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Nuremberg (Germany)

    2014-11-19

    Agglomeration of the bed material is one of the main obstacles for biomass utilization in fluidized bed combustors. Especially, high-potential fuels such as fast growing energy crops or biogeneous residues are affected because of their high content of alkaline metals. Despite ongoing research efforts, the knowledge base on what fuels are affected is still limited. This paper describes the design and installation of two lab-scale reactors for the experimental determination of agglomeration temperatures. The reactor concept and measurement method were developed under consideration of experiences from existing test rigs published in literature. Preliminary tests confirmed a reproducibility of ±5°C for both new reactors. The results of an extended measurement campaign (156 test runs of 25 fuel species at a wide range of the operational parameters “bed particle size,” “gas velocity,” and “bed ash accumulation”), based on “design of experiment” (DoE) criteria, showed high-agglomeration tendencies for residues (e.g., dried distillery grains, corn cobs) while woody energy crops (e.g., willow, alder) exhibited very stable combustion behavior. The operating parameters influenced the agglomeration behavior to a lesser degree than different ash compositions of fuel species tested. An interpolation within the DoE factor space allowed for a subsequent comparison of our results with experiments reported in literature. Good agreement was reached for fuels of comparable ash composition considering the interpolation errors of ±32°C on average.

  15. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  16. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  17. Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

    Directory of Open Access Journals (Sweden)

    Aditi B. Khadilkar

    2015-11-01

    Full Text Available Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA and high temperature X-ray diffraction (HT-XRD were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

  18. Biomass ash-bed material interactions leading to agglomeration in FBC

    DEFF Research Database (Denmark)

    Visser, H.J.M.; van Lith, Simone Cornelia; Kiel, J.H.A.

    2008-01-01

    -scale installations is "coating-induced" agglomeration. During reactor operation, a coating is formed on the surface of bed material grains and at certain critical conditions (e.g., coating thickness or temperature) sintering of the coatings initiates the agglomeration. In an experimental approach, this work...

  19. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash

    Science.gov (United States)

    Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng

    2018-02-01

    As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.

  20. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R; Patrikainen, T; Heikkinen, R; Tiainen, M; Virtanen, M [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  1. Investigation of melt agglomeration process with a hydrophobic binder in combination with sucrose stearate.

    Science.gov (United States)

    Heng, Paul Wan Sia; Wong, Tin Wui; Cheong, Wai See

    2003-08-01

    The melt agglomeration process of lactose powder with hydrogenated cottonseed oil (HCO) as the hydrophobic meltable binder was investigated by studying the physicochemical properties of molten HCO modified by sucrose stearates S170, S770 and S1570. The size, size distribution, micromeritic and adhesion properties of agglomerates as well as surface tension, contact angle, viscosity and specific volume of molten HCO, with and without sucrose stearates, were examined. The viscosity, specific volume and surface tension of molten HCO were found to be modified to varying extents by sucrose stearates which are available in different HLB values and melt properties. The growth of melt agglomerates was promoted predominantly by an increase in viscosity, an increase in specific volume or a decrease in surface tension of the molten binding liquid. The agglomerate growth propensity was higher with an increase in inter-particulate binding strength, agglomerate surface wetness and extent of agglomerate consolidation which enhanced the liquid migration from agglomerate core to periphery leading to an increased surface plasticity for coalescence. The inclusion of high concentrations of completely meltable sucrose stearate S170 greatly induced the growth of agglomerates through increased specific volume and viscosity of the molten binding liquid. On the other hand, the inclusion of incompletely meltable sucrose stearates S770 and S1570 promoted the agglomeration mainly via the reduction in surface tension of the molten binding liquid with declining agglomerate growth propensity at high sucrose stearate concentrations. In addition to being an agglomeration modifier, sucrose stearate demonstrated anti-adherent property in melt agglomeration process. The properties of molten HCO and melt agglomerates were dependent on the type and concentration of sucrose stearate added.

  2. Impact of biofuel in agglomeration process on production of pollutants

    Directory of Open Access Journals (Sweden)

    Lesko Jaroslav

    2017-01-01

    Full Text Available Production of agglomerate in the metallurgical company belongs among the largest sources of emissions damaging the environment. Effects of coke breeze substitution by charcoal, pine, and oak sawdust there were sintering performed in a laboratory agglomeration pan with substitution ratios of 14 % and 20 % by the emissions of CO2, CO, NOx and NO. Variations in the gas emissions might have been affected by physical and chemical properties of the input materials and the technological parameters of agglomeration. It is important and necessary to seek other methods and materials with which it would be possible to optimize the production of emissions and protect the environment.

  3. A phenomenological model for improving understanding of the ammonium nitrate agglomeration process

    Directory of Open Access Journals (Sweden)

    Videla Leiva Alvaro

    2016-01-01

    Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.

  4. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  5. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  6. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  8. Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    . The agglomerates are analyzed by scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS) for morphology and elemental composition. Significant differences are observed on the defluidization temperature (Td) and agglomeration mechanisms in different gas atmospheres. Td in H2 and steam...

  9. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A; Laatikainen-Luntama, J; Nieminen, M; Kurkela, E; Korhonen, J [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  10. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Virden, J.W.

    1997-06-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste con- stituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  11. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    International Nuclear Information System (INIS)

    Virden, J.W.

    1997-01-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste constituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  12. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  13. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  14. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  15. Colloidal agglomerates in tank sludge and their impact on waste processing

    International Nuclear Information System (INIS)

    Tingey, J.M.; Bunker, B.C.; Graff, G.L.; Keefer, K.D.; Lea, A.S.; Rector, D.R.

    1999-01-01

    Disposal of millions of gallons of existing radioactive wastes in underground storage tanks is a major remediation activity for the US Department of Energy. These wastes include a substantial volume of insoluble sludges consisting of submicron colloidal particles. Processing these sludges under the proposed processing conditions presents unique challenges in retrieval transport, separation, and solidification of these waste streams. Depending on processing conditions, these colloidal particles can form agglomerated networks having high viscosities that could clog transfer lines or produce high volumes of low-density sediments that interfere with solid-liquid separations. Under different conditions, these particles can be dispersed to form very fine suspended particles that do not settle. Given the wide range of waste chemistries present at Department of Energy sites, it is impractical to measure the properties of all treatment procedures. Under the current research activities, the underlying principles of colloid chemistry and physics are being studied to predict and eventually control the physical properties of sludge suspensions and sediment layers in tank wastes and other waste processing streams. Proposed tank processing strategies include retrieval transport, and solid-liquid separations in basic (pH 10 to 14), high ionic strength (0.1 to 1.0 M) salt solutions. The effect of salt concentration, ionic strength, and salt composition on the physical properties such as viscosity, agglomerate size, and sedimentation of model suspensions containing mixtures of one or two of the major components found in actual wastes have been measured to understand how agglomeration influences processing. Property models developed from theory and experiment on these simple suspensions are then applied to explain the results obtained on actual wastes

  16. Description of agglomerate growth

    NARCIS (Netherlands)

    Schaafsma, S.H; Vonk, P; Segers, P; Kossen, N.W F

    1998-01-01

    Wet agglomeration processes have predominantly been investigated by changing operation variables of process-scale experiments. So far, most fundamental work concentrated on the strength of the liquid bonds in the agglomerate and its relation to the process. Previous studies on the relationship

  17. Chemometric analysis of alternations in coal ash quality induced by application of different mechano-chemical processing parameters

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available The coal fly ash mechano-chemical activation conducted via high energy ultra-centrifugal mill was optimized using mathematical and statistical tools. The aim of the investigation was to accent the merits of alternations in ash processing schemes with a referral regarding the enhancement of the ash reactivity that will lead to its higher volume utilization as a cement replacement in concrete design. The impact of the processing parameters sets (number of rotor revolutions, current intensity, activation period, circumferential rotor speed, mill capacity on the on the product’s quality factors (grain size distribution, average grain size, micronization level, agglomeration tendency, specific surface area was assessed via Response surface method, Standard score analysis and Principal component analysis in order to obtain the most favorable output. Developed models were able to meticulously predict quality parameters in an extensive range of processing parameters. The calculated r2 values were in the range of 0.846-0.999. The optimal ash sample, that reached the Standard Score as high as 0.93, was produced using a set of processing parameters appropriate to experimental sequence with applied 120 μm sieve mesh. The microstructural characteristics were assessed using image-processing values and histogram plots of the activated fly ash SEM images. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON 172057, Grant no. III 45008, Grant no. TR 31055 and Grant no. TR 34006

  18. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  19. Influences of Different Components on Agglomeration Behavior of MoS2 During Oxidation Roasting Process in Air

    Science.gov (United States)

    Wang, Lu; Zhang, Guo-Hua; Wang, Jing-Song; Chou, Kuo-Chih

    2016-08-01

    An agglomeration of the furnace charge always takes place during the oxidation roasting process of molybdenite concentrate (with the main component of MoS2) in multiple hearth furnaces, which greatly affects the production process and furnace service life. In the present work, a preliminary study about the influence of various components on the agglomeration phenomenon of pure MoS2 have been carried out. The results show that reaction temperature, impurity content, and air flow rate have significant effects on the agglomeration extent. Meanwhile, the impurity type added into the pure MoS2 plays a crucial role. It was found that CaO and MgO have a stronger sulfur-fixing effect and that the desulphurization of the roasted product was uncompleted. It was also concluded that the agglomeration is due to the formation of low-melting-point eutectics, including that between MoO3 and impurities and that between MoO3 and Mo4O11. It is suggested that decreasing the impurities contents, especially K, Cu, Pb, and Fe, is an effective method for reducing the extent of agglomeration.

  20. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  1. Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals

    International Nuclear Information System (INIS)

    Miyoshi, Makoto; Mizuno, Masaya; Banno, Kazuya; Kubo, Toshiharu; Egawa, Takashi; Soga, Tetsuo

    2015-01-01

    Transfer-free graphene synthesis process utilizing metal agglomeration phenomena was investigated by using carbon films deposited on Ni or Co catalyst metals on SiO 2 /Si substrates. As a result of metal agglomeration at high temperatures, multilayer graphene films appeared to be formed directly on SiO 2 films. The microscopic Raman mapping study revealed that graphene films were preferentially synthesized around areas where metal films disappeared at an early stage of agglomeration, and that they finally covered almost the whole surface. It was also found that the synthesized graphene films tended to have better structural qualities and lower layer numbers with the increase in the starting metal thicknesses regardless of the kinds of catalyst metals. Raman study also showed that they had good two-dimensional uniformity in the structural quality. (paper)

  2. Reduced ash related operational problems (slagging, bed agglomeration, corrosion and fouling) by co-combustion biomass with peat; Minskade askrelaterade driftsproblem (belaeggning, slaggning, hoegtemperatur-korrosion, baeddagglomerering) genom inblandning av torv i biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Boman, Christoffer; Erhardsson, Thomas; Gilbe, Ram; Pommer, Linda; Bostroem, Dan; Nordin, Anders; Samuelsson, Robert; Burvall, Jan

    2006-12-15

    Combustion studies were performed in both a fluidized bed (5 kW) and in an under-feed pellets burner (20 kW) to elucidate the responsible mechanisms for the positive effects on ash related operational problems (i.e. slagging, fouling, corrosion and bed agglomeration) during co-combustion of several problematic biomass with peat. Three typical carex-containing Swedish peat samples with differences in e.g. silicon-, calcium- and sulfur contents were co-fired with logging residues, willow and straw in proportions corresponding to 15-40 weight %d.s. Mixing of corresponding 20 wt-% of peat significantly reduced the bed agglomeration tendencies for all fuels. The fuel specific agglomeration temperature were increased by 150-170 deg C when adding peat to the straw fuel and approximately 70-100 deg C when adding peat to the logging residue- and the willow fuel. The increased level of calcium in the inner bed particle layer caused by the added reactive calcium from the peat and/or removing alkali in the gas phase to a less reactive particular form via sorption and/or reaction with reactive peat ash (containing calcium, silica etc.) during which larger particles (>1{mu}m) are formed where collected potassium is present in a less reactive form, is considered to be the dominated reason for the increased agglomeration temperatures during combustion of logging residues and willow. During straw combustion, the ash forming matter were found as individual ash sticky particles in the bed. The iron, sulphur and calcium content of these individual ash particles were significantly increased when adding peat to the fuel mix thereby decreasing the stickiness of these particles i.e. reducing the agglomeration tendencies. Adding peat to the relatively silicon-poor fuels (willow and logging residues) resulted in higher slagging tendencies, especially when the relative silicon rich peat fuel (Brunnskoelen) was used. However, when co-combusting peat with the relatively silicon and potassium

  3. Fluid Bed Coating and agglomeration: Scale-up and process optimisation

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl

    2009-01-01

    gradvist dannes et coatingslag på hver partikeloverflade. De fluidiserede partikler kan vokse i størrelse enten pga. overfladecoating eller pga. partikel-partikel agglomerering. Agglomerering opstår, når våde væskebroer dannes mellem kolliderende partikler. Hvis denne væskebro er stærk nok til at modstå...... efterfølgende partikelseparation, vil væskebroen størkne og et permanent agglomerat hermed være dannet. I coatingsprocesser er agglomerering typisk uønsket, og en række andre problemer i processen inkluderer spraytørringstab af de forstøvede væskedråber, slitage og brud af partikler og af coatingslaget......; agglomererings-tendens under coating og slagstyrke af de færdige granulater. Den udledte agglomererings-model indikerer faldende agglomereringstendens med stigende tørstofindhold af coatings-opløsningen såvel som med stigende dysetryk af atomiseringsluften. Tilsvarende indikerer slagstyrkemodellen stigende...

  4. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  5. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    International Nuclear Information System (INIS)

    Tong, M; Jagarlapudi, S C; Browne, D J; Patel, J B; Stone, I C; Fan, Z

    2015-01-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  6. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    Science.gov (United States)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  7. Technologies for processing ashes. A review of activities in Sweden and abroad

    International Nuclear Information System (INIS)

    Nilsson, Charlotta; Joensson, Owe

    1996-10-01

    Three different types of ash agglomeration have been tested in Sweden, self-curing, compaction and granulation. The self-curing method is most common and has been tested at more than 20 district heating plants in Sweden and in the liming industry. Results have been variable. In order to bring the method to a commercial status, the level of understanding and knowledge of the basic curing chemistry has to be improved. Compaction of wood ash has been tested to a very limited extent. Tests with extruder pelletizing have resulted in severe problems with clogging of the pelletizing matrix. Promising results with roll compaction have been obtained in Germany. Such tests have not yet been performed in Sweden. Ash granulation on a rotating disc or in a drum have been tested on several occasions in Sweden. The technology seems to have reached a commercial status and and is available from a number of manufacturers. The development of ash agglomeration technologies is being undertaken in several types of project organization at different locations in Sweden. It is therefore important that the system for information and feed-back from each individual project is well organized. There is also an urgent need for general guidelines for large scale ash recycling to forest land. 28 refs

  8. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  9. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  10. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  11. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  12. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    Science.gov (United States)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  13. A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M. [Umeaa Univ. (Sweden). Dept. of Chemistry

    1997-12-31

    The present licentiate thesis is a summary and discussion of four papers, dealing with the development, evaluation and use of a new method to quantify bed agglomeration tendencies for biomass fuels. An increased utilization of biomass related fuels has many environmental benefits, but also requires careful studies of potential new problems associated with these fuels such as bed agglomeration/defluidization during combustion and gasification in fluidized beds. From a thorough literature survey, no suitable methods to determine bed agglomeration tendencies of different fuels, fuel combinations or fuels with additives appeared to be available. It therefore seemed of considerable interest to develop a new method for the quantification of fluidized bed agglomeration tendencies for different fuels. A bench scale fluidized bed reactor (5 kW), specially designed to obtain a homogeneous isothermal bed temperature, is used. The method is based on controlled increase of the bed temperature by applying external heat to the primary air and to the bed section walls. The initial agglomeration temperature is determined by on- or off-line principal component analysis of the variations in measured bed temperatures and differential pressures. Samples of ash and bed material for evaluation of agglomeration mechanisms may also be collected throughout the operation. To determine potential effects of all the process related variables on the determined fuel specific bed agglomeration temperature, an extensive sensitivity analysis was performed according to a statistical experimental design. The results showed that the process variables had only relatively small effects on the agglomeration temperature, which could be determined to 899 deg C with a reproducibility of {+-} 5 deg C (STD). The inaccuracy was determined to be {+-} 30 deg C (STD). The method was also used to study the mechanism of both bed agglomeration using two biomass fuels and prevention of bed agglomeration by co

  14. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  15. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    Science.gov (United States)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  16. Plasma ash processing solutions for advanced interconnect technology

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Worsley, M.A.; Tai, L.; Bent, S.; Labelle, C.; Arnold, J.; Dalton, T.

    2008-01-01

    A mechanism for the modification of porous ultra low-k (ULK) and extreme ultra low-k (EULK) SiCOH-based materials is proposed. This is achieved by correlating film damage on a patterned structure measured by angular resolved x-ray photoelectron spectroscopy (ARXPS) with corresponding changes in reactive species radical density and ion current in the plasma measured by optical emission spectroscopy (OES), rare gas actinometry, and modeling. Line-to-line electrical leakage and capacitance data of nested line structures exposed to downstream ash plasmas suggest that other etching steps during back-end-of-the-line (BEOL) dual damascene processing are also critical for the overall modification induced to these materials

  17. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB......). Both samples were ED treated as stirred suspensions in sulphuric acid for 3,7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented...... a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy...

  18. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  19. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Apparatus and process for controlling fluidized beds

    Science.gov (United States)

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  1. Process understanding on high shear granulated lactose agglomerates during and after drying

    NARCIS (Netherlands)

    Nieuwmeyer, F.J.S.

    2009-01-01

    In 2001 the FDA launched the Process Analytical Technology initiative as a response to the growing public and industrial awareness that there is a lack of process understanding required to have an optimal control of pharmaceutical manufacturing. The current research project was initiated based upon

  2. Experimental investigation of acoustic agglomeration systems for fine particle control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.T.; Lee, P.; Wegrzyn, J.; Chou, K.H.; Cheng, M.T.; Patel, S.

    1979-10-01

    The feasibility of using an acoustic agglomerator (AA) as a preconditioner in the upstream of conventional devices such as an electrostatic precipitator, a scrubber, a filter, or a cyclone are investigated. The objective is to agglomerate all finer particles into coarser ones in an acoustic agglomerator and then remove them more effectively by one of the conventional devices. Laboratory-scale experiments were performed using NH/sub 4/Cl and fly ash redispersed aerosols. Turbulence caused by intensive sound fields under standing-wave condition has been found to be extremely effective for aerosol agglomeration. The nature and the energy dissipation rate of the acoustic turbulence are determined by using hot-film (or hot-wire) anemometry and Fast Fourier Transform (FFT) data processing equipment. The root-mean-square turbulent velocity, which is directly proportional to acoustic agglomeration rate, is experimentally found to have a I/sup 1/2/(I: acoustic intensity) dependence, but is relatively independent of the acoustic frequency. The results obtained from this program show that acoustic agglomeration is effective as a particle pre-conditioner which can increase approximately one order of magnitude in mean particle diameter (2..mu..m ..-->.. 20..mu..m). As a flow-through standing wave device, it can be used to facilitate the removal of dust particles in a subsequent inertia base separation device.

  3. Characterization, treatment and utilization of rice husk ash in production processes of the industrial branch

    International Nuclear Information System (INIS)

    Stracke, Marcelo Paulo; Schmidt, Julia Isabel; Steffen, Ana Cristina; Sokolovicz, Boris; Kieckow, Flavio

    2016-01-01

    The rice husk ash (CCA) is a black powder rich in silica (contents above 90%) with many industrial applications. The ash was obtained from a rice processing industry in the state of Rio Grande do Sul. In this work the purpose is to characterize the rice husk ash and eliminate the residual carbon by methods such as acid leaching. The white ash is obtained by a chemical process followed by heating between 600 and 800 °C. The results were analyzed in DR-X, TGA and DSC. The DR-X analysis showed that the samples present high levels of silica in the crystalline form of quartz, cristobalite and tridymite. The white ash was obtained with high purity and presented a good result in the manufacture of paints. (author)

  4. Decay of Metastable State with Account of Agglomeration and Relaxation Processes

    Directory of Open Access Journals (Sweden)

    Victor Kurasov

    2016-01-01

    Full Text Available Theoretical description of the metastable phase decay kinetics in the presence of specific connections between the embryos of small sizes has been given. The theory of the decay kinetics in the presence of relaxation processes is constructed in analytical manner. The m-mers nucleation is investigated and the global kinetics of decay is also constructed in this case analytically.

  5. Growing ‘Smart’? Urbanization Processes in the Pune Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Carsten Butsch

    2017-12-01

    Full Text Available The Indian city of Pune witnessed rapid growth and deep transformation processes in the last three decades. This paper assesses past developments and recent structures and processes against the concept of urban sustainability. Following an overview of the historical development, the dimensions of sustainability are discussed separately, based on empirical findings. Urban growth puts enormous pressure on Pune’s land and water resources, changing the ecology of the area. The increasing water demand of Pune’s growing population competes with growing energy and water demands. An assessment of future climate change impacts indicates that the storage capacity of the reservoirs is more frequently not met during the rainy season. In addition, extreme dry years can aggravate the effects of land use change on water resources in the future. The city’s growth and especially the large in-migration has also changed Pune’s social fabric significantly. Wealth is distributed unevenly in the city and social disparities can be observed along two fault lines, namely along classes and caste groups. The population development and the increasing socioeconomic polarization are linked to the economic development of the city. Pune’s formal economy has a robust base. However, as in many cities of the Global South, the informal economy is the most relevant source of income for large parts of the population. Pune’s development is challenged by informality, poor infrastructure and inadequate planning and governance. Recently new approaches towards urban renewal and smart city development were launched. These new approaches aim at overcoming blockades in the traditional planning. A special challenge for urban planning is the transformation of urban fringe areas of the city, as this process is currently taking place in an unsustainable manner. The paper concludes that urban development has to become holistic, integrative and participative and should abandon the

  6. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  7. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  8. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  9. Ageing and Water-Based Processing of LiFeMnPO4 Secondary Agglomerates and Its Effects on Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Benjamin Starke

    2017-12-01

    Full Text Available LiFeMnPO4 secondary agglomerates have been aged under different temperature and moisture conditions. The aged and pristine powder samples were then processed to water- and solvent-based cathodes. Structural studies by means of neutron and X-ray diffraction revealed that neither ageing nor water-based processing significantly modified the crystal structure of LiFeMnPO4 secondary agglomerates. Electrochemical characterization was carried out with full-cells. It was found that long-term cycling is similar independent of the solvent used for slurry preparation. Full-cells assembled with water-based cathodes show a better C-rate capability due to a more homogeneous distribution of cathode constituents compared to solvent-based ones. In no case was any negative effect of initial active material ageing on the electrochemical performance found. During ageing and processing, LiFeMnPO4 is effectively protected by carbon coating and water can be completely removed by drying since it is only reversibly bound. This contribution shows that LiFeMnPO4 secondary agglomerates allow simplified active material handling and have a high potential for sustainable water-based electrode manufacturing.

  10. Processed fly ash for workability: stretching to its limits

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M. [Dirk India Pvt Ltd., Nashik (India)

    2003-07-01

    The paper describes use of fly ash produced by the British Multinational Company called Dirk, in a fire grade, Pozzocreta 63 to improve the workability of concrete used to reline tunnels for the disposal of sewage from Mumbai City, 4 km into the Arabian Sea. It mainly involved rehabilitation of 5.5 km of tunnels from Sion to Banda, 30 m below ground level. 5 figs., 3 tabs.

  11. Agglomeration economies, competitiveness and entrepreneurial performance

    OpenAIRE

    Páger, Balázs; Komlósi, Éva

    2015-01-01

    This paper aims to elaborate the role of agglomeration effects on countries' competitiveness and entrepreneurial performance. Our research contributes to the understanding of the relationship that exists between a country's urban system characterized by spatial agglomeration (concentration) or deglomeration (deconcentration) processes, and its competitiveness and entrepreneurial performance, respectively. Urbanization economies refer to considerable cost savings generated through the locating...

  12. Mineral conversion and microstructure change in the melting process of Shenmu coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianguo; Deng Furong; Zhao Hong; Cen Kefa [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2007-05-15

    China has rich reserves of Shenmu coal, which has the typical characteristic of low-melting-point ash. If used in the pulverized-coal boiler of a power plant, Shenmu coal would cause serious slagging. In order to solve the slagging problem of Shenmu coal, the melting mechanism of Shenmu coal ash was studied. One of the Shenmu coals - Wenjialiang coal - was selected for the study. Using thermogravimetry-differential scanning colorimetry (TG-DSC) methods, the change of the coal ash's physicochemistry with temperature was studied. The typical temperature points in the melting process were obtained. Ash samples of the different temperature points were prepared in a high-temperature furnace with parameters similar to those used in the TG-DSC test, and were then cooled quickly in water. Later, the ash samples were analyzed using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) methods in detail. Wenjialiang coal ash started to melt at 980{sup o}C. The ash was found to melt to a great extent at 1200{sup o}C and formed a multiform microstructure. At 1260{sup o}C, it was found to melt into a dense body with many pores, and formed a piece of vitreous body at 1340{sup o}C. Anorthite and gehlenite are the intermediate products that exist between 980 and 1340{sup o}C. They may be the main cause of the ash having low melting points, so that they could convert into a eutectic at low temperatures.

  13. Modeling of Particle Agglomeration in Nanofluids

    Science.gov (United States)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  14. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of an accelerated mineralization process for ashes - feasibility study; Evaluering av jordmaansbildande askbehandlingsprocess (EJA) - foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Holger; Bjurstroem, Henrik

    2005-03-01

    In Japan, expenses for landfilling yield about 400 USD per ton of ash, which gives an incentive to reduce the amount of landfilled ash. At NIES (National Institute for Environmental Studies) in Tsukuba, Japan, the AMT process (Accelerated Mineralization Technology) was developed aiming at the treatment of ashes and production of soil-like material for reuse. The objective of the project EJA was to evaluate the AMT process on the basis of available information and the possibilities the process could offer with respect to the conditions present in Sweden. With support of researchers at NIES, available literature including unpublished manuscripts on the AMT process was compiled, translated and evaluated. During treatment, the ashes are washed, aged and mixed with up to 5 % by weight of biodegradable organic matter. The material is stabilized at landfill. During up to several decades, metals are demobilized through a combination of three mechanisms, viz. carbonation, clay formation, and humification. Also persistent organic pollutants (POP) are demobilized due to humification products or they are degraded anaerobically. When the treatment is completed, the reuse of the material is envisaged. Due to the long treatment period, the AMT method might not be favored by ash producers in Sweden. In the future, landfill companies could be interested in the technology, since they are experienced to handle waste at long sight. This, however, requires that the legislation does not pose any hindrance for the implementation of the method, e.g. regarding the requirement to add organic matter to the ash. Above all, it remains several years of research on the AMT process to fully understand and evaluate the underlying biological and chemical processes as well as their interaction.

  16. Soft- and hard-agglomerate aerosols made at high temperatures.

    Science.gov (United States)

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  17. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    mechanical action. It is known, that performance of fly ash in concrete improves with its increased fineness. Intensive milling of fly ash leads to the increasing fly ash fineness and to the enhancement of its hydration activity. The cement-fly ash composites with 25 wt.% of activated fly ash as cement replacement have exhibited a higher 28-day compressive strength in comparison with a reference concrete sample without fly ash. An unfavorable effect in milling process is the agglomeration of fine particles of fly ash. By high-energy milling of fly ash with addition of surfactants, the ultrafine products can be prepared. Concrete samples containing such fly ash have achieved higher compressive strengths than the reference sample without fly ash or with addition of non-milled fly ash. The considerable physical effect of ultrafine fly ash consists in superior filling of spaces between coarser cement particles and in the favorable influence of hardness of the mixtures at setting.The current research activities in mechanochemistry are oriented to the mechanical activation of poly-component systems. The knowledge in this field indicate that by high-energy milling of fly ash as a poly-component system and following heating of prepared metastable precursors, the cement minerals could be prepared.

  18. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    Scala, Fabrizio; Chirone, Riccardo

    2008-01-01

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  19. An algorithm for gradient-based dynamic optimization of UV flash processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Gaspar, Jozsef

    2017-01-01

    This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control of distillation columns, in certain two...... softwareaswellastheperformanceofdifferentcompilersinaLinuxoperatingsystem. Thesetestsindicatethatreal-timenonlinear model predictive control of UV flash processes is computationally feasible....

  20. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  2. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  3. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  4. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration ...

  5. Treatment of plutonium contaminated ashes by electrogenerated Ag(II): a new, simple and efficient process

    International Nuclear Information System (INIS)

    Madic, C.; Saulze, J.L.; Bourges, J.; Lecomte, M.; Koehly, G.

    1990-01-01

    Incineration is a very attractive technique for managing plutonium contaminated solid wastes, allowing for large volume and mass reduction factors. After waste incineration, the plutonium is concentrated in the ashes and an efficient method must be designed for its recovery. To achieve this goal, a process based on the dissolution of plutonium in nitric solution under the agressive action of electrogenerated Ag(II) was developed. This process is very simple, requiring very few steps. Plutonium recovery yields up to 98% can be obtained and, in addition, the plutonium bearing solutions generated by the treatment can be processed by the PUREX technique for plutonium recovery. This process constitutes the basis for the development of industrial facilities: 1) a pilot facility is being built in MARCOULE (COGEMA, UP1 plant), to treat active ash in 1990; 2) an industrial facility will be built in the MELOX plant under construction at MARCOULE (COGEMA plant)

  6. Agglomeration and Deposition Behaviour of Solid Recovered Fuel

    DEFF Research Database (Denmark)

    Pedersen, Morten Nedergaard; Jensen, Peter Arendt; Hjuler, Klaus

    2016-01-01

    formation, or accumulation of impurities. The combustion of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), wood, and SRF were studied in a rotary drum furnace. The combustion was recorded on a camera (60 frames per second), so that any agglomeration or deposition of fuel or ash...

  7. Study of the process of multistage leaching of alum shale's sulphate d ashes

    International Nuclear Information System (INIS)

    Maremae, E.; Ruendal, L.; Ahelik, V.

    1991-01-01

    The scheme of the process was worked out on the basis of small (the weight of starting ashes 1 kg) and big (76.2 kg) laboratory tests with the result of getting aluminium potassium sulphate (alum) as a commercial product, and a technological solution with increased content of metals (Ti, Mo, V, U, etc.). Ashes received by means of Toolse deposit (Estonia) alum-shale fluidized-bed ashing at 800 o C, were used as basic material. The ashes were sulphate d in combustion tubes provided with electric heater using sulphate roasting process: the ashes were mixed with 75% H 2 SO 4 with the ratio S : L = 4 : 3 to get a homogeneous paste which was calcinated in the tube at 250-300 o C for 30 min. The calcinated paste (clinker) was treated with boiling water. The leaching experiments were carried out with various S : L ratios; in small test - in 2-litre bulbs, equipped with a stirring-rod, reflux condenser and thermometer, in the pulp at boiling temperature (101 o C). The hot leaching pulp was filtered under pressure using forcing filters. The final solutions were cooled and treated in order to receive alum. Under the conditions of a discontinuous process, the yield of raw alum (content of Fe 2 O 3 ∼1%) made up 240-270 kg/t of the starting ashes, both at the expense of the ashes' own potassium and at the expense of the potassium added from outside. The standard alum with regard to the content of iron admixture was obtained after repeated recrystallization of the raw alum. After the separation of alum, the solutions with the specific weight of 1.4-1.5 t/m 3 , and with the following average metal and sulphuric acid content in the solutions of the small and big tests were obtained: Ti 4.8 and 8.3; Mo 0.4 and 0.8; V 1.0 and 1.9; U 0.2 and 0.5; Fe 66 and 90; Al 18 and 20; K 1.9 and 3.4; H 2 SO 4 117 and 123 g/l, respectively. The extraction of metals into the solution in small and big tests was as follows: ti 71 and 64, Mo 73 and 66, V94 and 86, U 91 and 77, Fe 69 and 60, Al 45

  8. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  10. Advances in food powder agglomeration engineering.

    Science.gov (United States)

    Cuq, B; Gaiani, C; Turchiuli, C; Galet, L; Scher, J; Jeantet, R; Mandato, S; Petit, J; Murrieta-Pazos, I; Barkouti, A; Schuck, P; Rondet, E; Delalonde, M; Dumoulin, E; Delaplace, G; Ruiz, T

    2013-01-01

    Food powders are used in everyday life in many ways and offer technological solutions to the problem of food production. The natural origin of food powders, diversity in their chemical composition, variability of the raw materials, heterogeneity of the native structures, and physicochemical reactivity under hydrothermal stresses contribute to the complexity in their behavior. Food powder agglomeration has recently been considered according to a multiscale approach, which is followed in the chapter layout: (i) at the particle scale, by a presentation of particle properties and surface reactivity in connection with the agglomeration mechanisms, (ii) at the mechanisms scale, by describing the structuration dynamics of agglomerates, (iii) at the process scale, by a presentation of agglomeration technologies and sensors and by studying the stress transmission mode in the powder bed, and finally (iv) by an integration of the acquired knowledge, thanks to a dimensional analysis carried out at each scale. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  12. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Matysek, Dalibor; Raclavsky, Konstantin; Juchelkova, Dagmar [VSB - Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Poruba (Czech Republic)

    2010-02-15

    The application of NEUTREC {sup registered} technology - desulphurisation by means of sodium bicarbonate - has been tested at the Trebovice coal-fired power plant (Ostrava, Czech Republic). This technology significantly influences the chemical composition of fly ash and the leachability of total dissolved substances (TDS), e.g., sulphates, fluorides and oxyanions (Se, Sb, Cr, As), which are monitored according to the Council of the European Union Decision 2003/33/EC. An increase of TDS in the water leachate from the fly ash obtained at 60% desulphurisation was influenced by sodium content, which is present in the form of Na{sup +} ions (85-90%). The percentages of sodium sulphate and sodium carbonate were between 5 and 10% of the total sodium content. In order to decrease the leachability of TDS, sodium, sulphates and oxyanion mixtures were prepared containing a sorbent (60% bentonite) and mixed with desulphurised and non-desulphurised fly ash in various ratios. The addition of CaO resulted in the formation of a new mineral phase, burkeite. None of the applied technologies tested for the processed fly ash resulted in the preparation of a water leachate which complied in all monitored parameters to the requirements of Council Decision 2003/33 EC for nonhazardous wastes. (author)

  13. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    Science.gov (United States)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction

  14. Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process.

    Science.gov (United States)

    Argyropoulos, G; Samara, C; Diapouli, E; Eleftheriadis, K; Papaoikonomou, K; Kungolos, A

    2017-12-01

    A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM 10 and PM 2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000km away from study areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Agglomeration and Co-Agglomeration of Services Industries

    OpenAIRE

    Kolko, Jed

    2007-01-01

    Economic research on industry location and agglomeration has focused nearly exclusively on manufacturing. This paper shows that services are prominent among the most agglomerated industries, especially at the county level. Because traditional measures of knowledge spillovers, natural resource inputs, and labor pooling explain little of agglomeration in services industries, this paper takes an alternative approach and looks at co-agglomeration to assess why industries cluster together. By cons...

  16. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes

    International Nuclear Information System (INIS)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F.; Castro, Laurenn W.A.; Silva, Marcos V.M.S.; Gomes, Romero C.; Aguilar, Maria T.P.

    2014-01-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  17. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    Science.gov (United States)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  18. Encapsulating fly ash and acidic process waste water in brick structure

    International Nuclear Information System (INIS)

    Koseoglu, K.; Polat, M.; Polat, H.

    2010-01-01

    Fly ash contains metals such as cadmium, iron, lead, aluminum and zinc in its structure in appreciable amounts. These metals can leach out into surface and ground waters if fly ash is not properly disposed of. A similar problem also exists for acidic process waste waters discharged by numerous industries. The purpose of this study was to utilize such wastes as additives in the production of construction quality bricks for the purpose of waste elimination. The bricks produced were subjected to flexural strength and water retention capacity tests along with heavy metal leaching experiments in order to determine the applicability of the procedure and the best possible recipes. This paper summarizes the results obtained in these tests along with the possible mechanisms involved in stabilizing the two wastes in the brick structure.

  19. Agglomeration processes sustained by dust density waves in Ar/C2H2 plasma: From C2H2 injection to the formation of an organized structure

    International Nuclear Information System (INIS)

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-01-01

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  20. Adsorption of Chrysoidine R by using fly ash in batch process

    International Nuclear Information System (INIS)

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-01-01

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000 mg L -1 ), amount of the adsorbent (125, 250, 375 and 500 mg L -1 ), and temperature (303, 313, 323 and 333 K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction

  1. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  2. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  3. In the shadow of the city: Demographic processes and emerging conflicts in the rural-urban fringe of the Hungarian agglomerations

    Directory of Open Access Journals (Sweden)

    Vasárus Gábor

    2018-01-01

    Full Text Available Because of the special settlement system in Hungary a municipality can be divided into three parts, the central inner area (core city, other inner areas (incorporated settlements and outskirts. Because of this system and special settlement network, the process of suburbanisation in Hungary has some unique characteristics. In this paper we examined the spatial structure and social properties of the rural-urban fringe of four Hungarian cities, with emphasise on the other inner areas and the outskirts. The outskirts are mostly scattered or interim habitations within the administrative limits of a city or village but these are usually separated from the main built-up areas and almost all of them characterised remote-rural-like infrastructure and way of life. This spatial structure resulted in the phenomenon of the suburbanisation within city limits. Our research aims to examine how it influenced local society and land use pattern in the rural parts of the agglomerations. The used method was based on a questionnaire involving 1800 households and census of outskirts plots in the sample area of a middle-sized city in West Hungary. During this process, residents tend to change their living conditions to a more rural one without leaving the municipality, thus areas of former villages and outskirts attracted 55.1% of suburban movement outside of Budapest Agglomeration since 1990. Most of the residents came from the city to rural milieu and their main motivations were low utility costs, gardening opportunities and slow lifestyle. A significant part of them is especially looking for remote-rural-like environment and community, however they want to stay close to the city. A high proportion of migrants have low-income and disadvantages. The repeated expansion of modest houses resulted in a chaotic townscape that is creating conflicts within neighborhoods. Even villages, incorporated villages and outskirts, which are at the same distance from the city centre

  4. Filtration behavior of silver nanoparticle agglomerates and effects of the agglomerate model in data analysis

    International Nuclear Information System (INIS)

    Buha, Jelena; Fissan, Heinz; Wang, Jing

    2013-01-01

    In many data evaluation procedures for particle measuring devices and in filtration models, spherical particles are assumed. However, significant fractions of aerosol particles are agglomerates of small primary spheres. The morphology of particles in filtration processes may not be known a priori and if the filtration data are processed with wrong assumption, errors can be induced. In this work, we have quantified such errors for the case of open-structured agglomerates. Filtration efficiency tests with polydisperse silver nanoparticle agglomerates and their sintered spheres were performed. After the sintering process, particles with a compact structure with the shape close to a sphere are obtained, which are referred to as sintered spheres in the present study. The testing method involved generation of particulate forms, passing the particles through the testing section, and measurement of the particle number concentrations and size distributions before and after the filter. Measurements of the aerosols upstream and downstream of the filter were conducted using scanning mobility particle sizers (SMPS, TSI Inc.), which covered the rage from 10 to 480 nm. Particles were additionally characterized from the electron microscopic images and the average primary particle size was determined to be 16.8 nm. The number-size distribution curves were obtained and used for penetration calculation. The penetration was dependent on the particle size and morphology. Silver-sintered spheres were captured with a lower efficiency than agglomerates with the same mobility diameter because of the stronger interception effect for agglomerates. Data analysis of the number-size distribution for agglomerates was processed based on sphere assumption and using the model for open-structured agglomerates developed by Lall and Friedlander. The efficiencies based on total concentrations of number, surface and volume were affected when the agglomerate model was used. The effect was weakest for the

  5. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    Science.gov (United States)

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Nelson, R., E-mail: nelson.90.mech@gmail.com [Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph.2001@gmail.com [Center for Research in Metallurgy, School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa)

    2016-08-15

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneously in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.

  7. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan.

    Science.gov (United States)

    Yang, Renbo; Liao, Wing-Ping; Wu, Pin-Han

    2012-08-15

    Approximately 19.2% of Taiwan's municipal solid waste (MSW) that passes through incineration disposal is converted into ashes (including bottom ash and fly ash). Although bottom ash can pass nearly all of the standards of the toxicity characteristic leaching procedure (TCLP), its high chloride content makes its reuse limited; it generally cannot be used as a fine aggregate material in concrete applications. This research examined washing four types of bottom ash (BA) and fly ash (FA) with water to reduce their chloride content. The optimal water intensity for washing pretreated bottom ash was found to be 7-8L of water per kg of bottom ash, and the optimal water intensity for washing untreated fly ash was found to be 20-25 L of water per kg of fly ash. Based on regression analyses of the chloride concentrations of the leachates and their electrical conductivity (EC) values, each MSW incineration plant has its own ash characteristics as well as a specific regression line in bottom or fly ash leachate. Clearly, it is possible to monitor the EC values of the leachates online by estimation from regression equations to determine the chloride concentrations in the leachates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  9. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-22

    Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.

  10. Obtaining zeolites from slags and ashes from a waste combustion plant in an autoclave process

    Directory of Open Access Journals (Sweden)

    Grela Agnieszka

    2017-01-01

    Full Text Available Waste combustion is associated with the generation of post-processing solid products – waste such as slag and ash. One of the promising technologies in waste management and processing is the synthesis of zeolites and other materials exhibiting sorption properties. The aim of this study was to characterise and assess the physicochemical properties of the waste and the products synthesised from it. This paper presents the possibility of synthesis zeolites from the slag and ash from two waste combustion plants. The investigated waste is classified as hazardous waste and denoted by the EWC code 190111*. The paper presents the results of physicochemical studies of these materials. As a result of synthesis in an autoclave at 140°C with the use of 2 M NaOH, and other compounds, such zeolite forms as chabazite and sodalite were obtained. Textural studies and ion-exchange capacity investigations carried out allowed characterisation of the sorption properties of the materials. It was found that the materials obtained are characterised by the BET specific surface areas of 25.45 m2/g and 16.79 m2/g.

  11. Development process for the stabilization of incinerator bottom ash and sizing baghouse dust material

    International Nuclear Information System (INIS)

    Hunt, L.F.; Boehmer, A.M.

    1987-04-01

    EG ampersand G Idaho Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization and subsequent disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Lab-scale testing has shown that Extraction Procedure (EP) toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal. The purpose of this report is to present the results of drum-scale testing of WERF incinerator bottom ash and WERF sizing baghouse dust. The drum-scale test program was conducted to determine if a production procedure that would produce a waste form which was suitable for disposal as a low-level radioactive waste could be developed. The use of 71-gallon square drums for solidification processing were also evaluated. During the test program, eleven drums of ash material were solidified. All of the samples from all of the drums passed the EPA leach test criteria. Although there is a distinct weight addition associated with the solidification process, there is no relative volume increase. 4 refs., 6 figs., 8 tabs

  12. Understanding Lateritic Ore Agglomeration Behaviour as a ...

    African Journals Online (AJOL)

    Processing such ores through cost-competitive heap (4-10 m high) leaching as an alternative, requires successful agglomeration of the feed into robust and porous granules. To date, produc-ing of granules with desirable attributes poses a major geotechnical challenge to industry. In the present work, we investigate ...

  13. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  14. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.

    Science.gov (United States)

    Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi

    2017-09-19

    A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.

  15. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge

    International Nuclear Information System (INIS)

    Ridout, Angelo J.; Carrier, Marion; Collard, François-Xavier; Görgens, Johann

    2016-01-01

    Highlights: • Vacuum, slow and fast pyrolysis of low and high ash paper waste sludge (PWS) is compared. • Reactor temperature and pellet size optimised to maximise liquid and solid product yields. • Gross energy recovery from solid and liquid was assessed. • Fast pyrolysis of low and high ash PWS offers higher energy conversions. - Abstract: The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (EC_s_u_m), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18–23 MJ kg"−"1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4–7 MJ kg"−"1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

  16. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  17. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Mamidala, Praveen; Wijeratne, Asela J; Wijeratne, Saranga; Poland, Therese; Qazi, Sohail S; Doucet, Daniel; Cusson, Michel; Beliveau, Catherine; Mittapalli, Omprakash

    2013-01-01

    Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.

  18. Removal of unburned carbon in fly ash produced in coal combustion process

    International Nuclear Information System (INIS)

    Velasquez V, Leonardo F; De La Cruz M, Javier F; Sanchez M, Jhon F

    2007-01-01

    The coal unburned in flying ashes obtained in the processes of coal combustion is the main disadvantage for its use in the industry of the construction. This material normally has a size of particle greater than the mineral material, therefore it is possible to be separated in a considerable percentage, obtaining double benefit: the reusability of unburned like fuel or precursor for the activated charcoal production and the use of the mineral material in the industry of the construction since the organic matter has retired him that disables its use. In this work it is experienced with a sifted technique of separation by for three obtained flying ash samples with different technology (travelling Grill, pneumatic injection and overturning grill), were made grain sized analyses with meshes of a diameter of particle greater to 0,589 mm, the short analyses were made to them next to the retained material in each mesh and the unburned percentage of removal was determined of. The technique was compared with other developing.

  19. Agglomeration Economies in Classical Music

    DEFF Research Database (Denmark)

    Borowiecki, Karol Jan

    2015-01-01

    This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...

  20. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  1. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  2. Study on the agglomeration kinetics of uranium peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.; Mojica Rodriguez, L.A. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Process Department, 17171, Bagnols-sur-Ceze 30207 (France); Muhr, H.; Plasari, E. [Reaction and Process Engineering Laboratory, CNRS, University of Lorraine. 1 rue Grandville, BP 20451, Nancy 54001 (France); Auger, F. [Areva Mines/SEPA. 2 route de Lavaugrasse, Bessines-sur-Gartempe 87250 (France)

    2016-07-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  3. Study on the agglomeration kinetics of uranium peroxide

    International Nuclear Information System (INIS)

    Bertrand, M.; Mojica Rodriguez, L.A.; Muhr, H.; Plasari, E.; Auger, F.

    2016-01-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  4. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  5. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  6. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  7. Urban Agglomerations in Regional Development: Theoretical, Methodological and Applied Aspects

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Shmidt

    2016-09-01

    Full Text Available The article focuses on the analysis of the major process of modern socio-economic development, such as the functioning of urban agglomerations. A short background of the economic literature on this phenomenon is given. There are the traditional (the concentration of urban types of activities, the grouping of urban settlements by the intensive production and labour communications and modern (cluster theories, theories of network society conceptions. Two methodological principles of studying the agglomeration are emphasized: the principle of the unity of the spatial concentration of economic activity and the principle of compact living of the population. The positive and negative effects of agglomeration in the economic and social spheres are studied. Therefore, it is concluded that the agglomeration is helpful in the case when it brings the agglomerative economy (the positive benefits from it exceed the additional costs. A methodology for examination the urban agglomeration and its role in the regional development is offered. The approbation of this methodology on the example of Chelyabinsk and Chelyabinsk region has allowed to carry out the comparative analysis of the regional centre and the whole region by the main socio-economic indexes under static and dynamic conditions, to draw the conclusions on a position of the city and the region based on such socio-economic indexes as an average monthly nominal accrued wage, the cost of fixed assets, the investments into fixed capital, new housing supply, a retail turnover, the volume of self-produced shipped goods, the works and services performed in the region. In the study, the analysis of a launching site of the Chelyabinsk agglomeration is carried out. It has revealed the following main characteristics of the core of the agglomeration in Chelyabinsk (structure feature, population, level of centralization of the core as well as the Chelyabinsk agglomeration in general (coefficient of agglomeration

  8. Measurement of agglomerate strength distributions in agglomerated powders

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Aking, M.; Burkhart, L.

    1986-01-01

    Strength distributions of particle agglomerates in six different yttria powders were measured using a calibrated ultrasonic sound field. The density of sintered pellets was directly related to the agglomerate strength of each powder. No systematic relation to the sintered density was observed for bulk densities or pressure-density compaction data for the loose powders, or for pore size distributions or green densities for the pressed compacts

  9. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    International Nuclear Information System (INIS)

    Huang Chao; Ma Xiuqin; Sun Youshan; Wang Meiyan; Zhang Changping; Lou Yueya

    2015-01-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m 3 , output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0–6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of −3.2. (paper)

  10. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    Science.gov (United States)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  11. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  12. Microbial effects on colloidal agglomeration

    International Nuclear Information System (INIS)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  13. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders

    NARCIS (Netherlands)

    Willemsz, T.A.; Hooijmaijers, R.; Rubingh, C.M.; Tran, T.N.; Frijlink, H.W.; Vromans, H.; Maarschalk, K.V.D.V.

    2012-01-01

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity.

  14. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  15. An improved ashing procedure for biologic sample

    Energy Technology Data Exchange (ETDEWEB)

    Zongmei, Wu [Zhejiang Province Enviromental Radiation Monitoring Centre (China)

    1992-07-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches.

  16. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  17. About a double process of soil acidification under the influence of recent volcanic ashes. Example of the Soufriere of Guadeloupe, after the 1976-1977 eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cabidoche, Y.M.; Sobesky, O.; Feller, C.; Larque, P.

    1987-04-21

    A fast and durable acidification was observed in Andisols, after the ash-deposits of the 1976-1977 Soufriere eruptions. This phenomenon is due to an original connection of a double process, concerning with the initial ash composition: an immediate aluminic acidity coming from the inter-layer Al smectites, a gradual protonic acidification due to oxydation of pyrites.

  18. Formulation of cilostazol spherical agglomerates by crystallo-co-agglomeration technique and optimization using design of experimentation.

    Science.gov (United States)

    Deshkar, Sanjeevani Shekhar; Borde, Govind R; Kale, Rupali N; Waghmare, Balasaheb A; Thomas, Asha Biju

    2017-01-01

    Spherical agglomeration is one of the novel techniques for improvement of flow and dissolution properties of drugs. Cilostazol is a biopharmaceutics classification system Class II drug with poor solubility resulting in limited bioavailability. The present study aims at improving the solubility and dissolution of cilostazol by crystallo-co-agglomeration technique. Cilostazol agglomerates were prepared using various polymers with varying concentration of hydroxypropyl methylcellulose E 50 (HPMC E50), polyvinyl pyrrolidone K30 (PVP K30), and polyethylene glycol 6000. The influence of polymer concentration on spherical agglomerate formation was studied by 3 2 factorial design. Cilostazol agglomerates were evaluated for percent yield, mean particle size, drug content, aqueous solubility, and in vitro dissolution and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The agglomeration process resulted in optimized formulation, F3 with mean agglomerate size of 210.0 ± 0.56 μm, excellent flow properties, approximately 15-fold increase in solubility than pure cilostazol and complete drug release in 60 min. Process yield, agglomerate size, and drug release were affected by amount of PVP K 30 and HPMC E50. The presence of drug microcrystal was confirmed by SEM, whereas FTIR study indicated no chemical change. Increase in drug solubility was attributed to change of crystalline drug to amorphous form that is evident in DSC and XRD. Crystallo-co-agglomeration can be adopted as an important approach for increasing the solubility and dissolution of poorly soluble drug.

  19. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    Science.gov (United States)

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  20. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  1. Urban Planning Problems of Agglomerations

    Science.gov (United States)

    Olenkov, V. D.; Tazeev, N. T.

    2017-11-01

    The article explores the state of the air basin of the Chelyabinsk agglomeration and gives the examples of solutions for the pollution problems from the point of view of city planning. The main features and structure of the modern urban agglomerations are considered, the methods for determining their boundaries are studied and the main problems are identified. The study of the boundaries and territorial structure of the Chelyabinsk urban agglomeration is conducted, and a general description of the territory is given. The data on the change in the volume of pollutant emissions into the atmosphere and the index of atmospheric pollution for the period 2003-2015 are given basing on the annual comprehensive reports regarding the state of the environment. The review of the world experience of city-planning actions on the decision of ecological problems is carried out. The most suitable ways for the ecological problems solving in the Chelyabinsk agglomeration are considered. The authors give recommendations for the ecological situation improving in the territory of the Chelyabinsk agglomeration.

  2. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion

    Directory of Open Access Journals (Sweden)

    Chunlin Wang

    2017-01-01

    Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

  3. Analysis on the Spatial-Temporal Dynamics of Financial Agglomeration with Markov Chain Approach in China

    Directory of Open Access Journals (Sweden)

    Weimin Chen

    2014-01-01

    Full Text Available The standard approach to studying financial industrial agglomeration is to construct measures of the degree of agglomeration within financial industry. But such measures often fail to exploit the convergence or divergence of financial agglomeration. In this paper, we apply Markov chain approach to diagnose the convergence of financial agglomeration in China based on the location quotient coefficients across the provincial regions over 1993–2011. The estimation of Markov transition probability matrix offers more detailed insights into the mechanics of financial agglomeration evolution process in China during the research period. The results show that the spatial evolution of financial agglomeration changes faster in the period of 2003–2011 than that in the period of 1993–2002. Furthermore, there exists a very uneven financial development patterns, but there is regional convergence for financial agglomeration in China.

  4. Mechanical properties of individual MgAl2O4 agglomerates and their effects on densification

    International Nuclear Information System (INIS)

    Rufner, Jorgen F.; Castro, Ricardo H.R.; Holland, Troy B.; Benthem, Klaus van

    2014-01-01

    The presence of agglomerates during nanopowder sintering can be problematic and can limit achievable final densities. Typically, the practical solution is to use high pressures to overcome agglomerate breakdown strengths to reach higher packing fractions. The strength of agglomerates is often difficult to determine and makes processing parameters challenging to optimize. In this work, we used in situ transmission electron microscopy nanoindentation experiments to assess the mechanical properties of individual MgAl 2 O 4 agglomerates under constant indenter head displacement rates. Electron microscopy revealed highly porous agglomerates with pores on both the micron and nanometric length scales. Individual agglomerate strength, at fracture, was calculated from compression tests with deformation behavior correlating well with previously reported modeling results. Macroscopic powder properties were also investigated using green-pressed pellets consolidated at pressures up to 910 MPa. The unexpectedly high strength is indicative of the role agglomerates play in MgAl 2 O 4 nanopowder densification

  5. Effect of Fly Ash Fortification in the Manufacture Process of Making Concrete towards Characteristics of Concrete in Sulfuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Asep Handaya Saputra

    2015-12-01

    Full Text Available Fly ash is a silica or alumino silica material that can be used as a constituent of cement in the concrete manufacturing process. Utilization of fly ash aims to improve durability and minimize the reduction of concrete’s compressive strength exposed to an acidic environment, which can be achieved through the pozzolanic reaction of fly ash with Ca(OH within concrete. The reduced content of Ca(OH through pozzolanic reaction will minimize the tendency of ettringite formation (compounds that cause deterioration and decrease the compressive strength of concrete. In order to determine the relation between fly ash replenishment into concrete with concrete’s characteristics (compressive strength and durability under acidic environment, the research is conducted by varying the fly ash composition ranging from 0%, 5%, 25%, 50%, up to 75%, and the concentration of H22SO solution as an immersion medium ranging from 0%, 5%, 10%, up to 15% (v/v. The research is carried out by immersing the concrete samples for 4 days in H4 solution with various concentrations. Characterization of concrete’s durability and compressive strength is reviewed from the concrete’s weight loss percentage and reduction of concrete’s compressive strength percentage after immersion. Based on the research results, for each variation of H2SO concentration used, the minimum concrete’s weight loss percentage (maximum durability and the minimum reduction of concrete’s compressive strength percentage is found in the use of fly ash by 75%. For each concentration variations of H42SO solution as an immersion medium ranging from 5%, 10%, up to 15% (v/v, the minimum concrete’s weight loss percentage was 0.47%, 0.87%, 1.28% (respectively, whilst the minimum reduction of concrete’s compressive strength percentage was 5.71%, 14.29%, 17.14% (respectively. It was concluded that the use of fly ash can improve the durability and minimize the reduction of compressive strength of concrete

  6. Acoustic agglomeration methods and apparatus

    Science.gov (United States)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  7. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    Science.gov (United States)

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  8. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  9. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  10. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  11. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  12. Agglomeration Control during Ultrasonic Crystallization of an Active Pharmaceutical Ingredient

    Directory of Open Access Journals (Sweden)

    Bjorn Gielen

    2017-02-01

    Full Text Available Application of ultrasound during crystallization can efficiently inhibit agglomeration. However, the mechanism is unclear and sonication is usually enabled throughout the entire process, which increases the energy demand. Additionally, improper operation results in significant crystal damage. Therefore, the present work addresses these issues by identifying the stage in which sonication impacts agglomeration without eroding the crystals. This study was performed using a commercially available API that showed a high tendency to agglomerate during seeded crystallization. The crystallization progress was monitored using process analytical tools (PAT, including focus beam reflectance measurements (FBRM to track to crystal size and number and Fourier transform infrared spectroscopy (FTIR to quantify the supersaturation level. These tools provided insight in the mechanism by which ultrasound inhibits agglomeration. A combination of improved micromixing, fast crystal formation which accelerates depletion of the supersaturation and a higher collision frequency prevent crystal cementation to occur. The use of ultrasound as a post-treatment can break some of the agglomerates, but resulted in fractured crystals. Alternatively, sonication during the initial seeding stage could assist in generating nuclei and prevent agglomeration, provided that ultrasound was enabled until complete desupersaturation at the seeding temperature. FTIR and FBRM can be used to determine this end point.

  13. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  14. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology

    1997-08-01

    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.

  15. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  16. The soundscape dynamics of human agglomeration

    International Nuclear Information System (INIS)

    Ribeiro, Haroldo V; De Souza, Rodolfo T; Lenzi, Ervin K; Mendes, Renio S; Evangelista, Luiz R

    2011-01-01

    We report on a statistical analysis of the people agglomeration soundscape. Specifically, we investigate the normalized sound amplitudes and intensities that emerge from human collective meetings. Our findings support the existence of non-trivial dynamics characterized by heavy tail distributions in the sound amplitudes, long-range correlations in the sound intensity and non-exponential distributions in the return interval distributions. Additionally, motivated by the time-dependent behavior present in the volatility/variance series, we compare the observational data with those obtained from a minimalist autoregressive stochastic model, namely the generalized autoregressive conditional heteroskedastic process (the GARCH process), and find that there is good agreement.

  17. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  18. Analysis of metal Bioleaching from thermal power plant fly ash by Aspergillus niger 34770 culture supernatant and reduction of phytotoxicity during the process.

    Science.gov (United States)

    Jadhav, Umesh U; Hocheng, Hong

    2015-01-01

    Aspergillus niger culture supernatant is used for bioleaching process. Before starting bioleaching process, fly ash was washed with distilled water. This removed 100 % sodium, 47 % (±0.45) boron, 38.07 % (±0.12) calcium, 29.89 % (±0.78) magnesium, and 11.8 % (±0.05) potassium. The pH was reduced from 10.5 to 8.5 after water washing. During bioleaching process, around 100 % metal removal was achieved in 4 h for all metals except chromium 93 % (±1.18), nickel 83 % (±0.32), arsenic 78 % (±0.52), and lead 70 % (±0.20). The process parameters including temperature, shaking speed, and solid/liquid ratio were optimized for bioleaching process. Experiments were conducted to evaluate effect of fly ash on growth of mung bean (Vigna radiata). At 20 g/100 ml fly ash concentration no germination of V. radiata seeds was observed. With an increasing concentration of untreated fly ash, a gradual decrease in root/shoot length was observed. After bioleaching process 78 % (±0.19) germination of V. radiata was observed with 20 g/100 ml fly ash. This study will help to develop an efficient process to remove the toxic metals from fly ash.

  19. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  20. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.

    Science.gov (United States)

    Le, V N P; Robins, E; Flament, M P

    2012-04-01

    Due to their small size, the respirable drug particles tend to form agglomerates which prevent flowing and aerosolisation. A carrier is used to be mixed with drug in one hand to facilitate the powder flow during manufacturing, in other hand to help the fluidisation upon patient inhalation. Depending on drug concentration, drug agglomerates can be formed in the mixture. The aim of this work was to study the agglomeration behaviour of fluticasone propionate (FP) within interactive mixtures for inhalation. The agglomerate phenomenon of fluticasone propionate after mixing with different fractions of lactose without fine particles of lactose (smaller than 32 μm) was demonstrated by the optical microscopy observation. A technique measuring the FP size in the mixture was developed, based on laser diffraction method. The FP agglomerate sizes were found to be in a linear correlation with the pore size of the carrier powder bed (R(2)=0.9382). The latter depends on the particle size distribution of carrier. This founding can explain the role of carrier size in de-agglomeration of drug particles in the mixture. Furthermore, it gives more structural information of interactive mixture for inhalation that can be used in the investigation of aerosolisation mechanism of powder. According to the manufacturing history, different batches of FP show different agglomeration intensities which can be detected by Spraytec, a new laser diffraction method for measuring aerodynamic size. After mixing with a carrier, Lactohale LH200, the most cohesive batch of FP, generates a lower fine particle fraction. It can be explained by the fact that agglomerates of fluticasone propionate with very large size was detected in the mixtures. By using silica-gel beads as ball-milling agent during the mixing process, the FP agglomerate size decreases accordingly to the quantity of mixing aid. The homogeneity and the aerodynamic performance of the mixtures are improved. The mixing aid based on ball

  1. Aglomerante puzolánico formado por cal y ceniza de paja de caña de azúcar: la influencia granulométrica de sus componentes en la actividad aglomerante Pozzolanic binder constituted by lime and cane sugar straw ash: the granulometric influence of its components in the agglomerate activity

    Directory of Open Access Journals (Sweden)

    Lesday Martínez Fernández

    2007-08-01

    Full Text Available En el presente trabajo se realiza una caracterización de los componentes de una mezcla binaria formada por cal-ceniza de paja de caña de azúcar mediante las técnicas analíticas de difracción de rayos-x, de análisis químico y granulometric o, valorándose la evolución del proceso de fraguado de esta mezcla binaria, permitiendo dar respuesta a la búsqueda de alternativas como adiciones minerales activas al cemento. Los parámetros estadísticos de las curvas granulométricas de la cal, de la ceniza de la paja de caña y de la mezcla puzolánica (calxeniza = 3:7 brindan criterios del grado de mezclado de los componentes de la mezcla puzolánica y de la utilización de los granos pequeños (The present study carried out a characterization of the components of a binary blend comprised of lime-cane sugar straw ash by means of the analytic techniques ofray-x diffraction, chemical, and granulometric analysis. The evolution of the setting process of this binary blend was assessed, and it appears as an alternative mineral active addition to cement. The statistical parameters of granulometric curves of the lime, the cane straw ash and the pozzolanic blend (lime: ash = 3:7 provide criteria for mixing the blend components fitting the small grains (<9um in the voids formed by bigger grains (45 um. The right size combination can create a space of enhanced reactivity providing compressive strengths of 13 MPa at the age of 28 days

  2. The Process of Financial Institution Agglomeration from the Perspective of Iterative Spatial Game%金融机构集聚过程的动态博弈分析

    Institute of Scientific and Technical Information of China (English)

    陈铭仁

    2014-01-01

    在理性行为人收益最大化原则条件下得出了行为人空间博弈的结果---在均衡状态,限制性条件(如运输技术等)能够产生一个收敛的空间区位调整过程,最终实现空间集聚。在这个博弈集聚的过程中,外部因素存在发生作用的空间,从而说明了政策制定者可以通过制定相关的政策来影响金融机构的集聚过程,进而促进金融市场的深化发展和金融中心的形成。这一空间集聚过程也可用于分析城镇化的形成和发展过程。%This article utilizes the iterative spatial games to access the results of the ra-tional agent's spatial game, based on the principle of profit maximization.At the equilibri-um, it's found that the restrictive conditions ( e.g., transportation techniques) lead to a convergent process of the spatial location regulation and ultimately realize the spatial ag-glomeration.That is, during the process, external factors are likely to play an important role, which suggests that policymakers might formulate related policies to affect the process of financial institution agglomeration, and then promote the development of financial mar-kets and the formation of financial centers.This spatial agglomeration process is also avail-able for analyzing the process of urbanization.

  3. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    Energy Technology Data Exchange (ETDEWEB)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  4. Development of a process with reduced energy consumption and environmental pollution in the production of solid, thermostable iron ore agglomerates. Final report; Entwicklung eines Verfahrens zur Senkung des Energiebedarfs und der Umweltbelastung bei der Herstellung von festen und thermostabilen Eisenerzagglomeraten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, W.; Trommer, D. [TU Bergakademie Freiberg (Germany); Guenter, H. [Koeppern Aufbereitungstechnik GmbH und Co. KG, Markkleeburg (Germany)

    2002-06-01

    In iron ore reduction with carbon, as a rule the ores are processed into stable and thermally stable agglomerates via emission-intensive processes, e.g. pelleting and combustion. This project aimed at the development of a process that avoids these problems, e.g. by agglomerating fine ores with binders and without emissions. [German] Bei der Reduktion von Eisenerz mit Kohlenstoff werden die Erze in der Regel vor dem Einsatz in den Reduktionsofen mit hohem Aufwand an Technik und Energie durch emissionsintensive Prozesse in transport- und thermofeste Agglomerate ueberfuehrt (Pelletier- und Brennprozess). Es ist das Ziel des Projektes, eine Verfahrensloesung ohne diese Nachteile zu entwickeln. Erfolgversprechend wird eine Verfahrenstechnik angesehen, bei der die Feinerze unter Zusatz von Bindestoffen ohne Emissionen agglomeriert werden. (orig.)

  5. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  6. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  7. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  8. Treatment of oily wastes by agglomeration techniques to produce an auxiliary carbonaceous fuel with low SO2 emissions

    International Nuclear Information System (INIS)

    Majid, A.; Capes, C.E.; Sparks, B.D.

    1992-01-01

    Oily sludges and organic wastes are produced by a number of industries, particularly those related to the recovery of processing of petroleum. Traditional sludge disposal methods, involving concentration by impoundment followed by land filling or land farming, are meeting with increasingly stringent regulations. Further treatment of the wastes and reduction of volume and recycle are being encouraged and legislated. Such treatment may range from separation of constituents into higher value products, such as the separation of oil or other organic components from mineral (ash forming) impurities and water, to stabilization of impurities to prevent leaching or to reduce emissions during combustion. This paper reports on liquid phase agglomeration (LPA) which has the potential to play a major role in oily waste treatment processes. It can be adapted to separate finely divided solids or liquids from immiscible liquid suspensions or emulsions

  9. Comparison of different MSWI fly ash treatment processes on the thermal behavior of As, Cr, Pb and Zn in the ash

    DEFF Research Database (Denmark)

    Chen, Wan; Kirkelund, Gunvor Marie; Jensen, Pernille Erland

    2017-01-01

    To reduce heavy metal leaching and stabilize municipal solid waste incineration (MSWI) fly ash, different methods and combination of methods were tested: water washing, electrodialytic separation and thermal treatment at 1000°C. A comparison of heavy metal concentration and leaching levels of As...

  10. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  11. Experimental studies of the gravitational agglomeration of aerosols. Pt. 2

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Longley, K.A.; Mitchell, J.P.; Ketchell, N.

    1990-12-01

    Experiments have been performed to investigate the influence of gravitational agglomeration as an aerosol depletion process in a small containment vessel. The resulting data will aid in the development of computer codes that describe aerosol transport processes following severe reactor accidents. (author)

  12. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  13. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  14. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  15. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    Science.gov (United States)

    Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong

    2013-01-01

    This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317

  16. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    Directory of Open Access Journals (Sweden)

    Geon-Yong Lee

    2013-09-01

    Full Text Available This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure.

  17. Removal of selected heavy metals from MSW fly ash by the electrodialytic process

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2005-01-01

    This paper aims to assess the applicability of the electrodialytic remediation technique for the removal of zinc, lead, copper and cadmium from municipal solid waste (MSW) incinerator fly ash. A broad range of experimental conditions were studied including current densities, remediation times, use...... of assisting agents and cell design. Several operational problems were identified during the electrodialytic experiments, among which are formation of precipitates, dryness of sample and partial dissolution of sample creating preferential pathways for the electric current. These problems may explain the low...

  18. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  19. Investigation of the possibility of binding fly ash particles by elemental sulphur

    Directory of Open Access Journals (Sweden)

    Vidojković V.

    2006-01-01

    Full Text Available Thermal power plants in Serbia use lignite for electrical power production The secondary product of coal combustion is fly ash in the amount of 17%. Fly ash causes the pollution of air, water and soil, and also cause many human, especially lung diseases. Secondary sulphur is a product of crude oil refining. The aim of this study was to investigate the use of sulphur as a bonding material in ultra fine particle agglomeration (smaller than 63 μm in fly ash. The agglomeration should make the ash particles larger and heavy enough to fall without flying fractions. The experiments showed that during the homogenization of the ashes and sulphur from 150 to 170 °C in a reactor with intensive mixing, an amount of 15% sulphur was sufficient to bond particles and cause agglomeration without visible flying fractions.

  20. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  1. Mercury and toxic metals in ash from combustion and incineration processes; Mercurio y metales toxicos en cenizas provenientes de procesos de combustion e incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V.; Amador, M.A.; Torres, M.; Figueroa, J. de J. [Universidad Autonomo-Metropolitana-Azcapotzalco, Reynosa (Mexico)

    2003-07-01

    In Mexico, most of the ashes from combustion and incineration process were not appropriately disposed, they are either left on industrial yards and cliffs or thrown away in open spaces and then carried by the wind to places where they can harm population, affect aquatic environment or soils. For prevention and control, the knowledge on the concentration of trace elements in waste ashes is necessary. In this study, several oxidation methods for digestion of ashes followed by inductively coupled plasma emission spectrometry were evaluated. Hg, Cd, Cr, Cu, Ni, Pb and V were determined in ashes from coal and fuel oil combustion, as well as in ashes from the incineration of municipal, water treatment sludge, and medical wastes. Results showed important concentrations of different trace elements in the ashes. This suggests that adequate disposal of these wastes should be mandatory. On the other hand, concentration of trace elements in the leachates indicated that these wastes are not toxic and they could be disposed in sanitary landfill. 23 refs.

  2. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    a visual indicator of the formation of gold clusters on the SiO2 . The glass would make observing a color change in the gold film easier later in the...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A fabrication process for creating a silicon dioxide ( SiO2 ) light-trapping structure as part of...even distribution of irregular agglomerates, also known as “complete islanding”. By using these gold agglomerations as a metal mask, the SiO2 can be

  3. Powder agglomeration in a microgravity environment

    Science.gov (United States)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  4. Effects of process parameters and ash on the adsorption properties of activated carbon from coals

    International Nuclear Information System (INIS)

    Gao, F.; Han, L.

    2013-01-01

    super-activated carbon was prepared from three representative shanxi coals, i.e. datong bituminous coal, yangquan anthracite and jincheng anthracite by KOH activation. The optimum parameters were obtained by comparing CCl/sub 4/ absorption values of activated carbon (ac). In addition, pristine coal and ac were deashed by acid washing, respectively. The effect of ash content on the adsorption properties of ac was studied. the results indicate that CCl/sub 4/ adsorption value of ac from yangquan anthracite with deashing treatment reaches up to 3301 mg/g when the activated temperature, activated time and ratio of alkali to carbon are 1830 degree C, 60 min and 5/1, respectively. (author)

  5. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  6. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    International Nuclear Information System (INIS)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO 2 emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  7. Problems of Research, Projects and Mechanisms for Their Implementation in Chelyabinsk City Agglomeration

    Science.gov (United States)

    Bolshakov, V. V.

    2017-11-01

    The article analyzes the research and design methods of urban agglomerations in the context of the Chelyabinsk agglomeration from the point of view of correctness, objectivity and consistency of the results obtained. The completed and approved project of the Chelyabinsk agglomeration is analysed to provide architectural and planning solutions for sustainable social and economic development according to the theories that have been formed to date. The possibility of effectuation and implementation of the approved project of the Chelyabinsk agglomeration taking in account existing specific natural, historical and socio-economic factors characteristic for the territory under consideration is examined. The authors draw the conclusions the project of the Chelyabinsk agglomeration has been developed in line with the town-planning solutions that do not reflect modern approaches based on the competitive advantages of territories and do not form a space providing transition to a modernized and innovative economy. Specific town-planning decisions have a weak justification and an undeveloped methodology for pre-project analysis and methodology for designing urban agglomerations because of absence of a full study of the phenomenon of urban agglomeration and processes occurring in it today. It is necessary to continue research in the field of development of the Chelyabinsk agglomeration with the use of a logical and objective methodology to analyze the territory and design which can lead to the formation of an urban-planning information model that reflects all the system processes and allows for predicting project solutions.

  8. Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash

    Directory of Open Access Journals (Sweden)

    Ana Maria Furtado de Sousa

    Full Text Available Abstract Silica was extracted from rice husk ash (RHA by a sequence of reactions to produce nanosilica. Two laboratory routes, co-coagulation and spray drying, were used to incorporate the nanosilica into the rubber matrix. Samples were characterized regarding filler incorporation efficiency, thermal stability, rheological behavior and morphology. Thermogravimetric analysis showed that spray-drying was the most efficient filler incorporation process and also the presence of silica increased the thermal resistance of the rubber compound when compared to the unfilled rubber. The rheological behavior showed that NBR filled with silica presented higher elastic torque (S’, storage modulus (G’ and complex viscosity (η* than unfilled rubber. The Payne effect was also observed for the composites produced by spray-drying. In addition, the thermal behavior and Payne effect results were supported by the comparison of morphology observed by FEG-SEM analysis.

  9. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.

    Science.gov (United States)

    Bojinova, Darinka; Teodosieva, Ralitsa

    2016-06-01

    The solid industrial wastes generated from thermal power plants (TPPs) can be considered as renewable secondary sources for recovery of valuable metals. This study presents the results from investigations that integrated a thermo-hydro-metallurgical method for treatment of bottom ash obtained from the Enel Maritsa East 3 TPP in Bulgaria. Leaching was performed with 20, 30 and 40 wt% sulphuric acid, respectively, in an autoclave at 100(o)C, 120(o)C and 140(o)C for 120, 240, 360 and 480 min, at a constant value of the liquid/solid ratio. After autoclaving, the samples (suspensions) were diluted with a constant value of water and stirring at 50(o)C for 60 min. On the basis of the experimental data the leaching efficiency (α) of the elements in the liquid phase after filtration was estimated. The leaching of aluminium increases significantly with increasing of the temperature, reaching the maximum value of 70 wt%. The highest leaching efficiency values for the other elements are as follows: Fe (86.4%), Ca (86.6%), Na (86.6%), Ni (83.3%) and Zn (83.3%). The maximum value of leaching for Mg, K, Mn, Cu and Cr is in the interval of 46-70%. © The Author(s) 2016.

  10. Influence of primary-particle density in the morphology of agglomerates.

    Science.gov (United States)

    Camejo, M D; Espeso, D R; Bonilla, L L

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works.

  11. Agglomeration of dust in convective clouds initialized by nuclear bursts

    Science.gov (United States)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  12. The hydrometallurgy, the agglomeration and the absorption like alternative of cleaner production in the processes of gold benefit in the northeast antioqueno

    International Nuclear Information System (INIS)

    Restrepo Moreno, Alvaro

    2004-01-01

    In Colombia the small mining of precious metals, commonly uses traditional technologies with a low technological profile as consequence of the limitations in the capital of available work for the mining operation in our country, those which slowly they have specialized according to the origin of the mineral observing a tendency toward the gravimetric concentration in the alluvial mining, while in the underground mining more complex processes are used that include the triturating, mill, amalgamation and cyanidation. Independently of the tendency, in each one of the carried out processes they are presented lost of materials for the inefficiency and the not well state of the equipment, generating different levels of environmental impacts and that for their importance in most of the cases invite to the search of alternative economically viable that allow the progressive decrease of the effects on the natural resources and the communities in general. It is as well as Corantioquia has come developing some successful experiences in the search of the sustainability of the mining sector, contributing alternative that allow the decrease of the row material for reuse and of the effusions of highly toxic materials as they are the mercury and the cyanide. For the emissions control of mercury to the atmosphere, the use of the retorts was fomented by means of the technical exploration of all and each one of the available systems commercially in the market, reaching superior yields to 80% in the recovery of the mercury in the burns process of the amalgam, but its use has always been surrounded of an aureole of distrust on the part of the small miner that has not allowed the massification of the system and especially in the sales and purchases of gold; factor that impelled the development of the denominated cubicle of mercury like a contribution of the corporation, in which allows the miner and the observers to see the burn of the amalgam in permanent form through the walls in

  13. Particle agglomeration and properties of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yijun; Oztekin, Alparslan, E-mail: alo2@lehigh.edu; Neti, Sudhakar [Lehigh University, Department of Mechanical Engineering and Mechanics (United States); Mohapatra, Satish [Dynalene Inc. (United States)

    2012-05-15

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  14. Particle agglomeration and properties of nanofluids

    International Nuclear Information System (INIS)

    Yang Yijun; Oztekin, Alparslan; Neti, Sudhakar; Mohapatra, Satish

    2012-01-01

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  15. A CONCEPTUAL APPROACH TO ECONOMIC AGGLOMERATIONS

    Directory of Open Access Journals (Sweden)

    Mădălina-Ștefania Dîrzu

    2012-09-01

    Full Text Available Technological progress and rapid structural adjustments have characterized a lot of economies in the last century and they still feature pronounced structures. An important observation is that economic activities tend to agglomerate in space as a result of some kind increasing returns, forming eventually economic agglomerations. When various companies gather together, they establish specific forms of interaction. Increasing returns produce when this mutual interplay creates positive externalities for those firms which operate into an agglomeration. In this context, it is crucial to raise a question: what is an economic agglomeration and what do different scientists imply when using the concept? The phenomenon of agglomeration has attracted researchers from various disciplines employing a hybrid set of analytical perspectives. This whole framework is still puzzled with contradictory conceptualizations which are often used in an ambiguous way. Scientists tend to utilize notions such as agglomeration, cluster, territorial network, specialization, concentration somewhat interchangeably and with little concern about how to operationalize them. To shed a light on this issue, the aim of this paper is to provide a comprehensive analyze of different theoretical framework in which economic agglomerations have been debated and researched.

  16. Shapes of agglomerates in plasma etching reactors

    International Nuclear Information System (INIS)

    Huang, F.Y.; Kushner, M.J.

    1997-01-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller (<100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. copyright 1997 American Institute of Physics

  17. Modeling of particle agglomeration in nanofluids

    International Nuclear Information System (INIS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-01-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed

  18. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  19. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J; Backman, R; Lauren, T; Uusikartano, T; Malm, H; Stenstroem, P; Vesterkvist, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  20. Porosity of Lead Agglomerate as Function of CaO and SiO2 Proportion

    OpenAIRE

    , A. Haxhiaj; , A. Terziqi; , E. Haxhiaj

    2016-01-01

    Agglomerate porosity is correlated with strength of its pieces and it is main parameter for reductive melting process in Water-jacket furnace. Treatment is oriented toward achieving porosity and optimal strength. The paper deals with the process in te-mperature about 9000C and with less than 10% composition CaO in rapport with lead. In order to achieve optimal results of agglomerate porosity and quality, it is necessary during the roasting process of lead concentration to correlate the conten...

  1. Effect of radiation processing on shelf life and antioxidant properties of minimally processed ready to cook (RTC) cauliflower and ash gourd

    International Nuclear Information System (INIS)

    Vaishnav, Jasraj; Tripathi, Jyoti; Variyar, Prasad S.

    2017-01-01

    The demand for minimally processed vegetables are increasing because consumers now spend less time for cooking every day due to their busy life style, while insisting on more hygienic premium quality products with minimal change in nutritional and sensory properties. Minimally processed cauliflower and ash gourd products were developed using radiation processing. Products were irradiated with different doses of gamma radiation (0.5-2.5kGy), and stored at different temperatures (4,10 and 15 °C). At optimum processing conditions (0.5 kGy; 4 °C) RTC cauliflower was analyzed for their microbial and nutritional qualities (DPPH radical scavenging activity, total phenolic content, total flavonoid content and total ascorbic acid content) during a storage period of 21 days. An irradiation dose of 0.5 kGy extended the shelf life by 7 days as compared to the control which has shelf life of 14 days, along with significant increase in DPPH radical scavenging activity and total phenolic content. While in case of RTC ash gourd, optimum processing condition (2kGy;10 ° C) improved the shelf life by 7 days in comparison to control samples which have shelflife of 5 days. Irradiated samples had total phenolic content of 103.3 ± 5.2 mg kg"-"1 and total antioxidant activity of 384.2 ± 9.7 mg kg"-"1 while corresponding values for control samples were 67.8 ± 5.4 and 115.5 ± 7.0 mg kg"-1 at the end of storage period. However no significant effect was observed in total ascorbic acid content in both the products due to radiation processing. (author)

  2. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    Science.gov (United States)

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  3. Process for the production of fuel gas from coal

    Science.gov (United States)

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  4. Proceedings, volume 26, the Institute for Briquetting and Agglomeration, November 1999

    Energy Technology Data Exchange (ETDEWEB)

    Roth, D.L. [ed.

    2000-07-01

    Topics covered by the 22 papers include: porosity of agglomerates, optimising roller compaction processing, determining velocity of powder in the roll rigs region of a roll press, binders, and briquetting for blast furnaces.

  5. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  6. Which Agglomeration Externalities Matter Most and Why?

    NARCIS (Netherlands)

    de Groot, H.L.F.; Poot, J.; Smit, M.J.

    2016-01-01

    This paper revisits the ongoing discussion on the importance of agglomeration externalities – specifically specialization, diversity and competition effects – that may contribute to innovation, productivity and urban employment growth. Previous meta-analyses suggested that the evidence on

  7. An empirical study of an agglomeration network

    International Nuclear Information System (INIS)

    Zhang, Yichao; Zhang, Zhaochun; Guan, Jihong

    2007-01-01

    Recently, researchers have reported many models mimicking real network evolution growth, among which some are based on network aggregation growth. However, until now, relatively few experiments have been reported. Accordingly, in this paper, photomicrographs of real materials (the agglomeration in the filtrate of slurry formed by a GaP-nanoparticle conglomerate dispersed in water) are analyzed within the framework of complex network theory. By data mapping from photomicrographs we generate undirected networks and as a definition of degree we adopt the number of pixel's nearest neighbors while adjacent pixels define a connection or an edge. We study the topological structure of these networks including degree distribution, clustering coefficient and average path length. In addition, we discuss the self-similarity and synchronizability of the networks. We find that the synchronizability of high-concentration agglomeration is better than that of low-concentration agglomeration; we also find that agglomeration networks possess good self-similar features

  8. Agglomeration of microparticles in complex plasmas

    International Nuclear Information System (INIS)

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-01-01

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  9. Which Agglomeration Externalities Matter Most and Why?

    NARCIS (Netherlands)

    de Groot, Henri L.F.; Poot, Jacques; Smit, Martijn J.

    2016-01-01

    This paper revisits the ongoing discussion on the importance of agglomeration externalities – specifically specialization, diversity and competition effects – that may contribute to innovation, productivity and urban employment growth. Previous meta‐analyses suggested that the evidence on

  10. Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Long-Gonzalez, D.; Lopez-Cuevas, J.; Gutierrez-Chavarria, C.A.; Pena, P.; Baudin, C.; Turrillas, X. [CINVESTAV, Coahuila (Mexico)

    2010-03-15

    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1-xSrxAl{sub 2}Si2O8 solid solutions, where x=0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850-1300{sup o}C. Fully monoclinic Celsian was obtained at 1200{sup o} C/5 h, for SrO contents of 0.25 {<=} x {<=} 0.75. However, an optimum SrO level of 0.25 {<=} x {<=} 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO{sub 2} present in it, which enhanced the Hexacelsian to Celsian conversion.

  11. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  12. Effect of agglomerate strength on sintered density for yttria powders containing agglomerates of monosize spheres

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Akine, M.; Burkhart, L.

    1987-01-01

    The effect of agglomerate strength on sintered density was determined for several yttria powders made by intentionally agglomerating 0.1-μm, monodisperse yttriuim hydrocarbonate precursor spheres and calcining separate portions of the precursor at different temperatures to vary the strength of the intraaglomeate bonds. In this way, the effects of differences in particle morphology and other characteristics among the powders were minimized and the effect of agglomerate strength could be seen more clearly

  13. Hotel Performance and Agglomeration of Tourist Districts

    OpenAIRE

    Marco-Lajara, Bartolomé; Claver Cortés, Enrique; Úbeda García, Mercedes; Zaragoza Sáez, Patrocinio del Carmen

    2014-01-01

    This paper measures the impact on profitability of the geographical area where the vacation hotels of the Spanish Mediterranean are situated. It places a special emphasis on analysing the tourist districts existing in this coastal Spanish area and the extent to which the degree of business agglomeration at each destination affects hotel profit. Due to the characteristics of the service sector, and after a revision of the agglomeration literature, a ‘U’-shaped relationship is hypothesized betw...

  14. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  15. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  16. Effect of process parameters on removal and recovery of Cd(II) and Cu(II) from electroplating wastewater by fixed-bed column of nano-dimensional titanium (IV) oxide agglomerates

    CSIR Research Space (South Africa)

    Debnath, S

    2014-01-01

    Full Text Available Removal performances of Cd(II) and Cu(II) from water was investigated using agglomerated nanoparticle of hydrous titanium(IV) oxide (NTO) packed fixed bed. The parameters varied were the bed depth, flow rate and feed solution concentrations...

  17. Agglomeration of Ni-nanoparticles in the gas phase under gravity and microgravity conditions

    International Nuclear Information System (INIS)

    Lösch, S; Günther, B H; Iles, G N; Schmitz, B

    2011-01-01

    The agglomeration of metallic nanoparticles can be performed using the well-known inert gas condensation process. Unfortunately, thermal effects such as convection are created by the heating source and as a result the turbulent aerosol avoids ideal conditions. In addition, the sedimentation of large particles and/or agglomerates influences the self-assembly of particles. These negative effects can be eliminated by using microgravity conditions. Here we present the results of the agglomeration of nanoscale Ni-particles under gravity and microgravity conditions, the latter provided by adapted microgravity platforms namely the European sounding rocket MAXUS 8 and the European Parabolic Flight aircraft, Airbus A300 Zero-G.

  18. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region

    International Nuclear Information System (INIS)

    Smolka-Danielowska, Danuta

    2010-01-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg -1 , 40 K-689 Bq kg -1 , 232Th - 100.8 Bq kg -1 , 235U-13.5 Bq kg -1 , 238U-50 Bq kg -1 and 228Ac - 82.4 Bq kg -1 .

  19. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    Science.gov (United States)

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  20. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  1. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  2. The joint effect of demographic change on growth and agglomeration

    OpenAIRE

    Theresa Grafeneder-Weissteiner

    2011-01-01

    Recently, there has been wide interest in the "economics" of population aging. Demographic change has crucial consequences for economic behavior; it e.g. implies that consumption and investment decisions vary over the life-cycle. The latter has important implications for economic growth, whereas the former is decisive for the location of economic activity as emphasized in the New Economic Geography (NEG) literature. Both growth and agglomeration processes are, however, themselves interlinked,...

  3. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  4. Agglomeration of amorphous silicon film with high energy density excimer laser irradiation

    International Nuclear Information System (INIS)

    He Ming; Ishihara, Ryoichi; Metselaar, Wim; Beenakker, Kees

    2007-01-01

    In this paper, agglomeration phenomena of amorphous Si (α-Si) films due to high energy density excimer laser irradiation are systematically investigated. The agglomeration, which creates holes or breaks the continuous Si film up into spherical beads, is a type of serious damage. Therefore, it determines an upper energy limit for excimer laser crystallization. It is speculated that the agglomeration is caused by the boiling of molten Si. During this process, outbursts of heterogeneously nucleated vapor bubbles are promoted by the poor wetting property of molten silicon on the SiO 2 layer underneath. The onset of the agglomeration is defined by extrapolating the hole density as a function of the energy density of the laser pulse. A SiO 2 capping layer (CL) is introduced on top of the α-Si film to investigate its influence on the agglomeration. It is found that effects of the CL depend on its thickness. The CL with a thickness less than 300 nm can be used to suppress the agglomeration. A thin CL acts as a confining layer and puts a constraint on bubble burst, and hence suppresses the agglomeration

  5. Characterization, treatment and utilization of rice husk ash in production processes of the industrial branch; Caracterizacao, tratamento e aproveitamento das cinzas da casca do arroz em processos produtivos do ramo industrial

    Energy Technology Data Exchange (ETDEWEB)

    Stracke, Marcelo Paulo; Schmidt, Julia Isabel; Steffen, Ana Cristina; Sokolovicz, Boris; Kieckow, Flavio, E-mail: stracke@santoangelo.uri.br [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Santo Angelo, RS (Brazil)

    2016-07-01

    The rice husk ash (CCA) is a black powder rich in silica (contents above 90%) with many industrial applications. The ash was obtained from a rice processing industry in the state of Rio Grande do Sul. In this work the purpose is to characterize the rice husk ash and eliminate the residual carbon by methods such as acid leaching. The white ash is obtained by a chemical process followed by heating between 600 and 800 °C. The results were analyzed in DR-X, TGA and DSC. The DR-X analysis showed that the samples present high levels of silica in the crystalline form of quartz, cristobalite and tridymite. The white ash was obtained with high purity and presented a good result in the manufacture of paints. (author)

  6. The processing of bed ashes of fluidized bed boilers to an applicable ingredient for building materials. Het bewerken van bedassen van wervelbedketels tot een geschikte grondstof voor toepassing in bouwprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, W

    1988-01-01

    A study- and test program has been carried out to determine in what way bed ashes of fluidized bed boilers can be processed to applicate the products in building products. The program consisted of selecting applicable ashes; physical-chemical research; slack lime, present in the ashes; grinding and wind-sifting of the ashes; evaluation of the quality of the acquired samples for application in calcium-silicate brick and in mortar; the making of flow-sheets of the processing in the potential demonstration projects. The used sample was a bed ash with active CaO content of 21%. Conclusions were stated and recommendations were made. 6 figs., 6 refs., 9 tabs., 2 app.

  7. Diffusion and reaction in microbead agglomerates.

    Science.gov (United States)

    Nunes Kirchner, Carolina; Träuble, Markus; Wittstock, Gunther

    2010-04-01

    Scanning electrochemical microscopy has been used to analyze the flux of p-aminonophenol (PAP) produced by agglomerates of polymeric microbeads modified with galactosidase as a model system for the bead-based heterogeneous immunoassays. With the use of mixtures of enzyme-modified and bare beads in defined ratio, agglomerates with different saturation levels of the enzyme modification were produced. The PAP flux depends on the intrinsic kinetics of the galactosidase, the local availability of the substrate p-aminophenyl-beta-D-galactopyranoside (PAPG), and the external mass transport conditions in the surrounding of the agglomerate and the internal mass transport within the bead agglomerate. The internal mass transport is influenced by the diffusional shielding of the modified beads by unmodified beads. SECM in combination with optical microscopy was used to determine experimentally the external flux. These data are in quantitative agreement with boundary element simulation considering the SECM microelectrode as an interacting probe and treating the Michaelis-Menten kinetics of the enzyme as nonlinear boundary conditions with two independent concentration variables [PAP] and [PAPG]. The PAPG concentration at the surface of the bead agglomerate was taken as a boundary condition for the analysis of the internal mass transport condition as a function of the enzyme saturation in the bead agglomerate. The results of this analysis are represented as PAP flux per contributing modified bead and the flux from freely suspended galactosidase-modified beads. These numbers are compared to the same number from the SECM experiments. It is shown that depending on the enzyme saturation level a different situation can arise where either beads located at the outer surface of the agglomerate dominate the contribution to the measured external flux or where the contribution of buried beads cannot be neglected for explaining the measured external flux.

  8. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    Science.gov (United States)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  9. Public Action and Innovationsupport Institutions in New Technological Agglomerations

    DEFF Research Database (Denmark)

    Borras, Susana; Bacaria, Jordi; Fernandez-Ribas, Andrea

    2002-01-01

    In all industrial and technological agglomerations several types of public and semi-public actors coexist. The same happens with the levels of government. Consequently, the daily reality of agglomerations is characterized by a wide diversity of innovation-support institutions more or less actively...... on the major efforts of different public actors in the territory since the 1980s, mainly through the establishment and enhancement of innovation-support institutions, and analyses succinctly their effects through selected successful and failed cases. Two normative statements are suggested from the analysis....... The first is that policy strategies should not try to be hegemonic. Instead, they should be elaborated seeking complementarity and coexistence. A second normative conclusion is the necessity of fostering the learning processes within and across institutions, by mobilizing collectively the assets of the area...

  10. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes; Comportamento mecanico de cimento Portland com cinza de bagaco de cana-de-acucar processada

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F., E-mail: augustobezerra@des.cefetmg.br [Centro Federal de Educacao Tecnologica Minas Gerais (CEFET-MG), MG (Brazil); Castro, Laurenn W.A.; Silva, Marcos V.M.S. [Companhia Energetica de Minas Gerais, MG (Brazil); Gomes, Romero C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Aguilar, Maria T.P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  11. Ash Stabilization Campaign Blend Plan

    International Nuclear Information System (INIS)

    Winstead, M.L.

    1995-01-01

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed

  12. Agglomerate formation and growth mechanisms during melt agglomeration in a rotary processor.

    Science.gov (United States)

    Vilhelmsen, Thomas; Schaefer, Torben

    2005-11-04

    The purpose of this study was to investigate the effect of the binder particle size and the binder addition method on the mechanisms of agglomerate formation and growth during melt agglomeration in a laboratory scale rotary processor. Lactose monohydrate was agglomerated with molten polyethylene glycol (PEG) 3000 by adding the PEG either as solid particles from the size fraction 0-250, 250-500, or 500-750 microm or as droplets with a median size of 25, 48, or 69 microm. It was found that the PEG particle size, the PEG droplet size, and the massing time significantly influenced the agglomerate size and size distribution. Agglomerate formation and growth were found to occur primarily by distribution and coalescence for the PEG size fraction 0-250 microm and mainly by the immersion mechanism for the PEG size fractions 250-500 and 500-750 microm. When the PEG was sprayed upon the lactose, the mechanism of agglomerate formation was supposed to be a mixture of immersion and distribution, and the agglomerate growth was found to occur by coalescence regardless of the PEG mean droplet size. Compared to high shear mixers and conventional fluid bed granulators, the mechanisms of agglomerate formation and growth in the rotary processor resembled mostly those seen in the fluid bed granulator.

  13. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations

    OpenAIRE

    Cong Xu; Shixin Wang; Yi Zhou; Litao Wang; Wenliang Liu

    2016-01-01

    On 16 March 2014, the State Council of China launched its first urbanization planning initiative dubbed “National New Urbanization Planning (2014–2020)” (NNUP). NNUP put forward 20 urban agglomerations and a sustainable development approach aiming to transform traditional Chinese urbanization to sustainable new urbanization. This study quantitatively evaluates the level of sustainability of the present new urbanization process in 20 Chinese urban agglomerations and provides some positive sugg...

  14. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  15. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  16. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior

    International Nuclear Information System (INIS)

    Zhou, Chunguang; Rosén, Christer; Engvall, Klas

    2016-01-01

    Highlights: • Dolomite is a superior material in preventing bed agglomeration. • Small molten ash particles deposited on magnesite at bed temperatures above 1000 °C. • The performance, when using magnesite, is sensitive to temperature disturbances. • The anti-agglomeration mechanisms of Ca- and Mg-bearing materials were discussed. - Abstract: In this study, the anti-agglomeration abilities of Ca- and Mg-containing bed materials, including dolomite and magnesite, in a pressurized bubbling fluidized bed gasifier using pine pellets and birch chips as feedstock, is investigated. The most typical bed material—silica sand—was also included as a reference for comparison. The sustainability of the operation was evaluated via analyzing the temperatures at different levels along the bed height. During the performances, the aim was to keep the temperature at the bottom zone of the reactor at around 870 °C. However, the success highly depends on the bed materials used in the bed and the temperature can vary significantly in case of agglomeration or bad mixing of bed materials and char particles. Both Glanshammar and Sala dolomites performed well with no observed agglomeration tendencies. In case of magnesite, the bed exhibited a high agglomeration tendency. Silica sand displayed the most severe agglomeration among all bed materials, even when birch chips with a low silica content was fed at a relatively low temperature. The solid samples of all the bed materials were inspected by light microscopy and Scanning Electron Microscopy (SEM). The Energy Dispersive Spectroscopy (EDS) detector was used to detect the elemental distribution in the surface. The crystal chemical structure was analyzed using X-ray Diffraction (XRD). Magnesite agglomerates glued together by big molten ash particles. There was no coating layer detected on magnesite particles at bed temperatures – below 870 °C. But when the temperature was above 1000 °C, a significant amount of small molten

  17. A uHPLC-MS mathematical modeling approach to dry powder inhaler single agglomerate analysis.

    Science.gov (United States)

    Pennington, Justin; Lena, John; Medendorp, Joseph; Ewing, Gary

    2011-10-01

    Demonstration of content uniformity (CU) is critical toward the successful development of dry powder inhalers (DPIs). Methods for unit dose CU determination for DPI products are well-established within the field of respiratory science. Recent advances in the area include a uHPLC-MS method for high-throughput uniformity analysis, which allows for a greater understanding of blending operations as the industry transitions to a quality-by-design approach to development. Further enhancements to this uHPLC-MS method now enable it to determine CU and sample weight at the single agglomerate level, which is roughly 50× smaller than a unit dose. When coupled with optical microscopy-based agglomerate sizing, the enhanced uHPLC-MS method can also predict the density and porosity of individual agglomerates. Expanding analytical capabilities to the single agglomerate level provides greater insights and confidence in the DPI manufacturing process.

  18. Experimental studies of the gravitational agglomeration of aerosols. Pt. 1

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Mitchell, J.P.; Kissane, M.P.

    1990-06-01

    Experiments have been performed to determine the extent of gravitational agglomeration between micron-sized airborne particles suspended initially as two discrete log-normal number-size distributions. These aerosols were generated from commercially-available glass microspheres using a standard dry powder dispersing technique. They were injected directly into a sedimentation vessel and their settling behaviour was studied using a TSI Aerodynamic Particle Sizer (APS33B) to obtain particle number-size data, and a deposition sampler to obtain the corresponding mass-based data. Additionally, samples were collected on membrane filters to measure total aerosol mass concentrations, and a Faraday-cup aerosol electrometer was used to determine the net average electrostatic charge of the particles. While mass-based techniques were not sufficiently sensitive to detect gravitational agglomeration, the process could be monitored with reasonable success by number-based methods. APS33B measurements were made in the presence and absence of larger particles. No significant increase in the rate of removal of the small particles was observed. These studies therefore indicated that gravitational agglomeration is small or negligible under the specified test conditions. (author)

  19. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  20. Frit screening for Rocky Flats ash and sand, slag, and crucible vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Li, Hong; Darab, J.G.

    1997-06-01

    Pacific Northwest National Laboratory (PNNL) is developing vitrified waste forms for plutonium-bearing ash and plutonium-bearing sand, slag, and crucible (SS ampersand C) materials from Rocky Flats. Waste forms are to meet product criteria (e.g., safeguard termination limits, storage criteria, and target plutonium loading) and processing constraints (e.g., upper temperature limits, processing time, and equipment compatibility). The target waste form for ash is an agglomerated product, while that for SS ampersand C is a fully encapsulated product. Laboratory scoping studies were conducted on glass formulations from six different glass families: (1) antimony vanadium phosphate, (2) iron vanadium phosphate, (3) tin zinc phosphate, (4) soda-lime silicate, (5) alkali borosilicate, and (6) alkali borate. Glass families were selected due to viscosity behavior in the temperature range of interest (< 800C). Scoping study tests included gradient furnace tests to determine processing range and sintering temperature, thermogravimetric analysis to determine weight loss as a function of temperature, and crucible tests to determine frit compositions tolerance to variations in processing temperature, waste loading, and waste type. The primary screening criterion for the selection of frits for future studies was processing temperature below 400C to minimize the potential for foaming in ash caused by the release of gases (main source of gas is combustion of carbon species) and to minimize processing cycle times. Based on this criterion, glass formulations from the tin zinc phosphate and alkali borosilicate families were selected for future variability testing. Variability testing will include final product evaluation, glass system tolerance to waste loading and composition variation, and identification of parameters impacting time/temperature profiles. Variability testing results will give a final frit formulation for ash and SS ampersand C, and identify key processing parameters

  1. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  2. Surface-coated fly ash used as filler in biodegradable poly(vinyl alcohol) composite films: Part 1-The modification process

    International Nuclear Information System (INIS)

    Nath, D.C.D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C.

    2010-01-01

    The surfaces of fly ash (FA) particles were modified by surfactant, sodium lauryl sulphate (SLS) and used in fabrication of composite films with polyvinyl alcohol (PVA). Both unmodified fly ash (FA) and modified fly ash (SLS-FA) samples were examined using a range of analytical tools including X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The distribution patterns of SLS-FA particles were shifted to the higher regions compared to FA by adding 1.2-4.2 μm in the ranges between 2 and 25 μm, whereas the modification process reduced the size of the particles over 25 μm due to grinding during the activation process. The increased 1.2-4.2 μm in average can be considered the thickness of the surfactant on the SLS-FA surface. On the oxides based chemical analysis by XRF, the compositions were almost unchanged. SEM and TEM were visualised the irregular sizes morphology mostly spherical of the particles, although it is impossible to capture the images of exactly same particles in modified and unmodified forms. The composite films reinforced with SLS-FA showed 33% higher strength than those of FA filled films. The enhancement of tensile strength attributed from the level of physical bonding between SLS-FA and PVA surfaces.

  3. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  4. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-01-01

    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  5. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    Science.gov (United States)

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  6. Preparation of CaO/Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.

    2018-03-01

    A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.

  7. A model for the description of the evolution of PU agglomerates in MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Federici, E [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France); Blanpain, P [FRAMATOME, Lyon (France); Permezel, P [Electricite de France, Moret-sur-Loing (France)

    1997-08-01

    In order to describe the irradiation behavior of Pu agglomerates under LWR steady state conditions in MIMAS MOX fuels, a model including the neutronic evolution of the heavy atoms and their diffusion processes between the agglomerates and the matrix has been developed. It leads to the calculations of Pu enrichment in the two phases and of the agglomerates size evolution during irradiation. The calculated distribution of the fission in the fuel gives access to the local power and burnup heterogeneity factor. Electron probe microanalyses (EPMA) have been carried out on fuels irradiated up to 45000 MWd/tM. Diametral and local distribution of Pu are used to calculate the enrichments of the agglomerates and the matrix, which are then compared to the results of the model. During irradiation, the Pu concentration falls markedly in the agglomerates and increases steadily in the matrix, leading to a homogenization of the fuel on a microstructural scale. Heterogeneity factors give an estimate of the deviation from homogeneity. Knowing the local fission rate and burnup in the agglomerates and the matrix enables the calculation of the local fission gas concentrations, which are compared to the xenon EPMA diametral distribution. Comparison with the calculated matrix xenon concentration at the edge of the pellet where there is no gas release, shows that some fission gas atoms which originated from the agglomerates, have been dissolved in the matrix by recoil. The calculated gas concentrations give an estimate of the quantity of gas dissolved. This work has been performed with the intent to improved fuel rod performance code estimates of fission gas concentrations retained or released in both the matrix and the agglomerates. (author). 4 refs, 7 figs.

  8. A model for the description of the evolution of PU agglomerates in MOX fuels

    International Nuclear Information System (INIS)

    Federici, E.; Blanpain, P.; Permezel, P.

    1997-01-01

    In order to describe the irradiation behavior of Pu agglomerates under LWR steady state conditions in MIMAS MOX fuels, a model including the neutronic evolution of the heavy atoms and their diffusion processes between the agglomerates and the matrix has been developed. It leads to the calculations of Pu enrichment in the two phases and of the agglomerates size evolution during irradiation. The calculated distribution of the fission in the fuel gives access to the local power and burnup heterogeneity factor. Electron probe microanalyses (EPMA) have been carried out on fuels irradiated up to 45000 MWd/tM. Diametral and local distribution of Pu are used to calculate the enrichments of the agglomerates and the matrix, which are then compared to the results of the model. During irradiation, the Pu concentration falls markedly in the agglomerates and increases steadily in the matrix, leading to a homogenization of the fuel on a microstructural scale. Heterogeneity factors give an estimate of the deviation from homogeneity. Knowing the local fission rate and burnup in the agglomerates and the matrix enables the calculation of the local fission gas concentrations, which are compared to the xenon EPMA diametral distribution. Comparison with the calculated matrix xenon concentration at the edge of the pellet where there is no gas release, shows that some fission gas atoms which originated from the agglomerates, have been dissolved in the matrix by recoil. The calculated gas concentrations give an estimate of the quantity of gas dissolved. This work has been performed with the intent to improved fuel rod performance code estimates of fission gas concentrations retained or released in both the matrix and the agglomerates. (author). 4 refs, 7 figs

  9. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  10. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  11. Parking lots, store chains and spatial agglomeration

    Czech Academy of Sciences Publication Activity Database

    Noguera, Jose

    2005-01-01

    Roč. 84, č. 2 (2005), s. 145-158 ISSN 1056-8190 Institutional research plan: CEZ:AV0Z70850503 Keywords : agglomeration * bid -rent * residential district Subject RIV: AH - Economics Impact factor: 0.475, year: 2005

  12. Hydrodynamic perspective on asphaltene agglomeration and deposition

    NARCIS (Netherlands)

    Schutte, K.C.J.; Portela, L.M.; Twerda, A.; Henkes, R.A.W.M.

    2015-01-01

    In this work, we propose a detailed numerical model for asphaltene agglomeration and deposition, as induced by a resolved turbulent liquid carrier phase flow, in which transport, breakup, and re-entrainment are also taken into account. Asphaltene phase separation is represented by the appearance of

  13. Industrial Agglomeration and Use of the Internet

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2015-01-01

    textabstractTaiwan has been hailed as a world leader in the development of global innovation and industrial clusters for the past decade. This paper investigates the effects of industrial agglomeration on the use of the internet and internet intensity for Taiwan manufacturing firms, and analyses

  14. Welfare benefits of agglomeration and worker heterogenity

    NARCIS (Netherlands)

    Teulings, C.N.; Ossokina, I.V.; de Groot, H.L.F.

    2014-01-01

    The direct impact of local public goods on welfare is relatively easy to measure from land rents. However, the indirect effects on home and job location, on land use, and on agglomeration benefits are hard to pin down. We develop a spatial general equilibrium model for the valuation of these

  15. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A.; Shcherbina, M.E. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Kirichenko, N.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation)

    2015-05-01

    Highlights: • Pulsed laser irradiation of dense gold nanoparticles colloidal solution can result in their agglomeration. • Gas bubbles in-phase pulsation induced by laser radiation accounts for nanoparticles agglomeration. • Time evolution of the size distribution function proceeds in activation mode. • The electrostatic-like model of nanoparticles agglomeration is in good correspondence with the experimental data. - Abstract: Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 10{sup 14} particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  16. Effect of the primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates

    International Nuclear Information System (INIS)

    Schilde, Carsten; Westphal, Bastian; Kwade, Arno

    2012-01-01

    Depending on the application of nanoparticles, certain characteristics of the product quality such as size, morphology, abrasion resistance, specific surface, dispersibility and tendency to agglomeration are important. These characteristics are a function of the physicochemical properties, i.e. the micromechanical properties of the nanostructured material. The micromechanical properties of these nanostructured agglomerates such as the maximum indentation force, the plastic and elastic deformation energy and the strength give information on the product properties, e.g. the efficiency of a dispersion process of the agglomerates, and can be measured by nanoindentation. In this study a Berkovich indenter tip was used for the characterisation of model aggregates out of sol–gel produced silica and precipitated alumina agglomerates with different primary particle morphologies (dimension of 15–40 nm). In general, the effect of the primary particle morphology and the presence or absence of solid bonds can be characterised by the measurement of the micromechanical properties via nanoindentation. The micromechanical behaviour of aggregates containing solid bonds is strongly affected by the elastic–plastic deformation behaviour of the solid bonds and the breakage of solid bonds. Moreover, varying the primary particle morphology for similar particle material and approximately isotropic agglomerate behaviour the particle–particle interactions within the agglomerates can be described by the elementar breaking stress according to the formula of Rumpf.

  17. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  18. Pu-rich MOX agglomerate-by-agglomerate model for fuel pellet burnup analysis

    International Nuclear Information System (INIS)

    Chang, G.S.

    2004-01-01

    In support of potential licensing of the mixed oxide (MOX) fuel made from weapons-grade (WG) plutonium and depleted uranium for use in United States reactors, an experiment containing WG-MOX fuel is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The WG-MOX comprises five percent PuO 2 and 95% depleted UO 2 . Based on the Post Irradiation Examination (PIE) observation, the volume fraction (VF) of MOX agglomerates in the fuel pellet is about 16.67%, and PuO 2 concentration of 30.0 = (5 / 16.67 x 100) wt% in the agglomerate. A pressurized water reactor (PWR) unit WG-MOX lattice with Agglomerate-by-Agglomerate Fuel (AbAF) modeling has been developed. The effect of the irregular agglomerate distribution can be addressed through the use of the Monte Carlo AbAF model. The AbAF-calculated cumulative ratio of Agglomerate burnup to U-MAtrix burnup (AG/MA) is 9.17 at the beginning of life, and decreases to 2.88 at 50 GWd/t. The MCNP-AbAF-calculated results can be used to adjust the parameters in the MOX fuel fission gas release modeling. (author)

  19. Agglomeration techniques for the production of spheres for packed beds

    International Nuclear Information System (INIS)

    Sullivan, J.D.

    1988-03-01

    One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling

  20. Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach

    Directory of Open Access Journals (Sweden)

    M. Peglow

    2005-06-01

    Full Text Available In this paper a model for fluidized bed spray agglomeration is presented. To describe the processes of heat and mass transfer, a physical based model is derived. The model takes evaporation process from the wetted particles as well as the effects of transfer phenomena between suspension gas and bypass gas into account. The change of particle size distribution during agglomeration, modeled by population balances, is linked to the heat and mass transfer model. A new technique is derived to extract agglomeration and nucleation rates from experimental data. Comparisons of experiments and simulations are presented.

  1. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    International Nuclear Information System (INIS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, B.H.

    2001-01-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmolxdm -3 ovalbumin in phosphate buffered solutions saturated with N 2 O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmolxdm -3 . The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and · OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed

  2. Backscattering and negative polarization of agglomerate particles.

    Science.gov (United States)

    Zubko, Evgenij; Shkuratov, Yuriy; Hart, Matthew; Eversole, Jay; Videen, Gorden

    2003-09-01

    We used the discrete dipole approximation to study the backscattering of agglomerate particles consisting of oblong monomers. We varied the aspect ratio of the monomers from approximately 1 (sphere) to 4, while we kept the total particle volume equivalent to that of an x = 10 sphere for m = 1.59 + i0 and 1.50 + i0 and considered two values of agglomerate packing density: rho = 0.25 and rho = 0.1. We found that these particles do not display a prominent brightness opposition effect but do produce significant negative polarization over a range of near-backscattering angles. Increasing the monomers' aspect ratio can make the negative polarization much more prominent. We have noted also that decreasing m and p can reduce the amplitude of the negative polarization for these particles.

  3. Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution.

    Science.gov (United States)

    Goudeli, Eirini; Eggersdorfer, Maximilian L; Pratsinis, Sotiris E

    2015-02-03

    Agglomeration occurs in environmental and industrial processes, especially at low temperatures where particle sintering or coalescence is rather slow. Here, the growth and structure of particles undergoing agglomeration (coagulation in the absence of coalescence, condensation, or surface growth) are investigated from the free molecular to the continuum regime by discrete element modeling (DEM). Particles coagulating in the free molecular regime follow ballistic trajectories described by an event-driven method, whereas in the near-continuum (gas-slip) and continuum regimes, Langevin dynamics describe their diffusive motion. Agglomerates containing about 10-30 primary particles, on the average, attain their asymptotic fractal dimension, D(f), of 1.91 or 1.78 by ballistic or diffusion-limited cluster-cluster agglomeration, corresponding to coagulation in the free molecular or continuum regimes, respectively. A correlation is proposed for the asymptotic evolution of agglomerate D(f) as a function of the average number of constituent primary particles, n̅(p). Agglomerates exhibit considerably broader self-preserving size distribution (SPSD) by coagulation than spherical particles: the number-based geometric standard deviations of the SPSD agglomerate radius of gyration in the free molecular and continuum regimes are 2.27 and 1.95, respectively, compared to ∼1.45 for spheres. In the transition regime, agglomerates exhibit a quasi-SPSD whose geometric standard deviation passes through a minimum at Knudsen number Kn ≈ 0.2. In contrast, the asymptotic D(f) shifts linearly from 1.91 in the free molecular regime to 1.78 in the continuum regime. Population balance models using the radius of gyration as collision radius underestimate (up to about 80%) the small tail of the SPSD and slightly overpredict the overall agglomerate coagulation rate, as they do not account for cluster interpenetration during coagulation. In the continuum regime, when a recently developed

  4. Agglomeration in the European automobile supplier industry

    OpenAIRE

    Klier, Thomas; McMillen, Dan

    2013-01-01

    Motor vehicle and motor vehicle parts production plants tend to exhibit a strong degree of agglomeration. This paper estimates a spatial model utilizing detailed plant-level data that is pooled across seven countries in Europe. The paper makes several contributions. First, we assemble a set of nearly 1,800 European plant locations of the largest motor vehicle parts suppliers, as well as the location of all light vehicle assembly plants operational in 2010. Second, we obtain detailed spatial d...

  5. Agglomeration Premium and Trading Activity of Firms

    OpenAIRE

    Gabor Bekes; Peter Harasztosi

    2010-01-01

    Firms may benefit from proximity to each other due to the existence of several externalities. The productivity premia of firms located in agglomerated regions an be attributed to savings and gains from external economies. However, the capacity to absorb information may depend on activities of the firm, such as involvement in international trade. Importers, exporters and two-way traders are likely to employ a different bundle of resources and be organised differently so that they would appreci...

  6. Assessing Agglomeration Impacts in Auckland: Phase 2

    OpenAIRE

    Williamson, John; Paling, Richard; Staheli, Ramon; Waite, David

    2008-01-01

    Agglomeration effects, or the productivity benefits that stem from high employment densities, are being achieved in Auckland's central business district (CBD). This provides support for Auckland's economic transformation. However, questions remain as to the nature of these effects, and whether other factors may help to explain the CBD's observed productivity premium. Using 2001 census area unit data, this paper examines to what extent the CBD's productivity advantages can be explained by sect...

  7. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  9. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  10. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  11. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  12. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  13. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics.

    Science.gov (United States)

    Kocjan, Andraž; Logar, Manca; Shen, Zhijian

    2017-05-31

    Conventional sintering is a time- and energy-consuming process used for the densification of consolidated particles facilitated by atomic diffusion at high temperatures. Nanoparticles, with their increased surface free energy, can promote sintering; however, size reduction also promotes agglomeration, so hampering particle packing and complete densification. Here we show how the ordered agglomeration of zirconia primary crystallites into secondary particle assemblies ensures their homogeneous packing, while also preserving the high surface energy to higher temperatures, increasing the sintering activity. When exposed to intense electromagnetic radiation, providing rapid heating, the assembled crystallites are subjected to further agglomeration, coalescence and sliding, leading to rapid densification in the absence of extensive diffusional processes, cancelling out the grain growth during the initial sintering stages and providing a zirconia nanoceramic in only 2 minutes at 1300 °C.

  14. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    Science.gov (United States)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.

  15. The measurement of mixture homogeneity and dissolution to predict the degree of drug agglomerate breakdown achieved through powder mixing.

    Science.gov (United States)

    de Villiers, M M; Van der Watt, J G

    1994-11-01

    Interactive mixing of agglomerates of small, cohesive particles with coarse carrier particles facilitate the deaggregation of agglomerates. In this study dispersion of agglomerates of microfine furosemide particles by such a mixing process was followed by measuring changes in the content uniformity and area under the dissolution curve. Interactive mixtures between agglomerates of different sized furosemide particles and coarse sodium chloride particles were prepared using different mixers, mixing times and mixer speeds. The dissolution rate of the drug from and content uniformity of the mixtures were measured, and degrees of dispersion were calculated. These degrees of dispersion were compared to the dispersion values obtained from the decrease in agglomerate size after mixing. An increase in mixing time led to an increase in dispersion. An initial fast deagglomeration, indicated by an increase in dissolution, increase in content uniformity and a decrease in particle size, was followed by substantially slower deaggregation of remaining agglomerates and smaller aggregates. For all mixtures studied the degree of dispersion estimated from dissolution measurements, when compared to equivalent content uniformity measurements, agreed closely with the degree of dispersion as indicated by the decrease in particle size. The use of the area under the dissolution curve to predict agglomerate breakdown proved useful and may find application in situations where it is impossible to follow directly deagglomeration through particle size measurements.

  16. Agglomeration during wet milling of LAST (lead-antimony-silver-tellurium) powders

    International Nuclear Information System (INIS)

    Hall, B.D.; Case, E.D.; Ren, F.; Johnson, J.R.; Timm, E.J.

    2009-01-01

    LAST (lead-antimony-silver-tellurium) compounds comprise a family of semiconducting materials with good thermoelectric properties. However, the as-cast form of LAST exhibits large grain size and hence low mechanical strength. Powder processing can produce a fine powder particle size that enhances fracture strength, however the powders tend to agglomerate if the individual powder diameters are less than a few microns across. Dry milling or wet milling (hexane additions of 0 cm 3 and 10 cm 3 ) produced hard agglomerates roughly 40 μm in diameter while wet milling with hexane additions of 25 cm 3 , 30 cm 3 or 50 cm 3 resulted in small, porous agglomerates roughly 20 μm in diameter. Thus, by adjusting the amount of milling liquid used while milling LAST powders, one can shift from hard to soft agglomerates, where the literature shows that soft agglomerates are less harmful to the final, sintered product. Also, in agreement with the results from the literature on other materials, wet milling of LAST powders produced smaller particle sizes but required longer times to reach the grindability limit

  17. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  18. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  19. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    International Nuclear Information System (INIS)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha; Singh, A.K.

    2006-01-01

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered

  20. Researches Regarding the Adaptation Process of the Species Miscanthus Giganteus under the Conditions of Fly Ash Deposit from Utvin, Timis County

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2013-05-01

    Full Text Available Miscanthus giganteus is a large, perennial (up to 20 years grass hybrid of M. sinensis and M. sacchariflorus native to Japan. Is a C4 carbon fixation plant, and thus exhibits greater photosynthetic efficiency and lower water use requirements than other kinds of plants. It has very low nutritional requirements – it has high nitrogen use efficiency and therefore is capable of growing well on barren land without the aid of heavy fertilization. M. giganteus is a sterile hybrid, therefore propagates vegetative through its rhizomes and that it is a completely non-invasive species. In this paper are presented the results of this grass species growing on fly ash deposit Utvin after the first year from the planting. Order to stimulate the process of vegetative from the first year, have used three different fertilizing: with sewage sludge, with cattle manure and mineral supplement such as N.P.K. We have also provided an adequate irrigation during dry periods of the summer. The best germination percentage was obtained in variants fertilized with sewage sludge and manure of cattle. Further the same variations recorded a good growth rate and higher biomass production. However, good production of biomass produced in the first year of all variants show a good adaptability of the species M. giganteus to arid biotope conditions of the fly ash dump.

  1. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  2. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    Energy Technology Data Exchange (ETDEWEB)

    Jux, Maximilian, E-mail: maximilian.jux@dlr.de [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Finke, Benedikt [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany); Mahrholz, Thorsten [DLR Braunschweig, Institute of Composite Structures and Adaptive Systems (FA) (Germany); Sinapius, Michael [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Kwade, Arno; Schilde, Carsten [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany)

    2017-04-15

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  3. Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis

    International Nuclear Information System (INIS)

    Cho, Kuk; Hogan, Christopher J.; Biswas, Pratim

    2007-01-01

    The surface area of nanosized agglomerates is of great importance as the reactivity and health effects of such particles are highly dependent on surface area. Changes in surface area through sintering during nanoparticle synthesis processes are also of interest for precision control of synthesised particles. Unfortunately, information on particle surface area and surface area dynamics is not readily obtainable through traditional particle mobility sizing techniques. In this study, we have experimentally determined the mobility diameter of transition regime agglomerates with 3, 4, and 5 primary particles. Agglomerates were produced by spray drying well-characterised polystyrene latex particles with diameters of 55, 67, 76, and 99 nm. Tandem differential mobility analysis was used to determine agglomerate mobility diameter by selecting monodisperse agglomerates with the same number of primary particles in the first DMA, and subsequently completely sintering the agglomerates in a furnace aerosol reactor. The size distribution of the completely sintered particles was measured by an SMPS system, which allowed for the determination of the number of primary particles in the agglomerates. A simple power law regression was used to express mobility diameter as a function of primary particle size and the number of primary particles, and had an excellent correlation (R 2 = 0.9971) with the experimental data. A scaling exponent was determined from the experimental data to relate measured mobility diameter to surface area for agglomerates. Using this relationship, the sintering characteristics of agglomerates were also examined for varying furnace temperatures and residence times. The sintering data agreed well with the geometric sintering model (GSM) model proposed by Cho and Biswas (2006a) as well as with the model proposed Koch and Friedlander (1990) for sintering by viscous flow

  4. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    International Nuclear Information System (INIS)

    Jux, Maximilian; Finke, Benedikt; Mahrholz, Thorsten; Sinapius, Michael; Kwade, Arno; Schilde, Carsten

    2017-01-01

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  5. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  6. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  7. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  8. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Science.gov (United States)

    Serkov, A. A.; Shcherbina, M. E.; Kuzmin, P. G.; Kirichenko, N. A.

    2015-05-01

    Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 1014 particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  9. Internal migration, regional labor markets and the role of agglomeration economies

    DEFF Research Database (Denmark)

    Mitze, Timo Friedel; Schmidt, Torben Dall

    2015-01-01

    are indeed key drivers of internal migration flows in Denmark. That is, while we obtain mixed evidence with regard to the role of traditional labor and housing market variables, most of the included proxies for agglomeration economies such as the region’s population density, patent intensity, endowment......We analyze the determinants and regional implications of internal migration flows across Danish municipalities in 2006–2012. Besides assessing the role of labor market and housing market factors in driving a region’s net migration rate, we particularly focus on agglomeration factors identified...... for the role of space–time dynamic adjustment processes and simultaneity among migration and labor market variables and finally test for heterogeneity in the migration response to regional labor market disparities among low- and high-skilled migrants. Our results support the view that agglomeration economies...

  10. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG and carbon nanotubes (CNTs tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites.

  11. Cu-Doping Effects in CdI(2) Nanocrystals: The Role of Cu-Agglomerates.

    Science.gov (United States)

    Miah, M Idrish

    2008-11-22

    Cu-doping effects in CdI(2) nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG) as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI(2) crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  12. Cu-Doping Effects in CdI2Nanocrystals: The Role of Cu-Agglomerates

    Directory of Open Access Journals (Sweden)

    Miah M

    2008-01-01

    Full Text Available Abstract Cu-doping effects in CdI2nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI2crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  13. Reduced ash-related operational problems by co-combustion peat and agricultural fuels; Minskade askrelaterade driftsproblem genom inblandning av torv i aakerbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Bostroem, Dan; Skoglund, Nils; Grimm, Alejandro; Boman, Christoffer; Kofod-Hansen, Marie

    2010-06-15

    controlled combustion experiments in bench scale (grate/fluidized bed). Good agreement between the theoretical and practical results on critical ash-chemical sub-processes was observed. Combustion tests were carried out during approximately 2 days in a 4 MW grate fired boiler, using; - briquetted reed canary grass (RCG) fuel with high ash content (totally 25 ton DS). - a RCG with low ash content, co-briquetted with peat (85/15 % on DS basis, totally 25 tons). - Salix chips (approx. 40 tons). - Salix chips admixed with peat (15% on DS basis, totally approx. 40 tons). The overall conclusions of the model calculations concerning the ash content of a 'good peat' was that high ash content, high Si content, high S content and high Ca/Si ratio were favourable. Therefore the peat that mostly corresponded to these requirements was chosen for the demonstration tests. Combustion tests were also performed in a 20 kW underfed pellets burner attached to a pellets boiler. Pelletized straw (50 kg) and straw co-pelletized with peat (60/40% on DS basis, totally 50 kg), were used as fuel. The results shows that admixing a typical carex based peat into Salix and Reed canary grass with low ash content gives positive effects concerning both bed agglomeration and deposit formation (corrosion) in the convection parts of the boiler, already at low levels (15 weight% on DS basis). A carex based peat with a relative high Ca/Si ratio is recommended for co-firing with Salix in grate fired boilers, to avoid slagging. The same type of peat should also be utilized in co-firing Reed canary grass with low ash content (relative low admixing levels is sufficient) and wheat straw (high levels are required) to reduce the risk of slagging. In the choice of peat, a general recommendation can be made that peat with high ash content (carex based peat), preferably with high S content and a high Ca/Si ratio (a wt-ratio around 1 is desirable). Reed canary grass with high ash content is not expected to cause

  14. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    Science.gov (United States)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  15. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  16. Aerosol mass deposition: the importance of gravitational agglomeration

    International Nuclear Information System (INIS)

    Bamford, G.J.; Ketchell, N.; Dunbar, I.H.

    1992-01-01

    Sedimentation, Brownian agglomeration and gravitational agglomeration timescales are mapped out for a set of simple systems. Analysis of these timescales has highlighted when and why gravitational agglomeration becomes the dominant factor determining overall mass deposition rates in hypothetical severe nuclear reactor accidents. This work was funded by the United Kingdom Department of Trade and Industry as part of the General Nuclear Safety Research Programme. (Author)

  17. Acid agglomeration heap leaching: present status, principle and applications

    International Nuclear Information System (INIS)

    Zeng Yijun

    2004-01-01

    For extracting valuable metal from clay-bearing acidic ores of poor permeability, agglomerated acid heap leaching appears to be the most effective method, whereas conventional leaching and general heap leaching bring about unsatisfactory recovery and poor economic returns. The present state of research work on acid agglomeration worldwide and its basic principle are discussed. The first commercial application employing acid agglomeration-heap leaching in China is also introduced

  18. Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia

    Science.gov (United States)

    Suryana, R.; Iriani, Y.; Nurosyid, F.; Fasquelle, D.

    2018-05-01

    Indonesia is one of the countries in the world as the most abundant rice producer. Many researchers have demonstrated that the highest composition in the rice husk ash (RHA) is silica. Some of the advantages in utilizing silica as the raw material is the manufacture of ceramics, zeolite synthesis, fabrication of glass, electronic insulator materials, and as a catalyst. The amount of silica from rice husk ash is different for each region. Therefore, the study of silica from RHA is still promising, especially rice organic fertilizers. In this study, the rice came from Mojogedang Karanganyar Indonesia. Rice husk was dried under the solar radiation. Then the rice husk was heated in two steps: the first step at a temperature of 300°C and the second step at a temperature of 1200°C with a holding time at 2 h and 1 h, respectively. Furthermore, the temperature of the second step was varied at 1400 °C and 1600 °C. This heating process produced RHA. The content of RHA was observed on the EDAX spectrums while the morphology was observed from SEM images. The crystal structure of RHA was determined from XRD spectrums. The EDAX spectrums showed that RHA composition was dominated by elements Si and O for all the heating temperature. SEM images showed an agglomeration towards larger domains as heating temperatures increase. Analysis of XRD spectra is polycrystalline silica formed with the significant crystal orientation at 101, 102 and 200. The intensity of 101 increases significantly with increasing temperature. It is concluded that the crystal growth in the direction of 101 is preferred.

  19. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  20. Method and apparatus for preventing agglomeration within fluid hydrocarbons

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1979-01-01

    This invention relates to a process for treating a fluid hydrocarbon fuel for retarding the agglomeration between particles thereof and for retarding the growth of bacteria and fungi therein. The process includes that steps of transporting a plurality of unit volumes of said fluid hydrocarbon fuel through an irradiating location and irradiating each unit of the plurality of unit volumes at the irradiating location with either neutron or gamma radiation. An apparatus for treating the fluid hydrocarbon fuels with the nuclear radiation also is provided. The apparatus includes a generally conical central irradiating cavity which is surrounded by a spiral outer irradiating cavity. The fluid hydrocarbon fuel is transported through the cavities while being irradiated by the nuclear radiation

  1. Agglomeration of bed material: Influence on efficiency of biofuel fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ryabov Georgy A.

    2003-01-01

    Full Text Available The successful design and operation of a fluidized bed combustor requires the ability to control and mitigate ash-related problems. The main ash-related problem of biomass filing boiler is agglomeration. The fluidized bed boiler with steam capacity of 66 t/h (4 MPa, 440 °C was started up at the Arkhangelsk Paper-Pi dp-Plant in 2001. This boiler was manufactured by the Russian companies "Energosofin" and "Belenergomash" and installed instead of the existing boiler with mechanical grate. Some constructional elements and steam drum of existing boiler remained unchanged. The primary air fan was installed past the common air fan, which supply part of the air into 24 secondary airports. First operating period shows that the bed material is expanded and then operator should increase the primary air rate, and the boiler efficiency dramatically decreases. Tills paper presents some results of our investigations of fuel, bed and fly ash chemical compositions and other characteristics. Special experiments were carried out to optimize the bed drain flow rate. The influence of secondly air supply improvement on mixing with the main flow and boiler efficiency are given.

  2. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  3. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations

    Directory of Open Access Journals (Sweden)

    Cong Xu

    2016-01-01

    Full Text Available On 16 March 2014, the State Council of China launched its first urbanization planning initiative dubbed “National New Urbanization Planning (2014–2020” (NNUP. NNUP put forward 20 urban agglomerations and a sustainable development approach aiming to transform traditional Chinese urbanization to sustainable new urbanization. This study quantitatively evaluates the level of sustainability of the present new urbanization process in 20 Chinese urban agglomerations and provides some positive suggestions for the achievement of sustainable new urbanization. A three-level index system which is based on six fundamental elements in a city and a Full Permutation Polygon Synthetic Indicator evaluation method are adopted. The results show that China is undergoing a new urbanization process with a low level of sustainability and there are many problems remaining from traditional urbanization processes. There exists a polarized phenomenon in the urbanization of 20 urban agglomerations. Based on their own development patterns, the 20 urban agglomerations can be divided into seven categories. Every category has its own development characteristics. The analyses also show that waste of water resources, abuse of land resources, and air pollution are three big problems that are closely linked to traditional Chinese urbanization processes. To achieve sustainable new urbanization in China, four relevant suggestions and comments have been provided.

  4. Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglomerates

    Directory of Open Access Journals (Sweden)

    В. Л. Трушко

    2016-11-01

    Full Text Available A problem of industrial fluxed agglomerates self-destruction in the process of cooling after sintering has been examined. It has been revealed that the main reason of strength degradation is polymorphism of dicalcium silicate Ca2SiO4 (or short designation С2S: β-Ca2SiO4 ® γ-Ca2SiO4. Ways for increasing the  agglomerate  strength by physical and crystal-chemical stabilization of the high temperature modification of C2S have been proposed and tested. Physical stabilization of C2S agglomerate is increased with its structure reinforcement due to thickening of walls between large pores that is achieved by increasing height of the sintered layer through improvement of its gas permeability. The task is addressed by substituting the previously used import sintering ore with the  polydisperse ore from the Yakovlevo field, which improves the charge  pelletizing by 3-4 times and helps to bring the  height of the sintered layer and the strength of the domestic agglomerate up to the international best practice standards, while eliminating a need to purchase import high-vacuum   exhausters. In practice crystal-chemical stabilization of C2S within iron-ore  agglomerate is ensured by adding an  opti- mal multicomponent additive in the form of the    waste product  generated in production  of alumina  from bauxites, i.e. the red mud, to the initial sinter charge. Thus mechanical strength of agglomerates and pellets is increased by 5-10 % and their hot strength improves by 20-40 %. The productivity of sintering machines and blast furnaces improves by 5-10 %. Specific coke consumption reduces by 2-2.5 %. In production of iron-ore pellets red mud is substituting the import  bentonite.

  5. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  6. Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed.

    Science.gov (United States)

    Seo, Anette; Holm, Per; Schaefer, Torben

    2002-08-01

    This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.

  7. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Bingqiao Yang

    2018-06-01

    Full Text Available In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10−5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough. Keywords: Hydrophobic agglomeration, Apatite fines, Agglomeration degree, Fractal dimension, Sodium oleate

  8. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  9. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  10. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  11. Coagulation of Agglomerates Consisting of Polydisperse Primary Particles.

    Science.gov (United States)

    Goudeli, E; Eggersdorfer, M L; Pratsinis, S E

    2016-09-13

    The ballistic agglomeration of polydisperse particles is investigated by an event-driven (ED) method and compared to the coagulation of spherical particles and agglomerates consisting of monodisperse primary particles (PPs). It is shown for the first time to our knowledge that increasing the width or polydispersity of the PP size distribution initially accelerates the coagulation rate of their agglomerates but delays the attainment of their asymptotic fractal-like structure and self-preserving size distribution (SPSD) without altering them, provided that sufficiently large numbers of PPs are employed. For example, the standard asymptotic mass fractal dimension, Df, of 1.91 is attained when clusters are formed containing, on average, about 15 monodisperse PPs, consistent with fractal theory and the literature. In contrast, when polydisperse PPs with a geometric standard deviation of 3 are employed, about 500 PPs are needed to attain that Df. Even though the same asymptotic Df and mass-mobility exponent, Dfm, are attained regardless of PP polydispersity, the asymptotic prefactors or lacunarities of Df and Dfm increase with PP polydispersity. For monodisperse PPs, the average agglomerate radius of gyration, rg, becomes larger than the mobility radius, rm, when agglomerates consist of more than 15 PPs. Increasing PP polydispersity increases that number of PPs similarly to the above for the attainment of the asymptotic Df or Dfm. The agglomeration kinetics are quantified by the overall collision frequency function. When the SPSD is attained, the collision frequency is independent of PP polydispersity. Accounting for the SPSD polydispersity in the overall agglomerate collision frequency is in good agreement with that frequency from detailed ED simulations once the SPSD is reached. Most importantly, the coagulation of agglomerates is described well by a monodisperse model for agglomerate and PP sizes, whereas the detailed agglomerate size distribution can be obtained by

  12. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion....... The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg DM (co-firing ash) and 64 mg Cd/kg DM (pre-washed straw ash), and pH varied from 3.7 to 13.3. In spite of large differences in ash characteristics, the electrodialytic remediation experiments indicated a good remediation potential for all...... four ashes. Final Cd concentrations below 2.0 mg Cd/kg were reached in all ashes within 14 days of remediation and legislative requirements were met. After further optimization of the remediation process on the pre-washed straw ash, limiting concentrations were reached after only 48 hours...

  13. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI) Fly Ash.

    Science.gov (United States)

    Gong, Bing; Deng, Yi; Yang, Yuanyi; Tan, Swee Ngin; Liu, Qianni; Yang, Weizhong

    2017-06-10

    In the present work, thermal treatment was used to stabilize municipal solid waste incineration (MSWI) fly ash, which was considered hazardous waste. Toxicity characteristic leaching procedure (TCLP) results indicated that, after the thermal process, the leaching concentrations of Pb, Cu, and Zn decreased from 8.08 to 0.16 mg/L, 0.12 to 0.017 mg/L and 0.39 to 0.1 mg/L, respectively, which well met the limits in GB5085.3-2007 and GB16689-2008. Thermal treatment showed a negative effect on the leachability of Cr with concentrations increasing from 0.1 to 1.28 mg/L; nevertheless, it was still under the limitations. XRD analysis suggested that, after thermal treatments, CaO was newly generated. CaO was a main contribution to higher Cr leaching concentrations owing to the formation of Cr (VI)-compounds such as CaCrO₄. SEM/EDS tests revealed that particle adhesion, agglomeration, and grain growth happened during the thermal process and thus diminished the leachability of Pb, Cu, and Zn, but these processes had no significant influence on the leaching of Cr. A microbial assay demonstrated that all thermally treated samples yet possessed strong bactericidal activity according to optical density (OD) test results. Among all samples, the OD value of raw fly ash (RFA) was lowest followed by FA700-10, FA900-10, and FA1100-10 in an increasing order, which indicated that the sequence of the biotoxicity for these samples was RFA > FA700-10 > FA900-10 > FA1100-10. This preliminary study indicated that, apart from TCLP criteria, the biotoxicity assessment was indispensable for evaluating the effect of thermal treatment for MSWI fly ash.

  14. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  15. Determination of extraction equilibria for several metals in the development of a process designed to recover aluminum and other metals from coal combustion ash

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; McDowell, W.J.; Felker, L.K.; Kelmers, A.D.; Egan, B.Z.

    1981-01-01

    Laboratory-scale tests of several methods for the recovery of resource materials from fly ash have led to the development of a sinter/dilute acid leach method (Calsinter process) in which fly ash is sintered with a source of calcium oxide (CaCO/sub 3/, CaSO/sub 4/, CaO, and/or limestone flue-gas desulfurization scrubber sludge) at 1000 to 1200/sup 0/C, followed by a two-stage leach of the sintered solids with dilute sulfuric acid. Recovery of aluminum from this leach solution in a relatively pure form requires that several contaminants, particularly iron, must be separated from the aluminum before it can be precipitated. Therefore, distribution coefficients for iron (III) and 16 other metal ions have been determined in the liquid-liquid extraction system: Primene JM-T - toluene versus aqueous ammonium sulfate (and sodium sulfate) as a function of sulfate, acid, metal ion, and amine sulfate concentration. A study of iron (III) loading equilibria as a function of time indicated that equilibrium was essentially achieved in 1 h; however, some changes, probably in the nature of the extracted species, occurred over a period of approximately 20 h. Iron (III) extraction results obtained under various sulfate concentration matrix conditions suggested the formation of an aqueous complex of ferric ammonium sulfate, which depressed iron distribution to the organic phase. Extraction isotherms for Ag, As, Cd, Cr, and Fe all exhibit linearity at low loading conditions with unit slopes, including the same degree of association of the metal ion species in both the organic and the aqueous phase. Other metal ions for which distribution coefficients are reported are: Ba, Mg, Mn, Na, K, P, Pb, Th, Ti, and U.

  16. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  17. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  18. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.

    Science.gov (United States)

    Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey

    2011-10-25

    Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results

  19. Mobility and settling rate of agglomerates of polydisperse nanoparticles

    Science.gov (United States)

    Spyrogianni, Anastasia; Karadima, Katerina S.; Goudeli, Eirini; Mavrantzas, Vlasis G.; Pratsinis, Sotiris E.

    2018-02-01

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=(1/-{ρf/ρp})g 3 π μ m/dm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs

  20. Mobility and settling rate of agglomerates of polydisperse nanoparticles.

    Science.gov (United States)

    Spyrogianni, Anastasia; Karadima, Katerina S; Goudeli, Eirini; Mavrantzas, Vlasis G; Pratsinis, Sotiris E

    2018-02-14

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO 2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter d m and is compared with that from scaling laws for fractal-like agglomerates. The ratio d m /d g of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant d m and mean d p , the agglomerate settling rate, u s , increases with increasing PP geometric standard deviation σ p,g (polydispersity). A linear relationship between u s and agglomerate mass to d m ratio, m/d m , is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the u s of agglomerates consisting of polydisperse PPs is then derived, u s =1-ρ f ρ p g3πμmd m (ρ f is the density of the fluid, ρ p is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of

  1. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites.

    Science.gov (United States)

    Alian, A R; Meguid, S A

    2017-02-08

    Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

  2. Two-stage agglomeration of fine-grained herbal nettle waste

    Science.gov (United States)

    Obidziński, Sławomir; Joka, Magdalena; Fijoł, Olga

    2017-10-01

    This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.

  3. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  4. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  5. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    Science.gov (United States)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  6. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  7. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  8. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloridetalc agglomerates prepared by crystallo-co-agglomeration.

    Science.gov (United States)

    Jadhav, Namdeo; Pawar, Atmaram; Paradkar, Anant

    2010-03-01

    The objective of the investigation was to study the effect of bromhexine hydrochloride (BXH) content and agglomerate size on mechanical, compressional and drug release properties of agglomerates prepared by crystallo-co-agglomeration (CCA). Studies on optimized batches of agglomerates (BXT1 and BXT2) prepared by CCA have showed adequate sphericity and strength required for efficient tabletting. Trend of strength reduction with a decrease in the size of agglomerates was noted for both batches, irrespective of drug loading. However, an increase in mean yield pressure (14.189 to 19.481) with an increase in size was observed for BXT2 having BXH-talc (1:15.7). Surprisingly, improvement in tensile strength was demonstrated by compacts prepared from BXT2, due to high BXH load, whereas BXT1, having a low amount of BXH (BXH-talc, 1:24), showed low tensile strength. Consequently, increased tensile strength was reflected in extended drug release from BXT2 compacts (Higuchi model, R(2) = 0.9506 to 0.9981). Thus, it can be concluded that interparticulate bridges formed by BXH and agglomerate size affect their mechanical, compressional and drug release properties.

  9. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    Science.gov (United States)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  10. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Science.gov (United States)

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  11. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  12. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

    Science.gov (United States)

    Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.

    2018-01-01

    Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.

  13. Urban agglomerations and transformations of medium-sized towns in Poland

    Directory of Open Access Journals (Sweden)

    Runge Anna

    2016-09-01

    the immediate surroundings of the main city. Such situation occurs especially in the conurbation of Gdańsk and the agglomerations of Warszawa, Kraków and Poznań. This shows that the largest cities of Poland are the main engines of economic development by stimulating their surroundings and their impact on the surrounding areas. Unfortunately, the towns located in the marginal zones of several agglomerations (the zone 25–50 km away from the main city experience certain disadvantages, such as the process of “the backwash effect”. Furthermore, the lack of developmental impulses is observed in many medium-sized towns at the distance of 50-100 km from the main city of the agglomeration.

  14. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  15. Operational source receptor calculations for large agglomerations

    Science.gov (United States)

    Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael

    2016-04-01

    For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission

  16. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  17. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    Science.gov (United States)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  18. Fragmentation and bond strength of airborne diesel soot agglomerates

    Directory of Open Access Journals (Sweden)

    Messerer Armin

    2008-06-01

    Full Text Available Abstract Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging" was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot.

  19. Fragmentation and bond strength of airborne diesel soot agglomerates

    Science.gov (United States)

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  20. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.

  1. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  2. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    Science.gov (United States)

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion.

  3. Study on spatial-temporal change of Changsha-Zhuzhou-Xiangtan urban agglomeration based on DMSP / OLS night light data

    Science.gov (United States)

    Li, Mao; Li, Lel-in

    2018-03-01

    For the sake of curbing the spreading of Changsha-Zhuzhou-Xiangtan urban agglomeration and spatial disorder in the process of urbanization development on the regional bearing capacity of land resources and ecological environment and assisting to plan the integration process of ChangZhuTan,this paper uses the DMSP/OLS night light data of Chang ZhuTan in 1992 to 2013 to invert the urbanization process index of ChangZhuTan urban agglomeration. Based on the two scales of time and space, this paper analyzes the average index of lights, the speed of urban expansion and urban compactness index et al and studies the temporal and spatial characteristics of ChangZhuTan urban agglomeration in this period.

  4. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  5. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    Science.gov (United States)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  6. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  7. Simulation of atomic layer deposition on nanoparticle agglomerates

    NARCIS (Netherlands)

    Jin, W.; van Ommen, J.R.; Kleijn, C.R.

    2016-01-01

    Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating

  8. Modeling Urban Collaborative Growth Dynamics Using a Multiscale Simulation Model for the Wuhan Urban Agglomeration Area, China

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2018-05-01

    Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.

  9. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  10. Agglomeration economies in manufacturing industries: the case of Spain

    OpenAIRE

    Olga Alonso-Villar; José-María Chamorro-Rivas; Xulia González-Cerdeira

    2001-01-01

    This paper analyses the extent of geographical concentration of Spanish industry between 1993 and 1999, and study the agglomeration economies that could underlie that concentration. The results confirm that there is major geographic concentration in a number of industries with widely varying characteristics, including high-tech businesses and those linked to the provision of natural resources as well as traditional industries. The analysis of the scope of spillovers behind this agglomeration ...

  11. Industrial agglomeration and production costs in Norwegian salmon aquaculture

    OpenAIRE

    Tveterås, Ragnar

    2002-01-01

    During the last decade, empirical evidence of regional agglomeration economies has emerged for some industries. This paper argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries, such as aquaculture. Econometric analyses in this literature have primarily estimated rather restrictive production function specifications on aggregated industry data. Here, cost functions are estimated o...

  12. Effects of regional agglomeration of salmon : aquaculture on production costs

    OpenAIRE

    Tveterås, Ragnar

    2001-01-01

    During the last decade empirical evidence of regional agglomeration economies has emerged for some industries. This report argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries such as aquaculture. Econometric analyses in this literature have primarily estimated production functions on aggregated industry data. Here, cost functions are estimated on firm level observations of Norwegian salmon aquacu...

  13. Characterization of the geometrical properties of agglomerated aerosol particles

    International Nuclear Information System (INIS)

    Weber, A.P.

    1992-12-01

    A method for the absolute mass determination of agglomerated aerosol particles is presented. Based on this method it is possible to determine simultaneously and in situ mass, exposed surface and mobility diameter. From these measurements the fractal dimension of aerosol particles can be derived. For silver agglomerates produced by spark discharge it was found that they are bifractal. The fractal dimension was 3 in the free molecular regime and 1.9 in the transition regime. By variation of the gas mean free path it was shown that the region where the agglomerate structure changes from close-packed particle to low density agglomerates depends on the Knudsen number. In the free molecular regime the fractal dimension was not at all affected by any change of the generation conditions. Only sintering caused an increase in the density which was attributed to mass transport within the agglomerate. In the transition regime the fractal dimension remained constant with increasing monomer concentration and with increasing flow rate, but it increased with increasing pressure, increasing Ar:He ratio and with increasing sintering temperature. For sintering this effect was explained by the minimization of the surface free energy. It was found that the structure changing rate is proportional to the product of sintering temperature and residence time in the sintering oven. By carefully adjusting the temperature it is possible to produce agglomerates of a well defined structure. In desorption experiments of 136 I from silver and carbon agglomerates it could be shown that the desorption behavior is different. It was found that the desorption enthalpy of iodine from graphite and silver particles were -142 kJ/mol and -184 kJ/mol, respectively. Moreover, it was demonstrated that the 136 I attachment to particles is different for silver agglomerates with the same mobility, but different structures. (author) 41 figs., refs

  14. Business agglomeration in tourist districts and hotel performance

    OpenAIRE

    Marco-Lajara, Bartolomé; Claver Cortés, Enrique; Úbeda García, Mercedes

    2014-01-01

    Purpose – The present paper aims to analyze how the performance of hotels located on the Spanish Mediterranean coast (peninsular and Balearic) and Canary coast is affected by the degree of business agglomeration in tourist districts. If agglomeration affects hotels positively, then the externalities generated in tourist districts will be relevant when locating an establishment. Otherwise, the reason why hotels group together geographically would be more related to the suitability of beaches a...

  15. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor

    International Nuclear Information System (INIS)

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The combined removal of SO 2 and high resistivity fly ash has been demonstrated in a pulse energized electron reactor (PEER). The PEER system which was originally developed for the removal of SO 2 utilizes a positive pulse streamer corona discharge in a non-uniform field geometry. In performance tests on SO 2 , more than 90% was removed with an advantageously small power requirement. Combined treatment performance was demonstrated by introducing high resistivity fly ash into the test gas and the PEER is significantly more efficient than a conventional electrostatic precipitator operated with a dc voltage. Observations show that the PEER agglomerates the fly ash and further that the SO 2 removal efficiency is improved by the presence of fly ash. The electrode configuration and performance results make retrofit consideration attractive

  16. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  17. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu, Shengming, E-mail: smxu@stinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xie, Ming [The State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Precious Metals, Kunming 650106 (China); He, Yinghe, E-mail: yinghe.he@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Douglas, Queensland 4811 (Australia); Huang, Guoyong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Yang, Youcai [The State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Precious Metals, Kunming 650106 (China)

    2015-01-15

    Highlights: • Anisotropic growth of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} along the [0 0 1] direction was revealed. • DFT calculation results show crystal surface energies of (0 0 1) plane is highest. • A new model was proposed to explain the formation of spherical agglomerates. - Abstract: Spherical Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} agglomerates were synthesized by the co-precipitation method in the presence of ammonia. The results show that the growth mechanism of spherical agglomerates follows three-stages, i.e. nucleation and anisotropic growth of single crystals; agglomeration of polycrystalline crystallites agglomerated by single crystal grains as primary particles to form embryonic agglomerates; formation, growth and consolidation of spherical agglomerates or particles by agglomeration of embryonic agglomerates, continued growth of individual crystals in the agglomerates and further attachment of primary particles. The first two stages are very fast while the last stage takes almost the entire process to complete. The main reason for the anisotropic growth of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} crystal is that crystal surface energy of E{sub (001)}, E{sub (100)}, E{sub (101)} and E{sub (102)} is different with E{sub (001)} being the highest. The morphology of the final spherical agglomerates is explained by partial re-crystallization of contacting primary particles. The growth process of spherical agglomerates was examined by X-ray diffraction, scanning electron microscope, transmission electron microscope and calculation of crystal surface energy using density function theory.

  18. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2

    International Nuclear Information System (INIS)

    Yang, Yue; Xu, Shengming; Xie, Ming; He, Yinghe; Huang, Guoyong; Yang, Youcai

    2015-01-01

    Highlights: • Anisotropic growth of Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 along the [0 0 1] direction was revealed. • DFT calculation results show crystal surface energies of (0 0 1) plane is highest. • A new model was proposed to explain the formation of spherical agglomerates. - Abstract: Spherical Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 agglomerates were synthesized by the co-precipitation method in the presence of ammonia. The results show that the growth mechanism of spherical agglomerates follows three-stages, i.e. nucleation and anisotropic growth of single crystals; agglomeration of polycrystalline crystallites agglomerated by single crystal grains as primary particles to form embryonic agglomerates; formation, growth and consolidation of spherical agglomerates or particles by agglomeration of embryonic agglomerates, continued growth of individual crystals in the agglomerates and further attachment of primary particles. The first two stages are very fast while the last stage takes almost the entire process to complete. The main reason for the anisotropic growth of Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 crystal is that crystal surface energy of E (001) , E (100) , E (101) and E (102) is different with E (001) being the highest. The morphology of the final spherical agglomerates is explained by partial re-crystallization of contacting primary particles. The growth process of spherical agglomerates was examined by X-ray diffraction, scanning electron microscope, transmission electron microscope and calculation of crystal surface energy using density function theory

  19. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  20. Radioisotope studies on the paradox in dispersion and agglomeration of sewage greases discharged from ocean outfalls

    International Nuclear Information System (INIS)

    Davison, A.; Easy, J.F.; Seatonberry, B.W.

    1981-04-01

    Experiments have been undertaken in the ocean off Sydney, Australia to monitor the movement and the dispersion of sewage solids. These solids were labelled with a radioisotope, gold-198 prior to ocean discharge. The labelled material was followed at sea using submersible scintillation detectors. Lateral and vertical dispersion coefficients were determined. The experiments showed that under some conditions the labelled sewage grease dispersed and under others the grease agglomerated. This variation is explained in terms of non-conservative processes

  1. Capillary condensation onto titania (TiO2) nanoparticle agglomerates.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-02-27

    A capillary condensation process was developed for the purpose of forming interconnections between nanoparticles at low temperatures. The process was performed in a temperature-controlled flow chamber on nanoparticle agglomerates deposited at submonolayer coverage on a transmission electron microscope grid. The partial pressure of the condensing species, tetraethyl orthosilicate, and the temperature of the chamber were adjusted in order to obtain the various saturation conditions for capillary condensation. The modified samples were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET surface area method, and scanning transmission electron microscopy with electron energy-loss spectrometry. Experimental results show that bridge-shaped layers were dominantly formed in the neck region between particles and were composed of amorphous silica. The analysis of TEM micrographs verified that the coverage of the layers is strongly dependent on the saturation ratio. Image analysis of TEM micrographs shows that this dependency is qualitatively in agreement with theoretical predictions based on the classical Kelvin equation for the specific geometries in our system.

  2. Greener management practices - ash mound reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, S.L.; Shyam, A.K.; Soni, R. [National Thermal Power Corp. Ltd., New Delhi (India)

    2002-12-01

    The dry ash handling system at Dadri has been pioneered for the first time in India by the National Thermal Power Corporation (NTPC). The system is similar to that at the Drax power station in England. The paper reports the successful experimental trials carried out on vegetation of temporary ash mounds to assess the growth potential of local herbs, shrubs, trees and grasses directly on ash with no soil cover or fertiliser. These were extended to trials directly on the available (completed) mound surfaces. The grass Cynodon dactylon germinated well as did seeds of tree species including the Casurarina and Eucalyptus. It is hoped that efforts at Dadri will ultimately transform the ash into a productive and self sustaining ecosystem, as leaf fall adds additional organic material and the weathering process continues. 6 refs., 6 figs.

  3. FROZEN ASH BERRIES PROCESSING IN THE DEVICE WITH A NOZZLE CONTINUOUS VIBRATION, EQUIPPED WITH AN EXTERNAL RECIRCULATION LOOP

    Directory of Open Access Journals (Sweden)

    P. P. Ivanov

    2015-01-01

    Full Text Available An external recirculation loop was used as the method of increasing the concentration of dry soluble substances in the obtained extract. The objective of the research is to determine the value of the external recirculation index (KR, which provides the optimal conditions for the process carrying out. The results of the conducted research show the increase in the concentration of dry soluble substances in the extract if the external recirculation index increases. It is conditioned by the extension of the interaction between the processed raw mate-rial and the extract, as well as by the decrease in the surface tension of the extracting agent, which results in improving the conditions of its penetration into the pores of particles. Such an opposite property of recirculation as the decrease in mass transfer rate was also ob-served. It causes the significant rise of dry soluble substances losses while discharging extraction cake, which leads to the performance degradation. According to the analytical evaluation of the obtained results, the maximum process results are observed if KR = 1 (without recirculation and KR = 2, the values of the optimality criterion are 5.02∙10-3 and 4.92∙10-3 % mass/W respectively. At the same time the operation of the apparatus with the recirculation loop at KR = 2 is characterized by 62%-increase in dry soluble substances concentration in the extract as compared to a pure extracting agent. The efficiency of recirculation at KR = 2 is proved by the saving of energy con-sumed on the evaporation of the extract obtained. The energy costs calculation for the production of 60l of 12 % mass dry soluble sub-stances concentration extract showed that if the initial dry soluble substances concentration is raised to 6 % mass (KR = 2, the amount of consumed saturated vapor is 104.1 kg less, which is 281685 kJ if the vapor specific enthalpy is 2706.29 kJ/kg.

  4. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  6. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  7. Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena

    International Nuclear Information System (INIS)

    Lalleman, Sophie; Bertrand, Murielle; Plasari, Edouard

    2012-01-01

    Oxalic precipitation is usually applied in nuclear industry to process radioactive wastes or to recover actinides from a multicomponent solution.This paper deals with the development of methods adapted to a nuclear environment in order to study the agglomeration phenomena during actinide oxalic precipitation.These methods are previously set up with harmless elements that simulate the actinide behaviour: the lanthanides. A parametric study is carried out to quantify the influence of operating parameters on the agglomeration kernel and to determine a kinetic law for this mechanism. The experimental study is performed in a continuous-MSMPR precipitator at steady-state. The method is based on the resolution of two population balances using the moment approach, one for elementary crystals and the other for agglomerates. Provided that the kinetic rates of nucleation and growth are known, the agglomeration kernel can be obtained from a mathematical treatment of the experimental particle size distributions. Results point out that experimental crystal sizes are consistent with an independent kernel. It appears that the agglomeration kernel is directly proportional to supersaturation, increases with temperature but is limited by ionic strength and shear rate. (authors)

  8. Application of the novel mill tailings agglomeration technology for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Amaratunga, L.M.

    1994-01-01

    Acid generation and subsequent liberation of heavy metals results from the surface disposal of sulfide mineral bearing mill tailings. Most Canadian base metals such as Ni, Cu, Zn, and Pb, as well as uranium and precious metal milling operations are producers of reactive mill tailings containing the major sulfide gangue minerals such as pyrite, pyrrhotite and arsenopyrites. A novel disposal technology by cold-bond tailings agglomeration process (CBTA) is currently being developed at Laurentian University. This process has been adapted to prevent acid mine drainage from reactive mill tailings. A preliminary study was undertaken to evaluate the application of the concept of agglomeration of reactive mill tailings using various alkaline binders and incorporating suitable chemical additives. The binders and additives are selected for their effectiveness in the prevention or retardation of the initial chemical and biochemical oxidation reactions of sulfide mineral leading to acid generation. Following a cold-bond, cold curing tailings agglomeration process, various types and dosages of chemical binders and their additives were employed. The additives under investigation were lime, sodium lauryl sulfate, potassium phosphate dibasic, sodium chloride and sodium benzoate. Some of these chemicals are well known acid neutralizers and others are inexpensive anionic surfactants, detergents and fertilizers acting as bactericides. Most of these additives have been reported in the literature as effective chemical agents used in the prevention and control of acid mine drainage from sulfide minerals. The paper also presents a leachate study to investigate the acid generation potential from each batch of reactive tailings agglomerates containing various binders and non-toxic additives

  9. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  10. Economic metal recovery from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Canon, R.M.; Egan, B.Z.; Kelmers, A.D.; Seeley, F.G.; Watson, J.S.

    1982-08-01

    Results are presented to show that fly ash can be an economical source of Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/ and several other metals. Two processes are examined in detail, the direct acid leach of ash with hydrochloric acid and a pressure digestion-acid leach method. An economic evaluation is presented for each process, and direct acid leaching is considered the most attractive process. The benefits derived from using such a process are discussed. (15 refs.)

  11. Compacting and sintering of agglomerated ultradispersed powders ZrO2

    International Nuclear Information System (INIS)

    Galakhov, A.V.; Vyazov, I.V.; Shevchenko, V.Ya.

    1989-01-01

    Results of investigation into the change of porous structure of shapings of submicron powders under compacting and its effect on the sintering kinetics are presented. ZrO 2 + 3%Y 2 O 3 (molar share) composition powders, produced by coprecipitation from Zr and Y mineral salts are used. Reduction of specific volume of interagglomerated pores is linked with the destruction of large soft agglomerates at the initial compacting shift. At this stage the filling of a part of interagglomerated pores with large agglomerate crushing products takes place. As a result of such a process a part of pores transfers from the class of interagglomerated to the class of intraagglomerated ones increasing their specific content in a compact

  12. Discrete population balance models of random agglomeration and cleavage in polymer pyrolysis

    Directory of Open Access Journals (Sweden)

    John E. J. Staggs

    2017-05-01

    Full Text Available The processes of random agglomeration and cleavage (both of which are important for the development of new models of polymer combustion, but are also applicable in a wide range of fields including atmospheric physics, radiation modelling and astrophysics are analysed using population balance methods. The evolution of a discrete distribution of particles is considered within this framework, resulting in a set of ordinary differential equations for the individual particle concentrations. Exact solutions for these equations are derived, together with moment generating functions. Application of the discrete Laplace transform (analogous to the Z-transform is found to be effective in these problems, providing both exact solutions for particle concentrations and moment generating functions. The combined agglomeration-cleavage problem is also considered. Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable steady state has been identified and computed.

  13. FUNCTIONAL, SECTORAL AND REGIONAL TRANSFORMATION OF THE ECONOMY OF THE MISKOLC AGGLOMERATION REVISITED

    Directory of Open Access Journals (Sweden)

    Andrea KRISTÓF

    2017-04-01

    Full Text Available Among the segments of economic development and shifts in the Miskolc agglomeration the present study introduces some characteristics of the functional, sectoral and regional differentiation of economic transformation. The functional, sectoral and geographical distribution of business corporations in the 35 settlements of the Miskolc agglomeration in 2016 may help to interpret and assess economic processes adapted to local characteristics in the past quarter-century. During the research, only those operating businesses were considered that had net sales of 20 million HUF or more in 2015. An empirical study of 640 active businesses in 35 settlements reveals the regional inequalities and sectoral concentration of the economy. The intensity of the spatial structure of the economy is uneven within the Miskolc agglomeration and spatial specialization can also be observed in the economic hinterland of Miskolc. The economic development induced significant changes in the spatial structure of three towns (Felsőzsolca, Nyékládháza, and Alsózsolca. Services (e.g. personal, distributive, and services for other businesses as well as commerce, logistics and leisure functions concentrated in these towns strengthened their positions in the spatial structure. In addition, the technological and industrial parks of these towns are playing an increasing role. However, the towns of the agglomeration cannot or can hardly be regarded as economic competitors of Miskolc, i.e. the urban region has not become polycentric, and the inhabitants of these towns are not totally independent of Miskolc. In the case of Sajóbábony (due to its special situation and Szikszó (despite its economic recovery the functional, sectoral and regional transformation is not clear yet. Of the villages, only four (Kistokaj, Mályi, Szirmabesenyő, Hernádnémeti could significantly improve their economic positions, and were able to rival the dynamically transforming three towns of the

  14. Reducing adhesion and agglomeration within a cloud of combustible particles

    Science.gov (United States)

    Ross, Howard D.

    1988-01-01

    The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.

  15. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 1. Review and Agglomeration Regime Maps

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    -TiO2. The coating experiments were conducted in a medium-scale top-spray MP-1 fluid bed, and many rheological experiments were performed on the coating formulations to support the interpretation of the fluid-bed coating results. In this first part of the study, a thorough introduction to the inorganic...... salt and polymer film coating is provided, along with a presentation of the equipment and materials being used in this and the following papers. Results from agglomeration studies over a broad range of process conditions are presented, showing that the tendency toward agglomeration is always less...

  16. Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2016-08-01

    Full Text Available Urban ecosystem health evaluation can assist in sustainable ecological management at a regional level. This study examined urban agglomeration ecosystem health in the middle reaches of the Yangtze River with entropy weight and extension theories. The model overcomes information omissions and subjectivity problems in the evaluation process of urban ecosystem health. Results showed that human capital and education, economic development level as well as urban infrastructure have a significant effect on the health states of urban agglomerations. The health status of the urban agglomeration’s ecosystem was not optimistic in 2013. The majority of the cities were unhealthy or verging on unhealthy, accounting for 64.52% of the total number of cities in the urban agglomeration. The regional differences of the 31 cities’ ecosystem health are significant. The cause originated from an imbalance in economic development and the policy guidance of city development. It is necessary to speed up the integration process to promote coordinated regional development. The present study will aid us in understanding and advancing the health situation of the urban ecosystem in the middle reaches of the Yangtze River and will provide an efficient urban ecosystem health evaluation method that can be used in other areas.

  17. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    Science.gov (United States)

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  18. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  19. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    International Nuclear Information System (INIS)

    Hu Jun; Dong Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-01-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer–Emmett–Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of ∼100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D 50% ) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m 2 /g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  20. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun; Dong Yuancai [Institute of Chemical and Engineering Sciences (Singapore); Pastorin, Giorgia, E-mail: phapg@nus.edu.sg [National University of Singapore, Department of Pharmacy (Singapore); Ng, Wai Kiong, E-mail: ng_wai_kiong@ices.a-star.edu.sg; Tan, Reginald B. H. [Institute of Chemical and Engineering Sciences (Singapore)

    2013-04-15

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of {approx}100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D{sub 50%}) of 2.25 {+-} 0.08 {mu}m and a specific surface area of 158.63 {+-} 3.27 m{sup 2}/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  1. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. V. MULTIPLE IMPACTS OF DUSTY AGGLOMERATES AT VELOCITIES ABOVE THE FRAGMENTATION THRESHOLD

    International Nuclear Information System (INIS)

    Kothe, Stefan; Guettler, Carsten; Blum, Juergen

    2010-01-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO 2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s -1 . The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing

  2. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  3. Efficiency of dioxin recovery from fly-ash samples during extraction and cleanup process, March 1989. Final report, 1 August 1987-30 September 1988

    International Nuclear Information System (INIS)

    Finkel, J.M.; James, R.H.; Baughman, K.W.

    1989-03-01

    The work supported Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency in its effort to monitor the hazardous composition, if any, of fly ash from various types of incinerators using different types of combustible materials. The analytical determination of dioxins in environmental samples in the parts per billion, trillion, and quadrillion levels requires meticulous, time-consuming, and very complex sample preparation and analysis procedures. A major part of the task was devoted to the evaluation of various extraction techniques of fly ash and cleanup of sample extracts by column chromatography. Several chromatographic media and eluting solvents were investigated. Each step in the sample preparation was evaluated by using 14 C-radiolabeled 2,3,7,8-tetrachlorodibenzo-p-dioxin and octochlorodibenzo-p-dioxin as a tracer. Radiolabeled dioxin allows the analyst to stop and evaluate each step of the procedure, each extract, and each column eluate fraction by liquid-scintillation computing. To validate the radiometric assay, dioxin was confirmed by gas chromatography/mass spectrometry. The report contains recovery data of spiked 2,3,7,8-tetrachlorodibenzo-p-dioxin and octochlorodibenzo-p-dioxin in carbon-free fly ash and fly ash containing from 0.1% to 10% carbon

  4. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    Science.gov (United States)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  5. Acidolysis of coal fly ash by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Singh, A.K. (EG and G Idaho Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1993-12-01

    The kinetics of aluminium extraction were investigated, using as-received and calcined fly ash samples and a pure culture of [ital Aspergillus niger]. This fungus metabolized sucrose to citric and oxalic acids, which were involved in the acidolysis of fly ash. Aluminium extraction from as-received fly ash was only 5-8%, whereas from calcined fly ash it was up to 93.5%. The order of reaction and the overall reaction rate constant were determined by the van't Hoff technique with respect to the concentration of calcined fly ash. A linearized form of a modified Monod expression was applied to the experimental data to assess the kinetic constants for the acidolysis process. Statistically designed experiments were carried out with calcined fly ash and synthetic solutions containing citric and oxalic acids to determine the optimum leaching conditions. The acidolysis reaction mechanism is discussed. 28 refs., 6 figs., 3 tabs.

  6. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  7. A stochastic pocket model for aluminum agglomeration in solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Gallier, Stany [SNPE Materiaux Energetiques, Vert le Petit (France)

    2009-04-15

    A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well-known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Stone Dust Agglomeration for Utilizing as Building Material

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2017-12-01

    Full Text Available In the paper we discuss the possibility of using stone dust for utilizing as building material. The tested material was amphibolite, found in the Sudeten Mountains and the Tatra Mountains in Poland. The chemical composition of dust was determined by means of spectrometry methods. Moreover, the basic physical properties of the material were designated. Stone dust was mixed with starch or cement binder. The binder addition was from 5% to 20% by weight. The water content was adjusted to about 25% humidity. The mixture was then compressed in a hydraulic press at 50 MPa. The results of the mechanical toughness of agglomerates were shown. On the basis of the results, acceptable toughness of agglomerates was found, with the addition of cement in mass share 20% and seasoning for 48 hours. However, starch was not suitable as a binder for agglomeration of amphibolite.

  9. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  10. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  11. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  12. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.

    Science.gov (United States)

    Schwyzer, Irène; Kaegi, Ralf; Sigg, Laura; Nowack, Bernd

    2013-08-01

    Carbon nanotubes (CNTs) are often processed in suspended form and therefore a release of CNT-suspensions into the aquatic environment is plausible. In this study, the behaviour of two physico-chemically very different CNT types in the presence of varying, environmentally relevant calcium-containing media was investigated, including the long-term colloidal stability and the sedimentary structures of settled CNTs. Calcium induced CNT flocculation, however, the stability of the CNTs in the medium did not monotonously decrease with increasing calcium concentration. At intermediate calcium concentrations (0.5-1.5 mM Ca) pre-dispersed CNTs were stabilized in humic acid medium to similar, temporarily even to higher degree than in the absence of calcium. Between pH 5 and 8 only at the highest pH an influence on CNT stability was observed by either promoting flocculation or stabilisation depending on the CNT type. Humic acid stabilized CNTs much better than fulvic acid. Generally, the colloidal stability of the long, thick CNTs with higher surface oxygen content was less affected by the media composition. An investigation of the settled CNT material using analytical electron microscopy revealed the presence of spheroidal, bundle-like and net like CNT-agglomerate structures. Calcium possibly acted as bridging agent linking CNTs in a network like manner, temporarily increasing the CNT concentrations stabilized in the supernatants due to the low density of these structures. With increasing settling time the CNTs formed a fluffy sediment layer at the bottom of the reaction vessels. Bundle-like CNT agglomerates were also observed within that layer of settled CNTs, possibly caused by calcium neutralizing the surface charges. Furthermore, the CNT suspensions contained spheroidal CNT agglomerates, most likely residues from the original dry powder that were not disaggregated. The analysis of settled CNT material is a novelty and illustrates CNT agglomerate structures possibly

  13. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  14. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    Science.gov (United States)

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  15. Leaching of Nutrient Salts from Fly Ash from Biomass Combustion

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Vu, Duc Thuong; Stenby, Mette

    2005-01-01

    Methods to selectively leach nutrient salts from fly ash, while leaving cadmium un-dissolved were studied. Temperature, pH, water to fly ash ratio are all expected to influence the kinetics and the equilibrium boundaries for this process. Three different leaching methods were investigated....... The first method was a counter current moving bed process in four stages. The ash was kept in filter bags and leached with water that was introduced into the bags at 40-50°C. In the second method, fly ash and water was brought into contact in a partially fluidized bed. The third method was a counter current...... moving bed process with agitation/centrifugation. It was found that a satisfactory leaching of the nutrient salts could be achieved with the third method using only two or three stages, depending on the water to fly ash ratio. It is an advantage to perform the process at temperatures above 50°C...

  16. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  17. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    straw from soils with higher cadmium content. To avoid that a farm with a low cadmium concentration in the straw receives ash with a high content, one could combust area-wise and recycle area-wise, or choose not to fetch straw from farms with high cadmium contents in soils, or spread only bottom ash. However, if fly ash is not utilised, a large part of the potassium is lost. The conclusion is that recycling of straw ash to fields is feasible and development work should continue after this pre-study. The pre-study need to be developed in the following areas: Means to spread a small quantity of ash to fields, with as small a negative effect as possible. Machines for spreading straw ash have been studied in some Swedish investigations, and before proceeding further one should gather additional information, a.o. on foreign machinery for spreading straw ash Test lime spreading techniques, pipe model, for agglomerated ash (wet, cured, crushed and sieved straw ash) As ash is a fertiliser, a method to calculate doses should be developed. This implies a.o. an analysis of potassium and phosphorus available to plants The availability of cadmium to plants should be studied in order to determine in which phase of a crop rotation ash should be returned in order to minimize the risk that plants take up cadmium If one chooses to recycle only bottom ash, one should continue to investigate means to extract potassium from fly ash, as ca 50 % of the potassium content is in the fly ash

  18. Prediction of ash deposition using CFD simulation combined to thermodynamic calculation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshi Muratani; Takashi Hongo [UBE Industries, Ltd., Yamaguchi (Japan). Coal Department, Energy and Environment Division

    2007-07-01

    This study focused on the advanced ash deposition prediction using computational fluid dynamics (CFD) analysis combined to thermodynamic calculation, considering both combustion characteristics and ash fusibility. Combustion field in pulverised coal-fired boiler was calculated through the normal CFD process. As the post process of combustion calculation, ash particles were injected into the combustion field to calculate ash deposition by CFD, in which particle sticking sub-program was newly employed. In this post process, ash deposition condition for CFD calculation was defined with the ash fusibility data obtained from thermodynamic analysis. These results of ash deposition on the furnace wall showed good agreement with the plant observation. Furthermore, in order to improve the plant operation, some virtual cases were simulated, which might reduce ash deposition. 7 refs., 14 figs., 6 tabs.

  19. Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behavior of TiB2 particles in aluminum

    International Nuclear Information System (INIS)

    Chen, Fei; Mao, Feng; Chen, Zongning; Han, Jingyu; Yan, Guangyuan; Wang, Tongmin; Cao, Zhiqiang

    2015-01-01

    Highlights: • SR-CT was a powerful tool to investigate the TiB 2 distribution in Al-TiB 2 in situ composites. • Three kinds of agglomerations frequently present in the composites. • Agglomerations formed via the diffused atoms reacting with intermediate products. • The composites containing agglomerations show a much reduced ductility. - Abstract: Agglomeration of reinforcing particles has a number of deleterious effects on the properties of in situ metal matrix composites (MMCs). In order to better understand this phenomenon, the agglomerating behavior of TiB 2 particles in aluminum based in situ MMCs was investigated using synchrotron radiation X-ray computed tomography (SR-CT) and field emission scanning electron microscope (FESEM). SR-CT was shown to be a powerful tool for visualizing and quantifying the three-dimensional (3D) features within the composites. Based on the SR-CT and FESEM results, a formation mechanism of the flaky agglomerates, flocculent agglomerates and clusters of coarse TiB 2 particles, which are most frequently presented in the in situ Al/TiB 2 composite, has been proposed. The mechanism shows that the formation of these three kinds of agglomerates can be attributed to three parallel processes, i.e. diffusing titanium atoms reacting with AlB 2 , aluminum melt directly reacting with emulsified salt, diffusing boron atoms reacting with TiAl 3 , respectively. Moreover, the mechanism may shed some light on how to design better processing techniques for obtaining homogenous particle distribution in in situ Al/TiB 2 composites in the future

  20. Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

    Directory of Open Access Journals (Sweden)

    Elena Simone

    2018-01-01

    Full Text Available In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM; and particle vision and measurement (PVM were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

  1. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T; Aittoniemi, P [IVO Power Engineering, Vantaa (Finland); Kauppinen, E; Latva-Somppi, J; Kurkela, J [VTT Chemical Technology, Espoo (Finland); Partanen, J [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  2. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  3. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  5. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  6. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  7. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    Science.gov (United States)

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  8. Molecular modeling study of agglomeration of [6,6]-phenyl-C61-butyric acid methyl ester in solvents.

    Science.gov (United States)

    Mortuza, S M; Banerjee, Soumik

    2012-12-28

    The molecular interactions between solvent and nanoparticles during photoactive layer formation in organic photovoltaic (OPV) cells influence the morphology of the photoactive layer and hence determine the power conversion efficiency. Prediction of optimal synthesis parameters in OPVs, such as choice of solvent, processing temperature, and nanoparticle concentration, requires fundamental understanding of the mechanisms that govern the agglomeration of nanoparticles in solvents. In this study, we used molecular dynamics simulations to simulate a commonly used organic nanoparticle, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), in various solvents to correlate solvent-nanoparticle interactions with the size of the agglomerate structure of PCBM. We analyzed the effects of concentration of PCBM and operating temperature on the molecular rearrangement and agglomeration of PCBM in three solvents: (i) toluene, (ii) indane, and (iii) toluene-indane mixture. We evaluated the agglomeration behavior of PCBM by determining sizes of the largest clusters of PCBM and the corresponding size distributions. To obtain further insight into the agglomerate structure of PCBMs, we evaluated radial distribution functions (RDFs) and coordination numbers of the various moieties of PCBMs with respect to solvent atoms as well as with respect to that of other PCBMs. Our simulations demonstrate that PCBMs form larger clusters in toluene while they are relatively dispersed in indane, which indicates the greater solubility of PCBM in indane than in toluene. In toluene-indane mixture, PCBMs are clustered to a greater extent than in indane and less than that in toluene. To correlate agglomerate size to nanoparticle-solvent interactions, we also evaluated the potential of mean force (PMF) of the fullerene moiety of PCBM in toluene and indane. Our results also show that the cluster size of PCBM molecules increases with the increase of concentration of PCBM and the processing temperature. To

  9. A multipurpose shopping trip model to assess retail agglomeration effects

    NARCIS (Netherlands)

    Arentze, T.A.; Oppewal, H.; Timmermans, H.J.P.

    2005-01-01

    Multipurpose shopping is a prominent and relevant feature of shopping behavior. However, no methodology is available to assess empirically how the demand for multipurpose shopping depends on retail agglomeration or, in general, the characteristics of retail supply, such as the numbers and types of

  10. Quantitative characterization of nanoparticle agglomeration within biological media

    International Nuclear Information System (INIS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-01-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  11. Knowledge Externalities, Agglomeration Economies, and Employment Growth in Dutch Cities

    NARCIS (Netherlands)

    van Soest, D.P.; Gerking, S.D.; van Oort, F.G.

    2002-01-01

    This paper extends the work of Glaeser et al.(1992) by looking at effects of agglomeration economies on employment growth in Dutch city-industries and in very small (postal) zip code-industries in the Dutch province of South-Holland. At both levels of geographic detail, findings are broadly

  12. Current Trends in wastewater treatment in small agglomerations; Tendencias actuales en las tecnologias de tratamiento de las aguas residuales generadas en las pequenas aglomeraciones urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Medina, Y.; Ortega de Miguel, E.; Salas Rodriguez, J. J.

    2012-07-01

    Spain has a great number of small agglomerations. In fact from the 8.111 existing municipalities, 72% have less than 2.000 inhabitants and 47% of them (3.800) have less than 500 inhabitants. Concerning wastewater treatment in small agglomerations three periods can be distinguished. Before the 80{sup t}h, wastewater treatment plants were merely small reproductions of those applied in bigger agglomerations, and Extended Aeration was basically the only process. Due to their high energy and technical requirements, many of these small plants were left out of service. Extensive technologies appeared in Spain during the 80{sup t}h. Results were not as good as expected mainly due to design and construction failures. Nowadays, we are just starting to be aware that wastewater treatment in small agglomerations, need a new approach, more demanding concerning technical and management issues, to give an owner's to the origin of previous mistakes. This new approach offers a wide range of possible technologies (extensive, and mixed) each of them could be a good option depending on the specific characteristics of the agglomeration, and the discharge requirements. These paper reviews current trends concerning urban wastewater treatment is mall agglomerations, including consolidated technologies, emerging technologies and technologies which are still in development or in an experimental phase. (Author)

  13. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  14. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    International Nuclear Information System (INIS)

    Clark, S.W.; Sulloway, H.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion

  15. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    Science.gov (United States)

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    Science.gov (United States)

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  18. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    OpenAIRE

    Chen Kuo-Wei

    2016-01-01

    This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with ...

  19. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    OpenAIRE

    Kiil, Søren

    2017-01-01

    This work concerns the development of simulation tools for mapping of pigment dispersion. Focus has been on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates, and the full agglomerate particle size distribution was simulated. Data from previous experimental investigations with organic pigments were used for model validation.When the linear rate of agglomerate surface erosion was taken to be pr...

  20. Lunar ash flow with heat transfer.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  1. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  2. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO2 Aggregates and Loosely Bound Agglomerates

    International Nuclear Information System (INIS)

    Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen

    2017-01-01

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO 2 dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s −1 for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s −1 , somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s −1 . Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  3. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.

    Science.gov (United States)

    Dzwinel, Witold; Yuen, David A

    2002-03-15

    The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex

  4. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  5. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    Science.gov (United States)

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  6. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  7. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  8. Effect of agglomeration of silver nanoparticle on nanotoxicity depression

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Eunjoo; Yi, Jongheop [Seoul National University, Seoul (Korea, Republic of); Lee, Byung-Cheun; Choi, Kyunghee [National Institute of Environmental Research, Incheon (Korea, Republic of); Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2013-02-15

    Silver nanoparticles (AgNPs) are used commercially in a variety of applications, including textiles, cosmetics, spray cleaning agents, and metal products. AgNP itself, however, is classified as an environmental hazard by Environmental Protection Agency (EPA, USA) Nanotechnology White Paper, due to its toxic, persistent and bioaccumulative characteristics when exposed to the environment. We investigated the cumulative mortality and abnormalities in Japanese medaka (Oryziaslatipes) embryos after exposure to AgNPs. Free AgNPs in solution have a high activity with respect to biological interactions regarding blocking blood flow and distribution of AgNPs into the cells from head to tail of hatched O. latipes. Interestingly, the agglomeration of AgNPs (loss of nanosized characteristics) played an important role in the environmental toxicity. The present study demonstrated that when the AgNPs were exposed in the ecosystem and then formed agglomerates, nanotoxicity was reduced.

  9. Effect of agglomeration of silver nanoparticle on nanotoxicity depression

    International Nuclear Information System (INIS)

    Bae, Eunjoo; Yi, Jongheop; Lee, Byung-Cheun; Choi, Kyunghee; Kim, Younghun

    2013-01-01

    Silver nanoparticles (AgNPs) are used commercially in a variety of applications, including textiles, cosmetics, spray cleaning agents, and metal products. AgNP itself, however, is classified as an environmental hazard by Environmental Protection Agency (EPA, USA) Nanotechnology White Paper, due to its toxic, persistent and bioaccumulative characteristics when exposed to the environment. We investigated the cumulative mortality and abnormalities in Japanese medaka (Oryziaslatipes) embryos after exposure to AgNPs. Free AgNPs in solution have a high activity with respect to biological interactions regarding blocking blood flow and distribution of AgNPs into the cells from head to tail of hatched O. latipes. Interestingly, the agglomeration of AgNPs (loss of nanosized characteristics) played an important role in the environmental toxicity. The present study demonstrated that when the AgNPs were exposed in the ecosystem and then formed agglomerates, nanotoxicity was reduced

  10. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  11. Experimental study of fluidized bed agglomeration of acerola powder

    Directory of Open Access Journals (Sweden)

    G. C. Dacanal

    2008-03-01

    Full Text Available The aim of this work was to study the main effects of acerola powder on fluidized bed agglomeration. A 2(4-1 fractional factoring design was used to evaluate the main operating conditions (fluidizing air temperature, fluidizing air velocity, atomizing air flow and height of nozzle in the bed. The mechanical and physicochemical product changes were determined by analysis of particle diameter, moisture content, wetting time and bed porosity. The particle enlargement by agglomeration occurred when the relative humidity in the bed increased and, thus, the moisture of the product increased. However, the excessive increase in relative humidity resulted in a decrease in yield, caused by caking and product incrustation. The consolidation of small granules resulted in an increase in the instant properties, decreasing the wetting time and increasing the solubility in a short period of agitation.

  12. Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-01-01

    Roč. 11, Aug (2016), s. 1-5, č. článku 367. ISSN 1556-276X Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * nanoparticles * colloids * agglomeration Subject RIV: BO - Biophysics Impact factor: 2.833, year: 2016

  13. Agglomeration, accessibility and industrial location: evidence from spanish municipalities

    OpenAIRE

    Alañón Pardo, Ángel; Arauzo Carod, Josep María

    2011-01-01

    This paper deals with the location decisions of manufacturing firms in Spain. We analyse how agglomeration economies and transport accessibility influence the location decisions of firms at municipality level and in three industries. The main empirical contributions of this paper are the econometric techniques used (spatial econometric models) and some of the explanatory variables (local gross domestic product, road accessibility, and the characteristics of firms in neighbouring municipalitie...

  14. Heterogeneous skills and homogeneous land: segmentation and agglomeration

    OpenAIRE

    Matthias Wrede

    2013-01-01

    This paper analyzes the impact of skill heterogeneity on regional patterns of production and housing in the presence of pecuniary externalities within a general-equilibrium framework assuming monopolistic competition at intermediate good markets. It shows that the interplay of heterogeneous skills and relatively homogeneous land demand triggers skill segmentation and agglomeration. The core region, being more attractive to high skilled workers, has a disproportionately large share of producti...

  15. Agglomeration Economies and the High-Tech Computer

    OpenAIRE

    Wallace, Nancy E.; Walls, Donald

    2004-01-01

    This paper considers the effects of agglomeration on the production decisions of firms in the high-tech computer cluster. We build upon an alternative definition of the high-tech computer cluster developed by Bardhan et al. (2003) and we exploit a new data source, the National Establishment Time-Series (NETS) Database, to analyze the spatial distribution of firms in this industry. An essential contribution of this research is the recognition that high-tech firms are heterogeneous collections ...

  16. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  17. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  18. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  19. Quality Assessment of Soaps Produced from Palm Bunch Ash ...

    African Journals Online (AJOL)

    Quality Assessment of Soaps Produced from Palm Bunch Ash-Derived Alkali and ... Journal of Applied Sciences and Environmental Management ... The remedial process involved subjecting the dried palm bunch matter to total combustion, ...

  20. Evidence of Ash Tree (Fraxinus spp. Specific Associations with Soil Bacterial Community Structure and Functional Capacity

    Directory of Open Access Journals (Sweden)

    Michael P. Ricketts

    2018-04-01

    Full Text Available The spread of the invasive emerald ash borer (EAB across North America has had enormous impacts on temperate forest ecosystems. The selective removal of ash trees (Fraxinus spp. has resulted in abnormally large inputs of coarse woody debris and altered forest tree community composition, ultimately affecting a variety of ecosystem processes. The goal of this study was to determine if the presence of ash trees influences soil bacterial communities and/or functions to better understand the impacts of EAB on forest successional dynamics and biogeochemical cycling. Using 16S rRNA amplicon sequencing of soil DNA collected from ash and non-ash plots in central Ohio during the early stages of EAB infestation, we found that bacterial communities in plots with ash differed from those without ash. These differences were largely driven by Acidobacteria, which had a greater relative abundance in non-ash plots. Functional genes required for sulfur cycling, phosphorus cycling, and carbohydrate metabolism (specifically those which breakdown complex sugars to glucose were estimated to be more abundant in non-ash plots, while nitrogen cycling gene abundance did not differ. This ash-soil microbiome association implies that EAB-induced ash decline may promote belowground successional shifts, altering carbon and nutrient cycling and changing soil properties beyond the effects of litter additions caused by ash mortality.

  1. Ash study for biogas purification; Estudio de cenizas para purificacion de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Juarez V, R. I.

    2016-07-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  2. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  3. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 2. Influence of Coating Solution Viscosity, Stickiness, pH, and Droplet Diameter on Agglomeration

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first part of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 49, 1914], agglomeration regime maps were developed for two types of coatings: sodium sulfate and PVA-TiO2. It was observed here how the agglomeration tendency is always lower for the salt coating...... the PVA-TiO2 coating formulation and process to achieve a low tendency of agglomeration, similar to that of the salt coating process. The best results for the PVA-TiO2 solution are obtained by substituting the PVA-TiO2 in equal amounts with Neodol 23-6.5 and further reducing the pH value in the coating...

  4. Remediation of a heavy metal-contaminated soil by means of agglomeration.

    Science.gov (United States)

    Polettini, Alessandra; Pomi, Raffaella; Valente, Mattia

    2004-01-01

    The feasibility of treating a heavy metal-contaminated soil by means of a solidification/stabilization treatment consisting of a granulation process is discussed in the present article. The aim of the study was to attain contaminant immobilization within the agglomerated solid matrix. The soil under concern was characterized by varying levels of heavy metal contamination, ranging from 50 to 500 mg kg(-1) dry soil for chromium. from 300 to 2000 mg kg(-1) dry soil for lead and from 270 to 5000 mg kg(-1) dry soil for copper. An artificially contaminated soil with contaminant concentrations corresponding to the upper level of the mentioned ranges was prepared from a sample of uncontaminated soil by means of spiking experiments. Pure soluble species of chromium, copper and lead. namely CrCl3.6H2O, CuCl2.2H2O and Pb(NO3)2, were selected for the spiking experiments, which were arranged according to a 2(3) full factorial design. The solidification/stabilization treatment was based on an agglomeration process making use of hydraulic binders including Portland cement, hydrated lime and sodium methasilicate, which were selected on the basis of preliminary test runs. It was found that after 7 days of curing the applied treatment was able to efficiently immobilize the investigated heavy metals within the hydrated matrix. Good acid neutralization behavior was also observed, indicating improved matrix resistance to acid attack and decreased potential for metal leaching.

  5. Spatial Agglomeration, Human and Social Capital: The Case of Turkey Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Özer Karakayacı

    2017-12-01

    Full Text Available Over the last three decades, new economic theories explode the factors depending on space and spatial characteristics. In this process, it is developed the theories on social-cultural aspects and spatial characteristics of regions instead of traditional economic theories. These theories have been main strategy for economic development and growth. Economic development has not been considered independently from space by these theories and economic performance of a region was emphasized importance of economic actors, institutional and economic infrastructure as well as geographic features. Geography or spatial features contribute to increase not only skilled workforce, knowledge spillover and distribution but also social relations and interaction. In other words, the social-cultural and humanity factors relating with spatial and geography are major factors affecting on the development and also growing of economic activities. Especially, while industrialization as engine of regional development has been benefiting from the advantages offered by spatial features, clustering of economic activities and relationships among actors are shaped according to socio-cultural and human factors revealed spatial features. In this context, clustering of economic activities has been one of the new areas of interest in the theory of economic geography. Therefore, clustering of economic activities and human-social-spatial resources has been emphasized to play a major role in growth and development of regions by essays of the new economic geography. In that context, the aim of this paper is to determine the effects of human and social capital in the spatial agglomeration of economic activities in case of Konya-Turkey. In this study, the agglomeration tendencies for manufacturing industry in Konya, which have major potentials in terms of human and social capital and manufacturing industry potential, is analysed comparatively depending on secondary resources and using

  6. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  7. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations......, however, have had a strong emphasis on lab experiments with little focus on full scale bottom ash upgrading methods. The introduction of regulatory limit values restricting leaching from utilized bottom ashes, has created a need for a better understanding of how lab scale experiences can be utilized...

  8. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  9. Treating waste waters in small agglomerations. The current situation, commitments and alternatives; Depuracion de las aguas residuales en pequenos nuclear. Situacion actual, compromisos y alternativas

    Energy Technology Data Exchange (ETDEWEB)

    Collado Lara, R. [Universidad de Cantabria. (Spain)

    2003-07-01

    In 1991, the European Economic Community issued a directive on urban waste water treatment: (91/27/EEC). This directive laid down that such treatment had to be in place ny the period 2000-2005, depending on the application of different requirements according to the size of the agglomeration and the discharge area. A large number of sewage plants are being built in Spain at the present time, especially in medium-size and large agglomeration (pop>10.000 inhabitants). However, in the smaller agglomeration, over 50% of the waste waters have still to be treated. In agglomerations of less than 10.000 inhabitants, which make up 95% of the municipalities in Spain, it is possible to apply a greater diversity of treatments not all of them conventional that comply with the directive in question. Natural systems and biofilm processes are low-cost solutions that are well adapted to the natural environment. However, conventional technologies are virtually essential in medium-size and large agglomerations, as the lack of space and the exacting demands render them irreplaceable (Collado, 2002). This article describes the distribution of the municipalities in Spain according to the number of inhabitants, the current state os sewage treatment,the commitments made by the European Economic Community and the viable alternatives. Some comments have been added regarding the running of such systems and the need for them to be managed by associations of local councils or regional bodies. (Author)

  10. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  11. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  12. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... ashes. The process, thus, fixates the metals in the solid residues without altering the leaching properties of the bottom ash too significantly. (C) 2001 Elsevier Science Ltd. All rights reserved....... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  13. Preliminary Evaluation of Potassium Extraction from Bamboo Ash

    Directory of Open Access Journals (Sweden)

    Samadhi Tjokorde W.

    2018-01-01

    Full Text Available Bamboo is a potentially economical fuel crop that has not been utilized at a substantial extent for energy generation in Indonesia. As a thermal conversion waste, bamboo ash is particularly interesting due to its high potassium content. This paper discusses the determination of several key parameters of a simple batchwise extraction process to recover potassium in the form of weak solution from bamboo ash. To produce the ash, black bamboo (Gigantochloa atroviolaceae is charred in a fixed bed combustor. The bamboo char is ground and ashed at 500 °C in an electric furnace. The ash yield is 3.3 %-mass relative to as-received ash, with an ash K2O content of 12.9 %-mass. The ash is ground until passing 100-mesh standard sieve, and extracted by deionized water on a 2-stage laboratory-scale batchwise extractor battery. Process variables include extractror battery configuration (counter-current and co-current, temperature (nominal setting at 45-80 °C, and contact period of 1-6 hours. The concentration of extracted K2O increases asymptotically with temperature and contact time. Counter-current extraction yields more than twice the extract K2O concentration compared to cross-current extraction. The optimum conditions for the counter-current extraction is identified as a temperature of 78 °C and contact time of 4 hours, resulting in a 0.70 %-mass K2O solution concentration. Spot sampling of commercial liquid fertilizer products in Indonesia indicates an equivalent K2O content of 0.08-13.6 %-mass, suggesting the potential of the bamboo ash extract as an intermediate for fertilizer product.

  14. DETERMINATION OF METAL CONTENT AND AN ASSESSMENT OF THE POTENTIAL USE OF WASTE CASHEW NUT ASH (CNSA) AS SOURCE FOR POTASH PRODUCTION

    OpenAIRE

    Mary Bosede Ogundiran; Joshua Olajiire Babayemi; Chima Gregory Nzeribe

    2011-01-01

    The potential use of waste cashew nut shell (CNS) ash as a source for potash production was investigated in this study. Managing waste ash generated from cashew nut processing is a major challenge, as land filling and open dumping of the waste ashes have been the main options in management of the ash in Nigeria. Economically viable ways of using waste ash rather than having to dispose of it have to be investigated. The CNS was air-dried for 4 weeks and combusted to ashes; the resulting ash wa...

  15. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  16. Study of thermal environment in Jingjintang urban agglomeration based on WRF model and Landsat data

    International Nuclear Information System (INIS)

    Huang, Q N; Cao, Z Q; Guo, H D; Xi, X H; Li, X W

    2014-01-01

    In recent decades, unprecedented urban expansion has taken place in developing countries resulting in the emergence of megacities or urban agglomeration. It has been highly concerned by many countries about a variety of urban environmental issues such as greenhouse gas emissions and urban heat island phenomenon associated with urbanization. Generally, thermal environment is monitored by remote sensing satellite data. This method is usually limited by weather and repeated cycle. Another approach is relied on numerical simulation based on models. In the study, these two means are combined to study the thermal environment of Jingjintang urban agglomeration. The high temperature processes of the study area in 2009 and 1990s are simulated by using WRF (the Weather Research and Forecasting Model) coupled with UCM (Urban Canopy Model) and the urban impervious surface estimated from Landsat-5 TM data using support vector machine. Results show that the trend of simulated air temperature (2 meter) is in accord with observed air temperature. Moreover, it indicates the differences of air temperature and Land Surface Temperature caused by the urbanization efficiently. The UHI effect at night is stronger than that in the day. The maximum difference of LST reaches to 8–10°C for new build-up area at night. The method provided in this research can be used to analyze impacts on urban thermal environment caused by urbanization and it also provides means on thermal environment monitoring and prediction which will benefit the coping capacity of extreme event

  17. Encapsulation of Single Nanoparticle in Fast-Evaporating Micro-droplets Prevents Particle Agglomeration in Nanocomposites.

    Science.gov (United States)

    Pan, Ming; Shi, Xinjian; Lyu, Fengjiao; Levy-Wendt, Ben Louis; Zheng, Xiaolin; Tang, Sindy K Y

    2017-08-09

    This work describes the use of fast-evaporating micro-droplets to finely disperse nanoparticles (NPs) in a polymer matrix for the fabrication of nanocomposites. Agglomeration of particles is a key obstacle for broad applications of nanocomposites. The classical approach to ensure the dispersibility of NPs is to modify the surface chemistry of NPs with ligands. The surface properties of NPs are inevitably altered, however. To overcome the trade-off between dispersibility and surface-functionality of NPs, we develop a new approach by dispersing NPs in a volatile solvent, followed by mixing with uncured polymer precursors to form micro-droplet emulsions. Most of these micro-droplets contain no more than one NP per drop, and they evaporate rapidly to prevent the agglomeration of NPs during the polymer curing process. As a proof of concept, we demonstrate the design and fabrication of TiO 2 NP@PDMS nanocomposites for solar fuel generation reactions with high photocatalytic efficiency and recyclability arising from the fine dispersion of TiO 2 . Our simple method eliminates the need for surface functionalization of NPs. Our approach is applicable to prepare nanocomposites comprising a wide range of polymers embedded with NPs of different composition, sizes, and shapes. It has the potential for creating nanocomposites with novel functions.

  18. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  19. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  20. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  1. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  2. Method of fungal mycelium treatment for metal retention by agglomeration

    International Nuclear Information System (INIS)

    Votapek, V.; Marval, E.; Stamberg, K.; Jilek, R.

    1980-01-01

    The mycelium of microorganisms in the native or the dry state is introduced by stirring into the dispersion medium of nonpolar organic solvents (toluene, xylene, chlorobenzene) forming an azeotropic mixture with water. The biomass agglomerates into granules by gradual addition of the solutions of polymerizable or polycondensable reinforcing components. The resulting granules are solidified by polymerization or polycondensation in the presence of a catalyst, eg., ferric chloride, ammonium chloride, and by heating to a temperature of 105 to 145 degC with simultaneous distillation of water. The reaction mixture is maintained at the said temperature for 0.25 to 4 hours. (J.P.)

  3. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  4. THE IMPACT OF TAXATION AND AGGLOMERATION ECONOMIESON FDI

    Directory of Open Access Journals (Sweden)

    Silvia Golem

    2013-07-01

    Full Text Available This paper aims at extending the empirical literature on foreign direct investment(FDI determinants by examining how FDI reacts to corporate tax rates andwhether this reaction is conditional on some other economic factors, such asagglomeration economies. To that end, we gather the relevant data on developedmarket economies and employ an appropriateeconometric technique (PooledMean Group- PMG estimator which allows for both dynamics and parameterheterogeneity to be included in the model. Our results suggest that both taxationand agglomeration economies play an important role in attracting FDI.

  5. PURIFICATION AND ENRICHMENT OF BIOGAS IN ASH-WATER MIXTURE

    Directory of Open Access Journals (Sweden)

    Andrzej Brudniak

    2014-10-01

    Full Text Available Biogas, produced in an aerobic digestion process, is a mixture of gases, and that is why its inexpensive and effective valorisation is essential. Research on this process is necessary in order to use biogas as a renewable energy source. The aim of this thesis is to present methods of biogas purification and enrichment in the fly ash - water mixture, that is generated on the base of fly ash produced during burning coal in power industry. Experience presented that the fly ash absorbs CO2 and H2S, even in conventional conditions. The absorption efficiency depends not only on the chemical composition of the ash but also on its physical properties. There was also a strong neutralization of alkaline waste combustion.

  6. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  7. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Ruth, A. A., E-mail: a.ruth@ucc.ie [Physics Department and Environmental Research Institute, University College Cork, Cork (Ireland); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333-CA Leiden (Netherlands)

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles’ spectroscopic and optical properties with those of carbonaceous materials indicate a sp{sup 3}/sp{sup 2} hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  8. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Science.gov (United States)

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-01-01

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction. PMID:28787809

  9. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, B.S.

    1981-07-01

    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  10. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Directory of Open Access Journals (Sweden)

    Philip Van den Heede

    2015-12-01

    Full Text Available Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25 could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  11. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products.

    Science.gov (United States)

    Van den Heede, Philip; Ringoot, Niels; Beirnaert, Arno; Van Brecht, Andres; Van den Brande, Erwin; De Schutter, Geert; De Belie, Nele

    2015-12-25

    Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA) from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25) could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete's water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  12. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  13. Emerald ash borer flight potential

    Science.gov (United States)

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  14. Emerald ash borer life cycle

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  15. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  16. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  17. Emerald ash borer biological control

    Science.gov (United States)

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  18. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  19. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  20. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  1. Ash partitioning during the oxy-fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H{sub 2}O, HCl and SO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Facun Jiao; Juan Chen; Lian Zhang; Yajuan Wei; Yoshihiko Ninomiya; Sankar Bhattacharya; Hong Yao [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-06-15

    Oxy-fuel combustion of a brown coal (i.e. lignite) has been carried out at 1000{sup o}C to experimentally examine the vaporisation of organically bound metals and the agglomeration of ash particles as a function of the concentration of gaseous impurities including H{sub 2}O, HCl and SO{sub 2} in about 27% O{sub 2} balanced with CO{sub 2}. The properties of bulk ash and individual metals were investigated intensively. Particularly, attention was paid to Na which is notorious for fouling and to organically bound Al which has been less studied. The results indicate that, the organically bound metals, although possessing a very low content in the raw coal, are vital for the agglomeration of ash particles, which are also highly sensitive to the loading of gas impurities in flue gas. HCl recirculation is the most crucial factor promoting the vaporisation of metals via chlorination. Apart from alkali metals, the organically bound Al and Ti were also vaporised noticeably. Recirculation of SO{sub 2} promoted the sulfation of Na to condense into liquid droplet which increased fine ash yield. Co-existence of bulk HCl and SO{sub 2} played a synergetic role in the sulfation of Na via an initial chlorination of the char-bound Na. In contrast, co-existence of steam with HCl and SO{sub 2} favored the formation of Na alumino-silicates, which are favorable for ash agglomeration. 34 refs., 15 figs., 3 tabs.

  2. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    Science.gov (United States)

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna

  3. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    Full Text Available Purpose. The scientific work is dedicated to development of scientific-technical bases of production and application of concrete on the basis of ashes of thermal power plants (TPP. Methodology. The properties of TPP ash, as well as the peculiarities of its behavior in a concrete mix as a fine aggregate, have been studied. It is shown that the hydrolysis and hydration of cement occur in the active environment of ash, which has a huge specific surface area. This significantly affects the course of these processes and the quality of the concrete produced. A new technology of application of ash of TPP for preparation of concrete mixes is offered. Vibrated and vibrovacuumized concretes of optimum composition from slag and ash, as well as from granite crushed stone and ash, are tested. The chara-cteristics of ordinary concrete (from granite crushed stone and quartz sand are given to compare. Findings. The results of the tests showed the possibility of obtaining concretes of class C20/25…C25/30 on the basis of slag and ash of TPP at a limited consumption of cement. It is shown that the concrete with traditional aggregates has a lower strength than the concrete, which has ash as fine aggregate. This research results contribute to the increased use of ash in construction that solves the problem of aggregates as well as thermal power plants waste recycling. Originality. New method and technology of application of TPP ashes in concrete are developed. Ash concrete mix has rational flowability, which produces the greatest strength of ash vacuum concrete. This strength is twice or more as large as the strength of vibrated ash concrete mix with flowability S1. Practical value. The physico-chemical properties of TPP ash as aggregate for concrete are presented. Significant difference of ash from ordinary aggregates is shown. Chemical activity of the ash is justified. The special conditions of cement hardening in the case of using ash as aggregate for concrete

  4. Prevention of Bed Agglomeration Problems in a Fluidized Bed Boiler by Finding the Trigging Value of Sewage Sludge Dosage Added to Combustion of Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kajsa; Gervind, Pernilla

    2009-07-01

    Agglomeration of bed sand is a common problem during combustion of biofuels with high ash content in fluidized bed boilers. Former studies have shown that co-combustion of biofuels with sewage sludge increases the agglomeration temperature. Sewage sludge has a low heating value and high ash content. It would therefore be better to use sludge as an additive to the combustion than as a co-combusted biofuel. In this study the trigging value of sludge addition to the combustion of some biofuel was investigated. The effect of adding sludge with different precipitation chemicals, iron sulphate and aluminium sulphate, was investigated. The biofuels used for the experiments were bark, refused derived fuel (RDF) and a mixture of wood and straw, 75/25 % on energy basis. All experiments were carried out in a laboratory scale fluidized bed reactor. Analyses of chemical composition of bed sand and SEM/EDX analyses were performed after the combustion. Eventually agglomeration tests were performed in order to find the agglomeration temperature of the samples. Some of the samples sintered during the combustion and were not tested for the agglomeration temperature. SEM/EDX showed that all samples of bed sand contained sand particles with more or less coatings. In some cases the coatings seemed to consist of one dense inner layer and one more porous outer layer. From SEM/EDX and chemical composition analyses it was found that the total amount of phosphorous in the bed sand samples was increased with an increased addition of sludge in all experiments. The concentration of phosphorous was especially higher in the outer layers/coatings. It was also found that elements from the sludge seem to get caught by a sticky layer at the bed sand surface and form a non-sticky or less sticky layer that prevents agglomeration. The total amount of aluminium was increased with an increased addition of sludge for the wood/straw samples, while it increased with an increased amount of combusted fuel for

  5. Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    2017-01-01

    The purpose of this work is to develop a mathematical model that can quantify the dispersion of pigments, with a focus on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates. The full agglomerate pa.......g., in the development of novel dispersion principles and for analysis of dispersion failures. The general applicability of the model, beyond the three pigments considered, needs to be confirmed....

  6. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  7. A brief review on fly ash and its use in surface engineering

    Science.gov (United States)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  8. Pengaruh Penambahan Limbah Padat Abu Terbang Batubara(fly Ash) Terhadap Kekuatan Tekan Dan Porositas Genteng Tanah Liat Kabupaten Pringsewu

    OpenAIRE

    Febriyansyah, Puji; Tarkono,; Zulhanif,

    2013-01-01

    Fly ash, chemicallyis analumino-silicamineral containing Ca, K, and Na elements, fly ash has amoderate to high bonding capacity characteristic , and has acement-forming properties. In this study the authors use the industrial fly ash coal waste as an alternative mixture of tile manufacture. The tiles manufactured by mixing clay, sand, water and fly ash. Then smoothed with ekstuder machine and forming kuweh then aerate for 3 days, before do the dieing process . Tile dried for 4 days, then do f...

  9. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  10. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    were in good quantitative agreement with experimental data. The only adjustable parameter used was an apparent rate constant for