WorldWideScience

Sample records for agents uv radiation

  1. Investigating the stability of gadolinium based contrast agents towards UV radiation.

    Science.gov (United States)

    Birka, Marvin; Roscher, Jörg; Holtkamp, Michael; Sperling, Michael; Karst, Uwe

    2016-03-15

    Since the 1980s, the broad application of gadolinium(Gd)-based contrast agents for magnetic resonance imaging (MRI) has led to significantly increased concentrations of Gd in the aqueous environment. Little is known about the stability of these highly polar xenobiotics under environmental conditions, in wastewater and in drinking water treatment. Therefore, the stability of frequently applied Gd-based MRI contrast agents towards UV radiation was investigated. The hyphenation of hydrophilic interaction liquid chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS) and of HILIC with electrospray ionization mass spectrometry (ESI-MS) provided quantitative elemental information as well as structural information. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A showed a high stability in irradiation experiments applying a wavelength range from 220 nm to 500 nm. Nevertheless, the degradation of Gd-BOPTA as well as the formation of Gd-containing transformation products was observed by means of HILIC-ICP-MS. Matrix-dependent irradiation experiments showed a degradation of Gd-BOPTA down to 3% of the initial amount in purified water after 300 min, whereas the degradation was slowed down in drinking water and surface water. Furthermore, it was observed that the sum of species continuously decreased with proceeding irradiation in all matrices. After irradiation in purified water for 300 min only 16% of the sum of species was left. This indicates a release of Gd(III) ions from the complex in course of irradiation. HILIC-ESI-MS measurements revealed that the transformation products mostly resulted from O-dealkylation and N-dealkylation reactions. In good correlation with retention times, the majority of transformation products were found to be more polar than Gd-BOPTA itself. Based on accurate masses, sum formulas were obtained and structures could be proposed. PMID:26802476

  2. Mutational interactions between near-UV radiation and DNA damaging agents in Escherichia coli: the role of near-UV-induced modifications in growth and macromolecular synthesis

    International Nuclear Information System (INIS)

    The mutational interactions between near-ultraviolet (334 nm, 365 nm) radiation and DNA damaging agents (far-UV (254 nm) and ethyl-methanesulphonate (EMS)) were studied in strains of Escherichia coli B/r trp thy with different susceptibilities to near-UV-induced growth delay (wild-type, rel and sr). Far-UV induced reversion to tryptophan independence is reduced while forward mutation to streptomycin is enhanced by prior exposure of the rel+ srd+ strains to near-UV radiation. The observed interactions are reduced (rel) or absent (srd) in the two mutant strains as are the corresponding growth and macromolecular synthesis delays normally observed after near-UV treatment. Quantitatively, the degree of interaction induced by near-UV pre-treatment correlates closely with the degree of protein synthesis inhibition. A mechanism is proposed for the contrasting interactions at the two genetic loci based on the different pathways by which pre-mutagenic lesions may be processed. The primary chromophore for the mutational interactions would appear to be 4-thiouracil-containing transfer RNA. (author)

  3. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  4. Pretreatment with UV light renders the chromatin in human fibroblasts more susceptible to the DNA-damaging agents bleomycin, gamma radiation and 8-methoxypsoralen

    International Nuclear Information System (INIS)

    Confluent human fibroblast cultures were pretreated with either 254 nm UV light (UV) or methyl methanesulphonate (MMS), incubated at 370C and subsequently challenged on ice with bleomycin (BLM), gamma-radiation or 8-methoxy-psoralen (MOP). The resulting number of challenge-induced DNA damages (measured as DNA strand breaks or cross-links) were compared with the numbers induced in similarly challenged but non-pretreated control cells. It was found that the timing of the subsequent challenge of cells pretreated with UV did significantly affect the amount of induced DNA damage. When the challenging agents were administered after a 10-20 min incubation period following UV pretreatment, the amount of induced DNA damage was increased 50% over control cells. In contrast, the timing of the subsequent challenge of cells pretreated with MMS has no influence on the level of challenge-induced damage. It is hypothesized that UV-irradiated chromatin undergoes a time-dependent decondensation that renders it more susceptible to the induction of strand breaks and cross-links by BLM, gamma-radiation and MOP. A possible role for chromatin decondensation in UV-induced excision repair is discussed. (author)

  5. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Eye Health / Tips & Prevention Your Eyes and the Sun Sections The Sun, UV Radiation and Your Eyes ... Best Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Written by: David ...

  6. Characterization of UV radiation sensitive frog cell lines

    International Nuclear Information System (INIS)

    Twenty-one subclones of nine frog cell isolates were tested for sensitivity to a panel of DNA damaging agents. Two clones were identified which had a greater than wild type level of sensitivity to UV radiation but had a wild type level of sensitivity to the other agents. These clones were the haploid RRP602-7 and the diploid RRP802-1. RRP802-1 was found to be unstable with respect to UV sensitivity. The line was cloned in order to isolate stable sensitive and wild type derivatives. RRP802-1-16, a UV sensitive clone and RRP802-1-13, a clone with a wild type level of sensitivity to UV radiation, were isolated. The UV radiation sensitivity of RRP602-7, RRP802-1 and RRP802-1-16 did not correlate with cell size, cell shape, cell cycle distribution or ploidy. The cell cycle distribution after UV irradiation, the rate of DNA synthesis after UV-irradiation, the DNA polymerase α activity and the sister chromatid exchange frequency were all measured in RRP602-7, RRP802-1 and RRP802-1-16 in order to examine the DNA repair capacity. The presence of DNA repair pathways was examined directly in RRP602-7, RRP802-1 and RRP802-1-16. All were found to be proficient in photo-reactivation repair and postreplication repair of UV elicited DNA damage

  7. Modulation of immune function by UV radiation

    International Nuclear Information System (INIS)

    In addition to its carcinogenic activity, ultraviolet (UV) radiation is capable of modifying certain immunologic reactions. Immunologic alterations induced in mice by UV radiation include both local and distant effects. Local alterations result from a direct effect of UV radiation on an immune reaction that takes place at the site of irradiation. Distant alterations are those in which exposure of skin to UV radiation at one site modifies an immune reaction occurring at a distant, unexposed site. Based on recent studies, the authors propose that there may be two types of distant alterations. One is nonspecific, may be due to accumulation of leukocytes at the site of UV-induced inflammation, and is exemplified by the suppression of delayed hypersensitivity and local graft-versus-host (GVH) reactions. The second may result from DNA damage, may involve a soluble mediator, and is manifested by the systemic suppression of contact hypersensitivity and the formation of antigen-specific suppressor T lymphocytes. These immunologic effects of exposure to UV radiation may be important in the pathogenesis of skin cancer and other cutaneous diseases

  8. Appraisal of alternative skin model for the study of epidermal restoration following exposure to various environmental stress agents: ionising radiation and UV B

    International Nuclear Information System (INIS)

    Human skin is a major target tissue for ionising radiation (IR) and UV B. We developed a skin explant model and used 2 types of keratinocytes to study survival and oxidative stress induced by these radiations. We examined oxidative damages by measuring R.O.S. produced and cellular anti-oxidant defenses induced. We observed into skin exposed to IR a modulation of genes expression implied in the control of oxidative stress, confirmed by the decrease of catalase, glutathione peroxidase and superoxide dismutase enzymatic activities. The imbalance observed between anti- and pro-apoptotic genes expression shows that keratinocytes apoptosis may be partly dependent on radio-induced R.O.S. production. We showed the difference of radiosensitivity between N.H.E.K. and Ha Ca.T., which may be linked to their differential oxidative responses. In addition, during re-epithelialising, we demonstrated that activated N.H.E.K. after IR express keratin 6, release pro-inflammatory cytokines and proliferate, without modification of their differentiation. Treatment of N.H.E.K. with geranyl geranylacetone (G.G.A.) has a beneficial effect on their radio-induced activation by increasing IL-1 release, their migration in scrapped area and their survival. G.G.A. has an anti apoptotic ability (induction of Hsp70- caspase-3 pathway) and migratory properties (P38/RhoA activation) on N.H.E.K., but after IR, only caspase-3 pathway is induced. This work thus contributes to the understanding of cutaneous damages after IR and G.G.A. mechanism of action which accelerates re-epithelialising. (author)

  9. UV-type damage associated with ionizing radiation: a review

    International Nuclear Information System (INIS)

    The induction of UV-type damage by ionizing radiation in repair deficient strains of E. coli is reviewed. Both photoreactivable and non-photoreactivable types of damage can be observed. The induction of UV-type damage is largely independent of the presence of free-radical reactive agents (e.g. oxygen and thiols), but is dependent upon the energy of the photon-or electron-beam used, the radiation geometry and the optical absorbance of the extracellular medium. On the basis of calculations and experimental evidence, it is clear that one mechanism whereby such damage arises is through the generation of Cerenkov emission. However, small yields of UV-type damage can be produced using X-rays whose energy is below the threshold for production of Cerenkov emission. In this instance, the damage induction mechanism is thought to involve a direct excitation process. (author)

  10. Determination of the need for solar UV radiation protection

    OpenAIRE

    Letić Milorad

    2010-01-01

    Introduction. Effects of ultraviolet radiation on the skin, the eyes and the immune system are well known. The need for UV radiation protection is popularized by the introduction of UV index. Uneven intensity of UV radiation in different regions in different periods of the year and in different times of the day requires that recommendations for UV radiation protection are given for possible UV index values in those regions. Objective. The aim of the study is to establish a simple and co...

  11. Occupational UV exposure of environmental agents in Valencia, Spain

    OpenAIRE

    Serrano Jareño, María Antonia; Cañada, Javier; Moreno Esteve, Juan Carlos; Gurrea Ysasi, Gonzalo

    2014-01-01

    The aim of this paper is to measure UV exposure of environmental agents in their occupational schedules in summer in Valencia province (Spain) using VioSpor personal dosimeters attached to several parts of their bodies. Due to its geographical situation, Valencia receives large UVR doses throughout the year, and the work of environmental agents is directly related to the protection, care, and custody of natural, often in mountainous areas. Comparison with the occupational UV exposure limit sh...

  12. Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode

    International Nuclear Information System (INIS)

    Highlights: ► Evaluation of damage to DNA induced by UV-C radiation and chemical agents. ► Utilization of an electrochemical DNA biosensor based on low molecular weight DNA. ► Utilization of screen-printed carbon electrode as an electrical transducer. ► Complex detection of double-stranded DNA damage. - Abstract: There is great interest and need to detect and evaluate damage to DNA by environmental factors. In the present paper, simple electrochemical DNA biosensors composed of commercially available screen-printed carbon electrode (SPCE) and low molecular weight double-stranded DNA (dsDNA) recognition layer are reported and applied to the detection of damage to DNA by UV-C radiation and reactive oxygen species produced by the Fenton type reaction in model as well as mineral water samples with additives. Complex DNA biosensor response is based on square-wave voltammetric intrinsic signal of the guanine moiety as well as that of the intercalative indicator thioridazine, cyclic voltammetric response of the [Fe(CN)6]3−/4− indicator in solution and on electrochemical impedance spectroscopy when the measurements can be performed in the same solution. For the last two types of measurements, the biosensor was also used with an interface between the SPCE and DNA formed by a composite of carboxylated single-walled carbon nanotubes and chitosan to enhance the transducer conductivity. Individual electrochemical/electrical signals depend on the time of biosensor incubation in a cleavage medium and their profiles characterize process of deep DNA degradation.

  13. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  14. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  15. Spatial interpolation of biologically effective UV radiation over Poland

    Science.gov (United States)

    Walawender, J.; Ustrnul, Z.

    2010-09-01

    The ultraviolet(UV) radiation plays an important role in the Earth-Atmosphere System. It has a positive influence on both human health and natural environment but it may also be very harmful if UV exposure exceeds "safe" limits. For that reason knowledge about spatial distribution of biologically effective UV doses seems to be crucial in minimization or complete elimination of the negative UV effects. The main purpose of this study is to find the most appropriate interpolation method in order to create reliable maps of the biologically effective UV radiation over Poland. As the broadband UV measurement network in Poland is very sparse, erythemaly weighted UV radiation data reconstructed from homogeneous global solar radiation records were used. UV reconstruction model was developed in Centre of Aerology (Institute of Meteorology and Water Management) within COST Action 726 - ‘Long term changes and climatology of UV radiation over Europe'. The model made it possible to reconstruct daily erythemal UV doses for 21 solar radiation measurement stations in the period 1985 - 2008. Mapping methodology included the following processing steps: exploratory spatial data analysis, verification of additional variables, selection and parameterization of interpolation model, accuracy assessment and cartographic visualization. Several different stochastic and deterministic interpolation methods along with various empirical semivariogram models were tested. Multiple regression analysis was performed in order to examine statistical relationship between UV radiation and additional environmental variables such as: elevation, latitude, stratospheric ozone content and cloud cover. The data were integrated, processed and visualized within GIS environment.

  16. Life under solar UV radiation in aquatic organisms

    Science.gov (United States)

    Sinha, R. P.; Häder, D.-P.

    Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280 - 315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.

  17. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    moderate and high doses of UV and ionizing radiation induce cell death by necrosis and generate systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [D.Popov et al.2012, Fliedner T.et al. 2005, T. Azizova et al. 2004] UV-B is a complete carcinogen that is absorbed by DNA and directly damages DNA. DNA damage induced by UV-B irradiation typically includes the formation of cyclobutane pyrimidine dimmers (CPD) and 6-4 photoproducts (6-4P)[IARC, Working Group Reports, M.Saraiya et al. 2004]. The pre-vaccinated animals seem to have a blunted injury response relative to the unvaccinated animals, presumably by reduction in the inflammatory response and secondary injury effects. The mechanism of action of the antiradiation vaccine, needs further evaluation. Conclusion: A UV antiradiation vaccine appears to demonstrate efficacy as a prophylactic agent for acute solar burns and toxicity. An antiradiation UV vaccine could be used in conjunction with adjunctive measures, e.g. antioxidants and UV barriers to reduce UV radiation toxicity. The authors of this experiments would like to propose further development work of the antiradiation UV vaccine to enhance the armamentarium for prophylaxis and prevention of the various forms skin cancer.

  18. [Relationship between surface UV radiation and air pollution in Beijing].

    Science.gov (United States)

    An, Jun-lin; Wang, Yue-si; Li, Xin; Sun, Yang; Shen, Shuang-he

    2008-04-01

    Based on the data of solar radiation and air pollutants collected in Beijing, the relationship between surface ultraviolet (UV) radiation and the content of air pollutants were analyzed, using the radiative transfer model TUV4.4 (Tropospheric Ultraviolet Visible). The results show that average total ozone content is 329 DU and higher in winter and spring, lower in summer and autumn. The inverse relationship exists between ground level UV radiation and total ozone content. This study also shows that a substantial reduction (up to 50%) in the UV radiation on days with high levels of air pollution. Larger fluctuations are found in UV radiation in the summer. The effects of clouds and air pollution on UV are higher than on total solar radiation, and the reduction in UV is about twice as large as the total solar radiation values. Strong reduction in the UV radiation reaching the ground is associated with the increase of tropospheric ozone and nitrogen oxides in Beijing. The correlation coefficient between ozone concentration and decrease in UV radiation is 0.70 in the early afternoon.

  19. Recent studies on UV radiation in Brazil

    Science.gov (United States)

    Correa, M. P.; Ceballos, J. C.; Moregula, A.; Okuno, E.; Fausto, A.; Mol, A.; Santos, J. C.

    2009-04-01

    This presentation shows a summary of UV index measurements performed in the last years in Southeastern (SE) and Northeastern (NE) Brazilian regions. Brazil has an area of 8.5 million km2 distributed between latitudes 5˚ N and 35˚ S and longitudes 5˚ W and 75˚ W. SE is the most important economic pole of South America and the NE coast is an important tourist region. This large area has a great diversity of climatic, atmospheric and geographical conditions in addition to very diverse social and cultural habits. Non-melanoma skin cancer (NMSC) is an epidemiological health problem with more than 120,000 new cases each year. The most of these cases are found in the South and Southeast regions, with about 70 new NMSC per 100,000 inhabitants. Solar Light UV501 biometers are installed in the SE cities of São Paulo (23.6˚ S, 46.7˚ W, 865 m ASL), Itajubá/Minas Gerais (22.4˚ S; 45.5˚ W, 846 m ASL) and the NE city of Ilhéus/Bahia (14.8˚ S; 39.3˚ W; 54 m ASL). First measurements began in 2005 in São Paulo city, while Itajubá and Ilhéus have regular measurements from the beginning of 2008. Other studies related to the UV radiation modeling and interactions with atmosphere components, as ozone, aerosols and clouds, have also been performed. For example: a) UVI modelling calculations performed by a multiple-scattering spectral models; b) studies on the aerosol radiative properties based on satellite (MODIS/Terra-Aqua) and ground-based (Aeronet) observation; c) ozone content variability from satellite (OMI/Aura) and ground-based (Microtops ozonometer) measurements; d) behavioral profile of the population, as regarding habits of solar exposure and sun protection measures. Results show that more than 75% of the measurements conducted in the summer (outside noon) can be classified as upper than high UVI according to World Health Organization (WHO) recommended categories: Low (UVI < 2), Medium (3 ? UVI < 6), High (6 ? UVI < 8), Very High (8 ? UVI

  20. Typical distribution of the solar erythemal UV radiation over Slovakia

    Directory of Open Access Journals (Sweden)

    A. Pribullová

    2008-03-01

    Full Text Available Maps of the solar erythemal ultraviolet (UV radiation daily doses were created for every month with horizontal resolution of 500 m at geographical domain 47.15 N–49.86 N×16.94 E–22.81 E covering the territory of Slovakia. Cloud modification factor for the UV radiation (cmfUV was modelled utilizing relation between the cmf of total and UV radiation.

    The maps of the cmf factor of the UV radiation were created utilizing measurements of total radiation performed at 9 observatories during 1995–2004 period and the model of cmf dependence on altitude. Maps of clear-sky UV radiation daily dose and UV radiation daily dose affected by average cloudiness were constructed for mean monthly total ozone, their upper and lower monthly limits, for two probability levels of snow cover occurrence as criterion for the snow effect incorporation in the model and for 1 day representing typical values of every month. The map-set can be considered as an atlas of the solar erythemal UV radiation over Slovakia.

  1. UV-B Radiation Contributes to Amphibian Population Declines

    Science.gov (United States)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  2. Physics of Electrodeless UV Lamps and Applications of UV Radiation

    Science.gov (United States)

    Cekic, Miodrag; Ruckman, Mark

    2004-12-01

    Electrodeless discharge microwave powered ultraviolet limps are a special class of high power incoherent UV sources, conceptualized forty years ago for industrial processing applications. Because of the nonimaging character of the applications, the need for measuring averaged properties of the lamps' exceeds the motivation to obtain detailed space-resolved discharge parameters. This writing discusses measurements of the average plasma temperature of a 5.8kW high pressure mercury bulb and a XeCl* excimer bulb driven by the microwaves of the same power. First method is based on the black body radiance fit to the self-absorbed 185nm and 254nm mercury lines. The second method is essentially Boltzmann plot method applied to the roto-vibrational levels of B1/2 - X1/2 XeCl* molecular transition with a maximum at 308nm. We also present a procedure for evaluation of effectiveness of different bulb spectra to the given UV curing chemistry system independent from the Beer-Lambert law. Conversely, the procedure can be used for the optimization of the chemistry to the chosen UV lamp radiance spectrum.

  3. The impact of solar UV radiation on the early biosphere

    Science.gov (United States)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  4. UV-B radiation and acclimation in timberline plants

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, Minna [Arctic Centre, University of Lapland, PO Box 122, FI-96101 Rovaniemi (Finland)]. E-mail: minna.turunen@ulapland.fi; Latola, Kirsi [Thule Institute, PO Box 7300, FI-90014 University of Oulu, Oulu (Finland)

    2005-10-15

    Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants. - More long-term field research is needed to assess the interaction of climate, soil and UV-B on timberline plants.

  5. UV-generated free radicals (FR) in skin: Their prevention by sunscreens and their induction by self-tanning agents

    Science.gov (United States)

    Jung, K.; Seifert, M.; Herrling, Th.; Fuchs, J.

    2008-05-01

    In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.

  6. Growth of a mat-forming photograph in the presence of UV radiation

    Science.gov (United States)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  7. Sensitivity to DNA-damaging agents and mutation induction by UV light in UV-sensitive CHO cells

    International Nuclear Information System (INIS)

    Three UV-sensitive (UVs) mutants isolated from a CHO cell line were analyzed for survival after exposure to H2O2, EMS, MMC, CCNU, X-rays and for mutation induction after UV-irradiation. The UVs mutants showed normal sensitivities to EMS and H2O2, whereas they were hypersensitive to the bifunctional alkylating agents MMC and CCNU and to hypoxic X-irradiation. Compared to parental cells, one of the UV-sensitive clones showed approximately 3- and 7-fold enhancement in the mutagenic response per unit UV dose for 6-thioguanine and ouabain resistance, respectively. (Auth.)

  8. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  9. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  10. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  11. Wastewater matrix effect on disinfection with lp/uv and mp/uv radiation

    OpenAIRE

    Salgado, Ricardo; Hipólito, Cláudia; Galhanas, Dina; Epifâneo, Lisete; Noronha, João Paulo

    2015-01-01

    Com o apoio RAADRI. The disinfection of the wastewater effluents is important to reduce the pathogenic microorganism impact in the environment. UV radiation is one of the technologies used for this purposed. The wastewater characteristics, such as dissolved organic compounds or the presence of suspended solids can affect the efficiency of the faecal coliform bacteria removal in the disinfection process by ultraviolet (UV) radiation technology. This study addresses to see the effect of the ...

  12. Photosynthesis via Mineral Fluorescence in Harsh UV Radiation Environments

    Science.gov (United States)

    Barge, L. M.; Nealson, K.

    2005-12-01

    Before the development of a protective ozone layer about two billion years ago, the surface ultraviolet flux on Earth would have restricted ancient life to environments that offered some protection from direct solar radiation, such as the deep ocean or under or within rocks. In environments where the visible solar radiation would have been reduced to levels too low for photosynthesis, visible fluorescence resulting from UV irradiation of minerals may have provided a useable energy source. We are investigating the possibility that photosynthesis can occur without direct sunlight, if certain minerals are present that can absorb UV radiation and fluoresce in the visible. There are several common minerals(e.g. fluorite, calcite) that emit strong visible radiation under both short- and long-wave UV light, as well as some that only emit visible radiation under specific UV wavelengths. We will test a variety of minerals that fluoresce at wavelengths utilized by microbial chlorophylls and accessory pigments, and by simulating endolithic communities living under a few centimeters or millimeters of rock, we will measure the intensity of fluorescence and UV radiation received at various depths. We plan to simulate a variety of environments where the surface UV radiation may have a significant impact on the survival of life. These include the early Earth and present-day Mars(where the atmosphere would offer little to no protection against biologically damaging UV radiation), as well as extrasolar planets(a terrestrial planet in the habitable zone around an M-type star, for example, would be subject to an intense UV flux due to high flare activity). If mineral fluorescence proves to be a viable survival mechanism for photosynthetic organisms in harsh radiation environments, there are many implications for the study of ancient life on Earth as well as the search for life elsewhere.

  13. UV-radiation-induced degradation of fluorinated polyimide films

    Science.gov (United States)

    Chang, Li-Hsin; Saha, Naresh C.

    1994-12-01

    Fully cured fluorinated polyimide (FPI) films with low dielectric constants ( less than or equal to 3.0) have been found to be chemically altered when exposed to UV radiation during a process integration study. This chemical modification is manifested in the loss of film thickness after it is subjected to UV radiation followed by photoresist stripping. The UV-radiation-induced surface modifications of the FPI film have been characterized by X-ray photoelectron spectroscopy (XPS). The XPS data show the presence of C=O and COO(-) sites in the FPI molecule following UV exposure. Under prolonged UV exposure in a stepper, the FPI film acts as a positive working photoresist. However, a 2 kA plasma enhanced chemically vapor-deposited oxide mask and/or a typical 12 kA photoresist mask effectively shields the FPI from UV-radiation-induced degradation. The effects of FPI on UV radiation present during other normal wafer processing steps such as plasma deposition and reactive ion-etching were also studied and found to be negligible.

  14. Response of biological uv dosimeters to the simulated extraterrestrial uv radiation

    Science.gov (United States)

    Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.

    In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.

  15. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment.

    Science.gov (United States)

    Štroch, Michal; Materová, Zuzana; Vrábl, Daniel; Karlický, Václav; Šigut, Ladislav; Nezval, Jakub; Špunda, Vladimír

    2015-11-01

    We examined the acclimation response of the photosynthetic apparatus of barley (Hordeum vulgare L.) to a combination of UV-A and UV-B radiation (UVAB) and to UV-B radiation alone. Our aim was to evaluate whether UV-A radiation prevents UV-B-induced damage to the photosynthetic apparatus and whether UV-A pre-acclimation is required to mitigate the negative influence of UV-B radiation. Barley plants were grown from seeds under low photosynthetically active radiation (50 μmol m(-2) s(-1)) either in the absence or presence of UV-A radiation (UVA- and UVA+ plants, respectively). After 8 days of development, plants were exposed simultaneously to UV-A and UV-B radiation for the next 6 days. Additionally, UVA- plants were exposed to UV-B radiation alone. The UVA+ plants had a higher CO2 assimilation rate near the light-saturation region (A(N)) and a higher content of both total chlorophylls (Chls) and total carotenoids than the UVA- plants. Chls content, A(N), the potential quantum yield of photosystem II (PSII) photochemistry (F(V)/F(M)), the capacity of light-induced thermal energy dissipation and the efficiency of excitation energy transfer within PSII remained the same or even increased in both UVA+ and UVA- plants after UVAB treatment. On the contrary, exposure of UVA- plants to UV-B radiation itself led to a reduction in all these characteristics. We revealed that the presence of UV-A radiation during UVAB treatment not only mitigated but completely eliminated the negative effect of UV-B radiation on the functioning of the photosynthetic apparatus and that UV-A pre-acclimation was not crucial for development of this UV-A-induced resistance against UV-B irradiation. PMID:26233710

  16. Functional genomics of UV radiation responses in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Paiz, Christine A.; Amundson, Sally A.; Bittner, Michael L.; Meltzer, Paul S.; Fornace, Albert J

    2004-05-18

    The gene expression responses of MCF-7, a p53 wild-type (wt) human cell line, were monitored by cDNA microarray hybridization after exposure to different wavelengths of UV irradiation. Equitoxic doses of UVA, UVB, and UVC radiation were used to reduce survival to 37%. The effects of suramin, a signal pathway inhibitor, on the gene expression responses to the three UV wavelengths were also compared in this model system. UVB radiation triggered the broadest gene expression responses, and 172 genes were found to be consistently responsive in at least two-thirds of independent UVB experiments. These UVB radiation-responsive genes encode proteins with diverse cellular roles including cell cycle control, DNA repair, signaling, transcription, protein synthesis, protein degradation, and RNA metabolism. The set of UVB-responsive genes included most of the genes responding to an equitoxic dose of UVC radiation, plus additional genes that were not strongly triggered by UVC radiation. There was also some overlap with genes responding to an equitoxic dose of UVA radiation, although responses to this lower energy UV radiation were overall weaker. Signaling through growth factor receptors and other cytokine receptors was shown to have a major role in mediating UV radiation stress responses, as suramin, which inhibits such receptors, attenuated responses to UV radiation in nearly all the cases. Inhibition by suramin was greater for UVC than for UVB irradiation. This probably reflects the more prominent role in UVB damage response of signaling by reactive oxygen species, which would not be affected by suramin. Our results with suramin demonstrate the power of cDNA microarray hybridization to illuminate the global effects of a pharmacologic inhibitor on cell signaling.

  17. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  18. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.)

  19. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  20. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus

    International Nuclear Information System (INIS)

    Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants. (author)

  1. Tuning the SMS spectrum based on UV radiation

    Science.gov (United States)

    Zhong, Di; Tian, Ye; Zhang, Jianzhong; Sun, Weimin; Yuan, Libo

    2014-05-01

    We propose a fine spectrum-tuning scheme of the single-multi-single mode fiber (SMS) structure, realised by using UV radiation to modify the propagation constants of different modes in Multi-mode fiber of SMS. The primary experiments also demonstrated. It expect to have applications in the design of SMS based optical filters and sensors.

  2. ESTIMATION OF UV RADIATION DOSE IN NORTHERN MINNESOTA WETLANDS

    Science.gov (United States)

    The ultraviolet (UV) B wavelength range (280 nm to 320 nm) of solar radiation can be a significant biological stressor, and has been hypothesized to be partially responsible for amphibian declines and malformation. This hypothesis has been difficult to evaluate, in part, because ...

  3. UV-induced immune suppression and photocarcinogenesis: Chemoprevention by dietary botanical agents

    OpenAIRE

    Santosh K. Katiyar

    2007-01-01

    Studies of immune-suppressed transplant recipients and patients with biopsy-proven skin cancer have confirmed that ultraviolet (UV) radiation-induced immune suppression is a risk factor for the development of skin cancer in humans. UV radiation suppresses the immune system in several ways. The UVB spectrum inhibits antigen presentation, induces the release of immunosuppressive cytokines, and elicits DNA damage that is a molecular trigger of UV-mediated immunosuppression. It is therefore impor...

  4. Intermittent Jolts of Galactic UV Radiation Mutagenetic Effects

    CERN Document Server

    Scalo, J M; Williams, P; Scalo, John M.; Williams, Peter

    2001-01-01

    We estimate the frequency of intermittent hypermutation events and disruptions of planetary/satellite photochemistry due to ultraviolet radiation from core collapse supernova explosions. Calculations are presented for planetary systems in the local Milky Way, including the important moderating effects of vertical Galactic structure and UV absorption by interstellar dust. The events are particularly frequent for satellites of giant gas planets at \\gtrsim 5-10 AU distance from solar-type parent stars, or in the conventional habitable zones for planets orbiting spectral type K and M parent stars, with rates of significant jolts about 10^3 - 10^4 per Gyr. The steep source spectra and existing data on UVA and longer-wavelength radiation damage in terrestrial organisms suggest that the mutational effects may operate even on planets with ozone shields. We argue that the mutation doubling dose for UV radiation should be much smaller than the mean lethal dose, using terrestrial prokaryotic organisms as our model, and ...

  5. Ozone and UV254 radiation for municipal wastewater disinfection.

    Science.gov (United States)

    Blatchley, Ernest R; Weng, Shihchi; Afifi, Mehrnaz Zare; Chiu, Hsiao-Han; Reichlin, Douglas B; Jousset, Stéphane; Erhardt, Richard S

    2012-11-01

    Bench-scale experiments were conducted with municipal wastewater effluent samples to examine the feasibility of combined application of ozone and ultraviolet (UV) radiation for disinfection. Effluent samples displayed rapid initial ozone demand, which promotes ozone transfer but diminishes disinfection efficacy. Ozone doses up to 10 mg/L yielded only trace quantities of residual ozone; despite the fact that initial ozone demand was never exceeded, quantifiable (though variable) inactivation of E. coli was observed, along with modest improvements of UV transmittance. Results from collimated beam experiments demonstrated that compliance with effluent discharge permit limitations could be achieved consistently with a UV254 dose of 12.4 mJ/cm2 at a pre-ozonation dose of 2 to 3 mg/L. In the absence of pre-ozonation, consistent compliance was observed at a UV dose of 16.5 mJ/cm2. No evidence of synergism between ozone and UV254 radiation was found in the measured inactivation responses of E. coli.

  6. UV-C radiation based methods for aqueous metoprolol elimination

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, F.J., E-mail: fjrivas@unex.es [Departamento de Ingenieria Quimica y Quimica Fisica, Universidad de Extremadura, Facultad de Ciencias, Edificio Jose Luis Sotelo, Avenida de Elvas S/N, 06071 Badajoz (Spain); Gimeno, O.; Borralho, T.; Carbajo, M. [Departamento de Ingenieria Quimica y Quimica Fisica, Universidad de Extremadura, Facultad de Ciencias, Edificio Jose Luis Sotelo, Avenida de Elvas S/N, 06071 Badajoz (Spain)

    2010-07-15

    The endocrine disruptor metoprolol has been oxidised in aqueous solution by means of the systems UV-C, UV-C/H{sub 2}O{sub 2}, UV-C/percarbonate, UV-C/monopersulfate, UV-C/TiO{sub 2}, UV-C/H{sub 2}O{sub 2}/TiO{sub 2} and photo-Fenton. From simple photolysis experiments the quantum yield of metoprolol has been calculated (roughly 5 x 10{sup -3} mol Einstein{sup -1} at circumneutral pH). Addition of free radicals promoters significantly enhanced the metoprolol depletion rate. Mineralization degree was negligible when no promoter was added, while low values were achieved in the presence of either inorganic peroxides or titanium dioxide. The combination of radiation, hydrogen peroxide and TiO{sub 2} increased the mineralization level up to values in the proximity of 45-50% under the best conditions investigated. The photo-Fenton process was the best system in terms of total oxidation (mineralization degree 70%) when optimum conditions were applied.

  7. Radiation Chemistry Studies on Chemotherapeutic Agents

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1977-01-01

    Adrenalin has been studied as a model radiation protective agent by means of pulse radiolysis in aqueous solutions. The rate constants for the reactions of adrenalin with e–aq and OH were determined : k(e–aq+ adr—NH+2)= 7.5 × 108 dm3 mol–1 s–1, k(e–aq+ adr—NH)= 2.5 × 108 dm3 mol–1 s–1, and k...

  8. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  9. Sensitivity of pathogenic and free-living Leptospira spp. to UV radiation and mitomycin C

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, L.V.; Charon, N.W.

    1988-03-01

    The habitats for the two major Leptospira spp. differ. The main habitat of L. biflexa is soil and water, whereas L. interrogans primarily resides in the renal tubules of animals. We investigated whether these two species, along with L. illini (species incertae sedis), differ with respect to their sensitivity to UV radiation. The doses of UV resulting in 37, 10 and 1% survival were determined for representive serovars from each species. L. interrogans serovar pomona was 3.0 to 4.8 times more sensitive to UV than the other Leptospira species under the 37, 10, and 1% survival parameters. In comparison to other bacteria, L. interrogans serovar pomona is among the most sensitive to UV. In a qualitative UV sensitivity assay., L. interrogans serovars were found to be in general more sensitive than L. biflexa serovars. All three species were found to have a photoreactivation DNA repair mechanism. Since organisms that are resistant to UV are often resistant to the DNA cross-linking agent mitomycin C, we tested the relative sensitivity of several Leptospira serovars to this compound. With few exceptions, L. biflexa and L. illini serovars were considerably more resistant to mitomycin C than the L. interrogans serovars. The mitomycin C sensitivity assay could be a useful addition to current characterization tests used to differentiate the Leptospira species.

  10. Multifaceted pathways protect human skin from UV radiation.

    Science.gov (United States)

    Natarajan, Vivek T; Ganju, Parul; Ramkumar, Amrita; Grover, Ritika; Gokhale, Rajesh S

    2014-07-01

    The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.

  11. uv radiation curable paints. Topical report on material identification

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-13

    The program for the development of ultraviolet radiation curing of paints for application on preformed structures is discussed. The starting point of this program was the matching of resins, photoinitiators, and pigments which will result in coatings that can be cured by ultraviolet radiation. The initial work was the identification of reactive diluents and base resins that are sensitive to the uv curing process. The reactive monomeric diluents tested included multifunctional acrylates, monofunctional acrylates, and non-acrylic unsaturated esters. The end point will be the application of these coatings to prefabricated metal structures to demonstrate the viability of this technique in producing commercially acceptable painted products. These uv curable paints should produce films that are hard, adherent, and opaque at a nominal thickness of one mil (0.001 inch).

  12. Intermittent Jolts of Galactic UV Radiation: Mutagenetic Effects

    OpenAIRE

    Scalo, John M.; Wheeler, J. Craig; Williams, Peter

    2001-01-01

    We estimate the frequency of intermittent hypermutation events and disruptions of planetary/satellite photochemistry due to ultraviolet radiation from core collapse supernova explosions. Calculations are presented for planetary systems in the local Milky Way, including the important moderating effects of vertical Galactic structure and UV absorption by interstellar dust. The events are particularly frequent for satellites of giant gas planets at \\gtrsim 5-10 AU distance from solar-type parent...

  13. The chemistry of UV and EB radiation curing

    International Nuclear Information System (INIS)

    The application of photopolymerisation (UV) and electron beam (EB) technologies in radiation rapid cure (RRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of film is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such RRC processes are discussed. In many applications, the chemistry of the process combined with the machine, expecially for EB, is shown a so-called ''turn-key'' operation. (author)

  14. Carcinogenic risks associated with radiation pollution. [UV radiation, sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Latarjet, R.

    1976-01-01

    The cancerogenic pollution by non-ionizing radiations is limited to the case of solar ultraviolet, whose activity at ground level may be increased as a consequence of the stratospheric depletion of ozone, produced by certain chemical pollutants: nitrogen oxides from supersonic aircrafts, freon. As regards ionizing radiations, the discussion is focused on the fundamental problem of the threshold, and on the means by which one may obtain some quantitative data related to carcinogenesis by small radiation doses in man. A new concept, that of a practical threshold, is proposed. A theory which links radiocancerogenesis, as well as chemical cancerogenesis, to errors produced in the repair of lesions in the DNA is discussed. The rads-equivalent project for chemical mutagens and carcinogens is described.

  15. Typical distribution of the solar erythemal UV radiation over Slovakia

    Directory of Open Access Journals (Sweden)

    M. Chmelík

    2008-09-01

    Full Text Available Maps of solar erythemal ultraviolet (EUV irradiance daily doses were created for every month with a horizontal resolution of 500 m at the geographical domain 47.15 N–49.86 N×16.94 E–22.81 E covering the territory of Slovakia. The cloud modification factor for the EUV radiation (cmfUV was modeled utilizing the relation between the cloud modification factor of global and EUV radiation. The maps of the cmfUV factor were created by utilizing measurements of global irradiance performed at nine observatories during the period 1995–2004 and modeling of the cmfUV dependence on altitude. Maps of the EUV irradiance daily dose corresponded to clear-sky conditions and EUV irradiance daily dose affected by average cloudiness were constructed for mean monthly total ozone, its upper and lower monthly limits, for two probability levels of snow cover occurrence as criteria for the snow effect incorporation in the model and for one day representing typical values for every month. The map-set can be regarded as an atlas of solar EUV radiation over Slovakia.

  16. Readings of Polysulphone Film after Fractionated and Continuous Exposures to UV Radiation and Consequences for the Calculation of the Reading Resulting from Polychromatic UV Radiation

    International Nuclear Information System (INIS)

    The reading of polysulphone film (PSF), resulting from fractionated exposures to monochromatic UV radiation, was compared with the response to continuous irradiations of the same radiant exposure and wavelength. Also studied was the effect of a pre-exposure to monochromatic UV radiation on the reading resulting from a subsequent irradiation at a different wavelength. The results are used for a physical description of the detector reading resulting from given spectral radiant exposures. This allows readings of PSF after exposures to polychromatic UV radiation to be calculated. The description was tested for solar UV radiation at ground level and good agreement between experimental and calculated detector readings was achieved. (author)

  17. Health protection: Toxic agent and radiation control.

    Science.gov (United States)

    1983-01-01

    It is estimated that of the four million chemical compounds which have been synthesized or isolated from natural materials, more than 55,000 are produced commercially. Approximately 1,000 new compounds are introduced annually; pesticide formulations alone contain about 1,500 active chemical ingredients. Diagnostic x-rays are used extensively in medicine and dentistry. Over 2,000 chemicals are suspected carcinogens in laboratory animals--epidemiologic evidence suggests that 26 of these chemicals and/or industrial processes are carcinogenic in humans. More than 20 agents are known to be associated with birth defects in humans; 47 atmospheric contaminants have been identified in animal studies as recognized carcinogens and 128 as mutagens; and, of the 765 contaminants identified in drinking water, 12 were recognized carcinogens, 31 suspected carcinogens, and 59 mutagens. Radiation has known carcinogenic and genetic effects at significant levels of exposure. Problems with toxic agents and radiation sources occur not only in industry, but also in medical and dental care (x-rays and drugs), agriculture (pesticides and herbicides), Government activities (biological and chemical agents), consumer products (incorrect use of consumer products which contain toxic substances), and natural sources (fungal products).

  18. Measuring solar UV radiation with EBT radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Butson, Ethan T [Illawarra Grammar School, (TIGS), Western Ave, West Wollongong, NSW (Australia); Cheung Tsang; Yu, Peter K N; Butson, Martin J, E-mail: diamonds.for.you@hotmail.co [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2010-10-21

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within {+-}10% at 5 kJ m{sup -2} UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m{sup -2} (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  19. Rescue of Mitomycin C- or Psoralen-Inactivated Micrococcus Radiodurans by Additional Exposure to Radiation or Alkylating Agents

    DEFF Research Database (Denmark)

    Hansen, M. Trier

    1982-01-01

    in the mtcA background. In this strain, additional damage infficted upon the cellular DNA effected a massive rescue of cells previously inactivated by mitomycin C. Rescue was provoked by ionizing radiation, by UV light, or by simple alkylating agents. Cells treated with psoralen plus near-UV radiation could......The processing of damaged DNA was altered in a mitomycin C-sensitive mutant (mtcA) of Micrococcus radiodurans. Even though the mutant retained resistance to 254-nm UV radiation, it did not, in contrast to the wild-type strain, show any excessive DNA degradation or cell death when incubated...... interstrand cross-links produced by mitomycin C or psoralen plus near-UV light, but induced only by the more abundant number of damages produced by radiation or simple alkylating agents....

  20. Is UV-B radiation affecting charophycean algae in shallow freshwater systems?

    NARCIS (Netherlands)

    de Bakker, NVJ; van Bodegom, PM; van de Poll, WH; Boelen, P; Nat, E; Rozema, J; Aerts, R

    2005-01-01

    The objective of this study was to determine the effects of UV-B radiation on charophycean algae under natural conditions, since charophytes enhance water transparency in freshwater systems and levels of UV-B radiation have increased by ozone depletion. Potential and actual UV-B effects were studied

  1. Secondary UV radiation from biota as a proof of radiation hormesis and Gurwitsch phenomena

    International Nuclear Information System (INIS)

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation NBR ('bio-positive') effects by low-level doses of ionizing radiation is called radiation hormesis. It is still a controversial idea; however it was found that some biological objects (yeast, sees, animals) after γ-irradiation by low-level doses (10-50 times more NBR) can increase their development. The results of the researches demonstrate that the excitation of living systems by ionizing radiation (high energy, low doses) produces among other hydrogen peroxide which initiates prolonged secondary emission that can influence biota and activate many important processes in biological systems. On the other hand it is well known that after water irradiation by ionizing radiation as the product of radiolysis concentration of hydrogen peroxide has been received. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. This secondary radiation can play a very important role in the intercellular communication. The influence of hydrogen peroxide on glycine has been examined. I have measured secondary emission from Gly using the Single Photon Counting device SPC. The data obtained made possible at least a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to mitogenetic radiation. I propose deexcitation processes in biomolecules as a common denominator of UV and ionizing radiation interacting with living cells, underlying both radiation hormesis and mitogenetic effect. Based on the above experiments and other authors' reports it is postulated that low-level doses of ionizing radiation through radiolysis products (among others hydrogen peroxide) generate UV

  2. Skyglow effects in UV and visible spectra: Radiative fluxes

    Science.gov (United States)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  3. Responses of antioxidant defense system of Lespedeza davurica to enhanced UV-B radiation

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effects of different UV-B radiation intensity (CK, T1, T2) on antioxidant defense system and other related indicators of Lespedeza davurica (Laxm.) Schindl. Malonaldehyde (MDA), ascorbic acid (AsA) and carotenoid (Car) contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities of leaves from Lespedeza davurica under different UV-B radiation intensity were investigated. Samples were collected once every three days. The UV-B treatment was continued 15 days. Result indicated that SOD and POD activities decreased, APX and POD activities increased with UV-B radiation enhanced during the whole treatment time. SOD, POD and CAT activities decreased with UV-B radiation intensity increasing. APX activity increased during the first 9-day treatment with radiation intensity increasing then decreased with radiation intensity increasing. UV-B radiation increased AsA content, decreased Car content. Both AsA and Car contents decreased with radiation intensity increasing when compared with control. O2- and MDA increased with radiation intensity increasing. All other tested indicators increased except SOD and POD activity as well as AsA content decreased after UV-B radiation treatment. Comprehensive evaluation of subordinate function showed that UV-B radiation reduced the antioxidant capacity of Lespedeza davurica, and the antioxidant capacity decreased with UV-B radiation intensity increasing. (author)

  4. Solar UV Radiation and the Origin of Life On Earth

    Science.gov (United States)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  5. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer–polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. - Highlights: • CMC:PVOH blend films were developed with the addition of sodium benzoate (SB). • Exposition to UV radiation was carried out with sodium benzoate as photoinitiator. • Blend films were exposed to UV radiation to modify their surface morphology. • Low O2 permeability of UV treated blends allow them to be used as selective packaging. • Efficacy of SB as an antimicrobial agent was examined with and without UV radiation

  6. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Villarruel, S. [Faculty of Exact Sciences, UNLP (Argentina); Giannuzzi, L.; Rivero, S. [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Pinotti, A., E-mail: acaimpronta@hotmail.com [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Faculty of Engineering, UNLP, La Plata 1900 (Argentina)

    2015-11-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer–polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. - Highlights: • CMC:PVOH blend films were developed with the addition of sodium benzoate (SB). • Exposition to UV radiation was carried out with sodium benzoate as photoinitiator. • Blend films were exposed to UV radiation to modify their surface morphology. • Low O{sub 2} permeability of UV treated blends allow them to be used as selective packaging. • Efficacy of SB as an antimicrobial agent was examined with and without UV radiation.

  7. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-01-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980–1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  8. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    Science.gov (United States)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  9. Mutagenic action of UV radiation on lambda prophage

    International Nuclear Information System (INIS)

    The lethal and mutagenic effects of UV radiation on a thermoinducible prophage lambda cI857 were studied in the wild-type cells of Escherichia coli K12 and in 9 repair-deficient mutants: uvrA6, uvrD3, uvrE502, polA1, recA13, lexA102, recB21recC22sbcB15, recB21recC22sbcB15recF143 and recB21recC22sbcB15recL152. After UV irradiation, lysogenic cells were submitted to thermal induction either immediately or after 90 min incubation in broth at 320. We scored for temperature-independent c-mutants of lambda phage that formed clear plaques at 320. After immediate thermoinduction (ITI) of prophage the phenomena were similar to W-reactivation (WR) and W-mutagenesis (WM) of UV-irradiated extracellular lambda phage infecting UV-irradiated host cells. In the wild-type host a shoulder was manifested on survival curves, and the frequency of c mutations significantly increased, attained a sharp maximum at 120 J/m2 and subsequently decreased. The mutagenic action on prophage remained normal in uvrA, uvrD, polA and recBCsbcB mutants, but was strongly reduced in uvrE-, recBC-sbcB-recF- and recBC-sbcB-recL- lysogens. After delayed thermoinduction (DTI) of prophage in the wild-type host, survival increased, but mutation frequency declined (in comparison with ITI). DTI had the same effects in repair-deficient mutants recBCsbcB, uvrD and polA. The delay in thermoinduction of prophage had no effect on the uvrA- lysogen but a slight effect in uvrE- and recBC-sbcB- recF- hosts. In the recBC-sbcB-recL- lysogen the delay in prophage induction had an opposite, i.e. stimulating, effect on UV mutagenesis. In recA- or lexA- hosts the prophage yielded no c mutants after either ITI or DTI. (orig.)

  10. UV radiation and health: prevention in school; UV-Strahlung und Gesundheit: Praevention in der Schule

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, B.U. [Bundesamt fuer Gesundheit (Switzerland)

    2004-07-01

    It is well known that children's skin and eyes are very sensitive to UV radiation, and that sunburn during childhood increases the risk of skin cancer later in life. Because of these facts and the easier influence to attitudes and behaviour at a young age, prevention in school becomes an important issue. There are difficulties and chances pointed out for prevention in schools. It is stated on the basis of a running prevention program for primary and secondary school in Switzerland how a concrete conversion can look. Teaching materials and worksheets for the different school stages form the principal item in this program. Described is the total concept, the method for the development of the materials as well as the experiences after three-year application. (orig.)

  11. Enhanced UV-B radiation increases glyphosate resistance in velvetleaf (Abutilon theophrasti).

    Science.gov (United States)

    Yin, Lina; Zhang, Mingcai; Li, Zhaohu; Duan, Liusheng; Wang, Shiwen

    2012-01-01

    Depletion of the ozone layer leads to increasing UV-B radiation on the earth's surface, which may affect weeds and their responses to herbicides. However, the effect of increased UV-B radiation on weeds and the interaction of weeds and herbicides are still obscure. The objective of this study was to compare glyphosate efficacy on velvetleaf that was grown under with and without increased UV-B radiation. Leaf area, dry weight and net photosynthesis of velvetleaf seedlings were adversely affected by increased UV-B radiation. Leaf cuticle wax significantly increased by 28% under increased UV-B radiation. Glyphosate efficacy on velvetleaf, evaluated by shoot dry weight, was significantly decreased by increased UV-B radiation. Exposure to increased UV-B radiation significantly decreased (14)C-glyphosate absorption from 49% to 43%, and also resulted in less (14)C-glyphosate translocation out of treated leaves and less glyphosate accumulation in newly expanded leaves. The decrease in glyphosate efficacy was due to changes in absorption and distribution, which were attributed to increased cuticle wax and decreased photosynthesis caused by increased UV-B radiation. These results suggest that the responses of weeds to herbicides may be affected by increased UV-B radiation, to the extent that higher rates may be required to achieve the desired effects.

  12. Effect of UV radiation on the growth and breakdown voltage of anodic oxide films on niobium

    International Nuclear Information System (INIS)

    Formation rates of anodic Nb2O5 films grown under galvanostatic conditions decrease in the presence of UV radiation, unlike those grown in the absence of UV radiation. This may be due to the development of a positive space charge near the solution/oxide interface which is responsible for an increase in electronic current in the film during its formation. Value of breakdown voltage also increases in the presence of UV radiations. The effect of current density and resistivity of the solution upon the breakdown voltage, both in the presence and absence of UV radiation, is discussed in terms of Ikonopisov theory of breakdown voltage. (author). 19 refs., 6 figs

  13. Effects of UV-B radiation on the growth interaction of Ulva pertusa and Alexandrium tamarense

    Institute of Scientific and Technical Information of China (English)

    CAI Heng-jiang; TANG Xue-xi; ZHANG Pei-yu; DONG Dong; QU Liang

    2005-01-01

    Enhanced UV-B(280- 320 nm) radiation resulting from ozone depletion is one of global environmental problems. Not only marine organisms but also marine ecosystems can be affected by enhanced UV-B radiation. The effects of UV-B radiation on interaction of macro-algae and micro-algae were investigated using Ulva pertusa Kjellman and Alexandrium tamarense as the materials in this study.The results demonstrated that UV-B radiation could inhibit the growth of Ulva pertusa and Alexandrium tamarense when they were both mono-cultured, and the growth inhibition of algae was more significant with increasing doses of UV-B radiation. Alexandrium tamarense could inhibit the growth of Ulva pertusa in mixed culture, and the growth inhibition was more significant when increasing the initial cell density. However, Ulva pertusa could inhibit the growth of Alexandriurm tamarense in early phase and stimulate the growth in latter phase when they were grown in mixed culture. Lower initial cell density(102 cell/mi) of Alexandriurm tamarense could inhibit the growth of Ulva pertusa under UV-B radiation treatment,however, with the initial cell density increasing(103 and 104 cell/ml), the growth of Ulva pertusa was stimulated under lower dose of UV-B radiation and inhibited under higher dose of UV-B radiation by Alexandrium tamarense.Compared with that in mixed culture, Ulva pertusa showed more positive inhibition to the growth of Alexandrium tamarense under UV-B radiation treatment.

  14. Regulation of immune suppression induced by UV radiation

    International Nuclear Information System (INIS)

    Full text: Exposure of the skin of mice and men to increasing doses of UV radiation causes erythema, blistering, accelerated photoageing, DNA lesions and photocarcinogenesis. Moderate exposure also suppresses T cell-mediated immune function, a defect which is a prerequisite for the promotion or outgrowth phase of the UV-initiated tumour, and which is accompanied by dysregulated cutaneous cytokine patterns. A major cutaneous photoreceptor for the immunosuppression is epidermal urocanic acid (UCA). Naturally occurring trans-UCA photoisomerises in the stratum corneum and epidermis to cis-UCA, in a direct reaction. Cis-UCA has been found to have local and systemic immunosuppressive properties. The action spectrum for the photoimmuno-suppression is maximal in the UVB (280 320nm) waveband. However longer wavelength UVA (320-400nm), which interacts with skin predominantly via oxidative reactions, is not immunosuppressive at environmental exposure doses, and unexpectedly can provide protection from UVB-immunosuppression. We find that UVA protective exposure prevents the major UVB-alterations to the cytokine array. In addition, UVA (but not UVB) exposure induces cutaneous haem oxygenase (HO) activity, an endogenous antioxidant enzyme. HO is known to be redox-regulated, and to be the major stress protein induced in cultured fibroblasts by UVA. We find that UVA-immune protection is dependent on the induced HO; that enhanced HO activity following UVA is cytokine-dependent; and that the induced HO acts by inhibiting the immunosuppressive potential of cis-UCA. Thus oxidant states resulting predominantly from UVA irradiation, while apparently immunologically innocuous, seem to actively upregulate this defensive HO response. These studies have therefore revealed interactions between different UV wavebands important for immune regulation both in the skin and systemically, which may have a critical bearing on the carcinogenic outcome in chronically exposed skin, and offer the

  15. UV Radiative Feedback During the Advanced Stages of Reionization

    CERN Document Server

    Mesinger, Andrei

    2008-01-01

    The ionizing ultraviolet background (UVB) during reionization can suppress the gas content of low-mass galaxies, even those capable of efficient atomic cooling, and thus lead to an extended reionization epoch. In this work, we explore the importance of negative UV radiative feedback on Tvir > 10^4 K halos during the middle and late stages of reionization. We do not try to self-consistently model reionization; instead, we explore a large parameter space in an attempt to draw general, robust conclusions. We do this using a tiered approach. Using 1-D hydrodynamical simulations, we model the collapse of gas onto halos of various masses under UVBs of various intensities. We then generate realistic, parametrized maps of the inhomogeneous UVB, using large-scale semi-numeric simulations. By combining these results, we find that under all reasonably conservative scenarios, UV feedback on atomically-cooled halos is not strong enough to notably delay the bulk of reionization. Such a delay is only likely if ionizing effi...

  16. Complexity analysis of the UV radiation dose time series

    CERN Document Server

    Mihailovic, Dragutin T

    2013-01-01

    We have used the Lempel-Ziv and sample entropy measures to assess the complexity in the UV radiation activity in the Vojvodina region (Serbia) for the period 1990-2007. In particular, we have examined the reconstructed daily sum (dose) of the UV-B time series from seven representative places in this region and calculated the Lempel-Ziv Complexity (LZC) and Sample Entropy (SE) values for each time series. The results indicate that the LZC values in some places are close to each other while in others they differ. We have devided the period 1990-2007 into two subintervals: (a) 1990-1998 and (b) 1999-2007 and calculated LZC and SE values for the various time series in these subintervals. It is found that during the period 1999-2007, there is a decrease in their complexities, and corresponding changes in the SE, in comparison to the period 1990-1998. This complexity loss may be attributed to increased (i) human intervention in the post civil war period (land and crop use and urbanization) and military activities i...

  17. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  18. Effects of UV radiation on the RNA/DNA ratio of Copepods from Antarctica and Chile

    Institute of Scientific and Technical Information of China (English)

    Paulo F. Lagos; M. Jesús Valdés; Karen Manríquez

    2015-01-01

    The effect of ultraviolet (UV) radiation on marine organisms has been an important focus of recent research, with depletion of the ozone layer resulting in increased UV radiation at high latitudes. Several studies have identiifed negative impacts of UV radiation on the biology of zooplanktonic organisms. This study used the RNA/DNA ratio as a measure of stress in copepod assemblages from Fíldes Bay in Antarctica and Quintay Bay on the central coast of Chile, two areas with high UV radiation but different photobiologic histories. Controlled time-light experiments were performed with copepods from the two locations, exposing them to white light, UV light, or darkness. The results showed different responses to UV radiation. Copepods from Fíldes Bay showed a slow metabolic response to UV radiation after 4 and 8 h of exposure. Copepods from Quintay Bay showed a fast metabolic response after 4 h of exposure (4 orders of magnitude higher than that for Fíldes Bay copepods) followed by a rapid return toward baseline after 8 h of exposure. These different responses probably relfect the time the copepod assemblages have been exposed to increased UV radiation and the extent of adaptive stress responses to cope with that increased UV radiation. The results of this study show that the RNA/DNA ratio is a useful indicator of the physiologic status of marine organisms and is a useful tool to measure the effects of changing environmental conditions on marine ecosystems, such as those associated with global climate change.

  19. Appraisal of alternative skin model for the study of epidermal restoration following exposure to various environmental stress agents: ionising radiation and UV B; Evaluation d'un modele alternatif de peau dans l'etude de l'atteinte epidermique apres exposition a differents agents de stress environnementaux: rayonnements ionisants (RI) et ultra-violets B (UVB)

    Energy Technology Data Exchange (ETDEWEB)

    Isoir, M

    2006-06-15

    Human skin is a major target tissue for ionising radiation (IR) and UV B. We developed a skin explant model and used 2 types of keratinocytes to study survival and oxidative stress induced by these radiations. We examined oxidative damages by measuring R.O.S. produced and cellular anti-oxidant defenses induced. We observed into skin exposed to IR a modulation of genes expression implied in the control of oxidative stress, confirmed by the decrease of catalase, glutathione peroxidase and superoxide dismutase enzymatic activities. The imbalance observed between anti- and pro-apoptotic genes expression shows that keratinocytes apoptosis may be partly dependent on radio-induced R.O.S. production. We showed the difference of radiosensitivity between N.H.E.K. and Ha Ca.T., which may be linked to their differential oxidative responses. In addition, during re-epithelialising, we demonstrated that activated N.H.E.K. after IR express keratin 6, release pro-inflammatory cytokines and proliferate, without modification of their differentiation. Treatment of N.H.E.K. with geranyl geranylacetone (G.G.A.) has a beneficial effect on their radio-induced activation by increasing IL-1 release, their migration in scrapped area and their survival. G.G.A. has an anti apoptotic ability (induction of Hsp70- caspase-3 pathway) and migratory properties (P38/RhoA activation) on N.H.E.K., but after IR, only caspase-3 pathway is induced. This work thus contributes to the understanding of cutaneous damages after IR and G.G.A. mechanism of action which accelerates re-epithelialising. (author)

  20. Design and Fabrication of an Integrated Circuit for Monitoring UV Radiation for Health Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Faghihi, Reyhaneh [Kashan Univ., Kashan (Iran, Islamic Republic of); Champiri, Afshin Mahmoudieh [Shahid Chamran Univ., Ahwaz (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of); Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    A particularly important term in the clinical photobiology is the standard erythemal dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. However, both the quality and quantity of the UV radiation are important factors for the UV monitoring. This paper aims to introduce and investigate a UV radiation meter in order to establish its applicability for non-ionizing radiation detection. The ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further divided into three regions: UVA, UVB, and UVC. There is increasing evidence that long wave UV radiation plays a vital role in the pathogenesis of photo-dermatoses such as polymorphous light eruption as well as photo-aging. UVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in the skin, which may cause further damage. The quantities of the UV radiation are generally expressed using the radiometric terminology.

  1. Bystander effect induced by UV radiation; why should we be interested?

    Science.gov (United States)

    Widel, Maria

    2012-11-14

    The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV) radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?), and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  2. Effect of UV- B radiation on the feeding behavior of the rotifer Brachionus plicatilis

    Institute of Scientific and Technical Information of China (English)

    FENG Lei; LI Xin; WANG Jinhe; HAN Honglei; TANG Xuexi; CHEN Xiguang

    2007-01-01

    Effect of UV - B radiation on the feeding behaviour of marine zooplankton is important to assessing the health harm of marine ecosystem due to the gradually enhanced UV - B radiation in air. However, there are a few studies on this topic. The feeding behavior of the rotifer, Brachionus plicatilis, under the treatment of UV - B radiation on five species of microalgae, i. e. , Chlorella sp. ,Tetraselmis chuii, Isochrysis galbana Park 8701, Chaetoceros muelleri Lermumerman, and Nitzschia clostertum, was studied. The results showed that the filtering and feeding rates of the rotifer decreased significantly with the dose increase of UV - B radiation when fed with five species of microalgae respectively (P < 0.05 ) which indicates UV - B radiation inhibits the feeding activities of the rotifer on microalage. The mixed culture experiments shows the rotifer preferred to feed Chlorella sp. , then C. muelleri, I.galbana, N. clostertum and T. chuii in turn if without UV - B radiation. Under the highest dose of UV - B radiation treatment (2.70 kJ/m2) , the rotifer preferred to feed C. muelleri, then Chlorella sp. , N. clostertum, I. galbana and T. chuii in turn.Chlorella sp. , I. galbana and C. muelleri became the more favorite foods of the rotifer while T. chuii and N. clostertum became less favorite foods. The change of feeding rate and feeding selectivity of zooplankton driven by the enhanced UV - B radiation will lead to the change in the structure of phytoplankton community.

  3. The effects of UV-B radiation on European heathland species

    DEFF Research Database (Denmark)

    Björn, Lars O.; Callaghan, T. V.; Johnsen, Ib;

    1997-01-01

    The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in ...

  4. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  5. THE ACTION OF UV RADIATION ON MITOTIC INDEX AND MITOTIC DIVISION PHASES AT PHASEOLUS VULGARIS L

    Directory of Open Access Journals (Sweden)

    Csilla Iuliana Bara

    2005-08-01

    Full Text Available In this work, damaging effects of UV radiations on bean Phaseolus vulgaris L. plantule root tips were investigated. Our study proves that by bean plants, the decrease of cell division frequency appears to be part of protection mechanism against especially the short waved UV radiation, with variations depending on cultivar.

  6. Effects of UV-B Radiation and Water Stress on Soybean Yield

    Institute of Scientific and Technical Information of China (English)

    REN Hongyu; XU Haiming; LI Dongming; HUANG Rui; WANG Licheng

    2009-01-01

    Soybean Dongnong 47 was subjected to the experiments of increasing UV-B radiation and water stress on soybean yield components in different growth periods. The results showed that 100-seed weight greatly increased during the early stage of pod filling in the treatment of weak UV-B radiation, seed number per plant as well as seed weight per plant and Dongnong47 yield also increased, while the yield and yield components of Dongnong47 during the blossom to mature period were negatively affected in the treatment of intensive UV-B radiation. 100-seed weight of Dongnong47 all increased in the double factor treatments of UV-B radiation and water stress, with the drought intensified, seed number per plant, seed weight per plant and yield of Dongnong47 decreased, the change of 100-seed weight were various and the antagonistic action of UV-B radiation and water stress were related with their intensity.

  7. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    Science.gov (United States)

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  8. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    Science.gov (United States)

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  9. Effect of UV-B radiation on leaf optical properties measured with fibre optics

    International Nuclear Information System (INIS)

    Changes in the internal light microenvironment in leaves of plants of Brassica campestris L. cv. Emma, B. carinata L., and Medicago saliva L. cv. Armour in response to exposure to UV-B (UV-B, 280–320 nm) radiation were measured using a fibreoptic microprobe. Plants were exposed for 2 weeks either to high visible light or to supplemental ultraviolet-B radiation. The spectral regime (400–700 nm; PAR ) was measured either midway through the leaf palisade or the spongy mesophyll. After exposure to UV-B radiation leaves of Brassica campesiris attenuated transmitted light more than the controls. At the same time both forward and back scattered light increased in the palisade and spongy mesophylls. In contrast, UV-treatment of Medicago saliva leaves increased light transmission into the palisade, while the back scattered component showed little change. Leaves of cariiwla showed little change in response to UV. Other responses to UV-B radiation included increases in leaf thickness, decreased total chlorophyll content, and changes in UV-B screening pigments and chlorophyll fluorescence induction kinetics. Brassica campestris was most sensitive to exposure to enhanced levels of UV-B radiation, whereas leaves of B. carinata were the least sensitive. Our data indicate that exposure to UV-B radiation altered the light microenvironment within leaves of the species different ways. These changes appeared to be caused by alterations in pigment content and leaf anatomy. In turn, the altered distribution of PAR within the leaf could influence photosynthesis

  10. Effects of long-wavelength ultraviolet (UV-A) radiation on the growth of Anacystis Nidulans

    International Nuclear Information System (INIS)

    The growth of Anacystis nidulans cells which had been grown under visible light only (>390 nm) was suppressed by long-wavelength ultraviolet (UV-A, 320-390 nm) radiation. The growth resumed after 24 h. Cells grown under UV-A supplemented light contained less chlorophyll and phycocyanin and more carotenoid than control cells. The finding that UV-A radiation inhibited the rate of delta-aminolevulinic acid synthesis indicated that the decreases in the photosynthetic pigments were mainly due to the inhibition of their biosynthesis rather than to photodestruction of pigments by UV-A radiation. The primary cause of the inhibitory effects seems to be the inhibition of the photosynthetic process which can be measured as the rho-benzoquinone Hill reaction. Previous exposure to UV-A radiation conferred some resistance on the cells to this inhibitory radiation. Thus UV-A radiation itself may activate a system that repairs damage caused by UV-A radiation and/or protects against the radiation. (author)

  11. Physiological and ultralstructural changes of Chlorella sp. induced by UV-B radiation

    Institute of Scientific and Technical Information of China (English)

    YU Juan; TANG Xuexi; ZHANG Peiyu; TIAN Jiyuan; DONG Shuanglin

    2005-01-01

    In order to investigate the mechanisms of enhanced UV-B radiation on algae, the effects of UV-B radiation on the physiological and ultrastructural changes of Chlorella sp. were examined. The results showed that UV-B radiation could inhibit the growth and photosynthesis of microalgae. UV-B radiation at lower doses increased the photosynthetic pigment (chlorophyll a (Chla) and carotenoid (Car)) contents, while at higher doses of UV-B radiation Chla and Car contents were decreased. The ultrastructure of Chlorella sp.without exposure to UV-B showed that the thylakoidlamellae were clear and regular, the stroma of its chloroplast was apparent and clear.The globules with photosynthetic pigments and the cristae of mitochondria were clearly seen. After exposure to UV-B radiation at dose of 2.88 kJ/m2, the thylakoid lamellae of Chlorella sp. were lost and dissolved, the globules which contained photosynthetic pigments in chloroplast were bleached; some mitochondria cristae were dissolved; slight plasmolysis was found in some Chlorella sp. cells. After exposure to 5.76 kJ/m2 UV-B radiation, the thylakoid was in disarray and disintegration, plasmolysis was found in most cells, and the cell wall was broken and began to fall out. Many blank areas were observed in cells, mitochondria were seriously deformed and most of the mitochondria cristae were dissolved. Also, globules containing photosynthetic pigments in chloroplast were bleached and some empty globules were found in chloroplast. Therefore, UV-B radiation could damage cell structure of Chlorella sp., and this damage increased with the dose of UV-B radiation they exposed to.

  12. Antarctic network of lamp-calibrated multichannel radiometers for continuous ozone and uv radiation data

    OpenAIRE

    Redondas, A.; Torres, C.; O. Meinander; K. Lakkala; R. García; E. Cuevas; Ochoa, H.; Deferrari, G.; Díaz, S.

    2008-01-01

    Three NILU-UV multichannel radiometers have been installed in 1999 at the Argentinian sites of Ushuaia (54S), Marambio (64S) and Belgrano-II (77S) in order to continuously monitor UV radiation, photosynthetically active radiation and total ozone. The measurements were established by INM, Spain in collaboration with FMI, Finland, DNA-IAA, Argentina and CADIC, Argentina to observe and characterize the spatial and temporal evolution of ozone and ultraviolet radiation in the Antarctic region. Spe...

  13. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.

    2015-07-07

    The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota. Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP) of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3°C), alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced NCP and resulted in a heterotrophic (NCP < 0) metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV × Temp) was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2−O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle.

  14. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    Directory of Open Access Journals (Sweden)

    Lara S. eGarcia-Corral

    2015-07-01

    Full Text Available The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota.Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3ºC, alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced net community production and resulted in a heterotrophic (NCP<0 metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV x Temp was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2-O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle

  15. Effects of Elevated Solar UV-B Radiation from Ozone Depletion on Terrestrial Ecosystems

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; Terry V. Callaghan; ZUO Yuanyuan

    2004-01-01

    In the last three decades much research has been carried out to investigate the biological effects of a thinning stratospheric ozone layer accompanied by an enhanced level of solar ultraviolet-B radiation at the Earth's surface. Enhanced UV-B radiation affects ecosystems in many ways directly and indirectly. The responses can be biochemical, physiological, morphological or anatomical, and the direction of the response can vary between different species, communities and ecosystems. In this paper we firstly introduce general concepts, and methods for measuring the ecological effects of UV-B radiation. Secondly, we provide an overview interpretation of the effects of enhanced UV-B on terrestrial ecosystems from recent studies. These studies include effects of UV-B on growth and reproduction, composition of communities, competitive balance, decomposition of litter, and interactions with other factors etc. Finally, we recommend future research directions to identify the effects of elevated UV-B radiation on ecosystems in China.

  16. Antioxidant responses of damiana (Turnera diffusa Willd to exposure to artificial ultraviolet (UV radiation in an in vitro model: part II; UV-B radiation

    Directory of Open Access Journals (Sweden)

    Lluvia de Abril Alexandra Soriano-Melgar

    2014-05-01

    Full Text Available Introduction: Ultraviolet type B (UV-B radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. Objective: To generate information on the effect of exposure to artificial UV-B radiation at different high-doses in the antioxidant content of damiana plants in an in vitro model. Methods: Damiana plantlets (tissue cultures in Murashige-Skoog medium were irradiated with artificial UV-B at 3 different doses (1 0.5 ± 0.1 mW cm-2 (high for 2 h daily, (2 1 ± 0,1 mW cm-2 (severe for 2 h daily, or (3 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids, vitamins (C and E and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1 and total peroxidases (POX, EC 1.11.1, as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Results: Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. Conclusion: UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure.

  17. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    Institute of Scientific and Technical Information of China (English)

    Dianfeng Zhou; Hang Heng; Kang Ji; Weizhong Ke

    2005-01-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  18. Response of Marine Microalgae, Heterotrophic Bacteria and Their Relationship to Enhanced UV-B Radiation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wenli; TANG Xuexi; XIAO Hui; WANG You; WANG Renjun

    2009-01-01

    Ozone depletion in the stratosphere has enhanced solar UV-B radiation reaching the Earth surface and has brought about significant effects to marine ecosystems. The effects of enhanced UV-B radiation on marine microalgae, heterotrophic bacteria and the interaction between them are discussed. The effects on marine microalgae have been proved to occur at molecular, cellular and population levels. Enhanced UV-B radiation increases microalgal flavonoid content but decreases their chlorophyll content and pho-tosynthesis rate; this rachation induces genetic change and results in DNA damage and change of protein content. There have been fewer studies on the effects of UV-B radiation on marine heterotrophic bacteria. Establishment of a nucroalgal ecological dynamic model at population and community levels under UV-B radiation has gradually become a hotspot. The effects of enhanced UV-B radiation on microalgae communities, heterotrophic bacterial populations and interaction between them will become a focus in the near future. This paper will make an overview on the studies concerning the effects of enhanced UV-B radiation on marine microal-gae and heterotrophic bacteria and the interaction between them.

  19. Effects of ozone depletion and UV-B radiation on humans and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, K.R. [Guelph Univ., ON (Canada). Centre for Toxicology

    2008-03-15

    This paper summarized current research related to the effects of ultraviolet (UV-B) radiation on human health and the environment. Effects included direct responses in human as well as effects on biogeochemistry and the environmental cycling of substances. UV radiation has many harmful effects on the skin, eyes, and immune systems of humans. Skin cancer is a leading cause of death among fair-skinned populations exposed to UV radiation. The role of UV radiation in cataract formation was discussed, as well as issues related to the suppression of immune responses. The link between sunlight exposure and vitamin D levels in human populations was examined. The effects of UV radiation on terrestrial and aquatic ecosystems were reviewed. Issues related to biogeochemistry and atmospheric processes were discussed. The review suggested that changes in the intensity of solar UV radiation due to ozone depletion will have important repercussions for all organisms on the planet. It was concluded that the combined effects of UV-B radiation and climate change will not be easy to predict. 201 refs., 4 figs.

  20. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.;

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with ...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  1. UV radiation, vitamin D, and cancer: how to measure the vitamin D synthetic capacity of UV sources?

    Science.gov (United States)

    Terenetskaya, Irina; Orlova, Tatiana

    2005-09-01

    UV irradiation is widely used in phototherapy. Regardless of the fact that UV overexposure is liable to cause adverse health effect, in appropriate doses UV radiation initiates synthesis of vitamin D in skin that is absolutely essential for human health. As it proved, most people in northern industrial countries have a level of vitamin D in their bodies that is insufficient for optimum health, especially in winter. These low levels of vitamin D are now known to be associated with a wide spectrum of serious disease much of which leads on to premature death. The diseases associated with D deficiency involve more than a dozen types of cancer including colon, breast and prostate, as well as the classic bone diseases: rickets, osteoporosis and osteomalacia. Irradiation with artificial UV sources can prevent the vitamin D deficiency. However, in view of different irradiation spectra of UV lamps, their ability to initiate vitamin D synthesis is different. The reliable method based on an in vitro model of vitamin D synthesis has been developed for direct measurement in situ of the vitamin D synthetic capacity of artificial UV sources during a phototherapeutic procedure

  2. DNA radiation damage and asymmetric somatic hybridization: Is UV a potential substitute or supplement to ionising radiation in fusion experiments?

    International Nuclear Information System (INIS)

    Recent reports have revealed that the asymmetric nature of the nuclear genome of somatic hybrids, produced following the irradiation of one of the parents with X- or gamma rays, is generally much less than had been anticipated. As a consequence, we have begun to investigate whether UV radiation might be used as an alternative or indeed a supplement to the presently-used ionising radiation techniques in such experiments. Cell culture studies have revealed that UV radiation induces the desired physiological effects in sugar beet (Beta vulgaris) protoplasts, namely, a prevention of cell division without immediate cytotoxicity. Preliminary studies using denaturing and pulsed field gel electrophoresis have shown that UV can also induce substantial physical fragmentation of DNA. When using the same techniques, less breakdown was observed following gamma radiation. All results were highly reproducible. Such results augur well for the potential use of UV in asymmetric somatic cell fusion experiments. (author)

  3. Surface modification of the polyethyleneimine layer on silicone oxide film via UV radiation

    International Nuclear Information System (INIS)

    We herein report a novel method of employing 254 nm of UV radiation (UV) for the modification of a polyethyleneimine (PEI) layer on silicone oxide film. In this study, a PEI layer composed of a 50 mM sodium carbonate solution (pH 8.2) was formed on the surface of a silicone oxide film with spontaneous adsorption. Then, thin film of PEI was patterned by UV radiation. To determine the effect of the UV radiation, fluorescence microscopy, X-ray electron spectroscopy (XPS), and Fourier Transform Infrared spectroscopy (FT-IR) analyses were performed. These results indicated that UV radiation could cause changes in the surface characteristics of the PEI layer. Subsequently, FT-IR analysis showed changes in the chemical composition of the PEI exposed to UV radiation, such as the disappearance of the amine. Based on these results, we can conclude that UV radiation could be used to eliminate the amine group selectively and that this technique could be applied to create a pattern on the surface of a PEI layer.

  4. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  5. Simple and Low-cost Fiber-optic Sensors for Detection of UV Radiation

    Directory of Open Access Journals (Sweden)

    M. B. Živanov

    2012-11-01

    Full Text Available In this paper two simple and low-cost fiberoptic sensors for detection of UV radiation are presented. A U-shaped sensor covered with an UV marker for UV radiation detection and a fiber-optic sensor with one end covered with powder from a mercury lamp are produced and described in details. Both sensors are made of large-core PMMA plastic optical fibers. As UV sources, a solar simulator and four different UV lamps are used. The light spectrum on the fiber output is measured by using an USB spectrometer. Dependence of output light intensity on the distance of end-type sensor with powder from a mercury lamp from UV lamp is investigated as well. On the output of the sensor covered with powder from a mercury lamp are obtained peaks of fluorescent emission at approximately 616 nm and 620 nm wavelengths.

  6. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  7. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high...

  8. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    Science.gov (United States)

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  9. UV radiation below an Arctic vortex with severe ozone depletion

    Directory of Open Access Journals (Sweden)

    B. M. Knudsen

    2005-01-01

    Full Text Available The erythemally weighted (UV irradiance below the severely depleted Arctic vortices in spring 1996 and 1997 were substantially elevated. On average the UV increased 36 and 33% relative to the 1979-1981 mean assuming clear skies from day 80-100 in 1996 and 1997, respectively. On clear sky days large regions of the Arctic experienced maximum UV increases exceeding 70 and 50% on single days in 1996 and 1997, respectively. A minor fraction of these increases are not anthropogenic and have a dynamical origin as seen by comparison to 1982, when hardly any ozone depletion is expected.

  10. Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain.

    Science.gov (United States)

    Bischof, Kai; Peralta, Gloria; Kräbs, Gudrun; Van De Poll, Willem H; Pérez-Lloréns, José Lucas; Breeman, Anneke M

    2002-12-01

    Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A

  11. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings

    International Nuclear Information System (INIS)

    Highlights: • We investigate organic UV radiation-absorbing coatings for use on bamboo surfaces. • The size of glass exactly inserted into sample cell of UV-Vis spectrophotometer. • A model was made to predict UV absorption of coatings. • We examine carbonyl groups change of coatings after ageing. • Two formulations which could effectively protect coating were obtained. - Abstract: Enhancing the durability of the coatings used on bamboo products is essential for increasing their use in outdoor environments. In this study, we investigated organic UV radiation-absorbing coatings for use on bamboo surfaces. The degree of resistance of the coatings, which contained 2-(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chlorinated benzotriazole (BTZ-1), to UV radiation degradation was determined through spectroscopic analysis. The critical BTZ-1 loading amount was determined by analysing the spectroscopic data. Fourier transform infrared spectroscopy was used to elucidate the relationship between the degree of photooxidation of the coatings and their BTZ-1 concentration. The experimental results showed that the coatings provided a high degree of shielding from UV radiation. The critical loading amount was determined to be 1.82 ± 0.05 g BTZ-1/m2. The coatings formed using the formulations that contained 3 and 5 wt% BTZ-1 exhibited the lowest degree of photooxidation after exposure to UV radiation

  12. Plasticity in pigmentation induced by conflicting threats from predation and UV radiation

    OpenAIRE

    Hansson, Lars-Anders

    2004-01-01

    In a variable and unpredictable environment, phenotypic plasticity in morphology or behavior may considerably improve an organism's protection against environmental threats and thereby its fitness. Here I demonstrate that common freshwater organisms, copepods (Crustacea), show a plastic response by adjusting pigmentation level in relation to two environmental threats: ultraviolet radiation (UV) and predation. The red pigment in copepods, astaxanthin, reduces damage caused by UV radiation,...

  13. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction [chlorophyll fluorescence induction, ultraweak luminescence

    International Nuclear Information System (INIS)

    The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation. (author)

  14. Oceanic protection of prebiotic organic compounds from UV radiation

    OpenAIRE

    Cleaves, H. James; Miller, Stanley L.

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecul...

  15. Sensitivity to UV radiation in early life stages of the Mediterranean sea urchin Sphaerechinus granularis (Lamarck)

    Energy Technology Data Exchange (ETDEWEB)

    Nahon, Sarah [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Castro Porras, Viviana A. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Pruski, Audrey M. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Charles, Francois [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France)], E-mail: charles@obs-banyuls.fr

    2009-03-01

    The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m{sup -2}, fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m{sup -2} and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m{sup -2} UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment.

  16. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  17. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    Science.gov (United States)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  18. Characterisation of SiC photo-detectors for solar UV radiation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Borchi, E.; Macii, R. [Fondazione Osservatorio Ximeniano, Via Borgo San Lorenzo, 26-50123 Firenze (Italy); Bruzzi, M. [INFN Firenze and Dipartimento di Energetica, Via S. Marta 3-50139 Firenze (Italy); Scaringella, M., E-mail: Scaringella@fi.infn.it [INFN Firenze and Dipartimento di Energetica, Via S. Marta 3-50139 Firenze (Italy)

    2011-12-01

    Silicon carbide has a potential for solar UV radiation monitoring: extremely resistant to UV radiation damage, nearly-blind to visible and infrared radiation and less sensitive to temperature variations than standard radiometric systems. A radiometer composed by three SiC photodiodes has been designed, manufactured and tested under solar radiation. Two photodiodes are equipped with filters in the UVB (280-315 nm) and UVA (315-400 nm) ranges while a third is filtered to match the erythemal action spectrum. UVA, UVB components of the solar radiation as well as UV index (UVI) at the earth's surface have been determined in two site positions in Tuscany, Italy. Data as a function of day-light allowed us to evaluate total optical thickness for UVA and UVB: {tau}{sub UVA}=0.46 and {tau}{sub UVB}=1.8. UVI values measured during the year well compares with computed ones used for weather forecast procedures.

  19. Response of hoary alyssum (Berteroa incana L. to UV-B radiation

    Directory of Open Access Journals (Sweden)

    Agnieszka Stokłosa

    2012-12-01

    Full Text Available This greenhouse experiment evaluated the response of hoary alyssum plants, up to the rosette phase, to different levels of UV-B radiation. The experiment was carried out in the chambers, equipped with UV-B lamps, emitting biologically effective UV-B radiation of 0 (control, 4, 6 or 8 kJ. As a result, specific traits of the plants such as: leaf number, lamina length, leaf area, specific leaf weight, relative chlorophyll content and shoot biomass were unaffected by any of the UV-B treatments. Significant reductions in the share of large leaves, leaf stalk length and root biomass were noted for plants growing under 8 kJ UV-BBE.

  20. Effects of UV radiation on the rice field cyanobacterium, Aulosira fertilissima

    International Nuclear Information System (INIS)

    The effects of UV radiation (5 W m−2) were studied in the cyanobacterium, Aulosira fertilissima. The organism was found to be sensitive to UV-B and, to a lesser extent, UV-A. Absorption spectra showed that the pigment content, particularly phycocyanin, severely decreased following UV exposures; the effect was more pronounced with UV-B than with UV-A. The organism was also very sensitive to solar radiation, and complete bleaching of the cells occurred following exposure of 2–3 hr. The absorption and fluorescence emission spectra of crude pigments after 3 hr of UV-B exposure (5 W m−2) decreased significantly, suggesting the loss of effective energy transfer from the accessory pigments to PS-II. SDS-PAGE analysis of the total protein profile of cells treated with UV-B showed a decrease in the protein content with increasing exposure time. Substantial decrease in the protein bands occurred after 3 hr of UV-B exposure (5 W m−2), particularly of those between 14.2 and 45 kDa. (author)

  1. Interaction and UV-Stability of Various Organic Capping Agents on the Surface of Anatase Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohsin Raza

    2014-04-01

    Full Text Available Anatase nanoparticles synthesized by the sol-gel method were surface-functionalized with long alkyl chain coupling agents as compatibilizers for a nonpolar environment, containing different anchor groups for surface interaction namely phosphonate (dodecyl phosphonate, carboxylate (dodecanoic acid, sulfate (sodium dodecyl sulphate, and amine (dodecyl amine. It was shown that the surface of the nanoparticles can be functionalized with the various surface groups applying similar reaction conditions. The kind of surface interaction was analyzed applying FTIR spectroscopy. The phosphonate and the carboxylate groups interact with the surface via quite strong covalent or coordinative interactions, respectively. The sulfate and amine based coupling agents on the other hand exhibit electrostatic interactions. UV stability studies of the surface bound groups revealed different degradation mechanisms for the various functionalities and moreover showed that phosphonates are the most stable among the investigated surface capping groups.

  2. DNA repair and resistance to UV-B radiation in western spotted frogs

    Science.gov (United States)

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  3. Susceptibility of pollen to UV-B radiation: an assay of 34 taxa

    International Nuclear Information System (INIS)

    Much of the ultraviolet-B radiation (UV-B) research on plants has concentrated on vegetative plant parts, and only a small fraction has dealt with the reproductive system. The present study analyzed pollen grains of 34 taxa germinated and grown under two levels of UV-B radiation (187 and 460 mW/m2) or no UV-B (control group). Visible radiation at 260 micromoles m-2s-1 was present in all treatments. Taxa included those with binucleate and trinucleate pollen types. We detected differences among species. A significant reduction in pollen germination occurred in only five species. Pollen tubes of 50% of the species showed significant reduction in length. Trinucleate pollen types were more likely to exhibit tube length reduction than the binucleate types. Proportionately more monocotyledonous species were sensitive to UV-B treatment than dicotyledonous species, and proportionately more wild species were sensitive than cultivated species and pollen collected from plants growing in the field were somewhat more sensitive than pollen collected from plants grown in the greenhouse. Species in which pollination occurred earlier in the season were more likely to be susceptible to UV-B radiation than those for which anthesis took place later in the season, suggesting a possible adaptation to UV-B radiation. (author)

  4. Antarctic network of lamp-calibrated multichannel radiometers for continuous ozone and uv radiation data

    Science.gov (United States)

    Redondas, A.; Torres, C.; Meinander, O.; Lakkala, K.; García, R.; Cuevas, E.; Ochoa, H.; Deferrari, G.; Díaz, S.

    2008-02-01

    Three NILU-UV multichannel radiometers have been installed in 1999 at the Argentinian sites of Ushuaia (54S), Marambio (64S) and Belgrano-II (77S) in order to continuously monitor UV radiation, photosynthetically active radiation and total ozone. The measurements were established by INM, Spain in collaboration with FMI, Finland, DNA-IAA, Argentina and CADIC, Argentina to observe and characterize the spatial and temporal evolution of ozone and ultraviolet radiation in the Antarctic region. Special attention has been given to the quality control and quality assurance of the measurements under harsh climatological conditions. The ozone and UV time series of 2000-2006 were calibrated using a polynomial fit for lamp measurements performed every second week all year round. The gaps in these data are minimal, with almost no data missing, and the data products are available from http://www.polarvortex.org in near real time. The data products include the erythemally-weighted UV, UVB and UVA radiation, photosynthetically active radiation (PAR), total ozone (O3) and a cloud parameter (CLT). For UV data, dose rates as well as daily doses are available; from these the maximum measured UV indices (UVI), during 2000-2006, were 12.0, 9.7 and 8.1 at Ushuaia, Marambio and Belgrano-II, respectively.

  5. [Photosynthetic responses of wheat and pea seedlings to enhanced UV-C radiation and their resistances].

    Science.gov (United States)

    Li, Xue-Mei; Zhang, Li-Hong; He, Xing-Yuan; Hao, Lin

    2007-03-01

    With wheat and pea seedlings as test materials, this paper studied the effects of UV-C radiation on their leaf photosynthetic characteristics and antioxidant enzyme activities. The results showed that enhanced UV-C radiation could markedly decrease the photosynthetic rate (Pn) , stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and carboxylation efficiency (CE) of pea leaves, but for wheat leaves, these parameters were increased first and decreased then. Under UV-C condition, the CO2 compensation point of leaf was increased for pea, but decreased first and increased then for wheat. With the increasing duration of UV-C radiation, the antioxidant enzyme activities of both test plants increased first and decreased then, except that the POD activity of pea and SOD activity of wheat decreased gradually. All of these suggested that wheat had a stronger resistance to short-time UV-C radiation than pea, but, with the prolonged duration of UV-C radiation, the photosynthesis and antioxidant enzyme activities of wheat and pea were all decreased.

  6. Antarctic network of lamp-calibrated multichannel radiometers for continuous ozone and uv radiation data

    Directory of Open Access Journals (Sweden)

    A. Redondas

    2008-02-01

    Full Text Available Three NILU-UV multichannel radiometers have been installed in 1999 at the Argentinian sites of Ushuaia (54S, Marambio (64S and Belgrano-II (77S in order to continuously monitor UV radiation, photosynthetically active radiation and total ozone. The measurements were established by INM, Spain in collaboration with FMI, Finland, DNA-IAA, Argentina and CADIC, Argentina to observe and characterize the spatial and temporal evolution of ozone and ultraviolet radiation in the Antarctic region. Special attention has been given to the quality control and quality assurance of the measurements under harsh climatological conditions. The ozone and UV time series of 2000–2006 were calibrated using a polynomial fit for lamp measurements performed every second week all year round. The gaps in these data are minimal, with almost no data missing, and the data products are available from http://www.polarvortex.org in near real time. The data products include the erythemally-weighted UV, UVB and UVA radiation, photosynthetically active radiation (PAR, total ozone (O3 and a cloud parameter (CLT. For UV data, dose rates as well as daily doses are available; from these the maximum measured UV indices (UVI, during 2000–2006, were 12.0, 9.7 and 8.1 at Ushuaia, Marambio and Belgrano-II, respectively.

  7. The effects of UV-B radiation on European heathland species

    International Nuclear Information System (INIS)

    The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated enhancement of UV-B radiation in combination with elevated CO2 (700 ppm). Effects of the treatments on plant growth, morphology, phenology and physiology were measured. The effects observed were species specific, and included both positive and negative responses to the treatments. In general the negative responses to UV-B treatments of up to three growing seasons were small, but included reductions in shoot growth and premature leaf senescence. Positive responses included a marked increase in flowering in some species and a stimulation of some photosynthetic processes. UV-B treatment enhanced the drought tolerance of Pinus pinea and Pinus halepensis by increasing leaf cuticle thickness. In general, there were few interactions between the elevated CO2 and enhanced UV-B treatments. There was evidence to suggest that although the negative responses to the treatments were small, damage may be increasing with time in some long-lived woody perennials. There was also evidence in the third year of treatments for effects of UV-B on insect herbivory in Vaccinium species. The experiments point to the necessity for long-term field investigations to predict the likely ecological consequences of increasing UV-B radiation. (author)

  8. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    Science.gov (United States)

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. PMID:26990026

  9. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Jansen, C. [Turku Univ. Hospital, Turku (Finland); Jokela, K. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  10. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    E. W. Helbling

    2012-06-01

    Full Text Available Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML, thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm for more than 20 generations. Compared to the ambient CO2 level (390 µatm, growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ of cells and partially counteracted the harm to PSII caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. As for photosynthetic carbon fixation, the rate increased with increasing temperature from 15 to 25 °C, regardless of their growth CO2 levels. In addition, UV-induced inhibition of photosynthesis was inversely correlated to temperature. The ratio of repair to UV-induced damage showed inverse relationship with increased NPQ, showing higher values under the ocean acidification condition against UV-B, reflecting that the increased pCO2 and lowered pH counteracted UV-B induced harm.

  11. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  12. Extensive reduction of surface UV radiation since 1750 in world's populated regions

    Directory of Open Access Journals (Sweden)

    M. M. Kvalevåg

    2009-10-01

    Full Text Available Human activity influences a wide range of components that affect the surface UV radiation levels, among them ozone at high latitudes. We calculate the effect of human-induced changes in the surface erythemally weighted ultra-violet radiation (UV-E since 1750. We compare results from a radiative transfer model to surface UV-E radiation for year 2000 derived by satellite observations (from Total Ozone Mapping Spectroradiometer and to ground based measurements at 14 sites. The model correlates well with the observations; the correlation coefficients are 0.97 and 0.98 for satellite and ground based measurements, respectively. In addition to the effect of changes in ozone, we also investigate the effect of changes in SO2, NO2, the direct and indirect effects of aerosols, albedo changes and aviation-induced contrails and cirrus. The results show an increase of surface UV-E in polar regions, most strongly in the Southern Hemisphere. Furthermore, our study also shows an extensive surface UV-E reduction over most land areas; a reduction up to 20% since 1750 is found in some industrialized regions. This reduction in UV-E over the industrial period is particularly large in highly populated regions.

  13. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra Pratap, E-mail: bpsingh0783@gmail.com; Kumar, Amit; Singh, Deepak; Punia, Monika; Kumar, Krishan; Jain, Vinod Kumar

    2014-06-30

    Highlights: • First quantitative report of ozone level and UV radiation emission from photocopier. • Ozone production is directly proportional with intensity of photocopy operation. • Ozone level from ground floor is significantly higher than basement photocopier. • Ozone production and UV radiation studied has less correlation during photocopy. • Health hazard issue has been evaluated for effect of UV radiation in terms of SED. - Abstract: This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8 h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8–10.0 ppb and 5.3–45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0 × 10{sup −3} and 7.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet A (UVA), 1.0 × 10{sup −3} and 2.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet B (UVB) and 6.0 × 10{sup −3} and 8.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02–0.04 and 0.02–0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del’ Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from

  14. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation

    International Nuclear Information System (INIS)

    Highlights: • First quantitative report of ozone level and UV radiation emission from photocopier. • Ozone production is directly proportional with intensity of photocopy operation. • Ozone level from ground floor is significantly higher than basement photocopier. • Ozone production and UV radiation studied has less correlation during photocopy. • Health hazard issue has been evaluated for effect of UV radiation in terms of SED. - Abstract: This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8 h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8–10.0 ppb and 5.3–45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0 × 10−3 and 7.0 × 10−3 mW/cm2 for ultraviolet A (UVA), 1.0 × 10−3 and 2.0 × 10−3 mW/cm2 for ultraviolet B (UVB) and 6.0 × 10−3 and 8.0 × 10−3 mW/cm2 for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02–0.04 and 0.02–0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del’ Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from photocopier. The manufactures should be ultimated

  15. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  16. Heated water and UV-C radiation to post harvest control of Cryptosporiopsis perennans on apples

    International Nuclear Information System (INIS)

    The objective of this work was to assess the colonization of Cryptosporiopsis perennans in the epidermis of apples and the efficiency of heated water and UV-C radiation application to control this pathogen. In apples inoculated with C. perennans, the colonization of lenticels and adjacent areas by the pathogen was observed by electronic scanning microscopy. The sensitivity of C. perennans conidia was evaluated in aqueous suspension, at temperatures of 28, 45, 50 and 55 deg C for 15 and 30 s, and at UV.C radiation doses of 0.018, 0.037, 0.075, 0.150, 0.375, 0.750, 1.500 and 3.000 kJ m.2. The effects of UV.C radiation doses at 0.375, 0.750 and 1.500 kJ m.2 and heated water at 50 deg C, sprayed during 15 and 30 s were evaluated for controlling C. perennans in apples inoculated with the pathogen. The fungus produced abundant mycelium and conidia in lenticels and adjacent areas on the epidermis of the apples. The heated water at 50 deg C during 15 s and a 0.750 kJ m.2 UV.C radiation dose reduced conidia survival in more than 99%. Heated water sprayed at 50 deg C during 15 s and a UV.C radiation dose of 0.375 kJ m.2 control C. perennans in apples. (author)

  17. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought. PMID:25465528

  18. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.

  19. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    Science.gov (United States)

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.

  20. Effects of salicylic acid (SA), ultraviolet radiation (UV-B and UV-C) on trans-resveratrol inducement in the skin of harvested grape berries

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Xianbo ZHENG; Shutang YAN; Shaohua LI

    2008-01-01

    Effects of salicylic acid (SA), ultraviolet radiation (UV-B and UV-C) on the trans-resveratrol (Res) inducement of the skin of harvested grape berries were studied with three grape cultivars Takasuma, Tano Red and Carigane. Split plot design tests were adopted to compare the effects of UV-B and UV-C radiation on Res inducement of different cultivars. Results showed that tents in the skins of harvested berries for the three-selected cultivars. However, the effect of SA varied with the cultivars, and Res inducement by SA was more effective to Tano Red than Takasuma and Carigane. UV-B or UV-C irradiation significantly increased Res contents in grape skins and UV-C was more effective than UV-B. The effects of UV types and dosages on Res inducement depended upon cultivars. In the range of 0-3.6 kJ.m-2, the Res contents in the skins of the three grape cultivars were enhanced along with the increase of dosages of UV-B and UV-C.

  1. Differences of UV-B radiation sensitivity of rice%水稻对UV-B辐射响应的敏感性差异

    Institute of Scientific and Technical Information of China (English)

    何永美; 湛方栋; 高召华; 祖艳群; 李元

    2012-01-01

    综述了UV-B辐射对水稻(Oryza sativa L.)的影响和水稻对UV-B辐射的抗性机制.UV-B辐射对水稻生长、叶片形态、生物量、产量、光合系统、病害等产生一定的影响.水稻对UV-B辐射的敏感性因子主要有CPD光解酶、UV-B吸收物质、抗氧化酶等.UV-B辐射使水稻叶片中产生了ROS,导致Rubisco酶降解,光合色素含量变化,抑制了光合作用,最终影响水稻籽粒形成和产量.水稻对UV-B辐射响应存在着品种差异,CPD光解酶编码基因的自然突变会引起水稻UV-B敏感性的差异,CPD光解酶活性是水稻对UV-B敏感性的关键因素.通过建立响应指数公式,对水稻UV-B响应敏感性的品种差异进行评估,存在品种差异的原因主要是基因、生长、生理、生育期和环境背景的差异.最后对UV-B辐射对水稻的影响、水稻对UV-B响应的差异及机理有待深入研究的方向进行了展望.%The effects and its resistance mechanisms of enhanced UV-B radiation on rice were summarized. Effect of enhance UV-B radiation on the growth, leaf shape, biomass, yield, photosynthesis system and disease of rice were reported. Cyclobutane pyrimidine dimer (CPD) photolyase, UV-B absorbing compound and antioxidant enzymes are the main factors indicated the sensitivity of rice to UV-B radiation. UV-B radiation induces reactive oxygen species (ROS) production, Rubisco enzyme decomposition, photosynthetic pigments content decrease and photosynthesis inhibition of rice leaves, and resulted in decrease in grain yield. There were species differences on rice response to UV-B radiation. Spontaneous mutation of gene encoding CPD photolyase would cause UV-B sensitivity differences in rice. CPD photolyase activity is the key factor influencing in rice sensitivity to UV-B radiation. Species differences of rice response to UV-B radiation could be assessed by the response index. The differences in species mainly are due to genes, growth, physiology, reproductive

  2. Photomorphogenic effects of UV-B radiation on plants: consequences for light competition

    International Nuclear Information System (INIS)

    A combination of field and labotatory studies were conducted to explore the nature of photomorphogenic effects of ultraviolet-B radiation (UV-B; 280–320 nm) on plant morphology and to evaluate the ecological consequences of these alterations in morphology for interspecific competition. Under laboratory conditions, seedlings of cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum Mill.) exhibited appreciable (ca. 50%) and rapid (< 3h) inhibition in hypocotyl elongation in response to UV-B exposure. In cucumber, this inhibition was reversible, occurred without any associated changes in dry matter production and was caused by UV-B incident on the cotyledons and not the stem or growing tip. Inhibition of stem elongation in etiolated tomato seedlings occurred at least 3 h prior to the onset of accumulation of UV-absorbing pigments and monochromatic UV supplied against a background of visible radiation revealed maximum effectiveness in inhibition around 300 nm. Collectively, these findings suggest that a specific, but yet unidentified, UV-B photoreceptor is involved in mediating certain morphological responses to UV-B. For mixtures of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor, supplemental UV-B irradiation in the field differentially altered shoot morphology which resulted in changes in canopy structure, light interception and calculated stand photosynthesis. It is argued that, because of its asymmetrical nature, competition for light can potentially amplify the effects of UV-B on shoot morphology and may, therefore, be an important mechanism by which changes in the solar UV-B spectrum associated with stratospheric ozone reduction could alter the composition and character of terrestrial vegetation

  3. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    -B was demonstrated to decrease photosynthesis and shift carbon allocation from shoots to roots. Moreover, ambient UV-B increased plant stress with detrimental effects on electron processing in the photosynthetic apparatus. Plant responses did not lead to clear changes in the amount of fungal root symbionts...... on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg...

  4. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.

    Science.gov (United States)

    Khairnar, Nivedita P; Kamble, Vidya A; Misra, Hari S

    2008-01-01

    Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break (DSB) repair enzyme in some bacteria. Recombinant Deinococcus expressing the recBC genes of E. coli showed nearly three-fold improvements in near-UV tolerance and nearly 2 log cycle reductions in wild type gamma radiation resistance. RecBC over expression effect on radiation response of D. radiodurans was independent of indigenous RecD. Loss of gamma radiation tolerance was attributed to the enhanced rate of in vivo degradation of radiation damaged DNA and delayed kinetics of DSB repair during post-irradiation recovery. RecBC expressing cells of Deinococcus showed wild type response to Far-UV. These results suggest that the overproduction of RecBC competes with the indigenous mechanism of gamma radiation damaged DNA repair while it supports near-UV tolerance in D. radiodurans. PMID:17720630

  5. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  6. Kinetics of avoidance of simulated solar uv radiation by two arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, J.A.; Calkins, J.

    1980-12-01

    There is an increasing likelihood that the solar uv-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar uv-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar uv-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar uv-B. We have investigated the dynamics of biological reactions to simulated solar uv-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar uv-B effects, even organisms which specifically reduce their uv-B exposure would encounter additional stress if ozone depletion does occur.

  7. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    E. W. Helbling

    2012-10-01

    Full Text Available Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML, thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 μatm for more than 20 generations. Compared to the ambient CO2 level (390 μatm, growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ of cells and partially counteracted the harm to PS II (photosystem II caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

  8. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    International Nuclear Information System (INIS)

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion

  9. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Kochevar, I.E.

    1985-07-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion.

  10. Generation of powerful narrow-band UV radiation for isotope separation by laser

    International Nuclear Information System (INIS)

    The laser system for production of the narrow-band rearranged laser radiation in UV band of the spectrum for ALVIS was created. The system is defined as two independent laser channels radiating each on its own wavelength. The radiation of the continuos dye laser is increased by tree-cascade strengthening system involving containers with the transverse pumping by radiation of the copper vapor laser. Two identical laser systems, which were used for isotopically selective excitation of zinc atoms in the heated cell, were realized. Excitation of atoms was done at the 6s3S1 step during consumption of the two counter photons (λ1 = 307.6 nm and λ2 = 303.6 nm). The UV radiation width of line was mapped by the peaks less than 40 MHz

  11. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  12. Using the electron synchrotron radiation for the calibration of the spectral density in UV and long-wave vacuum UV range (160 nm to 340 nm)

    International Nuclear Information System (INIS)

    Electron synchrotron radiation was investigated with a view to the development of methods for the calibration of the spectral density in the UV and long-wave vacuum UV spectral regions. The relative spectral radiation flow of a synchrotron can be calculated over a wide spectral region. In order to determine the absolute radiation flow in the vaccum UV, the synchrotron radiation in the visible region is compared with a reference source (calibrated tungsten filament lamp). Between 160 nm and 340 nm, the spectral beam density calibration with the synchrotron radiation is uncertain by about +- 5%. Between 280 nm and 340 nm, calibrations of deuterium lamps at the synchrotron and at a cavity radiator vary by less than 10%. (orig./WL)

  13. Crosstalk between MAV and MEP pathways in vitro grape plants exposed to UV-B radiation

    International Nuclear Information System (INIS)

    The synthesis of terpenoids from IPP (isopentenyl diphosphate) proceeds in plants throughout two pathways, the MVA (mevalonic acid) in cytosol and the MEP (2-C-methyl-D-erythritol 4-phosphate) in plastids. Ultraviolet-B (UV-B) radiation induced the synthesis of terpenes in in vitro grape plants according to the fluence rate. Low intensity UV-B promoted the MVA pathway while high intensity UV-B stimulated the MEP pathway. Mevastatin is known to inhibit the enzyme HMG-CoA reductase blocking terpene synthesis in cytosol. In vitro plants growing 45 days under 16 h-photoperiod (100 μmol m-2 s-1) were fed at the apex with mevastatin and then exposed to an UV-B dose administrated at two intensities: low UV-B (8.25 μW cm-2,16 h) or high UV-B (33 μW cm-2,4 h). Methanol: chloroform extracts were analyzed by GC-EIMS and compared with controls without mevastatin. Levels of γ-Sitosterol and Stigmasterol were significantly increased under low intensity UV-B in the controls. The plants treated with the inhibitor showed a significant decrease of both sterols and a decrease in the plastidial terpenes but sterols were higher under UV-B. These results suggest an IPP crosstalk between the MAV and MEP pathways under restrictive conditions. (authors)

  14. Dependence of erythemally weighted UV radiation on geographical parameters in the United States

    Science.gov (United States)

    Wang, Xinli; Gao, Wei; Davis, John; Olson, Becky; Janson, George; Slusser, James

    2007-09-01

    The relationship between solar ultraviolet (UV) radiation reaching the Earth's surface and geographical parameters is helpful in estimating the spatial distribution of UV radiation, which provides useful information to evaluate the potential impacts of enhanced UV levels on human health, agriculture, environment, and ecosystems for sustainable development. Measurements of erythemally weighted UV radiation at the sites of the United States Department of Agriculture UV-B Monitoring and Research Program (UVBMRP) monitoring network were analyzed to investigate the geographical distribution and seasonal variations. Twenty nine observation sites, which had continuous measurements during the recent six years, are selected for this study; twenty seven of them are distributed in the United States, including one in Hawaii and one in Alaska, and two of them are located in Canada along the United States border. The measurements were taken using the Yankee Environmental Systems Inc. (YES) UVB-1 ultraviolet pyranometer. This work focuses the data from the recent six years of 2001-2006 and the measurements during summer months (June-August) are emphasized. For each day, the measurements are integrated from sunrise to sunset to produce the daily UV dosage, which is then averaged for different seasons or for the whole year over the six years to generate the average daily UV dosage. A multivariable regression technique is exploited to characterize the dependence of UV dosages on geographical parameters, including latitude and altitude. The results show that, although there are many factors, such as clouds, ozone, aerosols, air pollutants, and haze, that affect the UV radiation intensity at a location, the latitude and altitude of the site are the primary factors that regulate the average daily UV dosage. On average over the last six years in the United States, more than 95% of the variability in averaged daily UV dosages can be explained by the latitude and altitude. Longitude is

  15. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO

  16. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  17. Effect of UV and γ-radiation on polychromatic glass

    International Nuclear Information System (INIS)

    Color centers related to silver (Ag+)- and bromine were detected in polychromatic glasses (PCG). It was shown that the paramagnetic centers (PC) related to bromine (centers to which the signal with gef = 2.212 and (Br2)- PC corresponds) primarily arise in γ-radiation of the glass and significantly contribute to the additional absorption at the 360 nm wavelength

  18. How does radiative feedback from a UV background impact reionization?

    CERN Document Server

    Sobacchi, Emanuele

    2013-01-01

    An ionizing UV background (UVB) inhibits gas accretion and photo-evaporates gas from the shallow potential wells of small, dwarf galaxies. During cosmological reionization, this effect can result in negative feedback: suppressing star-formation inside HII regions, thus impeding their continued growth. It is difficult to model this process, given the enormous range of scales involved. We tackle this problem using a tiered approach: combining parameterized results from single-halo collapse simulations with large-scale models of reionization. In the resulting reionization models, the ionizing emissivity of galaxies depends on the local values of the reionization redshift and the UVB intensity. We present a physically-motivated analytic expression for the average minimum mass of star-forming galaxies, which can be readily used in modeling galaxy formation. We find that UVB feedback: (i) delays the end stages of reionization by less than 0.5 in redshift; (ii) results in a more uniform distribution of HII regions, ...

  19. POSSIBLE SOURCES OF UV RADIATION IN ELLIPTICAL GALAXIES

    Directory of Open Access Journals (Sweden)

    F. C. Hernández

    2009-01-01

    Full Text Available We have compiled a sample of 519 nearby (z < 0:13 elliptical galaxies, selected by matching the Galaxy Evolution Explorer (GALEX Medium Imaging Survey (MIS with the Sloan Digital Sky Survey (SDSS Fourth Data Release (DR4. Our galaxies are bright, with r < 16:8 and have FUV (far ultraviolet an NUV (near ultraviolet emission. We build a UV Color Magnitude Relation (CMR using GALEX and SDSS photometric bands, and analyze the evolution of this CMR for these galaxies using stellar population synthesis models. We nd that these galaxies may have su ered a small amount of recent residual star formation (1{2% of the galaxy mass. Extreme Horizontal Branch (EHB stars can explain galaxies with 4 < NUV- r < 5:4.

  20. UV Radiation: a new first year physics/life sciences laboratory experiment

    Science.gov (United States)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  1. The effects of UV-B radiation on loblolly pine. 3. Interaction with CO2 enhancement

    International Nuclear Information System (INIS)

    Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities

  2. Possible impacts of changes in UV-B radiation on North American trees and forests

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Joe H. [Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, MD (United States)]. E-mail: js128@umail.umd.edu

    2005-10-15

    Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition. - Projected increases in UV-B are not likely to have a direct impact on trees, but indirect responses could impact plant-herbivore interactions and nutrient cycling in forests.

  3. UV radiation and freshwater zooplankton: damage, protection and recovery

    OpenAIRE

    Rautio, Milla; Tartarotti, Barbara

    2010-01-01

    While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiologi...

  4. Effects of UV-A Radiation on Desmodesmus armatus: Changes in Growth Rate, Pigment Content and Morphological Appearance

    Science.gov (United States)

    Pálffy, Károly; Vörös, Lajos

    2006-10-01

    Laboratory cultures of Desmodesmus armatus (R. Chod.) Hegew. were grown under different levels of photosynthetically active radiation (PAR) supplemented with 3.75 mW . cm-2 UV-A radiation. Growth rate was monitored daily, chlorophyl-a concentration, total carotenoid content, cell number and the relative abundance of different coenobial forms was determined at the end of each experiment. Exposure to UV-A radiation resulted in an increasing inhibition of growth towards higher PAR levels, reaching 100% at 400 μmol . m-2 . s-1. Cellular carotenoid content was higher in the presence of UV-A radiation, on the other hand no differences were observed in cellular chlorophyll-a concentration. UV-A radiation also induced changes in coenobium formation with a decreasing proportion of 4-celled coenobia and an increase in the abundance of 2-celled and teratologic coenobia, suggesting that high intensity UV-A radiation may influence cell cycle events or morphology development.

  5. Does enhanced solar UV-B radiation affect marine primary producers in their natural habitats?

    Science.gov (United States)

    Häder, Donat-P

    2011-01-01

    This article is a highlight of the paper by Li et al. in this issue of Photochemistry and Photobiology as well as a short summary of the research on the effects of solar UV-B radiation on primary production in the oceans. Laboratory experiments under controlled conditions using artificial light sources indicate species-specific damage of many phytoplankton groups. Mesocosm studies in enclosures of limited volume allow analyzing UV effects in multigeneration monitoring of natural assemblages. Field studies to determine the effects of short-wavelength solar radiation require sensitive instrumentation and measurements over extended areas of the open ocean to yield significant results. Results from a cruise described in the paper by Li et al. indicate clear effects of UV-B and UV-A on the photosynthetic carbon fixation of phytoplankton communities with spatial differences between coastal and open-ocean waters. Increasing temperatures and acidification in the ocean due to global climate change may exacerbate the detrimental effects of solar UV-B radiation. PMID:21208211

  6. Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings

    International Nuclear Information System (INIS)

    The behavior of cuticular alkane-1-ols and alkanes were studied in different developmental stages of cucumber seedlings grown in the dark or under white light, with or without UV-B radiation or in presence of wax biosynthesis inhibitors, trichloroacetic acid and metolachlor. Accumulation of alkane-1-ols increased light independently with seedling age. Synthesis of alkanes was strictly light and dose dependent. Addition of UV-B radiation did not alter the amounts of alkanes or alcohols, however, the distribution of homologues was shifted towards shorter chain homologues. Treatments with Cl3AcOH resulted in strong inhibition of alkane accumulation, whereas the amount of alkane-1-ols was changed neither at low nor at moderate concentrations of Cl3AcOH but their homologue distribution shifted towards longer chain lengths. This shifting was depressed in the presence of UV-B. At high concentrations of Cl3Ac0H similar homologue distributions as produced by UV-B (shift to shorter homologues) were observed. Metolachlor treatment resulted in an inhibition of alkane-1-ol production connected with rising amounts of alkanes, predominantly of short chain species. A simple model of wax biosynthesis is proposed which describes the interactions with white light, UV-B radiation and herbicides. (author)

  7. Simulation of increasing UV radiation as a consequence of ozone depletion

    Science.gov (United States)

    Diaz, Susana B.; Camilion, Carolina; Lacoste, Karine; Escobar, Julio; Demers, Serge; Gianesella, Sonia M. F.; Roy, Suzanne

    2003-11-01

    UV plays a key roll in several biological functions. As consequence of the ozone depletion investigations to study the effects of UV radiation on human health and terrestrial and aquatic ecosystems have been carried out in laboratories and in the field. Experiments performed in laboratories, irradiating samples with lamps often present the inconvenience that light sources do not reproduce properly the solar spectrum. Field experiments are usually carried out comparing samples exposed to ambient irradiance (normal or increased) against 100% UV-B screened samples. This scenario also differs from the real situation of normal irradiance against UV-B increased irradiance. Some authors have solved this problem performing studies under ambient conditions, simulating the ozone depletion by supplementation of the UV-B radiation with lamps. As part of the IAI CNR-26, "Enhanced Ultraviolet-B Radiation in Natural Ecosystems as an added Perturbation due to Ozone Depletion," mesocosms experiments were performed at Rimouski, Canada), Ubatuba (Brasil) and Ushuaia, Argentina) using the supplementing methodology. In this paper we introduce the design of the measurements and lamps setting and the methodology used to calculate the attenuation constant and the irradiance at the water column at the mesocosms during the experiment, emphasizing on the Ubatuba campaign.

  8. UV-B radiation does not limit carbohydrate level and carbohydrate metabolism in cucumber leaves

    Directory of Open Access Journals (Sweden)

    Magdalena Rybus-Zając

    2014-08-01

    Full Text Available Cucumber is a vegetable exhibiting relatively high sensitivity to environmental stress factors. When it is grown outdoors, from early stages of development there is a real risk of exposure to elevated UV-B radiation. In order to explain the effects of time-dependent UV-B doses on carbohydrate level and metabolism, the photosynthetic activity, accumulation of carbohydrates and activities of carbohydrate-related enzymes were determined in the cucumber leaves. Elevated UV-B radiation led to an increase in the rate of photosynthesis, which was reflected by an increase in SPAD values. Higher photosynthetic activity resulted in an increase in levels of soluble sugars. In view of the above-mentioned results, radiation stress led to a UV-B time-dependent dose increase in the activity of two enzymes decomposing carbohydrate: invertase and glucosidase. Our results suggest that the exposure of cucumber plants to supplemental UV-B doses does not limit the availability of the photoassimilate. Carbohydrates are required to provide not only respiratory energy for protection, maintenance (and repair of plant activity and structure, but also provide biosynthetic carbon skeletons for secondary metabolite synthesis

  9. Involvement of pnp in survival of UV radiation in Escherichia coli K-12.

    Science.gov (United States)

    Rath, Devashish; Mangoli, Suhas H; Pagedar, Amruta R; Jawali, Narendra

    2012-05-01

    Polynucleotide phosphorylase (PNPase), a multifunctional protein, is a 3'→5' exoribonuclease or exoDNase in the presence of inorganic phosphate (P(i)), and extends a 3'-OH of RNA or ssDNA in the presence of ADP or dADP. In Escherichia coli, PNPase is known to protect against H(2)O(2)- and mitomycin C-induced damage. Recent reports show that Bacillus subtilis PNPase is required for repair of H(2)O(2)-induced double-strand breaks. Here we show that absence of PNPase makes E. coli cells sensitive to UV, indicating that PNPase has a role in survival of UV radiation damage. Analyses of various DNA repair pathways show that in the absence of nucleotide excision repair, survival of UV radiation depends critically on PNPase function. Consequently, uvrA pnp, uvrB pnp and uvrC pnp strains show hypersensitivity to UV radiation. Whereas the pnp mutation is non-epistatic to recJ, recQ and recG mutations with respect to the UV-sensitivity phenotype, it is epistatic to uvrD, recB and ruvA mutations, implicating it in the recombinational repair process. PMID:22322961

  10. Effect of UV-B radiation on free amino acid pools of marine diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Doehler, G. (Frankfurt Univ. (Germany, F.R.). Botanisches Institut)

    1985-01-01

    The marine diatoms Asterionella glacialis, Chaetoceros debilis, Ditylum brightwellii and Thalassiosira punctigera were grown for 2 d under different levels of UV-B radiation (439, 717 and 1230 Jm/sup -2/d/sup -1/) at 18 /sup 0/C bubbling with normal air (0.035 vol.% CO/sub 2/). Enhanced levels of UV-B radiation reduced biomass production (dry weight), protein and pigment contents of all tested diatoms. UV-B influence on amides and free amino acid pools - using reversed-phase high-performance liquid chromatography - was found to be species dependent. Thalassiosira cells exposed to UV-B radiation are characterized by an increase of glutamic acid and a reduction of glutamine. The effect of UV-B irradiance on the other diatoms resulted in a marked enhancement of glutamine and a diminution of the glutamic acid concentration. Aspartic acid pool was reduced in nearly all marine diatoms. Results are discussed with reference to the inhibition of the enzymes for the carbon and nitrogen pathway.

  11. Identification of genes responsive to solar simulated UV radiation in human monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Hortensia de la Fuente

    Full Text Available Ultraviolet (UV irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA. Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE, thrombospondin-1 (THBS1, inducible costimulator ligand (ICOSL, galectins, Src-like adapter protein (SLA, IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC-mediated immune responses.

  12. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    Science.gov (United States)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λcomponents either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  13. DSMC simulation of two-phase plume flow with UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  14. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    Energy Technology Data Exchange (ETDEWEB)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y. [Moscow State Univ. (Russian Federation)

    1995-07-01

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  15. Physiological Defense Mechanism of Ligularia intermedia Against UV-B Radiation on Dongling Mountain

    Institute of Scientific and Technical Information of China (English)

    李鑫; 贾顺姬; 简嘉; 林孟仪; 李骑昂; 黄晓春; 张超; 张荣庆; 张贵友

    2003-01-01

    Ligularia intermedia growing at different altitudes were used to investigate the mechanism of ultraviolet (UV)-resistance on physiological aspects in the field.The tests compared the absorbance of the UV-absorbing compound, the content of chlorophyll a, chlorophyll b, and carotenoids, and the activities of peroxidase (POX) and superoxide dismutase (SOD) in Ligularia intermedia growing at three different altitudes on Dongling Mountain in northern China.There were no significant differences between the plants growing at 1160 m and 1820 m.However, all of these factors increased dramatically at 2190 m.The results indicate that the UV-resistance of the plants mainly depends on the mechanism of filtering the radiation and preventing the reactive oxygen species (ROS) damage produced by UV-B.

  16. Investigation of the solar UV/EUV related changes in the Jovian radiation belt and thermosphere

    Science.gov (United States)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Sakanoi, T.; Miyoshi, Y.; Kasaba, Y.; Morioka, A.

    2013-09-01

    In order to investigate atmospheric heating effect by the solar UV/EUV on the Jovian Radiation Belt, we made coordinated observations using a radio interferometer and an infrared telescope. The total flux density of Jovian Synchrotron Radiation (JSR) increased from 6th Nov to 13th Nov in 2011 by about 5%, corresponding to the solar UV/EUV variations. The infrared H3+ emission also increased from 7th Nov. to 12th Nov. by 20-30%. These support a theoretical expectation that solar UV/EUV heating for the Jovian thermosphere drives neutral wind perturbations, then the induced dynamo electric field increases the total radio flux density. On the other hand, radio images showed that the equatorial emission peak moved outward by about 0.2 Jovian radii. These observation results showed that the variation of JSR at this time was caused by not global but non-uniform enhancement of radial diffusion.

  17. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  18. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    Science.gov (United States)

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  19. Colour change evaluation on UV radiation exposure for Păun-Repedea calcareous geomaterial

    Science.gov (United States)

    Pelin, V.; Sandu, I.; Munteanu, M.; Iurcovschi, C. T.; Gurlui, S.; Sandu, AV; Vasilache, V.; Brȃnzilă, M.; Sandu, I. G.

    2016-06-01

    When talking about the preservation treatments that can be applied to natural stones used in different constructions, the surface hydrophobization plays an important part, especially when referring to porous surfaces like the calcareous oolithic stones specific to Repedea area, Iasi County, Romania. The present paper presents a method that evaluates the hydrophobization efficiency of two types of pellicles, involving UV artificial ageing and colorimetric analysis of the treated surfaces. The evaluation was done through continuous colorimetric monitoring and by comparing the evolution of the chromatic modifications of the two treated surfaces with the original colorimetric values and with the witness area, which was exposed to UV radiations under the same conditions, but left chemical untreated. The techniques used during this experiment were: CIE L*a*b* colorimetry, OM, SEM-EDX, UV radiation exposure and Spectrum Irradiance Measurement.

  20. Observations of UV-B radiation during biomass burning at cuiabá, Brazil

    Science.gov (United States)

    Sahai, Y.; Kirchhoff, V. W. J. H.; Paes Leme, N.; Casiccia, C.

    During the last few years, a network (6 stations) of Brewer spectrophotometers has been established in different ecosystems in South America by the Brazilian National Institute for Space Research (INPE). A Brewer spectrophotometer permits simultaneous observations of total ozone and UV-B radiation and is operational on a routine basis at Cuiabá (16°S, 56°W), Brazil, since 1991. Surface ozone is also measured at Cuiabá using UV ozone monitor since 1987. In this paper we present and discuss the simultaneous observations from these two instruments obtained in 1995. This study permits comparison of the observations during the biomas burning period (dry season) with the wet season. Although surface ozone levels were considerably higher during the biomass burning season, no effect on the total ozone column could be observed. The UV-B radiation, however, was significantly reduced due to absorption by biomass burning aerosols.

  1. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R.; Melendrez, R. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R.; Rodriguez, R.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  2. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide.

    Science.gov (United States)

    Damian, Diona L; Patterson, Clare R S; Stapelberg, Michael; Park, Joohong; Barnetson, Ross St C; Halliday, Gary M

    2008-02-01

    UV radiation-induced immunosuppression augments cutaneous carcinogenesis. The incidence of skin cancer continues to increase despite increased use of sunscreens, which are less effective at preventing immunosuppression than sunburn. Using the Mantoux reaction as a model of skin immunity, we investigated the effects of solar-simulated (ss) UV and its component UVA and UVB wavebands and tested the ability of topical nicotinamide to protect from UV-induced immunosuppression. Healthy, Mantoux-positive volunteers were UV-irradiated on their backs, with 5% nicotinamide or vehicle applied to different sites in a randomized, double-blinded manner. Subsequent Mantoux testing at irradiated and adjacent unirradiated sites enabled measurement of UV-induced immunosuppression with and without nicotinamide. Suberythemal ssUV caused significant immunosuppression, although component UVB and UVA doses delivered independently did not. Men were immunosuppressed by ssUV doses three times lower than those required to immunosuppress women. This may be an important cause of the higher skin cancer incidence and mortality observed in men. Topical nicotinamide prevented immunosuppression, with gene chip microarrays suggesting that the mechanisms of protection may include alterations in complement, energy metabolism and apoptosis pathways. Nicotinamide is a safe and inexpensive compound that could be added to sunscreens or after-sun lotions to improve protection from immunosuppression. immunosuppression.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://network.nature.com/group/jidclub

  3. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-06-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  4. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    Science.gov (United States)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  5. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  6. Performance Analysis of Si-Based Ultra-Shallow Junction Photodiodes for UV Radiation Detection

    NARCIS (Netherlands)

    Shi, L.

    2013-01-01

    This thesis presents a performance investigation of newly-developed ultra-shallow junction photodiodes (PureB-diodes) for ultraviolet (UV) radiation detection. The photodiodes are fabricated by pure boron chemical vapor deposition (PureB CVD) technology, which can provide nanometer-thin boron cappin

  7. UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi

    NARCIS (Netherlands)

    van Rijssel, M; Buma, A.G.J.

    2002-01-01

    A possible coupling between UV radiation (UVR; 280 to 400 nm) induced stress and the production of dimethylsulfoniopropionate (DMSP), the precursor of the climate-regulating gas dimethylsulfide (DMS), was investigated in the marine prymnesiophyte Emiliania huxleyi. To this end, axenic cultures of E.

  8. GROWTH RESPONSE OF SYMBODINIUM SPP. TO COMBINED TEMPERATURE AND UV RADIATION

    Science.gov (United States)

    Rogers, J.E. and D. Marcovich. In press. Growth Response of a Coral Symbiont, Symbiodinium sp., to Combined Temperature and UV Radiation Exposure (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 June 2004, Savann...

  9. Generation of UV radiation by vapors of complex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barkova, L.A.; Gruzinskii, V.V.; Danilova, V.I.; Degtiarenko, K.M.; Kopylova, T.N.; Kuznetsov, A.L.

    1981-08-01

    Laser action has been obtained in the following organic compounds under pumping by XeCl excimer laser radiation at 308 nm: para-terphenyl, 2-phenylbenzoxazole, 2-(n-tolyl)-benzoxaxole, 2-(n-methoxyphenyl)-benzoxazole, 2-(n-dimethylaminophenyl)-benzoxazole, 2-biphenylbenzoxazole, (2-alpha-naphthyl)-benzoxazole, 1.4-di(n-phenylethynyl)-benzole, and paraquaterphenyl. The nontuning lasing bands covered the range of 330-370 nm, and the most short-wavelength maximum (333.5 nm) was found for 2(n-methoxyphenyl)-benzoxazole. The lasing capability of the molecules was analyzed.

  10. Research on the Signals of Cotton in Response to UV-B Radiation%棉花响应UV-B辐射的信号初探

    Institute of Scientific and Technical Information of China (English)

    侍福梅; 孟慧敏; 王超

    2011-01-01

    Phenotype and hydrogen peroxide and nitric oxide were studied in three kinds of cotton under ultraviolet-B (UV-B) radiation with or without SNP and ABA treatment. The results indicated that leaves of cotton seedlings showed obvious rust, and leaves in vitro dehydrate apparently suffering UV-B stress, Pretreatment with sudium nitroprusside (SNP) and abscisic acid (ABA) lightened rust and wilt symptom of the leaves due to UV-B radiation. Both hydrogen peroxide (H2 O2) dyed with 3, 3-diaminobenzidine (DAB) and nitric oxide (NO) labelled by 4,5-diaminofluorescein diacetate (DAF-2DA) were increased after UV-B radiation than untreated control. And the release of NO alleviated the damage from UV-B radiation by reducing the accumulation of H2O2. In additon, pretreatment with ABA significantly increased the tolerance of cotton, which is bound up with the production of R2O2 and NO. Therefore, UV-B radiation caused damage of cotton during the growth and development , and all of H2 O2, NO and ABA are members of the signal transduction during the interaction between cotton and UV-B stress.%以3种棉花为供试材料,研究紫外线-B(UV-B)辐射及外源SNP、ABA叠加处理对棉花幼苗表观形态及内源H2O2与NO水平的影响.结果表明,UV-B辐射引起棉花幼苗叶片呈现锈色伤斑,离体叶片明显失水萎蔫.叶片外源涂抹SNP、ABA能减轻UV-B辐射引起的幼叶伤斑与萎蔫症状,缓解UV-B辐射所造成的伤害.DAB及DAF-2DA染色结果显示,UV-B辐射引起棉花内源H2O2与NO含量增加,面NO的释放通过减少H2O2积累减轻紫外辐射对棉花的伤害.ABA预处理可增强棉花对紫外伤害的耐受能力,且与H2O2与NO的释放密切相关.UV-B辐射对棉花生长造成伤害,H2O2、NO及ABA都参与棉花应答UV-B胁迫的信号转导过程.

  11. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    Science.gov (United States)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  12. High-pressure CO/sub 2/ laser with a nonself-sustaining discharge ionized by repetitively pulsed UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, E.A.; Pis' mennyi, V.D.; Rakhimov, A.T.

    1979-02-01

    Lasing was obtained in a high-pressure CO/sub 2/ laser (250 Torr) in a periodic nonself-sustaining discharge regime controlled by UV radiation spark sources. It was shown that the use of pulse-periodic UV radiation sources enables a quasicontinuous laser operating regime to be set up.

  13. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight.

    Science.gov (United States)

    Schuch, André Passaglia; Menck, Carlos Frederico Martins

    2010-06-01

    Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coliMBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight.

  14. The effects of UV radiation, litter chemistry, and drought on desert litter decomposition

    Science.gov (United States)

    Lee, H.; Nieto, B.; Hewins, D. B.; Barnes, P. W.; McDowell, N. G.; Pockman, W.; Rahn, T.; Throop, H. L.

    2011-12-01

    Recent studies suggest that photodegradation by solar UV radiation can be a major driver of litter decomposition in dryland ecosystems. The importance of photodegradation in litter decomposition appears to decline with precipitation, suggesting that the relative importance of photodegradation may increase given current projections of future increases in drought severity in the southwestern USA. Several previous studies indicate that UV-B radiation (280-320 nm) is the most effective waveband in breaking chemical bonds forming organic material, but whether UV-B exposure may facilitate subsequent decomposition by microbes (i.e., photo-priming) has received little attention. In this study, we tested the effects of pre-exposure UV radiation (photo-priming), litter chemistry (lignin and cellulose content and nitrogen content), and drought on the rate of litter decomposition in a semi-arid ecosystem. To understand the effects of UV radiation on litter decomposition, we pre-exposed litter to three radiation treatments: control (no radiation), UV-A+visible, UV-A+UV-B+visible. Litter was exposed to the equivalent of three months' solar radiation of southern New Mexico prior to microbial decomposition. There were three litter types: basswood sheets (high lignin content), pure cellulose filter paper, and mesquite (Prosopis glandulosa) leaflets. Following radiation treatment, litter was placed in mesh litterbags that were buried within a large-scale precipitation manipulation experiment at the Sevilleta Long-Term Ecological Research site: control (ambient precipitation), elevated precipitation (x2 ambient precipitation), and drought (x0.5 ambient precipitation). We collected a subset of bags at 0, 1, 3, and 6 months and measured mass remaining and carbon (C) and nitrogen (N) content. After 6 months, mass remaining of filter paper and basswood sheets did not differ from the initial mass, but mesquite mass remaining declined over 30%. The pre-exposure UV effects had minimal

  15. Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2 system.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-01-01

    Five emerging contaminants (1-H-Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole, and Nortriptyline HCl), frequently found in surface waters and wastewaters, were selected to be photooxidized in several water matrices. Previous degradation experiments of these compounds individually dissolved in ultra pure water were performed by using UV radiation at 254 nm and the Fenton's reagent. These oxidation systems allowed the determination of the quantum yields and the rate constants for the radical reaction between each compound and hydroxyl radicals. Later, the simultaneous photodegradation of mixtures of the selected ECs in several types of water (ultrapure water, reservoir water, and two effluents from WWTPs) was carried out and a kinetic study was conducted. A model is proposed for the ECs elimination, and the theoretically calculated concentrations with this model agreed well with the experimental results obtained, which confirmed that it constitutes an excellent tool to predict the elimination of these compounds in waters.

  16. Influences of the Clearness Index on UV Solar Radiation for Two Locations in the Tibetan Plateau-Lhasa and Haibei

    Institute of Scientific and Technical Information of China (English)

    HU Bo; WANG Yuesi; LIU Guangren

    2008-01-01

    Ultraviolet (UV) solar radiation has a significant influence on human health,the environment and climate. A series of measurements,including UV radiation(290-400 nm)and global solar radiation(Rs),were continuously recorded from August 2004 at the Lhasa and Haibei sites on the Tibetan Plateau.Both observation sites'altitudes are above 3000 m and have similar meteorological conditions.The data from 2005-2006 Was used to identify the varying characteristics of UV radiation.It'S relation to the clearness index Ks,the relative optical mass mr,and Rs were established.The annual mean values of total daily UV radiation are 0.92 and 0.67 MJ m-2 at Lhasa and Haibei,respectively.The UV radiation in Lhasa represented 4.6%of the global solar radiation while in Haibei this percentage was 4.2%.In the case of clear days (Ks>0.8),these percentages ranged between 4.O%and 4.5%in Lhasa and between 5.1%and 5.5% in Haibei.In the case of cloudy days(Ks<0.4),these percentages ranged from 4.4%to 6.8%in Lhasa and from 5.1%to 5.5%in Haibei.The maximum values of UV radiation for each relative optical mass diminished exponentially with mr.Thus,for Lhasa and Haibei,UV=46.25mn-1.29,and UV=51.76mr-1.42,respectively.The results of this study can be used to obtain more UV radiation data for the study of UV climate characteristics,the effects of UV on ecological processes and the feedback of the thinning of the stratospheric ozone.from more routine measurements Rs data.

  17. Past Changes in Arctic Terrestrial Ecosystems, Climate and UV Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.

  18. Inactivation of bacteriophage infecting Bacteroides strain GB124 using UV-B radiation.

    Science.gov (United States)

    Diston, David; Ebdon, James E; Taylor, Huw D

    2014-01-01

    Ultraviolet-B radiation (280-320 nm) has long been associated with the inactivation of microorganisms in the natural environment. Determination of the environmental inactivation kinetics of specific indicator organisms [used as tools in the field of microbial source tracking (MST)] is fundamental to their successful deployment, particularly in geographic regions subject to high levels of solar radiation. Phage infecting Bacteroides fragilis host strain GB124 (B124 phage) have been demonstrated to be highly specific indicators of human fecal contamination, but to date, little is known about their susceptibility to UV-B radiation. Therefore, B124 phage (n = 7) isolated from municipal wastewater effluent, were irradiated in a controlled laboratory environment using UV-B collimated beam experiments. All B124 phage suspensions possessed highly similar first order log-linear inactivation profiles and the mean fluence required to inactivate phage by 4 - log(10) was 320 mJ cm(-2). These findings suggest that phage infecting GB124 are likely to be inactivated when exposed to the levels of UV-B solar radiation experienced in a variety of environmental settings. As such, this may limit the utility of such methods for determining more remote inputs of fecal contamination in areas subject to high levels of solar radiation.

  19. Photostability study of commercial sunscreens submitted to artificial UV irradiation and/or fluorescent radiation.

    Science.gov (United States)

    Romanhole, Rodrigo Colina; Ataide, Janaina Artem; Cefali, Leticia Caramori; Moriel, Patricia; Mazzola, Priscila Gava

    2016-09-01

    Sunscreens contain molecules with the ability to absorb and/or reflect UVA (ultraviolet A) and UVB (ultraviolet B) radiation, thereby preventing this radiation from reaching the epidermis or dermis. Their photo stabilities after exposure to UV radiation are well known and described, but there is little data on the stability of these filters after fluorescent indoors light radiation, such as from light emitted by commercial lamps present in homes and offices. Those lamps can expose people to varying levels of UVB, UVA, visible light, and IR (infrared). This study assesses the photostability of four different commercial products containing chemical sun filters after artificial UV and fluorescent irradiation, correlating the UVB and UVA absorption efficiencies of each product against the different types of radiation. The tested products were applied on a plate of polymethylmethacrylate (PMMA) and irradiated by a solar simulator with specific filters for UVA and UVB and a commercial fluorescent light source. According to the results, three formulations did not show photostability, suffering significant changes in their UV absorption spectra, and one of the selected formulations can be considered photostable. This reinforces the importance of conducting stability studies for sunscreen formulations in different conditions, including under artificial (indoor) light exposure. PMID:27341636

  20. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.; Mitchell, D.L. (Texas Christian Univ., Fort Worth (USA))

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). This correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.

  1. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  2. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater. PMID:25213288

  3. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Bürck, Jochen, E-mail: jochen.buerck@kit.edu; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David [Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe (Germany); Ulrich, Anne S., E-mail: jochen.buerck@kit.edu [Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe (Germany)

    2015-04-11

    UV-CD12 at ANKA and its current end-station are described, with a standard module for vacuum-UV synchrotron radiation circular dichroism of bio-macromolecules in the liquid state, and a unique module for macroscopically oriented lipid membranes (oriented circular dichroism). Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts.

  4. Radiation damage and repair in cells and cell components. Progress report, November 1, 1977--October 31, 1978. [Uv and x radiation, bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.; Pollard, E.C.

    1978-01-01

    Progress is reported on the following research projects: coordinate induction of mutagenesis, radioresistance, and inhibition of post-radiation DNA degradation; radioinduced filamentation; action spectrum for induction of K12 lambda phage; effects of uv radiation on cells in the frozen state; dependence of mutagenesis on wavelength of uv; and w-reactivation of x-irradiated phage lambda. (HLW)

  5. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation.

    Science.gov (United States)

    Morales, Luis O; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I; Wargent, Jason J; Sipari, Nina; Strid, Åke; Lindfors, Anders V; Tegelberg, Riitta; Aphalo, Pedro J

    2013-02-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

  6. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Increases in UV-B radiation reaching the earth as a result of stratospheric ozone depletion will most likely accompany increases in atmospheric CO2 concentrations. Many studies have examined the effects of each factor independently, but few have evaluated the combined effects of both UV-B radiation and elevated CO2. In general the results of such studies have shown independent effects on growth or seed yield. Although interspecific variation is large, high levels of UV-B radiation tends to reduce plant growth in sensitive species, while CO2 enrichment tends to promote growth in most C3 species. However, most previous studies have not looked at temporal effects or at the relationship between photosynthetic acclimation to CO2 and possible photosynthetic limitations imposed by UV-B radiation. Elevated CO2 may provide some protection against UV-B for some species. In contrast, UV-B radiation may limit the ability to exploit elevated CO2 in other species. Interactions between the effects of CO2 enrichment and UV-B radiation exposure have also been shown for biomass allocation. Effects on both biomass allocation and photosynthetic acclimation may be important to ecosystem structure in terms of seedling establishment, competition and reproductive output. Few studies have evaluated ecosystem processes such as decomposition or nutrient cycling. Interactive effects may be subtle and species specific but should not be ignored in the assessment of the potential impacts of increases in CO2 and UV-B radiation on plants. (author)

  7. Differential flavonoid response to enhanced UV-B radiation in Brassica napus

    International Nuclear Information System (INIS)

    We have examined the qualitative and quantitative differences in methanol-soluble flavonoids of leaves of two cultivars of Brassica napus, which were grown with or without (control) supplemental UV-B radiation. The flavonoids were identified using HPLC-diode array spectroscopy (-DAS), -electrospray ionization-mass spectroscopy (-ESI-MS) and 1H and 13C NMR, and quantitatively analysed by HPLC-DAS. After exposure to supplementary UV-B radiation, the overall amount of soluble flavonoids, kaempferol and quercetin glycosides, increased by ca 150% in cv. Paroll, compared to control plants. Cultivar Stallion showed a 70% increase, and also a lower overall content of soluble flavonoids compared to Paroll. The supplementary UV-B radiation resulted in a marked, specific increase in the amount of quercetin glycosides relative to the kaempferol glycosides with a 36- and 23-fold increase in cvs Paroll and Stallion, respectively. Four of the flavonol glycosides appearing after supplemental UV-B exposure were identified as quercetin- and kaempferol 3-sophoroside-7-glucoside and 3-(2″′-E-sinapoylsophoroside)-7-glucoside. (author)

  8. WHEAT FLOUR HUMIDITY VARIATION WITH UV-VIS RADIATION DOSE REVEALED BY SPECTRAL AND CHEMOMETRIC STUDIES

    Directory of Open Access Journals (Sweden)

    IULIANA MIHAELA LAZĂR

    2012-06-01

    Full Text Available The cells’ exposure to UV radiation induces mutations of the cellular components by its action on DNA, protein synthesis and enzymatic activities. Different varieties of wheat flour were treated with UV-B, UV-A, Vis radiation and compared with untreated samples. The IR spectra for these components were recorded with a Bruker FTIR spectrophotometer using an ATR method, at 4 cm-1 resolution. The paper proposes a comparative study of unmaturing flour behavior under UV-Vis and natural radiations in order to observe the physico-chemical changing by FTIR spectroscopy. At small doses of irradiation (up to 2 h the humidity of the samples decreases and then it significantly increases, most pronounced in Gruia’s case where the humidity is reaching 74.4% of the initial value. Middle infrared spectral studies reveal an inverse weak linear correlation between Amide I region (1650 cm-1 (R-squared value: -0.3168 and an inverse medium linear correlation assigned to area alcohol O-H band at 3290 cm-1 (R-squared value: -0.6064 with the irradiation dose variables. Strong direct linear correlations confirmed by R-squared value: 0.7835 are found between alcohol O-H band at 3290 cm-1 and humidity percentage parameter.

  9. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production.

    Science.gov (United States)

    Wargent, Jason J; Jordan, Brian R

    2013-03-01

    Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.

  10. Role of DNA damage in local suppression of contact hypersensitivity in mice by UV radiation

    International Nuclear Information System (INIS)

    Exposure of mice to UVE radiation down-regulates the induction of contact hypersensitivity (CHS) responses to haptens applied to the site of irradiation. Concomittantly, the activity of antigen-presenting cells (APC) in the draining lymph nodes is decreased, and T lymphocytes that suppress the induction of CHS are induced. We assessed the role of DNA damage in modulation of the CHS response by UV irradiation by applying liposomes containing T4 endonuclease V (T4N5) to the UV-irradiated skin. Liposomal T4N5, which increases the rate of repair of cyclobutyl pyrimidine dimers (CPD) in DNA, prevented the reduction in the CHS response, the impairment in APC function, and the induction of transferrable immune suppression. Liposomes containing heat-inactivated T4N5 did not restore immune responsiveness. In this model, hapten-bearing APC from unirradiated mice also fail to induce CHS upon injection into UV-irradiated recipients. This systemic effect of UV irradiation on APC function was also prevented by application of liposomes containing active, but not inactive, T4N5. These studies support the hypothesis that DNA damage is an essential initiator of one or more steps leading to impaired immune responsiveness after UV irradiation. They further imply that the release of cytokines that modulate APC function after UV irradiation is triggered by DNA damage. (au) 37 refs

  11. Investigation of properties of repair-deficient strain 1435 Yersinia pestis mutants. [uv radiation

    Energy Technology Data Exchange (ETDEWEB)

    Temiralieva, G.A.

    1977-01-01

    Mutants of the plague bacterium from a gerbil were exposed to uv radiation and the capacity of the bacteria to reactivate irradiated phage was tested. Liquid-holding recovery was also determined. Graphs are presented to show survival curves for irradiated mutants of the bacterium and curves showing reactivation of irradiated phage by mutants of the bacterium. Results showed that uv sensitivity of the initial strain was significantly lower than that of mutants. Varying results were obtained for reactivation capacity of various mutants. (HLW)

  12. Bactericidal effectiveness of UV radiators, type DRT-400, in a broilerhouse

    International Nuclear Information System (INIS)

    Three UV radiators, type DRT-400, were used in a broilerhouse of BIOS type; 12 lamps in a set, type ZNUV, worked inside of the premises for 5, 8, 12, 16 and 20 min. It was found a high degree reduction of bacteria and fungi in the air, at 60.3 and 74.0% respectively, on the external surface of bedding at 40.3% and 72.2%, and in automatic watering troughs at 44.0 and 97.7% respectively. The degree of microorganisms reduction depended on the time exposition to UV, general air contamination, place of contamination, i.e. bedding or water in troughs. (author)

  13. Variations in Growth, Photosynthesis and Defense System Among Four Weed Species Under Increased UV-B Radiation

    Institute of Scientific and Technical Information of China (English)

    Shiwen Wang; Liusheng Duan; Anthony Egrinya Eneji; Zhaohu Li

    2007-01-01

    Weed tolerance of UV-B radiation varies with species, and the radiation could affect weed ecology and management.Variations in growth, photosynthesis and defense system among four important agronomic weeds, Abutilon theophrasti Medik, Amaranthus retroflexus L., Digitaria sangulnalis (L.) Scop and Chloris virgata Swartz, under increased UV-B radiation (ambient and increased radiation at 2.7, 5.4 and 10.8 kJ·m-2·d-1) were studied in the greenhouse experiment. After 2 weeks of radiation, the shoots' dry mass decreased with increasing UV-B radiation except for D. sanguinalis. The reduction in biomass was the result of changes in morphology and physiology.Higher levels of UV-B treatment decreased the leaf area, plant height, net photosynthetic rate and chlorophyll contents, while it increased the contents of wax and UV-B absorbing compound in all species, except for A. retroflexus,which did not increase significantly. The activity of superoxide dismutase, catalase, ascorbate peroxide and the content of ascorbic acid changed differently among the weed species as UV-B radiation increased. D. sanguinalis was the most tolerant and A. retroflexus the most sensitive to increased UV-B radiation. The results also show that the two grass species (D. sanguinalis and C. virgata) were more tolerant to UV-B radiation than the two broadleafed species (A. theophrasti and A. retroflexus). The UV-B absorbing compound and leaf wax played important roles against UV-B damages in the two grass weeds. The overall results suggest that weed community, competition and management will be altered by continuous ozone depletion.

  14. In vivo evaluation of black and green tea dermal products against UV radiation.

    Science.gov (United States)

    Türkoğlu, M; Uğurlu, T; Gedik, G; Yılmaz, A M; Süha Yalçin, A

    2010-10-01

    Aqueous extracts of black and green tea (Camellia sinensis) were obtained by freeze-drying for this study. The extracts were evaluated based on tea quality control tests, UV, IR scans, and in vitro antioxidant capacity tests. Dermal products from the tea extracts were designed and manufactured. Black and green tea gels were tested in vivo in the forearms of six subjects using an artifical UV (200-400 nm) source. The tested formulations were green tea gel, black tea gel, 0.3% caffeine gel, carbomer gel base, and a control. Depending on tea quality, the samples resulted in water soluble fractions of 24.5-39.5%. UV and IR scans specifically showed peaks for alkaloids like caffeine, catechins such as epigallocatechin gallate, and polyphenols with dimeric and polymeric structures such as theaflavins (TFs) and thearubigins (TRs). Antioxidant and free radical scavenging activities of black and green tea samples were found to be high and comparable; activity levels for black tea, green tea, high quality black tea, and L-ascorbic acid were 0.48, 0.50, 0.82, and 1.32 mM TR/mg, respectively. No UV-induced erythema was observed at the black and green tea gel sites in any of the subjects. UV-induced erythema was consistently present in various grades at caffeine gel, carbomer gel, and control sites. Results led to the conclusion that freeze-dried black and green tea extracts had strong UV absorbance. Formulating those extracts into dermal gels protected the skin against UV-induced erythema. Therefore, tea extracts were found to be promising candidates for their ability to protect against the harmful effects of UV radiation, such as erythema and premature aging of the skin.

  15. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.W. [Southwest Texas State Univ.. Dept. of Biology, San Marcos, TX (United States); Searles, P.S.; Ryel, R.J.; Caldwell, M.M. [Utah State Univ., Dept. of Rangeland Resources and the Ecology Center, Logan, UT (United States); Ballare, C.L. [IFEVA, Univ. de Buenos Aires, Dept. de Ecologia, Facultad de Agronomia, Buenos Aires, (Argentina)

    2000-07-01

    Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe-PAM fluorometer to test the utility of this technique as a means of non-intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled-environmental conditions, F(UV-B)/F(BG) was negatively correlated with whole-leaf UV-B-absorbing pigment concentrations. Fluorescence ratios of V.faba were similar to, and positively correlated with (r{sup 2} = 0.77 [UV-B]; 0.85 [UV-A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field-grown Glycine max exposed to near-ambient solar UV-B at a mid-latitude site (Buenos Aires, Argentina, 34 degrees S) showed significantly lower abaxial F(UV-B)/F(BG) values (i.e., lower UV-B epidermal transmittance) than those exposed to attenuated UV-B, but solar UV-B reduction had a minimal effect on F(UV-B)/F(BG) in plants growing at a high-latitude site (Tierra del Fuego, Argentina, 55 degrees S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV-B)/F(BG) when exposed to very high supplemental UV-B (biologically effective UV-B = 14-15 kJ m{sup -2} day{sup -1}) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV-B)/F(BG) relative to those receiving ambient UV-B. These anomalous fluorescence changes were associated with increases in BG-absorbing pigments (anthocyanins), but not UV-B-absorbing pigments. These results indicate that non-invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV-B radiation under both field and laboratory conditions. However, this technique may be of limited

  16. Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata

    International Nuclear Information System (INIS)

    The depletion of stratospheric ozone above the Arctic regions may increase the amount of UV-B radiation to which the northern ecosystems are exposed. In this paper, we examine the hypothesis that supplemental UV-B radiation may affect the growth rate and photosynthesis of boreal peatland plants and could thereby affect the carbon uptake of these ecosystems. In this study, we report the effects of 3-year exposure to elevated UV-B radiation (46% above ambient) on the photosynthetic performance and ultrastructure of a boreal sedge Eriophorum russeolum and a moss Warnstorfia exannulata. The experiment was conducted on a natural fen ecosystem at Sodankylae in northern Finland. The effects of UV-B radiation on the light response of E. russeolum CO2 assimilation and the maximal photochemical efficiency of photosystem II in a dark-adapted state (Fv/Fm) were measured in the field. In addition, the effect of supplemental UV-B radiation on organelles of photosynthetic cells was studied by electron microscopy. The UV-B treatment had no effect on the CO2 assimilation rate of either species, nor did it affect the structure of the cell organelles. On chlorophyll fluorescence, the UV-B exposure had only a temporary effect during the third exposure year. Our results suggested that in a natural ecosystem, even long-term exposure to reasonably elevated UV-B radiation levels does not affect the photosynthesis of peatland plants. - Research highlights: →Eriophorum russeolum and Warnstorfia exannulata are resistant to UV-B radiationUV-B exposure does not affect the growth or photosynthesis of E. russeolum →Long-term UV-B exposure has no effect on the ultrastructure of E. russeolum

  17. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    Science.gov (United States)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    Measurements of erythemally weighted UV irradiance (Qer) have been performed at the Meteorological Observatory of Moscow State University since 1999 with the UVB-1 YES pyranometers. These types of devices are broadband with a spectral sensitivity curve close to the action spectrum of erythema. Main uncertainties of UVB-1 YES measurements include the difference in spectral curves of the instrument and the action spectrum of erythema, as well as the deviation from the cosine law. These uncertainties were taken into account in the database of Qer measurements (Chubarova, 2008. Additional corrections of UVB-1 measurements at low ambient temperatures have been made. We analyze interannual, seasonal and diurnal Qer changes over the time period 1999-2012. In addition, the comparisons with the results of UV reconstruction model (Chubarova, 2008) are made. This model allows us to evaluate relative changes in Qer due to variations in total ozone, effective cloud amount transmission, aerosol and cloud optical thickness since 1968. It is important to note that the main reason for UV irradiance monitoring development is the strong influence of UV irradiance on the biosphere and especially on human health mainly on human skin (CIE, 1993, CIE, 2006) and eyes (Oriowo, M. et al., 2001). Based on the detailed studies we have shown the possibility of utilizing UVB-1 pyranometers for measuring the eye-damage UV radiation. Parallel measurements by the Bentham DTM-300 spectrometer and the UVB-1 YES pyranometer at the Innsbruck Medical University (Austria) have provided us the calibration factor in eye-damage units for this broadband instrument. Influence of main geophysical factors on different types of UV irradiance is estimated by means the RAF ideology (Booth, Madronich, 1994). We discuss the responses of different types of biologically active UV radiation to the impact of various atmospheric factors. The UV conditions (deficiency, optimum, excess for human) are analyzed according to

  18. The effect of UV radiation on the thermal degradation of cellulose triacetate

    International Nuclear Information System (INIS)

    The effect of UV radiation on the thermal degradation of cellulose triacetate (CTA) has been investigated. Simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been performed on CTA samples of 0.25 mm thickness. These samples were exposed to different energy fluences of UV in the range 2.3-113 kJ/cm2. The specific heat capacity, Cp, has been evaluated for unexposed and exposed CTA samples using DSC method. The results indicate that the transition temperatures, onset temperatures of evaporation, specific heat capacity and the thermal activation energy of decomposition, Ea are affected by the UV energy fluence owing to the simultaneous processes of degradation and crosslinking

  19. Radiation-Therapeutic Agent Clinical Trials: Leveraging Advantages of a National Cancer Institute Programmatic Collaboration.

    Science.gov (United States)

    Takebe, Naoko; Ahmed, Mansoor M; Vikram, Bhadrasain; Bernhard, Eric J; Zwiebel, James; Norman Coleman, C; Kunos, Charles A

    2016-10-01

    A number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing. These experimental designs should better inform next-step radiation-agent clinical trial dose, schedule, exposure, and therapeutic effect. Recognizing the need for a better strategy to develop preclinical data supporting radiation-agent phase I or II trials, the National Cancer Institute (NCI)-Cancer Therapy Evaluation Program (CTEP) and the NCI-Molecular Radiation Therapeutics Branch of the Radiation Research Program have partnered to promote earlier radiobiology studies of CTEP portfolio agents. In this Seminars in Radiation Oncology article, four key components of this effort are discussed. First, we outline steps for accessing CTEP agents for preclinical testing. Second, we propose radiobiology studies that facilitate transition from preclinical testing to early phase trial activation. Third, we navigate steps that walk through CTEP agent strategic development paths available for radiation-agent testing. Fourth, we highlight a new NCI-sponsored cooperative agreement grant supporting in vitro and in vivo radiation-CTEP agent testing that informs early phase trial designs. Throughout the article, we include contemporary examples of successful radiation-agent development initiatives.

  20. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 1

    International Nuclear Information System (INIS)

    Intensity losses of several calcium halide phosphate phosphors have been investigated as a function of the time of irradiation with near UV and X radiation. The results show that antimony-containing foreign phases increase such losses. The directly excited manganese centre emission is much more lowered than the sensitized one. Detrimental effects of the 185 nm UV radiation are observable not only in the first minutes of irradiation but also over considerably extended periods. The sensitization effect caused by irradiation in different gases depends on the phosphor, especially on the content of antimony, and can be explained by the sorption of gaseous impurities at the phosphor surface so that the diffusion of photochemical reaction products from the surface is inhibited

  1. Effects of UV radiation on the preparation of polypyrrole in the presence of hydrogen peroxide

    Science.gov (United States)

    Zhang, Shihu; Lv, Guowei; Wang, Guolong; Zhu, Kaiming; Yu, Demei; Shao, Jinyou

    2015-10-01

    Conductive polypyrrole was synthesized with hydrogen peroxide (H2O2) as the oxidant. To promote the polymerization of pyrrole, UV radiation was employed. The effects of UV radiation on the preparation of polypyrrole were investigated. The polymerization of pyrrole was conducted with the H2O2 concentration in the range of 0.12-0.96 M and the H2SO4 concentration in the range of 6.8×10-4-0.19 M. The structure characterization indicated that the product polypyrrole was overoxidized partly depending on the concentrations of H2SO4 and H2O2. The increase in H2O2 concentration led to a slight increase in the oxidation and overoxidation of polypyrrole, simultaneously. However, the increase in H2SO4 concentration effectively suppressed the overoxidation of polypyrrole. The morphology, conductivity and thermal stability of the products were also characterized.

  2. Radiation biophysicl study of biological molecules. Progress report, February 1, 1975--June 30, 1976. [Fast electrons, gamma and uv radiation, Escherichia coli, T1 and lambda bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.

    1976-01-01

    Progress is reported on the following research projects: direct action target investigation of molecular weights of enzymes exposed to fast electrons; direct action gamma radiation dosimetry with T/sub 1/ bacteriophage; uv radiation sensitivity of T/sub 1/ bacteriophage on various host strains of E. coli; temperature dependence of uv radiation direct action on dry T/sub 1/ bacteriophage; investigation of light and temperature effects during incubation of T/sub 1/ bacteriophage exposed to fast electrons; test of superoxide anion as a radiation intermediate in cellular radiobiology; uv action spectra related to error-prone repair; uv-reactivation experiments with T/sub 1/ and lambda bacteriophages; and split-dose uv mutagenesis in E. coli. (HLW)

  3. Analysis of a low ozone episode over Extremadura (Spain) in January 2006 and its influence on UV radiation

    Science.gov (United States)

    Antón, M.; Cancillo, M. L.; Serrano, A.; García, J. A.; Acero, F. J.

    2008-04-01

    The main objectives of this work are to analyze, firstly, the detail of the causes of a low ozone event which occurred in January 2006 and, secondly, the related effects of this anomalous episode on ultraviolet (UV) radiation measured at three locations in Extremadura (South-Western Spain). On 19 January 2006, the OMI total ozone column (TOC) was 16-20% below the January mean value of TOMS/NASA TOC (period 1996-2005). The back trajectories analysis with the HYSplit model indicates that the notable decrease of TOC could be attributed to a fast rise of the isentropic trajectories height. Concomitantly, UV erythemal radiation greatly increases (between 23% and 37%) on 19 January 2006 respect to UV erythemal radiation measured on 19 January 2005. This notable increase in winter UV solar radiation may involve harmful effects for organisms adapted to receive less radiation during that season (e.g. early developmental stages of terrestrial plants and phytoplankton).

  4. Impacts of UV radiation on plankton community metabolism along the Humboldt Current System

    OpenAIRE

    Godoy, N.; Canepa, A.; Lasternas, S.; Mayol, E.; Ruíz-Halpern, S.; Agustí, S.; J. C. Castilla; Duarte, C. M.

    2011-01-01

    The Humbolt Current System along the Chilean coast is one of the most productive regions in the world, where UV levels are particularly high due to stratospheric ozone depletion. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface radiation and there are concerns that this will reduce not only algal carbon fixation, but also the carbon supply for higher trophic level. Experimental estimates of community metabolism (NCP, GPP and R) and the impacts o...

  5. Sum frequency generation of UV laser radiation at 266  nm in LBO crystal.

    Science.gov (United States)

    Nikitin, D G; Byalkovskiy, O A; Vershinin, O I; Puyu, P V; Tyrtyshnyy, V A

    2016-04-01

    We report experimental results of generation at 266 nm in LBO crystal by frequency mixing of the fundamental (1064 nm) and third harmonic (355 nm) of ytterbium pulsed fiber laser radiation. Deep ultraviolet (DUV) output power of 3.3 W at 266 nm was achieved with 14% IR-to-DUV conversion efficiency. UV-induced bulk degradation of LBO crystals was observed and visualized by the dark field method. PMID:27192312

  6. Gadolinium nanoparticles and contrast agent as radiation sensitizers.

    Science.gov (United States)

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist(®) in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL(-1)), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly 'energy dependent' for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.

  7. Gadolinium nanoparticles and contrast agent as radiation sensitizers

    Science.gov (United States)

    Taupin, Florence; Flaender, Mélanie; Delorme, Rachel; Brochard, Thierry; Mayol, Jean-François; Arnaud, Josiane; Perriat, Pascal; Sancey, Lucie; Lux, François; Barth, Rolf F.; Carrière, Marie; Ravanat, Jean-Luc; Elleaume, Hélène

    2015-06-01

    The goal of the present study was to evaluate and compare the radiosensitizing properties of gadolinium nanoparticles (NPs) with the gadolinium contrast agent (GdCA) Magnevist® in order to better understand the mechanisms by which they act as radiation sensitizers. This was determined following either low energy synchrotron irradiation or high energy gamma irradiation of F98 rat glioma cells exposed to ultrasmall gadolinium NPs (GdNPs, hydrodynamic diameter of 3 nm) or GdCA. Clonogenic assays were used to quantify cell survival after irradiation in the presence of Gd using monochromatic x-rays with energies in the 25 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. Radiosensitization was demonstrated with both agents in combination with X-irradiation. At the same concentration (2.1 mg mL-1), GdNPS had a greater effect than GdCA. The maximum sensitization-enhancement ratio at 4 Gy (SER4Gy) was observed at an energy of 65 keV for both the nanoparticles and the contrast agent (2.44   ±   0.33 and 1.50   ±   0.20, for GdNPs and GdCA, respectively). At a higher energy (1.25 MeV), radiosensitization only was observed with GdNPs (1.66   ±   0.17 and 1.01   ±   0.11, for GdNPs and GdCA, respectively). The radiation dose enhancements were highly ‘energy dependent’ for both agents. Secondary-electron-emission generated after photoelectric events appeared to be the primary mechanism by which Gd contrast agents functioned as radiosensitizers. On the other hand, other biological mechanisms, such as alterations in the cell cycle may explain the enhanced radiosensitizing properties of GdNPs.

  8. Effects of Enhanced UV-B Radiation on the Activity and Expression of Alternative Oxidase in Red Kidney Bean Leaves

    Institute of Scientific and Technical Information of China (English)

    Ming-Guang Zhao; Ying-Gao Liu; Li-Xin Zhang; Lin Zheng; Yu-Rong Bi

    2007-01-01

    An increase in ultraviolet (UV) B radiation on the earth's surface is a feature of current global climate changes. It has been reported that alternative oxidase (AOX) may have a protective role against oxidative stress induced by environmental stresses, such as UV-B. To better understand the characteristic tolerance of plants to UV-B radiation, the effects of enhanced UV-B radiation on the activity and expression of AOX in red kidney bean (Phaseolus vulgaris) leaves were investigated in the present study. The results show that the total respiration rate and AOX activity in red kidney bean leaves increased significantly during treatment with enhanced UV-B. However, cytochrome oxidase (COX) activity did not change at 24 h of UV-B treatment, before dropping rapidly. Both alternative pathway content and alternative pathway activity were increased in the presence of exogenous H2O2. Immunoblotting analysis with anti-AOX monoclonal antibody revealed that expression of the AOX protein increased in red kidney bean leaves under enhanced UV-B radiation, reaching a peak at 72increase in AOX activity in red kidney bean leaves under enhanced UV-B radiation was mainly due to H2O2-induced AOX expression.

  9. Vacuum-UV radiation at 185 nm in water treatment--a review.

    Science.gov (United States)

    Zoschke, Kristin; Börnick, Hilmar; Worch, Eckhard

    2014-04-01

    The vacuum-UV radiation of water results in the in situ generation of hydroxyl radicals. Low-pressure mercury vapor lamps which emit at 185 nm are potential sources of VUV radiation. The scope of this article is to give an overview of the application of VUV radiation at 185 nm for water treatment including the transformation of inorganic and organic water constituents, and the disinfection efficiency. Another focus is on the generation of ozone by VUV radiation from oxygen or air and the application of the produced ozone in combination with VUV irradiation of water in the VUV/O3 process. The advantages and limitation of the VUV process at 185 nm as well as possible applications in water treatment are outlined.

  10. Arctic microorganisms respond more to elevated UV-B radiation than CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.; Lee, J.A. [University of Sheffield (United Kingdom). Dept. of Animal and Plant Sciences; Campbell, C.D. [The Macaulay Land Use Research Institute, Aberdeen (United Kingdom); Callaghan, T.V. [Abisko Scientific Research Station, Abisko (Sweden); Gwynn-Jones, D. [University of Wales, Aberystwyth (United Kingdom). Institute of Biological Sciences

    2002-07-01

    Surface ultraviolet-B radiation and atmospheric CO{sub 2} concentrations have increased as a result of ozone depletion and burning of fossil fuels. The effects are likely to be most apparent in polar regions where ozone holes have developed and ecosystems are particularly sensitive to disturbance. Polar plant communities are dependent on nutrient cycling by soil microorganisms, which represent a significant and highly labile portion of soil carbon (C) and nitrogen (N). It was thought that the soil microbial biomass was unlikely to be affected by exposure of their associated plant communities to increased UV-B. In contrast, increasing atmospheric CO{sub 2} concentrations were thought to have a strong effect as a result of greater below-ground C allocation. In addition, there is a growing belief that ozone depletion is of only minor environmental concern because the impacts of UV-B radiation on plant communities are often very subtle. Here we show that 5 years of exposure of a subarctic heath to enhanced UV-B radiation both alone and in combination with elevated CO{sub 2} resulted in significant changes in the C:N ratio and in the bacterial community structure of the soil microbial biomass. (author)

  11. The impact of UV-B radiation and ozone on terrestrial vegetation

    International Nuclear Information System (INIS)

    Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect

  12. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Wheat plants (Triticum aestivum L.) were exposed to two levels of UV-B radiation (ambient UV-B and high UV-B, simulating a 20% reduction in the ozone layer) under mediterranean field-growth conditions. After 4 months of UV-B treatment, total plant biomass of high UV-B plants was 18% lower compared to control plants. The decrease of biomass appears to be the result of changes in morphological and physiological processes. High UV-B treatment induces decreases in leaf area, net photosynthesis rate, transpiration rate and water use efficiency. Pigment analysis of leaf extracts showed increases in chlorophyll content and no effect on accumulation of UV-B absorbing pigments. The underlying mechanisms for these results are discussed. (author)

  13. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.)

    Energy Technology Data Exchange (ETDEWEB)

    Krywult, Marek [Department of Instrumental Analysis, Provincial Sanitary-Epidemiological Station, State Sanitary Inspection, Pradnicka 76, PL-31-202 Krakow (Poland)], E-mail: marasek2@gazeta.pl; Smykla, Jerzy [Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, PL-31-120 Krakow (Poland)], E-mail: smykla@iop.krakow.pl; Kinnunen, Heli [Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi (Finland)], E-mail: heli.kinnunen@gmail.com; Martz, Francoise [Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi (Finland)], E-mail: francoise.martz@metla.fi; Sutinen, Marja-Liisa [Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi (Finland); Department of Biology, University of Oulu, P.O. Box 3000, FI-90014 (Finland)], E-mail: marja-liisa.sutinen@metla.fi; Lakkala, Kaisa [Arctic Research Centre, Finnish Meteorological Institute (FMI-ARC), Taehtelaentie 62, FI-99600 Sodankylae (Finland)], E-mail: kaisa.lakkala@fmi.fi; Turunen, Minna [Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi (Finland)], E-mail: minna.turunen@ulapland.fi

    2008-12-15

    Needles of 20-year-old Scots pine (Pinus sylvestris L.) saplings were studied in an ultraviolet (UV) exclusion field experiment (from 2000 to 2002) in northern Finland (67 deg. N). The chambers held filters that excluded both UV-B and UV-A, excluded UV-B only, transmitted all UV (control), or lacked filters (ambient). UV-B/UV-A exclusion decreased nitrate reductase (NR) activity of 1-year-old needles of Scots pines compared to the controls. The proportion of free amino acids varied in the range 1.08-1.94% of total proteins, and was significantly higher in needles of saplings grown under UV-B/UV-A exclusion compared to the controls or UV-B exclusion. NR activity correlated with air temperature, indicating a 'chamber effect'. The study showed that both UV irradiance and increasing temperature are significant modulators of nitrogen (N) metabolism in Scots pine needles. - This research presents new information on the responses of N metabolism, particularly nitrate reductase (NR) activity, of Scots pine needles to UV radiation and temperature.

  14. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks.

    Science.gov (United States)

    Erickson, David J; Sulzberger, Barbara; Zepp, Richard G; Austin, Amy T

    2015-01-01

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solar UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This paper also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces. PMID:25380348

  15. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Beerendonk, E.F.; Medema, Gerriet Jan

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk Ass

  16. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Qin, B.; Feng, S.

    2009-01-01

    Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using 0.2

  17. Mediated modeling of the impacts of enhanced UV-B radiation on ecosystem services.

    Science.gov (United States)

    van den Belt, Marjan; Bianciotto, Oscar A; Costanza, Robert; Demers, Serge; Diaz, Susana; Ferreyra, Gustavo A; Koch, Evamaria W; Momo, Fernando R; Vernet, Maria

    2006-01-01

    This article describes the use of group model building to facilitate interaction with stakeholders, synthesize research results and assist in the development of hypotheses about climate change at the global level in relation to UV-B radiation and ecosystem service valuation. The objective was to provide a platform for integration of the various research components within a multidisciplinary research project as a basis for interaction with stakeholders with backgrounds in areas other than science. An integrated summary of the scientific findings, along with stakeholder input, was intended to produce a bridge between science and policymaking. We used a mediated modeling approach that was implemented as a pilot project in Ushuaia, Argentina. The investigation was divided into two participatory workshops: data gathering and model evaluation. Scientists and the local stakeholders supported the valuation of ecosystem services as a useful common denominator for integrating the various scientific results. The concept of economic impacts in aquatic and marsh systems was represented by values for ecosystem services altered by UV-B radiation. In addition, direct local socioeconomic impacts of enhanced UV-B radiation were modeled, using data from Ushuaia. We worked with 5 global latitudinal regions, focusing on net primary production and biomass for the marine system and on 3 plant species for the marsh system. Ecosystem service values were calculated for both sectors. The synthesis model reflects the conclusions from the literature and from experimental research at the global level. UV-B is not a significant stress for the marshes, relative to the potential impact of increases in the sea level. Enhanced UV-B favors microbial dynamics in marine systems that could cause a significant shift from primary producers to bacteria at the community level. In addition, synergetic effects of UV-B and certain pollutants potentiate the shift to heterotrophs. This may impact the oceanic

  18. Mediated modeling of the impacts of enhanced UV-B radiation on ecosystem services.

    Science.gov (United States)

    van den Belt, Marjan; Bianciotto, Oscar A; Costanza, Robert; Demers, Serge; Diaz, Susana; Ferreyra, Gustavo A; Koch, Evamaria W; Momo, Fernando R; Vernet, Maria

    2006-01-01

    This article describes the use of group model building to facilitate interaction with stakeholders, synthesize research results and assist in the development of hypotheses about climate change at the global level in relation to UV-B radiation and ecosystem service valuation. The objective was to provide a platform for integration of the various research components within a multidisciplinary research project as a basis for interaction with stakeholders with backgrounds in areas other than science. An integrated summary of the scientific findings, along with stakeholder input, was intended to produce a bridge between science and policymaking. We used a mediated modeling approach that was implemented as a pilot project in Ushuaia, Argentina. The investigation was divided into two participatory workshops: data gathering and model evaluation. Scientists and the local stakeholders supported the valuation of ecosystem services as a useful common denominator for integrating the various scientific results. The concept of economic impacts in aquatic and marsh systems was represented by values for ecosystem services altered by UV-B radiation. In addition, direct local socioeconomic impacts of enhanced UV-B radiation were modeled, using data from Ushuaia. We worked with 5 global latitudinal regions, focusing on net primary production and biomass for the marine system and on 3 plant species for the marsh system. Ecosystem service values were calculated for both sectors. The synthesis model reflects the conclusions from the literature and from experimental research at the global level. UV-B is not a significant stress for the marshes, relative to the potential impact of increases in the sea level. Enhanced UV-B favors microbial dynamics in marine systems that could cause a significant shift from primary producers to bacteria at the community level. In addition, synergetic effects of UV-B and certain pollutants potentiate the shift to heterotrophs. This may impact the oceanic

  19. Proanthocyanidins from Grape Seeds Inhibit UV Radiation- Induced Immune Suppression in Mice: Detection and Analysis of Molecular and Cellular Targets

    OpenAIRE

    Katiyar, Santosh K.

    2014-01-01

    Ultraviolet (UV) radiation-induced immunosuppression has been linked with the risk of skin carcinogenesis. Approximately, two million new cases of skin cancers, including melanoma and non-melanoma, diagnosed each year in the USA and therefore have a tremendous bad impact on public health. Dietary phytochemicals are promising options for the development of effective strategy for the prevention of photodamaging effects of UV radiation including the risk of skin cancer. Grape seed proanthocyanid...

  20. Phototransformation of membrane lipids and its role in biomembrane function change under the effect of UV-radiation

    International Nuclear Information System (INIS)

    The papers devoted to the investigation of photochemical transformations of lipid under the effect of UV radiation of biological membranes are reviewed. The mechanism of peroxide photooxidation of mebrane lipid is considered. Data on the effect of antioxidants and the structure state of membranes on the process of peroxide photooxidation of lipid are presented. The problem on the role of this process under the effect of UV-radiation on blood and skin of mammals is discussed. 48 refs.; 4 refs

  1. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.

    Science.gov (United States)

    Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti

    2016-07-01

    It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. PMID:27059814

  2. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  3. Control of phenylalanine ammonia-lyase gene promoters from pea by UV radiation

    International Nuclear Information System (INIS)

    The gene fusion system was used to study UV light-control of PS PAL1 and PS PAL2 genes encoding phenylalanine ammonia-lyase of pea. The induction of pea PAL promoters was analysed in transgenic tobacco plants. Binary plasmids (derivatives of pBI101.2 vector) containing 5' regulatory fragments of PS PAL1 and PS PAL2 linked to reporter genes (GUS, LUC) were constructed. The analyses were performed with the use of single constructs (containing one variant of PS PAL promoter and one reporter gene) and dual constructs (containing both PS PAL1 and PS PAL2 promoters connected with different reporter genes). The use of dual constructs enabled the evaluation of both PS PAL promoters activity in the same plant. The analyses of in vitro grown plants have shown that both PAL promoters are strongly induced in leaves subjected to UV radiation. In some cases, the UV-stimulated expression exceeded the exposed areas. This phenomenon was observed more often in the leaves of plants containing the PS PAL1::GUS than PS PAL2::GUS construct. Removal of boxes 2, 4, 5 from PS PAL1 promoter and deletion of its 5' end region (-339 to -1394) decreases the level of gene expression but does not eliminate its responsiveness to UV

  4. Effect of UV-radiation on track etch parameters of CR-39 plastic track detectors

    International Nuclear Information System (INIS)

    CR-39 track detectors have been irradiated with 239Pu source at nuclear physics laboratory B.H.U. Varanasi, to investigate the track recording properties of the detector. The bulk etch rate is determined by measuring the change in thickness before and after etching, and track etch rate is determined by measuring the change in track length. Other track parameters such as diameter and sensitivity of the plastic detector are also determined. Another set of CR-39 plastic detector is irradiated by 239Pu source and exposed by UV-radiation after irradiation to see the effect of UV-rays on track etches parameters. All detectors were etched in 6.25 N NaOH solution at different temperatures for different hours and all track parameters are measured by optical microscope (Olympus BH-2, magnification 600x). After etching in 6.25 N NaOH solution we see that bulk etch rate, track etch rate and track diameter increased in the case of UV-radiation exposed CR-39 plastics detectors. (author)

  5. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    Directory of Open Access Journals (Sweden)

    J. Kujanpää

    2015-05-01

    Full Text Available The surface ultraviolet (UV radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2 instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop satellites. The input total ozone product is generated by the German Aerospace Center (DLR also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3 instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT and Polar Orbiting Environmental Satellites (POES of the National Oceanic and Atmospheric Administration (NOAA in the afternoon orbit (daytime ascending node around 14:30 LT. In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis

  6. Effect of long-wave UV radiation on mouse melanoma: an in vitro and in vivo study

    OpenAIRE

    Pastila, Riikka

    2006-01-01

    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlig...

  7. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    Science.gov (United States)

    Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.

    2008-06-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  8. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-06-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model.

    Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  9. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xinzhang Z.; Zhang, Huiling L.; Jiang, Hong; Yu, Shuquan Q. [Zhejiang Agriculture and Forestry Univ., Lin' an (China). The Nurturing Station for the State Key Lab. of Subtropical Silviculture; Zhejiang Agriculture and Forestry Univ., Lin' an (China). Zhejiang Provincial Key Lab. of Carbon Cycling and Carbon Sequestration in Forest Ecosystems; Chang, Scott X. [Alberta Univ., Edmonton (Canada). Dept. of Renewable Resources; Peng, Changhui H. [Quebec Univ., Montreal (Canada). Inst. of Environment Sciences

    2012-03-15

    Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China. We conducted a field-based experiment using the litterbag method to study litter decomposition and N release under ambient and elevated (31% above ambient) UV-B radiation, using the leaf litter of two common tree species, Cinnamomum camphora and Cyclobalanopsis glauca, native to subtropical China. Elevated UV-B radiation significantly increased the decomposition rate of C. camphora and C. glauca leaf litter by 16.7% and 27.8%, respectively, and increased the N release from the decomposing litter of C. glauca but not C. camphora. Elevated UV-B radiation significantly accelerated the decomposition of litter of two native tree species and the N release from the decomposition litter of C. glauca in humid subtropical China, which has implications for soil carbon flux and forest productivity. (orig.)

  10. Comparison of radiation dosimetry for several potential myocardial imaging agents

    International Nuclear Information System (INIS)

    Although myocardial imaging is currently dominated by Tl-201, several alternative agents with improved physiologic or radionuclidic properties have been proposed. Based on human and animal studies in the literature, the metabolism of several of these compounds was studied for the purpose of generating radiation dose estimates. Dose estimates are listed for several I-123-labeled free fatty acids, an I-123-labeled phosphonium compound, Rb-82, Cu-64, F-18 FDG (all compounds which are taken up by the normal myocardium), and for Tc-99m pyrophosphate (PYP) (which localizes in myocardial infarcts). Dose estimates could not be generated for C-11 palmitate, but his compound was included in a comparison of myocardial retention times. For the I-123-labeled compounds, I-124 was included as a contaminant in generating the dose estimates. Radiation doses were lowest for Rb-82 (gonads 0.3-0.4 Gy/MBq, kidneys 8.6 Gy/MBq). Doses for the I-123-labeled fatty acids were similar to one another, with IPPA being the lowest (gonads 15 Gy/MBq, heart wall 18 Gy/MBq). Doses for Tc-99m PYP were also low (gonads 4-7 Gy/MBq, heart wall 4 Gy/MBq, skeleton 15 Gy/MBq). The desirability of these compounds is discussed briefly, considering half-life, imaging mode and energy, and dosimetry, including a comparison of the effective whole body dose equivalents. 37 references, 11 tables

  11. Impacts of UV radiation on plankton community metabolism along the Humboldt Current System

    Science.gov (United States)

    Godoy, N.; Canepa, A.; Lasternas, S.; Mayol, E.; Ruíz-Halpern, S.; Agustí, S.; Castilla, J. C.; Duarte, C. M.

    2011-06-01

    The Humbolt Current System along the Chilean coast is one of the most productive regions in the world, where UV levels are particularly high due to stratospheric ozone depletion. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface radiation and there are concerns that this will reduce not only algal carbon fixation, but also the carbon supply for higher trophic level. Experimental estimates of community metabolism (NCP, GPP and R) and the impacts of UV on community metabolism were assessed at 8 stations along the meridional track by the Humbold-2009 cruise (54.80° S-23.85° S) on board RV Hespérides from 5 to 15 March 2009. The results showed an increase UVB penetration towards the Equator, along the Humboldt Current System, suggesting a more important impact of UVB radiation towards the north. The metabolic rates observed were within average values reported for the Ocean Pacific and did not show the water mass investigated to be exceptionally productive at the time of the study. Experimental evaluation of the effect of UVB radiation on surface waters, those most strongly affected by UVB, showed that UVB radiation suppressed net community production, resulting in a dominance of heterotrophic communities in surface waters, compared to the prevalence of autotrophic communities inferred when materials, excluding UVB radiation, are used for incubation. These results show that UVB radiation, which has increased greatly in the study area, may have suppressed net community production of the plankton communities, possibly driving plankton communities in the Southwest Pacific towards CO2 sources.

  12. Impacts of UV radiation on plankton community metabolism along the Humboldt Current System

    Directory of Open Access Journals (Sweden)

    N. Godoy

    2011-06-01

    Full Text Available The Humbolt Current System along the Chilean coast is one of the most productive regions in the world, where UV levels are particularly high due to stratospheric ozone depletion. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface radiation and there are concerns that this will reduce not only algal carbon fixation, but also the carbon supply for higher trophic level. Experimental estimates of community metabolism (NCP, GPP and R and the impacts of UV on community metabolism were assessed at 8 stations along the meridional track by the Humbold-2009 cruise (54.80° S–23.85° S on board RV Hespérides from 5 to 15 March 2009. The results showed an increase UVB penetration towards the Equator, along the Humboldt Current System, suggesting a more important impact of UVB radiation towards the north. The metabolic rates observed were within average values reported for the Ocean Pacific and did not show the water mass investigated to be exceptionally productive at the time of the study. Experimental evaluation of the effect of UVB radiation on surface waters, those most strongly affected by UVB, showed that UVB radiation suppressed net community production, resulting in a dominance of heterotrophic communities in surface waters, compared to the prevalence of autotrophic communities inferred when materials, excluding UVB radiation, are used for incubation. These results show that UVB radiation, which has increased greatly in the study area, may have suppressed net community production of the plankton communities, possibly driving plankton communities in the Southwest Pacific towards CO2 sources.

  13. Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments

    OpenAIRE

    Wiencke, Christian; Roleda, Michael; Gruber, A.; Clayton, M. N.; Bischof, Kai

    2006-01-01

    1. The UV susceptibility of zoospores of the brown seaweeds Saccorhiza dermato- dea, Alaria esculenta and Laminaria digitata (Laminariales) was determined in field experiments in June 2004 on Spitsbergen (78° 55' N, 11° 56' E).2. Freshly released zoospores were exposed for one or two days at various water depths to ambient solar radiation, ambient solar radiation depleted of UVB radiation (UVBR) and ambient solar radiation depleted of both UVBR and UVAR. Subsequently, germination rates were d...

  14. Prophylactic UV Radiation and CIE Standard on Photobiological Safety of Lamps and Lamp Systems

    Science.gov (United States)

    Sarychev, Genrih; Gavrilkina, Galina

    Two aspects of UV photobiology have come up almost simultaneously for discussion. On the one hand, the CIE has, for all practical purposes, completed discussions of a new standard “CIE S 009/E: 2002 Photobiological Safety of Lamps and Lamp Systems”1), and it was adopted without any amendments. On the other hand, some national standards (for example, in Russia) have for decades insisted on UVA+UVB radiation being used for prophylactic purposes at actinic erythemal doses (around 140 J m-2 per 8 hours of irradiation), which are significantly higher than prohibitive doses of actinic UV hazard (30 J m-2) suggested in the CIE standard. It seems that this arisen situation is to be thought about more carefully.

  15. Enhanced resistance to UV-B radiation in Anabaena sp. PCC 7120 (Cyanophyceae) by repeated exposure.

    Science.gov (United States)

    Qin, Hongjie; Li, Dunhai

    2014-07-01

    In natural habitats, organisms especially phytoplankton are not always continuously subjected to ultraviolet-B radiation (UVBR). By simulation of the natural situation, the N2-fixing cyanobacterium Anabaena sp. PCC 7120 was subjected to UV-B exposure and recovery cycles. A series of morphological and physiological changes were observed in Anabaena sp. PCC 7120 under repeated UVBR when compared with controls. Such as the breakage of filaments, intervals between heterocysts, heterocyst frequency, total carbohydrate, and carotenoids were increased, while the nitrogenase activity and photosynthetic activity were inhibited by repeated UVBR; however, these activities could recover when UV-B stress was removed. Unexpectedly, the over-compensatory growth was observed at the end of the second round of exposure and recovery cycle. Our results showed that discontinuous UVBR could increase the growth rate and the tolerance as well as repair capacity of Anabaena sp. PCC 7120. These results indicate that moderate UVBR may increase the growth of cyanobacteria in natural habitats.

  16. Multilevel UV-B Attenuance : Morphological and Chemical Adaptations of Vicia faba to Ultraviolet-B Radiation

    OpenAIRE

    Meijkamp, B.B.

    2006-01-01

    Due to anthropogenic reduction of stratospheric ozone, levels of potentially harmful solar UV-B radiation (280-315 nm) have been increasing on earth during the last three decades. The main aim of this thesis was to study growth responses and morphological and chemical adaptation mechanisms to harmful UV-B radiation. Two cultivars of Vicia faba, differing in UV-B sensitivity were used as a model system. Constitutive defence mechanisms appeared to function very well; even in the sensitive cv. P...

  17. UV-radiation in the past: Reconstruction and long-term changes in Austria

    Science.gov (United States)

    Hadzimustafic, J.; Simic, S.; Fitzka, M.

    2013-05-01

    Series of daily erythemal UV-dose are reconstructed for the last 30 years of the 20th century in Austria and its changes during that period with respect to observed changes in total ozone and cloud cover discussed. The reconstruction method is based on the relationship between long-term global radiation and sunshine duration records and existing measurements of erythemal UV at several locations. Through comparison with different data sources efforts are made to assure high data quality for all input parameters. The results for reconstructed daily sums show high correlations (0.95-0.99) with observed values compared on a yearly and seasonal basis throughout the overlapping period 1998-2010. Assessed from the reconstructed data, long-term variability of erythemal UV daily dose for two time periods has been quantified (1977-1995, 1996-2010). Special emphasis is put on the investigation of changes in UV due to observed trends in clouds and sunshine duration in the Austrian Alpine regions during the last decades. The earlier period shows significant changes between +4.1 %/dec and +6.9 %/dec at six stations in Austria, mainly due to significant decreases in total ozone column of up to -3.7 %/dec. Positive significant trends of around +2%/dec are found in cloud and aerosol modification factors at most of stations along with observed positive trends in sunshine duration, being statistically significant at eastern and southern stations. In spite of ozone layer recovery since the mid 1990s, the latter period does not reveal any statistically significant changes in erythemal UV irradiation.

  18. Effect of UV-B Radiation (290-320nm) on the Nitrogen Metabolism of Several Marine Diatoms.

    Science.gov (United States)

    Döhler, G

    1985-04-01

    The marine diatoms Bellerochea yucatanensis, Biddulphia sinensis, Ditylum brightwellii, Lauderia annulata and Thalassiosira rotula were grown for 2 days under different levels of UV-B radiation (439, 717, and 1230J · m (-2) ·d(-1)). UV-B stress depressed the growth rates of all species. A low UV-B dose (439 J · m (-2) · d (-1), weighted), usually caused a slight increase in biomass production (dry weight} in comparison to nontreated cells. Enhanced UV-B reduced the dry matter productivity of all diatoms. All marine diatoms exposed to UV-B showed a diminution of protein and pigment content (chlorophyll a, chlorophyll c(1) + C(2), and carotenoids). Algae grown in 20 %o or 35 %o salt concentrations were more sensitive to UV-B radiation than those grown in 45%o. S. The effect of higher UV-B dose (717J · m (-2) · d(-1), weighted) upon the pools of free amino acids was species-dependent. Aspartate and asparagine levels were reduced in all diatoms. A marked increase in glutamine levels was found in Bellerochea, Biddulphia, Ditylum and Lauderia. Thalassiosira cells exposed to UV-B showed a significant increase in glutamate levels and a reduction of glutamine levels. (15)N and (14)C incorporation into several amino acids was reduced by exposure to UV-B. The results are discussed with reference to the inhibition of the enzymes for carbon and nitrogen metabolism. PMID:23196172

  19. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.;

    2014-01-01

    The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...... to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two...

  20. UV radiation, elevated CO2 and water stress effect on growth and photosynthetic characteristics in durum wheat

    International Nuclear Information System (INIS)

    The objective of this research was to investigate the changes in photosynthetic pigments and other physiological and biochemical traits of durum wheat exposed to ultraviolet A, B and C radiation, elevated CO2 and water stress. The results showed that carotenoids, anthocyanins, flavonoids and proline content increased significantly by decreasing ultraviolet wavelength. Elevated CO2 increased only height and specific leaf area. Water stress induced a significant increase in carotenoids, anthocyanins, flavonoids, proline and protein content. Interaction of UV-C and water stress in ambient CO2 increased UV screen pigments and proline content, while under elevated CO2 these increments were alleviated. Interaction among UV-C radiation, elevated CO2 and water stress demonstrated a significant decrease in Fv/Fm, chlorophyll, protein, carbohydrates and specific leaf area compared to control. The results of this experiment illustrate that increased UV radiation and water stress induces an increase of screen pigments and elevated CO2 prevents accumulation of these pigments

  1. 拟南芥芥子酸酯对UV-B辐射的响应%Response of sinapate esters in Arabidopsis thaliana to UV-B radiation

    Institute of Scientific and Technical Information of China (English)

    李敏; 王垠; 牟晓飞; 王洋; 阎秀峰

    2012-01-01

    芥子酸酯(sinapate esters)是拟南芥和其他十字花科植物中大量存在的一类具有紫外吸收作用的羟基肉桂酸衍生物,有研究表明其紫外吸收能力甚至强于类黄酮.以模式植物拟南芥(Arabidopsis thaliana)为实验材料,通过施加低强度(40 μW/cm2)、相对长时间(7 d)的UV-B辐射,考察了拟南芥幼苗和成苗芥子酸酯组分(芥子酰葡萄糖、芥子酰苹果酸)和含量及合成途径关键酶编码基因表达水平对UV-B辐射的响应.经过7d的UV-B辐射处理,拟南芥幼苗和成苗的芥子酰葡萄糖、芥子酰苹果酸含量均高于对照植株,芥子酸酯表现为响应UV-B辐射而积累.无论是幼苗还是成苗,叶片中芥子酰苹果酸的含量都要比芥子酰葡萄糖高出一个数量级,而且在UV-B处理过程中观察到芥子酰葡萄糖含量减少而芥子酰苹果酸含量增加,催化芥子酰葡萄糖生成芥子酰苹果酸的芥子酰葡萄糖苹果酸转移酶编码基因的表达水平也显著提高,说明芥子酰苹果酸在拟南芥叶片响应UV-B辐射过程中起重要作用并优先合成.另外,拟南芥幼苗中两种芥子酸酯的含量是成苗中的数十倍之多,芥子酸酯合成途径关键酶编码基因fah1和sng1的相对表达量也显著高于成苗.同时,在响应UV-B辐射的过程中,幼苗中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是7.01%、6.05%)远远低于成苗叶片中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是21.88%、70.63%),这可能意味着拟南芥叶片中芥子酸酯对于UV-B辐射的防护作用,幼苗属于组成型防御(constitutive defense),而到成苗则转变为诱导型防御(inducible defense).%The impact of UV-B radiation (280 to 320 nm) at the earth's surface is predicted to increase because of the anthropogenic depletion of stratospheric ozone caused by industrial emissions of atmospheric pollutants. Plant growth and productivity are compromised

  2. Effects of enhanced UV-B radiation on plant chemistry: nutritional consequences for a specialist and generalist lagomorph.

    Science.gov (United States)

    Thines, Nicole J; Shipley, Lisa A; Bassman, John H; Fellman, John K; Mattison, D Scott; Slusser, James R; Gao, Wei

    2007-05-01

    Ultraviolet-B (UV-B) radiation has been increasing in temperate latitudes in recent decades and is expected to continue rising for some time. Enhanced UV-B radiation can change plant chemistry, yet the effects of these changes on mammalian herbivores are unknown. To examine the influence of enhanced UV-B radiation on nutrition of a specialist and generalist hindgut fermenter, we measured nutritional and chemical constituents of three common North American range plants, big sagebrush (Artemisia tridentata), yarrow (Achillea millefolium), and bluebunch wheatgrass (Pseudoregneria spicata), and how these changes influenced in vitro dry matter digestibility and in vivo digestibility by pygmy rabbits (Brachylagus idahoensis) and eastern cottontails (Sylvilagus floridanus). Forages were irradiated for 3 mo with ambient (1x) or supplemental (1.6x) UV-B radiation representing a 15% ozone depletion for Pullman, WA, USA. Enhanced UV-B radiation had minimal effects on the nutritional content and the tannin-binding capacity of forages. Similarly, the terpene concentration in sagebrush and yarrow was not affected by higher UV-B irradiances. Flavonoid compounds increased in sagebrush but decreased in yarrow. Rabbit preference and intake was not affected by treatment levels for any forage species and no differences were found between treatments for dry matter, fiber, protein digestibility, and apparent digestible energy. PMID:17406969

  3. Dynamics of anthocyanin in aging of ipomea purpurea flowers treated by uv-b radiation

    OpenAIRE

    Анастасія Миколаївна Берестяна

    2014-01-01

    The dynamics of the anthocyanin content reduction in the course of aging of the Ipomoea purpureа petals, which characterizes the rate of the degradation processes in a cell, has been studied. The analysis included the impact of various UV-B radiation doses on the rate of anthocyanin age-related decomposition. The experiment proved that but one dose – 12.6 kJ/m2 contributed to the deceleration of the anthocyanin decomposition rate, within the range studied. The probable mechanisms that connect...

  4. Dynamics of anthocyanin in aging of ipomea purpurea flowers treated by uv-b radiation

    Directory of Open Access Journals (Sweden)

    Анастасія Миколаївна Берестяна

    2014-10-01

    Full Text Available The dynamics of the anthocyanin content reduction in the course of aging of the Ipomoea purpureа petals, which characterizes the rate of the degradation processes in a cell, has been studied. The analysis included the impact of various UV-B radiation doses on the rate of anthocyanin age-related decomposition. The experiment proved that but one dose – 12.6 kJ/m2 contributed to the deceleration of the anthocyanin decomposition rate, within the range studied. The probable mechanisms that connect ageing and pigment degradation are being discussed. 

  5. Different responses to UV-B enhanced solar radiation in radish and carrot

    International Nuclear Information System (INIS)

    Radish (Raphanus sativus L.) and carrot (Daucus carota L.), plants with underground storage organs grown in the field, were exposed to either ambient (UVA) or 20 % UV-B (UVE) enhanced solar radiation till their root yield stage. In radish, UVE produced a significant increase in shoot and root fresh mass (FM), increase in the contents of chlorophyll, carotenoids, flavonoids, and total proteins per unit FM, Hill reaction rate, and root yield. In contrast, carrot responded negatively to UVE showing a loss in the above parameters. (author)

  6. Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide

    Science.gov (United States)

    Anpilov, A. M.; Barkhudarov, E. M.; Bark, Yu B.; Zadiraka, Yu V.; Christofi, M.; Kozlov, Yu N.; Kossyi, I. A.; Kop'ev, V. A.; Silakov, V. P.; Taktakishvili, M. I.; Temchin, S. M.

    2001-03-01

    Results are presented from investigations of multispark electric discharge in water excited along multielectrode metal-dielectric systems with gas supply into the interelectrode gaps. The intensity distribution of discharge radiation in the region covering the biologically active soft UV (190≤λ≤430 nm) has been determined and the absolute number of quanta in this wavelength interval has been measured. The potentiality of the slipping surface discharge in water for its disinfection is analysed. The energy expenditure for water cleansing is estimated to be as low as ~10-4 kWh l-1.

  7. Antimicrobial efficacy of UV radiation on Escherichia coli O157:H7 (EDL 933) in fruit juices of different absorptivities.

    Science.gov (United States)

    Oteiza, Juan M; Peltzer, Mercedes; Gannuzzi, Leda; Zaritzky, Noemi

    2005-01-01

    The efficacy of UV light for inactivating E. coli (ATCC 25922) and E. coli O157:H7 (EDL 933) was examined in fruit juices (orange, apple, and multifruit) with different absorptivities under several operating conditions (liquid film thickness and agitation rate). The juices were inoculated with two bacterial concentrations (10(5) and 10(7) CFU/ml) and were treated using a UV desinfection unit at 254 nm; UV doses ranged from 0 to 6 J/cm2. The effect of the culture medium, tryptone soy agar (TSA) and sorbitol MacConkey agar (SMAC), on the recovery of E. coli strains exposed to UV radiation was also analyzed. The most suitable culture medium for recovery of E. coli strains in juices exposed to UV radiation was TSA. Values of D (radiation dose [joules per square centimeter] necessary to decrease the microbial population by 90%) obtained in all juices assessed were higher in TSA than in SMAC. In the juices analyzed, stirring of the medium exposed to UV radiation and reducing liquid film thickness (to 0.7 mm) produced the highest bactericidal effect. A linear relationship was found between the D-values obtained and the absorptivity coefficients for all the juices. The higher the absorbance of the medium, the greater the values of D required to inactivate E. coli strains by UV radiation. An equation was developed to describe the relationship of the fraction of energy absorbed by the system (absorbed energy factor [AEF]), the thickness of the film exposed to UV radiation, and the absorptivity coefficient of the juices. A linear relationship was found between D and AEF in the different juices tested.

  8. On the population of primordial star clusters in the presence of UV background radiation

    CERN Document Server

    MacIntyre, M A; Thomas, P A; Intyre, Michael A. Mac; Santoro, Fernando; Thomas, Peter A.

    2006-01-01

    We use the algorithm of Cole et al. (2000) to generate merger trees for the first star clusters in a Lambda CDM cosmology under an isotropic UV background radiation field, parametrized by J_21. We have investigated the problem in two ways: a global radiation background and local radiative feedback surrounding the first star clusters. Cooling in the first halos at high redshift is dominated by molecular hydrogen, H_2 - we call these Generation 1 objects. At lower redshift and higher virial temperature, T_vir > 10^4K, electron cooling dominates - we call these generation 2. Radiation fields act to photo-dissociate H_2, but also generate free electrons that can help to catalyse its production. At modest radiation levels, J_{21}/(1+z)^3 ~ 10^{-12}-10^{-7}, the nett effect is to enhance the formation of Generation 1 star-clusters. At higher fluxes the heating from photo-ionisation dominates and halts their production. With a realistic build-up of flux over time, the period of enhanced H_2 cooling is so fleeting as...

  9. Effect of ionizing (gamma and non-ionizing (UV radiation on the development of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    Tuncbilek Aydin S.

    2012-01-01

    Full Text Available The potential of using gamma and ultraviolet radiation as an alternative treatment to increase the efficiency of Trichogramma euproctidis (Girault 1911 (Hymenoptera: Trichogrammatidae was investigated in the laboratory. The developmental and adult stages of T. euproctidis were exposed to gamma radiation of different doses (0-30 Gy and ultraviolet radiation of 254 nm wavelengths (UV-C for different durations (0-10 min to assess their effect on each of the instars and their potential in breaking the developmental cycle of the egg parasitoid. The LD50 values for eggs, prepupae, pupae and adults were 8.1, 10.0, 22.7 and 9.5 Gy for gamma radiation and 9.5, 0.12, 2.0 and 11.9 min for UV radiation, respectively. The pupa and adult stages were more radioresistant to both gamma and UV radiation. The most interesting and unexpected result obtained for the prepupal stage was that UV radiation has a greater effect on prepupal stages than gamma radiation.

  10. Radiation-Therapeutic Agent Clinical Trials: Leveraging Advantages of a National Cancer Institute Programmatic Collaboration.

    Science.gov (United States)

    Takebe, Naoko; Ahmed, Mansoor M; Vikram, Bhadrasain; Bernhard, Eric J; Zwiebel, James; Norman Coleman, C; Kunos, Charles A

    2016-10-01

    A number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing. These experimental designs should better inform next-step radiation-agent clinical trial dose, schedule, exposure, and therapeutic effect. Recognizing the need for a better strategy to develop preclinical data supporting radiation-agent phase I or II trials, the National Cancer Institute (NCI)-Cancer Therapy Evaluation Program (CTEP) and the NCI-Molecular Radiation Therapeutics Branch of the Radiation Research Program have partnered to promote earlier radiobiology studies of CTEP portfolio agents. In this Seminars in Radiation Oncology article, four key components of this effort are discussed. First, we outline steps for accessing CTEP agents for preclinical testing. Second, we propose radiobiology studies that facilitate transition from preclinical testing to early phase trial activation. Third, we navigate steps that walk through CTEP agent strategic development paths available for radiation-agent testing. Fourth, we highlight a new NCI-sponsored cooperative agreement grant supporting in vitro and in vivo radiation-CTEP agent testing that informs early phase trial designs. Throughout the article, we include contemporary examples of successful radiation-agent development initiatives. PMID:27619249

  11. Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation

    International Nuclear Information System (INIS)

    Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. - Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.

  12. Luminescent emission of LiF: Mg, Ti exposed to UV radiation; Emision luminiscente del LiF: Mg, Ti expuesto a la radiacion UV

    Energy Technology Data Exchange (ETDEWEB)

    Estrada G, A. [Estudiante de Facultad de Ciencias, UNAM, Circuito Exterior, 04500 Mexico D.F. (Mexico); Castano M, V.M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, Queretaro (Mexico); Cruz Z, E.; Garcia F, F. [Instituto de Ciencias Nucleares UNAM, A.P. 70-543 Mexico D.F. (Mexico)

    2002-07-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  13. Effects of stron UV-B radiation on air chemistry and climate; Auswirkungen verstaerkter UV-B-Strahlung auf Luftchemie und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemeyer, T.; Seidl, W.; Forkel, R.; Kuhn, M.; Wehrhahn, J.; Grell, G.

    1998-07-01

    Effects of enhanced UV radiation on air chemistry, climate and climate change were investigated, and its interactions with other environmental problems like acidification of soil and surface water, reduction in the variety of species, and desertification were gone into. [German] In der vorliegenden Arbeit wurden die bisher vorliegenden Erkenntnisse ueber die Auswirkungen erhoehter UV-Strahlung infolge des Abbaus von Ozon in der Stratosphaere auf Luftchemie und Klima zusammengetragen. Die Problematik wird in ihrer ganzen Breite beleuchtet und dabei deutlich gemacht, ueber welche zahlreichen Mechanismen eine erhoehte UV-Strahlung auch zu Klimaaenderungen fuehren kann. Dies unterstreicht die Notwendigkeit, Verknuepfungen mit anderen Umweltproblemen wie der Versauerung des Bodens und von Gewaessern, der Abnahme der Artenvielfalt sowie der zunehmenden Wuestenbildung herzustellen. (orig.)

  14. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at "Evolution Canyon", Mount Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Natarajan Singaravelan

    Full Text Available BACKGROUND: Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES, 200 meters apart. Thus, solar ultraviolet radiation (UVR is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS: We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin

  15. Synthesis and evaluation of new protecting agents against ionizing radiations

    International Nuclear Information System (INIS)

    This thesis is devoted to the synthesis of new pulvinic acid derivatives and the evaluation of their antioxidant and radioprotective properties. This study has been conducted with the aim to develop new protecting agents against ionizing radiations. A new access to pulvinic acid derivatives was developed starting from L-dimethyl tartrate. It is based on a Dieckmann cyclization a dehydration and a Suzuki-Miyaura coupling. It allows a short effective preparation of various pulvinic acid derivatives: tetronic acid derivatives, mono-substituted pulvinic acid derivatives and methyl pulvinates. A modified method has been used to prepare pulvinones. This strategy gave access in four steps to the desired pulvinones. The rapidity of this method is provided by a tandem process, carried out in the final step, involving a Dieckmann cyclization and a β-elimination. A synthesis of 3-aryltetramic acids has also been developed in order to prepare nitrogen derivatives of pulvinic acid. The antioxidant activity of the prepared compounds was then evaluated using various tests: DPPH, ABTS, protection of thymidine and DNA study of lipid peroxidation. These evaluations allowed to define interesting structure-activity relationships of pulvinic derivatives. They have shown that several derivatives have very good antioxidant activities. Finally, radioprotective tests on TK6 cells and mice have have been performed on selected compounds. (author)

  16. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    Science.gov (United States)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  17. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation.

    Science.gov (United States)

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-12-30

    Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings. PMID:26223015

  18. Enhanced electrochemical oxidation of phenol by introducing ferric ions and UV radiation

    Institute of Scientific and Technical Information of China (English)

    MAO Xuhui; WEI Lin; HONG Song; ZHU Hua; LIN An; GAN Fuxing

    2008-01-01

    The mineralization of phenol in aerated electrochemical oxidation has been investigated. The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution containing ferric or ferrous ions; moreover,the reinforcement of cathodic Fenton process on the total organic carbon (TOC) removal rate of phenol is quite distinct. Among the metallic ions investigated, the ferric ion is the best catalyst for the electrochemical mineralization of phenol at initial pH 2.0, and the optimal concentration range is from 50 to 200 mg/L. The favorable pH range and supporting electrolyte (Na2SO4) concentration for mineralization of phenol in solution containing ferrous ions are 1.8-2.3 and below 0.10 mol/L, respectively. UV radiation can improve the TOC removal rate of phenol, but the enhanced effect varies in different solutions. In the solution containing ferric ions, an equal sum or synergetic effect can be observed. The optimal effect of electrolysis system under UV radiation is achieved in the solution containing 50 mg/L Fe3+ with a final removal percentage of 81.3%.

  19. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Pincel, P. Vieyra [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Jiménez-Pérez, J.L., E-mail: jimenezp@fis.cinvestav.mx [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Cruz-Orea, A. [Departamento de Física, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México, D.F. (Mexico); Correa-Pacheco, Z.N. [Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos (CEPROBI). Carr. Yautepec–Jojutla, km 6. San Isidro, C.P. 62730 Yautepec, Morelos (Mexico); Rosas, J. Hernández [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico)

    2015-04-20

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine.

  20. Low-temperature low-damage sterilization based on UV radiation through plasma immersion

    Science.gov (United States)

    Pollak, J.; Moisan, M.; Kéroack, D.; Boudam, M. K.

    2008-07-01

    This paper introduces a new type of high-frequency (HF) sustained discharge where the HF field applicator is a planar transmission line that allows us to fill with plasma a long chamber of rectangular cross-section (typically 1 m × 15 cm × 5 cm). Peculiar interesting features of this plasma source are a low gas temperature (typically below 40 °C in the 1 Torr range in argon), broadband impedance matching with no need for retuning, stability and reproducibility of the discharge (non-resonant behaviour). This type of plasma source could be useful for web processing; nonetheless, it is applied here to plasma sterilization, taking advantage of its low gas temperature to inactivate microorganisms on polymer-made medical devices to avoid damaging them. The predominant biocide species are the UV photons emitted by the discharge whereas most plasma sterilization techniques call for reactive species such as O atoms and OH molecules, which induce significant erosion damage on polymers. Polystyrene microspheres are actually observed to be erosion-free under the current plasma sterilization conditions (scanning electron micrographs have been examined). Moreover, inactivation is quite fast: 106 B. atrophaeus spores deposited on a Petri dish are inactivated in less than 1 min. Correlation of the UV radiation with the spore inactivation rate is examined by (i) considering the emitted light intensity integrated over the 112-180 nm vacuum UV (VUV) range with a photomultiplier; (ii) looking with an optical spectrometer at the emission spectrum over the 200-400 nm UV range; (iii) using absorption spectroscopy to determine the role of the VUV argon resonant lines (105 and 107 nm) on spore inactivation. It is found that the test-reference spores are mainly inactivated by VUV photons (112-180 nm) that are primarily emitted by impurities present in the argon plasma.

  1. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    Directory of Open Access Journals (Sweden)

    J. Kujanpää

    2015-10-01

    Full Text Available The surface ultraviolet (UV radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2 instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop satellites. Cloud cover is taken into account by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High-Resolution Radiometer (AVHRR/3 instrument aboard both Metop in the morning orbit and Polar Orbiting Environmental Satellites (POES of the National Oceanic and Atmospheric Administration (NOAA in the afternoon orbit. In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated ultraviolet B (UVB and ultraviolet A (UVA radiation, solar noon UV index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5°×0.5° regular latitude–longitude grid and stored as daily files in the hierarchical data format (HDF5 within 2 weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.

  2. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    Science.gov (United States)

    Kujanpää, J.; Kalakoski, N.

    2015-10-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. Cloud cover is taken into account by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High-Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit. In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast). The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated ultraviolet B (UVB) and ultraviolet A (UVA) radiation, solar noon UV index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5°×0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within 2 weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.

  3. Ameliorating effect of UV-B radiation on the response of Norway spruce and Scots pine to ambient ozone concentrations

    International Nuclear Information System (INIS)

    Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. (author)

  4. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    Science.gov (United States)

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation.

  5. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  6. On the interaction of UV-B radiation (280-315 mm) with water stress in crop plants

    International Nuclear Information System (INIS)

    Cowpea (Vigna unguiculata L. Walp.) seedlings (3-day-old) were subjected to 4 kinds of experimental treatments: (1) control without exposure to any stress (-D-UV), (2) moderate water stress with no UV-B irradiation (+D-UV), (3) no water stress but exposure to UV-B radiation (-D+UV), and (4) moderate water stress and exposure to UV-B (+D+UV). UV-B and drought stress in the combined form elicited beneficial effects on the morphological and growth characteristics, and a few additive inhibitory effects in some functional processes. An increase in the specific leaf weight (SLW) was observed in the combination of stresses, which could be a defence mechanism against UV-B. The combination of stresses promoted the synthesis of anthocyanins and phenolic compounds. The responses of plants to the combination of stresses indicate that during simultaneous exposure of plants to multiple stresses, one form of stress could minimize the damage by the other. The enhancement of superoxide dismutase (SOD) and catalase activities appear to serve as acclimation mechanisms to scavenge the toxic, free radicals of oxygen produced under stress conditions. However, the inhibition in nitrate metabolism was greater in the combined stresses than in either of the stresses imposed separately. The results of this study illustrate that the interaction of stresses during simultaneous multiple stress conditions brings out certain beneficial effects. (author)

  7. On the interaction of UV-B radiation (280-315 mm) with water stress in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Balakumar, T.; Vincent, V.H.B. (Univ of Stress Physiology and Plant Biochemistry, Dept. of Botany, The American College, Madurai (India)); Paliwal, K. (Dept. of Plant Sciences, Madurai Kamaraj Univ., Madurai (India))

    1993-01-01

    Cowpea (Vigna unguiculata L. Walp.) seedlings (3-day-old) were subjected to 4 kinds of experimental treatments: (1) control without exposure to any stress (-D-UV), (2) moderate water stress with no UV-B irradiation (+D-UV), (3) no water stress but exposure to UV-B radiation (-D+UV), and (4) moderate water stress and exposure to UV-B (+D+UV). UV-B and drought stress in the combined form elicited beneficial effects on the morphological and growth characteristics, and a few additive inhibitory effects in some functional processes. An increase in the specific leaf weight (SLW) was observed in the combination of stresses, which could be a defence mechanism against UV-B. The combination of stresses promoted the synthesis of anthocyanins and phenolic compounds. The responses of plants to the combination of stresses indicate that during simultaneous exposure of plants to multiple stresses, one form of stress could minimize the damage by the other. The enhancement of superoxide dismutase (SOD) and catalase activities appear to serve as acclimation mechanisms to scavenge the toxic, free radicals of oxygen produced under stress conditions. However, the inhibition in nitrate metabolism was greater in the combined stresses than in either of the stresses imposed separately. The results of this study illustrate that the interaction of stresses during simultaneous multiple stress conditions brings out certain beneficial effects. (au).

  8. Mouse Models for Efficacy Testing of Agents against Radiation Carcinogenesis—A Literature Review

    OpenAIRE

    Leena Rivina; Robert Schiestl

    2012-01-01

    As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best anim...

  9. KCl:Eu2+ as a solar UV-C radiation dosimeter.Optically stimulated luminescence and thermoluminescence analyses

    Institute of Scientific and Technical Information of China (English)

    I.Aguirre de Cáarcer; H.L.D'Antoni; M.Barboza-Flores; V.Correcher; F.Jaque

    2009-01-01

    The KCl:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and thertoo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature.It was found that after UV-C irradiation,OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state.In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N,700 m a.s.l.),it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCl:Eu2+ system and differentiate it from the ambient beta radiation dose.

  10. Study of cloud enhanced surface UV radiation at the atmospheric observatory of Southern Patagonia, Río Gallegos, Argentina

    Science.gov (United States)

    Wolfram, Elian A.; Salvador, Jacobo; Orte, Facundo; Bulnes, Daniela; D'Elia, Raul; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo

    2013-05-01

    Ozone and ultraviolet (UV) radiation are two important issues in the study of Earth's atmosphere. The anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole. Also clouds have been identified as the main modulator of UV amount over short time scales. While clouds can decrease direct radiation, they can produce an increase in the diffuse component, and as a consequence the surface UV radiation may be higher than during an equivalent clear sky scenario. In particular this situation can be important when a low ozone column and partially cloud coverered skies occur simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of clouds on UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly broad and moderate narrow band filter radiometers. Cloud modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under cloud-free conditions) are evaluated for the study site. CMFs higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high cloud cover occur simultaneously, producing extreme erythemal irradiance at the ground surface. Enhancements as high as 25% were registered. The maximum duration of the enhancement was around 30 minutes. This produces dangerous sunbathing conditions for the Río Gallegos citizen.

  11. AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation.

    Science.gov (United States)

    Collivignarelli, C; Sorlini, S

    2004-01-01

    In this study, the advanced oxidation with ozone and UV radiation (with two low pressure UV lamps, at 254 and 185 nm wavelength) were experimented on a surface water in order to study the removal of two odorous compounds (geosmin and 2-methylisoborneol) and a pesticide (metolachlor), the influence on organic compounds (UV absorbance and THM precursors) and bromate formation. Different batch tests were performed with ozone concentration up to 10 mg/L, UV dose up to 14,000 J/m2 and a maximum contact time of 10 minutes. The main results show that metolachlor can be efficiently removed with ozone alone while for geosmin and MIB a complete removal can be obtained with the advanced oxidation of ozone (with concentration of 1.5-3 mg/L and contact time of 2-3 minutes) with UV radiation (with doses of 5,000-6,000 J/m2). As concerns the influence on the organic precursors, all the experimented processes show a medium removal of about 20-40% for UV absorbance and 15-30% for THMFP (trihalomethanes formation potential). As concerns bromate formation, the advanced oxidation of ozone/UV 254 nm shows a bromate formation that is about 40% lower with respect to conventional oxidation with ozone.

  12. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R., E-mail: rperez@cifus.uson.mx [Universidad de Sonora, Departamento de Investigaciones en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  13. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  14. Formation of DNA lesions in cucumber cotyledons exposed to solar UV radiation

    International Nuclear Information System (INIS)

    Photoinduced lesions in DNA, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine- (6-4) -pyrimidone photoproducts [(6-4) photoproducts], in cucumbercotyledons exposed to solar radiation in Sapporo (N 43°) Okinawa (Iriomotejima is., N 24°) quantified by enzyme-linked immunosorbent assays (ELISAs) with monoclonal antibodies specific to each type of photolesion. The amount of (6-4) photoproducts increased with increasing dosage of solar radiation (photosyntheticphoton flux, PPF). In contrast, the relationship between the amount of CPDs and PPF was not clear, probably due to the higher activity of light-dependent repair of CPDs as compared with that of (6-4) photoproducts. The amount of photolesions in Okinawa tended to be greater than in Sapporo at the same PPF dose probably due to the difference of ozone layer thickness, suggesting the likely future effects on plants of the increased UV-B radiation that will be a consequence of depletion of the ozone layer. Changes in the amounts of DNA lesions were different between CPDs and (6-4) photoproducts. CPDs decreased in the evening, but any noticeable decrease in the amount of (6-4) photoproducts was not observed, probably resulting from the differences in light-dependent repair activities of these lesions in cucumber cotyledons. (author)

  15. Evidence that uv-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, R.F.; Boling, M.E.; Perdue, S.W.

    1977-01-01

    Haemophilus influenzae Rd and its derivatives are mutated either not at all or to only a very small extent by ultraviolet (uv) radiation, x rays, methyl methanesulfonate, and nitrogen mustard, though they are readily mutated by such agents as N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and nitrosocarbaryl (NC). In these respects H. influenzae Rd resembles the lexA mutants of Escherichia coli that lack the SOS or reclex uv-inducible error-prone repair system. This similarity is further brought out by the observation that chloramphenicol has little or no effect on post-replication repair after uv irradiation. In E. coli, chloramphenicol has been reported to considerably inhibit post-replication repair in the wild type but not in the lexA mutant. Earlier work has suggested that most or all the mutations induced in H. influenzae by NC result from error-prone repair. Combined treatment with NC and either x rays or uv shows that the NC error-prone repair system does not produce mutations from the lesions induced by these radiations even while it is producing them from its own lesions. It is concluded that the NC error-prone repair system or systems and the reclex error-prone system are different.

  16. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    International Nuclear Information System (INIS)

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% (open-quotes low enhancedclose quotes), or 32% (open-quotes high enhancedclose quotes) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by ∼50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ∼43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs

  17. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Demchik, S.M.; Day, T.A. [West Virginia Univ., Morgantown, WV (United States)

    1996-05-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.

  18. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Laurence A. Marchat

    2011-12-01

    Full Text Available Solar ultraviolet (UV radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.

  19. UV radiation in the water treatment. Application for the drinking industry; Radiacion ultravioleta en el tratamiento de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Natta March, J. M.; Frontera Frau, F.

    2000-07-01

    The disinfection is one of the basic matters in the treatment of drinking water. The systematic use of chemical substances (chlorine and its by-products) and the recent use of UV radiation have both reduced, in an spectacular way, the existence of microorganisms in bottled waters and in waters for industrial use. The aim of this article is to show, in a general way, the mechanism of behaviour of the UV radiation and, at the same time, to point out the advantages and disadvantages of this technique for the drinking industry. (Author) 8 refs.

  20. Rapid induction of omega-3 fatty acids (EPA) in Nannochloropsis sp. by UV-C radiation.

    Science.gov (United States)

    Sharma, Kalpesh; Schenk, Peer M

    2015-06-01

    Omega-3 fatty acids, such as eicosapentaenoic acid (EPA), provide substantial health benefits. As global fish stocks are declining and in some cases are contaminated with heavy metals, there is a need to find more sustainable land-based sources of these essential fatty acids. The oleaginous microalga Nannochloropsis sp. has been identified as a highly efficient producer of omega-3 fatty acids. In this study, we present a new process to rapidly induce biosynthesis of essential fatty acids, including EPA in Nannochloropsis sp. BR2. Short exposure to UV-C at a dose of 100 or 250 mJ/cm(2) led to a significant increase in total cellular lipid contents when compared to mock-treated controls. A low dosage of 100 mJ/cm(2) also led to a twofold increase in total EPA content within 24 h that constituted 30% of total fatty acids and up to 12% of total dry weight at higher dosages. UV-C radiation may find uses as an easily applicable external inducer for large-scale production of omega-3 production from microalgae.

  1. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M dwarfs

    CERN Document Server

    Rugheimer, S; Segura, A; Linsky, J; Mohanty, S

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with $T_{eff}$ = 2300K to $T_{eff}$ = 3800K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1AU equivalent distance and show spectra from the VIS to IR (0.4$\\mu$m - 20$\\mu$m) to compare detectability of features in different wavelength ranges with JWST and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely: H$_2$O, O$_3$, CH$_4$, N$_2$O and CH$_3$Cl. To observe signatures of life - O$_2$/O$_3$ in combination with reducing species like CH$_4$, we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O$_2$ spectral feature at 0.76$\\mu$m is increasingly difficult to detect in reflected light of later M dwarfs due to low stellar flux in ...

  2. Studies on the kinetics of gel formation in polyurethane acrylate cured by UV-radiation

    International Nuclear Information System (INIS)

    In this paper, the kinetics of gel formation in polyurethane acrylate initiated by UV-radiation was investigated with the help of IR spectra, in which benzophenone/benzoic ethyl ether was a mixed photo sensitizer. The reaction degrees of double-bonds changing at 1408 cm-1 of acrylates in IR were detected in the different UV exposure time. The relationship between reaction degree Pc-c = 0.325 t0.135. After a critical geloint, the reaction degrees of double-bonds existed: Pc=c (gel) > Pc=c > Pc=c(sol) and besides there was a distributional relation between gel and sol fractions in the whole processing. The critical gel point was obtained with the extrapolation method, and its experimental gel point and the theoretical modeling one were quite close to each other. The experimental curves of Pc=c, Pc=c(gel) and Pc=c(sol) functions related to gel fractions were in fairly good agreement with their theoretical modeling ones in both shape and tendency

  3. Radiation and a dynamical UV/IR connection in AdS/CFT

    CERN Document Server

    Agon, Cesar A; Pedraza, Juan F

    2014-01-01

    We compute holographically the expectation value of the energy density sourced, in a strongly-coupled CFT, by a quark with large but finite mass (or equivalently, small but finite Compton radius) undergoing arbitrary motion. The resulting gluonic profile has two surprising features in the far region. First, besides the expected radiation, it contains a component that is attributable to the `intrinsic' or `near' field of the quark, and nevertheless falls off as the square of the distance. Second, even at distances much larger than the size of the quark, it differs from the profile set up by a pointlike quark. We explain how this second feature provides a useful case study for the UV/IR connection in a dynamical setting. We also examine some specific sample trajectories, including uniform circular motion and harmonic oscillation, where features such as the extent of the region with negative energy are found to vary with the quark mass.

  4. Neural Network on Photodegradation of Octylphenol using Natural and Artificial UV Radiation

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2011-09-01

    Full Text Available The present paper comes up with an experimental design meant to point out the factors interferingin octylphenol’s degradation in surface waters under solar radiation, underlining each factor’sinfluence on the process observable (concentration of p-octylphenol. Multiple linear regressionanalysis and artificial neural network (Multi-Layer Perceptron type were applied in order to obtaina mathematical model capable to explain the action of UV-light upon synthetic solutions of OP inultra-pure water (MilliQ type. Neural network proves to be the most efficient method in predictingthe evolution of OP concentration during photodegradation process. Thus, determination in neuralnetwork’s case has almost double value versus the regression analysis.

  5. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  6. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m2) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m2 of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana

  7. Aerosol radiative forcing efficiency in the UV-B region over central Argentina

    Science.gov (United States)

    Palancar, Gustavo G.; Olcese, Luis E.; Lanzaco, Bethania L.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2016-07-01

    AEROSOL Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer (MODIS) and global UV-B (280-315 nm) irradiance measurements and calculations were combined to investigate the effects of aerosol loading on the ultraviolet B radiation (UV-B) reaching the surface under cloudless conditions in Córdoba, Argentina. The aerosol radiative forcing (ARF) and the aerosol forcing efficiency (ARFE) were calculated for an extended period of time (2000-2013) at a ground-based monitoring site affected by different types and loading of aerosols. The ARFE was evaluated by using the aerosol optical depth (AOD) at 340 nm retrieved by AERONET at the Cordoba CETT site. The individual and combined effects of the single scattering albedo (SSA) and the solar zenith angle (SZA) on the ARFE were also analyzed. In addition, and for comparison purposes, the MODIS AOD at 550 nm was used as input in a machine learning method to better characterize the aerosol load at 340 nm and evaluate the ARFE retrieved from AOD satellite measurements. The ARFE at the surface calculated using AOD data from AERONET ranged from (-0.11 ± 0.01) to (-1.76 ± 0.20) Wm-2 with an average of -0.61 Wm-2; however, when using AOD data from MODIS (TERRA/AQUA satellites), it ranged from (-0.22 ± 0.03) to (-0.65 ± 0.07) Wm-2 with an average value of -0.43 Wm-2. At the same SZA and SSA, the maximum difference between ground and satellite-based was 0.22 Wm-2.

  8. Effect of UV-B radiation (290-320 nm) on the nitrogen metabolism of several marine diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Doehler, G.

    1985-01-01

    The marine diatoms Bellerochea yucatanensis, Biddulphia sinensis, Ditylum brightwellii, Lauderia annulata and Thalassiosira rotula were grown for 2 days under different levels of UV-B radiation (439, 717, and 1230 J . m/sup -2/ . d/sup -1/). UV-B stress depressed the growth rates of all species. A low UV-B dose (439 J . m/sup -2/ . d/sup -1/, weighted), usually caused a slight increase in biomass production (dry weight) in comparison to nontreated cells. Enhanced UV-B reduced the dry matter productivity of all diatoms. All marine diatoms exposed to UV-B showed a diminution of protein and pigment content (chlorophyll a, chlorophyll c/sub 1/ + c/sub 2/, and carotenoids). Algae grown in 20per mille or 35per mille salt concentrations were more sensitive to UV-B radiation than those grown in 45per mille S. The effect of higher UV-B dose (717 J . m/sup -2/ . d/sup -1/, weighted) upon the pools of free amino acids was species-dependent. Aspartate and asparagine levels were reduced in all diatoms. A marked increase in glutamine levels was found in Bellerochea, Biddulphia, Ditylum and Lauderia. Thalassiosira cells exposed to UV-B showed a significant increase in glutamate levels and a reduction of glutamine levels. /sup 15/N and /sup 14/C incorporation into several amino acids was reduced by exposure to UV-B. The results are discussed with reference to the inhibition of the enzymes for carbon and nitrogen metabolism.

  9. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  10. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of 0.15 W/m2 and 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3-, inhibited activity of some key nitrogen-metabolism-related enzymes such as nitrate reductase (NR) related to the nitrate reduction, as well as glutamine systhetase (GS) and glutamine synthase (GOGAT) related to the ammonia assimilation while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low one. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  11. Role of the UV external radiation field on the presence of astrophysical ices in protostellars environments

    Science.gov (United States)

    Robson Monteiro Rocha, Will; Pilling, Sergio

    2016-07-01

    The astrophysical ices survival is directly related with the temperature and ionizing radiation field in protostellars environments such as disks and envelopes. Computational models has shown that pure volatile molecules like CO and CH _{4} should survive only inside densest regions of molecular clouds or protoplanetary disks On the other hand, solid molecules such as H _{2}O and CH _{3}OH can be placed around 5 - 10 AU from the central protostar. Unlike of the previous models, we investigate the role of the UV external radiation field on the presence of ices in disks and envelopes. Once that a star-forming region is composed by the formation of many protostars, the external radiation field should be an important component to understand the real localization of the ices along the sight line. To address this topic it was employed the radiative transfer code RADMC-3D based on the Monte Carlo method. The code was used to model the spectrum and the near-infrared image of Elias 29. The initial parameters of the disk and envelope was taken from our previous paper (Rocha & Pilling (2015), ApJ 803:18). The opacities of the ices were calculated from the complex refractive index obtained at laboratory experiments perfomed at Grand Accélerateur National d'Íons Lourds (GANIL), by using the NKABS code from Rocha & Pilling (2014), SAA 123:436. The partial conclusions that we have obtained shows that pure CO volatile molecule cannot be placed at disk or envelope of Elias 29, unlike shown in our paper about Elias 29. Once it was observed in Elias 29 spectrum obtained with Infrared Space Observatory (ISO) between 2.5 - 190 μm, this molecule should be placed in foreground molecular clouds or trapped in the water ice matrix. The next calculations will be able to show where are placed the ices such as CH _{3}OH and CH _{3}CHO observed in Elias 29 spectrum.

  12. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment.

  13. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. PMID:27343876

  14. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens

    International Nuclear Information System (INIS)

    Protecting human skin against harmful UV-B radiation coming from the sun is currently a problem. Due to the decreased thickness of the ozone layer, a more dangerous amount of UV-B light reaches the surface of our planet. This causes increased frequency of skin diseases. Titanium dioxide (TiO2) fine particles are embedded with sunscreens into the skin to effectively attenuate UV-B radiation. This study evaluates the most appropriate size of such particles assuming they are spheres. The distribution of TiO2 particles within the skin, achieved with topically applied sunscreens, is determined experimentally by the tape-stripping technique. Computer code implementing the Monte Carlo method is used to simulate photon migration within the plain 20 μm thick horny layer matrix partially filled with nano-sized TiO2 particles. Dependences of harmful UV-B radiation of 307-311 nm absorbed by, backscattered from and transmitted through the horny layer on the concentration of TiO2 particles are obtained and analysed. As a result, particles of 62 nm are found to be the most effective in protecting skin against UV-B light

  15. P1 Epigenetic Regulation in Leaves of High Altitude Maize Landraces: Effect of UV-B Radiation

    Science.gov (United States)

    Rius, Sebastián P.; Emiliani, Julia; Casati, Paula

    2016-01-01

    P1 is a R2R3-MYB transcription factor that regulates the accumulation of a specific group of flavonoids in maize floral tissues, such as flavones and phlobaphenes. P1 is also highly expressed in leaves of maize landraces adapted to high altitudes and higher levels of UV-B radiation. In this work, we analyzed the epigenetic regulation of the P1 gene by UV-B in leaves of different maize landraces. Our results demonstrate that DNA methylation in the P1 proximal promoter, intron1 and intron2 is decreased by UV-B in all lines analyzed; however, the basal DNA methylation levels are lower in the landraces than in B73, a low altitude inbred line. DNA demethylation by UV-B is accompanied by a decrease in H3 methylation at Lys 9 and 27, and by an increase in H3 acetylation. smRNAs complementary to specific regions of the proximal promoter and of intron 2 3′ end are also decreased by UV-B; interestingly, P1 smRNA levels are lower in the landraces than in B73 both under control conditions and after UV-B exposure, suggesting that smRNAs regulate P1 expression by UV-B in maize leaves. Finally, we investigated if different P1 targets in flower tissues are also regulated by this transcription factor in response to UV-B. Some targets analyzed show an induction in maize landraces in response to UV-B, with higher basal expression levels in the landraces than in B73; however, not all the transcripts analyzed were found to be regulated by UV-B in leaves. PMID:27148340

  16. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    Science.gov (United States)

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-01

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms.

  17. The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. 3. Leaf optical properties, pigments, stomatal index and epidermal cell density

    International Nuclear Information System (INIS)

    Seedlings of Vicia faba L. (cv. Minica) were grown in a factorial experiment in a greenhouse. The purpose of the study was to determine whether CO2 enrichment and supplemental UV-B radiation affect leaf optical properties and whether the combined effects differ from single factor effects. Seedlings were grown at either 380 μmol mol-1 or 750 μmol mol-1 CO2 and at four levels of UV-B radiation. After 20 and 40 days of treatment, absorptance, transmittance and reflectance of photosynthetically active radiation (PAR) were measured on the youngest fully developed leaf. On the same leaf, the specific leaf area on a fresh weight basis (SLAfw), chlorophyll content, UV-B absorbance, transmittance of UV light and stomatal index were measured. UV-B radiation significantly increased PAR absorptance and decreased PAR transmittance. The increased PAR absorptance can be explained by an increased chlorophyll content in response to UV-B radiation. Leaf transmittance of UV radiation decreased with increasing UV-B levels mainly caused by increased absorbance of UV absorbing compounds. UV-B radiation decreased both the stomatal density and epidermal cell density of the abaxial leaf surface, leaving the stomatal index unchanged. Effects of CO2 enrichment were less pronounced than those of UV-B radiation. The most important CO2 effect was an increase in stomatal density and epidermal cell density of the adaxial leaf surface. The stomatal index was not affected. No interaction between CO2 and UV-B radiation was found. The results are discussed in relation to the internal light environment of the leaf. (author)

  18. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    Science.gov (United States)

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-03-01

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  19. PTTL method applied to UV radiation detection during refractive surgery using excimer laser

    International Nuclear Information System (INIS)

    The method of photo-transferred thermoluminescence (PTTL), using CaSO4:Dy pellets produced at IPEN as sensitive material, was used to detect the spread laser radiation inside the surgery room during refractive surgical procedures using ArF excimer lasers. The purpose of this work was to study the viability of performing the ultraviolet radiation (UVR) exposure detection of patients and the hospital's surgical staff during a refractive surgery. The CaSO4:Dy pellets were positioned at different distances from the laser source inside the surgery room: patient's (≅0.15 m), surgeon's (≅0.5 m) and nurse's (≅1.0 m) foreheads, lateral (≅1.5 m) and back (≅4.0 m) walls. The measurements of PTTL were carried out at two different conditions: five surgeries, each one taking ∼10 min, and during a period of 4 h (cumulative), when several operations were performed. The detectors positioned as far as 4.0 m from the UV laser source were sensitised, making the UVR detection feasible at large source-detector distances. The absorbed energy was detected in the range from 40 μJ to 30 mJ during a surgery. This result indicates that the method studied can be used to detect the spread UVR. (authors)

  20. Protein deposition on field-emitter tips and its removal by UV radiation

    Science.gov (United States)

    Panitz, J. A.; Giaever, I.

    1980-07-01

    Protein deposition on field-emitter tips has been examined using Transmission Electron Microscopy to view the protein coated tip profile. A single layer of adsorbed protein is barely if at all detectable, but double and triple layers produced by the immunologic reaction can be directly observed. As a result, the thickness and morphology of antigen-antibody layers has been directly observed for the first time. Tips exposed first to Bovine Serum Albumin (BSA) and then to anti-BSA rabbit serum are covered with a reasonably uniform, double protein layer ≈130 Å thick. This layer can be built-up to a triple layer ≈275 Å thick by additional exposure to anti-rabbit IgG goat serum. Surface tension forces during the drying process which follows protein deposition appear to affect the thickness and morphology of the protein layers. The oxidation and subsequent change in the morphology of a protein layer exposed to ultraviolet radiation has also been observed using TEM. The destruction of a triple protein layer at a rate of ≈0.5 Å/s is observed for tungsten tips exposed to ≈6 W of UV radiation from a high-pressure mercury arc in laboratory ambient. These results are compared to those obtained from a simple, visual test for protein layer adsorption in which submonolayer coverages of protein can be detected with the unaided eye.

  1. Potential of Ozone Formation by the Smog Mechanism to shield the surface of the Early Earth from UV radiation?

    CERN Document Server

    Grenfell, J L; Patzer, B; Titz, R; Rauer, H; Grenfell, John Lee; Stracke, Barbara; Patzer, Beate; Titz, Ruth; Rauer, Heike

    2006-01-01

    We propose that the photochemical smog mechanism produced substantial ozone (O3) in the troposphere during the Proterozoic, which contributed to ultraviolet (UV) radiation shielding hence favoured the establishment of life. The smog mechanism is well-established and is associated with pollution hazes which sometimes cover modern cities. The mechanism proceeds via the oxidation of volatile organic compounds (VOCs) such as methane (CH4) in the presence of UV radiation and nitrogen oxides (NOx). It would have been particularly favoured during the Proterozoic given the high levels of CH4 (up to 1000 ppm) recently suggested. Proterozoic UV levels on the surface of the Earth were generally higher compared with today, which would also have favoured the mechanism. On the other hand, Proterozoic O2 required in the final step of the smog mechanism to form O3 was less abundant compared with present times. Further, results are sensitive to Proterozoic NOx concentrations, which are challenging to predict, since they depen...

  2. The nopaline synthase (nos) promoter is inducible by UV-B radiation through a pathway dependent on reactive oxygen species

    International Nuclear Information System (INIS)

    The molecular mechanism of plant response to UV-B radiation was studied using the nopaline synthase (nos) promoter, which has been shown to be inducible by methyl jasmonate (MJ) and reactive oxygen species (ROS). In the leaves of transgenic tobacco (Nicotiana tabacum L.) plants that carried a fusion between the nos promoter and the chloramphenicol acetyltransferase (cat) gene, 2 h of UV-B treatment resulted in a transient increase in the level of cat mRNA, a maximum being reached at 6 h after the UV-B treatment. It was also found that MJ and UV-B enhance nos promoter expression via separate pathways. Diethyldithiocarbamic acid, a potent inhibitor of jasmonate production, had little effect on UV-B stimulation of the nos promoter. In contrast, antioxidants, such as dimethylthiourea, reduced glutathione, cysteine, N-acetylcysteine and DTT, blocked UV-B induction of the nos promoter, but did not affect MJ induction of the nos promoter. These results suggest that UV-B induction of the nos promoter is mediated via a pathway that requires reactive oxygen species and is distinct from the jasmonate or MJ mediating pathway. (author)

  3. Effects of Reducing the Ambient UV-B Radiation in the High Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian; Ro-Poulsen, Helge; Mikkelsen, Teis Nørgaard;

    2005-01-01

    Effects of reducing the ambient UV-B radiation on gas exchange and chlorophyll fluores-cence of two dwarf shrub species, Salix arctica and Vaccinium uliginosum, was studied in a high arctic heath in North East Greenland during two growing seasons. Films (Mylar, transmitting ¿ > 320 nm, and Lexan...

  4. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    Science.gov (United States)

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  5. Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, K.R.; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard;

    2005-01-01

    Effects of reducing the ambient UV-B radiation on gas exchange and chlorophyll fluores-cence of two dwarf shrub species, Salix arctica and Vaccinium uliginosum, was studied in a high arctic heath in North East Greenland during two growing seasons. Films (Mylar, transmitting λ > 320 nm, and Lexan,...

  6. Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores : implications for depth zonation

    NARCIS (Netherlands)

    Wiencke, C; Gomez, [No Value; Pakker, H; Flores-Moya, A; Altamirano, M; Hanelt, D; Bischof, K; Figueroa, FL

    2000-01-01

    Measurements of photosynthesis, germination capacity and assessment of DNA damage were carried out in the laboratory to determine the effect of different conditions of ultraviolet (UV) and photosynthetically active radiation (PAR) on zoospores of various large brown algae collected on Spitsbergen (S

  7. Changes of proteins in the Antarctic ice microalga Chlamydomonas sp. cultured under UV-B radiation stress

    Institute of Scientific and Technical Information of China (English)

    KAN Guangfeng; MIAO Jinlai; SHI Cuijuan; LI Guangyou

    2006-01-01

    Antarctic ice microalga Chlamydomonas sp. can thrive undisturbed under high UV radiation in the Antarctic ice layer. However, it is unknown that the initial adaptation mechanisms in protein level occurring in response to high UV radiation. Global-expression profiling of proteins in response to stress was analyzed by two-dimensional electrophoresis (2-DE) and image analysis. In the 2-DE analysis,protein preparation is the key step. Three different protein extract methods were compared, and the results showed that the trichloroacetic acid (TCA)-acetone fractional precipitation method was the fittest one. At the same time, the proteins in Chlamydomonas sp. were compared in 2-DE way, and the synthesis of seven protein spots was found disappeared and 18 decreased after exposed to UV-B radiation. In addition, 14 protein spots were enhanced or induced, among which two new peptides (20 and 21 kDa) appeared whose isoelectric point (pI) was 7.05 and 4.60 respectively. These changed proteins might act as key role in the acclimation of Antarctic ice microalga to UV-B radiation

  8. Multilevel UV-B Attenuance : Morphological and Chemical Adaptations of Vicia faba to Ultraviolet-B Radiation

    NARCIS (Netherlands)

    Meijkamp, B.B.

    2006-01-01

    Due to anthropogenic reduction of stratospheric ozone, levels of potentially harmful solar UV-B radiation (280-315 nm) have been increasing on earth during the last three decades. The main aim of this thesis was to study growth responses and morphological and chemical adaptation mechanisms to harmf

  9. Dependence of biologically active UV radiation on the atmospheric ozone in 2000 - 2001 over Stara Zagora, Bulgaria

    International Nuclear Information System (INIS)

    This study investigates how the changes in simultaneously measured ozone columns influence the biologically active UV irradiance. Spectral ground-based measurements of direct solar ultraviolet radiation performed at Stara Zagora (42oN, 25oE), Bulgaria in 2000 - 2001 are used in conjunction with the total ozone content to investigate the relation to the biologically active UV radiation, depending on the solar zenith angle (SZA) and the ozone. The device measures the direct solar radiation in the range 290 - 360 nm at 1 nm resolution. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval between 290 and 330 nm of the UV solar spectrum weighted with an action spectrum, typical of each effect. For estimation of the sensitivity of biological doses to the atmospheric ozone we calculate the radiation amplification factor (RAF) defined as the percentage increase in the column amount of the atmospheric ozone. The biological doses increase significantly with the decrease of the SZA. The doses of SZA=20o are about three times larger than doses at SZA=50o. The RAF derived from our spectral measurements shows an increase of RAF along with the decreasing ozone. For example, the ozone reduction by 1% increases the erythemal dose by about 2%. (authors)

  10. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats.

    Science.gov (United States)

    Nybakken, Line; Solhaug, Knut Asbjørn; Bilger, Wolfgang; Gauslaa, Yngvar

    2004-07-01

    This study reports UV screening pigments in the upper cortices of two widespread lichens collected in three sun-exposed locations along a latitudinal gradient from the Arctic lowland to alpine sites of the Central European Alps. Populations from the Alps receive 3-5 times higher UV-B irradiance than their Arctic counterparts from Svalbard because of latitudinal and altitudinal gradients in UV-B irradiance. In Cetraria islandica, the screening capacity of melanin in the upper cortices was assessed by direct measurements of cortical transmittance (250-1,000 nm). A comparison of cortical transmittances in brown sun-exposed and pale shade-adapted forest C. islandica thalli showed that fungal melanins strongly absorb both UV-B and photosynthetically active radiation (PAR). For Xanthoria elegans cortical UV-B absorbing pigments, mainly the orange parietin, were extracted and quantified. Field experiments with extracted, parietin-deficient X. elegans thalli cultivated under various filters showed that UV-B was essential for the induction of parietin synthesis. The parietin resynthesis in these parietin-deficient samples increased with decreasing latitude of their location in which they had been sampled, which may imply that the synthesis of pigments is habitat specific. However, no latitudinal gradient in cortical screening capacity was detected for any of the two species investigated in the field. This implies that Arctic populations maintain a high level of screening pigments in spite of low ambient UV-B, and that the studied lichen species presumably may tolerate an increase in UV-B radiation due to the predicted thinning of the ozone layer over polar areas.

  11. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    Science.gov (United States)

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Introducción: La radiación ultravioleta tipo C (UV-C) presenta mayor energía y es menos estudiada que la radiación UV-B, debido a que se considera que es totalmente absorbida por la capa de ozono. Sin embargo, la radiación UV-C artificial es capaz de generar diversas modificaciones en las plantas. Dado que la exposición a UV-C por intervalos de tiempo cortos incrementa la concentración de compuestos antioxidantes, mejorando la apariencia y vida de anaquel de los productos, su potencial aplicación en tratamientos poscosecha para modificar el contenido antioxidante de plantas medicinales, como la damiana (Turnera diffusa), es novedoso y relevante. Objetivo: Determinar el efecto de la radiación UV-C sobre las defensas antioxidantes enzimáticas y no enzimáticas, así como en los niveles de daño oxidativo de damiana (Turnera diffusa) in vitro. Resultados: La radiación UV-C disminuyó la actividad de las enzimas superóxido dismutasa (SOD, EC 1.15.1.1) y peroxidasas totales (POX, CE 1.11.1), la concentración de clorofila (a y b), carotenos, vitamina C y la capacidad antioxidante total, e incrementó el contenido de compuestos fenólicos en damiana. La disminución de las defensas antioxidantes fue mayor en plantas de damiana expuestas a dosis más altas de UV-C o por períodos más largos. Estos resultados sugieren que la radiación UV-C induce estrés oxidativo, evidenciado por el incremento del contenido de carbonilos proteicos y el contenido de compuestos fenólicos en damiana (T. diffusa). Conclusión: Dosis bajas y menor exposición a UV-C estimulan la síntesis de compuestos fenólicos en damiana. Por ello, tratamientos controlados con UV-C podrían emplearse como tratamientos poscosecha para incrementar el contenido de compuestos fenólicos en plantas de damiana.

  12. UV-B辐射对马尾松凋落叶分解和养分释放的影响%Effect of UV-B radiation on the leaf litter decomposition and nutrient release of Pinus massoniana

    Institute of Scientific and Technical Information of China (English)

    宋新章; 张慧玲; 江洪; 余树全; 张智婷

    2011-01-01

    Ultraviolet-B radiation (UV-B, 280- 315 nm) reaching the earth's surface has been increasing due to stratospheric ozone depletion during the last several decades.Elevated UV-B radiation influenced ecosystem properties and functional processes such as plant litter decomposition and the subsequent nutrient release.As a key process in nutrient and carbon cycling of terrestrial ecosystems, plant litter decomposition converts the products of photosynthesis to inorganic compounds, representing one of the primary sources of nutrients for plants, and both nutrients and energy for microbes.At the same time, stable soil organic matter is formed as part of the litter decomposition processes.Therefore, UV-B induced changes in litter decomposition could profoundly influence primary production, carbon storage, and carbon and nutrient fluxes between the soil and atmosphere.UV-B radiation has direct and indirect effects on plant litter decomposition.Direct effects of UV-B radiation result from UV-B exposure during litter decomposition while indirect effects are caused by UV-B exposure during plant growth that changes the litter quality and the subsequent decomposition of the litter.Elevated UV-B radiation may directly increase litter decomposition via enhanced lignin photodegradation or decrease litter decomposition through reducing the abundance and altering the community composition of decomposers, as well as indirectly accelerate or slow the rate of decomposition through changing the litter chemistry during plant growth, even though some studies have found no pronounced indirect effects.Currently, the majority of decomposition studies on the effect of elevated UV-B radiation focused on the indirect effects on the chemical composition and decomposition of herbaceous plant leaf litter.In contrast, the direct effect of UV-B radiation on the decomposition of and nutrient release from leaf litter of woody plants has been less studied.Providing supplemental UV-B radiation with UV

  13. Effects of Contamination, UV Radiation, and Atomic Oxygen on ISS Thermal Control Materials

    Science.gov (United States)

    Visentine, Jim; Finckenor, Miria; Zwiener, Jim; Munafo, Paul (Technical Monitor)

    2001-01-01

    Thermal control surfaces on the International Space Station (ISS) have been tailored for optimum optical properties. The space environment, particularly contamination, ultraviolet (UV) radiation, and atomic oxygen (AO) may have a detrimental effect on these optical properties. These effects must be quantified for modeling and planning. Also of interest was the effect of porosity on the reaction to simulated space environment. Five materials were chosen for this study based on their use on ISS. The thermal control materials were Z-93 white coating, silverized Teflon, chromic acid anodized aluminum, sulfuric acid anodized aluminum, and 7075-T6 aluminum. Some of the samples were exposed to RTV 560 silicone; others were exposed to Tefzel offgassing products. Two samples of Z-93 were not exposed to contamination as clean "controls". VUV radiation was used to photo-fix the contaminant to the material surface, then the samples were exposed to AO. All samples were exposed to 1000 equivalent sun-hours (ESH) of vacuum ultraviolet radiation (VUV) at the AZ Technology facility and a minimum of 1.5 x 10(exp 20) atoms/sq cm of AO at Marshall Space Flight Center. Half of the samples were exposed to an additional 2000 ESH of VUV at Huntington Beach prior to sent to AZ Technology. Darkening of the Z-93 white coating was noted after VUV exposure. AO exposure did bleach the Z-93 but not back to its original brightness. Solar absorptance curves show the degradation due to contamination and VUV and the recovery with AO exposure. More bleaching was noted on the Tefzel-contaminated samples than with the RTV-contaminated samples.

  14. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    Highlights: • We describe Δ(dinB-yafN)883(::kan), a novel dinB allele, referred to as ΔdinB883, a deletion that sensitizes E. coli cells to UV irradiation. • This UV radiation sensitivity is most acute in the early logarithmic phase of culture growth. • This UV radiation sensitivity is completely dependent upon a functional umuDC operon. • Sequencing reveals ΔdinB883 retains the proximal 161 nucleotides, i.e., 54 amino acids, of the wild-type sequence. • The ΔdinB883 mutant is hypothesized to produce a peptide of 83 amino acids, DinB883, that compromises UmuDC function. - Abstract: The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvr

  15. Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation

    International Nuclear Information System (INIS)

    Using the third harmonic of a cw titanium:sapphire laser, the hyperfine structure (HFS) and isotope shift (IS) of three deep-UV transitions of neutral Yb have been measured for the first time. By exploiting the angular distribution of fluorescence radiation, accurate and complete results are obtained for the HFS and IS of the 398.8 nm transition of Yb. From the measured data, normal and specific mass shift as well as field shift values for all transitions considered have been derived. (author)

  16. Effect of UV Radiation and Evaluated CO2 on Morphological Traits, Yield and Yield Components of Canola (Brassica napus L. Grown under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Hamid Reza TOHIDI MOGHADAM

    2011-05-01

    Full Text Available In this study, we studied the combined effects of UV radiation, CO2 and water stress on the morphological traits, yield and yield components of canola (Brassica napus cv. �Okapi� and �Talaye� under twelve growth conditions: complete irrigation with ambient CO2 with UV-A (control, complete irrigation with ambient CO2 with UV-B, complete irrigation with ambient CO2 with UV-C, limited irrigation with ambient CO2 with UV-A, limited irrigation with ambient CO2 with UV-B, limited irrigation with ambient CO2 with UV-C, complete irrigation with elevated CO2 with UV-A, complete irrigation with elevated CO2 with UV-B, complete irrigation with elevated CO2 with UV-C, limited irrigation with elevated CO2 with UV-A, limited irrigation with elevated CO2 with UV-B and limited irrigation with elevated CO2 with UV-C. The results showed that water stress significantly decreased all of traits except for the oil percentage. Additionally, an elevated level of CO2 significantly increased the final yield, 1000-seed weight, oil yield, plant height, specific leaf area and number of branches per plant, whereas UV radiation decreased all of the traits in this experiment. Elevated CO2 ameliorated the adverse effects of UV radiation in the final yield, seed weight, oil percentage, oil yield, plant height, specific leaf area and number of branches per plant. This study showed that elevated CO2 can partially ameliorate some of the adverse effects of UV radiation in canola plants. Furthermore, in this study, we observed that the increase in the yield was due to the increase in the seed weight and number of branches caused by elevated CO2 in canola plants. In addition, the maximum yield was obtained from the �Talaye� cultivar under conditions of sunlight, full irrigation and elevated CO2.

  17. Economic burden analysis for UV radiation and vitamin D for colorectal cancer in the United States

    Science.gov (United States)

    Garland, Cedric F.; Mohr, Sharif B.; Grant, William B.; Holick, Michael F.

    2005-08-01

    Moderate exposure to sunlight is a key factor in maintaining adequate levels of vitamin D. Vitamin D sufficiency is associated with reduced incidence of many forms of cancer, osteoporotic fractures, multiple sclerosis, and other diseases. However, excessive ultraviolet radiation (UVR) exposure may be associated with melanoma and nonmelanoma skin cancer. An estimated 50,000-60,000 individuals die prematurely from cancer annually due to insufficient vitamin D in the US. The annual economic burden due to vitamin D insufficiency from inadequate exposure to solar ultraviolet B (UVB) or deficient oral intake is estimated at $46-65 billion, while that for excessive UVR exposure is $5-7 billion (1). Since excessive UVR exposure is not required for adequate vitamin D photosynthesis, increasing national guidelines for vitamin D intake and de-stigmatizing appropriate solar UVB exposure would substantially reduce medical care costs. This report describes an algorithm for estimating the annual number of dollars that could be saved and deaths from colorectal cancer that could be prevented by moderate daily exposure to sunlight or increased oral intake of vitamin D3. If the assumptions of this analysis are valid, moderate exposure to sunlight or adequate oral intake of vitamin D3 would prevent 10 deaths from colorectal cancer for every death from skin cancer that it might induce, and would save $11 billion per year. Reference: (1) Grant WB, Garland CF, Holick MF. Comparisons of estimated economic burdens due to insufficient solar ultraviolet (UV) irradiation or vitamin D and excess solar UV irradiation. Photochem Photobiol. In press.

  18. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    Science.gov (United States)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  19. Synergism in mutations induction in Tradescantia by plants protection agents acting jointly with ionizing radiation

    International Nuclear Information System (INIS)

    Tradescantia was first treated by plants protection agents such as: Ambusz, Afalton, Ripcord, Decis, deltametryne and after that irradiated with X radiation. The synergism of both factors was observed. The mutation frequency dependence on radiation doses was studied. 7 figs., 4 refs. (A.S.)

  20. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis.

  1. Cadmium telluride quantum dots (CdTe-QDs and enhanced ultraviolet-B (UV-B radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    Directory of Open Access Journals (Sweden)

    Huize Chen

    Full Text Available Nanoparticles (NPs are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs, a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L or UV-B radiation (10 KJ/m(2/d induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.

  2. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system.

    Science.gov (United States)

    Katiyar, Santosh K

    2016-06-01

    The incidence of skin cancer is equivalent to the incidence of malignancies in all other organs combined. The main risk factor for this disease is overexposure of the skin to solar ultraviolet (UV) radiation. UV irradiation induces inflammation, oxidative stress, DNA damage, and suppression of the immune system in the skin, which together contribute to carcinogenesis. The use of dietary phytochemicals shows great promise as a complementary and alternative strategy for skin cancer prevention. Grape seed proanthocyanidins (GSPs) have been tested extensively for their anti-skin cancer effect using in vivo animal models. Supplementation of an AIN76A control diet with GSPs (0.2 and 0.5%, w/w) significantly inhibits UV radiation-induced skin tumor development as well as malignant transformation of papillomas to carcinoma in mice. The inhibition of UVB-induced skin tumor development by GSPs is mediated through interrelated mechanisms of action including: (i) inhibition of inflammation, (ii) rapid repair of damaged DNA, and (iii) stimulation of immune system. Additionally, the chemopreventive effects of GSPs involve DNA repair-dependent functional activation of antigen-presenting cells and stimulation of CD8(+) effector T cells. These effects of GSPs could be useful in attenuation of the adverse effects of UV radiation and may have health benefits in humans. PMID:26991736

  3. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    Science.gov (United States)

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Introducción: Los efectos de la radiación ultravioleta tipo B (UV-B) sobre las plantas medicinales se han investigado recientemente en el contexto del cambio climático, pero las modificaciones que genera la radiación UV-B podrían emplearse para modificar el contenido de compuestos antioxidantes, incluyendo los compuestos fenólicos. Objetivo: Generar información sobre el efecto de una alta exposición a UV-B artificial en el contenido antioxidante de damiana (Turnera diffusa, Willd) en un modelo in vitro. Método: Plántulas de damiana en cultivo de tejidos (medio Murashige-Skoog) fueron irradiadas con UV-B artificial en 3 diferentes dosis: (1) 0,5 ± 0,1 mW cm-2 (alto) por 2 h diarias, (2) 1 ± 0,1 mW cm-2 (severa) por 2 h diarias, o (3) 1 ± 0,1 mW cm-2 durante 4 horas diarias por 3 semanas. Se cuantificó la concentración de pigmentos fotosintéticos (clorofilas a y b, carotenoides), vitaminas (C y E) y compuestos fenólicos totales, la actividad enzimática de la superóxido dismutasa (SOD, EC 1.15.1.1) y las peroxidasas totales (POX, EC 1.11.1), así como la capacidad antioxidante total y la peroxidación de lípidos para evaluar el efecto de la alta radiación UV-B artificial en el contenido antioxidante de damiana in vitro. Resultados: Dosis altas y severas de radiación UV-B artificial modificaron el contenido antioxidante incrementando el contenido de vitamina C y disminuyendo el contenido de compuestos fenólicos totales, además de modificar el daño oxidativo de plantas de damiana en un modelo in vitro. Conclusión: La radiación UV-B modifica el contenido antioxidante en damiana en un modelo in vitro, dependiendo de la intensidad y el tiempo de exposición.

  4. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    International Nuclear Information System (INIS)

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production

  5. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, S7N 5B4 SK (Canada); Chivers, Douglas P.; Niyogi, Som [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-08-15

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production.

  6. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    ). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...... on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B....

  7. Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation.

    Science.gov (United States)

    Wang, Hongyuan; Jiang, Xiaolu; Mu, Haijin; Liang, Xiaoting; Guan, Huashi

    2007-01-01

    The water-soluble exopolysaccharide (WSEPS) from Pantoea agglomerans strain KFS-9 isolated from mangrove forest was prepared by removing bacterial cell from the fermentation liquid following by concentration and cold ethanol precipitation of the supernatant. The polysaccharide material was purified by gel permeation chromatography on a Sephacryl S-300HR column and characterized using chemical and spectral methods. The results show that WSEPS is protein-bound polysaccharide, and it is composed of arabinose, glucose galactose and gulcuronic acid in the molar ratio of 1.0:2.2:2.8:0.9. Their antioxidant activities in vitro were studied by various antioxidant assays, including hydroxyl radical scavenging, superoxide radical scavenging and antilipid peroxidation. The results show that the WSEPS extracted had a high antioxidant activity in a concentration-dependent manner (except the activity of antilipid peroxidation). WSEPS quenched hydroxyl radicals, superoxide radicals at low amounts, the IC(50) of which were 0.07 and 0.15 mg/ml, respectively. These results indicate that the protective effect of WSEPS against UV radiation is most likely to be due to the free radicals-scavenging ability.

  8. Reconstruction of daily erythemal UV radiation values for the last century - The benefit of modelled ozone

    Science.gov (United States)

    Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.

    2013-05-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  9. Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation.

    Science.gov (United States)

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-06-01

    A mass spectrometry (MS)-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin ("Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry" [1], "UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis" [2]). Human skin proteins were obtained non-invasively by tape stripping and solubilized in sodium dodecyl sulfate (SDS) buffer, followed by purification and digestion using the filter-aided sample preparation method. The tryptic peptides were then analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-MS, tandem MS (MS/MS), and LC/ESI-selected reaction monitoring (SRM)/MS. The MS/MS data were generated to confirm amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2), which contain the most susceptible oxidation sites (Met(259), Met(262), and Met(296) in K1 keratin) upon UVA irradiation [2]. Subsequently, quantitative determination of the relative oxidation levels of P1 and P1 [2] was achieved by LC/ESI-SRM/MS analyses of P1 and P2 together with their oxidized forms after exposure to UVA radiation or treatment with hydrogen peroxide (H2O2). PMID:26958637

  10. Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation

    Directory of Open Access Journals (Sweden)

    Seon Hwa Lee

    2016-06-01

    Full Text Available A mass spectrometry (MS-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin (“Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry” [1], “UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis” [2]. Human skin proteins were obtained non-invasively by tape stripping and solubilized in sodium dodecyl sulfate (SDS buffer, followed by purification and digestion using the filter-aided sample preparation method. The tryptic peptides were then analyzed by liquid chromatography (LC/electrospray ionization (ESI-MS, tandem MS (MS/MS, and LC/ESI-selected reaction monitoring (SRM/MS. The MS/MS data were generated to confirm amino acid sequences and oxidation sites of tryptic peptides D290VDGAYMTK298 (P1 and N258MQDMVEDYR267 (P2, which contain the most susceptible oxidation sites (Met259, Met262, and Met296 in K1 keratin upon UVA irradiation [2]. Subsequently, quantitative determination of the relative oxidation levels of P1 and P1 [2] was achieved by LC/ESI-SRM/MS analyses of P1 and P2 together with their oxidized forms after exposure to UVA radiation or treatment with hydrogen peroxide (H2O2.

  11. Simulation of the Martian UV radiation climate and its effect on Deinococcus radiodurans

    Science.gov (United States)

    Pogoda de La Vega, U.; Rettberg, P.

    The question of putative life on Mars has been the topic of several studies Early works had to rely on the physical data that have been gained during the 1970s with the help of the Viking missions More recently several Mars-related missions have provided numerous and more precise data to establish a realistic simulation of the Martian climate Our focus is directed at the diurnal temperature variations and the atmospheric pressure and composition the so called thermo-physical conditions which are typical for the Martian mid- and low latitudes The resistance of terrestrial microorganisms under the thermo-physical conditions on Mars was studied for the understanding and assessment of potential life processes on Mars In order to accomplish a targeted search for life on other planets e g Mars it is necessary to know the limiting physical and chemical parameters of terrestrial life Therefore the polyextremophile bacterium Deinococcus radiodurans was chosen as test organism for these investigations For the simulation studies at the Planetary and Space Simulation Facilities PSI at DLR Cologne Germany conditions that are present during the southern summer at latitude of 60 r on Mars were applied We could simulate several environmental parameters of Mars vacuum low pressure anoxic atmosphere and diurnal cycles in temperature energy-rich UV radiation as well as shielding by different Martian soil analogue materials These parameters have been applied both single and in different combinations in laboratory experiments

  12. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil.

    Science.gov (United States)

    Srinivasan, Sathiyaraj; Lee, Jae-Jin; Lim, Sang-Yong; Joe, Min-Ho; Im, Seong-Hun; Kim, Myung Kyum

    2015-02-01

    Two Gram-negative, non-motile, short rod-shaped bacterial strains, designated as 8A(T) and 28A, were isolated from Mount Deogyusan, Jeonbuk Province, South Korea. The isolates were analyzed by a polyphasic approach, revealing variations in their phenotypic characters but high DNA-DNA hybridisation values reciprocally, confirming that they belong to the same species. Both the isolates also showed a high resistance to UV compared with Deinococcus radiodurans, and a gamma-radiation resistance similar to other members of the genus Deinococcus. Phylogenetic analysis with the 16S rRNA gene sequences of closely related species indicated their similarities were below 97 %. Chemotaxonomic data showed the most abundant fatty acids to be C16:1ω7c and C16:0. The strains can be distinguished from closely related species by the production of esterase (C4) and α-galactosidase, and by their ability to assimilate L-alanine, L-histidine and N-acetyl-D-glucosamine. Based on the phenotypic, phylogenetic, and chemotaxonomic data, the isolates represent a novel species of the genus Deinococcus, for which the name Deinococcus radioresistens sp. nov. is proposed. The type strain is 8A(T) (KEMB 9004-109(T) = JCM 19777(T)), and a second strain is 28A (KEMB 9004-113 = JCM 19778).

  13. Effects of PAR and UV Radiation on the Structural and Functional Integrity of Phycocyanin, Phycoerythrin and Allophycocyanin Isolated from the Marine Cyanobacterium Lyngbya sp. A09DM.

    Science.gov (United States)

    Rastogi, Rajesh Prasad; Sonani, Ravi Raghav; Madamwar, Datta

    2015-01-01

    An in vitro analysis of the effects of photosynthetically active and ultraviolet radiations was executed to assess the photostability of biologically relevant pigments phycocyanin (PC), phycoerythrin (PE) and allophycocyanin (APC) isolated from Lyngbya sp. A09DM. Ultraviolet (UV) irradiances significantly affected the integrity of PC, PE and APC; however, PAR showed least effect. UV radiation affected the bilin chromophores covalently attached to phycobiliproteins (PBPs). Almost complete elimination of the chromophore bands associated with α- and β-subunit of PE and APC occurred after 4 h of UV-B exposure. After 5 h of UV-B exposure, the content of PC, PE and APC decreased by 51.65%, 96.8% and 96.53%, respectively. Contrary to PAR and UV-A radiation, a severe decrease in fluorescence of all PBPs was observed under UV-B irradiation. The fluorescence activity of extracted PBP was gradually inhibited immediately after 15-30 min of UV-B exposure. In comparison to the PC, the fluorescence properties of PE and APC were severely lost under UV-B radiation. Moreover, the present study indicates that UV-B radiation can damage the structural and functional integrity of phycobiliproteins leading to the loss of their ecological and biological functions. PMID:25763657

  14. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat

    International Nuclear Information System (INIS)

    Plants of Fagopyrum esculentum and Fagopyrum tataricum grown outdoors under three levels of UV-B radiation were studied for 9 weeks, from sowing to ripening. At week 7 they were sprayed with Se solution (1 g/cubic m). Morphological, physiological, and biochemical parameters of the plants were monitored. Elevated UV-B radiation, corresponding to a 17% reduction of the ozone layer, induced synthesis of UV absorbing compounds. In both species it caused a reduction in amounts of chlorophyll a during the time of intensive growth. This effect was increased in tartary buckwheat in the presence of Se. The respiratory potential was lower in plants subjected to enhanced UV-B radiation during the time of intensive growth. The effective quantum yield of photosystem 2 was also reduced in both species and was mitigated by the addition of Se. Se also mitigated the stunting effect of UV-B radiation and the lowering of biomass in common buckwheat

  15. Epidermal transmittance and phenolic composition in leaves of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Experiments were conducted on the atrazine-tolerant mutant Stallion and the atrazine-sensitive cv. Paroll of Brassica napus L., which were grown under either visible light or with the addition of UV-B radiation (280–320 nm) for 15 days. The mutant has been shown to be sensitive to high levels of visible light as compared to the atrazine-sensitive cultivar and therefore we wished to determine plant response to UV-B radiation with respect to potential pigment changes, certain anatomical features, radiation penetration and partial photosynthesis. With regard to pigment changes, we were particularly interested in whether the compositional shift in flavonol pigments under enhanced UV-B radiation, previously suggested to favour increased antioxidant activity, is confined to the adaxial epidermis, which generally receives most UV-B radiation or whether the pigment shift is also inducible in the abaxial epidermis.As was to be expected, the penetration of UV-B radiation (310 nm) was lower in the UV-B-exposed plants, which was correlated with an increased amount of UV-screening pigments in the adaxial and abaxial epidermal layers. The main flavonoid glycosides showed the largest shift from kaempferol to quercetin as aglycone moiety in the adaxial epidermal layer. However, in the abaxial epidermal layer the hydroxycinnamic acid (HCA) derivatives and kaempferol glycosides were predominant. Penetration of 430 nm light was higher after UV-B exposure, and probably contributed to the fact that photosynthetic efficiency of photosystem II was unchanged or higher after UV-B exposure. UV-B radiation decreased leaf area in the atrazine-tolerant mutant only. Both cultivars showed an increased leaf thickness after UV-B exposure due to cell elongation mainly of the palisade tissue. This was especially evident in the mutant

  16. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.

    Science.gov (United States)

    Stehouwer, Peter Paul; Buma, Anita; Peperzak, Louis

    2015-01-01

    The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water. PMID:25704551

  17. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen, E-mail: zhyang@niglas.ac.cn; Kong, Fanxiang, E-mail: fxkong@niglas.ac.cn; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-02-11

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms.

  18. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    International Nuclear Information System (INIS)

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms

  19. Effect of the Solar UV/EUV Heating on the Intensity and Spatial Distribution of Jupiter's Synchrotron Radiation

    Science.gov (United States)

    Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2012-10-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.

  20. Induction and differential expression of certain novel proteins in Anabaena L31 under UV-B radiation stress

    Directory of Open Access Journals (Sweden)

    Piyoosh Kumar Babele

    2015-02-01

    Full Text Available For examining how UV-B radiation alters the proteome of the N2-fixing cyanobacterium, Anabaena L31, we extracted proteins from cultures irradiated with UV-B + white light and controls (white light irradiated and analyzed the proteins using two-dimensional gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. Twenty one proteins, including 2 hypothetical proteins were identified and placed in 8 functional categories. However several of the proteins were housekeeping proteins involved in key metabolic processes such as carbon, amino acid biosynthesis and energy metabolism, certain proteins seem to have a role in stress (antioxidative enzymes, translation, cellular processes and reductases. Two novel hypothetical proteins (all3797 and all4050 were characterized in detail. These two were over-expressed after UV-B irradiation and characterized as FAS 1 (all3797 and PRC barrel-like (all4050 proteins. Bioinformatics analysis revealed that the genes of both the hypothetical proteins have promoter regions as well as transcription binding sites in their upstream region (UTR. Promoters present in all3797 genes suggest their crucial role against UV-B and certain other abiotic stresses. To our knowledge these novel proteins have not been previously reported in any Anabaena strains subjected to UV-B stress. Although we have focused our study on a limited number of proteins, results obtained shed light on the highly complicated but poorly studied aspect of UV-B radiation-mediated changes in the proteome and expression of proteins in cyanobacteria.

  1. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    Science.gov (United States)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  2. Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes.

    Science.gov (United States)

    Sobolev, I

    2000-12-01

    Solar irradiance measurements from Ushuaia (Argentina) and Palmer and McMurdo Stations in Antarctica covering four seasons from mid-1993 through early 1997 have been analyzed and their variations compared with column ozone changes. UV irradiances were weighted for biological effectiveness using a published biological weighting function for dose-dependent inhibition of photosynthesis by phytoplankton from the Weddell Sea. All calculations involved integrated daily UV doses and visible exposures (weighted UV and unweighted visible irradiances, respectively). The results show that daily biologically effective total UV doses underwent large short-term variations at all three sites, with day-to-day increases up to 236% at Ushuaia, 285% at Palmer and 99% at McMurdo. Parallel changes in visible exposure indicated that the total UV changes were preponderantly due to variations in cloudiness. On a 12-month basis, daily biologically effective UV doses correlated strongly with visible exposures (R > or = 0.99). Anticorrelations of total UV with ozone, on the other hand, were poor (R > -0.11). The largest daily biologically effective UV doses, and their day-to-day increases, occurred as part of the normal variability related to cloud cover and were seldom associated with significant ozone depletion. UV dose/visible exposure ratios tended to reflect ozone depletion events somewhat more consistently than UV doses alone. With the Weddell Sea phytoplankton weighting function used in this study, antarctic ozone hole events were seldom readily discernible in the biologically effective UV record. The results suggest that, where the UV sensitivity of organisms was similar to that of the Weddell Sea phytoplankton, seasonal ozone depletion had no appreciable effect on annual primary productivity during the 1993-1997 period. Additional data on the geographical and seasonal variation of biological weighting functions are desirable for more comprehensive assessments of ozone depletion

  3. Antioxidant Defense Mechanisms in Pseudomonas aeruginosa: Role of Iron-Cofactored Superoxide Dismutase in Response to UV-C Radiations.

    Science.gov (United States)

    Ghorbal, Salma Kloula Ben; Maalej, Lobna; Chourabi, Kalthoum; Khefacha, Sana; Ouzari, Hadda-Imene; Chatti, Abdelwaheb

    2016-08-01

    The role of SOD gene in response to UV-C radiations was studied in Pseudomonas aeruginosa. Firstly, our results showed that the inactivation of sodM and/or sodB genes decreases the resistance of P. aeruginosa after exposure to UV-C rays. Furthermore, our results showed that SOD activity is dose dependant in all strains. However, significant increase in SOD activity was only shown at UV-C exposure time of 5 min in sodB mutant. At an elevated dose equivalent to 30 min of exposure, significant increase in SOD activity was observed in sodM. Catalase activities showed significant decrease in WT and in sodB mutant after an exposure time of 30 min. CAT enzyme was present at higher levels than SOD, reflecting that alternate enzymes such as POX, is poorly associated with CAT activity, and an increase in POX activity is related to increase in stress tolerance. The overall results showed that sodB gene has an important protective role against UV-C radiations in P. aeruginosa, compared to SodM isoform. PMID:27094998

  4. Photosynthetic 14CO2 fixation and [15N]-ammonia assimilation during UV-B radiation of Lithodesmium variabile

    International Nuclear Information System (INIS)

    Uptake of [15N]-ammonia was more sensitive to UV-B exposure than the total 14CO2 fixation rate of Lithodesmium variabile Takano. Short-term UV-B radiation (15 min) had practically no effect on the kinetics of [15N]-ammonia, whereas there was an effect on [14C]-bicarbonate uptake rate. A significant reduction was found after 30 and 60 min UV-B stress. The time course of photosynthetic uptake of 15NH4Cl at several wavelengths was markedly depressed at shorter wavelengths (irradiation with WG 280). A short-term (11 min) exposure to ultraviolet radiation had no influence on the [14C]-labeled photosynthetic products. However, the [15N]-label of several amino acids and the ratio of [15N]-glutamine to [15N]-glutamic acid varied after irradiation with different ultraviolet wavebands. The results are discussed with reference to UV damage to the key enzymes of nitrogen metabolism. (author)

  5. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors

    International Nuclear Information System (INIS)

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O2 at specific transitions such us C 1s →σ*C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  6. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    Science.gov (United States)

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  7. The effect of UV-B radiation enhancement on the interspecific competition between Skeletonema costatum and Heterosigma akashiwo

    Institute of Scientific and Technical Information of China (English)

    XIAO Hui; TANG Xuexi; ZHANG Peiyu; CAI Hengjiang

    2005-01-01

    The responses of the interspecific competition between Skeletonema costatum and Heterosigma akashiwo to UV-B radiation enhancement were studied by the co-culture method. The results showed that Heterosigma akashiwo exhibited inhibition on the growth of Skeletonema costatum, and with the increase of initial inoculation density of Heterosigma akashiwo, heavier inhibition on Skeletonema costatum appeared. Under different inoculation proportions, Heterosigma akashiwo could always be in predominance in competition with Skeletonema costatum. The UV-B radiation treatment could change the competition relationship between Skeletonema costatum and Heterosigma akashiwo, which could increase the competitive dominance of Skeletonema costatum and decrease the competitive dominance of Heterosigma akashiwo. When the inoculation proportions of Heterosigma akashiwo and Skeletonema costatum were H:S=1:4 and H:S=1:1, Skeletonema costatum was in predominance in this competition; however, Heterosigma akashiwo was in predominance when the inoculation proportion was H:S=4:1.

  8. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole;

    2014-01-01

    In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally that increas......In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...... that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained...

  9. Influence of enhanced UV-B radiation on biomass allocation and pigment concentrations in leaves and reproductive structures of greenhouse-grown Brassica rapa

    International Nuclear Information System (INIS)

    We assessed the effects of enhanced ultraviolet-B radiation (UV-B; 280–320 nm) on biomass allocation to roots, shoots, leaves and flowers in the annual Brassica rapa. In addition, we investigated how concentrations of chlorophyll and UV-B-absorbing compounds in leaves, ovaries and pollen changed in response to enhanced UV-B. Plants were grown for 38 d in a greenhouse under lampbanks providing daily biologically effective UV-B doses equivalent to those under ambient mid-March stratospheric ozone levels or 16% (‘low-enhanced UV-B’) or 32% (‘high-enhanced UV-B’) ozone depletion levels for Morgantown, WV, USA. Total and aboveground biomass of plants was less under low-enhanced UV-B, but similar to ambient controls under high-enhanced UV-B. Concentrations of UV-B-absorbing compounds in leaves (area basis) increased under high-enhanced UV-B by about 20%, but were similar to ambient controls under low-enhanced UV-B. More effective protection due to higher screening-compound concentrations in plants under high-enhanced UV-B may explain why biomass production was not reduced. Plants under high-enhanced UV-B also had more reproductive biomass and produced more flowers, and had less root mass, than plants under ambient or low-enhanced UV-B. Concentrations of leaf total chlorophyll were not affected by UV-B treatment. While UV-B treatment had no affect on concentrations of UV-B-absorbing compounds in ovaries, concentrations in pollen from plants under both enhanced-UV-B treatments were >40% greater than ambient controls

  10. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance stress

  11. UV-tolerance and instantaneous physiological stress responses of two Antarctic amphipod species Gondogeneia antarctica and Djerboa furcipes during exposure to UV radiation.

    Science.gov (United States)

    Obermüller, Birgit; Puntarulo, Susana; Abele, Doris

    2007-09-01

    We investigated the shielding against solar ultraviolet radiation and inducible damage, as well as the short-term response of whole animal metabolic rate in two Antarctic shallow water amphipod species. Light absorbance by the carapace of Gondogeneia antarctica and Djerboa furcipes was higher in the UVR (UVB+UVA) range (42.1% and 54.5% on average respectively) compared to the PAR (photosynthetically active radiation) range (38.1% and 50.1% respectively) of the solar spectrum. Bands of higher absorbance correlated with maximal absorbance ranges of sunscreening compounds indicating mycosporine-like amino acids (MAAs) and carotenoids to be innate compounds of the exoskeleton of these species. Though the antioxidant enzyme catalase was photoinhibited, protein damage products did not accumulate under experimental exposure to a daily dose of 6.84 kJ m(-2) d(-1) UVB, 66.24 kJ m(-2) d(-1) UVA and 103.14 kJ m(-2) d(-1) PAR. Animal oxygen consumption during UV-exposure was measured as an indicator of immediate behavioural and physiological stress response. UVB as well as UVA induced a response with altered and highly variable respiratory intensity. Our findings indicate that sub-lethal UVR exposure causes increased oxygen consumption in polar amphipods due to radiation avoidance, shelter seeking behaviour, and presumably also from cellular repair processes.

  12. Gas sensing properties under UV radiation of In{sub 2}O{sub 3} nanostructures processed by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Trocino, S., E-mail: trcsfn83@gmail.com [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Frontera, P., E-mail: patrizia.frontera@unirc.it [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Donato, A., E-mail: andrea.donato@unirc.it [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Busacca, C., E-mail: irconc@hotmail.it [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Scarpino, L.A., E-mail: luciano.scarpino@unirc.it [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Antonucci, P., E-mail: pierluigi.antonucci@unirc.it [Department of Civil Engineering, Energy, Environment and Materials, University “Mediterranea” of Reggio Calabria, Via Graziella, Feo di Vito, 89124 Reggio Calabria (Italy); Neri, G., E-mail: gneri@unime.it [Department of Electronic Engineering, Chemistry and Industrial Engineering, University of Messina, Contrada di Dio (S. Agata), 98166 Messina (Italy)

    2014-09-15

    Manufacturing In{sub 2}O{sub 3}/PVP fibers, by sol–gel method coupled with the electrospinning technique, have been obtained In{sub 2}O{sub 3} nanostructures. The morphological and microstructural properties of as spun and annealed samples have been examined using Thermo Gravimetric Analysis-Differential Scanning Calorimetry (TGA-DSC), X-Ray Diffraction analysis (XRD) and Scanning Electron Microscopy (SEM). Characterization results provided clear indications of the formation of different In{sub 2}O{sub 3} nanostructures after annealing by changing the solvent system utilized for the electrospinning process. The sensing characteristics of the In{sub 2}O{sub 3} nanostructures synthesized have been evaluated for the monitoring of nitrogen dioxide at room temperature in the dark, under continuous ultra-violet (UV) illumination and under pulsed UV illumination (provided only during the recovery time). The effect of In{sub 2}O{sub 3} nanostructure morphology and UV radiation has been investigated and discussed. The better sensing performances (high response and very short recovery time) were registered when the sensors were irradiated with pulsed UV light. - Highlights: • Preparation and synthesis of In{sub 2}O{sub 3} nanostructures by electrospinning. • Physical and chemical characterization of prepared samples. • Investigation of the sensing properties to monitor NO{sub 2} at RT under pulsed UV light.

  13. 螺旋藻对短期增强UV-B辐射的生理生化响应%Physiological and biochemical responses of Spirulina platensis to short-term enhanced UV-B radiation

    Institute of Scientific and Technical Information of China (English)

    薛林贵; 石小霞; 褚可成; 陈志梅; 李师翁

    2011-01-01

    The amount of UV-B radiation reaching the earth's surface is increasing due to attenuation of the stratospheric ozone. Although the release of ozone-depleting material has declined significantly in the past decade, there is a considerable lag in the recovery of the ozone layer. Cyanobacteria are the oldest photosynthetic pro-karyotes and play an important role in the aquatic ecosystem. UV-B can penetrate water to a depth sufficient to disrupt aquatic ecosystems. For example, the depth of water required to remove 90% of the solar radiation at 310 nm is about 20 m in the clearest ocean. Thus, a large number of cyanobacteria populate aquatic habitats that are exposed to UV-B radiation. UV-B radiation is known to affect cyanobacteria biomass by disrupting physiological and biochemical processes. However, cyanobacteria have developed mechanisms to counteract the damaging effects of UV-B, including production of UV-screening pigments [(e.g., mycosporine-like amino acids (MAAs)] and downward migration. We evaluated the effects of short-term enhanced UV-B radiation on physiological indices, including photosynthetic pigment content, MDA, MAAs, and proline, in Spirulina platensis. S. Platensis were exposed to 240 μW/cm2UV-B for 3.5 h. By compared with untreated cyanobacteria cells, exposure to increased levels of UV-B radiation was associated with a reduction in chlorophyll a, carotenoid and phycobiliprotein content, with a change in MDA content. Our results suggest that increased levels of UV-B radiation causes bleaching of the photosynthetic pigment. Exposure to higher levels of UV-B was also associated with increased synthesis of MAAs and accumulation of proline. We hypothesize that this is a mitigation strategy to reduce the damaging effects of UV-B.%通过生物化学和对比分析的方法,研究了短期增强UV-B辐射对钝顶螺旋藻(Spirulina platensis)794光合色素、丙二醛(MDA)、类菌孢素氨基酸(MAAs)以及脯氨酸含量的影响.研究结果显

  14. Skin Cancer and UV Protection

    Directory of Open Access Journals (Sweden)

    Tarbuk Anita

    2016-03-01

    Full Text Available The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers, as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

  15. UV-B辐射胁迫下杨梅幼苗的高光谱响应%High-spectral responses of Myrica rubra seedlings to UV-B radiation stress

    Institute of Scientific and Technical Information of China (English)

    金鑫杰; 江洪; 陈健; 时启龙; 张倩倩

    2012-01-01

    A simulated field experiment with three treatments, i. e. , ambient light ( control) , reduced UV-B radiation, and enhanced UV-B radiation, was conducted to evaluate the effects of solar ultraviolet ( UV-B) radiation on the seedlings of Myrica rubra, a typical woody species in subtropical region. The leaf chlorophyll content, spectral reflectance and spectral characteristic parameters were measured and analyzed. As compared with the control, enhanced UV-B radiation decreased the seedling chlorophyll content while reduced UV-B radiation significantly increased the chlorophyll content, and these effects reflected in the spectral reflectance. Under the effects of the three gradients of UV-B radiation, the differences in the reflectance at visible region mainly occurred around the green peak and red edge on the reflectance curve, and the peak wavelength of the red edge shifted to longer wavelength. Enhanced UV-B radiation had an accumulated temporal effect on M. rubra. The inverted-Gaussian model parameters R0, λ0, λp, Rs, and 6 were the useful guides to reveal the spectral responses of M. rubra seedlings under UV-B radiation stress, among which, R8 performed the best. The differences in the spectral reflectance under different UV-B radiation levels could be effectively distinguished with the vegetation indices composed of the spectral reflectance of narrow wave bands or the reflectance at specific wavelengths.%设置UV-B滤光减弱、UV-B辐射增强和自然光(对照)3组模拟大田试验,比较了不同UV-B辐射处理下,亚热带典型木本植物杨梅幼苗的叶绿素含量、光谱反射率及光谱特征参数,研究UV-B辐射变化对亚热带森林树种的影响.结果表明:增强UV-B辐射可降低杨梅幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,并且这种胁迫反应于光谱反射率中.3种不同梯度UV-B辐射作用下,可见光部分光谱反射率间的差异主要集中在绿光反射峰及红边附近,

  16. Copper complexes as 'radiation recovery' agents

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, J.R.J.

    1989-02-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients.

  17. 增补UV-B辐射下南亚热带森林建群树种叶片对UV-B辐射的防护%UV-B Screening in Leaves of Constructive Tree Species of Low Subtropical Forest under Supplementary UV-B Radiation

    Institute of Scientific and Technical Information of China (English)

    赵平; 孙谷畴; 曾小平

    2008-01-01

    研究了我国南亚热带森林5种建群树种UV-B辐射诱导的UV-B吸收物质(在280~320 nm波长下测定)的积累及抗UV-B辐射的可能性保护机制.增补UV-B辐射下,马尾松(Pinus massoniana)针叶的甲醇可溶性提取物和细胞壁的碱提取酚类的含量明显高于正常水平的光辐射下.红椎(Castanopsis hystrix)和厚壳桂(Cryptocarya chinensis)叶片的这些化学物质也升高,意味着增补UV-B辐射刺激UV-B辐射吸收物质的生成,形成抗UV-B辐射的功能性保护结构.然而,自然光下已含有大量细胞壁碱提取酚类的荷木(Schima superba)和藜蒴(Castanopsis fissa),这些化合物在增补UV-B辐射下则见下降,很有可能表皮层细胞壁碱提取酚类被转移到含有较低甲醇可溶性色素的液胞可溶性化合物里,这一现象意示着可能涉及叶肉组织光合机构的保护策略.增补UV-B下,马尾松针叶的叶绿素a和b含量不受影响,而其他4种阔叶树叶片则下降10.7% 到16.8%不等.胡萝卜素对增补UV-B辐射的响应变化不一,红椎和荷木的胡萝卜素水平下降,而马尾松、厚壳桂和藜蒴的胡萝卜素则上升,后者也许与功能性增加激发能耗散有关.结果显示,自然条件下不同树种展示出不同的驯化策略以形成抗UV-B辐射增加的防护机制.表4参29%The accumulation of UV-B absorbing materials (measured at the wavelength band of 280~320 nm) induced by UV-B radiation and possible involvement of a protective screening against UV-B radiation were investigated in five constructive species of low subtropical forest in South China. The methanol soluble extracts and alkali-extractable cell wall-bound phendics were significantly higher in needles of Pinus massoniana under supplementary UV-B radiation than under normal level of sunlight. These compounds were also enhanced in leaves of Castanopsis hystrix and Cryptocarya chinensis, implying that the supplementary UV-B radiation stimulated the synthesis

  18. Study of the effect of temperature, relative humidity and UV radiation on wet-white leather ageing

    OpenAIRE

    Bacardit Dalmases, Anna; Cobos, Mireia; Font Vallès, Joaquim; Jorge Sánchez, Juan; Ollé Otero, Lluís

    2010-01-01

    Since upholstery leather is considered a very high-tech product, a long service life is expected by the costumer. However, this type of leather can undergo extreme environmental conditions that may cause premature ageing. This work deals with the study of the effect of temperature, relative humidity, and UV radiation on leather ageing. Leathers with wet-white tannage were exposed to weathering effects using a climatic chamber in order to identify the most important variables affectin...

  19. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01

    Directory of Open Access Journals (Sweden)

    Natália Pessoa Noyma

    2015-10-01

    Full Text Available Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability. We investigated whether C. raciborskii could be affected by ultraviolet (UV radiation. Non-axenic cultures of C. raciborskii were exposed to three UV treatments (UVA, UVB or UVA + UVB over a 6 h period, during which cell concentration, viability and ultrastructure were analyzed. UVA and UVA + UVB treatments showed significant negative effects on cell concentration (decreases of 56.4% and 64.3%, respectively. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe. Over 90% of UVA + UVB- and UVA-treated cells died. UVB did not alter cell concentration, but reduced cell viability in almost 50% of organisms. Transmission electron microscopy (TEM revealed a drastic loss of thylakoids, membranes in which cyanobacteria photosystems are localized, after all treatments. Moreover, other photosynthetic- and metabolic-related structures, such as accessory pigments and polyphosphate granules, were damaged. Quantitative TEM analyses revealed a 95.8 % reduction in cell area occupied by thylakoids after UVA treatment, and reduction of 77.6 % and 81.3 % after UVB and UVA + UVB treatments, respectively. Results demonstrated clear alterations in viability and photosynthetic structures of C. raciborskii induced by various UV radiation fractions. This study facilitates our understanding of the subcellular organization of this cyanobacterium species, identifies specific intracellular targets of UVA and UVB radiation and reinforces the importance of UV radiation as an environmental stressor.

  20. Effect of cadmium ions and ultraviolet (UV-C) radiation on elongation growth of maize coleoptile segments and pH changes in their incubation medium

    International Nuclear Information System (INIS)

    It was found that the treatment of coleoptile segments with cadmium ions as well as with UV-C radiation inhibited both, their elongation growth and acidification of incubation medium. The procedure of cadmium introduction had the substantial influence on inhibition degree of coleoptile segments growth. It was confirmed by the tests of cadmium accumulation in coleoptile segments. The results did not show any additivity of the effects caused by both stress factors (cadmium ions and UV-C radiation). It was also found that the effect of UV-C radiation depended on the level of cadmium in tissue

  1. Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids; separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content

  2. The effects of altered levels of UV-B radiation on an Antarctic grass and lichen

    NARCIS (Netherlands)

    Lud, D.; Huiskes, A.H.L.; Moerdijk-Poortvliet, T.C.W.; Rozema, J.J.

    2001-01-01

    We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Leonie Island, Antarctica. UV-B above the vegetation was reduced by filter screens during two seasons. Half o

  3. The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina;

    2016-01-01

    size range as wave lengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms’ photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well......, and applied perspective, including recent experimental data on UV transmission of diatom frustules....

  4. Radiation-curable impregnating agents for the conservation of archaeologic wooden objects. Part 2

    International Nuclear Information System (INIS)

    As a continuation of the work described in OEFZS Ber. No. 4165, impregnating agents curable by ionizing radiation, such as free radical polymerizable monomers or artificial resins, have been investigated. Specific weight and viscosity of the liquid mixtures have been as well determined as the specific weight and gel content of the gamma radiation-cured samples. Hardness and elastic behaviour have been estimated only. The shrinkage during hardening was found to be 5 to 12 % for low viscous mixtures (up to 600 mPa.s) and 3 to 8 % for higher viscous impregnating agents. The results are to be discussed. (Author)

  5. Mouse Models for Efficacy Testing of Agents against Radiation Carcinogenesis — A Literature Review

    Directory of Open Access Journals (Sweden)

    Leena Rivina

    2012-12-01

    Full Text Available As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.

  6. Effects of UV-B radiation on the growth and reproduction of Vicia angustifolia%UV-B辐射对窄叶野豌豆生长繁殖的影响

    Institute of Scientific and Technical Information of China (English)

    王颖; 王兴安; 王仁君; 邱念伟; 马宗琪; 杜国祯

    2012-01-01

    A simulation experiment with supplementation and exclusion of solar ultraviolet-B ( UV-B) radiation was conducted to study the effects of enhanced and near ambient UV-B radiation on the growth and reproduction of alpine annual pasture Vicia angustifolia on Qinghai-Tibet Plateau. Enhanced UV-B decreased the plant height and biomass, biomass allocation to fruit, flower number, and 100-seed mass significantly, delayed flowering stage, increased the concentration degree of flowering and success rate of reproduction, but had little effect on seed yield. Near ambient UV-B radiation made the plant height increased after an initial decrease, decreased biomass allocation to fruit and 100-seed mass, but little affected flowering duration, flower number, and seed yield. Both enhanced and near ambient UV-B radiation could inhibit the growth and production of V. angustifolia, and the effect of enhanced UV-B radiation was even larger.%采用增补和滤除掉部分自然UV-B辐射的模拟试验,研究了增强和近环境UV-B辐射对高寒草甸一年生牧草窄叶野豌豆生长和繁殖的影响.结果表明:增补UV-B辐射处理后,窄叶野豌豆的株高、生物量、分配向果实的生物量、总花数和种子百粒重均显著下降,花期延迟,开花集中度和繁殖成功率有所提高,而种子产量无显著变化.相对于减弱UV-B辐射处理,近环境UV-B辐射使窄叶野豌豆的株高先降后升,分配向果实的生物量减少,花期、花数和种子产量无显著变化,种子百粒重减小.增强和近环境UV-B辐射对窄叶野豌豆的生长和繁殖有一定的抑制作用,且增强UV-B辐射的影响更大.

  7. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    Science.gov (United States)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  8. Advances in influence of UV-B radiation on medicinal plant secondary metabolism%UV-B辐射对药用植物次生代谢的影响研究进展

    Institute of Scientific and Technical Information of China (English)

    吴洋; 房敏峰; 岳明; 柴永福; 王慧; 李易非

    2012-01-01

    Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 ran) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression , enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.%平流层臭氧稀薄导致到达地面的中波紫外辐射( UV-B,280 ~ 320 nm)增加.受UV-B辐射影响,药用植物的基因表达、酶活性及次生代谢发生改变,导致多种药用活性成分含量变化从而影响临床疗效.该文综述了近10年来国内外学者对UV-B辐射与植物次生代谢产物积累方面的研究成果,为药用植物的栽培和开发提供参考.

  9. Impact of UV-B radiation on photosynthetic assimilation of 14C-bicarbonate and inorganic 15N-compounds by cyanobacteria

    International Nuclear Information System (INIS)

    The cyanobacteria Anabaena cylindrica and Synechococcus leopoliensis (=Anacystis nidulans) were grown at different levels of UV-B radiation (439, 717, 1230 and 1405 J m-2d-1, weighted according Caldwell, 1971) for 2 days. Dry weight was hardly affected but phycocyanin content of both species decreased linearly to the level of UV-B radiation. Contents of protein, carotenoids and chlorophyll a were reduced only after exposure to high doses (1230 J m-2d-1) of UV-B radiation. Photosynthetic 14CO2 fixation of Anabaena cells was reduced linearly with increasing UV-B dose whereas no effect could be observed in Synechococcus. A depression of photosynthetic 15N-nitrate uptake was found after UV-B stress in both species. UV-B irradiance caused an increase of 15N-incorporation into glutamine, but no effect was noted for incorporation into alanine or aspartic acid. An increase of 15N-excess in glutamic acid linear with the UV-B dose was observed in Synechococcus, only. Patterns of 14C-labelled photosynthetic products were either less affected by UV-B radiation (Anabaena) or an enhancement of 14C-label in total amino acids was detected (Synechococcus). The amount of total free amino acids increased parallel to the level of UV-B radiation. Only, the high dose of UV-B (1405 J m-2 d-1, weighted) results in a decrease of the glutamine pool. Our results indicate an inhibition of glutamate synthase by UV-B irradiation in Anabaena, only. Results were discussed with reference to the damage of the photosynthetic apparatus. (orig.)

  10. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    OpenAIRE

    Mezghani Sana; Hammami Amira; Amri Mohamed

    2015-01-01

    Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT) is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiatio...

  11. UV-B Radiation Suppresses the Growth and Antioxidant Systems of Two Marine Microalgae, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W. Sm

    Institute of Scientific and Technical Information of China (English)

    Pei-Yu ZHANG; Juan YU; Xue-Xi TANG

    2005-01-01

    This study investigated whether increased solar UV-B radiation (280-315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W. Sm, were exposed to a range of UV-B radiation and both showed reductions in their growth rates, and the chlorophyll a (Chl a) and carotenoid (Car) contents when UV-B radiation dose increased. Superoxide anion radical (O2)production and the concentration of hydrogen peroxide (H2O2) and malodiadehyde (MDA) also increased with the increasing of UV-B radiation. Antioxidant systems, non-enzymic components (Car and glutathione content) and enzymic components (superoxide dismutase (SOD) and catalase (CAT) activity), decreased as a result of enhanced UV-B radiation. When the exogenous glutathione (GSH) was added, the effects of UVB radiation on the growth of the two species were alleviated. These results suggest that enhanced UV-B radiation suppressed the antioxidant systems and caused some active oxygen species to accumulate, which in turns retarded the development of the marine microalgae.

  12. Study of Leaf Metabolome Modifications Induced by UV-C Radiations in Representative Vitis, Cissus and Cannabis Species by LC-MS Based Metabolomics and Antioxidant Assays

    Directory of Open Access Journals (Sweden)

    Guillaume Marti

    2014-09-01

    Full Text Available UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae, Vitis vinifera L. (Vitaceae and Cannabis sativa L. (Cannabaceae, were evaluated by an LC-HRMS-based metabolomic approach. The approach enabled the detection of significant metabolite modifications in the three species studied. For all species, clear modifications of phenylpropanoid metabolism were detected that led to an increased level of stilbene derivatives. Interestingly, resveratrol and piceid levels were strongly induced by the UV-C treatment of C. antarctica leaves. In contrast, both flavonoids and stilbene polymers were upregulated in UV-C-treated Vitis leaves. In Cannabis, important changes in cinnamic acid amides and stilbene-related compounds were also detected. Overall, our results highlighted phytoalexin induction upon UV-C radiation. To evaluate whether UV-C stress radiation could enhance the biosynthesis of bioactive compounds, the antioxidant activity of extracts from control and UV-C-treated leaves was measured. The results showed increased antioxidant activity in UV-C-treated V. vinifera extracts.

  13. Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence

    NARCIS (Netherlands)

    Rensen, van J.J.S.; Vredenberg, W.J.; Rodrigues, G.C.

    2007-01-01

    The effects of ultraviolet-B (UV-B) radiation on photosystem II (PS II) were studied in leaves of Chenopodium album. After the treatment with UV-B the damage was estimated using chlorophyll a fluorescence techniques. Measurements of modulated fluorescence using a pulse amplitude modulated fluoromete

  14. Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays.

    Science.gov (United States)

    Marti, Guillaume; Schnee, Sylvain; Andrey, Yannis; Simoes-Pires, Claudia; Carrupt, Pierre-Alain; Wolfender, Jean-Luc; Gindro, Katia

    2014-01-01

    UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae), Vitis vinifera L. (Vitaceae) and Cannabis sativa L. (Cannabaceae), were evaluated by an LC-HRMS-based metabolomic approach. The approach enabled the detection of significant metabolite modifications in the three species studied. For all species, clear modifications of phenylpropanoid metabolism were detected that led to an increased level of stilbene derivatives. Interestingly, resveratrol and piceid levels were strongly induced by the UV-C treatment of C. antarctica leaves. In contrast, both flavonoids and stilbene polymers were upregulated in UV-C-treated Vitis leaves. In Cannabis, important changes in cinnamic acid amides and stilbene-related compounds were also detected. Overall, our results highlighted phytoalexin induction upon UV-C radiation. To evaluate whether UV-C stress radiation could enhance the biosynthesis of bioactive compounds, the antioxidant activity of extracts from control and UV-C-treated leaves was measured. The results showed increased antioxidant activity in UV-C-treated V. vinifera extracts. PMID:25197936

  15. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    Science.gov (United States)

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  16. Heated water and UV-C radiation to post harvest control of Cryptosporiopsis perennans on apples; Agua aquecida e radiacao UV-C no controle pos-colheita de Cryptosporiopsis perennans em macas

    Energy Technology Data Exchange (ETDEWEB)

    Bartnicki, Vinicius Adao; Amarante, Cassandro Vidal Talamini do, E-mail: vinibart@hotmail.co, E-mail: amarante@cav.udesc.b [Universidade do Estado de Santa Catarina (UDESC), Lages, SC (Brazil). Centro de Ciencias Agroveterinarias. Dept. de Agronomia; Valdebenito-Sanhueza, Rosa Maria, E-mail: rosamaria@m2net.com.b [Proterra Engenharia Agronomica, Vacaria, RS (Brazil); Castro, Luis Antonio Suita de, E-mail: suita@cpact.embrapa.b [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Rizzatti, Mara Regina; Souza, Joao Antonio Vargas de, E-mail: marar@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Centro em Pesquisa e Desenvolvimento em Fisica. Grupo de Fisica das Radiacoes

    2010-02-15

    The objective of this work was to assess the colonization of Cryptosporiopsis perennans in the epidermis of apples and the efficiency of heated water and UV-C radiation application to control this pathogen. In apples inoculated with C. perennans, the colonization of lenticels and adjacent areas by the pathogen was observed by electronic scanning microscopy. The sensitivity of C. perennans conidia was evaluated in aqueous suspension, at temperatures of 28, 45, 50 and 55 deg C for 15 and 30 s, and at UV.C radiation doses of 0.018, 0.037, 0.075, 0.150, 0.375, 0.750, 1.500 and 3.000 kJ m.2. The effects of UV.C radiation doses at 0.375, 0.750 and 1.500 kJ m.2 and heated water at 50 deg C, sprayed during 15 and 30 s were evaluated for controlling C. perennans in apples inoculated with the pathogen. The fungus produced abundant mycelium and conidia in lenticels and adjacent areas on the epidermis of the apples. The heated water at 50 deg C during 15 s and a 0.750 kJ m.2 UV.C radiation dose reduced conidia survival in more than 99%. Heated water sprayed at 50 deg C during 15 s and a UV.C radiation dose of 0.375 kJ m.2 control C. perennans in apples. (author)

  17. The effects of UV radiation A and B on diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats

    Science.gov (United States)

    Cockell, C. S.; Rothschild, L. J.

    1999-01-01

    Photosynthetic primary production, the basis of most global food chains, is inhibited by UV radiation. Evaluating UV inhibition is therefore important for assessing the role of natural levels of UV radiation in regulating ecosystem behavior as well as the potential impact of stratospheric ozone depletion on global ecosystems. As both photosynthesis and UV fluxes are subject to diurnal variations, we examined the diurnal variability of the effect of UV radiation on photosynthesis in three diverse algal mats. In one of the mats (Cyanidium caldarium) a small mean decrease in primary productivity over the whole day occurred when both UVA and UVB were screened out. In two of the mats (Lyngbya aestuarii and Zygogonium sp.) we found a mean increase in the total primary productivity over the day when UVB alone was screened and a further increase when UVA and UVB were both screened out. Variations in the effects of UV radiation were found at different times of the day. This diurnal variability may be because even under the same solar radiation flux, there are different factors that may control photosynthetic rate, including nutritional status and other physiological processes in the cell. The results show the importance of assessing the complete diurnal productivity. For some of the time points the increase in the mean was still within the standard deviations in primary productivity, illustrating the difficulty in dissecting UV effects from other natural variations.

  18. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain.

    Science.gov (United States)

    Yang, Zhen; Kong, Fanxiang; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-01-01

    Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms.

  19. Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie; Arellano, Alejandro; Latsague, Mirtha; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren

    2014-12-01

    The effects of increased doses of UV-B radiation on anatomical, biochemical and molecular features of leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes were investigated. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 Wm(-2) of biologically effective UV-B radiation for up to 72 h. Leaf thickness and the adaxial epidermis thickness fell more than 3-fold in both genotypes at the highest UV-B dose. Moreover, in Bluegold an evident disorganization in the different cell layers was observed at the highest UV-B radiation. A significant decrease in chlorophyll a/b after 6 h in Brigitta under the greater UV-B doses was observed. Anthocyanin and total phenolics were increased, especially at 0.19 Wm(-2), when compared to the control in both genotypes.Chlorogenic acid was the most abundant hydroxycinnamic acid in Brigitta, and was significantly higher (P ≤ 0.05) than in Bluegold leaves. Regarding the expression of phenylpropanoid genes, only the transcription factor VcMYBPA1 showed a significant and sustained induction at higher doses of UV-B radiation in both genotypes compared to the controls. Thus, the reduction of leaf thickness concomitant with a lower lipid peroxidation and rapid enhancement of secondary metabolites, accompanied by a stable induction of the VcMYBPA1 transcription factor suggest a better performance against UV-B radiation of the Brigitta genotype.

  20. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    International Nuclear Information System (INIS)

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  1. Effect of UV-B Radiation on POD and SOD Isoenzyme of Arabidopsis thaliana%UV-B辐射对拟南芥POD、SOD同工酶的影响

    Institute of Scientific and Technical Information of China (English)

    李晓阳; 孙永星; 宋丽平; 韩榕

    2011-01-01

    选择哥伦比亚生态型(Columbia-0)的野生型拟南芥(Arabidopsis thaliana L.)为供试材料,研究了其POD、SOD同工酶对不同剂量UV-B胁迫的响应.结果显示,POD和SOD同工酶活性与UV-B辐射的剂量关系密切.POD、SOD同工酶活性在低剂量UV-B辐射时呈增加趋势,在中、高剂量UV-B辐射时活性则呈下降趋势.在UV-B胁迫下,POD同工酶酶带没有发生变化;SOD同工酶酶带在胁迫下,出现了新的酶带(SOD4、SOD5).说明拟南芥在受到低剂量的UV-B胁迫下,可以通过提高自身的保护系统来抵御外界不良环境的影响;而受到较高剂量的UV-B胁迫时,会破坏植物的保护系统,造成不可逆的损伤.%Ecotype of Columbia ( Columbia-0) wild-type Arabidopsis (Arabidopsis thaliana L. ) was used to study the respond of UV-B stress of different doses on its POD and SOD isoenzyme. The results showed that, POD and SOD isoenzyme activity was very closed to the dose of UV-B radiation. The activity of POD and SOD isoenzyme showed an increasing trend in the low dose of UV-B radiation, but in the medium and high doses of UV-B radiation, the activity was decreased. In the stress of UV-B, the enzyme belts of POD isozymes did not change, and new belts of SOD isozymes ( SOD4, SODS ) was appeared. It was explained at low doses of UV-B stress, Arabidopsis could improve their own protection system to resist the adverse environmental impact from the outside world, but at high doses of UV-B stress, it would destroy the plant's protection system and cause irreversible damage.

  2. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    Science.gov (United States)

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control. PMID:26884481

  3. UV-radiation and the flavonoid content in callus culture of Ononis arvensis L

    International Nuclear Information System (INIS)

    The paper discussed a possible influence on the production of secondary metabolites - the flavonoids, by the method of elicitation in the callus cultures of Ononis arvensis L., the elicitor employed being the UV 254 and 366 nm and the sun-lamp. In some cases there was an increase in the production of flavonoids particularly 60, 120, 240 and 300 s after sun-lamp irradiation and in case of 15 and 30 min irradiation with UV-254 nm

  4. Association of UV radiation with Parkinson's disease incidence: A nationwide French ecologic study

    OpenAIRE

    Elbaz, A; Sofiane, K; Wald, Lucien; Dugravot, A.; Singh-Manoux, A.; Moisan, F.; Kravietz, A

    2016-01-01

    International audience Meeting: 20th International Congress Abstract Number: 467 Objective: Using ultraviolet B (UV-B) as a surrogate for vitamin D levels, we conducted a nationwide ecologic study in France in order to examine the association of UV-B exposure with Parkinson's disease (PD) incidence. Background: In addition to regulating calcium homeostasis and bone metabolism, vitamin D is involved in multiple biological pathways. Lower vitamin D is associated with increased mortality, in ...

  5. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Zhiguang; Gao, Kunshan

    2012-01-01

    Solar ultraviolet radiation (UVR, 280-400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280-315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315-400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.

  6. Influence of UV-B radiation on lead speciation in the presence of natural particles of estuarine waters.

    Science.gov (United States)

    Kumar, M Praveen; Mota, A M; Gonçalves, M L S

    2016-09-01

    The influence of UV-B irradiation on filtered and non-filtered water samples collected in a non-polluted area of Tagus estuary was evaluated in this study. In the laboratory, both samples were titrated with lead (Pb(+2)) followed by differential pulse anodic stripping voltammetry (DPASV), before and after 1 and 10 days under UV-B irradiation. Metal-ligand complexing parameters were obtained based on a macromolecular heterogeneous ligand described by two distinct sites with a labile behavior, and a third small homogeneous weaker group, which concentration was determined from a potentiometric titration. Under UV-B radiation, the complexing strength decreased with time in both (filtered and non-filtered) irradiated samples, but this effect was more pronounced in the non-filtered water, which might be due to some adsorption of dissolved macromolecular ligands on the particles and/or to further degradation of dissolved organic matter (DOM). Furthermore, the presence of particles favored the break-down of the macromolecular ligand under long UV-B exposure time. These results present ecological implications for the estuarine ecosystems such as bioavailability and toxicity. PMID:27230154

  7. Effects of operational parameters of process UV radiation/hydrogen peroxide on decolorization of anthraquinone textile dye

    Directory of Open Access Journals (Sweden)

    Radović Miljana D.

    2012-01-01

    Full Text Available The photodegradation of textile dye Reactive Blue 19, an anionic anthraquinone dye of reactive class, was investigated using UV radiation in the presence of H2O2 in UV reactor with low-pressure mercury lamps, with maximum energy output at the wavelength 254 nm. The effects of experimental variables, namely initial pH, initial dye concentration and concentration of peroxide were studied. The change of concentration of RB19 was followed by UV/vis spectrophotometric measurement of absorbance at 592 nm. The increase of the initial pH resulted in the efficiency increase of dye decolorization. The total decolorization was achieved in about 15 min. Results show that with the increase of dye concentration from 10 to 100 mg dm-3 the efficiency of process decreases. With the increase of the initial concentration of H2O2 from 10 to 30 mmol dm-3, the decolorization rate constant increased from 0.083 to 0.120 min1, with the decrease of process rate at the concentrations above. The highest decolorization rates were achieved at peroxide concentration of approx. 30 mmol dm-3, above which decolorization was inhibited by scavenging effect of peroxide. This study shows that UV/H2O2 process is promising treatment for dye RB 19 degradation in water and wastewater.

  8. Solar UV radiation exposure of seamen – Measurements, calibration and model calculations of erythemal irradiance along ship routes

    International Nuclear Information System (INIS)

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  9. Ultraviolet radiation (UV-C) on the post harvest control of Colletotrichum gloeosporioides in 'niagara rosada' grapes

    International Nuclear Information System (INIS)

    Most of the post harvest losses of 'Niagara Rosada' grapes are caused by rot and detached berries. Recently, many researches on alternative methods, such as physical treatments, have been carried out in order to control rots and extend the shelf life of fruits. The objective of this research was to evaluate the effect of ultraviolet radiation (UV-C) on the control of C. gloeosporioides in 'Niagara Rosada' grapes stored at room condition and under refrigeration. Clusters of 'Niagara Rosada' grapes were inoculated with the pathogen and submitted 2 hours later to different doses of UV-C, 0, 1.05, 2.09, 4.18, and 8.35 kJ m-2, during the periods of 0, 1, 2, 4, and 8 min, respectively. Then, the clusters were stored under two conditions: 25 ± 1 deg C / 80 ± 5 % RH for 7 days, and at 1 ± 1 deg C / 90 ± 5 % RH for 16 days followed by storage at 25 ± 1 deg C / 80 ± 5 %RH for 5 more days. The grapes were evaluated for rot incidence, stem browning, color of the berries, percentage of detached berries, titratable acidity, total soluble solids, and ratio. It was observed that UV-C radiation was effective in reducing the incidence of C. gloeosporioides on inoculated 'Niagara Rosada' grapes and did not change the physicochemical characteristics of the grapes. (author)

  10. Distinctive Anthocyanin Accumulation Responses to Temperature and Natural UV Radiation of Two Field-Grown Vitis vinifera L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ana Fernandes de Oliveira

    2015-01-01

    Full Text Available The responses of two red grape varieties, Bovale Grande (syn. Carignan and Cannonau (syn. Grenache, to temperature and natural UV radiation were studied in a three-years field experiment conducted in Sardinia (Italy, under Mediterranean climate conditions. Vines were covered with plastic films with different transmittances to UV radiation and compared to uncovered controls. Light intensity and spectral composition at the fruit zone were monitored and berry skin temperature was recorded from veraison. Total skin anthocyanin content (TSA and composition indicated positive but inconsistent effects of natural UV light. Elevated temperatures induced alterations to a greater extent, decreasing TSA and increasing the degree of derivatives acylation. In Cannonau total soluble solids increases were not followed by increasing TSA as in Bovale Grande, due to both lower phenolic potential and higher sensitivity to permanence of high temperatures. Multi linear regression analysis tested the effects of different ranges of temperature as source of variation on anthocyanin accumulation patterns. To estimate the thermal time for anthocyanin accumulation, the use of normal heat hours model had benefit from the addition of predictor variables that take into account the permanence of high (>35 °C and low (<15 °C and <17 °C temperatures during ripening.

  11. Antiangiogenic Agent Might Upgrade tumor Cell Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    The understanding of the fundamental role of angiogenesis and metastasis in cancer growth has led to tremendous interest in research regarding its regulatory mechanisms and clinical implications in the management of cancer. The present study was conducted to evaluate the influence of the angiogenic regulators modification on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. Accordingly, the antiangiogenic activity of apigenin and selenium was tested in vitro via MTT assay. The action of Apigenin and or Selenium was examined in vivo by using a model of solid tumor carcinoma (EAC). The growth rate of solid tumor in all experimental groups was measured by Caliper. The irradiated mice were exposed to 6.5 Gy of gamma rays. Apigenin 50 mg/kg body weight and selenium 5 μg per mice were daily administrated for 14 consecutive days after tumor volume reached 1mm3. The angiogenic activators TNF-α (key cytokine) in spleen, serum MMP 2 and MMP 9, liver and tumor NO, the lipid peroxidation (LPx) and angiogenic inhibitor TIMP-1 in spleen as well as, antioxidant markers (CAT, SOD, GPX) in tumor and liver tissue and DNA fragmentation in splenocytes were estimated to monitor efficacy of Apigenin and selenium in cancer treatment strategy. All parameters were determined as a time course on days 16 and 22 after tumor volume reached 1mm3. The using of MTT assay on EAC cells shows inhibition in EAC cell proliferation after the incubation with apigenin and /or selenium. The administration of apigenin and /or selenium to mice bearing tumor and to irradiated mice bearing tumor reduce significantly the TNF-α expression, MMP 2,9 , NO , LPx level and increased the antioxidant enzymes (GPx , SOD and CAT) activities. The DNA fragmentation and the antiangiogenic factors TIMP-1 were significantly increased when compared with their values in mice bearing tumor or in irradiated mice bearing tumor. From the results obtained

  12. Availability of vitamin D photoconversion weighted UV radiation in southern South America.

    Science.gov (United States)

    Diaz, Susana; Vernet, Maria; Paladini, Alejandro; Fuenzalida, Humberto; Deferrari, Guillermo; Booth, Charles R; Cabrera, Sergio; Casiccia, Claudio; Dieguez, Maria; Lovengreen, Charlotte; Pedroni, Jorge; Rosales, Alejandro; Vrsalovic, Jazmin

    2011-12-01

    Ultraviolet radiation (UVR) plays a key role in several biological functions, including human health. Skin exposure to UVR is the main factor in vitamin D photoconversion. There is also evidence relating low levels of vitamin D with certain internal cancers, mainly colon, breast and prostate, as well as other diseases. Several epidemiological studies have shown an inverse relationship between the above-mentioned diseases and latitude, in accordance with the ultraviolet radiation latitudinal gradient. The aim of this study is to determine whether UV irradiance levels in the southern South America are sufficient to produce suitable levels of vitamin D year around. For this purpose, vitamin D photoconversion weighted-irradiance was analyzed between S.S. de Jujuy (24.17°S, 65.02°W) and Ushuaia (54° 50'S, 68° 18'W). In addition to irradiance, skin type and area of body exposed to sunlight are critical factors in vitamin D epidemiology. Due to a broad ethnic variability, it was assumed that the skin type in this region varies between II and V (from the most to the less sensitive). All sites except South Patagonia indicate that skin II under any condition of body area exposure and skin V when exposing head, hands, arms and legs, would produce suitable levels of vitamin D year round (except for some days in winter at North Patagonian sites). At South Patagonian sites, minimum healthy levels of vitamin D year round can be reached only by the more sensitive skin II type, if exposing head, hands, arms and legs, which is not a realistic scenario during winter. At these southern latitudes, healthy vitamin D levels would not be obtained between mid May and beginning of August if exposing only the head. Skin V with head exposure is the most critical situation; with the exception of the tropics, sun exposure would not produce suitable levels of vitamin D around winter, during a time period that varies with latitude. Analyzing the best exposure time during the day in order to

  13. Effects of UV-B radiation on population growth of rotifer Brachionus urceus%UV-B辐射增强对壶状臂尾轮虫种群增殖的影响

    Institute of Scientific and Technical Information of China (English)

    王进河; 冯蕾; 唐学玺

    2009-01-01

    运用群体累计培养的方法研究了UV-B辐射增强对壶状臂尾轮虫(Brachionus urceus)种群增殖的影响.结果表明:UV-B辐射增强对壶状臂尾轮虫的种群数量、雌体抱卵率和种群增殖率都有显著影响(P<0.05).实验表明,在本实验辐射强度(20μW/cm2)和剂量范围内(0.24、0.48、0.72、0.96和1.20kJ/m2),壶状臂尾轮虫的种群数量和种群增殖率均以对照组最高,各UV-B辐射处理组则随UV-B辐射剂量的增大而呈一致性减小,说明该种群的种群数量和种群增殖率随UV-B辐射的增强显示一致性的影响,两者都可以作为大气UV-B辐射强弱的生物指标.%The effects of UV-B radiation on population growth of rotifer Brachionus urceus were studied using the method of population accumulative culture. The results showed that the population numbers, the percentage of egg-bearing females relative to the total number of females and population growth rate of rotifer Brachionus urceus were significantly affected by UV-B radiation (P<0.05). At the experimental intensity of 20μW/cm2and in the dose range studied (0.00, 0.24, 0.48, 0.72, 0.96 and 1.20kJ /m2), both the population number and growth rate was the highest in the control and decreased with the increment of UV-B radiation. In addition, the population number and growth rate of rotifer Brachionus urceus showed a similar tendency of decrease with the dose increase of UV-B radiation. Both of them could be used as an ideal biomarker for the enhancement of UV-B radiation.

  14. Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea.

    Science.gov (United States)

    Roleda, Michael Y; Wiencke, Christian; Lüder, Ulrike H

    2006-01-01

    Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores

  15. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    Science.gov (United States)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  16. Micro-organism re-growth in wastewater disinfected by UV radiation and ozone: a micro-biological study.

    Science.gov (United States)

    Alonso, E; Santos, A; Riesco, P

    2004-04-01

    A series of disinfection experiments using UV radiation and ozone was performed on the secondary effluent from a wastewater treatment plant at a pilot plant scale. The microbial population in the inflowing wastewater and the treated outflow water were quantified for each of the treatment modules (fecal coliforms, fecal streptococci, Salmonella spp. (presence/absence), Clostridium Sulphite-reducers, Pseudomonas aeruginosa, Staphylococcus aureus, coliphages, nematodes, intestinal nematodes and pathogenic fungi). Treated water was stored in opaque tanks at a temperature between 20 and 22 degrees C, after which, a one-month study of the regrowth of the bacterial flora, nematodes and fungi was carried out. Clostridium Sulphite-reducers, pathogenic fungi and nematodes were the micro-organisms showing a greatest degree of resistence to UV- and Ozone-treatment. It was only concerning Clostridium and Pseudomonas abatement that significant elimination results were achieved with both technologies.

  17. Effects of UV-B radiation on photosynthesis and transpiration in leaves and pods of two yellow lupine varieties

    International Nuclear Information System (INIS)

    Changes in the rates of photosynthesis and transpiration, and the greenness index (SPAD) were studied in a pot experiment performed on leaves of two morphological types of yellow lupine, under conditions of differentiated UV-B radiation. The rates of photosynthesis and transpiration, stomatal conductance, and concentration of intercellular CO2 were also measured in pods of two yellow lupine varieties tested in the study. It was found that the intensity of UV-B irradiation, in a range from 1.8 to 4.5 W/square m, administered over the entire vegetation season, did not reduce the level of leaf photosynthesis in the two yellow lupine varieties. It was also reported that photosynthesis rate in yellow lupine pods, measured as a level of CO2 assimilation, assumed negative values, which indicates that the amount of gas liberated to the atmosphere was higher than its uptake

  18. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  19. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours

    International Nuclear Information System (INIS)

    Oxygen deficient hypoxic cells, which are resistant to sparsely ionising radiation, have now been identified in most animal and some human solid tumours and will influence the response of those tumours to radiation treatment. This hypoxia can be either chronic, arising from an oxygen diffusion limitation, or acute, resulting from transient stoppages in microregional blood flow. Extensive experimental studies, especially in the last decade, have shown that nicotinamide and structurally related analogs can effectively sensitize murine tumours to both single and fractionated radiation treatments and that they do so in preference to the effects seen in mouse normal tissues. The earliest studies suggested that this enhancement of radiation damage was the result of an inhibition of the repair mechanisms. However, recent studies in mouse tumours have shown that these drugs prevent transient cessations in blood flow, thus inhibiting the development of acute hypoxia. This novel discovery led to the suggestion that the potential role of these agents as radiosensitizers would be when combined with treatments that overcame chronic hypoxia. The combined nicotinamide with hyperthermia proved that the enhancement of radiation damage by both agents together was greater than that seen with each agent alone. Similar results were later seen for nicotinamide combined with a perfluorochemical emulsion, carbogen breathing, and pentoxifylline, and in all these studies the effects in tumours were always greater than those seen in appropriate normal tissues. Of all the analogs, it is nicotinamide itself which has been the most extensively studied as a radiosensitizer in vivo and the one that shows the greatest effect in animal tumours. It is also an agent that has been well established clinically, with daily doses of up to 6 g, associated with a low incidence of side effects. This human dose is equivalent to 100-200 mg/kg in mice and such doses will maximally sensitize murine tumours to

  20. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  1. Competition and sensitivity of wheat and wild oat exposed to enhanced UV-B radiation at different densities under field conditions

    International Nuclear Information System (INIS)

    The influence of enhanced UV-B radiation (approximating a 15% ozone layer reduction) on competitive interaction between spring wheat (Triticum aestivum) and wild oat (Avena fatua) was examined in the field. The density-dependent mortality of both wheat and wild oat did not exhibit a significant difference between control and UV-B treatment conditions. A relatively high degree of competitive stress enhanced the effects of UV-B stress on biomass reduction. The relative competitive status of wheat in terms of total biomass increased under UV-B enhancement while it decreased when based upon grain production. Shifts in competitive balance occurred with significant changes in total biomass, especially when plants grew at higher densities in monocultures and mixtures. The sensitivity of wild oat to intensification of UV-B radiation at higher densities in mixtures was greater than that at lower densities. At all densities examined, wheat grown in mixture was significantly less sensitive to UV-B radiation than that in monoculture, and just the opposite for wild oat. The density of monocultures did not alter the response index (RI) of wheat and wild oat to enhanced UV-B radiation. (author)

  2. Effect of solar UV/EUV heating on the intensity and spatial distribution of Jupiter's synchrotron radiation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2013-10-01

    We analyzed the Very Large Array archived data observed in 2000 to determine whether solar ultraviolet (UV)/extreme ultraviolet (EUV) heating of the Jovian thermosphere causes variations in the total flux density and dawn-dusk asymmetry (the characteristic differences between the peak emissions at dawn and dusk) of Jupiter's synchrotron radiation (JSR). The total flux density varied by 10% over 6 days of observations and accorded with theoretical expectations. The average dawn-dusk peak emission ratio indicated that the dawn side emissions were brighter than those on the dusk side and this was expected to have been caused by diurnal wind induced by the solar UV/EUV. The daily variations in the dawn-dusk ratio did not correspond to the solar UV/EUV, and this finding did not support the theoretical expectation that the dawn-dusk ratio and diurnal wind velocity varies in correspondence with the solar UV/EUV. We tried to determine whether the average dawn-dusk ratio could be explained by a reasonable diurnal wind velocity. We constructed an equatorial brightness distribution model of JSR using the revised Divine-Garrett particle distribution model and used it to derive a relation between the dawn-dusk ratio and diurnal wind velocity. The estimated diurnal wind velocity reasonably corresponded to a numerical simulation of the Jovian thermosphere. We also found that realistic changes in the diurnal wind velocity could not cause the daily variations in the dawn-dusk ratio. Hence, we propose that the solar UV/EUV related variations were below the detection limit and some other processes dominated the daily variations in the dawn-dusk ratio.

  3. Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation

    International Nuclear Information System (INIS)

    Mature pea (Pisum sativum L., cv. Meteor) leaves were exposed to two levels of UV-B radiation, with and without supplementary UV-C radiation, during 15 h photoperiods. Simultaneous measurements of CO2 assimilation and modulated chlorophyll fluorescence parameters demonstrated that irradiation with UV-B resulted in decreases in CO2 assimilation that are not accompanied by decreases in the maximum quantum efficiency of photosystem II (PSII) primary photochemistry. Increased exposure to UV-B resulted in a further loss of CO2 assimilation and decreases in the maximum quantum efficiency of PSII primary photochemistry, which were accompanied by a loss of the capacity of thylakoids isolated from the leaves to bind atrazine, thus demonstrating that photodamage to PSII reaction centres had occurred. Addition of UV-C to the UV-B treatments increased markedly the rate of inhibition of photosynthesis, but the relationships between CO2 assimilation and PSII characteristics remained the same, indicating that UV-B and UV-C inhibit leaf photosynthesis by a similar mechanism. It is concluded that PSII is not the primary target site involved in the onset of the inhibition of photosynthesis in pea leaves induced by irradiation with UV-B. (author)

  4. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge;

    2011-01-01

    with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves...... was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  5. Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation.

    Directory of Open Access Journals (Sweden)

    Andrew R Davis

    Full Text Available Climate change and ocean acidification will expose marine organisms to synchronous multiple stressors, with early life stages being potentially most vulnerable to changing environmental conditions. We simultaneously exposed encapsulated molluscan embryos to three abiotic stressors-acidified conditions, elevated temperate, and solar UV radiation in large outdoor water tables in a multifactorial design. Solar UV radiation was modified with plastic filters, while levels of the other factors reflected IPCC predictions for near-future change. We quantified mortality and the rate of embryonic development for a mid-shore littorinid, Bembicium nanum, and low-shore opisthobranch, Dolabrifera brazieri. Outcomes were consistent for these model species with embryos faring significantly better at 26°C than 22°C. Mortality sharply increased at the lowest temperature (22°C and lowest pH (7.6 examined, producing a significant interaction. Under these conditions mortality approached 100% for each species, representing a 2- to 4-fold increase in mortality relative to warm (26°C non-acidified conditions. Predictably, development was more rapid at the highest temperature but this again interacted with acidified conditions. Development was slowed under acidified conditions at the lowest temperature. The presence of UV radiation had minimal impact on the outcomes, only slowing development for the littorinid and not interacting with the other factors. Our findings suggest that a warming ocean, at least to a threshold, may compensate for the effects of decreasing pH for some species. It also appears that stressors will interact in complex and unpredictable ways in a changing climate.

  6. 一种水性聚氨酯防紫外线涂层剂的应用%The application of an anti-UV waterborne polyurethane coating agent

    Institute of Scientific and Technical Information of China (English)

    李晓霞

    2014-01-01

    Coating method and nanotechnology was used to add the ultraviolet screening agent into water-PU coating. A thin nanoparticles film was formed on the fabric surface, in order to achieve the required anti-UV radiation performance;meanwhile, the fabric display air permeable and moisture permeable properties.%应用涂层方法和纳米技术将紫外线屏蔽剂添加到水性聚氨酯涂层胶中,在织物表面形成一层含有纳米微粒的薄膜用以达到所需的紫外线屏蔽效果;同时,织物具有透气、透湿性能。

  7. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions [ozone depletion

    International Nuclear Information System (INIS)

    The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φI) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought. (author)

  8. Ultraviolet Radiation over Two Lakes in the Middle and Lower Reaches of the Yangtze River, China: An Innovative Model for UV Estimation

    Directory of Open Access Journals (Sweden)

    Meiling Huang

    2011-01-01

    Full Text Available This study aims to explore the characteristics of ultraviolet (UV radiation over Dong Lake (DL and Tai Lake (TL in the middle and lower reaches of the Yangtze River and to develop an innovative model for UV estimation under all weather conditions. The characteristic analysis of UV radiation shows distinctly hourly and monthly variations at two typical sites. The maximum values can represent the hourly UV feature, and the median and the arithmetic mean values are reasonably similar with little difference for both stations. The monthly means of hourly UV radiation range from 25.68 to 70.07 kJ m-2 for DL and between 36.00 and 92.62 kJ m-2 for TL. The monthly mean hourly UV fractions vary from 3.79% to 4.93% at DL and between 4.57% and 5.94% at TL. Comparisons on the monthly mean hourly values of UV radiation and UV fraction, the values at TL are always greater than those at DL. An innovative model is constructed based on two input parameters, namely the effect of the comprehensive attenuation factors for assumed cloud-free conditions (CAFUVclear and the effect of the clouds (Kg. CAFUVclear is derived from empirical models based on relative optical air mass and ozone. The effectiveness of the presented model is demonstrated by comparing with other two estimation models. This innovative model presents values of RMSE better than two reported models either at local place or a different locality. It indicates that this new model can provide satisfactory estimates of UV radiation at different localities other than the local place of origin where the relationships are developed.

  9. Response and Defense Mechanisms of Taxus chinensis Leaves Under UV-A Radiation are Revealed Using Comparative Proteomics and Metabolomics Analyses.

    Science.gov (United States)

    Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui

    2016-09-01

    Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. PMID:27318281

  10. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    Science.gov (United States)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures

  11. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    T. Yokohata

    2012-02-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  12. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2012-06-01

    Full Text Available The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280–315 nm radiation through 1850–2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N–60° N and 120° E–150° E, where the effect of aerosols (ca. 70% dominates the total UV-B change.

  13. Phototherapy appliances, their ultraviolet radiation and quality assurance of phototherapy. Terveydenhuollon laadunhallinta. Valohoitolaitteet, niiden UV- saeteily ja valohoitojen laadunvarmistus

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Leszczynski, K.; Visuri, R.; Ylianttila, L.; Jokela, K. (Radiation and Nuclear Safety Authority, Helsinki (Finland))

    1998-01-01

    Artificial UV radiation (UVR) is used in the treatment of psoriasis and other skin diseases. Long term phototherapy is associated to increased risk of squamous cell carcinoma. This report gives a short review of biological effects of UVR and technical aspects of phototherapy units. The phototherapy units used in Finnish Central hospitals are described and the measured UVR dose rates of these units are presented. In addition, the UVR meters used in hospitals are described and the calibration factors are given for UVR dose rate measurements: Finally, recommendations are given for the quality assurance of photo-therapy units as well as for assessing UVR doses of patients. (orig.) 88 refs.

  14. Phototherapy appliances, their ultraviolet radiation and quality assurance of phototherapy; Terveydenhuollon laadunhallinta. Valohoitolaitteet, niiden UV- saeteily ja valohoitojen laadunvarmistus

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Leszczynski, K.; Visuri, R.; Ylianttila, L.; Jokela, K. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    1998-12-31

    Artificial UV radiation (UVR) is used in the treatment of psoriasis and other skin diseases. Long term phototherapy is associated to increased risk of squamous cell carcinoma. This report gives a short review of biological effects of UVR and technical aspects of phototherapy units. The phototherapy units used in Finnish Central hospitals are described and the measured UVR dose rates of these units are presented. In addition, the UVR meters used in hospitals are described and the calibration factors are given for UVR dose rate measurements: Finally, recommendations are given for the quality assurance of photo-therapy units as well as for assessing UVR doses of patients. (orig.) 88 refs.

  15. Mutagenic effect of ionizing radiation and chemical and environmental agents in Tradescantia

    International Nuclear Information System (INIS)

    The studies covered the following problems: an influence of some environmental agents on the mutagenic effectiveness of ionizing radiation, interaction between ionizing radiation and chemical mutagens in the induction of somatic mutations and also an application of Tradescantia model system for biological monitoring. The studies showed that the pretreatment of Tradescantia plants with sodium fluoride or the modification of the soil composition with dolomite admixture, visibly influences plants radiosensitivity. The analysis of the changes in the dose-response curves suggested that the employed agents were influencing in different ways the repair processes of the DNA. The studies on the interaction between agents proved that the synergistic effect occurs in case of combined action of ionizing radiation with such chemical mutagens as ethyl methansulfonate or 1,2 dibromomethane. It was also discovered that in the range of low doses the effect was proportional to radiation dose and total exposition to chemical mutagen. The field application of Tradescantia method defined the mutagenicity of air pollution in the Cracow area. The highest frequencies of mutations were detected after the Chernobyl accident and after the damage of the filters in the Pharmaceutical Plant. The applied method was evaluated in respect of its usefulness for biological monitoring of environmental pollution. 163 refs. (author)

  16. Response of cotton and sorghum to several levels of subambient solar UV-B radiation: a test of the saturation hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, R.S.; Day, T.A. [Arizona Stat. Univ., School of Life Sciences, Tempe AZ (United States)

    2004-11-01

    Some have proposed that plant responses to above-ambient or supplemented levels of solar ultraviolet-B radiation (UV-B; 280315 nm) are typically subtle because targets or receptors in plants become saturated. If true, in solar UV-B filter exclusion experiments we would expect that plant responses would level off or'saturate' as doses approached ambient levels. To test this so-called 'saturation hypothesis' we examined the response of Gossypium hirsutum (cotton) and Sorghum bicolor (sorghum) to filter exclusions that provided five levels of biologically effective UV-B, ranging from 36 to 91% of ambient solar levels in Arizona, USA. UVB dose had no effect on biomass production of either species. As UV-B dose increased or approached ambient, individual leaves of S. bicolorwere smaller, but plants produced more tillers and leaves. In G. hirsutum, individual leaves as well as total plant leaf area were smaller, but plants produced more branches. Bulk concentrations of soluble UV-B absorbing compounds increased with UV-B dose in both species. Leaf epidermal UV-B transmittance, assessed with the chlorophyll fluorescence technique, declined with increasing UV-B dose, and was well correlated with bulk concentrations of soluble UV-B screening compounds. Bulk concentrations of insoluble or wall-bound UV-B absorbing compounds were not affected by UV-B dose. The intensity of UV-induced blue fluorescence from leaf surfaces was strongly correlated with bulk concentrations of wall-bound UV-B absorbing compounds, and this signal has the potential to provide a rapid, non-invasive method to estimate concentrations of these compounds, which are time-consuming to extract. While both species were responsive to solar UV-B, responses did not appear to become saturated as doses approached ambient levels. Rather, responses required a threshold dose of >70% of solar ambient UVB leveis before they became apparent. (au)

  17. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    Science.gov (United States)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  18. Physiological response of Microcystis to solar UV radiation%铜绿微囊藻对紫外辐射的生理代谢响应

    Institute of Scientific and Technical Information of China (English)

    汪燕; 李珊珊; 李建宏; 邓洁; 潘澄; 李朋富

    2011-01-01

    采用紫外(UV)滤膜过滤日光UV以及紫外灯添加UV的方法,研究了UV辐射对铜绿微囊藻Microcystis aeruginosa单细胞藻株PCC7806和群体藻XW01生长及生理代谢的影响.结果显示,在室内条件下低剂量UV辐射可促进群体微囊藻XW01生长;室外条件下与滤除了UV的光照相比,含有UV的完全日光更有利于微囊藻生长;而相同的UV辐射强度均导致单细胞株死亡,群体株显示了较强的UV抗性;日光中的UV可促进XW01合成抗氧化相关的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)、促进胞外多糖的产生并形成较大的群体、促进UV屏障物质类菌孢素氨基酸(MAAs)和伪枝藻素(Scy)积累.这些生理代谢的改变,消除了阳光辐射中UV对微囊藻的伤害.研究的结果提示,自然条件下阳光中的UV有助于群体微囊藻生长.%Toxic cyanobacteria Microcystis blooms often occur in eutrophic lakes around the world. During bloom-occurring, Microcystis population aggregates at the surface of water and is often exposed to strong UV radiation of sunlight. To evaluate the ecological function of solar UV on Microcystis bloom, we studied effects of UV radiation on two M. Aeruginosa strains, the unicellular strain PCC7806 and the colonial strain XW01, by using a transparent UV protection film filtering out the solar UV from sunlight (cut off more than 90% UV radiation, "without UV") in outdoor-culture, and using a 30 W UV lamp (1.25 |iW/cm2 at the surface of culture medium) adding artificial UV radiation in lab-culture. Results showed that the growth of XW01 in the whole solar light (the highest intensity of UV-297 and UV-254 was about 120μW/cm2 at noon, "with UV" ) was better than in the light without UV in the outdoor-culture condition; the cell density (OD650nm) of 6-day culture with UV was 35.8% higher than that without UV. In the lab condition, the low-intensity artificial UV at 18.75 J/ m daily radiation (repeat 5-second UV light with 20-second

  19. Radiation Recall Reaction: Two Case Studies Illustrating an Uncommon Phenomenon Secondary to Anti-Cancer Agents

    International Nuclear Information System (INIS)

    Radiation recall phenomenon is a tissue reaction that develops throughout a previously irradiated area, precipitated by the administration of certain drugs. Radiation recall is uncommon and easily neglected by physicians; hence, this phenomenon is underreported in literature. This manuscript reports two cases of radiation recall. First, a 44-year-old man with nasopharyngeal carcinoma was treated with radiotherapy in 2010 and subsequently developed multi-site bone metastases. A few days after the docetaxel-based chemotherapy, erythema and papules manifested dermatitis, as well as swallowing pain due to pharyngeal mucositis, developed on the head and neck that strictly corresponded to the previously irradiated areas. Second, a 19-year-old man with recurrent nasal NK/T cell lymphoma initially underwent radiotherapy followed by chemotherapy after five weeks. Erythema and edema appeared only at the irradiated skin. Both cases were considered chemotherapeutic agents that incurred radiation recall reactions. Clinicians should be knowledgeable of and pay attention to such rare phenomenon

  20. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    Institute of Scientific and Technical Information of China (English)

    Sanjay; Singh; Baroniya; Sunita; Kataria; Govind; Prakash; Pandey; Kadur; N.; Guruprasad

    2014-01-01

    A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean(Glycine max)varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all of the six soybean varieties.Nitrate reductase activity(NRA) was significantly reduced, whereas leghemoglobin(Lb)content, total soluble protein, net photosynthesis(Pn) and α-tocopherol content were enhanced after UV exclusion. The exclusion of solar UV-A/B enhanced all parameters to a larger extent than the exclusion of solar UV-B in four of the six varieties of soybean except for NRC-7 and Kalitur. These two varieties responded more to UV-B exclusion compared to UV-A/B exclusion. A significant inverse correlation between the NRA and the number of nodules per plant was observed. The extent of response in all parameters was greater in PK-472 and JS71-05 than that in Kalitur and JS-335 after UV exclusion. The exclusion of UV augmented the growth of nodules, Lb content and α-tocopherol levels and conferred higher rates of Pnto support better growth of nodules. Control plants(+ UV-A/B) seemed to fulfill their N demand through the assimilation of NO-3resulting in lower symbiotic nitrogen fixation and higher NR activity.

  1. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    Directory of Open Access Journals (Sweden)

    Sanjay Singh Baroniya

    2014-12-01

    Full Text Available A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean (Glycine max varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all of the six soybean varieties. Nitrate reductase activity (NRA was significantly reduced, whereas leghemoglobin (Lb content, total soluble protein, net photosynthesis (Pn and α-tocopherol content were enhanced after UV exclusion. The exclusion of solar UV-A/B enhanced all parameters to a larger extent than the exclusion of solar UV-B in four of the six varieties of soybean except for NRC-7 and Kalitur. These two varieties responded more to UV-B exclusion compared to UV-A/B exclusion. A significant inverse correlation between the NRA and the number of nodules per plant was observed. The extent of response in all parameters was greater in PK-472 and JS71-05 than that in Kalitur and JS-335 after UV exclusion. The exclusion of UV augmented the growth of nodules, Lb content and α-tocopherol levels and conferred higher rates of Pn to support better growth of nodules. Control plants (+ UV-A/B seemed to fulfill their N demand through the assimilation of NO3− resulting in lower symbiotic nitrogen fixation and higher NR activity.

  2. Ornaments in radiation treatment of cultural heritage: Color and UV-vis spectral changes in irradiated nacres

    Science.gov (United States)

    Marušić, Katarina; Pucić, Irina; Desnica, Vladan

    2016-07-01

    Cultural heritage objects that are radiation treated in order to stop their biodegradation often contain ornamenting materials that cannot be removed. Radiation may produce unwanted changes to such materials. Nacre is a common ornamenting material so this is an attempt to assess the impact of gamma-radiation on its optical properties. Two types of nacre (yellow and white) were obtained from a museum and subjected to different absorbed doses of Co-60 gamma irradiation under the same conditions. The radiation induced changes of nacres color were investigated with fiber optic reflectance spectroscopy (FORS). Colorimetry in CIE Lab space revealed that in both nacres the lightness shifted to darker grey hues at high doses while the color component's (red, green, yellow and blue) behavior depended on the nacre type. Observable changes occurred at doses much above the dose range needed for radiation treatment of cultural heritage objects that are often ornamented with nacre. In UV-vis reflectance spectra of samples irradiated to high doses carbonate radical anion absorption appeared.

  3. Physiological responses and molecular mechanism of rice (Oryza sativa)exposed to enhanced UV-B radiation%水稻对UV-B辐射增强的生理响应及其分子机制研究

    Institute of Scientific and Technical Information of China (English)

    林文雄

    2013-01-01

    本文以水稻为研究对象,从细胞、个体和群体水平系统分析了不同水稻品种对UV-B辐射增强差异响应的遗传生理与防卫机制.试从农业生态系统角度,结合作者近期研究成果,系统分析了近年来国内外的研究重点及其成就.已有研究认为水稻对UV-B辐射增强的生理响应存在明显的种间差异,通常认为起源于靠近赤道附近的低纬度地区的籼稻品种比高纬度地区的粳稻品种更抗(耐)UV-B辐射污染,但许多研究结果不支持这一假说,即在籼粳稻品种中均存在明显对UV-B辐射增强呈不同抗性的种质资源.进一步研究结果表明水稻对UV-B辐射的响应差异是可遗传的数量性状.QTL定位分析结果发现多数抗UV-B辐射相关性状的加性QTL主要集中在第1、2、3、6染色体上,并检测到一些加性QTL还存在加性×加性上位性及其与环境的显著互作效应.作者还深入分析了水稻抗UV-B辐射增强的分子生理与调控机制,提出适当增加植物的硅营养,可以有效提高其抗逆性.最后,作者提出从农田生态系统角度研究和评价UV-B辐射增强所带来的生态风险及其影响是今后研究的重点,强调应重视研究田间条件下UV-B辐射增强及其与其他生态环境因子的互作对作物生长发育的综合影响,在此基础上,探索建立作物遗传改良与栽培调控的减灾防灾技术,为应对全球环境变化,制订相关防护策略提供理论依据和技术支撑.%In this paper, the genetic physiology and defense mechanism to enhanced UV-B radiation were reviewed at cellular, individual and population levels of rice. Analysis and achievements of recent researches in this field under combined agro-ecosystem approach and research observations were explained. Significant differences in the responses of rice germplasms to enhanced UV-B radiation had been reported. Since ambient UV-B radiation level at lower latitudes was greater than that

  4. Effects of ozone and UV radiation treatments on the infectivity of Toxoplasma gondii oocysts

    Science.gov (United States)

    Clinical toxoplasmosis in humans has been epidemiologically-linked to the consumption of drinking water contaminated by Toxoplasma gondii oocysts. We evaluated killing of T. gondii oocysts after ultraviolet (UV) or ozone treatments by bioassay in mice and/or cell culture. A 4-log inactivation of the...

  5. The Effect of UV-B Radiation on Bufo arenarum Embryos Survival and Superoxide Dismutase Activity

    Directory of Open Access Journals (Sweden)

    O. Fridman

    2006-03-01

    Full Text Available The exposure of Bufo arenarum embryos to 300-310 nm UV-B at a dose of 4,104 Joule/m2 resulted in 100% lethality within 24 hr while 820 Joule/m2 was the NOEC value for short-term chronic (10 days exposure. The dose response curves show that lethal effects are proportional with the dose and achieve its highest value within 48 hr post exposure. The superoxide dismutase (SOD activity in amphibian embryos for sublethal UV-B exposures was evaluated by means of UV-B treatments with 273 (A, 820(B, 1368(C and 1915(D Joule/m2 at 2 and 5 hours post irradiation. The SOD activity in units/mg protein in A, B, C and D at 2 hr after treatments were 80.72 ± 14.29, 74.5 ± 13.19, 39.5 ± 6.99 and 10.7 ± 1.89 respectively while for control embryos it was 10.88 ± 1.31. At 5 hr after treatments the SOD values were similar to those found in control embryos. The results confirm the high susceptibility of amphibian embryos to UV-B and point out that the SOD activity is enhanced by low doses of UV-B irradiation achieving significantly higher values than in control embryos at 2 hr post exposure.

  6. Radiative transfer in a clumpy universe: IV. New synthesis models of the cosmic UV/X-ray background

    CERN Document Server

    Haardt, Francesco

    2011-01-01

    We present improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending our previous results. Five new main components are added to our radiative transfer code CUBA: (1) the sawtooth modulation of the background intensity from resonant line absorption in the Lyman series of cosmic hydrogen and helium; (2) the X-ray emission from obscured and unobscured quasars; (3) a piecewise parameterization of the distribution in redshift and column density of intergalactic absorbers that fits recent measurements of the mean free path of 1 ryd photons; (4) an accurate treatment of the photoionization structure of absorbers; and (5) the UV emission from star-forming galaxies at all redshifts. We provide tables of the predicted HI and HeII photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lya forest, and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation. A "minimal cosm...

  7. Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    2004-01-01

    Full Text Available Routine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Co-located spectral and broadband solar UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that for the same aerosol optical depth and for the same total ozone values the UV-B irradiances at the Earth's surface can show differences up to 10%, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and of the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed.

  8. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.; Liley, Ben; Gonzalez, J. A.; Forgan, B. W.; Long, Charles N.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.

  9. Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    2003-09-01

    Full Text Available Routine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Spectral and broadband UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that the same aerosol optical depth and same total ozone values can show differences up to 10% in the UV-B irradiance at the Earth's surface, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed.

  10. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    Science.gov (United States)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  11. Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background

    Science.gov (United States)

    Haardt, Francesco; Madau, Piero

    2012-02-01

    We present improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending our previous results. Five new main components are added to our radiative transfer code CUBA: (1) the sawtooth modulation of the background intensity from resonant line absorption in the Lyman series of cosmic hydrogen and helium; (2) the X-ray emission from the obscured and unobscured quasars that gives origin to the X-ray background; (3) a piecewise parameterization of the distribution in redshift and column density of intergalactic absorbers that fits recent measurements of the mean free path of 1 ryd photons; (4) an accurate treatment of the photoionization structure of absorbers, which enters in the calculation of the helium continuum opacity and recombination emissivity; and (5) the UV emission from star-forming galaxies at all redshifts. We provide tables of the predicted H I and He II photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lyα forest and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation. A "minimal cosmic reionization model" is also presented in which the galaxy UV emissivity traces recent determinations of the cosmic history of star formation, the luminosity-weighted escape fraction of hydrogen-ionizing radiation increases rapidly with look-back time, the clumping factor of the high-redshift intergalactic medium evolves following the results of hydrodynamic simulations, and Population III stars and miniquasars make a negligible contribution to the metagalactic flux. The model provides a good fit to the hydrogen-ionization rates inferred from flux decrement and proximity effect measurements, predicts that cosmological H II (He III) regions overlap at redshift 6.7 (2.8), and yields an optical depth to Thomson scattering, τes = 0.084 that is in agreement with Wilkinson Microwave Anisotropy Probe results. Our new

  12. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    Science.gov (United States)

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter.

  13. Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential?

    Science.gov (United States)

    Cabrol, A.; Grin, E. A.; Hock, A.; Kiss, A.; Borics, G.; Kiss, K.; Acs, E.; Kovacs, G.; Chong, G.; Demergasso, C.

    2004-01-01

    We present data and results from an ongoing project of astrobiological high-altitude expeditions investigating the highest and least explored perennial lakes on Earth in the Bolivian and Chilean Andes, including several volcanic crater lakes nearing and beyond 6,000 m in elevation. In the next five years, they will provide the first integrated long-term astrobiological characterization and monitoring of lacustrine environments and their biology for such altitude. These extreme lakes are natural laboratories. They provide the field data missing beyond 4,000 m to complete our understanding of terrestrial lakes and biota. Research on the effects of UV has been performed in lower altitude lakes and models of UV flux over time are being developed. Lakes showing a high content of dissolved organic material (DOM) shield organisms from UV. DOM acts as a natural sunscreen as it influences the water transparency, therefore is a determinant of photic zone depth. In sparsely vegetated alpine areas, lakes are clearer and offer less protection from UV to organisms living in the water. Transparent water and high UV irradiance may maximize the penetration and effect of UV radiation. Shallow-water communities in these lakes are particularly sensitive to UV radiation. The periphyton can live on various susbtrates. While on rocks, it includes immobile species that cannot seek low UV refuges unlike sediment-dwelling periphyton or alpine phytoflagellates which undergo vertical migration. Inhibition of algal photosynthesis by UV radiation has been documented in laboratory and showed that phytoplankton production is reduced by formation of nucleic acid lesions or production of peroxides and free oxygen radicals. of peroxides and free oxygen radicals. Our project is providing the field data that is missing from natural laboratories beyond 4,000 m and will complement the vision of the effects of UV on life and its adaptation modes (or lack thereof).

  14. Effects of anthracene and UV-B radiation on larvae of Argopecten irradians%蒽和UV-B辐射增强对海湾扇贝早期发育的影响

    Institute of Scientific and Technical Information of China (English)

    谭海丽; 王玉堃; 唐学玺; 周斌; 王其翔; 王悠

    2013-01-01

    The effects of anthracene and UV-B radiation on the early stage embryos development of benthos, and the single and joint a-cute toxicological effects of anthracene and UV-B radiation on the trochophore and D larvae of Argopecten irradians under the controlled laboratory conditions were studied. The results showed that with the increase of time and the anthracenes concentration or the increase of days and radiation does, the liabilities of the trochophore and D larvae declined. With the combination of anthracene and UV-B radiation , the liabilities of trochophore and D larvae were lower than those in the single action. Compared to D larvae, the trochophore was more sensitive to anthracene and UV-B radiation.%为了探讨蒽和UV-B辐射对底栖生物早期发育的影响,在实验生态学的条件下,选择海湾扇贝(Argopecten irradians)担轮幼虫和D型幼虫作为受试生物进行单一和联合急性毒性试验.结果表明:在实验的蒽浓度和UV-B辐射剂量下,随着蒽浓度和作用时间的增加,海湾扇贝担轮幼虫和D型幼虫的存活率逐渐降低;随着UV-B辐射剂量和辐射天数的增加,海湾扇贝担轮幼虫和D型幼虫存活率下降;在蒽和UV-B辐射共同作用对担轮幼虫和D型幼虫处理时,其两个发育阶段的存活率较两者单独作用的存活率均低很多;担轮幼虫较D型幼虫对蒽和UV-B辐射更敏感.

  15. Effect of Enhanced UV-B Radiation on Arabidopsis Mesophyll Cell Protein%增强UV-B辐射对拟南芥叶肉细胞蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    魏小丽; 郑娜; 李晓阳; 韩榕

    2013-01-01

    Four-week-old wild-type Arabidopsis seedlings ( Columbia-O) was treated using different doses of UV-B radiation,the protein in the mesophyll cells was extracted using acetone precipitation and TCA-acetone,then Arabidopsis mesophyllcellular protein content and composition of the different intensity of UV-B radiation response were analyzed.The results showed that comparing two methods,the protein content of the TCA-acetone extract is relatively higher,which was more suitable for the analysis of enhanced UV-B radiation on Arabidopsis mesophyll cell protein; The changes of protein contents by two extraction methods showed the same trend,along with the increasing of UV-B radiation dose,the protein content increased first and then reduced,B2 group reached a maximum.In addition,the number of protein bands and expression has taken place significant change,the most obvious changes were also in the middle dose treatment group ( B2) ,both new bands and disappearance bands.This may be due to the Arabidopsis thaliana can activate some of its own resistance gene expressions and induce resistance protein by low doses of UV-B radiation,and thus resist the damage of UV-B; however,when subjected to high doses of UV-B radiation,damage their own protein synthesis pathway,and affect protein synthesis.%采用不同剂量的UV-B辐射处理4周龄的野生型拟南芥幼苗(Columbia-0),分别采用丙酮沉淀法和TCA-丙酮法提取其叶肉细胞中的蛋白质,进而研究分析拟南芥叶肉细胞中蛋白质的含量与组成对不同强度UV-B辐射的响应.结果显示,两种方法相比较,TCA-丙酮法所提取得到的蛋白含量相对较多,更适合于分析增强UV-B辐射对拟南芥叶肉细胞蛋白质的影响;而两种方法所提取得到的蛋白质含量的变化趋势相同,随着UV-B辐射剂量的增加,蛋白质含量呈先增加后减少的趋势,B2组达到了最大.此外,蛋白条带的数目和表达量也都发生了显著变化,同样

  16. Investigation of the solar UV/EUV heating effect on the Jovian radiation belt by GMRT-IRTF observation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.

    2012-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion

  17. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  18. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P.S.; De Wilde, D.; Dwarakanath, V.N. [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1995-06-01

    The utility of a new target gene (fem-3) is described for investigating the molecular nature of mutagenesis in the nematode Caenorhabditis elegans. As a principal attribute, this system allows for the selection, maintenance and molecular analysis of any type of mutation that disrupts the gene, including deletions. In this study, 86 mutant strains were isolated, of which 79 proved to have mutations in fem-3. Twenty of these originally tested as homozygous inviable. Homozygous inviability was expected, as Stewart and coworkers had previously observed that, unlike in other organisms, most UV radiation-induced mutations in C. elegans are chromosomal rearrangements of deficiencies (Mutat. Res 249, 37-54, 1991). However, additional data, including Southern blot analyses on 49 of the strains, indicated that most of the UV radiation-induced fem-3 mutations were not deficiencies, as originally inferred from their homozygous inviability. Instead, the lethals were most likely ``coincident mutations`` in linked, essential genes that were concomitantly induced. As such, they were lost owing to genetic recombination during stock maintenance. As in mammalian cells, yeast and bacteria, the frequency of coincident mutations was much higher than would be predicted by chance. (Author).

  19. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    Science.gov (United States)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  20. Radiation sensitizations at DNA-level by chemical and biological agents. Coordinated programme on improvement of radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Radiation sensitization by chemical agents at DNA level is discussed. Procaine, Halothan and Metronidazole showed no significant effect on unscheduled DNA synthesis (UDS) in mouse spleen cells, investigated by autoradiography and no effect on rejoining of DNA single strand breaks after gamma or UV irradiation. Oxyphenbutazon and prednisolone reduced the replicative DNA synthesis in vitro and in vivo but there was only little effect on DNA repair in the in vivo experiments. These two substances showed also a small reduction in poly(ADP-ribose) synthesis (PAR synthesis). 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) in combination with UV irradiation showed that 5-MOP was more toxic than mutagen, but induced much less DNA crosslinks than 8-MOP. Autoradiographic studies of radiation sensitization by biological agents showed significant inhibition of UDS in Yoshida tumor cells after acute mycoplasma infection in rats. Nucleoid sedimentation studies showed only in the case of Yoshida tumor cells after mycoplasma infection a dramatic effect in the sedimentation behaviour. Sensitization of cells by changing chromatin structure was also studied. Benzamide, 3-NH2-benzamide, 3-Methoxybenzamide, Spermine, Theophyllin and Caffeine were tested in different concentrations on replicative DNA synthesis, UDS after UV irradiation and PAR synthesis Chinese hamster ovary cells. 5-Methoxybenzamide was the strongest sensitizer and inhibitor of the PAR synthesis, and was used in further experiments. Results of KFA Juelich on sensitization of a mamma-adenocarcinoma EO 771 on C57 B1 mice are given. Replicative DNA synthesis, DNA repair and PAR synthesis were compared in spleen cells and adenocarcinoma cells after treatment with 5-Methoxybenzamide. An inhibitory effect on UDS could be shown only in adenocarcinoma cells but not in the mice spleen cells

  1. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods.

  2. Applying radiation approaches to the control of public risks from chemical agents

    International Nuclear Information System (INIS)

    IF a hazardous agent has a threshold, prevention is the obvious measure of success. To the eyes of this author, success is also achieveable for a hazardous agent that may have no threshold and that causes its effects in a probabilistic manner. First, the technical people responsible for protection must be given a reasonable, well defined risk objective by governmental authorities. To the extent that they meet that objective (1) without unnecessarily increasing operational costs, (2) without interfering unnecessarily with operational activities, and (3) without diverting resources away from greater risks, they are successful. Considering these three qualifications, radiation protection for members of the public can hardly be presented as the panacea for other hazardous agents. It would be an error to dismiss the improvement opportunities discussed above as being of acdemic interest only. Decades of experience with radiation have demonstrated that these problems are both real adn significant. In the US the axioms discussed above are accepted as scientific fact for radiation by many policy makers, the news media and the public. For any operation the collective dose is calculated using zero dose as the lower limit of integration, the results are converted to cancer deaths using the risk coefficients, and decisions are made as though these deaths would actually occur without governmental intervention. As a result, billions of dollars and a very large number of highly skilled persons are being expended to protect against radiation doses far smaller than geographical variations in the natural radiation background. These expenditures are demanded by, and required for well-meaning, nontechnical people who have been misled. It is often stated by knowledgeable people that if the degree of protection required for radiation were also to be requested for the other hazards, human progress would come to a halt. If the radiation approaches are to be used in the control of public

  3. Cooperative response of keratinocytes and melanocytes to UV radiation during PUVA therapy

    Science.gov (United States)

    Stolnitz, Mikhail M.; Baskakov, Pavel V.; Peshkova, Anna Y.

    1999-03-01

    The mathematical model of processes in UV-irradiated furocoumarin-sensitized epidermis is presented taking into account the mutual influence of keratinocytes and melanocytes populations. The model describes epidermis as a hierarchical structure on tissue (keratinocytes-melanocytes cooperation, melanin screen formation), cellular (proliferation and differentiation, transitions between subpopulations), subcellular (cell movement on mitotic cycle, generation, maturing and migration of melanosomes), and molecular (melanin synthesis, processes of DNA damage and repair, molecular signal transduction) levels.

  4. Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation

    OpenAIRE

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-01-01

    A mass spectrometry (MS)-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin (“Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry” [1], “UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis” [2]). Human skin proteins were obtained non-invasively by tape stripping and solubilized i...

  5. GALEX Observations of Diffuse UV Radiation at High Spatial Resolution from the Sandage Nebulosity

    OpenAIRE

    Sujatha, N. V.; Murthy, Jayant; Karnataki, Abhay; Henry, Richard Conn; Bianchi, Luciana

    2008-01-01

    Using the GALEX ultraviolet imagers we have observed a region of nebulosity first identified as starlight scattered by interstellar dust by Sandage (1976). Apart from airglow and zodiacal emission, we have found a diffuse UV background of between 500 and 800 \\phunit in both the \\galex FUV (1350 -- 1750 \\AA) and NUV (1750 -- 2850 \\AA). Of this emission, up to 250 \\phunit is due to \\htwo fluorescent emission in the FUV band; the remainder is consistent with scattering from interstellar dust. We...

  6. Simulation of the effects of naturally enhanced UV-radiation on photosynthesis of Antarctic phytoplankton

    OpenAIRE

    Bracher, Astrid; Wiencke, Christian

    2000-01-01

    ABSTRACT: The effects of spectral exposure corresponding tonormal and depleted stratospheric ozone concentrations onphotosynthesis and mycosporine-like amino acids (MAAs)contents of different natural phytoplankton communities werestudied in early austral summer 1995/1996 during the JGOFS ANTXIII/2 cruise in the Atlantic Sector of the Southern Ocean. Theradiation conditions were simulated in a special solar simulator inwhich the same sample was incubated under 2 light regimesdiffering in UV-B ...

  7. Radiobiological aspects of application of interleucine as agents for the first aid under strong radiation action

    International Nuclear Information System (INIS)

    The paper substantiates the application of the interleucine-1 beta (IL-1) as an emergency medical care agent in case of the acute emergency exposure of a human being. During simulation experiments a human recombinant IL-1 was added to suspension of the affected bony marrow-cells extracted a few minutes following the total 5 Gy exposure of Fi male-mice (CBAxC57B1). Recombinant mouse IL-3 and GM-CSF agents (produced by Bering company, Germany) were used for comparison purpose (agent concentration constituted 100-10000 unit/ml). The incubated bony marrow cells were tested for trunk potencies in mice-recipients irradiated by 8.5 Gy dose during 24 h. Following nine days the colonies in their spleen and bony marrow cellular texture were estimated. IL-1 was shown to have the protective effect both on separated trunk type hemopoietic cells and on the whole body irradiated hemopoietic system. IL-1 turned to be similar to radiation-protective agents of polysaccharide nature and to radiation-protective EIR procedure. It is pointed out that IL-1 has no whole body toxic or any other by effects

  8. Effects of x-irradiation on a temperate bacteriophage of Haemophilus influenzae. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boling, M.E.; Randolph, M.L.

    1977-04-01

    The inactivation of bacteriophage HPlcl by x rays in a complex m