WorldWideScience

Sample records for agents ii cellular

  1. The interaction between radiation and complexes of cis-Pt(II) and Rh(II): studies at the molecular and cellular level

    International Nuclear Information System (INIS)

    Chibber, R.

    1985-01-01

    As a first step in gaining an understanding of the relative cellular effects of the transition metal/nitroimidazole complexes the authors have examined the effect of radiation given to cells in the presence of metal complexes not containing a nitroimidazole ligand. The compounds used in the cellular work are a series of Rh(II) carboxylates, cisplatin and JM8 (CBDCA, cis-diammine-1, 1-cyclobutane dicarboxylate platinum (II)). In radiation chemical experiments, Rh(II) acetate and cisplatin were chosen to represent model systems. Results from these radiation chemical and cellular experiments then allow interpretation of the changes in biological response caused by these agents, which are discussed in terms of the mechanism(s) thought to be operative in radiosensitization. (author)

  2. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.

    Science.gov (United States)

    Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier

    2016-10-01

    The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  4. Natural agents: cellular and molecular mechanisms of photoprotection.

    Science.gov (United States)

    Afaq, Farrukh

    2011-04-15

    The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    Science.gov (United States)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  6. Platinum(II)-gadolinium(III) complexes as potential single-molecular theranostic agents for cancer treatment.

    Science.gov (United States)

    Zhu, Zhenzhu; Wang, Xiaoyong; Li, Tuanjie; Aime, Silvio; Sadler, Peter J; Guo, Zijian

    2014-11-24

    Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)-gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt-Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd-DTPA. T1-weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt-Gd complexes promising theranostic agents for cancer treatment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression Profiles of Cellular Retinol-binding Protein, Type II (CRBP II in Erlang Mountainous Chickens

    Directory of Open Access Journals (Sweden)

    H. D. Yin

    2014-03-01

    Full Text Available Cellular retinol-binding protein II (CRBP II belongs to the family of cellular retinol-binding proteins and plays a major role in absorption, transport, and metabolism of vitamin A. In addition, because vitamin A is correlated with reproductive performance, we measured CRBP II mRNA abundance in erlang mountainous chickens by real-time PCR using the relative quantification method. The expression of CRBP II showed a tissue-specific pattern and egg production rate-dependent changes. The expression was very high (p<0.05 in jejunum and liver, intermediate in kidney, ovary, and oviduct, and lowest (p<0.05 in heart, hypothalamus, and pituitary. In the hypothalamus, oviduct, ovary, and pituitary, CRBP II mRNA abundance were correlated to egg production rate, which increased from 12 wk to 32 wk, peaked at 32 wk relative to the other time points, and then decreased from 32 wk to 45 wk. In contrast, the expression of CRBP II mRNA in heart, jejunum, kidney, and liver was not different at any of the ages evaluated in this study. These data may help to understand the genetic basis of vitamin A metabolism, and suggest that CRBP II may be a candidate gene to affect egg production traits in chickens.

  8. High performance cellular level agent-based simulation with FLAME for the GPU.

    Science.gov (United States)

    Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela

    2010-05-01

    Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.

  9. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects.

    Science.gov (United States)

    Intini, Francesco Paolo; Zajac, Juraj; Novohradsky, Vojtech; Saltarella, Teresa; Pacifico, Concetta; Brabec, Viktor; Natile, Giovanni; Kasparkova, Jana

    2017-02-06

    One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.

  10. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  11. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  12. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    Science.gov (United States)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes

  13. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    Science.gov (United States)

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  14. On Modeling Large-Scale Multi-Agent Systems with Parallel, Sequential and Genuinely Asynchronous Cellular Automata

    International Nuclear Information System (INIS)

    Tosic, P.T.

    2011-01-01

    We study certain types of Cellular Automata (CA) viewed as an abstraction of large-scale Multi-Agent Systems (MAS). We argue that the classical CA model needs to be modified in several important respects, in order to become a relevant and sufficiently general model for the large-scale MAS, and so that thus generalized model can capture many important MAS properties at the level of agent ensembles and their long-term collective behavior patterns. We specifically focus on the issue of inter-agent communication in CA, and propose sequential cellular automata (SCA) as the first step, and genuinely Asynchronous Cellular Automata (ACA) as the ultimate deterministic CA-based abstract models for large-scale MAS made of simple reactive agents. We first formulate deterministic and nondeterministic versions of sequential CA, and then summarize some interesting configuration space properties (i.e., possible behaviors) of a restricted class of sequential CA. In particular, we compare and contrast those properties of sequential CA with the corresponding properties of the classical (that is, parallel and perfectly synchronous) CA with the same restricted class of update rules. We analytically demonstrate failure of the studied sequential CA models to simulate all possible behaviors of perfectly synchronous parallel CA, even for a very restricted class of non-linear totalistic node update rules. The lesson learned is that the interleaving semantics of concurrency, when applied to sequential CA, is not refined enough to adequately capture the perfect synchrony of parallel CA updates. Last but not least, we outline what would be an appropriate CA-like abstraction for large-scale distributed computing insofar as the inter-agent communication model is concerned, and in that context we propose genuinely asynchronous CA. (author)

  15. SMART II : the spot market agent research tool version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    North, M. J. N.

    2000-12-14

    Argonne National Laboratory (ANL) has worked closely with Western Area Power Administration (Western) over many years to develop a variety of electric power marketing and transmission system models that are being used for ongoing system planning and operation as well as analytic studies. Western markets and delivers reliable, cost-based electric power from 56 power plants to millions of consumers in 15 states. The Spot Market Agent Research Tool Version 2.0 (SMART II) is an investigative system that partially implements some important components of several existing ANL linear programming models, including some used by Western. SMART II does not implement a complete model of the Western utility system but it does include several salient features of this network for exploratory purposes. SMART II uses a Swarm agent-based framework. SMART II agents model bulk electric power transaction dynamics with recognition for marginal costs as well as transmission and generation constraints. SMART II uses a sparse graph of nodes and links to model the electric power spot market. The nodes represent power generators and consumers with distinct marginal decision curves and varying investment capital as well individual learning parameters. The links represent transmission lines with individual capacities taken from a range of central distribution, outlying distribution and feeder line types. The application of SMART II to electric power systems studies has produced useful results different from those often found using more traditional techniques. Use of the advanced features offered by the Swarm modeling environment simplified the creation of the SMART II model.

  16. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  17. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2) expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD), the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II), which is proposed to have its potential influence on retinoic acid (RA) response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the ...

  18. An agent-based model of cellular dynamics and circadian variability in human endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tung T Nguyen

    Full Text Available As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.

  19. Cellular image segmentation using n-agent cooperative game theory

    Science.gov (United States)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  20. Effectively simultaneous naked-eye detection of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin extracted from red cabbage as chelating agent

    Science.gov (United States)

    Khaodee, Warangkhana; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai

    Simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin as a chelating agent was investigated in terms of both quantitative and qualitative detections. Cyanidin was extracted and purified from red cabbage which is a local plant in Thailand. The selectivity of this method was examined by regulating the pH of cyanidin solution operated together with masking agents. It was found that Cu(II), Pb(II), Al(III) and Fe(III) simultaneously responded with the color change at pH 7, pH 6, pH 5 and pH 4, respectively. KF, DMG and the mixture of KF and DMG were used as masking agents for the determination of Fe(III), Al(III) and Pb(II), respectively. Results from naked-eye detection were evaluated by comparing with those of inductively coupled plasma (ICP), and there was no significant difference noticed. Cyanidin using as a multianalyte reagent could be employed for simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) at the lowest concentration at 50, 80, 50 and 200 μM, respectively, by slightly varying pHs. Moreover, the proposed method could be potentially applied for real water samples with simplicity, rapidity, low cost and environmental safety.

  1. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  2. Coordinated Control of Multi-Agent Systems in Rapidly Varying Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this Phase II STTR project is to develop advanced control algorithms that enable multiple autonomous agents to perform complex tasks in rapidly...

  3. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  4. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents.

    Science.gov (United States)

    Meador, J A; Zhao, M; Su, Y; Narayan, G; Geard, C R; Balajee, A S

    2008-09-25

    Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.

  5. Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells.

    Science.gov (United States)

    Řehulka, Jiří; Annadurai, Narendran; Frydrych, Ivo; Znojek, Pawel; Džubák, Petr; Northcote, Peter; Miller, John H; Hajdúch, Marián; Das, Viswanath

    2017-07-01

    Hypoxia is a prominent feature of solid tumors, dramatically remodeling microtubule structures and cellular pathways and contributing to paclitaxel resistance. Peloruside A (PLA), a microtubule-targeting agent, has shown promising anti-tumor effects in preclinical studies. Although it has a similar mode of action to paclitaxel, it binds to a distinct site on β-tubulin that differs from the classical taxane site. In this study, we examined the unexplored effects of PLA in hypoxia-conditioned colorectal HCT116 cancer cells. Cytotoxicity of PLA was determined by cell proliferation assay. The effects of a pre-exposure to hypoxia on PLA-induced cell cycle alterations and apoptosis were examined by flow cytometry, time-lapse imaging, and western blot analysis of selected markers. The hypoxia effect on stabilization of microtubules by PLA was monitored by an intracellular tubulin polymerization assay. Our findings show that the cytotoxicity of PLA is not altered in hypoxia-conditioned cells compared to paclitaxel and vincristine. Furthermore, hypoxia does not alter PLA-induced microtubule stabilization nor the multinucleation of cells. PLA causes cyclin B1 and G2/M accumulation followed by apoptosis. The cellular and molecular effects of PLA have been determined in normoxic conditions, but there are no reports of PLA effects in hypoxic cells. Our findings reveal that hypoxia preconditioning does not alter the sensitivity of HCT116 to PLA. These data report on the cellular and molecular effects of PLA in hypoxia-conditioned cells for the first time, and will encourage further exploration of PLA as a promising anti-tumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mitochondrial complex II, a novel target for anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Klučková, Katarína; Bezawork-Geleta, A.; Rohlena, Jakub; Dong, L.; Neužil, Jiří

    2013-01-01

    Roč. 1827, č. 5 (2013), s. 552-564 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP301/12/1851 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrion * Complex II * Anti-cancer agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.829, year: 2013

  7. Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling

    Science.gov (United States)

    Gary Achtemeier

    2012-01-01

    A cellular automata fire model represents ‘elements’ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for ‘super-diffusive’ fire spread and coupled surface-layer (2-m) fire–atmosphere processes. Pressure anomalies, which are integrals of the thermal...

  8. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  9. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes

    Directory of Open Access Journals (Sweden)

    Feuer Gerold

    2004-11-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.

  10. Secondary Leukemia Associated with the Anti-Cancer Agent, Etoposide, a Topoisomerase II Inhibitor

    OpenAIRE

    Sachiko Ezoe

    2012-01-01

    Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL<...

  11. Hematotoxicity response in rats by the novel copper-based anticancer agent: casiopeina II

    International Nuclear Information System (INIS)

    Vizcaya-Ruiz, A. de; Rivero-Mueller, A.; Ruiz-Ramirez, L.; Howarth, J.A.; Dobrota, M.

    2003-01-01

    The in vivo toxicity of the novel copper-based anticancer agent, casiopeina II (Cu(4,7-dimethyl-1,10-phenanthroline)(glycine)NO 3 ) (CII), was investigated. Casiopeinas are a family of copper-coordinated complexes that have shown promising anticancer activity. The major toxic effect attributed to a single i.v. administration of CII (5 mg/kg dose) in the rat was an hemolytic anemia (reduced hemoglobin concentration (HB), red blood cell (RBC) count and packed cell volume (PCV) accompanied by a marked neutrophilic leukocytosis) 12 h and 5 days after administration, attributed to a direct erythrocyte damage. Increased reticulocyte levels and presence of normoblasts in peripheral blood 5 days post-administration indicated an effective erythropoietic response with recovery at 15 days. Increase in spleen weight and the morphological evidence of congestion of the red pulp (RP) with erythrocytes (E) resulting in a higher ratio of red to white pulp (WP) was consistent with increased uptake of damaged erythrocytes by the reticuloendothelial system observed by histopathology and electron microscopy. Extramedullary hemopoiesis was markedly increased at 5 days giving further evidence of a regenerative erythropoietic response that had an effective recovery by 15 days. Morphological changes in spleen cellularity were consistent with hematotoxicity, mainly a reduction of the red pulp/white pulp ratio, increase in erythrocyte content at 12 h, and an infiltration of nucleated cells in the red pulp at 5 days, with a tendency towards recovery 15 days after administration. The erythrocyte damage is attributed to generation of free radicals and oxidative damage on the membrane and within cells resulting from the reduction of Cu(II) and the probable dissociation of the CII complex

  12. Cellular MR Imaging

    Directory of Open Access Journals (Sweden)

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  13. Rates of nickel(II) capture from complexes with NTA, EDDA, and related tetradentate chelating agents by the hexadentate chelating agents EDTA and CDTA: Evidence of a "semijunctive" ligand exchange pathway

    Science.gov (United States)

    Boland, Nathan E.; Stone, Alan T.

    2017-09-01

    Many siderophores and metallophores produced by soil organisms, as well as anthropogenic chelating agent soil amendments, rely upon amine and carboxylate Lewis base groups for metal ion binding. UV-visible spectra of metal ion-chelating agent complexes are often similar and, as a consequence, whole-sample absorbance measurements are an unreliable means of monitoring the progress of exchange reactions. In the present work, we employ capillary electrophoresis to physically separate Ni(II)-tetradentate chelating agent complexes (NiL) from Ni(II)-hexadentate chelating agent complexes (NiY) prior to UV detection, such that progress of the reaction NiL + Y → NiY + L can be conveniently monitored. Rates of ligand exchange for Ni(II) are lower than for other +II transition metal ions. Ni(II) speciation in environmental media is often under kinetic rather than equilibrium control. Nitrilotriacetic acid (NTA), with three carboxylate groups all tethered to a central amine Lewis base group, ethylenediamine-N,N‧-diacetic acid (EDDA), with carboxylate-amine-amine-carboxylate groups arranged linearly, plus four structurally related compounds, are used as tetradentate chelating agents. Ethylenediaminetetraacetic acid (EDTA) and the structurally more rigid analog trans-cyclohexaneethylenediaminetetraacetic acid (CDTA) are used as hexadentate chelating agents. Effects of pH and reactant concentration are explored. Ni(II) capture by EDTA was consistently more than an order of magnitude faster than capture by CDTA, and too fast to quantify using our capillary electrophoresis-based technique. Using NiNTA as a reactant, Ni(II) capture by CDTA is independent of CDTA concentration and greatly enhanced by a proton-catalyzed pathway at low pH. Using NiEDDA as reactant, Ni(II) capture by CDTA is first order with respect to CDTA concentration, and the contribution from the proton-catalyzed pathway diminished by CDTA protonation. While the convention is to assign either a disjunctive

  14. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-04-01

    Full Text Available Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2 expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD, the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II, which is proposed to have its potential influence on retinoic acid (RA response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the same function and biological process as HD. This can confirm that HD has a significant suppressive effect on the expression of CARBP II. Therefore, reduction in the level of RARbeta2 expression in cancer cells can be expected and this can lead to failure in treatment of renal cell carcinoma with RA. The author hereby purpose that additional HD inhibitor should be added into the regiment of RA to increase the effectiveness of treatment.

  15. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chen, Fei-Yan; Gu, Zhe-Jia; Zhao, Dawen; Tang, Qun

    2015-01-01

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF 3 nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration

  16. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan [Nanchang University, College of Chemistry (China); Gu, Zhe-Jia [Nanchang University, Institute for Advanced Study (China); Zhao, Dawen [UT Southwestern Medical Center, Department of Radiology (United States); Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2015-09-15

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF{sub 3} nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration.

  17. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  18. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham; Dai, Wenhan; Alouini, Mohamed-Slim; Win, Moe Z.

    2017-01-01

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  19. Effect of the tether on the Mg(II), Ca(II), Cu(II) and Fe(III) stability constants and pM values of chelating agents related to EDDHA.

    Science.gov (United States)

    Sierra, Miguel A; Gómez-Gallego, Mar; Alcázar, Roberto; Lucena, Juan J; Yunta, Felipe; García-Marco, Sonia

    2004-11-07

    The effect of the length and the structure of the tether on the chelating ability of EDDHA-like chelates have not been established. In this work, PDDHA (propylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid), BDDHA (butylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) and XDDHA (p-xylylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) have been obtained and their chemical behaviour has been studied and compared with that of EDDHA following our methodology. The purity of the chelating agents, and their protonation, Ca(II), Mg(II), Fe(III) and Cu(II) stability constants and pM values have been determined. The stability constants and pM values indicate that EDDHA forms the most stable chelates followed by PDDHA. However, the differences among the pFe values are small when a nutrient solution is used, and in these conditions the XDDHA/Fe(III) chelate is the most stable. The results obtained in this work indicate that all the chelating agents studied can be used as iron chlorosis correctors and they can be applied to soil/plant systems.

  20. Magnesium ionophore II as an extraction agent for trivalent europium and americium

    Energy Technology Data Exchange (ETDEWEB)

    Makrlik, Emanuel [Czech Univ. of Life Sciences, Prague (Czech Republic). Faculty of Environmental Sciences; Vanura, Petr [Univ. of Chemistry and Technology, Prague (Czech Republic). Dept. of Analytical Chemistry

    2016-11-01

    Solvent extraction of microamounts of trivalent europium and americium into nitrobenzene by using a mixture of hydrogen dicarbollylcobaltate (H{sup +}B{sup -}) and magnesium ionophore II (L) was studied. The equilibrium data were explained assuming that the species HL{sup +}, HL{sup +}{sub 2}, ML{sup 3+}{sub 2}, and ML{sup 3+}{sub 3} (M{sup 3+} = Eu{sup 3+}, Am{sup 3+}; L=magnesium, ionophore II) are extracted into the nitrobenzene phase. Extraction and stability constants of the cationic complex species in nitrobenzene saturated with water were determined and discussed. From the experimental results it is evident that this effective magnesium ionophore II receptor for the Eu{sup 3+} and Am{sup 3+} cations could be considered as a potential extraction agent for nuclear waste treatment.

  1. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  2. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  3. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    Science.gov (United States)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of

  4. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents.

    Science.gov (United States)

    de Souza, Nicolli Bellotti; Carmo, Arturene M L; Lagatta, Davi C; Alves, Márcio José Martins; Fontes, Ana Paula Soares; Coimbra, Elaine Soares; da Silva, Adilson David; Abramo, Clarice

    2011-07-01

    The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. DNA alkylating agents alleviate silencing of class II transactivator gene expression in L1210 lymphoma cells.

    Science.gov (United States)

    Murphy, Shawn P; Holtz, Renae; Lewandowski, Nicole; Tomasi, Thomas B; Fuji, Hiroshi

    2002-09-15

    MHC class II (Ia) Ag expression is inversely correlated with tumorigenicity and directly correlated with immunogenicity in clones of the mouse L1210 lymphoma (1 ). Understanding the mechanisms by which class II Ag expression is regulated in L1210 lymphoma may facilitate the development of immunotherapeutic approaches for the treatment of some types of lymphoma and leukemia. This study demonstrates that the variation in MHC class II Ag expression among clones of L1210 lymphoma is due to differences in the expression of the class II transactivator (CIITA). Analysis of stable hybrids suggests that CIITA expression is repressed by a dominant mechanism in class II-negative L1210 clones. DNA-alkylating agents such as ethyl methanesulfonate and the chemotherapeutic drug melphalan activate CIITA and class II expression in class II negative L1210 cells, and this effect appears to be restricted to transformed cell lines derived from the early stages of B cell ontogeny. Transient transfection assays demonstrated that the CIITA type III promoter is active in class II(-) L1210 cells, despite the fact that the endogenous gene is not expressed, which suggests that these cells have all of the transacting factors necessary for CIITA transcription. An inverse correlation between methylation of the CIITA transcriptional regulatory region and CIITA expression was observed among L1210 clones. Furthermore, 5-azacytidine treatment activated CIITA expression in class II-negative L1210 cells. Collectively, our results suggest that 1) CIITA gene expression is repressed in class II(-) L1210 cells by methylation of the CIITA upstream regulatory region, and 2) treatment with DNA-alkylating agents overcomes methylation-based silencing of the CIITA gene in L1210 cells.

  6. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  7. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system

    International Nuclear Information System (INIS)

    Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Brusseau, Mark L.; Yan, Ni; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Highlights: • PCE degradation by reducing-agent modified Fe-catalyzed percarbonate was studied. • The addition of reducing agents significantly increased PCE degradation. • Hydroxylamine hydrochloride showed the best effect on enhancing PCE degradation. • The primary PCE degradation mechanism was oxidation by hydroxyl radical. • O_2·"− participated in the degradation of PCE in reducing-agent modified system. - Abstract: In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO· was the predominant radical in the system and that O_2·"− played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO· scavenger, supporting the hypothesis that HO· was primarily responsible for PCE degradation. It is noteworthy that Cl"− release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO_2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  8. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhouwei [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Gu, Xiaogang [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Lu, Shuguang, E-mail: lvshuguang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Brusseau, Mark L. [Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Yan, Ni [Hydrology and Water Resources Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Qiu, Zhaofu; Sui, Qian [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China)

    2015-12-30

    Highlights: • PCE degradation by reducing-agent modified Fe-catalyzed percarbonate was studied. • The addition of reducing agents significantly increased PCE degradation. • Hydroxylamine hydrochloride showed the best effect on enhancing PCE degradation. • The primary PCE degradation mechanism was oxidation by hydroxyl radical. • O{sub 2}·{sup −} participated in the degradation of PCE in reducing-agent modified system. - Abstract: In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO· was the predominant radical in the system and that O{sub 2}·{sup −} played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO· scavenger, supporting the hypothesis that HO· was primarily responsible for PCE degradation. It is noteworthy that Cl{sup −} release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO{sub 2}. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  9. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    Science.gov (United States)

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Secondary Leukemia Associated with the Anti-Cancer Agent, Etoposide, a Topoisomerase II Inhibitor

    Directory of Open Access Journals (Sweden)

    Sachiko Ezoe

    2012-07-01

    Full Text Available Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL gene on chromosome 11q23, which is associated with secondary leukemia. The prognosis is extremely poor for leukemias associated with rearrangements in the MLL gene, including etoposide-related secondary leukemias. It is of great importance to gain precise knowledge of the clinical aspects of these diseases and the mechanism underlying the leukemogenesis induced by this agent to ensure correct assessments of current and future therapy strategies. Here, I will review current knowledge regarding the clinical aspects of etoposide-related secondary leukemia, some probable mechanisms, and strategies for treating etoposide-induced leukemia.

  11. Mechanisms and circumvention of cellular resistance to cisplatin.

    NARCIS (Netherlands)

    Hospers, Geesiena Alberdina Petronella

    1989-01-01

    Cisplatin (CDDP) is an active cytostatic agent. A limitation to its effectiveness initially or appearing during cystatic treatment is the occurrence of resistance. This thesis describes mechanisms wich are responsible for acquired cellular CDDP resistance. To investigate cellular CDDP resistance, a

  12. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    Science.gov (United States)

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  13. Repair and mutagenesis in procaryotes as cellular responses to ambiental agents

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1982-01-01

    The correct and incorrect mechanisms of DNA repair are discussed, as well as the cellular responses induced by the DNA lesions; the reductone mollecular effects; the cellular interactions among irradiated populations of microorganisms and the utilization of microbial assays for the detection of oncogenic activities of chemicals. (M.A.) [pt

  14. A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants II: COSMO RS and COSMOTherm

    Science.gov (United States)

    2017-04-01

    SELECTED TRADITIONAL CHEMICAL WARFARE AGENTS AND SIMULANTS II: COSMO-RS AND COSMOTHERM ECBC-TR-1454 Jerry B. Cabalo RESEARCH AND TECHNOLOGY...Traditional Chemical Warfare Agents and Simulants II: COSMO-RS and COSMOTherm 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER CB10115...in the ADF 2012 suite of programs for the physico- chemical properties of a set of traditional chemical warfare agents and selected simulants. To

  15. Induction of stress responses by polluting agents which dis-regulate cellular homeostasis

    International Nuclear Information System (INIS)

    Mothersill, Carmel

    2001-01-01

    There is growing concern both in the scientific community and among the general public about the effects of exposure to low levels of radiation and environmental chemicals. The increased incidence of cancer, reproduction disorders and allergies have been associated with ambient environmental exposure to these pollutants. The pollution burden is generally made up of a mixture of agents, occurring at concentrations of the individual compounds which are not considered harmful and which are below the action level. Individual pollutants can act through a variety of primary toxicity mechanisms. However the resulting secondary and tertiary toxicity mechanisms which affect cellular homeostasis might be more common. These resulting stress responses, including oxidative stress, have been associated with effects that include increased level of death during cell division, increased levels of mutation and increased tolerance of mutations in cell populations, increased levels of cytogenetic abnormalities and many other symptoms. These effects are linked to a persistent increase in (oxidative) stress and are particularly evident in the haematopoietic system (possibly due to the high rate self of renewal in that system). Therefore prolonged exposure to mixtures of chemicals and radiation might result in additive and synergistic stress responses which can induce long-term delayed effects, often in progeny or in cells not directly exposed to the agent/s. The existence of a common (oxidative) stress mechanism means that the effects of individual pollutants may not be considered in isolation. Rather the total pollution burden may need to be measured using a response rather than a dose based scoring or ranking system. Improved understanding of toxicity mechanisms and effects underpins improved risk assessment and identification of biomarkers. The immune system plays a pivotal role in maintaining health status, and disruption of immune functions can lead to increased susceptibility to

  16. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  17. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  18. Anticancer agent CHS-828 inhibits cellular synthesis of NAD

    DEFF Research Database (Denmark)

    Olesen, U.H.; Christensen, M.K.; Bjorkling, F.

    2008-01-01

    Malignant cells display increased demands for energy production and DNA repair. Nicotinamide adenine dinucleotide (NAD) is required for both processes and is also continuously degraded by cellular enzymes. Nicotinamide phosphoribosyltransferase (Nampt) is a crucial factor in the resynthesis of NAD......, and thus in cancer cell survival. Here, we establish the cytotoxic mechanism of action of the small molecule inhibitor CHS-828 to result from impaired synthesis of NAD. Initially, we detected cross-resistance in cells between CHS-828 and a known inhibitor of Nampt, FK866, a compound of a structurally...... different class. We then showed that nicotinamide protects against CHS-828-mediated cytotoxicity. Finally, we observed that treatment with CHS-828 depletes cellular NAD levels in sensitive cancer cells. In conclusion, these results strongly suggest that, like FK866, CHS-828 kills cancer cells by depleting...

  19. Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics

    Science.gov (United States)

    Barnett, Brad P; Arepally, Aravind; Stuber, Matthias; Arifin, Dian R; Kraitchman, Dara L; Bulte, Jeff W M

    2011-01-01

    Cell therapy has the potential to treat or cure a wide variety of diseases. Non-invasive cell tracking techniques are, however, necessary to translate this approach to the clinical setting. This protocol details methods to create microcapsules that are visible by X-ray, ultrasound (US ) or magnetic resonance (MR) for the encapsulation and immunoisolation of cellular therapeutics. Three steps are generally used to encapsulate cellular therapeutics in an alginate matrix: (i) droplets of cell-containing liquid alginate are extruded, using an electrostatic generator, through a needle tip into a solution containing a dissolved divalent cation salt to form a solid gel; (ii) the resulting gelled spheres are coated with polycations as a cross-linker; and (iii) these complexes are then incubated in a second solution of alginate to form a semipermeable membrane composed of an inner and an outer layer of alginate. The microcapsules can be rendered visible during the first step by adding contrast agents to the primary alginate layer. Such contrast agents include superparamagnetic iron oxide for detection by 1H MR imaging (MRI); the radiopaque agents barium or bismuth sulfate for detection by X-ray modalities; or perfluorocarbon emulsions for multimodal detection by 19F MRI, X-ray and US imaging. The entire synthesis can be completed within 2 h. PMID:21799484

  20. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    Science.gov (United States)

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  1. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  2. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  3. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  4. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    International Nuclear Information System (INIS)

    Tanaka, Mamoru; Kamiya, Takeshi; Joh, Takashi; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Kawamoto, Keisuke; Shibahara, Takashi; Mizoshita, Tsutomu; Mori, Yoshinori; Tanida, Satoshi

    2013-01-01

    Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl 2 (L)] and [PdCl 2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl 2 (L)] and [PdCl 2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl 2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl 2 (L)] induced DNA double-strand breaks. These results indicate that [PdCl 2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications

  5. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  6. Global properties of cellular automata

    International Nuclear Information System (INIS)

    Jen, E.

    1986-01-01

    Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence

  7. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  8. 47 CFR 22.960 - Cellular unserved area radiotelephone licenses subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular unserved area radiotelephone licenses... (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.960 Cellular... applications for cellular unserved area Phase I and Phase II licenses filed after July 26, 1993 are subject to...

  9. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity.

    Directory of Open Access Journals (Sweden)

    Christopher J Folts

    2016-12-01

    Full Text Available Neurodegenerative lysosomal storage disorders (LSDs are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD], a central nervous system (CNS-penetrant protective agent rescued myelin and oligodendrocyte (OL progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.

  10. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  11. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  12. Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2017-12-01

    Full Text Available Article presents research of modification of PLA with four types of chemical blowing agents with a different decomposition characteristic. The modification was done both cellular extrusion and injection molding processes. Obtained results shows that dosing blowing agents have the influence on mechanical properties and structure morphology of PLA. The differences in obtained results are also visible and significant between cellular processes.

  13. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  14. Adaptive pressure-controlled cellular structures for shape morphing: II. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This part presents finite element analysis to verify the present formulations on mechanics of the pressurized cellular structures derived in Part I and experimental testing for a pressurized cellular actuator to demonstrate feasibility and realization of the proposed pressurized cellular structures. Linear and nonlinear finite element analyses are implemented in a commercial finite element analysis package and the numerical results are compared with those of the novel formulations given in Part I. A pressurized cellular structure specimen with 3 cells is fabricated and tested. The fabricated 3-cell cellular structure is capable of yielding a free actuation strain of around 24%. The measured pressure-induced displacement and blocking force compare favorably with the numerical results predicted by the finite element analysis and analytical formulations. (paper)

  15. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    Science.gov (United States)

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  16. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine

    International Nuclear Information System (INIS)

    Nhukeaw, Tidarat; Temboot, Pornvichai; Hansongnern, Kanidtha; Ratanaphan, Adisorn

    2014-01-01

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine. Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination. HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity

  17. Cellular degradation activity is maintained during aging in long-living queen bees.

    Science.gov (United States)

    Hsu, Chin-Yuan; Qiu, Jiantai Timothy; Chan, Yu-Pei

    2016-11-01

    Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.

  18. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  19. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    Science.gov (United States)

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  20. Production, properties, and applications of hydrocolloid cellular solids.

    Science.gov (United States)

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical

  1. RNA glycosidase and other agents target Tat to inhibit HIV-1 transcription.

    Science.gov (United States)

    Harrich, David; Jin, Hongping

    2018-03-20

    The HIV-1 tat gene encodes a small 86-104 amino acid protein depending on the HIV-1 strain. Tat is essential for HIV-1 replication through interactions with numerous cellular transcription factors. The interaction between Tat and P-TEFb, which is a cellular protein complex composed of cyclin T1 and CDK9, delivers P-TEFb to the newly transcribed viral mRNAs where phosphorylation of RNA polymerase II by CDK9 leads to highly efficient mRNA transcription. It has long been recognized that Tat is a potential anti-HIV-1 target and possibly a viral Achilles' heel. However, specifically targeting Tat without affecting normal host cell functions has been challenging. Means to inactivate Tat have been reported that includes small compounds, transdominant negative Tat proteins, and by plant-derived antivirals. Investigations of these agents have reported encouraging outcomes that inform and may hopefully affect strategies for a functional HIV-1 cure. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Silva, Delmarcio; Hiroshi Toma, Sergio; Menegatti de Melo, Fernando [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo [Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP (Brazil); Domingues dos Santos, Antônio [Instituto de Física, Universidade de São Paulo, São Paulo, SP (Brazil); Araki, Koiti [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Toma, Henrique E., E-mail: henetoma@iq.usp.br [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T{sub 2}) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market. - Highlights: • Stable, hydrophylic magnetic nanoparticles have been obtained. • Direct use of iron(II) carboxymethylcellulose improves the synthesis. • The magnetic nanoparticles exhibit high spin–spin relaxivity. • The particles promote dark contrast by decreasing the T{sub 2} relaxation time.

  3. An Optically-Assisted 3-D Cellular Array Machine

    National Research Council Canada - National Science Library

    Lin, Freddie

    1997-01-01

    .... In this Phase II project, we developed a discrete-component based Cellular Neural Network (CNN) circuitry, which can perform CNN based analog image processing, such as edge detection and image enhancement, in real time...

  4. Agent-Based Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose combination of software intelligent agents to achieve decentralized reasoning, with fault detection and diagnosis using PCA, neural nets, and maximum...

  5. Novel insights in agent-based complex automated negotiation

    CERN Document Server

    Lopez-Carmona, Miguel; Ito, Takayuki; Zhang, Minjie; Bai, Quan; Fujita, Katsuhide

    2014-01-01

    This book focuses on all aspects of complex automated negotiations, which are studied in the field of autonomous agents and multi-agent systems. This book consists of two parts. I: Agent-Based Complex Automated Negotiations, and II: Automated Negotiation Agents Competition. The chapters in Part I are extended versions of papers presented at the 2012 international workshop on Agent-Based Complex Automated Negotiation (ACAN), after peer reviews by three Program Committee members. Part II examines in detail ANAC 2012 (The Third Automated Negotiating Agents Competition), in which automated agents that have different negotiation strategies and are implemented by different developers are automatically negotiated in the several negotiation domains. ANAC is an international competition in which automated negotiation strategies, submitted by a number of universities and research institutes across the world, are evaluated in tournament style. The purpose of the competition is to steer the research in the area of bilate...

  6. Effects of anesthetic agents on cellular 123I-MIBG transport and in vivo 123I-MIBG biodistribution

    International Nuclear Information System (INIS)

    Ko, Bong-Ho; Paik, Jin-Young; Jung, Kyung-Ho; Bae, Jun-Sang; Lee, Eun Jung; Choe, Yearn Seong; Kim, Byung-Tae; Lee, Kyung-Han

    2008-01-01

    Small animal imaging with meta-iodobenzylguanidine (MIBG) allows characterization of animal models, optimization of tumor treatment strategies, and monitoring of gene expression. Anesthetic agents, however, can affect norepinephrine (NE) transport and systemic sympathetic activity. We thus elucidated the effects of anesthetic agents on MIBG transport and biodistribution. SK-N-SH neuroblastoma and PC-12 pheochromocytoma cells were measured for 123 I-MIBG uptake after treatment with ketamine (Ke), xylazine (Xy), Ke/Xy, or pentobarbital (Pb). NE transporters were assessed by Western blots. Normal ICR mice and PC-12 tumor-bearing mice were injected with 123 I-MIBG 10 min after anesthesia with Ke/Xy, Ke, Xy, or Pb. Plasma NE levels and MIBG biodistribution were assessed. Cellular 123 I-MIBG uptake was dose-dependently inhibited by Ke and Xy but not by Pb. Treatment for 2 h with 300 μM Ke, Xy, and Ke/Xy decreased uptake to 46.0 ± 1.6, 24.8 ± 1.5, and 18.3 ± 1.6% of controls. This effect was completely reversed by fresh media, and there was no change in NE transporter levels. In contrast, mice anesthetized with Ke/Xy showed no decrease of MIBG uptake in target organs. Instead, uptakes and organ-to-blood ratios were increased in the heart, lung, liver, and adrenals. Plasma NE was notably reduced in the animals with corresponding decreases in blood MIBG, which partly contributed to the increase in target organ uptake. In spite of their inhibitory effect at the transporter level, Ke/Xy anesthesia is a satisfactory method for MIBG imaging that allows favorable target tissue uptake and contrast by reducing circulating NE and MIBG. (orig.)

  7. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  8. Effects of some chelating agents on the uptake and distribution of 54Mn(II) in the brown trout (Salmo trutta)

    International Nuclear Information System (INIS)

    Rouleau, C.; Tjaelve, H.; Pelletier, E.; Gottofrey, J.

    1994-01-01

    The effects of humic acids, which are natural metal-complexing compounds, and potassium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithicarbamate, which are sulphur-containing man-made chelating agents, on the uptake and tissue distribution of 54 Mn(II) were studied in brown trout (Salmo trutta). Fish were exposed for 7 days to 0.1 μg Mn(II)x. -2 as NmCl 2 (l μCia 54 Mnxl -1 ) with or without chelat agents. Examination of the partition of Mn between octanol and a Tris-HCl buffer in the presence of these compounds was also performed. Humic acids had only small effects on Mn uptake and distribution in trout, probably because of the low stability of Mn-humate complexes. Partition of Mn in the presence of potassium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithiocarbamate, and sodium diethyldithiocarbamate between octanol and Tris-HCl buffer showed formation of lipophilic complex with the latter two compounds, but not with the former. However, these four chelating agents all decreased Mn uptake in the trout by 40-45%. These substances also changed the distribution of Mn within the fish, with a higher proportion of the metal being present in some visceral organs and a smaller proportion being localized in some non-parenchymateous tissues, such as skin, fins and bones. The mechanisms underlying these effects are not known. however, the interaction of chelating agents with the Mn, although weak, may have partially withdrawn the metal from the uptake process inthe gills. The redistribution of Mn in the fish may be due to the binding of the metal to complexing compounds which have reached the intestinal lumen. Previous studies with other metals have shown increased or unchanged metal levels in tissues of fish at exposure together with potasium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithiocarbamate, and sodium diethyldithiocarbamate, but decreased metal levels have not been observed before. (au) (37 refs.)

  9. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C; Hyoseop Lee,; Wonsuck Lee,

    2011-01-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents

  10. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    National Research Council Canada - National Science Library

    Fathers, Kelly E

    2007-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  11. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    National Research Council Canada - National Science Library

    Fathers, Kelly E

    2008-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  12. On the derivation of approximations to cellular automata models and the assumption of independence.

    Science.gov (United States)

    Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V

    2014-07-01

    Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mononuclear Pd(II) complex as a new therapeutic agent: Synthesis, characterization, biological activity, spectral and DNA binding approaches

    Science.gov (United States)

    Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan

    2017-11-01

    The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.

  14. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  15. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents

    Directory of Open Access Journals (Sweden)

    Louis Papageorgiou

    2017-03-01

    Full Text Available Trypanosoma brucei brucei (TBB belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All

  16. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.

    Science.gov (United States)

    Lawley, P D; Brookes, P

    1968-09-01

    1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and B(s-1) and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T(-) after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain B(s-1) removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8

  17. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    Science.gov (United States)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  18. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  19. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  20. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  1. Keratin sponge/hydrogel II, active agent delivery

    Science.gov (United States)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  2. Debugging and Event Tracing for Multi-Agent Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-scale agent systems have become a key part of in modeling and simulation tools such as NASA's Airspace Concept Evaluation System (ACES), an agent-based...

  3. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents?

    Science.gov (United States)

    Wang, Pei; Fedoruk, Matthew N; Rupert, Jim L

    2008-01-01

    activity or block the action of angiotensin II, the question is relevant to the study of ergogenic agents and to the efforts to rid sports of 'doping'. This article discusses the possibility that ACE inhibitors and ARBs, by virtue of their effects on ACE or angiotensin II function, respectively, have performance-enhancing capabilities; it also reviews the data on the effects of these medications on VO2max, muscle composition and endurance capacity in patient and non-patient populations. We conclude that, while the direct evidence supporting the hypothesis that ACE-related medications are potential doping agents is not compelling, there are insufficient data on young, athletic populations to exclude the possibility, and there is ample, albeit indirect, support from genetic studies to suggest that they should be. Unfortunately, given the history of drug experimentation in athletes and the rapid appropriation of therapeutic agents into the doping arsenal, this indirect evidence, coupled with the availability of ACE-inhibiting and ACE-receptor blocking medications may be sufficiently tempting to unscrupulous competitors looking for a shortcut to the finish line.

  4. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. β class II tubulin predominates in normal and tumor breast tissues

    International Nuclear Information System (INIS)

    Dozier, James H; Hiser, Laree; Davis, Jennifer A; Thomas, Nancy Stubbs; Tucci, Michelle A; Benghuzzi, Hamed A; Frankfurter, Anthony; Correia, John J; Lobert, Sharon

    2003-01-01

    Antimitotic chemotherapeutic agents target tubulin, the major protein in mitotic spindles. Tubulin isotype composition is thought to be both diagnostic of tumor progression and a determinant of the cellular response to chemotherapy. This implies that there is a difference in isotype composition between normal and tumor tissues. To determine whether such a difference occurs in breast tissues, total tubulin was fractionated from lysates of paired normal and tumor breast tissues, and the amounts of β-tubulin classes I + IV, II, and III were measured by competitive enzyme-linked immunosorbent assay (ELISA). Only primary tumor tissues, before chemotherapy, were examined. Her2/neu protein amplification occurs in about 30% of breast tumors and is considered a marker for poor prognosis. To gain insight into whether tubulin isotype levels might be correlated with prognosis, ELISAs were used to quantify Her2/neu protein levels in these tissues. β-Tubulin isotype distributions in normal and tumor breast tissues were similar. The most abundant β-tubulin isotypes in these tissues were β-tubulin classes II and I + IV. Her2/neu levels in tumor tissues were 5–30-fold those in normal tissues, although there was no correlation between the Her2/neu biomarker and tubulin isotype levels. These results suggest that tubulin isotype levels, alone or in combination with Her2/neu protein levels, might not be diagnostic of tumorigenesis in breast cancer. However, the presence of a broad distribution of these tubulin isotypes (for example, 40–75% β-tubulin class II) in breast tissue, in conjunction with other factors, might still be relevant to disease progression and cellular response to antimitotic drugs

  6. RESEARCH ON THE INFLUENCE OF BLOWING AGENT ON SELECTED PROPERTIES OF EXTRUDED CELLULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2015-11-01

    Full Text Available As a part of a more comprehensive research project, the present study was undertaken to investigate the effect of the type and content of blowing agents in the polymeric materials being processed on the structure and selected physical and mechanical properties of the obtained extrusion parts. In the experiment, the content of the blowing agent (0–2.0% by mass, fed into the processed polymer were adopted as a variable factor. In the studies presented in the article, the blowing agents of endothermic decomposition characteristics (Hydrocerol BIH 70, Hydrocerol BM 70 and the exothermic decomposition characteristics (PLC 751 occurring in the granulated form with a diameter of 1.2 to 1.8 mm were used. Based on the results of investigating porosity, porous structure image analysis as well as microscopic examination of the structure, it has been found that the favorable content of the blowing agent in the polymeric material should be of up to 0.8% by mass. With such a content of the blowing agent in the polymeric material, favorable strength properties are retained in porous parts, the pore distribution is uniform and the pores have similar sizes.

  7. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    Science.gov (United States)

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  8. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  9. Effects of anesthetic agents on cellular {sup 123}I-MIBG transport and in vivo {sup 123}I-MIBG biodistribution

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Bong-Ho; Paik, Jin-Young; Jung, Kyung-Ho; Bae, Jun-Sang; Lee, Eun Jung; Choe, Yearn Seong; Kim, Byung-Tae; Lee, Kyung-Han [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea)

    2008-03-15

    Small animal imaging with meta-iodobenzylguanidine (MIBG) allows characterization of animal models, optimization of tumor treatment strategies, and monitoring of gene expression. Anesthetic agents, however, can affect norepinephrine (NE) transport and systemic sympathetic activity. We thus elucidated the effects of anesthetic agents on MIBG transport and biodistribution. SK-N-SH neuroblastoma and PC-12 pheochromocytoma cells were measured for {sup 123}I-MIBG uptake after treatment with ketamine (Ke), xylazine (Xy), Ke/Xy, or pentobarbital (Pb). NE transporters were assessed by Western blots. Normal ICR mice and PC-12 tumor-bearing mice were injected with {sup 123}I-MIBG 10 min after anesthesia with Ke/Xy, Ke, Xy, or Pb. Plasma NE levels and MIBG biodistribution were assessed. Cellular {sup 123}I-MIBG uptake was dose-dependently inhibited by Ke and Xy but not by Pb. Treatment for 2 h with 300 {mu}M Ke, Xy, and Ke/Xy decreased uptake to 46.0 {+-} 1.6, 24.8 {+-} 1.5, and 18.3 {+-} 1.6% of controls. This effect was completely reversed by fresh media, and there was no change in NE transporter levels. In contrast, mice anesthetized with Ke/Xy showed no decrease of MIBG uptake in target organs. Instead, uptakes and organ-to-blood ratios were increased in the heart, lung, liver, and adrenals. Plasma NE was notably reduced in the animals with corresponding decreases in blood MIBG, which partly contributed to the increase in target organ uptake. In spite of their inhibitory effect at the transporter level, Ke/Xy anesthesia is a satisfactory method for MIBG imaging that allows favorable target tissue uptake and contrast by reducing circulating NE and MIBG. (orig.)

  10. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  11. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  12. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae.

    Directory of Open Access Journals (Sweden)

    Prarthana V Rewatkar

    Full Text Available Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii dendrimer structure can be modified to promote endocytosis in caveola-forming cells.

  13. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae.

    Science.gov (United States)

    Rewatkar, Prarthana V; Parekh, Harendra S; Parat, Marie-Odile

    2016-01-01

    Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i) expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii) dendrimer structure can be modified to promote endocytosis in caveola-forming cells.

  14. CYCLODEXTRINS - FIELFS OF APPLICATION. PART II

    Directory of Open Access Journals (Sweden)

    Gh. Duca

    2012-12-01

    Full Text Available This paper represents an analysis of potential and current applications of cyclodextrins as biologically active substances in medicine. The main applications described here include use of cyclodextrins as agents that form inclusion complexes with endogenous substances (membrane lipids, cellular cholesterol, agents that form inclusion complexes with exogenous substances with their man role as guest molecules (sugammadex, FBCx, agents that block endogenous and exogenous macromolecules (ion channels, anthrax toxin, α-hemolysin, and agents which activity is based on the chemical nature of them and of their derivatives (cyclodextrin polysulphate derivatives. The fi rst classifi cation for medically important biological activity of cyclodextrins has been proposed.

  15. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  16. Mechanisms of action of quinone-containing alkylating agents: DNA alkylation by aziridinylquinones.

    Science.gov (United States)

    Hargreaves, R H; Hartley, J A; Butler, J

    2000-11-01

    Aziridinyl quinones can be activated by cellular reductases eg. DT-diaphorase and cytochrome P450 reductase to form highly reactive DNA alkylating agents. The mechanisms by which this activation and alkylation take place are many and varied. Using clinically relevant and experimental agents this review will describe many of these mechanisms. The agents discussed are Mitomycin C, EO9 and analogues, diaziridinylbenzoquinones and the pyrrolo[1, 2-alpha]benzimidazolequinones.

  17. Enhancing the cellular uptake of Py–Im polyamides through next-generation aryl turns

    OpenAIRE

    Meier, Jordan L.; Montgomery, David C.; Dervan, Peter B.

    2012-01-01

    Pyrrole–imidazole (Py–Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein–DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biologica...

  18. Cellular Senescence: A Translational Perspective

    Directory of Open Access Journals (Sweden)

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  19. Current management and novel agents for malignant melanoma

    Directory of Open Access Journals (Sweden)

    Lee Byung

    2012-02-01

    Full Text Available Abstract Advanced malignant melanoma remains a challenging cancer. Over the past year, there have been 3 agents approved for treatment of melanoma by Food and Drug Administration. These include pegylated interferon alpha-2b for stage III melanoma, vemurafenib for unresectable or metastatic melanoma with BRAF V600E mutation, and ipilimumab for treatment of unresectable or metastatic melanoma. This review will also update on the development of novel agents, including tyrosine kinase inhibitors and adoptive cellular therapy.

  20. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  1. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity.

    Science.gov (United States)

    Müller, Gerald; Kramer, Axel

    2008-06-01

    To assess the suitability of an antiseptic agent, both the microbicidal activity and the cytotoxic effect must be taken into consideration to derive biocompatible antibacterial agents. We defined the biocompatibility index (BI) by measuring the antibacterial activity against the test organisms Escherichia coli and Staphylococcus aureus and, in parallel, the cytotoxicity on cultured murine fibroblasts. The antiseptic agents tested were benzalkonium chloride (BAC), cetylpyridinium chloride (CPC), chlorhexidine digluconate (CHX), mild silver protein (MSP), octenidine dihydrochloride (OCT), polyhexamethylene biguanide (PHMB), povidone iodine in solution [PVP-I(s)], povidone iodine in ointment [PVP-I(o)], silver nitrate (AgNO(3)), silver (I) sulfadiazine (SSD) and triclosan (TRI). Assays were carried out for 30 min of exposure at 37 degrees C in the presence of cell culture medium containing 10% fetal bovine serum. The resulting dimensionless BI was defined as the ratio of the concentration at which 50% of the murine fibroblasts are damaged and the microbicidal effect producing at least 3 log(10) (99.9%) reduction. The resulting rank ordering of BI for the ratio of fibroblast cytotoxicity to E. coli toxicity was OCT > PHMB > CHX > PVP-I(o) > PVP-I(s) > BAC > CPC > TRI > MSP and that to S. aureus was OCT > PHMB > CHX > CPC > PVP-I(o) > BAC > PVP(s) > TRI > MSP. OCT and PHMB were the most suitable agents with a BI greater than 1. The BI presented may be a useful tool to evaluate antiseptic agents for use in clinical practice.

  2. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  3. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.

    Science.gov (United States)

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-12-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a noncanonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided.

  4. Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging.

    Science.gov (United States)

    Zhong, Yiling; Sun, Xiaotian; Wang, Siyi; Peng, Fei; Bao, Feng; Su, Yuanyuan; Li, Youyong; Lee, Shuit-Tong; He, Yao

    2015-06-23

    We herein introduce a facile, low-cost photochemical method capable of rapid (nanoparticles (SiNPs) of tunable optical properties (peak emission wavelength in the range of 470-560 nm) under ambient air conditions, by introducing 1,8-naphthalimide as a reducing agent and surface ligands. The as-prepared SiNPs feature robust storage stability and photostability preserving strong and stable fluorescent during long-term (>3 h) high-power UV irradiation, in contrast to the rapid fluorescence quenching within 2 h of conventional organic dyes and II-VI quantum dots under the same conditions. The as-prepared SiNPs serving as photostable nanoprobes are workable for cellular imaging in long-term manners. Our findings provide a powerful method for mild-condition and low-cost, large-quantity production of highly fluorescent and photostable SiNPs for various promising applications.

  5. Effect of cyclosporine, tacrolimus and sirolimus on cellular senescence in renal epithelial cells.

    Science.gov (United States)

    Koppelstaetter, Christian; Kern, Georg; Leierer, Gisela; Mair, Sabine Maria; Mayer, Gert; Leierer, Johannes

    2018-04-01

    In transplantation medicine calcineurin inhibitors (CNI) still represent the backbone of immunosuppressive therapy. The nephrotoxic potential of the CNI Cyclosporine A (CsA) and Tacrolimus (FK506) is well recognized and CNI not only have been linked with toxicity, but also with cellular senescence which hinders parenchymal tissue regeneration and thus may prime kidneys for subsequent insults. To minimize pathological effects on kidney grafts, alternative immunosuppressive agents like mTOR inhibitors or the T-cell co-stimulation blocker Belatacept have been introduced. We compared the effects of CsA, FK506 and Sirolimus on the process of cellular senescence in different human renal tubule cell types (HK2, RPTEC). Telomere length (by real time PCR), DNA synthesis (by BrdU incorporation), cell viability (by Resazurin conversion), gene expression (by RT-PCR), protein (by western blotting), Immuncytochemistry and H 2 O 2 production (by Amplex Red® conversion) were evaluated. DNA synthesis was significantly reduced when cells were treated with cyclosporine but not with tacrolimus and sirolimus. Resazurin conversion was not altered by all three immunosuppressive agents. The gene expression as well as protein production of the cell cycle inhibitor p21 (CDKN1A) but not p16 (CDKN2A) was significantly induced by cyclosporine compared to the other two immunosuppressive agents when determined by western blotting an immuncytochemistry. Relative telomere length was reduced and hydrogen peroxide production increased after treatment with CsA but not with FK506 or sirolimus. In summary, renal tubule cells exposed to CsA show clear signs of cellular senescence where on the contrary the second calcineurin inhibitor FK506 and the mTOR inhibitor sirolimus are not involved in such mechanisms. Chronic renal allograft dysfunction could be in part triggered by cellular senescence induced by immunosuppressive medication and the choice of drug could therefore influence long term outcome

  6. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    Science.gov (United States)

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd

  7. DNA Damage Induced by Alkylating Agents and Repair Pathways

    OpenAIRE

    Natsuko Kondo; Akihisa Takahashi; Koji Ono; Takeo Ohnishi

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O 6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O 6-methylguanine-DNA methyltransferase, and O 6MeG:T mispairs are recognized...

  8. Possible targets for the aneugenic activity of alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Pellerano, P. [IST-National Institute for Research on Cancer, Genova (Italy); Abbondandolo, A. [Univ. of Genova (Italy); Bonatti, S.; Simili, M. [CNR Institute of Mutagenesis and Differentiation, Pisa (Italy)

    1993-12-31

    Alkylating agents have been of invaluable help in mutation research for half a century. In all tested organisms, they have proved able to induce a large variety of genetic effects, including aneuploidy. Credible molecular models exist to explain the ability of alkylating agents to induce gene mutation and to act as initiators in carcinogenesis as a consequence of DNA alkylation at specific sites. On the contrary, neither the mechanism of aneuploidy induction nor the relevant cellular targets are known.

  9. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent.

    Science.gov (United States)

    Phukan, Bedika; Mukherjee, Chandan; Goswami, Upashi; Sarmah, Amrit; Mukherjee, Subhajit; Sahoo, Suban K; Moi, Sankar Ch

    2018-03-05

    Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H 2 pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON 3 O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log K MnL = 14.29(3)] and showed a very high r 1 relaxivity value of 5.88 mM -1 s -1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.

  10. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Morgan-Fisher, Marie; Wait, Robin

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among...... nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two......-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions...

  11. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  12. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi's anemia

    International Nuclear Information System (INIS)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F.

    1997-01-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to γ-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  13. Radiodiagnostic complexes employing fluorine-containing tin reducing agents

    International Nuclear Information System (INIS)

    Hill, B.K.; Kubik, V.M.

    1977-01-01

    Radiodiagnostic agents for use in mammalian bodies comprising a radiocomplex which is the reaction product of Tc99m-pertechnetate ion, a diagnostic ligand and a tin (II) reducing agent selected from the group consisting of SnF 2 , MSnF 3 , MSn 2 F 5 and mixtures thereof, wherein M is NH 4 , Na, K, Li, Rb or Cs. Radiocomplex precursor compositions and methods of making the radiocomplex and radiodiagnostic agents are described

  14. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  15. Use of contrast agents for liver MRI

    International Nuclear Information System (INIS)

    Ward, Janice

    2007-01-01

    Contrast-enhanced MRI is recognised as one of the most accurate imaging methods for investigating diseases of the liver. Uniquely several different types of contrast agents are available for liver MRI. They can be divided into non-specific extracellular fluid space (ECF), hepatocyte specific and reticulo-endothelial system (RES) specific agents. They are used to improve the detection of focal liver lesions by increasing normal-abnormal tissue contrast and to assist in lesion characterisation by demonstrating tissue perfusion and cellular function. ECF-gadolinium (Gd) chelates have been widely used in abdominal MRI for many years. They provide valuable information regarding the vascularisation and perfusion characteristics of lesions and assist in lesion detection, particularly of hypervascular lesions. The hepatocyte and RES-specific agents further improve lesion detection, provide important functional information and allow the distinction between hepatocellular and non-hepatocellular tumours. This article describes the different MR contrast agents and discusses their current status for diagnosing focal liver lesions. The importance of optimised technique and appropriate selection of contrast agent is emphasised

  16. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  17. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.; Depeursinge, Christian; Jourdain, P.

    2016-01-01

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  18. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    Science.gov (United States)

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  19. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma.

    Science.gov (United States)

    Head, R J; Fay, M F; Cosgrove, L; Y C Fung, K; Rundle-Thiele, D; Martin, J H

    2017-12-02

    Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O 6 -methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.

  20. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi`s anemia

    Energy Technology Data Exchange (ETDEWEB)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F. [Institut Curie-Recherche, UMR 218, CNRS, 75 - Paris (France)

    1997-03-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to {gamma}-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  1. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  2. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  3. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  4. Dispersion for the preparation of an injectable radiopharmaceutical scanning agent

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention deals with the preparation of a dispersion of a tin (II) sulphur colloid in an aqueous solution with additions of a stabilizing agent. Labelled with sup(99m)Tc, the dispersion can be used as an injectable radiopharmaceutical scanning agent. (VJ) [de

  5. Low molecular weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27.

    Science.gov (United States)

    Norambuena, J; Wang, Y; Hanson, T; Boyd, J M; Barkay, T

    2017-11-17

    Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low molecular weight and protein thiols may be important cell components used in Hg resistance. To date, the role of low molecular weight thiols in Hg-detoxification remains understudied. The mercury resistance ( mer ) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low molecular weight thiol metabolism. This mer operon encodes for an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low molecular weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in presence of either a thiol oxidizing agent or a thiol alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus spp. mer operons. The presence of a thiol related gene was also detected in some alphaprotobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II) buffering agents while Hg is reduced by MerA. Importance The survival of microorganisms in presence of toxic metals is central to life's sustainability. The affinity of thiol groups to toxic heavy metals drives microbe-metal interactions and modulate metal toxicity. Mercury detoxification ( mer ) genes likely originated early in microbial evolution among geothermal environments. Little is

  6. Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    International Nuclear Information System (INIS)

    Beal, Kathryn; Abrey, Lauren E; Gutin, Philip H

    2011-01-01

    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy

  7. On the deployment of agents by binary information

    NARCIS (Netherlands)

    De Persis, Claudio; Cao, Ming; Ceragioli, Francesca

    2011-01-01

    We study the problem of deploying on a line a group of N agents with kinematic continuous-time model x˙i = ui , i = 1,...,N , (1) with xi ,ui ∈ R. The agents are connected through an undirected chain graph G = (V ,E ), with V = {1,2,...,N} and E = {(1,2),...,(i,i + 1),...,(N − 1,N)}. Moreover, we

  8. Ni(II, Pd(II and Pt(II complexes with ligand containing thiosemicarbazone and semicarbazone moiety: synthesis, characterization and biological investigation

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2008-07-01

    Full Text Available The synthesis of nickel(II, palladium(II and platinum(II complexes with thiosemicarbazone and semicarbazone of p-tolualdehyde are reported. All the new compounds were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-NMR, IR and electronic spectral studies. Based on the molar conductance measurements in DMSO, the complexes may be formulated as [Ni(L2Cl2] and [M(L2]Cl2 (where M = Pd(II and Pt(II due to their non-electrolytic and 1:2 electrolytic nature, respectively. The spectral data are consistent with an octahedral geometry around Ni(II and a square planar geometry for Pd(II and Pt(II, in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulphur/oxygen atoms. The ligands and their metal complexes were screened in vitro against fungal species Alternaria alternata, Aspergillus niger and Fusarium odum, using the food poison technique.

  9. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    Science.gov (United States)

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  10. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    Science.gov (United States)

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  11. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents

    Science.gov (United States)

    Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.

    2014-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606

  12. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  13. Cellular Stress to Low Gamma-ray Dose

    International Nuclear Information System (INIS)

    Manzanares-Acuna, E.; Vega-Carrillo, H. R.; Letechipia de Leon, C.; Guzman Enriquez, L. J.; Garcia-Talavera, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp 70 expression in human lymphocytes. the heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. when a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered through overexpression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the lymphocytes were isolated by ficoll-histopaque gradient. Experimental lots were irradiated in a ''137Cs gamma-ray. Hsp70 expression was found since 0.5 cGy, indicating a threshold to very low doses of gamma rays. (Author) 27 refs

  14. [Evaluation of the safety of innovative drugs against viruses and infectious agents].

    Science.gov (United States)

    Kobayashi, Tetsu; Yusa, Keisuke; Kawasaki, Nana

    2013-01-01

    Recently, several novel cellular therapy products and biological drugs are being developed to treat various previously untreatable diseases. One of the most important issues regarding these innovations is how to ensure safety over infectious agents, including viruses and prions, in the earliest treatments with these products. The object of this study is a risk assessment of cases of human infectious with the agents and to present a sample risk management plan based on a collaboration among the National Institute of Health Sciences, universities, marketing authorization holders, and scientific societies. There are three subjects of study: (1) the viral safety of cellular therapy products, (2) the viral safety of biological drugs, and (3) the safety of prions. In this report, we describe the objects of the study, the project members, the study plan outline, and the ongoing plans. The results of the viral risk identification and the risk analysis of cellular therapy products will also be described, based on a review of the literature and case reports obtained during the first year of this project.

  15. Process for preparation of MR contrast agents

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a process for the preparation of an MR contrast agent, said process comprising: i) obtaining a solution in a solvent of a hydrogenatable, unsaturated substrate compound and a catalyst for the hydrogenation of said substrate compound; ii) introducing said solution...... in droplet form into a chamber containing hydrogen gas (H2) enriched in para-hydrogen (p-1H2) and/or ortho-deuterium (o-2H2) whereby to hydrogenate said substrate to form a hydrogenated imaging agent; iii) optionally subjecting said hydrogenated imaging agent to a magnetic field having a field strength below...... earth's ambient field strength; iv) optionally dissolving said imaging agent in an aqueous medium; v) optionally separating said catalyst from the solution of said imaging agent in said aqueous medium; vi) optionally separating said solvent from the solution of said imaging agent in said aqueous medium...

  16. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  17. Studies of cellular radiosensitivity in hereditary disorders of nervous system and muscle

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, S.; Lewis, P.D. (Royal Postgraduate Medical School, London (UK))

    1983-12-01

    Skin fibroblasts from patients with familial dysautonomia, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease show normal sensitivity to ionising radiation, as measured by post-irradiation clonal growth. Previous reports of cellular hypersensitivity to ionising radiation and other DNA-damaging agents in familial dysautonomia and Duchenne muscular dystrophy have not been confirmed.

  18. Studies of cellular radiosensitivity in hereditary disorders of nervous system and muscle

    International Nuclear Information System (INIS)

    Brennan, S.; Lewis, P.D.

    1983-01-01

    Skin fibroblasts from patients with familial dysautonomia, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease show normal sensitivity to ionising radiation, as measured by post-irradiation clonal growth. Previous reports of cellular hypersensitivity to ionising radiation and other DNA-damaging agents in familial dysautonomia and Duchenne muscular dystrophy have not been confirmed. (author)

  19. Freeform inkjet printing of cellular structures with bifurcations.

    Science.gov (United States)

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.

  20. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    Science.gov (United States)

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  1. Polyaza macroligands as potential agents for heavy metal removal from wastewater

    Directory of Open Access Journals (Sweden)

    Elizondo Martínez Perla

    2013-01-01

    Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

  2. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  3. 39 CFR 2.2 - Agent for receipt of process.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Agent for receipt of process. 2.2 Section 2.2 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE GENERAL AND TECHNICAL PROVISIONS (ARTICLE II) § 2.2 Agent for receipt of process. The General Counsel of the Postal...

  4. Pattern-oriented Agent-based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Holcombe, Mike; Boonen, Harrie C.M.

    /CYSS) and mitochondrial redox couples. Evidence suggests that both intracellular and extracellular redox can affect overall cell redox state. How redox is communicated between extracellular and intracellular environments is still a matter of debate. Some researchers conclude based on experimental data...... cells. Biochimica Et Biophysica Acta-General Subjects, 2008. 1780(11): p. 1271-1290. 5. Jones, D.P., Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Intern Med, 2010. 268(5): p. 432-48. 6. Pogson, M., et al., Formal agent-based modelling of intracellular chemical interactions...

  5. Salicylic acid as a peeling agent: a comprehensive review.

    Science.gov (United States)

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I-III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included.

  6. Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Jacobs, Stephanie; Liu Jimei; Hu, Tom C.-C.; Siegfired, Matthew; Serkiz, Steven M.; Hudson, Joan

    2012-01-01

    We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol −1 s −1 ). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.

  7. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  8. [Fanconi anemia: cellular and molecular features].

    Science.gov (United States)

    Macé, G; Briot, D; Guervilly, J-H; Rosselli, F

    2007-02-01

    Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.

  9. The induction and regulation of radiogenic transformation in vitro: Cellular and molecular mechanisms

    International Nuclear Information System (INIS)

    Borek, C.

    1987-01-01

    Rodent and human cells in culture, transformed in vitro by ionizing radiation, ultraviolet light, or chemicals into malignant cells afford us the opportunity to probe into early and late events in the neoplastic process at a cellular and molecular level. Transformation can be regarded as an abnormal expression of cellular genes. The initiating agents disrupt the integrity of the genetic apparatus altering DNA in ways that result in the activation of cellular transforming genes (oncogenes) during some stage of the neoplastic process. Events associated with initiation and promotion may overlap to some degree, but in order for them to occur, cellular permissive conditions must prevail. Permissive factors include thyroid and steroid hormones, specific states of differentiation, certain stages in the cell cycle, specific genetic impairment, and inadequate antioxidants. Genetically susceptible cells require physiological states conducive to transformation. These may differ with age, tissue, and species and in part may be responsible for the observed lower sensitivity of human cells to transformation

  10. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  11. Impregnation of chelating agent 3,3-bis-N,N bis-(carboxymethylaminomethyl-o-cresolsulfonephthalein in biopolymer chitosan: adsorption equilibrium of Cu(II in aqueous medium

    Directory of Open Access Journals (Sweden)

    Luciano Vitali

    2006-06-01

    Full Text Available The aim of this study was to impregnate the chelating agent 3,3-bis-N,N,bis-(carboxymethylaminomethyl-o-cresolsulfonephthalein in chitosan and to investigate the adsorption of Cu(II ions. The chemical modification was confirmed by FTIR spectrometry, thermogravimetric analysis (TGA and energy dispersive x-ray spectroscopy (EDX. The adsorption studies were carried out with Cu(II ions in a batch process and were shown to be dependent on pH. The adsorption kinetics was tested using three models: pseudo first-order, pseudo second order and intraparticle diffusion. The experimental kinetics data were best fitted with the pseudo second-order model (R² = 0.999, which provided a rate constant, k2, of 1.21 x 10-3 g mg-1 min-1. The adsorption rate depended on the concentration of Cu(II ions on the adsorbent surface and on the quantity of Cu(II ions adsorbed at equilibrium. The Langmuir isotherm model provided the best fit for the equilibrium data in the concentration range investigated, with the maximum adsorption capacity being 81.0 mg of Cu(II per gram of adsorbent, as obtained from the linear equation of the isotherm. Desorption tests revealed that around 90% of the adsorbed metal was removed, using EDTA solution as the eluent. This result suggests that the polymeric matrix can be reused.

  12. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  13. Tinjauan Kuat Tekan Bata Ringan Menggunakan Bahan Tambah Foaming Agent

    OpenAIRE

    Arita, Deri; Kurniawandy, Alex; Taufik, Hendra

    2017-01-01

    Lightweight bricks could be used as the substitute of conventional bricks for building wall materials. Lightweight brick has a weights beetween 600 to 1800 kg/m3. In this research, lightweight bricks were made by trial and errors made by adding combination of 0.3%, 0.6%, 0.9%, 1.2% and 1.5% of foam agent by cellular lighweight concrete (CLC) method. The optimum compresive strength was gain at 0.9% of foam agent. CLC lightweight brick is the type of bricks which is constructed by adding air bu...

  14. Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription.

    Science.gov (United States)

    Bauer, David L V; Tellier, Michael; Martínez-Alonso, Mónica; Nojima, Takayuki; Proudfoot, Nick J; Murphy, Shona; Fodor, Ervin

    2018-05-15

    Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Complex responses to alkylating agents

    International Nuclear Information System (INIS)

    Samson, L.D.

    2003-01-01

    Using Affymetrix oligonucleotide GeneChip analysis, we previously found that, upon exposure to the simple alkylating agent methylmethane sulfonate, the transcript levels for about one third of the Saccharomyces cerevisiae genome (∼2,000 transcripts) are induced or repressed during the first hour or two after exposure. In order to determine whether the responsiveness of these genes has any relevance to the protection of cells against alkylating agents we have undertaken several follow-up studies. First, we explored the specificity of this global transcriptional response to MMS by measuring the global response of S. cerevisiae to a broad range of agents that are known to induce DNA damage. We found that each agent produced a very different mRNA transcript profile, even though the exposure doses produced similar levels of toxicity. We also found that the selection of genes that respond to MMS is highly dependent upon what cell cycle phase the cells are in at the time of exposure. Computational clustering analysis of the dataset derived from a large number of exposures identified several promoter motifs that are likely to control some of the regulons that comprise this large set of genes that are responsive to DNA damaging agents. However, it should be noted that these agents damage cellular components other than DNA, and that the responsiveness of each gene need not be in response to DNA damage per se. We have also begun to study the response of other organisms to alkylating agents, and these include E. coli, cultured mouse and human cells, and mice. Finally, we have developed a high throughput phenotypic screening method to interrogate the role of all non-essential S. cerevisiae genes (about 4,800) in protecting S. cerevisiae against the deleterious effects of alkylating agents; we have termed this analysis 'genomic phenotyping'. This study has uncovered a plethora of new pathways that play a role in the recovery of eukaryotic cells after exposure to toxic

  16. Treatment outcomes regarding the addition of targeted agents in the therapeutic portfolio for stage II-III rectal cancer undergoing neoadjuvant chemoradiation.

    Science.gov (United States)

    Liang, Jin-Tung; Chen, Tzu-Chun; Huang, John; Jeng, Yung-Ming; Cheng, Jason Chia-Hsien

    2017-11-24

    To evaluate the impact of targeted agents in stage II-III rectal cancer undergoing neoadjuvant concurrent chemoradiation therapy (CCRT). A retrospective study was performed in 124 consecutive patients with clinically T 3 N 0-2 M 0 -staged rectal cancer incorporating targeted agents in CCRT. Pathologic complete response was detected in 34.2% (n=26) of bevacizumab+FOLFOX-treated patients (n=76), which was significantly higher (p=0.019, post-hoc statistical power =35.87%) than that (n=10, 20.8%) of the cetuximab+FOLFOX-treated patients (n=48). Patients receiving cetuximab+FOLFOX therapy tended to develop severe liver toxicity (91.7%, n=44 versus 17.1%, n=13, panalysis within bevacizumab+FOLFOX-treated patients with either wild-type (n=36) or mutant (n=40) K-ras status indicated K-ras status did not significantly influence the treatment outcomes. The addition of bevacizumab instead of cetuximab to FOLFOX in the neoadjuvant settings for T 3 N 0-2 M 0 -staged rectal cancer could induce a promising rate of pathologic complete response and lesser hepatotoxicity.

  17. Ni(ii)/Cu(ii)/Zn(ii) 5,5-diethylbarbiturate complexes with 1,10-phenanthroline and 2,2'-dipyridylamine: synthesis, structures, DNA/BSA binding, nuclease activity, molecular docking, cellular uptake, cytotoxicity and the mode of cell death.

    Science.gov (United States)

    Yilmaz, Veysel T; Icsel, Ceyda; Suyunova, Feruza; Aygun, Muhittin; Aztopal, Nazlihan; Ulukaya, Engin

    2016-06-21

    New 5,5-diethylbarbiturate (barb) complexes of Ni(ii), Cu(ii) and Zn(ii) with 1,10-phenanthroline (phen) and 2,2'-dipyridylamine (dpya), namely [Ni(phen-κN,N')3]Cl(barb)·7H2O (), [Cu(barb-κN)(barb-κ(2)N,O)(phen-κN,N')]·H2O (), [Cu(barb-κN)2(phen-κN,N')] (), [Zn(barb-κN)2(phen-κN,N')]·H2O (), [Ni(barb-κ(2)N,O)(dpya-κN,N')2]Cl·2H2O (), [Cu(barb-κ(2)N,O)2(dpya-κN,N')]·2H2O () and [Zn(barb-κN)2(dpya-κN,N')] (), were synthesized and characterized by elemental analysis, UV-vis, FT-IR and ESI-MS. The structures of the complexes were determined by X-ray crystallography. Notably, and were fluorescent in MeOH : H2O at rt. The interaction of the complexes with fish sperm (FS) DNA and bovine serum albumin (BSA) was investigated in detail by various techniques. The complexes exhibited groove binding along with a partial intercalative interaction with DNA, while the hydrogen bonding and hydrophobic interactions played a major role in binding to BSA. It is noteworthy that exhibited the highest affinity towards DNA and BSA. Enzyme inhibition assay showed that show a preference for both A/T and G/C rich sequences in pUC19 DNA, while and display a binding specificity to the G/C and A/T rich regions, respectively. These findings were further supported by molecular docking. The cellular uptake studies suggested that was deposited mostly in the membrane fraction of the cells. Among the present complexes, exhibited a very strong cytotoxic effect on A549, MCF-7, HT-29 and DU-145 cancer cells, being more potent than cisplatin. Moreover, induces cell death through the apoptotic mode obtained by flow cytometry.

  18. Cellular vs. organ approaches to dose estimates

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.

    1986-01-01

    The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables

  19. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  20. The role of thiols in cellular response to radiation and drugs

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole

  1. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Amitabh C. Pandey

    2017-01-01

    Full Text Available Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

  2. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    Science.gov (United States)

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  3. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    Science.gov (United States)

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.

    Science.gov (United States)

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-12-28

    Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  5. Immunohistochemical evaluation of fibrovascular and cellular pre-iridal membranes in dogs.

    Science.gov (United States)

    Bauer, Bianca S; Sandmeyer, Lynne S; Hall, Riley B; Grahn, Bruce H

    2012-03-01

    Histologically, two morphologically distinct types of pre-iridal membranes appear to occur in diseased canine globes: fibrovascular and cellular. Cellular pre-iridal membranes of corneal endothelial origin exist in iridocorneal endothelial (ICE) syndrome in humans and arise through metaplastic transformation of corneal endothelial cells into epithelial-like cells.(1) The purpose of this study was to (i) evaluate immunohistochemical staining of these two types of membranes in diseased canine globes, (ii) determine whether endothelial cell metaplasia or iridal vascular budding plays a role in cellular membrane formation and (iii) compare the primary histopathologic diagnosis between the two groups. Hematoxylin and eosin (H&E)-stained slides of 28 enucleated canine specimens with pre-iridal membranes were randomly selected and examined with light microscopy. The globes were divided into two groups based on the appearance of the membrane: fibrovascular or cellular, and the histopathologic diagnoses were recorded. Immunohistochemical staining for vimentin, cytokeratin AE1/AE3, and Von Willebrand's factor (Factor VIII) was completed on the slides of each globe. The histopathologic diagnoses were compared between the two groups. The fibrovascular and cellular membranes stained positive for vimentin and negative for cytokeratin AE1/AE3. All fibrovascular membranes stained positive for Factor VIII compared with the cellular membranes which stained negative. In the cellular membrane group, primary glaucoma was a common histologic diagnosis. Immunohistochemical evaluation in this study does not support the hypothesis of metaplastic transformation of endothelial cells into epithelial-like cells in the canine globes with cellular membranes. The cellular membranes in this study do not represent a canine version of ICE syndrome and are not of vascular endothelial origin. © 2012 American College of Veterinary Ophthalmologists.

  6. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents.

    Science.gov (United States)

    Marsh, James W; Djoko, Karrera Y; McEwan, Alastair G; Huston, Wilhelmina M

    2017-09-29

    Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Ion release from a composite resin after exposure to different 10% carbamide peroxide bleaching agents

    Directory of Open Access Journals (Sweden)

    Renata Plá Rizzolo Bueno

    2012-06-01

    Full Text Available OBJECTIVE: This in vitro study evaluated the influence of two 10% carbamide peroxide bleaching agents - a commercial product (Opalescence PF; Ultradent Products, Inc. and a bleaching agent prepared in a compounding pharmacy - on the chemical degradation of a light-activated composite resin by determining its release of ions before and after exposure to the agents. MATERIAL AND METHODS: Thirty composite resin (Filtek Z250; 3M/ESPE samples were divided into three groups: group I (exposed to Opalescence PF commercial bleaching agent, group II (exposed to a compounded bleaching agent and group III (control - Milli-Q water. After 14 days of exposure, with a protocol of 8 h of daily exposure to the bleaching agents and 16 h of immersion in Milli-Q water, the analysis of ion release was carried out using a HP 8453 spectrophotometer. The values were analyzed statistically by ANOVA, Tukey's test and the paired t-tests. The significance level was set at 5%. RESULTS: After 14 days of the experiment, statistically significant difference was found between group II and groups I and III, with greater ion release from the composite resin in group II. CONCLUSIONS: The compounded bleaching agent had a more aggressive effect on the composite resin after 14 days of exposure than the commercial product and the control (no bleaching.

  8. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  9. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    Science.gov (United States)

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. EcoBot-II: An artificial agent with a natural metabolism

    Directory of Open Access Journals (Sweden)

    Chris Melhuish

    2008-11-01

    Full Text Available In this paper we report the development of the robot EcoBot-II, which exhibits a primitive form of artificial symbiosis. Microbial Fuel Cells (MFCs were used as the onboard energy supply, which consisted of bacterial cultures from sewage sludge and employed oxygen from free air for oxidation at the cathode. EcoBot-II was able to perform sensing, information processing, communication and actuation when fed (amongst other substrates with flies. This is the first robot in the world, to utilise unrefined substrate, oxygen from free air and exhibit four different types of behaviour.

  11. Salicylic acid as a peeling agent: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Arif T

    2015-08-01

    Full Text Available Tasleem Arif Postgraduate Department of Dermatology, STD and Leprosy, Government Medical College, Srinagar, Jammu and Kashmir, India Abstract: Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. Keywords: acne vulgaris, desmolytic agent, melasma, photodamage, salicylic acid 

  12. Multi-agent based modeling for electric vehicle integration in a distribution network operation

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Lind, Morten

    2016-01-01

    The purpose of this paper is to present a multi-agent based modeling technology for simulating and operating a hierarchical energy management of a power distribution system with focus on EVs integration. The proposed multi-agent system consists of four types of agents: i) Distribution system...... operator (DSO) technical agent and ii) DSO market agents that both belong to the top layer of the hierarchy and their roles are to manage the distribution network by avoiding grid congestions and using congestion prices to coordinate the energy scheduled; iii) Electric vehicle virtual power plant agents...

  13. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  14. The function of Sn(II)-apatite as a Tc immobilizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, R. Matthew, E-mail: matthew.asmussen@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Lukens, Wayne W. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States); Qafoku, Nikolla P. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States)

    2016-11-15

    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl{sub 2}. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI). - Highlights: • Sn(II)-Apatite shows high proficiency in removing Tc(VII) from neutral solutions. • The removal of the Tc(VII) by Sn(II)-apatite is done via reduction to Tc(IV)O{sub 2} × H{sub 2}O. • In LAW Sn(II)-apatite is less efficient in removing Tc(VII). • Interference in LAW due to a preference for the reduction of Cr(VI) and the high pH. • Sn(II)-apatite can remove Tc(VII) from LAW effectively through increasing material added.

  15. A caspase-2-RFXANK interaction and its implication for MHC class II expression.

    Science.gov (United States)

    Forsberg, Jeremy; Li, Xinge; Akpinar, Birce; Salvatori, Roger; Ott, Martin; Zhivotovsky, Boris; Olsson, Magnus

    2018-01-23

    Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2 -/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.

  16. Neuroprotective Effects and Mechanisms of Curcumin–Cu(II and –Zn(II Complexes Systems and Their Pharmacological Implications

    Directory of Open Access Journals (Sweden)

    Fa-Shun Yan

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa, is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II or Zn(II on hydrogen peroxide (H2O2-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12 cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin–Cu(II complexes systems possessed enhanced O2·–-scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin–Cu(II complexes systems were stronger than curcumin–Zn(II system. Curcumin–Cu(II or –Zn(II complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin–Cu(II complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin–Cu(II or –Zn(II complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin–Cu(II or –Zn(II complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  17. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview

    Directory of Open Access Journals (Sweden)

    Ida Genta

    2017-12-01

    Full Text Available A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i Epidermal growth factor receptor (EGFR structures and functions; (ii GE11 structure and biologic activity; (iii examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.

  18. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells.

    Science.gov (United States)

    Chen, Thomas C; Yu, Jiali; Nouri Nigjeh, Eslam; Wang, Weijun; Myint, Phyo Thazin; Zandi, Ebrahim; Hofman, Florence M; Schönthal, Axel H

    2017-08-01

    The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously

  19. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    Science.gov (United States)

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  20. Reações tegumentares adversas relacionadas aos agentes antineoplásicos: parte II Adverse mucocutaneous reactions related to chemotherapeutic agents: part II

    Directory of Open Access Journals (Sweden)

    Paulo Ricardo Criado

    2010-10-01

    Full Text Available Os eventos e reações envolvendo quimioterapia são frequentes na prática oncológica. Agentes quimioterápicos são uma modalidade de tratamento amplamente utilizada. Efeitos colaterais podem variar de frequência e também ser confundidos com outras manifestações tegumentares do tratamento oncológico. Este artigo objetiva expor as informações sobre reações cutâneas à quimioterapia, em especial, aqueles para os quais o dermatologista é requisitado a emitir parecer e a comentar sobre a segurança e a viabilidade da readministração de uma droga específica. Os autores descrevem os aspectos associados a esses eventos, fazendo uma análise detalhada de cada um deles.Events and reactions involving chemotherapy are common in clinical oncology. Chemotherapeutic agents are widely used in therapy. Side effects range from the common to the rare and may be confused with other mucocutaneous manifestations resulting from the oncological treatment. The objective of this paper was to present data on skin reactions to chemotherapy, particularly those cases in which the dermatologist is requested to issue a report and asked to comment on the safety and viability of readministration of a specific drug. The authors describe aspects associated with these events, presenting a detailed analysis of each one of them.

  1. Novel aspects of cellular action of dipeptidyl peptidase IV/CD26.

    Science.gov (United States)

    Ansorge, Siegfried; Nordhoff, Karsten; Bank, Ute; Heimburg, Anke; Julius, Heiko; Breyer, Doreen; Thielitz, Anja; Reinhold, Dirk; Täger, Michael

    2011-03-01

    The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.

  2. Evolving cellular automata for diversity generation and pattern recognition: deterministic versus random strategy

    International Nuclear Information System (INIS)

    De Menezes, Marcio Argollo; Brigatti, Edgardo; Schwämmle, Veit

    2013-01-01

    Microbiological systems evolve to fulfil their tasks with maximal efficiency. The immune system is a remarkable example, where the distinction between self and non-self is made by means of molecular interaction between self-proteins and antigens, triggering affinity-dependent systemic actions. Specificity of this binding and the infinitude of potential antigenic patterns call for novel mechanisms to generate antibody diversity. Inspired by this problem, we develop a genetic algorithm where agents evolve their strings in the presence of random antigenic strings and reproduce with affinity-dependent rates. We ask what is the best strategy to generate diversity if agents can rearrange their strings a finite number of times. We find that endowing each agent with an inheritable cellular automaton rule for performing rearrangements makes the system more efficient in pattern-matching than if transformations are totally random. In the former implementation, the population evolves to a stationary state where agents with different automata rules coexist. (paper)

  3. Cellular Aspects of Prion Replication In Vitro

    Science.gov (United States)

    Grassmann, Andrea; Wolf, Hanna; Hofmann, Julia; Graham, James; Vorberg, Ina

    2013-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation. PMID:23340381

  4. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.

    Science.gov (United States)

    Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2008-06-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  5. Fire and Heat Spreading Model Based on Cellular Automata Theory

    Science.gov (United States)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  6. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    Science.gov (United States)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  7. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  8. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  9. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    Science.gov (United States)

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.

    Science.gov (United States)

    Taupin, Philippe

    2009-05-01

    The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.

  11. Stochastic, weighted hit size theory of cellular radiobiological action

    International Nuclear Information System (INIS)

    Bond, V.P.; Varma, M.N.

    1982-01-01

    A stochastic theory that appears to account well for the observed responses of cell populations exposed in radiation fields of different qualities and for different durations of exposure is described. The theory appears to explain well most cellular radiobiological phenomena observed in at least autonomous cell systems, argues for the use of fluence rate (phi) instead of absorbed dose for quantification of the amount of radiation involved in low level radiation exposure. With or without invoking the cell sensitivity function, the conceptual improvement would be substantial. The approach suggested also shows that the absorbed dose-cell response functions currently employed do not reflect the spectrum of cell sensitivities to increasing cell doses of a single agent, nor can RBE represent the potency ratio for different agents that can produce similar quantal responses. Thus, for accurate comparison of cell sensitivities among different cells in the same individual, or between the cells in different kinds of individuals, it is necessary to quantify cell sensitivity in terms of the hit size weighting or cell sensitivity function introduced here. Similarly, this function should be employed to evaluate the relative potency of radiation and other radiomimetic chemical or physical agents

  12. Effects of Initial Symmetry on the Global Symmetry of One-Dimensional Legal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Ikuko Tanaka

    2015-09-01

    Full Text Available To examine the development of pattern formation from the viewpoint of symmetry, we applied a two-dimensional discrete Walsh analysis to a one-dimensional cellular automata model under two types of regular initial conditions. The amount of symmetropy of cellular automata (CA models under regular and random initial conditions corresponds to three Wolfram’s classes of CAs, identified as Classes II, III, and IV. Regular initial conditions occur in two groups. One group that makes a broken, regular pattern formation has four types of symmetry, whereas the other group that makes a higher hierarchy pattern formation has only two types. Additionally, both final pattern formations show an increased amount of symmetropy as time passes. Moreover, the final pattern formations are affected by iterations of base rules of CA models of chaos dynamical systems. The growth design formations limit possibilities: the ratio of developing final pattern formations under a regular initial condition decreases in the order of Classes III, II, and IV. This might be related to the difference in degree in reference to surrounding conditions. These findings suggest that calculations of symmetries of the structures of one-dimensional cellular automata models are useful for revealing rules of pattern generation for animal bodies.

  13. In vitro effects of platinum compounds on renal cellular respiration in mice.

    Science.gov (United States)

    Almarzooqi, Saeeda-S; Alfazari, Ali-S; Abdul-Kader, Hidaya-M; Saraswathiamma, Dhanya; Albawardi, Alia-S; Souid, Abdul-Kader

    2015-01-01

    Cisplatin, carboplatin and oxaliplatin are structurally-related compounds, which are commonly used in cancer therapy. Cisplatin (Platinol(®)) has Boxed Warning stating: "Cumulative renal toxicity associated with PLATINOL is severe", while carboplatin and oxaliplatin are less nephrotoxic. These drugs form platinum adducts with cellular DNA. Their bindings to cellular thiols (e.g., glutathione and metallothionein) are known to contribute to drug resistance while thiol depletion augments platinum toxicity. Using phosphorescence oxygen analyzer, this study investigated the effects of platinum drugs on renal cellular respiration (mitochondrial O2 consumption) in the presence and absence of the thiol blocking agent N-ethylmaleimide (used here as a model for thiol depletion). Renal cellular ATP was also determined. Kidney fragments from C57BL/6 mice were incubated at 37 °C in Krebs-Henseleit buffer (gassed with 95% O2:5% CO2) with and without 100 μM platinum drug in the presence and absence of 100 μM N-ethylmaleimide for ≤ 6 h. Platinum drugs alone had no effects on cellular respiration (P ≥ 0.143) or ATP (P ≥ 0.161). N-ethylmaleimide lowered cellular respiration (P ≤ 0.114) and ATP (P = 0.008). The combination of platinum drug and N-ethylmaleimide significantly lowered both cellular respiration (P ≤ 0.006) and ATP (P ≤ 0.003). Incubations with N-ethylmaleimide alone were associated with moderate-to-severe tubular necrosis. Incubations with cisplatin+N-ethylmaleimide vs. cisplatin alone produced similar severities of tubular necrosis. Tubular derangements were more prominent in carboplatin+N-ethylmaleimide vs. carboplatin alone and in oxaliplatin+N-ethylmaleimide vs. oxaliplatin alone. These results demonstrate the adverse events of thiol depletion on platinum-induced nephrotoxicities. The results suggest cellular bioenergetics is a useful surrogate biomarker for assessing drug-induced nephrotoxicities.

  14. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    Science.gov (United States)

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Study of apoptotic mechanisms induced by all-trans retinoic acid and its 13-cis isomer on cellular lines of human hepato carcinoma Hep3B and HepG2

    International Nuclear Information System (INIS)

    Arce Vargas, Frederick

    2006-01-01

    Two cellular lines of liver cancer (Hep3B and HepG2) were incubated during different periods of time with some concentrations of two retinoic acid isomers (ATRA and 13-cis AR) and with 5-fu chemotherapeutic agents, cisplatin and paclitaxel. It was determined if these substances leaded cytotoxicity, apoptosis and if they modified the expression of different genes related to cellular death by apoptosis, in order to explain the hepatocellular carcinoma resistance to these drugs. HepG2 cells showed more resistance than Hep3B cells to 72 hours of treatment, as much ATRA as the 13-cis AR were toxic and produced apoptosis in two cellular lines. This type of cellular death seems to be mediated by a decrease in Bcl-xL concentration in Hep3B cells treated with both retinoids an increase in bax concentration in HepG2 cells treated with 13-cis AR. It were observed 3 and 8 proteolysis of procaspase in Hep3B cells, suggesting extrinsic via activation of the apoptosis, while cellular death in HepG2 cells seems to be independent of caspases. Cisplatin and paclitaxel leaded cytotoxicity to 48 hours of treatment, with significant differences between two cellular lines only in case of paclitaxel. Hep3B cells treated with cisplatin and HepG2 cells treated with paclytaxel suffered apoptosis. 5-FU produced toxicity only when it was used to high concentrations and the mechanism of cellular death induced by this agent seems to be primarily necrosis in Hep3B cells and apoptosis in HepG2. There was decrease in the Bcl-xL concentration in two cellular lines when it was treated with cisplatin and in HepG2 cells treated with 5-FU. Bax concentration there no was modified with no treatment. Activation of the 3 caspases seems to happen only in HepG2 cells with 5-FU and paclytaxel. These two agents, also, decreased the survivin concentration of HepG2 cells. Treatments of the three drugs produced an increase in the expression of this gen in Hep3B cells, which might explain partially the resistance

  16. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  17. Autonomous Collaborative Agents for Onboard Multi-Sensor Re-Targeting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In our Phase I effort we developed a prototype software-agent based framework to provide for autonomous re-targeting of sensors hosted on satellites in polar orbits,...

  18. Is 'class effect' relevant when assessing the benefit/risk profile of a biologic agent?

    NARCIS (Netherlands)

    Sterry, W.; Kerkhof, P.C.M. van de

    2012-01-01

    Psoriasis is a chronic, genetically predisposed skin disorder, characterised by thickened scaly plaques. Although no therapy is recognised as curative, therapies aimed at symptom control include biologic agents that are generally designed to block molecular activation of cellular pathways of a

  19. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  20. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  1. Study of the cellular uptake and distribution of 57cobalt bleomycin in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Metelmann, H.R.

    1980-01-01

    We investigated the dependence of the cellular uptake of 57 cobalt-bleomycin on the exposure time and on the dose. In addition we observed the influences due to the incubation temperature, to the growth phase of the tumor cells and due to the composition of the suspensory medium. In supplementary experiments we investigated the binding of the labelled cytostatic agent to erythrocytes, its adsorption to broken Ehrlich ascites tumor cells and the 57 cobalt-bleomycin outflow from pre-loaded intact Ehrlich ascites tumor cells. The 57 cobalt-bleomycin uptake of intact Ehrlich ascites tumor cells is determined by characteristic kinetics. Moreover, the erythrocytes and injured Ehrlich ascites tumor cells show a qualitatively similar graph of the 57 cobalt-bleomycin binding, which can clearly be distinguished from the kinetics found with intact Ehrlich ascites tumor cells. The uptake of this cytostatic agent depends on an unequivocal time-dose-temperature relationship. The transport mechanism of the 57 cobalt-bleomycin uptake was considered as endocytosis. An endocytosis-stimulating inducer could not be detected. However, we obtained indications that the cell-bound cytostatic agent is taken up in two compartments: on the cellular surface and in the interior of the cell. (orig./MG) [de

  2. Lixiviation of plutonium contaminated solid wastes by aqueous solution of electro-generated reducing agents

    International Nuclear Information System (INIS)

    Agarande, Michelle

    1991-01-01

    This study concerns the development of the new concept for the decontamination of plutonium bearing solid wastes, based on the lixiviation of the wastes using electro-generated reducing agents. First, a comparative study of the kinetics of the dissolution of pure PuO 2 (prepared by calcination of Pu (IV) oxalate at 450 C) in sulfuric acid media, with different reducing agents, was realized. Qualitatively these reagents can be sorted in three groups: 1 / fast kinetics for Cr(II), V(II) and U(III); 2 / slow kinetics for Ti(III); 3 / very slow kinetics for V(III) and U(VI). In order to contribute to the design of an electrochemical reactor for the generation of the reducing agents usable for the lixiviation of plutonium bearing solid wastes, the study of the diffusion coefficients of both oxidized and reduced forms of different redox couples, at different temperatures, was undertaken. The results of this study also permits, from the knowledge of the diffusional activation energy of the ions, to conclude that the dissolution of pure plutonium dioxide under the action of these reducing agents is not diffusion limited. The feasibility of the plutonium decontamination treatment of synthetic or real solid wastes was then studied at laboratory scale using electro-generated V(II), which is with Cr(II) among the best reagents. The efficiency of the treatment was good, (80 pc Pu solubilisation yield), especially in the case of cellulosic or miscellaneous organic wastes. (author) [fr

  3. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    International Nuclear Information System (INIS)

    Rehman, F.U.; Khan, M.F.; Khan, G.M.; Khan, H.; Khan, I.U.

    2010-01-01

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  4. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, F U; Khan, M F; Khan, G M; Khan, H [Gomal University, D.I. Khan (Pakistan). Dept. of Faculty of Pharmacy; Khan, I U [University of Peshawar (Pakistan). Dept. of Faculty of Pharmacy

    2010-08-15

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  5. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    Science.gov (United States)

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  7. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...... is an efficient vector for PNA delivery yielding significantly higher (up to 10-fold) antisense activity than an analogous PNA-octaarginine conjugate, even in the presence of chloroquine, which only slightly enhances the PEI-PNA activity. The PEI-PEG conjugates are preferred due to lower acute cellular toxicity...

  8. ORAL HYPOGLYCAEMIC AGENTS IN THE MANAGEMENT OF TYPE II DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Durgaprasad M.

    2016-06-01

    Full Text Available OBJECTIVES Diabetes is fast gaining the status of a potential epidemic globally. The number of people with diabetes has risen from 108 million in 1980 to 422 million in 2014, the rise seen more rapidly in developing and under developed countries. Type 2 Diabetes Mellitus (T2DM being the most common type, accounting for an estimated 85-95% of all diabetes cases. Diabetes remains a major cause of blindness, renal failure, and cardiovascular events including heart attacks, stroke and limb amputations. 1 Being an heterogeneous disorder, many adults with T2DM have difficulty controlling their blood sugar levels and associated complications as most of available antidiabetic agents aim to achieve only normoglycaemia and relieve diabetes symptoms, such as polydipsia, polyuria, weight loss, ketoacidosis while the longterm goals to prevent the development of or slow the progression of longterm complications of the disease is often unaddressed, therefore, there remains, a significant unmet demand for new agents that will help diabetic patients achieve treatment targets without increasing the risk for weight gain or hypoglycaemia. Among the new classes of oral agents, SGLT-2 inhibitors and mTOT insulin sensitisers appear to hold some good promise. However, recent articles published describing its adverse effect profile of SGLT-2 inhibitors had put a question mark on its utility. In this article, we have reviewed the plethora of available OHAs along with the newer OHAs for managing T2DM optimally.

  9. Synthesis, Spectral and Antimicrobial Studies of Some Co(II, Ni(II and Cu(II Complexes Containing 2-Thiophenecarboxaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    A. P. Mishra

    2012-01-01

    Full Text Available Some new Schiff base metal complexes of Co(II, Ni(II and Cu(II derived from 3-chloro-4-fluoroaniline (HL1 and 4-fluoroaniline (HL2 with 2-thiophenecarboxaldehyde have been synthesized and characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR and magnetic susceptibility. The complexes exhibit coordination number 4 or 6. The complexes are colored and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio. FAB-mass data show degradation pattern of the complexes. The Schiff base and metal complexes show a good activity against the bacteria; B. subtilis, E. coli and S. aureus and fungi A. niger, A. flavus and C. albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  10. CHARACTERIZATION OF SORBENT PRODUCED THROUGH IMMOBILIZATION OF HUMIC ACID ON CHITOSAN USING GLUTARALDEHYDE AS CROSS-LINKING AGENT AND Pb(II ION AS ACTIVE SITE PROTECTOR

    Directory of Open Access Journals (Sweden)

    Uripto Trisno Santoso

    2010-12-01

    Full Text Available Sorbent produced through immobilization of humic acid (HA on chitosan using glutaraldehyde as cross-linking agent and Pb(II ions as active site protector has been characterized. Active sorption site of HA was protected by reacting HA with Pb(II ion, and the protected-HA was then activated by glutaraldehyde, crosslinked onto chitosan, and deprotected by 0.1 M disodium ethylenediamine tetra-acetic acid (Na2EDTA. The protected-crosslinking method enhanced the content of immobilized-HA and its chemical stability. Based on the FTIR spectra, crosslinking of HA on chitosan probably occurred through a chemical reaction. The sorption capacity of sorbent still remains unchanged after the second regeneration, but some of HA start to be soluble. The latter shows that cross-linking reaction between HA and chitosan is through formation an unstable product. The effectiveness of sorbent regeneration can also be identified by the XRD pattern.

  11. A Computational Model of Cellular Engraftment on Lung Scaffolds.

    Science.gov (United States)

    Pothen, Joshua J; Rajendran, Vignesh; Wagner, Darcy; Weiss, Daniel J; Smith, Bradford J; Ma, Baoshun; Bates, Jason H T

    2016-01-01

    The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs, but these investigations are still essentially exploratory and have few predictive tools available to guide experimentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predictive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue development to be simulated computationally. Toward this end, we developed a simple agent-based computational model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational model of this type has the potential to assist in the discovery of rules of cellular behavior.

  12. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network.

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-12-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.

  13. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  14. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  15. Adsorption and thermodynamic studies of Cu(II) and Zn(II) on organofunctionalized-kaolinite

    International Nuclear Information System (INIS)

    Guerra, Denis Lima; Airoldi, Claudio; Sousa, Kaline S. de

    2008-01-01

    Kaolinite-bearing clay samples from Perus, Sao Paulo state, Brazil, were used for chemical modification process with dimethyl sulfoxide and organofunctionalized with the silyating agent (RO) 3 Si(CH 2 ) 3 NH(CH 2 ) 2 NH 2 in the present study. The resulting material and natural kaolinite were subjected adsorpion process with Cu(II) and Zn(II) from aqueous solution at pH 6.0 and controlated temperature of 298 K. The Langmuir adsorption isotherm model has been applied to fit the experimental data. The results showed that the chemical modification process increases the basal spacing of the natural kaolinite from 0.711 to 0.955 nm. The energetic effects caused by Cu(II) and Zn(II) interactions were determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant

  16. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    Directory of Open Access Journals (Sweden)

    Daniel René

    2008-05-01

    Full Text Available Abstract The acquired immunodeficiency syndrome (AIDS is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis. This review focuses on newly discovered connections of the HIV-1 protein Tat, as well as cellular co-factors of Tat, to double-strand break DNA repair. We propose that the Tat-induced DNA repair deficiencies may play a significant role in the development of AIDS-associated cancer.

  17. Csk regulates angiotensin II-induced podocyte apoptosis.

    Science.gov (United States)

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  18. Role of thiols in cellular response to radiation and drugs. Symposium: thiols

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme. A GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells

  19. MO-DE-206-02: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, S. [University of California-Davis (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  20. MO-DE-206-01: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, G. [Stanford University (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  1. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  2. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  3. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  4. Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2013-02-01

    Full Text Available Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1 and Ras2 and protein kinase A, and it culminates in death through the production of toxic reactive oxygen species in a tricarboxylic-acid-cycle- and respiratory-chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA-repair mechanisms potentiates fungicidal activity.

  5. Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)-S Coordination in Actively Metabolizing Escherichia coli.

    Science.gov (United States)

    Thomas, Sara A; Gaillard, Jean-François

    2017-04-18

    The bacterial uptake of mercury(II), Hg(II), is believed to be energy-dependent and is enhanced by cysteine in diverse species of bacteria under aerobic and anaerobic conditions. To gain insight into this Hg(II) biouptake pathway, we have employed X-ray absorption spectroscopy (XAS) to investigate the relationship between exogenous cysteine, cellular metabolism, cellular localization, and Hg(II) coordination in aerobically respiring Escherichia coli (E. coli). We show that cells harvested in exponential growth phase consistently display mixtures of 2-fold and 4-fold Hg(II) coordination to sulfur (Hg-S 2 and Hg-S 4 ), with added cysteine enhancing Hg-S 4 formation. In contrast, cells in stationary growth phase or cells treated with a protonophore causing a decrease in cellular ATP predominantly contain Hg-S 2 , regardless of cysteine addition. Our XAS results favor metacinnabar (β-HgS) as the Hg-S 4 species, which we show is associated with both the cell envelope and cytoplasm. Additionally, we observe that added cysteine abiotically oxidizes to cystine and exponentially growing E. coli degrade high cysteine concentrations (100-1000 μM) into sulfide. Thermodynamic calculations confirm that cysteine-induced sulfide biosynthesis can promote the formation of dissolved and particulate Hg(II)-sulfide species. This report reveals new complexities arising in Hg(II) bioassays with cysteine and emphasizes the need for considering changes in chemical speciation as well as growth stage.

  6. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis

    NARCIS (Netherlands)

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic

  7. Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation.

    Science.gov (United States)

    Martinez de Pinillos Bayona, Alejandra; Moore, Caroline M; Loizidou, Marilena; MacRobert, Alexander J; Woodhams, Josephine H

    2016-03-01

    Photochemical internalisation (PCI) is a technique for improving cellular delivery of certain bioactive agents which are prone to sequestration within endolysosomes. There is a wide range of agents suitable for PCI-based delivery including toxins, oligonucleotides, genes and immunoconjugates which demonstrates the versatility of this technique. The basic mechanism of PCI involves triggering release of the agent from endolysosomes within the target cells using a photosensitiser which is selectively retained with the endolysosomal membranes. Excitation of the photosensitiser by visible light leads to disruption of the membranes via photooxidative damage thereby releasing the agent into the cytosol. This treatment enables the drugs to reach their intended subcellular target more efficiently and improves their efficacy. In this review we summarise the applications of this technique with the main emphasis placed on cancer chemotherapy. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  8. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    Science.gov (United States)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  9. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  10. Radioprotection: mechanism and radioprotective agents including honeybee venom

    International Nuclear Information System (INIS)

    Varanda, E.A.; Tavares, D.C.

    1998-01-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  11. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  12. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  13. Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Ivanov, Ivo; Georgieva, Ventsislava; Evtimova, Bisera; Georgiev, George

    2007-02-12

    Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2'-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 micromol g(-1) of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO(3). The selectivity coefficients (S(Cu/Me)) for Me=Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 micromol L(-1) (3sigma) and 0.003 micromol L(-1) (6sigma), respectively.

  14. Intelligent web agents for a 3D virtual community

    Science.gov (United States)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  15. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.

    Science.gov (United States)

    Jindal, Anil B

    2017-10-30

    Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  17. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    Science.gov (United States)

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation.

    Science.gov (United States)

    Demuth, Ilja; Digweed, Martin; Concannon, Patrick

    2004-11-11

    DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.

  19. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  20. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  1. Pathological mechanism for delayed hyperenhancement of chronic scarred myocardium in contrast agent enhanced magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available OBJECTIVES: To evaluate possible mechanism for delayed hyperenhancement of scarred myocardium by investigating the relationship of contrast agent (CA first pass and delayed enhancement patterns with histopathological changes. MATERIALS AND METHODS: Eighteen pigs underwent 4 weeks ligation of 1 or 2 diagonal coronary arteries to induce chronic infarction. The hearts were then removed and perfused in a Langendorff apparatus. The hearts firstly experienced phosphorus 31 MR spectroscopy. The hearts in group I (n = 9 and II (n = 9 then received the bolus injection of Gadolinium diethylenetriamine pentaacetic acid (0.05 mmol/kg and gadolinium-based macromolecular agent (P792, 15 µmol/kg, respectively. First pass T2* MRI was acquired using a gradient echo sequence. Delayed enhanced T1 MRI was acquired with an inversion recovery sequence. Masson's trichrome and anti- von Willebrand Factor (vWF staining were performed for infarct characterization. RESULTS: Wash-in of both kinds of CA caused the sharp and dramatic T2* signal decrease of scarred myocardium similar to that of normal myocardium. Myocardial blood flow and microvessel density were significantly recovered in 4-week-old scar tissue. Steady state distribution volume (ΔR1 relaxation rate of Gd-DTPA was markedly higher in scarred myocardium than in normal myocardium, whereas ΔR1 relaxation rate of P792 did not differ significantly between scarred and normal myocardium. The ratio of extracellular volume to the total water volume was significantly greater in scarred myocardium than in normal myocardium. Scarred myocardium contained massive residual capillaries and dilated vessels. Histological stains indicated the extensively discrete matrix deposition and lack of cellular structure in scarred myocardium. CONCLUSIONS: Collateral circulation formation and residual vessel effectively delivered CA into scarred myocardium. However, residual vessel without abnormal hyperpermeability allowed Gd

  2. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.

    Science.gov (United States)

    Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A

    2008-12-01

    The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.

  3. Removal of Hg(II) from aqueous solution using sodium humate as heavy metal capturing agent.

    Science.gov (United States)

    Wang, Shixiang; Liu, Yong; Fan, Qin; Zhou, Anlan; Fan, Lu; Mu, Yulan

    2016-12-01

    An environmental friendly and economic natural biopolymer-sodium humate (HA-Na) was used to capture Hg(II) from aqueous solutions, and the trapped Hg(II) (HA-Na-Hg) was then removed by aluminium coagulation. The best Hg(II) capturing performance (90.60%) was observed under the following conditions: initial pH of 7.0, coagulation pH of 6.0, HA-Na dosage of 5.0 g L -1 , Al 2 (SO 4 ) 3 .18H 2 O dosage of 4.0 g L -1 , initial Hg(II) concentration of 50 mg L -1 and capturing time of 30 min. The HA-Na compositions with the molecular weight beyond 70 kDa showed the most intense affinity toward Hg(II). The results showed that the reaction equilibrium was achieved within 10 min (pH 7.0), and could be well fitted by the pseudo-second-order kinetics model. The capturing process could be well described by the Langmuir isotherm model and the maximum capturing capacity of Hg(II) was high up to 9.80 mg g -1 at 298 K (pH 7.0). The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis showed that the redox reaction between Hg(II) and HA-Na and the coordination reaction of carboxyl and hydroxy groups of HA-Na with Hg(II) were responsible for Hg(II) removal. The successive regeneration experiment showed that the capturing efficiency of humates for Hg(II) was maintained at about 51% after five capture-regeneration recycles.

  4. The extraction constant of mercury(II) o-o'-dimethyldithizonate into toluene

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Agterdenbos, J.; Welle, R.A. van der

    An attempt was made to determine spectrophotometrically the extraction constant of mercury(II) o-o'-dimethyldithizonate into toluene by means of a known excess of iodide as a masking agent. The results found, however, could not be explained by a simple reaction between mercury(II)

  5. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  6. Effects of Selected Dietary Secondary Metabolites on Reactive Oxygen Species Production Caused by Iron(II Autoxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Chobot

    2014-12-01

    Full Text Available Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin, several phenolic acids (caffeic, chlorogenic, and protocatechuic acid, and the alkaloid caffeine on iron(II autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue and 7.4 (cell cytoplasm and human blood plasma. The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases.

  7. Wealth distribution across communities of adaptive financial agents

    Science.gov (United States)

    DeLellis, Pietro; Garofalo, Franco; Lo Iudice, Francesco; Napoletano, Elena

    2015-08-01

    This paper studies the trading volumes and wealth distribution of a novel agent-based model of an artificial financial market. In this model, heterogeneous agents, behaving according to the Von Neumann and Morgenstern utility theory, may mutually interact. A Tobin-like tax (TT) on successful investments and a flat tax are compared to assess the effects on the agents’ wealth distribution. We carry out extensive numerical simulations in two alternative scenarios: (i) a reference scenario, where the agents keep their utility function fixed, and (ii) a focal scenario, where the agents are adaptive and self-organize in communities, emulating their neighbours by updating their own utility function. Specifically, the interactions among the agents are modelled through a directed scale-free network to account for the presence of community leaders, and the herding-like effect is tested against the reference scenario. We observe that our model is capable of replicating the benefits and drawbacks of the two taxation systems and that the interactions among the agents strongly affect the wealth distribution across the communities. Remarkably, the communities benefit from the presence of leaders with successful trading strategies, and are more likely to increase their average wealth. Moreover, this emulation mechanism mitigates the decrease in trading volumes, which is a typical drawback of TTs.

  8. Lossed in translation: an off-the-shelf method to recover probablistic beliefs from loss-averse agents

    NARCIS (Netherlands)

    Offerman, T.; Palley, A.B.

    2016-01-01

    Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of 1/2 , and (ii) for

  9. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Xing Chen

    2015-08-01

    Full Text Available Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = −3.16 mV. Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.

  10. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    Science.gov (United States)

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  11. A Computational Model of Cellular Engraftment on Lung Scaffolds

    Directory of Open Access Journals (Sweden)

    Joshua J. Pothen

    2016-10-01

    Full Text Available The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs, but these investigations are still essentially exploratory and have few predictive tools available to guide experimentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predictive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue development to be simulated computationally. Toward this end, we developed a simple agent-based computational model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational model of this type has the potential to assist in the discovery of rules of cellular behavior

  12. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  13. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    Science.gov (United States)

    2011-04-01

    by 1-ethyl-3- [3-(dimethylamino) propyl ]carbodiimide (EDC) and N-hydroxysulfonosuccinimide (SNHS) at pH 5.5 for 30 min with a molar ratio of...particle-coated migratory substrate that can act as a permanent record of cellular movement. The gold chloride solution was prepared using 0.342 g... Synthesis and clinical Evaluation. Anticancer Agents Med. Chem. McLane, M.A., Joerger, T., Mahmoud, A., 2008. Disintegrins in health and disease. Front

  14. Characterization of insulin-like-growth factor II (IGF II mRNA positive hepatic altered foci and IGF II expression in hepatocellular carcinoma during diethylnitrosamine-induced hepatocarcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Mukherjee Biswajit

    2005-08-01

    Full Text Available Abstract Background Insulin-like-growth factor II (IGF II has been implicated in the pathogenesis of neoplasm of different tissues, including liver of rats and men. This growth factor is believed to exert its effect during cellular proliferation. During the process of development of hepatocellular carcinoma (HCC, different hepatic altered foci appear. They are believed to be the putative precursors of HCC in rats and in men. Thus, to study the role of the gene in a defined model of hepatocarcinogenesis was the target to elucidate its role in various cancer phenotypes during the entire development stage of cancer, right from earlier preneoplastic lesions to HCC Methods Antisense in situ hybridization technique was used here to characterize the type(s of foci in which IGF II mRNA had expressed during the development of hepatocarcinogenesis-induced by diethylnitrosamine and promoted by phenobarbital in rats. Various focal lesions have been categorized depending on the stages and sizes along with IGF II expression patterns in them. Immunohistochemical detection for proliferating cell nuclear antigen (PCNA was made to detect the role of the gene in preneoplastic and neoplastic cellular proliferation. Results IGF II expression was located in the glycogen-storage acidophilic cell foci maximally followed by mixed cell lesions and the least in basophilic lesions. The expression of IGF II was found to be predominant in the HCC. The expression of gene was also located at the peripheral cells of spongiosis hepatis which are believed to be the precursor of ito cell carcinoma. It was noted that there is a direct correlation between IGF II expression and Immunohistochemical detection for PCNA. Conclusion It may be concluded that IGF II gene expression plays an important role during the development of neoplasia and the gene expresses in the sequence of events leading from glycogen-rich-acidophilic lesions to glycogen poor basophilic lesions to HCC with an

  15. On the Motion of Agents across Terrain with Obstacles

    Science.gov (United States)

    Kuznetsov, A. V.

    2018-01-01

    The paper is devoted to finding the time optimal route of an agent travelling across a region from a given source point to a given target point. At each point of this region, a maximum allowed speed is specified. This speed limit may vary in time. The continuous statement of this problem and the case when the agent travels on a grid with square cells are considered. In the latter case, the time is also discrete, and the number of admissible directions of motion at each point in time is eight. The existence of an optimal solution of this problem is proved, and estimates of the approximate solution obtained on the grid are obtained. It is found that decreasing the size of cells below a certain limit does not further improve the approximation. These results can be used to estimate the quasi-optimal trajectory of the agent motion across the rugged terrain produced by an algorithm based on a cellular automaton that was earlier developed by the author.

  16. Human Aortic Endothelial Cell Labeling with Positive Contrast Gadolinium Oxide Nanoparticles for Cellular Magnetic Resonance Imaging at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Yasir Loai

    2012-03-01

    Full Text Available Positive T1 contrast using gadolinium (Gd contrast agents can potentially improve detection of labeled cells on magnetic resonance imaging (MRI. Recently, gadolinium oxide (Gd2O3 nanoparticles have shown promise as a sensitive T1 agent for cell labeling at clinical field strengths compared to conventional Gd chelates. The objective of this study was to investigate Gado CELLTrack, a commercially available Gd2O3 nanoparticle, for cell labeling and MRI at 7 T. Relaxivity measurements yielded r1 = 4.7 s−1 mM−1 and r2/r1 = 6.2. Human aortic endothelial cells were labeled with Gd2O3 at various concentrations and underwent MRI from 1 to 7 days postlabeling. The magnetic resonance relaxation times T1 and T2 of labeled cell pellets were measured. Cellular contrast agent uptake was quantified by inductively coupled plasma–atomic emission spectroscopy, which showed very high uptake compared to conventional Gd compounds. MRI demonstrated significant positive T1 contrast and stable labeling on cells. Enhancement was optimal at low Gd concentrations, attained in the 0.02 to 0.1 mM incubation concentration range (corresponding cell uptake was 7.26 to 34.1 pg Gd/cell. Cell viability and proliferation were unaffected at the concentrations tested and up to at least 3 days postlabeling. Gd2O3 is a promising sensitive and stable positive contrast agent for cellular MRI at 7 T.

  17. Agents for facilitation of laryngeal mask airway insertion: A ...

    African Journals Online (AJOL)

    Correspondence to: Dr. Janmejoy Sengupta, HIG‑Q 1, Niva Park Phase II, P.O. Brahmapur, Kolkata ‑ 700 096, India. E‑mail: janmejoys@yahoo.co.in. Abstract ... Conclusion: Severity of undesired responses were more in group 2, as incremental boluses of respective induction agents were required in 20% patients in ...

  18. Effects of fexofenadine and hydroxyzine on brake reaction time during car-driving with cellular phone use.

    Science.gov (United States)

    Tashiro, Manabu; Horikawa, Etsuo; Mochizuki, Hideki; Sakurada, Yumiko; Kato, Motohisa; Inokuchi, Takatoshi; Ridout, Fran; Hindmarch, Ian; Yanai, Kazuhiko

    2005-10-01

    Antihistamines are a mainstay treatment for allergic rhinitis; however, many older agents cause adverse events, including sedation and central nervous system (CNS) impairment. Research has shown sedating effects of antihistamines on driving; currently, no known study has examined whether cellular phone usage while driving further compounds impairment in individuals administered antihistamines. The aim of this study was to examine this endpoint. In a randomized, double-blind, placebo-controlled, three-way crossover study, healthy volunteers received fexofenadine HCl 120 mg, hydroxyzine HCl 30 mg and placebo. Brake reaction time (BRT) was used to examine driving performance across four conditions: driving only; driving while completing simple calculations; complex calculations; and conversing on a cellular phone. Subjective sedation assessments were also conducted. Brake reaction time with and without cellular phone usage in fexofenadine-treated subjects did not differ significantly from placebo in any condition. In contrast, hydroxyzine-treated subjects were significantly more sedated and had slower BRTs, suggesting slower hazard recognition and brake application, compared with the fexofenadine and placebo groups in all conditions. Importantly, cellular phone operation was an additive factor, increasing BRTs in hydroxyzine-treated volunteers. Fexofenadine did not impair CNS function in subjects involved in a divided attention task of driving and cellular phone operation. Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    International Nuclear Information System (INIS)

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-01-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η 6 -p-cymene)RuClTSC N–S ]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh 3 ) 2 TSC N–S ] (2) have been synthesized from the reaction of [{(η 6 -p-cymene)RuCl} 2 (μ-Cl) 2 ] and [Ru(H)(Cl)(CO)(PPh 3 ) 3 ] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity

  1. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    Science.gov (United States)

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  2. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  3. Cytotoxicity and cellular uptake of doxorubicin and its formamidine derivatives in HL60 sensitive and HL60/MX2 resistant cells.

    Science.gov (United States)

    Kik, Krzysztof; Wasowska-Lukawska, Malgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-04-01

    In this work a comparison was made of the cytotoxicity and cellular uptake of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N=CH-N<) at the 3' position with morpholine (DOXM) or hexamethyleneimine (DOXH) ring. All tests were performed in doxorubicin-sensitive HL60 and -resistant HL60/MX2 cells which are known for the presence of altered topoisomerase II. Cytotoxic activity of DOX toward HL60/MX2 cells was about 195 times lower when compared with the sensitive HL60 cell line. DOXM and DOXH were approximately 20 times more active in resistant cells than DOX. It was found that the uptake of DOX was lower in resistant cells by about 16%, while that of DOXM and DOXH was lower by about 36% and 19%, respectively. Thus the changes in the cellular uptake of anthracyclines are not associated with the fact that cytotoxicity of DOXM and DOXH exceed the cytotoxicity of DOX. Experiments in cell-free system containing human topoisomerase II showed that topoisomerase II is not inhibited by DOXM and DOXH. Formamidinoanthracyclines may be more useful than parent drugs in therapy against tumor cells with altered topoisomerase II activity.

  4. Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network▿†§

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E.; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-01-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response. PMID:21994455

  5. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  6. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    Science.gov (United States)

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, François M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  7. Intercell scheduling: A negotiation approach using multi-agent coalitions

    Science.gov (United States)

    Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde

    2016-10-01

    Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.

  8. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  9. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  10. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  11. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Science.gov (United States)

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  12. Spatial patterns and scale freedom in Prisoner's Dilemma cellular automata with Pavlovian strategies

    Science.gov (United States)

    Fort, H.; Viola, S.

    2005-01-01

    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple 'win—stay, lose—shift' strategy is studied. Individuals with binary behaviour, such that they can either cooperate (C) or defect (D), play repeatedly with their neighbours (Von Neumann's and Moore's neighbourhoods). Their utilities in each round of the game are given by a rescaled pay-off matrix described by a single parameter τ, which measures the ratio of temptation to defect to reward for cooperation. Depending on the region of the parameter space τ, the system self-organizes—after a transient—into dynamical equilibrium states characterized by different definite fractions of C agents \\bar {c}_\\infty (two states for the von Neumann neighbourhood and four for the Moore neighbourhood). For some ranges of τ the cluster size distributions, the power spectra P(f) and the perimeter-area curves follow power law scalings. Percolation below threshold is also found for D agent clusters. We also analyse the asynchronous dynamics version of this model and compare results.

  13. Indirect complexometric determination of mercury(II) using potassium bromide as selective masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of mercury in presence of other metal ions based on the selective masking ability of potassium bromide towards mercury is described. Mercury(II) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against zinc sulfate solution at pH 5-6 using xylenol orange as the indicator. A known excess of 10 % solution of potassium bromide is then added and the EDTA released from Hg-EDTA complex is titrated against standard zinc sulfate solution. Reproducible and accurate results are obtained for 8 mg to 250 mg of mercury(II) with a relative error ±0.28 % and standard deviations /leg 0.5 mg. The interference of various ions is studied. This method was applied to the determination of mercury(II) in its alloys. (author)

  14. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  15. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  16. Multi-agent target tracking using particle filters enhanced with context data

    CSIR Research Space (South Africa)

    Claessens, R

    2015-05-01

    Full Text Available The proposed framework for Multi-Agent Target Tracking supports i) tracking of objects and ii) search and rescue based on the fusion of very heterogeneous data. The system is based on a novel approach to fusing sensory observations, intelligence...

  17. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  18. Interpretation of interspecies differences in the biodistribution of radioactive agents

    International Nuclear Information System (INIS)

    McAfee, J.G.; Subramanian, G.

    1981-01-01

    The biodistribution of some radioactive agents is anomalous and unpredictable from one species to another. However, many agents follow a general pattern of rapid clearance from the blood and total body in small rodents, intermediate clearance in the dog and monkey and slower clearance in man. A major determinant of this interspecies difference is the shorter mean circulation time (blood volume/cardiac output) in smaller animals. To permit comparisons between mammals of varying size, many physiological and metabolic parameters, and stable drug effects have been expressed as power functions with exponents less than 1 (rather than linear functions) of body weight W, or body surface area. Frequency functions such as heart and respiratory rates have been correlated with negative power functions of body weight. The plasma clearances of chemotherapeutic agents in different species has been successfully normalized by altering the time dimension according to power functions of body weight. A similar procedure has been explored to normalize blood and total body clearances of various diagnostic radioactive agents in animals and man. Time equivalent units were derived from W 33 animal / W 33 man. The method failed, however for agents with a predominantly intracellular localization or undergoing active cellular transport (such as T1-201 or I-131 Hippuran). Nonetheless, this approach appears useful in distinguishing interspecies variability merely due to body size from interspecies metabolic variations

  19. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    Energy Technology Data Exchange (ETDEWEB)

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  20. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  1. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Ivanova

    2016-01-01

    Full Text Available Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient’s bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  2. Cellular and Molecular Mechanisms of Diabetic Atherosclerosis: Herbal Medicines as a Potential Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Jinfan Tian

    2017-01-01

    Full Text Available An increasing number of patients diagnosed with diabetes mellitus eventually develop severe coronary atherosclerosis disease. Both type 1 and type 2 diabetes mellitus increase the risk of cardiovascular disease associated with atherosclerosis. The cellular and molecular mechanisms affecting the incidence of diabetic atherosclerosis are still unclear, as are appropriate strategies for the prevention and treatment of diabetic atherosclerosis. In this review, we discuss progress in the study of herbs as potential therapeutic agents for diabetic atherosclerosis.

  3. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  4. Complejos de Cu(II: Alternativas en la terapia antineoplásica Complejos de Cu(II: Alternativas en la terapia

    Directory of Open Access Journals (Sweden)

    Myrna Sabanero López

    2012-02-01

    Full Text Available En el presente estudio, fué evaluada la actividad biológica de nuevos complejos de cobre (II fenantrolina unidos a aminoácidos, como ácido glutámico, isoleucina y α-metil-dopa. Para ésto se utilizaron células neoplásicas de pulmón humano y dos dosis (30 y 60 μg/ml de los compuestos fueron aplicadas a los cultivos celulares. También se realizaron ensayos inmunocitoquímicos para microtúbulos, microfi lamentos y electroforesis del DNA genómico. Los resultados obtenidos muestran que los complejos de Cu (II fenantrolina con ácido glutámico y α-metil-dopa afectan la adhesión celular (50% y 45%, respectivamente, alterando la distribución de los microtúbulos y microfi lamentos. La fragmentación del DNA, apoya el ensayo del efecto antitumoral del Cu (II fenantrolina con ácido glutámico y α-metil-dopa sobre los cultivos de células de pulmón humano in vitro, de manera dosis dependiente. En conclusión, los complejos de Cu (II fenantrolina con ácido glutámico y α-metil-dopa, presentan un efecto signifi cativo sobre la actividad celular, sugiriendo que estos complejos podrían ser potencialmente compuestos antitumorales. In this study, the biological activity of new copper (II phenanthroline compounds bound to amino acids such as glutamicacid, isoleucine and α-methyl dopa was evaluated. To accomplish this, tumor cells from the human lung and two doses of compounds (30 and 60 μg/ml were applied to cell cultures. Also, immunostaining of microtubules, phalloidin staining of microfilaments, and electrophoresis of genomic DNA were performed. The results showed that compounds of Cu(II phenanthroline with glutamic acid and α methyl-dopa significantly affected cellular adhesion (by 50% and 45%, respectively by altering the distribution of microtubules and microfilaments. Evaluation of DNA fragmentation supported the tumor suppressing effect of Cu (II Phenantroline with glutamicacid and α-Methyl Dopa on human lung cell cultures in

  5. Dynamic aggregation evolution of competitive societies of cooperative and noncooperative agents

    International Nuclear Information System (INIS)

    Lin Zhen-Quan; Ye Gao-Xiang

    2013-01-01

    We propose an evolution model of cooperative agent and noncooperative agent aggregates to investigate the dynamic evolution behaviors of the system and the effects of the competing microscopic reactions on the dynamic evolution. In this model, each cooperative agent and noncooperative agent are endowed with integer values of cooperative spirits and noncooperative spirits, respectively. The cooperative spirits of a cooperative agent aggregate and the noncooperative spirits of a noncooperative agent aggregate change via four competing microscopic reaction schemes: the win-win reaction between two cooperative agents, the lose-lose reaction between two noncooperative agents, the win-lose reaction between a cooperative agent and a noncooperative agent (equivalent to the migration of spirits from cooperative agents to noncooperative agents), and the cooperative agent catalyzed decline of noncooperative spirits. Based on the generalized Smoluchowski's rate equation approach, we investigate the dynamic evolution behaviors such as the total cooperative spirits of all cooperative agents and the total noncooperative spirits of all noncooperative agents. The effects of the three main groups of competition on the dynamic evolution are revealed. These include: (i) the competition between the lose-lose reaction and the win-lose reaction, which gives rise to respectively the decrease and increase in the noncooperative agent spirits; (ii) the competition between the win-win reaction and the win-lose reaction, which gives rise to respectively the increase and decrease in the cooperative agent spirits; (iii) the competition between the win-lose reaction and the catalyzed-decline reaction, which gives rise to respectively the increase and decrease in the noncooperative agent spirits. (interdisciplinary physics and related areas of science and technology)

  6. Cd(II and Pb(II complexes of the polyether ionophorous antibiotic salinomycin

    Directory of Open Access Journals (Sweden)

    Tanabe Makoto

    2011-09-01

    Full Text Available Abstract Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II ions in in vivo experiments, despite so far no Pb(II-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II and lead(II. Results New metal(II complexes of the polyether ionophorous antibiotic salinomycin with Cd(II and Pb(II ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa undergoes a reaction with heavy metal(II ions to form [Cd(Sal2(H2O2] (1 and [Pb(Sal(NO3] (2, respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock

  7. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Science.gov (United States)

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming

  8. Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts.

    Science.gov (United States)

    Caudron-Herger, Maïwen; Pankert, Teresa; Rippe, Karsten

    2016-05-03

    The nucleolus is a nuclear subcompartment for tightly regulated rRNA production and ribosome subunit biogenesis. It also acts as a cellular stress sensor and can release enriched factors in response to cellular stimuli. Accordingly, the content and structure of the nucleolus change dynamically, which is particularly evident during cell cycle progression: the nucleolus completely disassembles during mitosis and reassembles in interphase. Although the mechanisms that drive nucleolar (re)organization have been the subject of a number of studies, they are only partly understood. Recently, we identified Alu element-containing RNA polymerase II transcripts (aluRNAs) as important for nucleolar structure and rRNA synthesis. Integrating these findings with studies on the liquid droplet-like nature of the nucleolus leads us to propose a model on how RNA polymerase II transcripts could regulate the assembly of the nucleolus in response to external stimuli and during cell cycle progression.

  9. [Morphochemical changes in the substantia nigra cellular structures in Parkinson's disease].

    Science.gov (United States)

    Salkov, V N; Khudoerkov, R M; Voronkov, D N; Sobolev, V B; Kutukova, K A

    to clarify the features of morphochemical changes in the substantia nigra cellular structures in Parkinson's disease. The structural characteristics of the substantia nigra were studied microscopically and quantified using computer morphometric methods at brain autopsies of individuals with Parkinson's disease who had died from intercurrent diseases and those who had no evidence of neurological disorders in their history (a control group). This investigation could clarify the features of morphochemical changes in both the neural network structures and the glial populations of the substantia nigra in Parkinson's disease. The number of neurons containing tyrosine hydroxylase (a marker of dopamine neurons) in the compact part of the substantia nigra (a ventral region) was smaller and the density distribution of Lewy bodies was higher in the patients with Parkinson's disease than in the control group. The accumulation of iron (II) compounds in the cellular elements and neuropile and the increased expression of glial fibrillary acidic protein in Parkinson's disease were more pronounced than those in the controls. Postmortem diagnosis in Parkinson's disease should be based on a full description of a set of neuronal and glial morphochemical and structural changes in the substantia nigra rather than on the identification of cellular markers for the neurodegenerative process.

  10. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  11. Network-Assisted Distributed Fairness-Aware Interference Coordination for Device-to-Device Communication Underlaid Cellular Networks

    Directory of Open Access Journals (Sweden)

    Francis Boabang

    2017-01-01

    Full Text Available Device-to-device (D2D communication underlaid cellular network is considered a key integration feature in future cellular network. However, without properly designed interference management, the interference from D2D transmission tends to degrade the performance of cellular users and D2D pairs. In this work, we proposed a network-assisted distributed interference mitigation scheme to address this issue. Specifically, the base station (BS acts as a control agent that coordinates the cross-tier interference from D2D transmission through a taxation scheme. The cotier interference is controlled by noncooperative game amongst D2D pairs. In general, the outcome of noncooperative game is inefficient due to the selfishness of each player. In our game formulation, reference user who is the victim of cotier interference is factored into the payoff function of each player to obtain fair and efficient outcome. The existence, uniqueness of the Nash Equilibrium (NE, and the convergence of the proposed algorithm are characterized using Variational Inequality theory. Finally, we provide simulation results to evaluate the efficiency of the proposed algorithm.

  12. Modeling Oil Exploration and Production: Resource-Constrained and Agent-Based Approaches

    International Nuclear Information System (INIS)

    Jakobsson, Kristofer

    2010-05-01

    Energy is essential to the functioning of society, and oil is the single largest commercial energy source. Some analysts have concluded that the peak in oil production is soon about to happen on the global scale, while others disagree. Such incompatible views can persist because the issue of 'peak oil' cuts through the established scientific disciplines. The question is: what characterizes the modeling approaches that are available today, and how can they be further developed to improve a trans-disciplinary understanding of oil depletion? The objective of this thesis is to present long-term scenarios of oil production (Paper I) using a resource-constrained model; and an agent-based model of the oil exploration process (Paper II). It is also an objective to assess the strengths, limitations, and future development potentials of resource-constrained modeling, analytical economic modeling, and agent-based modeling. Resource-constrained models are only suitable when the time frame is measured in decades, but they can give a rough indication of which production scenarios are reasonable given the size of the resource. However, the models are comprehensible, transparent and the only feasible long-term forecasting tools at present. It is certainly possible to distinguish between reasonable scenarios, based on historically observed parameter values, and unreasonable scenarios with parameter values obtained through flawed analogy. The economic subfield of optimal depletion theory is founded on the notion of rational economic agents, and there is a causal relation between decisions made at the micro-level and the macro-result. In terms of future improvements, however, the analytical form considerably restricts the versatility of the approach. Agent-based modeling makes it feasible to combine economically motivated agents with a physical environment. An example relating to oil exploration is given in Paper II, where it is shown that the exploratory activities of individual

  13. Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: Implications in cancer cell death

    International Nuclear Information System (INIS)

    Lee, Min-Young; Kim, Myoung-Ae; Kim, Hyun-Ju; Bae, Yoe-Sik; Park, Joo-In; Kwak, Jong-Young; Chung, Jay H.; Yun, Jeanho

    2007-01-01

    Protein acetylation modification has been implicated in many cellular processes but the direct evidence for the involvement of protein acetylation in signal transduction is very limited. In the present study, we found that an alkylating agent methyl methanesulfonate (MMS) induces a robust and reversible hyperacetylation of both cytoplasmic and nuclear proteins during the early phase of the cellular response to MMS. Notably, the acetylation level upon MMS treatment was strongly correlated with the susceptibility of cancer cells, and the enhancement of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to increase the cellular susceptibility. These results suggest protein acetylation is important for the cell death signal transduction pathway and indicate that the use of HDAC inhibitors for the treatment of cancer is relevant

  14. Biologic Agents for Periodontal Regeneration and Implant Site Development

    Directory of Open Access Journals (Sweden)

    Fernando Suárez-López del Amo

    2015-01-01

    Full Text Available The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB, Enamel Matrix Derivate (EMD, Platelet-Rich Plasma (PRP and Platelet-Rich Fibrin (PRF, Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2, Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7, Teriparatide PTH, and Growth Differential Factor-5 (GDF-5.

  15. Biomechanics of cellular solids.

    Science.gov (United States)

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  16. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity

    Science.gov (United States)

    Sonubi, A.; Arcagni, A.; Stefani, S.; Ausloos, M.

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  17. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity.

    Science.gov (United States)

    Sonubi, A; Arcagni, A; Stefani, S; Ausloos, M

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  18. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    Science.gov (United States)

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  19. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  20. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  1. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    Science.gov (United States)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation

  2. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    Science.gov (United States)

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  3. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  4. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    Science.gov (United States)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  5. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  7. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Directory of Open Access Journals (Sweden)

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  8. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Structure and Function of Cu(I)- and Zn(II)-ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Grønberg, Christina; Autzen, Henriette Elisabeth

    2015-01-01

    Copper and zinc are micronutrients essential for the function of many enzymes while also being toxic at elevated concentrations. Cu(I)- and Zn(II)-transporting P-type ATPases of subclass 1B are of key importance for the homeostasis of these transition metals, allowing ion transport across cellular...... membranes at the expense of ATP. Recent biochemical studies and crystal structures have significantly improved our understanding of the transport mechanisms of these proteins, but many details about their structure and function remain elusive. Here we compare the Cu(I)- and Zn(II)-ATPases, scrutinizing...

  10. Effect of acrolein and glutathione depleting agents on thioredoxin

    International Nuclear Information System (INIS)

    Yang Xianmei; Wu Xuli; Choi, Young Eun; Kern, Julie C.; Kehrer, James P.

    2004-01-01

    Acrolein is a widespread environmental pollutant that reacts rapidly with nucleophiles, especially cellular thiols. In addition to glutathione (GSH), thioredoxin (Trx) and thioredoxin reductase (TR) contain thiol groups and may react with electrophiles. In the present study, A549 cells treated with 5-25 μM acrolein for 30 min lost cellular Trx activity in a dose-dependent fashion. Over 90% of Trx activity was lost at concentrations of 25 μM or greater. In contrast, Trx protein content, as assessed by western blotting, was not altered immediately after the 30 min acrolein treatment. Both Trx activity and protein levels increased 4 h after the acrolein treatment. However, Trx activity remained below control levels at 24 h. A similar dose-response relationship was seen with TR in A549 cells exposed to acrolein. There was, however, a rapid recovery of TR activity such that it attained normal levels by 4 h after doses ≤75 μM acrolein. Diethyl maleate (DEM), a common but not highly specific, agent used to deplete GSH, also inactivated Trx. A 2 h exposure of A549 cells to 1 mM DEM depleted cellular GSH by ∼50% and diminished Trx activity by over 67%. Lower DEM doses (0.125 mM and 0.25 mM) for 1 h had no significant effect on GSH but significantly decreased Trx activity 12 and 23%, respectively. Similar to immediately after acrolein exposure, DEM did not affect Trx protein levels. A Trx-1-GFP fusion protein was transfected into A549 cells. While the fusion protein was expressed, the Trx component was inactive by the insulin reducing assay. In summary, Trx and TR are inactivated by acrolein. In addition, the GSH depleting agent DEM inactivates Trx somewhat more effectively than it depletes GSH. The Trx-1-GFP fusion protein, while readily expressed, appears to have little or no activity, perhaps because the small size of Trx-1 (12 kDa) is affected by the larger GFP

  11. T-oligo as an anticancer agent in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wojdyla, Luke; Stone, Amanda L. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Sethakorn, Nan [Department of Medicine, University of Chicago, Chicago, IL (United States); Uppada, Srijayaprakash B.; Devito, Joseph T. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Bissonnette, Marc [Department of Medicine, University of Chicago, Chicago, IL (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  12. Cellular and Molecular Targets of Menthol Actions

    Directory of Open Access Journals (Sweden)

    Murat Oz

    2017-07-01

    Full Text Available Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.

  13. Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases†

    Science.gov (United States)

    Ketron, Adam C.; Gordon, Odaine N.; Schneider, Claus; Osheroff, Neil

    2013-01-01

    The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane), on the DNA cleavage activities of human topoisomerase IIα and IIβ. Intermediates in the curcumin oxidation pathway increased DNA scission mediated by both enzymes ~4-5–fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons. PMID:23253398

  14. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  15. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  16. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  17. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  18. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available UNLABELLED: Angiotensin II (AT-II is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R and thereby activates hepatic stellate cells (HSCs. AT-II receptor blockers (ARBs are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA and tauro-lithocholic acid-3 sulfate (TLCS, to induce apoptosis. AT-II (100 nmol/L was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (Sytox green staining were quantified. Expression of CHOP (marker for ER stress and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (-50%, p<0.05 without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (-50%, p<0.05. However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis. CONCLUSION: Angiotensin II protects hepatocytes from bile salt-induced apoptosis through a combined activation of PI3-kinase, MAPKs, PKC pathways and inhibition of bile salt-induced ER stress. Our results suggest a mechanism for the observed hepatocyte

  19. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-01-01

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  20. An agent-based model of signal transduction in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jameson Miller

    2010-05-01

    Full Text Available We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  1. An agent-based model of signal transduction in bacterial chemotaxis.

    Science.gov (United States)

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  2. Studies of the labelling of human serum albumin with 99mTc using Sn(II) tartrate and Sn(II)Cl2 as reducing agents

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; El-Asrag, H.A.; El-Wetery, A.S.; El-Mohty, A.A.

    1990-01-01

    A comparative study has been carried out on the effect of Sn(II) tartrate and Sn(II)Cl 2 on the labelling efficiency and tissue distribution of 99m Tc-human serum albumin. The effect of reductant content, reaction time (incubation time), albumin content, pH, and ascorbic acid on the efficiency of labelling and the tissue distribution of the labelled albumin has been investigated. The percentage of labelling was determined by paper and thin layer radiochromatography. Ascorbic acid shows no effect on either labelling efficiency or tissue distribution of 99m Tc-HSA prepared by Sn(II) tartrate or Sn(II)Cl 2 . (author)

  3. Yeast and mammalian metabolism continuous monitoring by using pressure recording as an assessment technique for xenobiotic agent effects

    Science.gov (United States)

    Milani, Marziale; Ballerini, Monica; Ferraro, Lorenzo; Marelli, E.; Mazza, Francesca; Zabeo, Matteo

    2002-06-01

    Our work is devoted to the study of Saccharomyces cerevisiae and human lymphocytes cellular metabolism in order to develop a reference model to assess biological systems responses to chemical or physical agents exposure. CO2 variations inside test-tubes are measured by differential pressure sensors; pressure values are subsequently converted in voltage. The system allows to test up to 16 samples at the same time. Sampling manages up to 100 acquisitions per second. Values are recorded by a data acquisition card connected to a computer. This procedure leads to a standard curve (pressure variation versus time), typical of the cellular line, that describe cellular metabolism. The longest time lapse used is of 170 h. Different phases appear in this curve: an initial growth up to a maximum, followed by a decrement that leads to a typical depression (pressure value inside the test-tubes is lower than the initial one) after about 35 h from the beginning of yeast cells. The curve is reproducible within an experimental error of 4%. The analysis of many samples and the low cost of the devices allow a good statistical significance of the data. In particular as a test we will compare two sterilizing agents effects: UV radiation and amuchina.

  4. Sacubitril/Valsartan: A Novel Cardiovascular Combination Agent.

    Science.gov (United States)

    Sible, Alexandra M; Nawarskas, James J; Alajajian, David; Anderson, Joe R

    2016-01-01

    Sacubitril/valsartan [LCZ696 (Entresto), Novartis Pharmaceuticals Corp.] is the first in a new class of drugs that combines neprilysin inhibition with angiotensin II receptor antagonism, the combination of which acts to increase endogenous natriuretic peptides while inhibiting the renin-angiotensin-aldosterone system. Sacubitril/valsartan has been studied in the treatment of hypertension, heart failure with reduced ejection fraction (HFrEF), and heart failure with preserved ejection fraction (HFpEF) and has demonstrated clinical efficacy in blood pressure reduction in hypertensive patients with and without HFpEF and a reduction in hospitalizations and mortality for patients with HFrEF. Research to evaluate clinical outcomes in HFpEF is ongoing. Sacubitril/valsartan is approved to reduce hospitalization and risk of cardiovascular death for patients with HFrEF in New York Heart Association (NYHA) functional class II-IV. The product is as well tolerated as an angiotensin-converting enzyme inhibitor, with the most common side effect being hypotension. Expectedly, it is much more costly than generic angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists, which will be a factor in determining how widespread the use of this agent will be. In summary, although the number of published studies evaluating its use is limited, sacubitril/valsartan represents a promising new treatment option for patients with HFrEF. Ongoing studies will continue to refine the role of this agent in clinical practice.

  5. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    Science.gov (United States)

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  6. HTLV-I/II prevalence in different geographic locations

    NARCIS (Netherlands)

    Vrielink, Hans; Reesink, Henk W.

    2004-01-01

    Human T-cell lymphotropic virus (HTLV) type I (HTLV-I) is the etiological agent of adult T-cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-II is a closely related virus, and this infection is not clearly associated with clinical disease, although

  7. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    Science.gov (United States)

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  8. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    Science.gov (United States)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  10. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  11. Transport of Zn (II by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II

    Directory of Open Access Journals (Sweden)

    Hanif Ur Rehman

    2017-01-01

    Full Text Available The facilitated passage of Zn (II across flat sheet supported liquid membrane saturated with TDDA (tri-n-dodecylamine in xylene membrane phase has been investigated. The effect of acid and metal ion concentration in the feed solution, the carrier concentration in membrane phase, stripping agent concentration in stripping phase, and coions on the extraction of Zn (II was investigated. The stoichiometry of the extracted species, that is, complex, was investigated on slope analysis method and it was found that the complex (LH2·Zn(Cl2 is responsible for transport of Zn (II. A mathematical model was developed for transport of Zn (II, and the predicted results strongly agree with experimental ones. The mechanism of transport was determined by coupled coion transport mechanism with H+ and Cl− coupled ions. The optimized SLM was effectively used for elimination of Zn (II from waste discharge liquor of galvanizing plant of Zn (II.

  12. cAMP-Dependent Protein Kinase A (PKA)-Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes.

    Science.gov (United States)

    Liu, Qingyuan; Nguyen, Eric; Døskeland, Stein; Ségal-Bendirdjian, Évelyne

    2015-09-01

    The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. The application of click chemistry in the synthesis of agents with anticancer activity

    Directory of Open Access Journals (Sweden)

    Ma N

    2015-03-01

    Full Text Available Nan Ma,1–3 Ying Wang,3 Bing-Xin Zhao,3 Wen-Cai Ye,1,3 Sheng Jiang2 1Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 2Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 3Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China Abstract: The copper(I-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. Keywords: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, antimicrotubule agents

  14. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-09-01

    Full Text Available Silver nanoparticles (AgNPs have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with

  15. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    Science.gov (United States)

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  16. ALCOHOL AND BONE GROWTH: A Literary Appraisal II

    African Journals Online (AJOL)

    user

    the agent ii, Maternal-embryonic exchange and iii,. The genotype ... drug is administered to the pregnant animal .... experimentally induced congenital skeletal defects in rat were achieved with a nutrient deficient treatment. This discovery was rather accidental, because .... the stem cells in the growth plates of long bones are.

  17. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework

    Directory of Open Access Journals (Sweden)

    Milad Yousefi

    2018-01-01

    Full Text Available The objective of this study was to develop an agent based modeling (ABM framework to simulate the behavior of patients who leave a public hospital emergency department (ED without being seen (LWBS. In doing so, the study complements computer modeling and cellular automata (CA techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.

  18. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework.

    Science.gov (United States)

    Yousefi, Milad; Yousefi, Moslem; Fogliatto, F S; Ferreira, R P M; Kim, J H

    2018-01-11

    The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.

  19. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  20. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  1. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  2. The utilization of stone ash on cellular lightweight concrete

    Science.gov (United States)

    Karolina, R.; Sianipar, Y. G. C.

    2018-02-01

    Lightweight concrete brick is a brick which made of cement, sand, water, and foam as the basic composition. This brick are divided into 2, based on the foam used such as AAC (Autoclave Aerated Concrete) that use aluminium paste and CLC(Cellular Lightweight Concrete) that use foaming agent from BASF as its foaming material. In this trial, the lightweight brick that are ging to be use are the CLC with foaming agent as its foaming material with the mixture of stone ash that are produced by the Stone Crusher with spesific gravity 2666 kg/m3 as their partly sand substitution . In this research, the stone ash variant that are used are 10%, 15%, and 20% from the amount of sand that planned before. After casting, the result of the 10% will receive a reduction of compressive strength while an increasing in absorption as 25.07% and 39.005% and the 15% variant will recieve a reduction of compressive strength as much as 65.8% and a reduction of absorption as much as 17.441% and the 20% variant will recieve a reduction of compressive strength as much as 67.4% while an increasing of absorption as much as 17.956%.

  3. Improving Agent Based Models and Validation through Data Fusion.

    Science.gov (United States)

    Laskowski, Marek; Demianyk, Bryan C P; Friesen, Marcia R; McLeod, Robert D; Mukhi, Shamir N

    2011-01-01

    This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level.

  4. Top-down cellular pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A Y; Rosenfeld, A

    1983-10-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.

  5. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  6. Karyopherin β3: A new cellular target for the HPV-16 E5 oncoprotein

    International Nuclear Information System (INIS)

    Krawczyk, Ewa; Hanover, John A.; Schlegel, Richard; Suprynowicz, Frank A.

    2008-01-01

    Epidemiological and experimental studies have shown that high-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer worldwide, and that HPV-16 is associated with more than half of these cases. In addition to the well-characterized E6 and E7 oncoproteins of HPV-16, recent evidence increasingly has implicated the HPV-16 E5 protein (16E5) as an important mediator of oncogenic transformation. Since 16E5 has no known intrinsic enzymatic activity, its effects on infected cells are most likely mediated by interactions with various cellular proteins and/or its documented association with lipid rafts. In the present study, we describe a new cellular target that binds to 16E5 in COS cells and in stable human ectocervical cell lines. This target is karyopherin β3, a member of the nuclear import receptor family with critical roles in the nuclear import of ribosomal proteins and in the secretory pathway

  7. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  8. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.

    Science.gov (United States)

    Svensson, J Peter; Quirós Pesudo, Laia; McRee, Siobhan K; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.

  9. Quercetin as an Emerging Anti-Melanoma Agent: A four-focus area therapeutic development strategy

    Directory of Open Access Journals (Sweden)

    Zoey Harris

    2016-10-01

    Full Text Available Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase -- a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes a feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated anti-proliferative and pro-apoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anti-cancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review we explore the potential of Quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a four-focus area strategy to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to i modulate cellular bioreduction potential and associated signaling cascades, ii affect transcription of relevant genes, iii regulate epigenetic processes, and iv develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  10. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs.

    Science.gov (United States)

    Di Corato, Riccardo; Gazeau, Florence; Le Visage, Catherine; Fayol, Delphine; Levitz, Pierre; Lux, François; Letourneur, Didier; Luciani, Nathalie; Tillement, Olivier; Wilhelm, Claire

    2013-09-24

    Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.

  11. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  12. Cellular and molecular mechanisms in malignant transformation of diploid rodent and human cells by radiation

    International Nuclear Information System (INIS)

    Borek, C.

    1985-01-01

    The development of cell culture systems has made it possible to probe into the effects of radiation at a cellular and molecular level, under defined conditions where homeostatic mechanisms do not prevail. Using in vitro systems free of host-medicated influences, one can assess qualitatively and quantitatively dose-related and time-dependent interactions of radiation with single cells and to evaluate the influences of agents that may enhance or inhibit the oncogenic potential of radiation. These systems are useful in pragmatic studies where dose response relationships and cancer risk estimates are assessed with particular focus on the low dose range of radiation where epidemiological and animal studies are limiting. The in vitro systems serve well also in mechanistic studies where cellular and molecular processes underlying transformation can be elucidated and where the role of modulating factors which determine the frequency and quality of these events can be investigated

  13. Cellular and molecular mechanisms of metformin: an overview

    Science.gov (United States)

    Viollet, Benoit; Guigas, Bruno; Sanz Garcia, Nieves; Leclerc, Jocelyne; Foretz, Marc; Andreelli, Fabrizio

    2012-01-01

    Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycemic agent now recommended as the first line oral therapy for type 2 diabetes (T2D). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory-chain complex 1. In addition, the resulting decrease in hepatic energy status activates the AMP-activated protein kinase (AMPK), a cellular metabolic sensor, providing a generally accepted mechanism for metformin action on hepatic gluconeogenic program. The demonstration that the respiratory-chain complex 1, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin was reported to restore ovarian function in polycystic ovary syndrome, reduce fatty liver and to lower microvascular and macrovascular complications associated with T2D. Its use was also recently suggested as an adjuvant treatment for cancer or gestational diabetes, and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent data from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D. PMID:22117616

  14. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.

    Science.gov (United States)

    Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M

    2013-04-01

    Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II.

    Science.gov (United States)

    Joshi, Ricky S; Nikolaou, Christoforos; Roca, Joaquim

    2018-01-03

    Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.

  16. Limited-sampling strategies for anti-infective agents: systematic review.

    Science.gov (United States)

    Sprague, Denise A; Ensom, Mary H H

    2009-09-01

    Area under the concentration-time curve (AUC) is a pharmacokinetic parameter that represents overall exposure to a drug. For selected anti-infective agents, pharmacokinetic-pharmacodynamic parameters, such as AUC/MIC (where MIC is the minimal inhibitory concentration), have been correlated with outcome in a few studies. A limited-sampling strategy may be used to estimate pharmacokinetic parameters such as AUC, without the frequent, costly, and inconvenient blood sampling that would be required to directly calculate the AUC. To discuss, by means of a systematic review, the strengths, limitations, and clinical implications of published studies involving a limited-sampling strategy for anti-infective agents and to propose improvements in methodology for future studies. The PubMed and EMBASE databases were searched using the terms "anti-infective agents", "limited sampling", "optimal sampling", "sparse sampling", "AUC monitoring", "abbreviated AUC", "abbreviated sampling", and "Bayesian". The reference lists of retrieved articles were searched manually. Included studies were classified according to modified criteria from the US Preventive Services Task Force. Twenty studies met the inclusion criteria. Six of the studies (involving didanosine, zidovudine, nevirapine, ciprofloxacin, efavirenz, and nelfinavir) were classified as providing level I evidence, 4 studies (involving vancomycin, didanosine, lamivudine, and lopinavir-ritonavir) provided level II-1 evidence, 2 studies (involving saquinavir and ceftazidime) provided level II-2 evidence, and 8 studies (involving ciprofloxacin, nelfinavir, vancomycin, ceftazidime, ganciclovir, pyrazinamide, meropenem, and alpha interferon) provided level III evidence. All of the studies providing level I evidence used prospectively collected data and proper validation procedures with separate, randomly selected index and validation groups. However, most of the included studies did not provide an adequate description of the methods or

  17. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    Science.gov (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  18. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  19. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    Science.gov (United States)

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  20. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly (amidoamine) denderimers in aqueous solutions

    International Nuclear Information System (INIS)

    Diallo, Mamadou S.; Christie, Simone; Swaminathan, Pirabalini; Balogh, Lajos; Shi, XIANGYANG; Um, Wooyong; Papelis, Charalambos; Goddard, William A.; Johnson, J. H.

    2004-01-01

    The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dentrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 PAMAM dendrimers at pH 7.0

  1. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  2. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2013-05-01

    Full Text Available In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71 replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC50 value of 54.57 nM in the MEK1 binding assay.

  3. Lossed in translation: an off-the-shelf method to recover probabilistic beliefs from loss-averse agents.

    Science.gov (United States)

    Offerman, Theo; Palley, Asa B

    2016-01-01

    Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of [Formula: see text], and (ii) for moderate beliefs agents simply report [Formula: see text]. Applying a prospect theory model of risk preferences, we show that loss aversion can explain both of these behavioral phenomena. Using the insights of this model, we develop a simple off-the-shelf probability assessment mechanism that encourages loss-averse agents to report true beliefs. In an experiment, we demonstrate the effectiveness of this modification in both eliminating uninformative reports and eliciting true probabilistic beliefs.

  4. COPPER(II) COMPLEXES OF o -VANILLIN ACETYLHYDRAZONE ...

    African Journals Online (AJOL)

    A hydrazonic ligand, o-vanillin acetylhydrazone (H2L) has been prepared and used as chelating agent towards copper(II) ion. The ligand acts like a tridentate ligand in the monodeprotonated (HL-) and dideprotonated (L2-) states. Monoanionic complexes [{Cu(HL)(H2O)}2]•2BF4 and [{Cu(HL)(Hpz)(H2O)}]•NO3 have been ...

  5. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    Science.gov (United States)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  6. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kitanovic, Ana; Woelfl, Stefan

    2006-01-01

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism

  7. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Woelfl, Stefan [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany)]. E-mail: wolfl@uni-hd.de

    2006-02-22

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.0.

  8. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  9. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS, N-Methyl-N-nitrosourea (MNU, N,N'-bis(2-chloroethyl-N-nitroso-urea (BCNU, N-ethylnitrosourea (ENU, two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN, benzene-1,4-diol (hydroquinone, HYQ, and two non-genotoxic (methyl carbamate (MC and dimethyl sulfoxide (DMSO compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.

  10. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  11. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    Science.gov (United States)

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C

    2011-04-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents who interact with each other and actively participate in an economically well-defined marketplace. Parameters of the model are optimized using the Levenberg-Marquardt method. The quantitative prediction capabilities of the proposed model are examined through data reproducibility using past data from the U.S. and Korean wireless service markets. Finally, we investigate a disruptive market event, namely the introduction of the iPhone into the U.S. in 2007 and the resulting changes in the modeling parameters. We predict and analyze the impacts of the introduction of the iPhone into the Korean wireless service market assuming a release date of 2Q09 based on earlier data. © 2011 IEEE.

  13. TOPOISOMERASE-I AND TOPOISOMERASE-II ACTIVITY IN HUMAN BREAST, CERVIX, LUNG AND COLON-CANCER

    NARCIS (Netherlands)

    MCLEOD, HL; DOUGLAS, F; OATES, M; SYMONDS, RP; PRAKASH, D; VANDERZEE, AGJ; KAYE, SB; BROWN, R; KEITH, WN

    1994-01-01

    The identification of human DNA topoisomerases as cellular targets for active anti-cancer drugs has stimulated further interest in topoisomerase function in tumour biology. Topoisomerase I and II catalytic activity is detectable in many normal and malignant tissues. However, little is known about

  14. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  15. Angiotensin II Type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration-induced leukocyte entry to the central nervous system

    DEFF Research Database (Denmark)

    Füchtbauer, L; Groth-Rasmussen, Maria; Holm, Thomas Hellesøe

    2011-01-01

    Astrocytes are the major cellular component of the blood-brain barrier glia limitans and act as regulators of leukocyte infiltration via chemokine expression. We have studied angiotensin-II receptor Type 1 (AT1) and related NF-κB signaling in astrocytes. Angiotensin II derives from cleavage of an...

  16. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  17. Systematic Characterisation of Cellular Localisation and Expression Profiles of Proteins Containing MHC Ligands

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Larsen, Mette Voldby; Weinhold, Nils

    2009-01-01

    Background: Presentation of peptides on Major Histocompatibility Complex (MHC) molecules is the cornerstone in immune system activation and increased knowledge of the characteristics of MHC ligands and their source proteins is highly desirable. Methodology/Principal Finding: In the present large......-scale study, we used a large data set of proteins containing experimentally identified MHC class I or II ligands and examined the proteins according to their expression profiles at the mRNA level and their Gene Ontology (GO) classification within the cellular component ontology. Proteins encoded by highly...

  18. Interactions of radiation with novel chemotherapeutic agents: Taxanes and nucleoside analogs

    International Nuclear Information System (INIS)

    Milas, Luka

    1997-01-01

    The combination of chemotherapeutic agents and radiotherapy is an appealing approach to improving the results of cancer treatment. By their independent action or interactive action chemotherapeutic drugs reduce cell burden in tumors undergoing radiotherapy, thereby increasing the chances of tumor control. In addition, the drugs may spatially cooperate with radiotherapy through their systemic action on metastatic disease. Recently, a number of new chemotherapeutic agents have been introduced for cancer treatment, which in addition have high potential to increase therapeutic ratio of radiotherapy. These agents include taxanes (paclitaxel and docetaxel) and the nucleoside analogs fludarabine and gemcitabine. Paclitaxel is a natural product isolated from the bark of Taxus brevifolia and taxotere is a semisynthetic analogue of paclitaxel prepared from needle extracts of Taxus baccata. By binding to cellular tubulin structures, taxanes interfere with tubulin polymerization and promote microtubule assembly, resulting in accumulation of cells in the radiosensitive G2 and M phases of the cell cycle. In vivo studies have demonstrated two major mechanisms of tumor radioenhancement by taxanes: mitotic arrest and tumor reoxygenation. Fludarabine and gemcitabine inhibit DNA synthesis and the repair of radiation-induced chromosome breaks. The mechanism of their radioenhancing activity include inhibition of repair of radiation induced damage, apoptosis induction and cell cycle synchronization. Because both classes of these agents affect radioresponse of normal dose-limiting tissues much less than that of tumors, they can greatly increase therapeutic ratio of radiotherapy. The objective of this course is to overview the rationale for using these drugs as radioenhancing agents, the experimental findings in preclinical studies, the mechanisms of their interaction, and the clinical application of these agents

  19. Macrophage-to-sensory neuron crosstalk mediated by Angiotensin II type-2 receptor elicits neuropathic pain

    OpenAIRE

    Krause, Eric; Shepherd, Andrew; Mickle, Aaron; Copits, Bryan; Karlsson, Pall; Kadunganattil, Suraj; Golden, Judith; Tadinada, Satya; Mack, Madison; Haroutounian, Simon; De Kloet, Annette; Samineni, Vijay; Valtcheva, Manouela; Mcilvried, Lisa; Sheahan, Tayler

    2017-01-01

    Peripheral nerve damage initiates a complex series of cellular and structural processes that culminate in chronic neuropathic pain. Our study defines local angiotensin signaling via activation of the Angiotensin II (Ang II) type-2 receptor (AT2R) on macrophages as the critical trigger of neuropathic pain. An AT2R-selective antagonist attenuates neuropathic, but not inflammatory pain hypersensitivity in mice, and requires the cell damage-sensing ion channel transient receptor potential family-...

  20. UPF1 silenced cellular model systems for screening of read-through agents active on β039 thalassemia point mutation.

    Science.gov (United States)

    Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica

    2018-05-15

    Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.

  1. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.

    Directory of Open Access Journals (Sweden)

    Lisa Muniz

    Full Text Available The human immunodeficiency virus 1 (HIV-1 transcriptional transactivator (Tat is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II. Tat recruits the host positive transcription elongation factor b (P-TEFb to the HIV-1 promoter through binding to the transactivator RNA (TAR at the 5'-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5'-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.

  2. Non-Surgical Breast-Conserving Treatment (KORTUC-BCT Using a New Radiosensitization Method (KORTUC II for Patients with Stage I or II Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ogawa

    2015-11-01

    Full Text Available The purpose of the present study was to establish a non-surgical breast-conserving treatment (BCT using KORTUC II radiosensitization treatment. A new radiosensitizing agent containing 0.5% hydrogen peroxide and 0.83% sodium hyaluronate (a CD44 ligand has been developed for intra-tumoral injection into various tumors. This new method, named KORTUC II, was approved by our local ethics committee for the treatment of breast cancer and metastatic lymph nodes. A total of 72 early-stage breast cancer patients (stage 0, 1 patient; stage I, 23; stage II, 48 were enrolled in the KORTUC II trial after providing fully informed consent. The mean age of the patients was 59.7 years. A maximum of 6 mL (usually 3 mL for tumors of less than approximately 3 cm in diameter of the agent was injected into breast tumor tissue twice a week under ultrasonographic guidance. For radiotherapy, hypofraction radiotherapy was administered using a tangential fields approach including an ipsilateral axillary region and field-in-field method; the energy level was 4 MV, and the total radiation dose was 44 Gy administered as 2.75 Gy/fraction. An electron boost of 3 Gy was added three times. Treatment was well tolerated with minimal adverse effects in all 72 patients. No patients showed any significant complications other than mild dermatitis. A total of 24 patients under 75 years old with stage II breast cancer underwent induction chemotherapy (EC and/or taxane prior to KORTUC II treatment, and 58 patients with estrogen receptor-positive tumors also received hormonal therapy following KORTUC II. The mean duration of follow-up as of the end of September 2014 was 51.1 months, at which time 68 patients were alive without any distant metastases. Only one patient had local recurrence and died of cardiac failure at 6.5 years. Another one patient had bone metastases. For two of the 72 patients, follow-up ended after several months following KORTUC II treatment. In conclusion, non

  3. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    Science.gov (United States)

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  5. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  6. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties

    DEFF Research Database (Denmark)

    Mahalingam, Yashithra; Gallagher, John T; Couchman, John R

    2006-01-01

    of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were...

  7. Magnetohydrodynamics cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu.

    1990-02-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  8. Magnetohydrodynamic cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)

    1990-03-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).

  9. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  10. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  11. Self-organization of yeast cells on modified polymer surfaces after dewetting: new perspectives in cellular patterning

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy); Satriano, S [Department of Chemical Sciences, University of Catania, Catania (Italy); Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2006-08-23

    In recent years, biological micro-electro-mechanical systems (commonly referred to as BioMEMS) have found widespread use, becoming increasingly prevalent in diagnostics and therapeutics. Cell-based sensors are nowadays gaining increasing attention, due to cellular built-in natural selectivity and physiologically relevant response to biologically active chemicals. On the other hand, surrogate microbial systems, including yeast models, have become a useful alternative to animal and mammalian cell systems for high-throughput screening for the identification of new pharmacological agents. A main obstacle in biosensor device fabrication is the need for localized geometric confinement of cells, without losing cell viability and sensing capability. Here we illustrate a new approach for cellular patterning using dewetting processes to control cell adhesion and spatial confinement on modified surfaces. By the control of simple system parameters, a rich variety of morphologies, ranging through hexagonal arrays, polygonal networks, bicontinuous structures, and elongated fingers, can be obtained.

  12. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    Science.gov (United States)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  13. Cellular Angiofibroma of the Nasopharynx.

    Science.gov (United States)

    Erdur, Zülküf Burak; Yener, Haydar Murat; Yilmaz, Mehmet; Karaaltin, Ayşegül Batioğlu; Inan, Hakki Caner; Alaskarov, Elvin; Gozen, Emine Deniz

    2017-11-01

    Angiofibroma is a common tumor of the nasopharynx region but cellular type is extremely rare in head and neck. A 13-year-old boy presented with frequent epistaxis and nasal obstruction persisting for 6 months. According to the clinical symptoms and imaging studies juvenile angiofibroma was suspected. Following angiographic embolization total excision of the lesion by midfacial degloving approach was performed. Histological examination revealed that the tumor consisted of staghorn blood vessels and irregular fibrous stroma. Stellate fibroblasts with small pyknotic to large vesicular nuclei were seen in a highly cellular stroma. These findings identified cellular angiofibroma mimicking juvenile angiofibroma. This article is about a very rare patient of cellular angiofibroma of nasopharynx.

  14. Agentes imunossupressores, talidomida e ácido valpróico nas síndromes mielodisplásicas Immunosuppressive agents, thalidomide and valproate acid in myelodysplastic syndromes

    Directory of Open Access Journals (Sweden)

    Elvira R. P. Velloso

    2006-09-01

    Full Text Available Agentes imunossupressores, como a globulina antitimocítica (GAL ou antilinfocítica (GAL e a ciclosporina A têm mostrado eficácia nas SMD, particularmente nos subtipos Anemias refratária (AR e nas SMD com fenótipo HLA-DR15, independente do grau de celularidade medular. Outras drogas disponíveis em nosso meio, de baixo custo, como a talidomida podem ser utilizada em pacientes refratários, e o ácido valpróico está sendo utilizado em ensaios clínicos. A quantificação da resposta a drogas deve utilizar os critérios de resposta do International Working Group (IWG. É proposto um fluxograma para uso de fatores de crescimento, agentes imunossupressores e talidomida em pacientes com SMD, de baixo risco, não candidatos a transplante de medula óssea (TMO.Patients with refractory anemia subtypes and HLA-DR15 with any degree of marrow cellularity have good responses to immunosuppressive agents, such as antithymocyte globulin, antilymphocyte globulin and cyclosporine A. Other cheaper drugs available in Brazil, including thalidomide may be useful in refractory patients. Valproate acid has started to be used in clinical trials. Response to treatment should be reported using the criteria proposed by the International Working Group. The use of growth factors, immunosuppressive agents and thalidomide in low risk patients with myelodysplastic syndromes who are not candidates for hematopoietic stem cell transplantation is suggested at the end of this publication.

  15. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  16. Influence of different bonding agents on marginal sealing quality of amalgam restorations

    Directory of Open Access Journals (Sweden)

    Melih Irena

    2011-01-01

    Full Text Available Introduction. Although advanced adhesive systems are in use, marginal microleakage is one of the greatest problems of contemporary restorative dentistry. Objective. The aim of this in vitro study was to evaluate the influence of different bonding agents on the marginal sealing quality of class II amalgam restorations. Methods. Forty freshly extracted human premolar and molar teeth were divided into four groups with 10 teeth in each one. Class II preparations were prepared and different adhesives were applied as follows: group I - Amalgam Liner® (Voco; group II - ONE-STEP® PLUS (Bisco; group III - PQ 1 (Ultradent. Group IV was used as a control, without any bonding agent. Amalgam (Cavex Non Gamma 2, Cavex was hand-condensed into each preparation. Specimens were thermocycled 200 times at the following temperatures: 5-7°C, 37°C and 57-59°C, and were then immersed into 1% solution of gentian violet for 72 hours. The teeth were sectioned longitudinally and microleakage was graded in the area of the gingival and occlusal quantity rim using a binocular magnifying glass with 25 times magnification. Results. The highest microleakage was recorded in the Amalgam Liner group; 1526.0 μm at the gingival wall and 694.5 μm at the occlusal cavity wall. The lowest dye penetration was observed in the PQ1 group; 589.5 μm at the gingival wall, and 599.9 μm at the occlusal wall of the restoration. ANOVA test showed that there was a statistically significant difference of dye penetration values at the gingival wall among all examination groups (p<0.01. No statistically significant differences were found comparing microleakage values at the occlusal wall. Conclusion. Results of this study showed that the best marginal sealing was accomplished by using the PQ1 bonding agent.

  17. Aleksius II KGB-tööd tõestab ametlik kogumik / Jaanus Piirsalu

    Index Scriptorium Estoniae

    Piirsalu, Jaanus, 1973-

    2005-01-01

    Ajaloolase Indrek Jürjo koostatud kogumikus "Aruanded Riikliku Julgeoleku Komitee 2. ja 4. osakonna tööst 1958. aastal" selgub, et Aleksius II tegi KGB-le kaastööd. 2003. aastal anti Aleksius II-le Maarjamaa Risti I klassi teenetemärk, siis väitis tollane välisminister Kristiina Ojuland, et Eesti riigi käsutuses ei ole tõendeid, mis kinnitaksid Aleksius II sidemeid KGB-ga. Vt. samas: Agent Drozdov täitis KGB ülesandeid meelsasti. Lisa: Karjäär

  18. The Removal of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent

    Science.gov (United States)

    Sithole, N. T.; Ntuli, F.; Mashifana, T.

    2018-03-01

    The removal and recovery of metals from wastewater has been a subject of significant importance due the negative impact these toxic metals have on human health and the environment as a result of water and soil pollution. Increased use of the metals and chemicals in the process industries has resulted in generation of large quantity of effluents that contains high level of toxic metals and other pollutants. The objective of this work was to recover of Cu in its elemental form as metallic powder from aqueous solution using NaBH4 as a reducing agent. Reductive precipitation was achieved in a batch reactor at 65°C using Cu powder as a seeding material. This study also investigated the effect of concentration of sodium borohydride (NaBH4) as a reducing agent. The amount of NaBH4 was varied based on mole ratios which are 1:1, 1:0.25 and 1:0.1 to recover Cu from synthetic wastewater. The results obtained showed that sodium borohydride is an effective reducing agent to recover Cu from wastewater. The optimum concentration of NaBH4 that gives the best results the 1:1 molar ratio with over 99% Cu removal.

  19. 47 CFR 22.923 - Cellular system configuration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular system configuration. 22.923 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations... directly or through cellular repeaters. Auxiliary test stations may communicate with base or mobile...

  20. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  1. Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents.

    Science.gov (United States)

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Poillot, Cathy; Giardiello, Marco; Tisseyre, Céline; Barbier, Emmanuel L; Fries, Pascal Henry; de Waard, Michel; Reiss, Peter; Mazzanti, Marinella

    2011-10-25

    Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct covalent attachment of up to 80 Gd(III) chelates on fluorescent nontoxic InP/ZnS QDs. It shows a high relaxivity of 900 mM(-1) s(-1) (13 mM(-1 )s(-1) per Gd ion) at 35 MHz (0.81 T) and 298 K, while the bright luminescence of the QDs is preserved. Eu(III) and Tb(III) chelates were also successfully grafted to the InP/ZnS QDs. The absence of energy transfer between the QD and lanthanide emitting centers results in a multicolor system. Using this convenient direct grafting strategy additional targeting ligands can be included on the QD. Here a cell-penetrating peptide has been co-grafted in a one-pot reaction to afford a cell-permeable multimodal multimeric MRI contrast agent that reports cellular localization by fluorescence and provides high relaxivity and increased tissue retention with respect to commercial contrast agents.

  2. The Ubiquitin-Conjugating Enzyme E2-EPF Is Overexpressed in Primary Breast Cancer and Modulates Sensitivity to Topoisomerase II Inhibition

    Directory of Open Access Journals (Sweden)

    Donato Tedesco

    2007-07-01

    Full Text Available We identified the ubiquitin-conjugating enzyme E2EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER negativity in breast cancer specimens and that its expression is cell cycleregulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER- MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G2/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G2 checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo II inhibitors etoposide and doxorubicin and also increased topo IIα protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness.

  3. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition.

    Science.gov (United States)

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-07-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER(-) MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G(2)/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G(2) checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIalpha protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness.

  4. Exogenous L-Arginine Attenuates the Effects of Angiotensin II on Renal Hemodynamics and the Pressure Natriuresis-Diuresis Relationship

    Science.gov (United States)

    Das, Satarupa; Mattson, David L.

    2014-01-01

    SUMMARY Administration of exogenous L-Arginine (L-Arg) attenuates Angiotensin II (AngII)-mediated hypertension and kidney disease in rats. The present study assessed renal hemodynamics and pressure-diuresis-natriuresis in anesthetized rats infused with vehicle, AngII (20 ng/kg/min, iv) or AngII + L-Arg (300 µg/kg/min, iv). Increasing renal perfusion pressure (RPP) from approximately 100 to 140 mmHg resulted in a 9–10 fold increase in urine flow and sodium excretion rate in control animals. In comparison, AngII infusion significantly reduced renal blood flow (RBF) and glomerular filtration rate (GFR) by 40–42% and blunted the pressure-dependent increase in urine flow and sodium excretion rate by 54–58% at elevated RPP. Supplementation of L-Arg reversed the vasoconstrictor effects of AngII and restored pressure-dependent diuresis to levels not significantly different from control rats. Experiments in isolated aortic rings were performed to assess L-Arg effects on the vasculature. Dose-dependent contraction to AngII (10−10M to 10−7M) was observed with a maximal force equal to 27±3% of the response to 10−5M phenylephrine. Contraction to 10−7M AngII was blunted by 75±3% with 10−4M L-Arg. The influence of L-Arg to blunt AngII mediated contraction was eliminated by endothelial denudation or incubation with nitric oxide synthase inhibitors. Moreover, the addition of 10−3M cationic or neutral amino acids, which compete with L-Arg for cellular uptake, blocked the effect of L-Arg. Anionic amino acids did not influence the effects of L-Arg on AngII-mediated contraction. These studies indicate that L-Arg blunts AngII-mediated vascular contraction by an endothelial- and NOS-dependent mechanism involving cellular uptake of L-Arg. PMID:24472006

  5. Systemic use of tumor necrosis factor alpha as an anticancer agent

    Science.gov (United States)

    Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias

    2011-01-01

    Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896

  6. Recursive definition of global cellular-automata mappings

    International Nuclear Information System (INIS)

    Feldberg, R.; Knudsen, C.; Rasmussen, S.

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points of cellular automata on an infinite lattice

  7. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  8. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    OpenAIRE

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the inc...

  9. Agent Programming Languages and Logics in Agent-Based Simulation

    DEFF Research Database (Denmark)

    Larsen, John

    2018-01-01

    and social behavior, and work on verification. Agent-based simulation is an approach for simulation that also uses the notion of agents. Although agent programming languages and logics are much less used in agent-based simulation, there are successful examples with agents designed according to the BDI...

  10. Cellular senescence and organismal aging.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  11. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  12. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  13. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  14. Zeno's paradox in quantum cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Groessing, G [Atominst. der Oesterreichischen Universitaeten, Vienna (Austria); Zeilinger, A [Inst. fuer Experimentalphysik, Univ. Innsbruck (Austria)

    1991-07-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.).

  15. Zeno's paradox in quantum cellular automata

    International Nuclear Information System (INIS)

    Groessing, G.; Zeilinger, A.

    1991-01-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.)

  16. The evaluation of tetrabutylamonium bis(4-ethylphenylsulphonyldithiocarbimate)zincate(II) (ZNIBU) efficiency as a reclaiming agent for styrene-butadiene rubber (SBR); Avalicao da eficiencia do bis(4-metilfenilsulfonilditiocarbimato)zincato(II) de tetrabutilamonio (ZNIBU) como agente de regeneracao para borracha de butadieno-estireno (SBR)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Pedro H.H.; Visconte, Leila L.Y.; Pacheco, Elen B.A.V., E-mail: pedro_hhm@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Tavares, Eder C. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil)

    2015-07-01

    In recent years, the production of rubber waste has been reported as a serious environmental problem. The chemical structure of rubbers (crosslinked, insoluble and infusible polymers) makes its reprocessing very difficult, unlike thermoplastics. The most common methods to treat rubber waste are of thermal, mechanical and chemical nature, wherein the chemical methods the purpose is to regenerate the rubber. Early studies with tetrabutylamonium bis(4-methylphenylsulphonyldithiocarbimate)zincate(II) (ZNIBU) point to its ability as an accelerator in the rubber curing process. In this work, this zinc complex was evaluated as a chemical regeneration agent. ZNIBU was synthesized and characterized by Nuclear Magnetic Resonance ({sup 13}C NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The mixture of virgin SBR with vulcanization ingredients was performed in a two-roll mill, and the composition was then vulcanized and molded on a hydraulic press. The synthesized ZNIBU was then mixed with the vulcanized rubber and devulcanization was observed. Finally, the devulcanized elastomeric composition was revulcanized. The revulcanization of SBR regenerated with ZNIBU led to the formation of a rubber with maximum torque near the maximum torque of the virgin vulcanized rubber. After adjusting the optimal conditions of regeneration, mechanical tests will be carried out (tensile strength, tear strength and hardness) for the specimens of both vulcanized and revulcanized rubbers in order to compare their mechanical properties. (author)

  17. Transarterial Embolization of Type II Endoleaks after EVAR: The Role of Ethylene Vinyl Alcohol Copolymer (Onyx)

    International Nuclear Information System (INIS)

    Müller-Wille, René; Wohlgemuth, Walter A.; Heiss, Peter; Wiggermann, Philipp; Güntner, Oliver; Schreyer, Andreas G.; Hoffstetter, Patrick; Stroszczynski, Christian; Zorger, Niels

    2013-01-01

    Purpose: To determine the feasibility and efficacy of transarterial endoleak embolization using the liquid embolic agent ethylene vinyl alcohol copolymer (Onyx). Methods: Over a 7-year period eleven patients (6 women, 5 men; mean age 68 years, range 37–83 years) underwent transarterial embolization of a type II endoleak after endovascular aortic aneurysm repair using the liquid embolic agent Onyx. Two patients (18 %) had a simple type II endoleak with only one artery in communication with the aneurysm sac, whereas 9 patients (82 %) had a complex type II endoleak with multiple communicating vessels. We retrospectively analyzed the technical and clinical success of transarterial type II endoleak embolization with Onyx. Complete embolization of the nidus was defined as technical success. Embolization was considered clinically successful when volume of the aneurysm sac was stable or decreased on follow-up CT scans. Result: Mean follow-up time was 26.0 (range 6–50) months. Clinical success was achieved in 8 of 11 patients (73 %). Transarterial nidus embolization with Onyx was technically successful in 6 of 11 patients (55 %). In three cases the nidus was embolized without direct catheterization from a more distal access through the network of collateral vessels. Conclusion: Onyx is a favorable embolic agent for transarterial endoleak embolization. To achieve the best clinical results, complete occlusion of the nidus is mandatory

  18. Transarterial Embolization of Type II Endoleaks after EVAR: The Role of Ethylene Vinyl Alcohol Copolymer (Onyx)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Wille, Rene, E-mail: rene.mueller-wille@ukr.de; Wohlgemuth, Walter A., E-mail: walter.wohlgemuth@ukr.de; Heiss, Peter, E-mail: peter.heiss@ukr.de; Wiggermann, Philipp, E-mail: philipp.wiggermann@ukr.de; Guentner, Oliver, E-mail: oliverguentner@yahoo.de; Schreyer, Andreas G., E-mail: andreas.schreyer@ukr.de; Hoffstetter, Patrick, E-mail: p.hoffstetter@asklepios.com; Stroszczynski, Christian, E-mail: christian.stros@ukr.de [University Medical Center Regensburg, Department of Radiology (Germany); Zorger, Niels, E-mail: niels.zorger@barmherzige-regensburg.de [Krankenhaus Barmherzige Brueder Regensburg, Department of Radiology (Germany)

    2013-10-15

    Purpose: To determine the feasibility and efficacy of transarterial endoleak embolization using the liquid embolic agent ethylene vinyl alcohol copolymer (Onyx). Methods: Over a 7-year period eleven patients (6 women, 5 men; mean age 68 years, range 37-83 years) underwent transarterial embolization of a type II endoleak after endovascular aortic aneurysm repair using the liquid embolic agent Onyx. Two patients (18 %) had a simple type II endoleak with only one artery in communication with the aneurysm sac, whereas 9 patients (82 %) had a complex type II endoleak with multiple communicating vessels. We retrospectively analyzed the technical and clinical success of transarterial type II endoleak embolization with Onyx. Complete embolization of the nidus was defined as technical success. Embolization was considered clinically successful when volume of the aneurysm sac was stable or decreased on follow-up CT scans. Result: Mean follow-up time was 26.0 (range 6-50) months. Clinical success was achieved in 8 of 11 patients (73 %). Transarterial nidus embolization with Onyx was technically successful in 6 of 11 patients (55 %). In three cases the nidus was embolized without direct catheterization from a more distal access through the network of collateral vessels. Conclusion: Onyx is a favorable embolic agent for transarterial endoleak embolization. To achieve the best clinical results, complete occlusion of the nidus is mandatory.

  19. Agent-based reactive power management of power distribution networks with distributed energy generation

    International Nuclear Information System (INIS)

    Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.

    2016-01-01

    Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

  20. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  1. Resveratrol: A novel type of topoisomerase II inhibitor.

    Science.gov (United States)

    Lee, Joyce H; Wendorff, Timothy J; Berger, James M

    2017-12-22

    Resveratrol, a polyphenol found in various plant sources, has gained attention as a possible agent responsible for the purported health benefits of certain foods, such as red wine. Despite annual multi-million dollar market sales as a nutriceutical, there is little consensus about the physiological roles of resveratrol. One suggested molecular target of resveratrol is eukaryotic topoisomerase II (topo II), an enzyme essential for chromosome segregation and DNA supercoiling homeostasis. Interestingly, resveratrol is chemically similar to ICRF-187, a clinically approved chemotherapeutic that stabilizes an ATP-dependent dimerization interface in topo II to block enzyme activity. Based on this similarity, we hypothesized that resveratrol may antagonize topo II by a similar mechanism. Using a variety of biochemical assays, we find that resveratrol indeed acts through the ICRF-187 binding locus, but that it inhibits topo II by preventing ATPase domain dimerization rather than stabilizing it. This work presents the first comprehensive analysis of the biochemical effects of both ICRF-187 and resveratrol on the human isoforms of topo II, and reveals a new mode for the allosteric regulation of topo II through modulation of ATPase status. Natural polyphenols related to resveratrol that have been shown to impact topo II function may operate in a similar manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Validation of self-reported cellular phone use

    DEFF Research Database (Denmark)

    Samkange-Zeeb, Florence; Berg, Gabriele; Blettner, Maria

    2004-01-01

    BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now there is ......BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now...... there is very little information published on this subject. METHODS: We conducted a study to validate the questionnaire used in an ongoing international case-control study on cellular phone use, the "Interphone study". Self-reported cellular phone use from 68 of 104 participants who took part in our study...... was compared with information derived from the network providers over a period of 3 months (taken as the gold standard). RESULTS: Using Spearman's rank correlation, the correlation between self-reported phone use and information from the network providers for cellular phone use in terms of the number of calls...

  3. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Samira Sadat, E-mail: s.abolmaali@gmail.com [Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Mohammadi, Samaneh, E-mail: samaneh.mohammadi1986@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Amoozgar, Zohreh, E-mail: zohreh_amoozgar@dfci.harvard.edu [Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States); Dinarvand, Rasoul, E-mail: dinarvand@tums.ac.ir [Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174 (Iran, Islamic Republic of)

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn{sup 2+}-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-L-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by {sup 1}H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77–83 nm and a relatively high drug loading (54 ± 4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. - Highlights: • Nanogel synthesis through chemical crosslinking of the transition metal ion coordinated polymer self-assembly • An enhanced cytocompatibility if compared to unmodified polymer • A noticeable endocytic cellular internalization and endosomolytic activity • A specific antitumor cytotoxicity, cell cycle arrest and apoptosis in resistant tumor cells.

  4. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases.

    Science.gov (United States)

    Ganji, Nirmala; Chityala, Vijay Kumar; Marri, Pradeep Kumar; Aveli, Rambabu; Narendrula, Vamsikrishna; Daravath, Sreenu; Shivaraj

    2017-10-01

    Two new series of binary metal complexes [M(L 1 ) 2 ] and [M(L 2 ) 2 ] where, M=Cu(II), Ni(II) & Co(II) and L 1 =4-((3,4-dimethylisoxazol-5-ylimino)methyl)benzene-1,3-diol; L 2 =2-((3,4-dimethylisoxazol-5-ylimino)methyl)-5-methoxyphenol were synthesized and characterized by elemental analysis, 1 H NMR, 13 C NMR, FT-IR, ESI mass, UV-Visible, magnetic moment, ESR, SEM and powder XRD studies. Based on these results, a square planar geometry is assigned for all the metal complexes where the Schiff base acts as uninegatively charged bidentate chelating agent via the hydroxyl oxygen and azomethine nitrogen atoms. DNA binding studies of all the complexes with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, fluorescence quenching and viscosity studies. The oxidative and photo cleavage affinity of metal complexes towards supercoiled pBR322 DNA has been ascertained by agarose gel electrophoresis assay. From the results, it is observed that all the metal complexes bind effectively to CT-DNA via an intercalative mode of binding and also cleave pBR322 DNA in a promising manner. Further the Cu(II) complexes have shown better binding and cleavage properties towards DNA. The antimicrobial activities of the Schiff bases and their metal complexes were studied on bacterial and fungal strains and the results denoted that the complexes are more potent than their Schiff base ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    Science.gov (United States)

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  6. Agents unleashed a public domain look at agent technology

    CERN Document Server

    Wayner, Peter

    1995-01-01

    Agents Unleashed: A Public Domain Look at Agent Technology covers details of building a secure agent realm. The book discusses the technology for creating seamlessly integrated networks that allow programs to move from machine to machine without leaving a trail of havoc; as well as the technical details of how an agent will move through the network, prove its identity, and execute its code without endangering the host. The text also describes the organization of the host's work processing an agent; error messages, bad agent expulsion, and errors in XLISP-agents; and the simulators of errors, f

  7. 47 CFR 90.672 - Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... Procedures and Process-Unacceptable Interference § 90.672 Unacceptable interference to non-cellular 800 MHz...

  8. Complexation of buffer constituents with neutral complexation agents: part II. Practical impact in capillary zone electrophoresis.

    Science.gov (United States)

    Beneš, Martin; Riesová, Martina; Svobodová, Jana; Tesařová, Eva; Dubský, Pavel; Gaš, Bohuslav

    2013-09-17

    This article elucidates the practical impact of the complexation of buffer constituents with complexation agents on electrophoretic results, namely, complexation constant determination, system peak development, and proper separation of analytes. Several common buffers, which were selected based on the pH study in Part I of this paper series (Riesová, M.; Svobodová, J.; Tošner, Z.; Beneš, M.; Tesařová, E.; Gaš, B. Anal. Chem., 2013, DOI: 10.1021/ac4013804); e.g., CHES, MES, MOPS, Tricine were used to demonstrate behavior of such complex separation systems. We show that the value of a complexation constant determined in the interacting buffers environment depends not only on the analyte and complexation agent but it is also substantially affected by the type and concentration of buffer constituents. As a result, the complexation parameters determined in the interacting buffers cannot be regarded as thermodynamic ones and may provide misleading information about the strength of complexation of the compound of interest. We also demonstrate that the development of system peaks in interacting buffer systems significantly differs from the behavior known for noncomplexing systems, as the mobility of system peaks depends on the concentration and type of neutral complexation agent. Finally, we show that the use of interacting buffers can totally ruin the results of electrophoretic separation because the buffer properties change as the consequence of the buffer constituents' complexation. As a general conclusion, the interaction of buffer constituents with the complexation agent should always be considered in any method development procedures.

  9. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  10. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  11. Origami interleaved tube cellular materials

    Science.gov (United States)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  12. ROLE OF DPP-IV INHIBITORS IN TREATMENT OF TYPE II DIABETES

    OpenAIRE

    Patel Kishan D; Patel Grishma M.

    2010-01-01

    Emerging as an epidemic of the 21st century type II diabetes has become a major health problem throughout the globe. Known treatments of type II diabetes mellitus have limitations such as weight gain and hypoglycaemias. A new perspective is the use of incretin hormones and incretin enhancers. Incretin mimetics are a new class of pharmacological agents with multiple antihyperglycemic actions that mimic the actions of incretin hormones such as glucagon-like peptide (GLP)-1. DPP-4, a protease th...

  13. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  14. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  15. Mobile Agent Data Integrity Using Multi-Agent Architecture

    National Research Council Canada - National Science Library

    McDonald, Jeffrey

    2004-01-01

    .... Security issues for mobile agents continue to produce research interest, particularly in developing mechanisms that guarantee protection of agent data and agent computations in the presence of malicious hosts...

  16. The Ubiquitin-Conjugating Enzyme E2-EPF Is Overexpressed in Primary Breast Cancer and Modulates Sensitivity to Topoisomerase II Inhibition1

    Science.gov (United States)

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-01-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER- MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G2/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G2 checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIα protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness. PMID:17710163

  17. Tumour risk associated with use of cellular telephones or cordless desktop telephones

    Directory of Open Access Journals (Sweden)

    Söderqvist Fredrik

    2006-10-01

    Full Text Available Abstract Background The use of cellular and cordless telephones has increased dramatically during the last decade. There is concern of health problems such as malignant diseases due to microwave exposure during the use of these devices. The brain is the main target organ. Methods Since the second part of the 1990's we have performed six case-control studies on this topic encompassing use of both cellular and cordless phones as well as other exposures. Three of the studies concerned brain tumours, one salivary gland tumours, one non-Hodgkin lymphoma (NHL and one testicular cancer. Exposure was assessed by self-administered questionnaires. Results Regarding acoustic neuroma analogue cellular phones yielded odds ratio (OR = 2.9, 95 % confidence interval (CI = 2.0–4.3, digital cellular phones OR = 1.5, 95 % CI = 1.1–2.1 and cordless phones OR = 1.5, 95 % CI = 1.04–2.0. The corresponding results were for astrocytoma grade III-IV OR = 1.7, 95 % CI = 1.3–2.3; OR = 1.5, 95 % CI = 1.2–1.9 and OR = 1.5, 95 % CI = 1.1–1.9, respectively. The ORs increased with latency period with highest estimates using > 10 years time period from first use of these phone types. Lower ORs were calculated for astrocytoma grade I-II. No association was found with salivary gland tumours, NHL or testicular cancer although an association with NHL of T-cell type could not be ruled out. Conclusion We found for all studied phone types an increased risk for brain tumours, mainly acoustic neuroma and malignant brain tumours. OR increased with latency period, especially for astrocytoma grade III-IV. No consistent pattern of an increased risk was found for salivary gland tumours, NHL, or testicular cancer.

  18. The cellular memory disc of reprogrammed cells.

    Science.gov (United States)

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  19. Cellular Imaging at 1.5 T: Detecting Cells in Neuroinflammation using Active Labeling with Superparamagnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Ayman J. Oweida

    2004-04-01

    Full Text Available The ability to visualize cell infiltration in experimental autoimmune encephalomyelitis (EAE, a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA imaging sequence and a superparamagnetic iron oxide (SPIO contrast agent. An “active labeling” approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  20. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  1. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  2. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  3. Global stability and existence of periodic solutions of discrete delayed cellular neural networks

    International Nuclear Information System (INIS)

    Li Yongkun

    2004-01-01

    We use the continuation theorem of coincidence degree theory and Lyapunov functions to study the existence and stability of periodic solutions for the discrete cellular neural networks (CNNs) with delays xi(n+1)=xi(n)e-bi(n)h+θi(h)-bar j=1maij(n)fj(xj(n))+θi(h)-bar j=1mbij(n)fj(xj(n- τij(n)))+θi(h)Ii(n),i=1,2,...,m. We obtain some sufficient conditions to ensure that for the networks there exists a unique periodic solution, and all its solutions converge to such a periodic solution

  4. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping...... as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set...

  5. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    International Nuclear Information System (INIS)

    Horiuchi, K.; Konno, A.; Nishio, S.; Fukuda, Y.; Saji, H.; Hashimoto, K.

    2002-01-01

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 37 0 C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  6. Using an agent-based model to analyze the dynamic communication network of the immune response

    Directory of Open Access Journals (Sweden)

    Doolittle John

    2011-01-01

    Full Text Available Abstract Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win versus persistent infection (loss, due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the

  7. Melanoma affinity in mice and immunosuppressed sheep of [125I]N-(4-dipropylaminobutyl)-4-iodobenzamide, a new targeting agent

    International Nuclear Information System (INIS)

    Labarre, Pierre; Papon, Janine; Rose, Alison H.; Guerquin-Kern, Jean-Luc; Morandeau, Laurence; Wu, Ting-di; Moreau, Marie-France; Bayle, Martine; Chezal, Jean-Michel; Croisy, Alain; Madelmont, Jean-Claude; Turner, Harvey; Moins, Nicole

    2008-01-01

    The increasing incidence of melanoma and the lack of effective therapy have prompted the development of new vectors, more specific to the pigmented tumor, for early detection and treatment. Targeted agents have to exhibit a rapid, high tumor uptake, long tumor retention and rapid clearance from nontarget organs. This joint work presents results obtained with a new melanoma targeting agent, [ 125 I]-N-(4-dipropylaminobutyl)-4-iodobenzamide or [ 125 I]BZ18. After labeling with a high specific activity, the biodistribution of the compound was investigated in two animal models, the mouse and the sheep. Melanotic tumor retention was observed lasting several days. We visualized the internalization of the agent inside the melanosomes by secondary ion mass spectroscopy imaging, we measured the affinity constants of [ 125 I]BZ18 on a synthetic melanin model and we demonstrated a radiotoxic effect of this labeled agent on B16F0 melanoma cell culture due to its cellular internalization. From this work, [ 125 I]BZ18 appeared a promising melanoma targeting agent in the nuclear medicine field

  8. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  9. Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea

    Directory of Open Access Journals (Sweden)

    Mohammed H. Alsharif

    2016-12-01

    Full Text Available This paper aims to address the sustainability of power resources and environmental conditions for telecommunication base stations (BSs at off-grid sites. Accordingly, this study examined the feasibility of using a hybrid solar photovoltaic (SPV/wind turbine generator (WTG system to feed the remote Long Term Evolution-macro base stations at off-grid sites of South Korea the energy necessary to minimise both the operational expenditure and greenhouse gas emissions. Three key aspects have been discussed: (i optimal system architecture; (ii energy yield analysis; and (iii economic analysis. In addition, this study compares the feasibility of using a hybrid SPV/WTG system vs. a diesel generator. The simulation results show that by applying the proposed SPV/WTG system scheme to the cellular system, the total operational expenditure can be up to 48.52% more efficient and sustainability can be ensured with better planning by providing cleaner energy.

  10. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  11. Behavioral, cellular and molecular maladaptations covary with exposure to pyridostigmine bromide in a rat model of gulf war illness pain.

    Science.gov (United States)

    Cooper, B Y; Flunker, L D; Johnson, R D; Nutter, T J

    2018-08-01

    Many veterans of Operation Desert Storm (ODS) struggle with the chronic pain of Gulf War Illness (GWI). Exposure to insecticides and pyridostigmine bromide (PB) have been implicated in the etiology of this multisymptom disease. We examined the influence of 3 (DEET (N,N-diethyl-meta-toluamide), permethrin, chlorpyrifos) or 4 GW agents (DEET, permethrin, chlorpyrifos, pyridostigmine bromide (PB)) on the post-exposure ambulatory and resting behaviors of rats. In three independent studies, rats that were exposed to all 4 agents consistently developed both immediate and delayed ambulatory deficits that persisted at least 16 weeks after exposures had ceased. Rats exposed to a 3 agent protocol (PB excluded) did not develop any ambulatory deficits. Cellular and molecular studies on nociceptors harvested from 16WP (weeks post-exposure) rats indicated that vascular nociceptor Na v 1.9 mediated currents were chronically potentiated following the 4 agent protocol but not following the 3 agent protocol. Muscarinic linkages to muscle nociceptor TRPA1 were also potentiated in the 4 agent but not the 3 agent, PB excluded, protocol. Although K v 7 activity changes diverged from the behavioral data, a K v 7 opener, retigabine, transiently reversed ambulation deficits. We concluded that PB played a critical role in the development of pain-like signs in a GWI rat model and that shifts in Na v 1.9 and TRPA1 activity were critical to the expression of these pain behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. [Alkylating agents].

    Science.gov (United States)

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  13. An integrated framework of agent-based modelling and robust optimization for microgrid energy management

    International Nuclear Information System (INIS)

    Kuznetsova, Elizaveta; Li, Yan-Fu; Ruiz, Carlos; Zio, Enrico

    2014-01-01

    Highlights: • Microgrid composed of a train station, wind power plant and district is investigated. • Each player is modeled as an individual agent aiming at a particular goal. • Prediction Intervals quantify the uncertain operational and environmental parameters. • Optimal goal-directed actions planning is achieved with robust optimization. • Optimization framework improves system reliability and decreases power imbalances. - Abstract: A microgrid energy management framework for the optimization of individual objectives of microgrid stakeholders is proposed. The framework is exemplified by way of a microgrid that is connected to an external grid via a transformer and includes the following players: a middle-size train station with integrated photovoltaic power production system, a small energy production plant composed of urban wind turbines, and a surrounding district including residences and small businesses. The system is described by Agent-Based Modelling (ABM), in which each player is modelled as an individual agent aiming at a particular goal, (i) decreasing its expenses for power purchase or (ii) increasing its revenues from power selling. The context in which the agents operate is uncertain due to the stochasticity of operational and environmental parameters, and the technical failures of the renewable power generators. The uncertain operational and environmental parameters of the microgrid are quantified in terms of Prediction Intervals (PIs) by a Non-dominated Sorting Genetic Algorithm (NSGA-II) – trained Neural Network (NN). Under these uncertainties, each agent is seeking for optimal goal-directed actions planning by Robust Optimization (RO). The developed framework is shown to lead to an increase in system performance, evaluated in terms of typical reliability (adequacy) indicators for energy systems, such as Loss of Load Expectation (LOLE) and Loss of Expected Energy (LOEE), in comparison with optimal planning based on expected values of

  14. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  15. Sea urchin coelomocytes are resistant to a variety of DNA damaging agents

    International Nuclear Information System (INIS)

    Loram, Jeannette; Raudonis, Renee; Chapman, Jecar; Lortie, Mae; Bodnar, Andrea

    2012-01-01

    Increasing anthropogenic activities are creating environmental pressures that threaten marine ecosystems. Effective environmental health assessment requires the development of rapid, sensitive, and cost-effective tools to predict negative impacts at the individual and ecosystem levels. To this end, a number of biological assays using a variety of cells and organisms measuring different end points have been developed for biomonitoring programs. The sea urchin fertilization/development test has been useful for evaluating environmental toxicology and it has been proposed that sea urchin coelomocytes represent a novel cellular biosensor of environmental stress. In this study we investigated the sensitivity of coelomocytes from the sea urchin Lytechinus variegatus to a variety of DNA-damaging agents including ultraviolet (UV) radiation, hydrogen peroxide (H 2 O 2 ), methylmethane sulfonate (MMS) and benzo[a]pyrene (BaP). LD 50 values determined for coelomocytes after 24 h of exposure to these DNA damaging agents indicated a high level of resistance to all treatments. Significant increases in the formation of apurinic/apyrimidinic (AP or abasic) sites in DNA were only detected using high doses of H 2 O 2 , MMS and UV radiation. Comparison of sea urchin coelomocytes with hemocytes from the gastropod mollusk Aplysia dactylomela and the decapod crustacean Panulirus argus indicated that sensitivity to different DNA damaging agents varies between species. The high level of resistance to genotoxic agents suggests that DNA damage may not be an informative end point for environmental health assessment using sea urchin coelomocytes however, natural resistance to DNA damaging agents may have implications for the occurrence of neoplastic disease in these animals.

  16. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    Science.gov (United States)

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  17. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  18. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  19. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents.

    Science.gov (United States)

    Kaina, Bernd; Christmann, Markus; Naumann, Steffen; Roos, Wynand P

    2007-08-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and

  20. Whole Brain Radiotherapy and RRx-001: Two Partial Responses in Radioresistant Melanoma Brain Metastases from a Phase I/II Clinical Trial: A TITE-CRM Phase I/II Clinical Trial.

    Science.gov (United States)

    Kim, Michelle M; Parmar, Hemant; Cao, Yue; Pramanik, Priyanka; Schipper, Matthew; Hayman, James; Junck, Larry; Mammoser, Aaron; Heth, Jason; Carter, Corey A; Oronsky, Arnold; Knox, Susan J; Caroen, Scott; Oronsky, Bryan; Scicinski, Jan; Lawrence, Theodore S; Lao, Christopher D

    2016-04-01

    Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with RRx-001 and whole brain radiotherapy (WBRT) without neurologic or systemic toxicity in the context of a phase I/II clinical trial. RRx-001 is an reactive oxygen and reactive nitrogen species (ROS/RNS)-dependent systemically nontoxic hypoxic cell radiosensitizer with vascular normalizing properties under investigation in patients with various solid tumors including those with brain metastases. Metastatic melanoma to the brain is historically associated with poor outcomes and a median survival of 4 to 5 months. WBRT is a mainstay of treatment for patients with multiple brain metastases, but no significant therapeutic advances for these patients have been described in the literature. To date, candidate radiosensitizing agents have failed to demonstrate a survival benefit in patients with brain metastases, and in particular, no agent has demonstrated improved outcome in patients with metastatic melanoma. Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with novel radiosensitizing agent RRx-001 and WBRT without neurologic or systemic toxicity in the context of a phase I/II clinical trial. Published by Elsevier Inc.

  1. iCrowd: agent-based behavior modeling and crowd simulator

    Science.gov (United States)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  2. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  3. Determination of tin (II) in radiopharmaceutical kits by polarographic method

    International Nuclear Information System (INIS)

    Aungurarat, A.; Thuntawewadthananon, T.

    1996-01-01

    Radiopharmaceutical kit is a diagnostic compound which contains Stannous (II) as a reducing agent. The quantity of Stannous (II) is depended on the type of kits. So the quantity of Stannous (II) is determined by polarographic method with Differential Pulse Voltammetry (D P Mode) in which a saturated calomel electrode is used as anode and a dropping mercury electrode is used as cathode. Both of electrodes are immerged in the premixed solution of supporting electrolyte and analytical Stannous (II). The Stannous (II) is determined by direct method Stannous (II) is analyzed in the form of Stannous; Sn 2 + itself, and indirect method Stannous (II) is analyzed in the form of S tannic; Sn 4+ (Sn 2+ , + N H 4 + ----> Sn 4+ ). Both methods are done at polarographic half wave potential -470 and -520 mV respectively. The Limit of Detection (LOD) of the direct method is 1.9445 micro g and indirect method is 1.3018 micro g. The result received from indirect method is much more accurate than the direct method (Sn 2+ ). The accuracy of the direct method is about 97.5-102.5% recovery

  4. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  5. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin

    Directory of Open Access Journals (Sweden)

    Alasdair Anderson

    2014-01-01

    Full Text Available The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC complexes I, II and III towards production of reactive oxygen species (ROS have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549. The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05 suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001. The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase cells than the corresponding wild type cells (P=0.0012 which can be considered (in terms of telomerase activity as models of younger and older cells respectively.

  6. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  7. Exact quantification of the complexity of spacewise pattern growth in cellular automata

    International Nuclear Information System (INIS)

    Freire, Joana G; Gallas, Jason A C; Brison, Owen J

    2009-01-01

    We analyze the two possible ways of simulating complex systems with cellular automata: by using the familiar timewise updating or by using the complementary spacewise updating. Both updating algorithms operate on identical sets of initial conditions defining the state of the automaton. While timewise growth generally probes just vanishingly small sets of initial conditions producing statistical samples of the asymptotic attractors, spacewise growth operates with much restricted sets which allow one to simulate them all, exhaustively. Our main result is the derivation of an exact analytical formula to quantify precisely one of the two sources of algorithmic complexity of spacewise detection of the complete set of attractors for elementary 1D cellular automata with generic non-periodic architectures of any arbitrary size. The formula gives the total number of initial conditions that need to be investigated to locate rigorously all possible patterns for any given rule. As simple applications, we illustrate how this knowledge may be used (i) to uncover missing patterns in previous classifications in the literature and (ii) to obtain surprisingly novel patterns that are totally unreachable with the time-honored technique of artificially imposing spatially periodic boundary conditions.

  8. Multi-objective group scheduling with learning effect in the cellular manufacturing system

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Taghavi-fard

    2011-01-01

    Full Text Available Group scheduling problem in cellular manufacturing systems consists of two major steps. Sequence of parts in each part-family and the sequence of part-family to enter the cell to be processed. This paper presents a new method for group scheduling problems in flow shop systems where it minimizes makespan (Cmax and total tardiness. In this paper, a position-based learning model in cellular manufacturing system is utilized where processing time for each part-family depends on the entrance sequence of that part. The problem of group scheduling is modeled by minimizing two objectives of position-based learning effect as well as the assumption of setup time depending on the sequence of parts-family. Since the proposed problem is NP-hard, two meta heuristic algorithms are presented based on genetic algorithm, namely: Non-dominated sorting genetic algorithm (NSGA-II and non-dominated rank genetic algorithm (NRGA. The algorithms are tested using randomly generated problems. The results include a set of Pareto solutions and three different evaluation criteria are used to compare the results. The results indicate that the proposed algorithms are quite efficient to solve the problem in a short computational time.

  9. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions

    Science.gov (United States)

    Lv, Dan; Liu, Yu; Zhou, Jiasheng; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Xu, Xinhua

    2018-01-01

    In this study, a novel bamboo activated carbon (BAC) with ethylene diamine tetraacetic acid (EDTA) functionality was prepared by direct grafting in the presence of tetraethyl orthosilicate (TEOS) as a crosslinking agent. The BAC@SiO2-EDTA was characterized by SEM, TEM, TGA, FTIR, XPS and its adsorption property for removal of Pb(II) and Cu(II) under various experimental conditions was also investigated. The characterization results reflected that EDTA was successfully assembled on the surface of the BAC and average pore size increased from 4.10 to 4.83 nm as BAC grafted with EDTA. Adsorption data fitted very well in Langmuir isotherm model and pseudo-second-order kinetic model. As compared with the raw BAC, the maximum adsorption capacities of BAC@SiO2-EDTA for the Pb(II) and Cu(II) increased from 45.45 to 123.45 mg g-1 and from 6.85 to 42.19 mg g-1, since the existence of EDTA on modified BAC promoted the formation of chemical complex. The removal of heavy metal ions mainly depended on the complexation with EDTA and the electrostatic attractions with negatively charged surface of BAC@SiO2-EDTA. The adsorption of Pb(II)/Cu(II) on the BAC@SiO2-EDTA was pH dependent and pH 5-6 was considered an optimum. However, lower temperature favored the adsorption and the maximum adsorption was recorded at 20 °C. In addition, BAC@SiO2-EDTA had an excellent reusability with about 40% decline in the adsorption capacity for Pb(II) after fifth reuse. Insignificant influences of co-existing cations and natural organic matter (NOM) were found on the adsorption of Pb(II) and Cu(II). All the results demonstrate that BAC@SiO2-EDTA is a potential adsorbent for metal ions in wastewater.

  10. HPLC-MS/MS measurement of radiation and photo-induced damage in cellular DNA and human skin

    International Nuclear Information System (INIS)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2010-01-01

    Full text: The measurement of damage induced in cellular DNA by ionizing and solar radiations is of major importance to assess the molecular mode of action and the biological role (mutagenesis, DNA repair) of these genotoxic agents. For this purpose several analytical approaches including immunodetection, post-labeling and chromatographic assays have been designed. However most of them have been shown to suffer from a lack of specificity, sensitivity or quantitative response. It may be noted that the gas-chromatography method in its basal version has been found to lead to overestimated yields of oxidatively generated base lesions by two to three order of magnitude due to the occurrence of artifactual oxidation of the overwhelming purine and pyrimidine bases during the derivatization step of the assay. The advent of HPLC coupled to tandem mass spectrometry operating in the electrospray ionization mode has allowed overcoming most of these drawbacks. Thus, accurate determination of 11 oxidized bases and nucleosides has been achieved in cellular DNA upon exposure to radiation-induced hydroxyl radical and one-electron oxidation agents. This has involved quantitative enzymatic release of lesions from extracted DNA and their accurate detection at the output of the HPLC column using the highly quantitative isotopic dilution technique. Evidence was also provided for the generation of five clustered lesions that all involve a base modification and an altered 2-deoxyribose residue as the result of only one initial radical oxidation hit. These consist of (5'R)-5',8-cyclo-2'-deoxyadenosine and cytosinealdehyde adducts that arise from .OH-mediated hydrogen abstraction at C5 and C4 of the sugar moiety of cellular DNA respectively. The damaging effects of UVA radiation on cellular DNA and human skin were rationalized in terms of predominant 1 O 2 -mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine. Other relevant types of DNA modifications consist in bipyrimidine

  11. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling

    International Nuclear Information System (INIS)

    Guo, Jinxin; Gleeson, Michael R; Liu, Shui; Sheridan, John T

    2011-01-01

    The non-local photopolymerization driven diffusion (NPDD) model predicts that a reduction in the non-local response length within a photopolymer material will improve its high spatial frequency response. The introduction of a chain transfer agent reduces the average molecular weight of polymer chains formed during free radical polymerization. Therefore a chain transfer agent (CTA) provides a practical method to reduce the non-local response length. An extended NPDD model is presented, which includes the chain transfer reaction and most major photochemical processes. The addition of a chain transfer agent into an acrylamide/polyvinyl alcohol photopolymer material is simulated and the predictions of the model are examined. The predictions of the model are experimentally examined in part II of this paper

  12. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces.

    Science.gov (United States)

    Stern, Eric; Jay, Steven M; Demento, Stacey L; Murelli, Ryan P; Reed, Mark A; Malinski, Tadeusz; Spiegel, David A; Mooney, David J; Fahmy, Tarek M

    2009-07-13

    Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. We demonstrate here a class of lithographically-defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins. We show that precise control can be achieved over the loading capacity and release rates of encapsulated agents and illustrate this aspect using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. We further demonstrate the ability of this technique to enable three-dimensional control over cellular encapsulation. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering.

  13. The cyto- and genotoxicity of organotin compounds is dependent on the cellular uptake capability

    International Nuclear Information System (INIS)

    Dopp, E.; Hartmann, L.M.; Recklinghausen, U. von; Florea, A.M.; Rabieh, S.; Shokouhi, B.; Hirner, A.V.; Obe, G.; Rettenmeier, A.W.

    2007-01-01

    Organotin compounds have been widely used as stabilizers and anti-fouling agents with the result that they are ubiquitously distributed in the environment. Organotins accumulate in the food chain and potential effects on human health are disquieting. It is not known as yet whether cell surface adsorption or accumulation within the cell, or indeed both is a prerequisite for the toxicity of organotin compounds. In this study, the alkylated tin derivatives monomethyltin trichloride (MMT), dimethyltin dichloride (DMT), trimethyltin chloride (TMT) and tetramethyltin (TetraMT) were investigated for cyto- and genotoxic effects in CHO-9 cells in relation to the cellular uptake. To identify genotoxic effects, induction of micronuclei (MN), chromosome aberrations (CA) and sister chromatid exchanges (SCE) were analyzed and the nuclear division index (NDI) was calculated. The cellular uptake was assessed using ICP-MS analysis. The toxicity of the tin compounds was also evaluated after forced uptake by electroporation. Our results show that uptake of the organotin compounds was generally low but dose-dependent. Only weak genotoxic effects were observed after exposure of cells to DMT and TMT. MMT and TetraMT were negative in the test systems. After forced uptake by electroporation MMT, DMT and TMT induced significant DNA damage at non-cytotoxic concentrations. The results presented here indicate a considerable toxicological potential of some organotin species but demonstrate clearly that the toxicity is modulated by the cellular uptake capability

  14. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  16. Incorporating BDI Agents into Human-Agent Decision Making Research

    Science.gov (United States)

    Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia

    Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.

  17. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue

    DEFF Research Database (Denmark)

    Münstermann, U; Fritz, G; Seitz, G

    1990-01-01

    Protein kinase CKII (i.e. casein kinase II, CKII, NII) is expressed at a higher level in rapidly proliferating tissues and in solid human tumours (e.g. colorectal carcinomas) when compared to the corresponding non-neoplastic colorectal mucosa. This could be shown by (a) Western blotting of cellular...

  18. Chemical warfare agents.

    Science.gov (United States)

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  19. Amine : une plate-forme pour le développement de systèmes et d’agents intelligents

    Directory of Open Access Journals (Sweden)

    Karim Bouzoubaa

    2005-10-01

    Full Text Available This paper presents an overview of Amine ; a multi-layer and open-source platform, implemented in Java and dedicated to the development of intelligent systems and agents. Amine is composed of four layers : a a kernel layer that enables the creation, edition, update and manipulation of multi-lingua ontologies, b an algebraic layer that offers a set of elementary data types, structured types and various matching-based operations, c a programming layer that provides three programming paradigms: i an ontology or memory-based programming paradigm which is concerned by incremental and automatic integration of knowledge in an ontology (or agent memory, ii a pattern-matching and rule-based programming paradigm, embedded in PROLOG+CG language, and iii an activation and propagation-based programming paradigm, embedded in SYNERGY language, and d an agent and multi-agent systems layer that enables the development of agent-based applications.

  20. Logics for Intelligent Agents and Multi-Agent Systems

    NARCIS (Netherlands)

    Meyer, John-Jules Charles

    2014-01-01

    This chapter presents the history of the application of logic in a quite popular paradigm in contemporary computer science and artificial intelligence, viz. the area of intelligent agents and multi-agent systems. In particular we discuss the logics that have been used to specify single agents, the