WorldWideScience

Sample records for agents electron spin

  1. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  2. New sensitive agents for detecting singlet oxygen by electron spin resonance spectroscopy.

    Science.gov (United States)

    Igarashi, T; Sakurai, K; Oi, T; Obara, H; Ohya, H; Kamada, H

    1999-05-01

    Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique. PMID:10381208

  3. 5,5-Dimethyl-2-pyrrolidone-N-oxyl formation in electron spin resonance studies of electrolyzed NaCl solution using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trapping agent.

    Science.gov (United States)

    Stan, Silvia D; Daeschel, Mark A

    2005-06-15

    Electrolyzed oxidizing (EO) water has recently generated much interest as a disinfectant in the food industry. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) is a spin trapping agent widely used in the electron spin resonance (ESR) characterization of oxygen-centered free radicals. The reaction between electrolyzed water, collected from the anode side of a two-chamber electrolyzer, and DMPO was investigated by ESR spectroscopy. Addition of DMPO to EO water generated an ESR spectrum identical to that of 5,5-dimethyl-2-pyrrolidone-N-oxyl (DMPOX), suggesting that a compound from EO water oxidized DMPO with the formation of DMPOX. To further investigate the electrolytically generated compound that oxidized DMPO, aqueous solutions of different sodium salts (sodium chloride, sodium citrate, and sodium iodide) with similar conductivities were electrolyzed. The DMPOX signal was not detected in the electrolyzed sodium citrate sample, suggesting that DMPOX formation in the electrolyzed NaCl sample might be due to an electrolytically generated chlorine species. A low DMPOX signal was also observed from the electrolyzed NaI sample, suggesting that a similar species obtained through the electrolysis of I- can also oxidize DMPO. Hypochlorous acid is proposed to oxidize the spin trap DMPO with the formation of DMPOX. In a neutral pH environment, electrolyzed water also oxidized DMPO to DMPOX. This is consistent with the DMPOX formation in the reaction of chlorine water (containing HOCl and Cl2) or sodium hypochlorite with DMPO. PMID:15941334

  4. Electron spin decoherence in nuclear spin baths and dynamical decoupling

    International Nuclear Information System (INIS)

    We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.

  5. Electron-spin dynamics induced by photon spins

    OpenAIRE

    Ahrens, S.; Bauke, H.; Keitel, C.; Grobe, R.

    2014-01-01

    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, that can be expressed in terms of the lase's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation....

  6. Highly efficient spin filtering of ballistic electrons

    Science.gov (United States)

    Steinmuller, S. J.; Trypiniotis, T.; Cho, W. S.; Hirohata, A.; Lew, W. S.; Vaz, C. A.; Bland, J. A.

    2004-04-01

    Spin dependent electron transport in hybrid Au/Co/Cu/NiFe/n-GaAs spin valve Schottky barrier structures was investigated using photoexcitation at various wavelengths. For excitation with the photon energy well above the Schottky barrier height we found a ˜2400% increase in helicity dependent photocurrent on switching the spin valve from parallel to antiparallel alignment. Our observations provide clear evidence for highly efficient spin filtering of spin polarized ballistic electrons.

  7. Spin dependent electron response functions

    International Nuclear Information System (INIS)

    Full text: In two-dimensional (2d) electronic systems (realized, e.g., in semiconductor quantum wells), correlation effects are more pronounced than in the bulk. This manifests itself in a lower value of the density parameter rs, where the system freezes into a crystal. A precursor of this transition is a minimum in the plasmon dispersion, which even may re-appear below the particle-hole continuum at high frequencies. Based on the dynamic many body theory of E. Krotscheck's group we study the excitations of 2d partially spin-polarized electron liquids at various rs and wave vectors. QMC data from the literature are used as an input for computing the spin dependent response functions. (author)

  8. Electron-spin dynamics induced by photon spins

    CERN Document Server

    Ahrens, Sven; Keitel, Christoph H; Grobe, Rainer

    2014-01-01

    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, which can be expressed in terms of the laser's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on if relativistic corrections are taken into account or not. Thus, the relativistic ...

  9. Electron-spin dynamics induced by photon spins

    Science.gov (United States)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-10-01

    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, which can be expressed in terms of the laser's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on whether relativistic corrections are taken into account or not. Thus, the relativistic coupling of the electron's spin to the laser's spin density changes the dynamics not only quantitatively but also qualitatively as compared to the nonrelativistic theory. The electron's spin dynamics are a genuine quantum mechanical relativistic effect.

  10. Spin, spin-orbit, and electron-electron interactions in mesoscopic systems

    OpenAIRE

    Oreg, Yuval; Brouwer, P.W.; Waintal, X.; Halperin, Bertrand I.

    2001-01-01

    We review recent theoretical developments about the role of spins, electron-electron interactions, and spin-orbit coupling in metal nanoparticles and semiconductor quantum dots. For a closed system, in the absence of spin-orbit coupling or of an external magnetic field, electron-electron interactions make it possible to have ground states with spin $S > 1/2$. We review here a theoretical analysis which makes predictions for the probability of finding various values of spin $S$ for an irregula...

  11. Microresonators for electron spin qubits

    International Nuclear Information System (INIS)

    Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)

  12. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  13. Electron spin separation without magnetic field

    International Nuclear Information System (INIS)

    A nanodevice capable of separating spins of two electrons confined in a quantum dot formed in a gated semiconductor nanowire is proposed. Two electrons confined initially in a single quantum dot in the singlet state are transformed into the system of two electrons confined in two spatially separated quantum dots with opposite spins. In order to separate the electrons' spins we exploit transitions between the singlet and the triplet state, which are induced by resonantly oscillating Rashba spin–orbit coupling strength. The proposed device is all electrically controlled and the electron spin separation can be realized within tens of picoseconds. The results are supported by solving numerically the quasi-one-dimensional time-dependent Schroedinger equation for two electrons, where the electron–electron correlations are taken into account in the exact manner. (paper)

  14. Theory of electron spin echoes in solids

    CERN Document Server

    Asadullina, N Y; Asadullin, Y Y

    2002-01-01

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...

  15. Quantum Computing with an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.;

    2009-01-01

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...

  16. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  17. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-01-15

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  18. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance

    Science.gov (United States)

    Andreev, Pavel A.

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin

  19. Spin Decomposition of Electron in QED

    CERN Document Server

    Ji, Xiangdong; Yuan, Feng; Zhang, Jian-Hui; Zhao, Yong

    2015-01-01

    We perform a systematic study on the spin decomposition of an electron in QED at one-loop order. It is found that the electron orbital angular momentum defined in Jaffe-Manohar and Ji spin sum rules agrees with each other, and the so-called potential angular momentum vanishes at this order. The calculations are performed in both dimensional regularization and Pauli-Villars regularization for the ultraviolet divergences, and they lead to consistent results. We further investigate the calculations in terms of light-front wave functions, and find a missing contribution from the instantaneous interaction in light-front quantization. This clarifies the confusing issues raised recently in the literature on the spin decomposition of an electron, and will help to consolidate the spin physics program for nucleons in QCD.

  20. Quantum computing with an electron spin ensemble.

    Science.gov (United States)

    Wesenberg, J H; Ardavan, A; Briggs, G A D; Morton, J J L; Schoelkopf, R J; Schuster, D I; Mølmer, K

    2009-08-14

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.

  1. Electron spin relaxation in graphene from a microscopic approach: Role of electron-electron interaction

    OpenAIRE

    Zhou, Y.; Wu, M. W.

    2010-01-01

    Electron spin relaxation in graphene on a substrate is investigated from the fully microscopic kinetic spin Bloch equation approach. All the relevant scatterings, such as the electron-impurity, electron--acoustic-phonon, electron--optical-phonon, electron--remote-interfacial-phonon, as well as electron-electron Coulomb scatterings, are explicitly included. Our study concentrates on clean intrinsic graphene, where the spin-orbit coupling from the adatoms can be neglected. We discuss the effect...

  2. Spin fluctuation theory of itinerant electron magnetism

    CERN Document Server

    Takahashi, Yoshinori

    2013-01-01

    This volume shows how collective magnetic excitations determine most of  the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.

  3. Theory of electron spin echoes in solids

    Energy Technology Data Exchange (ETDEWEB)

    Asadullina, N.Ya.; Asadullin, T.Ya.; Asadullin, Ya.Ya. [Kazan State Technical University, Department of General Physics, Karl Marx Street 10, Kazan (Russian Federation)

    2002-11-04

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published results it is deduced that the instantaneous diffusion mechanism is ineffective.

  4. Agent Mediated Electronic Commerce: Designing Trading Agents and Mechanisms

    NARCIS (Netherlands)

    La Poutré, J.A.; Sadeh, N.M.; Janson, S.

    2006-01-01

    This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on Agent-Mediated Electronic Commerce, AMEC VII 2005, held in Utrecht, Netherlands in July 2005, as part of AAMAS 2005, and the third Workshop on Trading Agent Design and Analysis, TADA 2005, held in Edi

  5. Quantum Computation and Spin Electronics

    OpenAIRE

    DiVincenzo, David P.; Burkard, Guido; Loss, Daniel; Sukhorukov, Eugene V.

    1999-01-01

    In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five ...

  6. Spin probes for electron paramagnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    YAN GuoPing; PENG Lei; JIAN ShuangQuan; LI Liang; BOTTLE Steven Eric

    2008-01-01

    Electron paramagnetic resonance imaging (EPRI) is a relatively recent imaging technique, which provides potentially multidimensional imaging of the spatial distribution of paramagnetic species. Thanks to the use of stable spin probes, low frequency EPR imaging has recently allowed the use of large tissue samples or whole animals in vivo in the field of biology and medicine. It is normally necessary to introduce prior intravenous or intramuscular infusion of stable or slowly metabolizable non-toxic water-soluble paramagnetic materials, or stable implantable particulate materials as spin probes into the system. The classification and research progress of spin probes at present were described briefly.Three important potential approaches in water-soluble paramagnetic materials design including deuterated, site-specific and macromolecular conjugated nitroxides were also investigated.

  7. Electronic spin working mechanically (Review Article)

    Science.gov (United States)

    Shekhter, R. I.; Gorelik, L. Y.; Krive, I. V.; Kiselev, M. N.; Kulinich, S. I.; Parafilo, A. V.; Kikoin, K.; Jonson, M.

    2014-07-01

    A single-electron tunneling (SET) device with a nanoscale central island that can move with respect to the bulk source- and drain electrodes allows for a nanoelectromechanical (NEM) coupling between the electrical current through the device and mechanical vibrations of the island. Although an electromechanical "shuttle" instability and the associated phenomenon of single-electron shuttling were predicted more than 15 years ago, both theoretical and experimental studies of NEM-SET structures are still carried out. New functionalities based on quantum coherence, Coulomb correlations and coherent electron-spin dynamics are of particular current interest. In this article we present a short review of recent activities in this area.

  8. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  9. Energy relaxation in the spin-polarized disordered electron liquid

    OpenAIRE

    Chtchelkatchev, N. M.; Burmistrov, I. S.

    2007-01-01

    The energy relaxation in the spin-polarized disordered electron systems is studied in the diffusive regime. We derived the quantum kinetic equation in which the kernel of electron-electron collision integral explicitly depends on the electron magnetization. As the consequence, the inelastic scattering rate is found to have non-monotonic dependence on the spin polarization of the electron system.

  10. Electron-spin dynamics in elliptically polarized light waves

    OpenAIRE

    Bauke, H.; Ahrens, S.; Grobe, R.

    2014-01-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser-field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent pert...

  11. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  12. Spin Echo of a Single Electron Spin in a Quantum Dot

    NARCIS (Netherlands)

    Koppens, F.H.L.; Nowack, K.C.; Vandersypen, L.M.K.

    2008-01-01

    We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the h

  13. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  14. Spin Effects in Collisions of Electrons with Atoms and Molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some recent experimental and theoretical work on spin-dependent electron-atom and electron-molecule collisions is reviewed. The spin is involved in such collisions by explicit spin-dependent interactions such as the spin-orbit interaction of the continuum electron (Mott scattering) but also by exchange, which, in conjunction with the Pauli principle, gives rise to observable spin exchange effects. We present results for Mn and Na atoms and experiments in which electron dichroism with chiral molecules has been studied.

  15. On agent-mediated electronic commerce

    OpenAIRE

    He, M.; Jennings, N. R.; Leung, H.

    2003-01-01

    This paper surveys and analyzes the state of the art of agent-mediated electronic commerce (e-commerce), concentrating particularly on the business-to-consumer (B2C) and business-to-business (B2B) aspects. From the consumer buying behavior perspective, agents are being used in the following activities: need identification, product brokering, buyer coalition formation, merchant brokering, and negotiation. The roles of agents in B2B e-commerce are discussed through the business-to-business tran...

  16. Spin dependent 2D electron scattering by nanomagnets

    International Nuclear Information System (INIS)

    The 2D scattering problem of an electron by a magnetized nanoparticle is solved in the Born approximation with account of the dipole-dipole interaction of the magnetic moments of electron and nanomagnet. The scattering amplitudes in this problem are the two-component spinors. They are obtained as functions of the electron spin orientation, the electron energy and show anisotropy in scattering angle. The initially polarized beam of electrons scattered by the nanomagnet consists of electrons with no spin flipped and spin flipped. The majority of electrons with no spin flipped are scattered by small angles. The majority electrons with spin flipped are scattered in the vicinity of the scattering angles π/2 and 3π/2. This can be used as one more method of controlling the spin currents. - Research highlights: → The artificial namomagnets with gigantic magnetic moments strongly interact with spins of electrons. → In 2D geometry this interaction controls the electron-nanomagnet scattering. → The scattering amplitudes are two-component spinors. → The scattering lengths depend on orientation of magnetic moment of the nanomagnet, the electron spin, and the scattering angle. → This dependence can be used for controlling the spin currents.

  17. Kerr-Newman Electron as Spinning Soliton

    Science.gov (United States)

    Burinskii, Alexander

    2015-10-01

    Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. The spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of space-time - the Kerr singular ring of Compton size, which may be interpreted as a closed fundamental string of low energy string theory. The singular and two-sheeted structure of the corresponding Kerr space has to be regularised, and we consider the old problem of regularising the source of the KN solution. As a development of the earlier Keres-Israel-Hamity-López model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: (1) the soliton forms a relativistically rotating bubble of Compton radius, which is filled by the oscillating Higgs field in a pseudo-vacuum state; (2) the boundary of the bubble forms a domain wall which interpolates between the internal flat background and the external exact Kerr-Newman (KN) solution; (3) the phase transition is provided by a system of chiral fields; (4) the vector potential of the external the KN solution forms a closed Wilson loop which is quantised, giving rise to a quantised spin of the soliton; (5) the soliton is bordered by a closed string, which is a part of the general complex stringy structure.

  18. Electron Spin Resonance Studies on Melanin

    Science.gov (United States)

    Blois, M. S.; Zahlan, A. B.; Maling, J. E.

    1964-01-01

    Electron spin resonance (e.s.r.) observations of squid melanin have been conducted over the temperature range 500°K to 4.2°K, and the effect of various chemical treatments of the melanin upon the e.s.r. spectrum has been studied. The findings have shown that the paramagnetism of this melanin follows the Curie Law from 500°K to 4.2°K, that the spin signal can be eliminated by the addition of Cu++ to the melanin, and that the optical and e.s.r. absorptions of melanin are independent since either can be reduced or eliminated without affecting the other. Similar studies on synthetic melanins produced by autoxidation or by enzymatic oxidation of a number of biphenols were carried out. It was found that the e.s.r. signals of these synthetic melanins were strikingly similar (with respect to line width, line shape, and g-value) with those of squid melanin. It is concluded that the unpaired electrons observed are associated with trapped free radicals in the melanin polymer, that the biosynthesis of melanin may involve a free radical mechanism, and that these physical data are in accord with the concept of Nicolaus that melanin is a highly irregular, three-dimensional, polymer. PMID:14232133

  19. Single-electron Spin Resonance in a Quadruple Quantum Dot

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  20. Spin polarized electrons produced by strong field ionization

    OpenAIRE

    Barth, Ingo; Smirnova, Olga

    2012-01-01

    We show that ionization of noble gas atoms by strong infrared circularly polarized laser field under standard exerimental conditions can yield electrons with up to 100% spin polarization in energy resolved measurements. Spin polarization arises due to the interplay of the electron-core entanglement and the sensitivity of ionization in circularly polarized fields to the sense of electron rotation in the initial state.

  1. Trusted intermediating agents in electronic trade networks

    NARCIS (Netherlands)

    Klos, T.B.; Alkemade, F.

    2005-01-01

    Electronic commerce and trading of information goods significantly impact the role of intermediaries: consumers can bypass intermediating agents by forming direct links to producers. One reason that traditional intermediaries can still make a profit, is that they have more knowledge of the market, s

  2. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  3. Electron-spin dynamics in elliptically polarized light waves

    CERN Document Server

    Bauke, Heiko; Grobe, Rainer

    2014-01-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser-field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  4. Electron-spin dynamics in elliptically polarized light waves

    Science.gov (United States)

    Bauke, Heiko; Ahrens, Sven; Grobe, Rainer

    2014-11-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  5. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    Science.gov (United States)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-05-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  6. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    Science.gov (United States)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-09-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  7. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper;

    2008-01-01

    We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...... quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography....

  8. Development of a spin polarized low energy electron diffraction system.

    Science.gov (United States)

    Pradeep, A V; Roy, Arnab; Kumar, P S Anil; Kirschner, J

    2016-02-01

    We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. PMID:26931865

  9. Symmetry breaking effects on spin and electronic transport in graphene

    OpenAIRE

    Asmar, Mahmoud M; Ulloa, Sergio E.

    2015-01-01

    The decoration of graphene samples with adatoms or nanoparticles leads to the enhancement of spin-orbit interactions as well as to the introduction of symmetry-breaking effects that could have drastic effects on spin and electronic transport phenomena. We present an analysis based on symmetry considerations and examine the impact on the scattering matrix for graphene systems containing defects that enhance spin-orbit interactions, while conserving the electronic total angular momentum. We sho...

  10. Stopping power of two-dimensional spin quantum electron gases

    Science.gov (United States)

    Zhang, Ya; Jiang, Wei; Yi, Lin

    2015-04-01

    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  11. Stopping power of two-dimensional spin quantum electron gases

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ya [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiang, Wei, E-mail: weijiang@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Centre for mathematical Plasma-Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Yi, Lin [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-15

    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  12. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  13. Kerr-Newman electron as spinning soliton

    CERN Document Server

    Burinskii, Alexander

    2014-01-01

    Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. Spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of spacetime -- the Kerr singular ring of the Compton size, which may be interpreted as a closed fundamental string to the low energy string theory. The singular and twosheeted structure of the corresponding Kerr space has to be regularized, and we consider the old problem of regular source of the KN solution. As a development of the earlier Keres-Israel-Hamity-L\\'opez model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: 1) the soliton forms a relativistically rotating bubble of the Compton radius, which is filled by the oscillating Higgs field in pseudo-vacuum state, 2) boundary of the ...

  14. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  15. Polarization Measurement of Spin-Polarized Electrons by Optical Electron Polarimeter

    Institute of Scientific and Technical Information of China (English)

    DING Hai-Bing; PANG Wen-Ning; LIU Yi-Bao; SHANG Ren-Cheng

    2005-01-01

    @@ The polarization of spin-polarized electrons, produced from a new GaAs spin-polarized electron source, is determined by an optical electron polarimeter. The He 3 3p → 23S1 (388.9nm) transition is used for the optical electron polarimetry. The structure and performance of the experimental setup of spin-polarized electron source and optical electron polarimeter are described. The result of polarization of 30.8% averaged spin-up and spindown polarized electrons is obtained and presented.

  16. Universal Synchronous Spin Rotators for Electron-Ion Colliders

    CERN Document Server

    Chevtsov, Pavel; Krafft, Geoff; Zhang, Yuhong

    2016-01-01

    The paper provides mathematics and physics considerations concerning a special class of electron spin manipulating structures for future Electron-Ion Collider (EIC) projects. These structures, which we call Universal Synchronous Spin Rotators (USSR), consist of a sequence of standard basic spin manipulating elements or cells built with two solenoids and one bending magnet between them. When integrated into the ring arcs, USSR structures do not affect the central particle orbit, and their spin transformation functions can be described by a linear mathematical model. In spite of being relatively simple, the model allows one to design spin rotators, which are able to perform spin direction changes from vertical to longitudinal and vice versa in significant continuous intervals of the electron energy. This makes USSR especially valuable tools for EIC nuclear physics experiments.

  17. Spin-flip induction of Fano resonance upon electron tunneling through atomic-scale spin structures

    Energy Technology Data Exchange (ETDEWEB)

    Val' kov, V. V., E-mail: vvv@iph.krasn.ru; Aksenov, S. V., E-mail: asv86@iph.krasn.ru [Russian Academy of Sciences, Siberian Branch, Kirensky Institute of Physics (Russian Federation); Ulanov, E. A. [Siberian State Aerospace University (Russian Federation)

    2013-05-15

    The inclusion of inelastic spin-dependent electron scatterings by the potential profiles of a single magnetic impurity and a spin dimer is shown to induce resonance features due to the Fano effect in the transport characteristics of such atomic-scale spin structures. The spin-flip processes leading to a configuration interaction of the system's states play a fundamental role for the realization of Fano resonance and antiresonance. It has been established that applying an external magnetic field and a gate electric field allows the conductive properties of spin structures to be changed radically through the Fano resonance mechanism.

  18. Quantum rings as electron spin beam splitters

    OpenAIRE

    Foldi, Peter; Kalman, Orsolya; Benedict, Mihaly G.; Peeters, F. M

    2005-01-01

    Quantum interference and spin-orbit interaction in a one-dimensional mesoscopic semiconductor ring with one input and two output leads can act as a spin beam splitter. Different polarization can be achieved in the two output channels from an originally totally unpolarized incoming spin state, very much like in a Stern-Gerlach apparatus. We determine the relevant parameters such that the device has unit efficiency.

  19. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  20. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  1. The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings

    OpenAIRE

    NAKATA, KOUKI

    2013-01-01

    On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance.

  2. Quantum Computing in Silicon with Donor Electron Spins

    Science.gov (United States)

    Simmons, Michelle

    2014-03-01

    Extremely long electron and nuclear spin coherence times have recently been demonstrated in isotopically pure Si-28 making silicon one of the most promising semiconductor materials for spin based quantum information. The two level spin state of single electrons bound to shallow phosphorus donors in silicon in particular provide well defined, reproducible qubits and represent a promising system for a scalable quantum computer in silicon. An important challenge in these systems is the realisation of an architecture, where we can position donors within a crystalline environment with approx. 20-50nm separation, individually address each donor, manipulate the electron spins using ESR techniques and read-out their spin states. We have developed a unique fabrication strategy for a scalable quantum computer in silicon using scanning tunneling microscope hydrogen lithography to precisely position individual P donors in a Si crystal aligned with nanoscale precision to local control gates necessary to initialize, manipulate, and read-out the spin states. During this talk I will focus on demonstrating electronic transport characteristics and single-shot spin read-out of precisely-positioned P donors in Si. Additionally I will report on our recent progress in performing single spin rotations by locally applying oscillating magnetic fields and initial characterization of transport devices with two and three single donors. The challenges of scaling up to practical 2D architectures will also be discussed.

  3. Electron with arbitrary pseudo-spins in multilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Worasak Prarokijjak; Bumned Soodchomshom

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.

  4. Dissipative long-range entanglement generation between electronic spins

    Science.gov (United States)

    Benito, M.; Schuetz, M. J. A.; Cirac, J. I.; Platero, G.; Giedke, G.

    2016-09-01

    We propose a scheme for deterministic generation and long-term stabilization of entanglement between two electronic spin qubits confined in spatially separated quantum dots. Our approach relies on an electronic quantum bus, consisting either of quantum Hall edge channels or surface acoustic waves, that can mediate long-range coupling between localized spins over distances of tens of micrometers. Since the entanglement is actively stabilized by dissipative dynamics, our scheme is inherently robust against noise and imperfections.

  5. Dynamical Coulomb blockade and spin-entangled electrons

    OpenAIRE

    Recher, Patrik; Loss, Daniel

    2003-01-01

    We consider the production of mobile and nonlocal pairwise spin-entangled electrons from tunneling of a BCS-superconductor (SC) to two normal Fermi liquid leads. The necessary mechanism to separate the two electrons coming from the same Cooper pair (spin-singlet) is achieved by coupling the SC to leads with a finite resistance. The resulting dynamical Coulomb blockade effect, which we describe phenomenologically in terms of an electromagnetic environment, is shown to be enhanced for tunneling...

  6. Nanometer-scale probing of spin waves using single electron spins

    Science.gov (United States)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    We have developed a new approach to exploring magnetic excitations in correlated-electron systems, based on single electronic spins in atom-like defects diamond known as nitrogen-vacancy (NV) color centers. We demonstrate the power of this approach by detecting spin-wave excitations in a ferromagnetic microdisc with nanoscale spatial sensitivity over a broad range of frequencies and magnetic fields. We show how spin-wave resonances can be exploited for on-chip amplification of microwave magnetic fields, allowing strongly increased spin manipulation rates and single-spin magnetometry with enhanced sensitivity. Finally, we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned ferromagnet. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  7. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  8. Spin flips in cyclotron emission by an electron

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, D.B.; Russell, K. [School of Physics, University of Sydney, NSW (Australia)

    2002-01-11

    The spin dependence of cyclotron emission is treated using the non-relativistic limit of the Dirac equation; the Schroedinger-Pauli theory is inadequate because of the importance of spin-orbit coupling, which is an intrinsically relativistic effect. Only the choice of the magnetic moment as the spin operator is physically acceptable; all other spin operators precess at a rate comparable with or in excess of cyclotron transition rates. The spin-flip (s=1{yields}-1) transition rate is smaller than the non-spin-flip of the order B/B{sub c} (B{sub c}=4.4x10{sup 9} T), and the reverse spin-flip (s=-1{yields}+1) transition rate is smaller by a further factor of order (B/B{sub c}){sup 2}, implying that it is strongly forbidden. It is shown that there is a preference for electrons with spin s=1 initially in a high Landau level, n>>1, to relax to the ground state, s=-1, n=0, by stepwise jumps to the lowest Landau level for s=1 and then making the spin-flip transition to s=-1, rather than making the spin-flip transition from a higher Landau level, and that this preference increases with decreasing B/B{sub c}. (author)

  9. Spin-dependent electron transport in nanoscale samples

    Science.gov (United States)

    Wei, Yaguang

    In this thesis, we describe the research in which we use metallic nanoparticles to explore spin-dependent electron transport at nanometer scale. Nanoscale samples were fabricated by using a state of the art electron beam lithography and shadow evaporation technique. We have investigated spin relaxation and decoherence in metallic grains as a function of bias voltage and magnetic field at low temperatures (down to ˜30mK). At low temperatures, the discrete energy levels within a metallic nanoparticle provides a new means to study the physics of the spin-polarized electron tunneling. We describe measurements of spin-polarized tunneling via discrete energy levels of single Aluminum grain. Spin polarized current saturates quickly as a function of bias voltage, which demonstrates that the ground state and the lowest excited states carry spin polarized current. The ratio of electron-spin relaxation time (T1) to the electron-phonon relaxation rate is in quantitative agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is driven by the spin-orbit interaction. The spin-relaxation time of the low-lying excited states is T1 ≈ 0.7 mus and 0.1 mus in two samples, showing that electron spin in a metallic grain could be a potential candidate for quantum information research. We also present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles at low temperature and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization-reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain wall causes an electron wave function-phase shift of ˜5 pi. The phase shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain wall. The dephasing length at low temperatures is only 30 nm, which is attributed to the large magnetocrystalline

  10. Spin-allowed and spin-forbidden transitions in excited He atoms induced by electron impact

    International Nuclear Information System (INIS)

    Cross sections σ and the corresponding Maxwellian rate coefficients have been calculated for spin-allowed and spin-forbidden n-n' transitions between excited states with the principal quantum number, n, n'=2,3 and 4 in He induced by electron impact. Calculations have been performed using the Coulomb-Born approximation with exchange (CBE) in the partial wave representation with orthogonalized wavefunctions of the initial and final states for the incident electron energies from threshold up to 2000 eV for spin-allowed transitions (ΔS=0) and up to 200 eV for spin-forbidden (intercombination, ΔS=1) transitions where the corresponding cross sections are still relatively large. The fitting parameters for σ and of spin-allowed transitions have been calculated as well. The results are compared with experimental data and other calculations available. (author). 23 refs, 4 figs, 2 tabs

  11. Spin Relaxation in GaAs: Importance of Electron-Electron Interactions

    Directory of Open Access Journals (Sweden)

    Gionni Marchetti

    2014-04-01

    Full Text Available We study spin relaxation in n-type bulk GaAs, due to the Dyakonov–Perel mechanism, using ensemble Monte Carlo methods. Our results confirm that spin relaxation time increases with the electronic density in the regime of moderate electronic concentrations and high temperature. We show that the electron-electron scattering in the non-degenerate regime significantly slows down spin relaxation. This result supports predictions by Glazov and Ivchenko. Most importantly, our findings highlight the importance of many-body interactions for spin dynamics: we show that only by properly taking into account electron-electron interactions within the simulations, results for the spin relaxation time—with respect to both electron density and temperature—will reach good quantitative agreement with corresponding experimental data. Our calculations contain no fitting parameters.

  12. Spin-polarizing interferometric beam splitter for free electrons

    CERN Document Server

    Dellweg, Matthias M

    2016-01-01

    A spin-polarizing electron beam splitter is described which relies on an arrangement of linearly polarized laser waves of nonrelativistic intensity. An incident electron beam is first coherently scattered off a bichromatic laser field, splitting the beam into two portions, with electron spin and momentum being entangled. Afterwards, the partial beams are coherently superposed in an interferometric setup formed by standing laser waves. As a result, the outgoing electron beam is separated into its spin components along the laser magnetic field, which is shown by both analytical and numerical solutions of Pauli's equation. The proposed laser field configuration thus exerts the same effect on free electrons like an ordinary Stern-Gerlach magnet does on atoms.

  13. Frenkel electron and a spinning body in a curved background

    International Nuclear Information System (INIS)

    We develop a variational formulation of a particle with spin in a curved space-time background. The model is based on a singular Lagrangian which provides equations of motion, a fixed value of spin and Frenkel condition on spin-tensor. Comparing our equations with those of Papapetrou we conclude that the Frenkel electron in a gravitational field has the same behavior as a rotating body in the pole-dipole and leading-spin approximation. Due to constraints presented in the formulation, position space is endowed with a noncommutative structure induced by the spin of the particle. Therefore, the model provides a physically interesting example of a noncommutative particle in a curved background

  14. Electron Spin Pairing in High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    郭卫; 韩汝珊

    2001-01-01

    An electron pairing theory based on effective electron spin coupling mediated by antiferromagnetically correlated local moments is presented to account for high-Tc phenomena. We show that Kondo scattering and the suppression of the antiferromagnetic superexchange between Cu2+ moments lead to local triplet pairing, the mechanism underlying high-Tc superconductivity.

  15. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; CHENG Fang

    2011-01-01

    @@ We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin- orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot.Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots.In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI.By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution.This property provides us with a new way to control quantum states in a quantum dot by electrical means.

  16. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  17. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    International Nuclear Information System (INIS)

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging

  18. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  19. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...

  20. Spin-charge interplay in electronic liquid crystals: fluctuating spin stripe driven by charge nematic

    OpenAIRE

    Sun, Kai; Lawler, Michael J.; Kim, Eun-Ah

    2009-01-01

    We study the interplay between charge and spin ordering in electronic liquid crystalline states with a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering experiments\\cite{Hinkov2008, Haug2009}. Based on a phenomenological model, we propose that charge nematic ordering is indeed behind the formation of temperature dependent incommensurate inelastic peaks near wavevector $(\\pi,\\pi)$ in the dynamic structure factor of YBa$_2$Cu$_3$O$_{6+y}$. We strengt...

  1. Local spin dynamics with the electron electric dipole moment

    Science.gov (United States)

    Fukuda, Masahiro; Soga, Kota; Senami, Masato; Tachibana, Akitomo

    2016-01-01

    The local spin dynamics of the electron is studied from the viewpoint of the electric dipole moment (EDM) of the electron in the framework of the quantum field theory. The improvements of the computational accuracy of the effective electric field (Eeff) for the EDM and the understanding of spin precession are important for the experimental determination of the upper bound of the EDM. Calculations of Eeff in YbF (2Σ1 /2 ), BaF (2Σ1 /2 ), ThO (3Δ1 ), and HF+ (2Π1 /2 ) are performed on the basis of the restricted active space configuration interaction approach by using the four-component relativistic electronic structure calculation. The spin precession is also discussed from the viewpoint of local spin torque dynamics. We show that a contribution to the torque density for the spin is brought into by the EDM. Distributions of the local spin angular momentum density and torque densities induced by external fields in the above molecules are calculated and a property related with large Eeff is discussed.

  2. Influences of spin accumulation on the intrinsic spin Hall effect in two dimensional electron gases with Rashba spin-orbit coupling

    OpenAIRE

    Shen, SQ; Ma, X.; Hu, L.; Tao, R.

    2004-01-01

    In a two-dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic spin Hall effect will cause spin accumulation ...

  3. Electron spins in reduced dimensions. ESR spectroscopy on semiconductor heterostructures and spin chain compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lipps, Ferdinand

    2011-08-31

    Spatial confinement of electrons and their interactions as well as confinement of the spin dimensionality often yield drastic changes of the electronic and magnetic properties of solids. Novel quantum transport and optical phenomena, involving electronic spin degrees of freedom in semiconductor heterostructures, as well as a rich variety of exotic quantum ground states and magnetic excitations in complex transition metal oxides that arise upon such confinements, belong therefore to topical problems of contemporary condensed matter physics. In this work electron spin systems in reduced dimensions are studied with Electron Spin Resonance (ESR) spectroscopy, a method which can provide important information on the energy spectrum of the spin states, spin dynamics, and magnetic correlations. The studied systems include quasi onedimensional spin chain materials based on transition metals Cu and Ni. Another class of materials are semiconductor heterostructures made of Si and Ge. Part I deals with the theoretical background of ESR and the description of the experimental ESR setups used which have been optimized for the purposes of the present work. In particular, the development and implementation of axial and transverse cylindrical resonant cavities for high-field highfrequency ESR experiments is discussed. The high quality factors of these cavities allow for sensitive measurements on {mu}m-sized samples. They are used for the investigations on the spin-chain materials. The implementation and characterization of a setup for electrical detected magnetic resonance is presented. In Part II ESR studies and complementary results of other experimental techniques on two spin chain materials are presented. The Cu-based material Linarite is investigated in the paramagnetic regime above T>2.8 K. This natural crystal constitutes a highly frustrated spin 1/2 Heisenberg chain with ferromagnetic nearest-neighbor and antiferromagnetic next-nearestneighbor interactions. The ESR data

  4. Electrical Control, Read-out and Initialization of Single Electron Spins

    NARCIS (Netherlands)

    Shafiei, M.

    2013-01-01

    An electron, in addition to its electric charge, possesses a small magnetic moment, called spin. The spin of an electron can point parallel (spin-up) or antiparallel (spin-down) to the magnetic field. These two states are analogous to zero and one of the logical bit in current digital electronic dev

  5. Simulating electron spin entanglement in a double quantum dot

    Science.gov (United States)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  6. Separated spin evolution quantum hydrodynamics of degenerated electrons with spin-orbit interaction and extraordinary wave spectrum

    OpenAIRE

    Andreev, Pavel A.; Trukhanova, Mariya Iv.

    2016-01-01

    To consider a contribution of the spin-orbit interaction in the extraordinary wave spectrum we derive a generalization of the separate spin evolution quantum hydrodynamics. Applying corresponding nonlinear Pauli equation we include Fermi spin current contribution in the spin evolution. We find that the spectrum of extraordinary waves consists of three branches: two of them are well-known extraordinary waves and the third one is the spin-electron acoustic wave (SEAW). Earlier SEAWs have been c...

  7. Effect of nuclear spins on the electron spin dynamics in negatively charged InP quantum dots

    OpenAIRE

    Ignatiev, I. V.; Verbin, S. Yu.; Gerlovin, I. Ya.; Maruyama, W.; Pal, B.; Masumoto, Y.

    2005-01-01

    Kinetics of polarized photoluminescence of the negatively charged InP quantum dots in weak magnetic field is studied experimentally. Effect of both the nuclear spin fluctuations and the dynamical nuclear polarization on the electron spin orientation is observed.

  8. Quantum computing by optical control of electron spins

    OpenAIRE

    Yao, W.; Liu, RB; Sham, LJ

    2010-01-01

    We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centres in solids, such as P-donors in silicon and nitrogen-vacancy centres in diamond. The decoherence of the electron spin qubits is discussed and variou...

  9. Field theory of the spinning electron: I - Internal motions

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.

  10. Field theory of the spinning electron: I - Internal motions

    International Nuclear Information System (INIS)

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field vμ, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs

  11. Sample heating system for spin-polarized scanning electron microscopy.

    Science.gov (United States)

    Kohashi, Teruo; Motai, Kumi

    2013-08-01

    A sample-heating system for spin-polarized scanning electron microscopy (spin SEM) has been developed and used for microscopic magnetization analysis at temperatures up to 500°C. In this system, a compact ceramic heater and a preheating operation keep the ultra-high vacuum conditions while the sample is heated during spin SEM measurement. Moreover, the secondary-electron collector, which is arranged close to the sample, was modified so that it is not damaged at high temperatures. The system was used to heat a Co(1000) single-crystal sample from room temperature up to 500°C, and the magnetic-domain structures were observed. Changes of the domain structures were observed around 220 and 400°C, and these changes are considered to be due to phase transitions of this sample.

  12. Quantum information processing with electronic and nuclear spins in semiconductors

    Science.gov (United States)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  13. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions.

    Science.gov (United States)

    Chen, Hanjiao; Maryasov, Alexander G; Rogozhnikova, Olga Yu; Trukhin, Dmitry V; Tormyshev, Victor M; Bowman, Michael K

    2016-09-28

    Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644

  14. Spin filtering and scaling of spin-dependent potentials in quasi-one-dimensional electron liquids with Rashba spin-orbit interaction

    Science.gov (United States)

    Lue, N.-Y.; Wu, G. Y.

    2010-04-01

    We investigate theoretically the spin-filtering effect in a quasi-one-dimensional (Q1D) electron liquid with spin-orbit interaction. The Q1D system considered is formed from a two-dimensional electron-gas (2DEG) subject to both a lateral confining potential and an interface potential perpendicular to the 2DEG. Spin and charge degrees of freedom in the system are mixed by the interface potential through the Rashba mechanism of spin-orbit interaction [A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999)] and we show that when a spin-dependent δ potential is further introduced into the system, for example, via implantation of magnetic/ferromagnetic impurities, the mixing leads to the spin-filtering effect which favors electrons with a certain spin orientation to transport through the δ potential. In particular, we calculate the scaling dimension of electron scattering both by spin-flip and by spin-independent δ potentials when the temperature is varied and show that, in the spin-flip case, the scaling of electron scattering with temperature varies with spin orientation. Conductance is calculated for both spin and charge transport, and the spin-filtering effect is discussed quantitatively in terms of the conductance.

  15. Coherence and control of a single electron spin in a quantum dot

    NARCIS (Netherlands)

    Koppens, F.H.L.

    2007-01-01

    An electron does not only have an electric charge, but also a small magnetic moment, called spin. In a magnetic field, the spin can point in the same direction as the field (spin-up) or in the opposite direction (spin-down). However, the laws of quantum mechanics also allow the spin to exist in both

  16. Electron Spin Precession for the Time Fractional Pauli Equation

    CERN Document Server

    Nasrolahpour, Hosein

    2011-01-01

    In this work, we aim to extend the application of the fractional calculus in the realm of quantum mechanics. We present a time fractional Pauli equation containing Caputo fractional derivative. By use of the new equation we study the electron spin precession problem in a homogeneous constant magnetic field.

  17. Photon-assisted electronic and spin transport in a junction containing precessing molecular spin

    Science.gov (United States)

    Filipović, Milena; Belzig, Wolfgang

    2016-02-01

    We study the ac charge and -spin transport through an orbital of a magnetic molecule with spin precessing in a constant magnetic field. We assume that the source and drain contacts have time-dependent chemical potentials. We employ the Keldysh nonequilibrium Green's functions method to calculate the spin and charge currents to linear order in the time-dependent potentials. The molecular and electronic spins are coupled via exchange interaction. The time-dependent molecular spin drives inelastic transitions between the molecular quasienergy levels, resulting in a rich structure in the transport characteristics. The time-dependent voltages allow us to reveal the internal precession time scale (the Larmor frequency) by a dc conductance measurement if the ac frequency matches the Larmor frequency. In the low-ac-frequency limit the junction resembles a classical electric circuit. Furthermore, we show that the setup can be used to generate dc-spin currents, which are controlled by the molecular magnetization direction and the relative phases between the Larmor precession and the ac voltage.

  18. Self-spin-controlled rotation of spatial states of a Dirac electron in a cylindrical potential via spin orbit interaction

    Science.gov (United States)

    Leary, C. C.; Reeb, D.; Raymer, M. G.

    2008-10-01

    Solution of the Dirac equation predicts that when an electron with nonzero orbital angular momentum (OAM) propagates in a cylindrically symmetric potential, its spin and orbital degrees of freedom interact, causing the electron's phase velocity to depend on whether its spin angular momentum (SAM) and OAM vectors are oriented parallel or anti-parallel with respect to each other. This spin-orbit splitting of the electronic dispersion curves can result in a rotation of the electron's spatial state in a manner controlled by the electron's own spin z-component value. These effects persist at non-relativistic velocities. To clarify the physical origin of this effect, we compare solutions of the Dirac equation to perturbative predictions of the Schrödinger-Pauli equation with a spin-orbit term, using the standard Foldy-Wouthuysen Hamiltonian. This clearly shows that the origin of the effect is the familiar relativistic spin-orbit interaction.

  19. Spin-Mediated Consciousness Theory Possible Roles of Oxygen Unpaired Electronic Spins and Neural Membrane Nuclear Spin Ensemble in Memory and Consciousness

    CERN Document Server

    Hu, H; Hu, Huping; Wu, Maoxin

    2002-01-01

    We postulate that consciousness is connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness is connected with the fabric of spacetime through spin. That is, spin is the "pixel" and "antenna" of mind. The unity of mind is achieved by non-local means within the pre-spacetime domain interfaced with spacetime. Human mind is possible because of the particular structures and dynamics of our brain postulated working as follows: The unpaired electronic spins of highly lipid-soluble and rapidly diffusing oxygen molecules extract information from the dynamical neural membranes and communicate said information through strong spin-spin couplings to the nuclear spin ensemble in the membranes for consciousness-related quantum statistical processing which survives decoherence. In turn, the dynamics of the nuclear spin ensemble has effects through spin chemistry on the classical neural act...

  20. Quantum computing by optical control of electron spins

    CERN Document Server

    Liu, Ren-Bao; Sham, L J

    2010-01-01

    We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centers in solids such as P-donors in silicon and nitrogen-vacancy centers in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing betwe...

  1. Investigations of ionomers by electron spin resonance

    CERN Document Server

    Sueleymanoglu, N

    1999-01-01

    through direct diffusion and ligand making manner. Cu''+ sup + and Mn''+''+ ion adsorption properties of Polyn (N-vinyl-2 pyrrolidone/Itaconic acid) P(VP/IA) hydrogels that were prepared to be used to remove some environmental agents from water were investigated and teh similarity of the structure which was formed by the adsorption of metal ions by hydrogels with so called ionomers was examined. For this purpose, the hydrogels that were formed with 2ml vinyl pyrrolidone (VP) aqueous solutions of 0.06, 0.09, 0.12, 0.18, 0.24g itaconic acid with 1 ml of distilled water and exposed to 6''0''Co gamma source were used. The adsorbed quantity of Cu''+''+ ions in hydrogels was determined with UV-Visible absorption spectroscopy and adsorption isotherms of hydrogels were formed. The shapes of the lines showed that the adsorption of metal ions by hydrogels was in accordance with the multilayer physical adsorption isoterms. Same isotherms were also obtained by the relative intensity values ESR spectra. DSC study was carr...

  2. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  3. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  4. Long-term Dynamics of the Electron-nuclear Spin System of a Semiconductor Quantum Dot

    OpenAIRE

    Merkulov, I. A.; Alvarez, G; Yakovlev, D. R.; Schulthess, T. C.

    2009-01-01

    A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dynamics on the correlation time $\\tau_c$ of electron spin precession, with frequency $\\Omega$, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the perio...

  5. Spin Chains and Electron Transfer at Stepped Silicon Surfaces.

    Science.gov (United States)

    Aulbach, J; Erwin, S C; Claessen, R; Schäfer, J

    2016-04-13

    High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains. PMID:26974012

  6. Spin Chains and Electron Transfer at Stepped Silicon Surfaces.

    Science.gov (United States)

    Aulbach, J; Erwin, S C; Claessen, R; Schäfer, J

    2016-04-13

    High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains.

  7. Oxidative reactions during early stages of beer brewing studied by electron spin resonance and spin trapping.

    Science.gov (United States)

    Frederiksen, Anne M; Festersen, Rikke M; Andersen, Mogens L

    2008-09-24

    An electron spin resonance (ESR)-based method was used for evaluating the levels of radical formation during mashing and in sweet wort. The method included the addition of 5% (v/v) ethanol together with the spin trap alpha-4-pyridyl(1-oxide)- N- tert-butylnitrone (POBN) to wort, followed by monitoring the rate of formation of POBN spin adducts during aerobic heating of the wort. The presence of ethanol makes the spin trapping method more selective and sensitive for the detection of highly reactive radicals such as hydroxyl and alkoxyl radicals. Samples of wort that were collected during the early stages of the mashing process gave higher rates of spin adduct formation than wort samples collected during the later stages. The lower oxidative stability of the early wort samples was confirmed by measuring the rate of oxygen consumption during heating of the wort. The addition of Fe(II) to the wort samples increased the rate of spin adduct formation, whereas the addition of Fe(II) during the mashing had no effect on the oxidative stability of the wort samples. Analysis of the iron content in the sweet wort samples demonstrated that iron added during the mashing had no effect on the iron level in the wort. The moderate temperatures during the early steps of mashing allow the endogenous malt enzymes to be active. The potential antioxidative effects of different redox-active enzymes during mashing were tested by measuring the rate of spin adduct formation in samples of wort. Surprisingly, a high catalase dosage caused a significant, 20% reduction of the initial rate of radical formation, whereas superoxide dismutase had no effect on the oxidation rates. This suggests that hydrogen peroxide and superoxide are not the only intermediates that play a role in the oxidative reactions occurring during aerobic oxidation of sweet wort.

  8. MONTE CARLO SIMULATION OF SPIN-POLARIZED SECONDARY ELECTRONS FROM IRON

    Institute of Scientific and Technical Information of China (English)

    X. Sun; Z.J. Ding; H.M Li; K. Salma; Z.M. Zhang; W.S. Tan

    2005-01-01

    A Monte Carlo model considering the electron spin direction and spin asymmetry has been developed. The energy distribution of the secondary electron polarization and the primary energy dependence of the polarization from Fe are studied. The simulation results show that:(1) the intensity of the spin-up secondary electrons is larger thanvthat of thevspin-down secondary electrons, suggesting the secondary electrons are spin polarized; (2) the spin polarization of secondary electrons with nearly zero kinetic energy is higher than the average valance spin polarization, Pb=27% for Fe. With increasing kinetic energy, the spin polarization of the secondary electrons decreases to the value of Pb remaining constant at higher kinetic energies;(3) the spin polarization increases with an increase in the primary energy and reaches a saturation value at higher primary energy in both the Monte Carlo simulation and experimental results.

  9. Randomized benchmarking of quantum gates implemented by electron spin resonance

    Science.gov (United States)

    Park, Daniel K.; Feng, Guanru; Rahimi, Robabeh; Baugh, Jonathan; Laflamme, Raymond

    2016-06-01

    Spin systems controlled and probed by magnetic resonance have been valuable for testing the ideas of quantum control and quantum error correction. This paper introduces an X-band pulsed electron spin resonance spectrometer designed for high-fidelity coherent control of electron spins, including a loop-gap resonator for sub-millimeter sized samples with a control bandwidth ∼40 MHz. Universal control is achieved by a single-sideband upconversion technique with an I-Q modulator and a 1.2 GS/s arbitrary waveform generator. A single qubit randomized benchmarking protocol quantifies the average errors of Clifford gates implemented by simple Gaussian pulses, using a sample of gamma-irradiated quartz. Improvements in unitary gate fidelity are achieved through phase transient correction and hardware optimization. A preparation pulse sequence that selects spin packets in a narrowed distribution of static fields confirms that inhomogeneous dephasing (1 / T2∗) is the dominant source of gate error. The best average fidelity over the Clifford gates obtained here is 99.2 % , which serves as a benchmark to compare with other technologies.

  10. Designing Electronic Markets for Defeasible-based Contractual Agents

    OpenAIRE

    Groza, Adrian

    2013-01-01

    The design of punishment policies applied to specific domains linking agents actions to material penalties is an open research issue. The proposed framework applies principles of contract law to set penalties: expectation damages, opportunity cost, reliance damages, and party design remedies. In order to decide which remedy provides maximum welfare within an electronic market, a simulation environment called DEMCA (Designing Electronic Markets for Contractual Agents) was developed. Knowledge ...

  11. Suppression of electron spin decoherence of the diamond NV center by a transverse magnetic field

    OpenAIRE

    Shin, Chang S.; Avalos, Claudia E.; Butler, Mark C.; Wang, Hai-Jing; Seltzer, Scott J.; Liu, Ren-Bao; Pines, Alexander; Bajaj, Vikram S.

    2013-01-01

    We demonstrate that the spin decoherence of nitrogen vacancy (NV) centers in diamond can be suppressed by a transverse magnetic field if the electron spin bath is the primary decoherence source. The NV spin coherence, created in "a decoherence-free subspace" is protected by the transverse component of the zero-field splitting, increasing the spin-coherence time about twofold. The decoherence due to the electron spin bath is also suppressed at magnetic fields stronger than ~25 gauss when appli...

  12. Spin dependent electron transport through a magnetic resonant tunneling diode

    OpenAIRE

    Havu, Paula; Tuomisto, Noora; Vaananen, Riikka; Puska, Martti J.; Nieminen, Risto M.

    2004-01-01

    Electron transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum mechanical Green's functions formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green...

  13. Exchange effects on electron transport through single-electron spin-valve transistors

    NARCIS (Netherlands)

    Wetzels, W.; Bauer, G.E.W.; Grifoni, M.

    2006-01-01

    We study electron transport through single-electron spin-valve transistors in the presence of nonlocal exchange between the ferromagnetic leads and the central normal-metal island. The Coulomb interaction is described with the “orthodox model” for Coulomb blockade and we allow for noncollinear lead

  14. Controlling the Spin Polarization of the Electron Current in a Semimagnetic Resonant-Tunneling Diode

    OpenAIRE

    Beletskii, N. N.; Berman, G. P.; Borysenko, S. A.

    2004-01-01

    The spin filtering effect of the electron current in a double-barrier resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has been studied theoretically. The influence of the distribution of the magnesium ions on the coefficient of the spin polarization of the electron current has been investigated. The dependence of the spin filtering degree of the electron current on the external magnetic field and the bias voltage has been obtained. The effect of the total spin polariza...

  15. RKKY interaction for the spin-polarized electron gas

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  16. The S-DALINAC polarized electron injector SPIN

    International Nuclear Information System (INIS)

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  17. The S-DALINAC polarized electron injector SPIN

    International Nuclear Information System (INIS)

    At the superconducting 130 MeV Darmstadt electron linac S-DALINAC a source of polarized electrons has been installed. Pulsed Ti:Sapphire and diode lasers illuminate a superlattice-GaAs cathode, producing polarized electrons preaccelerated to 100 keV. A Wien filter and Mott polarimeter are used for spin manipulation and polarization measurement. Downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter has been installed. A Moeller polarimeter behind the main linac has been designed for energies between 50 and 130 MeV, and additional Compton-transmission polarimeters will be installed for online polarization monitoring. Photo-fission measurements of different uranium isotopes have been carried out and an active target setup is under investigation. We report on the status and performance of the source of polarized electrons and currently planned experiments with polarized beams.

  18. Agent based spin model for financial markets on regular lattices and complex networks

    Science.gov (United States)

    Kim, Hong-Joo; Yook, Soon-Hyung; Kim, Yup

    2008-03-01

    We study an agent based microscopic model for price formation in financial markets on various topologies motivated by the dynamics of agents. The model consists of interacting agents (spins) with localand global couplings. The local interaction denotes the tendency of agents to make the same decision with their interacting partners. On the other hand, the global coupling to the self-generating field represents the process which maximizes the profit of each agent. In order to incorporate more realistic situations, we also introduce an external field which changes in time. This time-varying external field represents any internal or external interference in the dynamics of the market. For the proper choice of model parameters, the competition between the interactions causes an intermittency dynamics and we find that the distribution of logarithmic return of price follows a power-law.

  19. Generation of a spin-polarized electron beam by multipole magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Grillo, Vincenzo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Institute of Optics, University of Rochester, Rochester, NY 14627 (United States); Santamato, Enrico [Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, 80126 Napoli (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy)

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin–magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. - Highlights: • Theory of generating spin-polarized electron beams. • Interacting electron vortex beams with space-variant magnetic fields. • Bohr–Pauli impossibility of generating spin-polarized free electrons.

  20. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  1. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation.

    Science.gov (United States)

    Drew, A J; Hoppler, J; Schulz, L; Pratt, F L; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Suter, A; Morley, N A; Malik, V K; Dubroka, A; Kim, K W; Bouyanfif, H; Bourqui, F; Bernhard, C; Scheuermann, R; Nieuwenhuys, G J; Prokscha, T; Morenzoni, E

    2009-02-01

    Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance. PMID:19029892

  2. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane;

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spin...

  3. Origin of the spin-asymmetry of hot-electron transmission in Fe

    NARCIS (Netherlands)

    Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    Using the technique of ballistic electron magnetic microscopy, we have studied the spin-asymmetry of transmission of hot electrons in Fe, for which a recent ab initio calculation has shown that the inelastic lifetime is similar for majority and minority spin. Nevertheless, using a spin-valve structu

  4. Spin Orbit Induced Electronic Structure and Magnetotransport in WTe2

    Science.gov (United States)

    Singh, David J.; Pan, Minghu; Yan, Jiaqiang; Yang, Biao; Zang, Yunyi; Zhang, Junjie; He, Ke; Wu, Menghao; Zhao, Yanfei; Mandrus, David; Wang, Jian; Xue, Qikun; Chi, Lifeng; Li, Qing

    We report electronic structure studies of WTe2, which shows an XMR behavior and is non-centrosymmetric. We find a spin-orbit split semimetallic band structure with a different Fermi surface topology than that initially reported, including Rashba split bands with Fermi surface around the zone center. The metallic properties are not one dimensional and are best described in terms of an anisotropic 3D metal with compensating low carrier density Fermi surfaces. The spin texture and transport is discussed as the origin of the XMR effect and in particular is consistent with the geometry in which the XMR effect is observed and its angle dependence. Work supported by DOE through the Computational Synthesis of Materials Software Project.

  5. Electron spin from Goudsmit and Uhlenbeck to Spintronics

    Science.gov (United States)

    Levy, Peter M.

    2010-03-01

    While the electron's spin was postulated by Goudsmit and Uhlenbeck to explain atomic spectra of gases, it was adopted in a very different setting a decade later to explain the unusual physical and electrical transport properties of ferromagnetic metals. A discovery in 1988 lead to control currents through the spin of the electron, i.e., spintronics. The initial idea of spin dependent transport dates back to Neville Mott's work in the mid- thirties in which he developed the s-d or two current model of conduction in the 3d transition-metal ferromagnetic metals. The methodology used for semiconductor heterostructures lead one to grow high quality metallic multilayers by the 1980's, and it was apparent to Albert Fert and Peter Gr"unberg [Nobel Laureates in Physics 2007] that one could alter the magnetic configuration in ferromagnetic metals with moderate magnetic fields, and thereby change their resistivities. I will review the principle ideas and developments that lead to this new field, called Spintronics, and focus on developments in three distinct time periods. The first from 1988-1995 which was dominated by metallic multilayers which displayed giant magnetoresistance (GMR), the second from 1995-2000 when reproducible magnetic tunnel junctions (MTJ's) were studied for their tunneling magnetoresistance (TMR), and the third period from 2000-2005 in which the ideas of Berger and Slonczewski were realized on the back action of currents on the magnetic background of the materials doing the conducting, i.e., current induced magnetization switching (CIMS). Current interest has focused on spin dependent transport in oxides and carbon based materials. These developments illustrate the broad range of activities in Spintronics; a field which is barely twenty years old.

  6. Separated spin evolution quantum hydrodynamics of degenerated electrons with spin-orbit interaction and extraordinary wave spectrum

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    To consider a contribution of the spin-orbit interaction in the extraordinary wave spectrum we derive a generalization of the separate spin evolution quantum hydrodynamics. Applying corresponding nonlinear Pauli equation we include Fermi spin current contribution in the spin evolution. We find that the spectrum of extraordinary waves consists of three branches: two of them are well-known extraordinary waves and the third one is the spin-electron acoustic wave (SEAW). Earlier SEAWs have been considered in the electrostatic limit. Here we include the electromagnetic effects in their spectrum at the propagation perpendicular to the external magnetic field. We find that the SEAW spectrum considerably changes at the account of transverse part of electric field. We obtain that the separate spin evolution modifies spectrum of the well-known extraordinary waves either. A change of the extraordinary wave spectrum due to the spin-orbit interaction is obtained as well.

  7. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

    Science.gov (United States)

    Hall, L. T.; Kehayias, P.; Simpson, D. A.; Jarmola, A.; Stacey, A.; Budker, D.; Hollenberg, L. C. L.

    2016-01-01

    Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal relaxation time of a single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept, we extracted the spectral distribution for the P1 electronic spin bath in diamond by using an ensemble of nitrogen-vacancy centres, and demonstrated excellent agreement with theoretical expectations. As the response of each nitrogen-vacancy spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7 nm, the application of this technique to the single nitrogen-vacancy case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems.

  8. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    Science.gov (United States)

    Cheng, Tian; Mishkovsky, Mor; Junk, Matthias J N; Münnemann, Kerstin; Comment, Arnaud

    2016-07-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1-(13) C]2-methylpropan-2-ol (tert-butanol) solution free of persistent radicals by using spin-labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized (13) C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin-labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging. PMID:27184565

  9. Spin polarization of low-energy electrons interacting with solid surfaces

    International Nuclear Information System (INIS)

    The problems of spin polarization of low-energy electrons interacting with solid surfaces are reviewed. Special attention is paid to describing the methodology of obtaining beams of polarized electrons, methods of analyzing the spin state of the electrons in a beam, and also to the method of spin-polarized low-energy electron diffraction. Results are presented of theoretical and experimental study of the energy, angular, and temperature-dependences of the spin polarization of electrons scattered by solid surfaces, and of the effect of adsorption on the polarization of electrons for nonmagnetic and magnetic surfaces. Experiments to study the spin polarization of inelastically scattered electrons are described. In conclusion the prospects of studies involving analysis of the spin state of emitted and scattered electrons are pointed out

  10. Electron spin resonance and transient photocurrent measurements on microcrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, T.

    2004-09-01

    The electronic properties of microcrystalline silicon ({mu}c-Si:H) films have been studied using electron spin resonance (ESR), transient photocurrent time-of-flight (TOF) techniques, and electrical conductivity measurements. Structural properties were determined by Raman spectroscopy. A wide range of structure compositions, from highly crystalline films with no discernable amorphous content, to predominantly amorphous films with no crystalline phase contributions, was investigated. Models and possible explanations concerning the nature and energetic distribution of electronic defects as a function of film composition are discussed. It is shown that the spin density N{sub S} in {mu}c-Si:H films is linked strongly to the structure composition of the material. Both reversible and irreversible changes in the ESR signal and dark conductivity due to atmospheric effects are found in {mu}c-Si:H. The porous structure of highly crystalline material facilitates in-diffusion of atmospheric gases, which strongly affects the character and/or density of surface states. Two contributing processes have been identified, namely adsorption and oxidation. Both processes lead to an increase of N{sub S}. Measurements on n-type {mu}c-Si:H films were used as a probe of the density of gap states, confirming that the spin density NS is related to the density of defects. The results confirm that for a wide range of structural compositions, the doping induced Fermi level shift in {mu}c-Si:H is governed by compensation of defect states, for doping concentrations up to the dangling bond spin density. At higher concentrations a doping efficiency close to unity was found, confirming that in {mu}c-Si:H the measured spin densities represent the majority of gap states (N{sub S}=N{sub DB}). By applying the TOF technique to study pin solar cells based on {mu}c-Si:H, conclusive hole drift mobility data were obtained. Despite the predominant crystallinity of these samples, the temperature-dependence of

  11. Nuclear spin induced collapse and revival shape of Rabi oscillations of a single electron spin in diamond

    Institute of Scientific and Technical Information of China (English)

    Hu Xin; Liu Dong-Qi; Pan Xin-Yu

    2011-01-01

    A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature.Because of hyperfine interaction between the host 14N nuclear spin and the nitrogen-vacancy centre electron spin,different orientations of the 14N nuclear spins lead to a triplet splitting of the transition between ground state (ms =0) and excited state (ms =1).The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm.Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.

  12. Coherent transfer of light polarization to electron spins in a semiconductor

    OpenAIRE

    Kosaka, Hideo; Shigyou, Hideki; Mitsumori, Yasuyoshi; Rikitake, Yoshiaki; Imamura, Hiroshi; Kutsuwa, Takeshi; Arai, Koichiro; Edamatsu, Keiichi

    2007-01-01

    We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g-factors of electrons and light holes. The result encourages us to make a quantum media converter betwe...

  13. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology. PMID:25763310

  14. Force detected electron spin resonance at 94 GHz.

    Science.gov (United States)

    Cruickshank, Paul A S; Smith, Graham M

    2007-01-01

    Force detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and image distributions of electron spins, and it offers both extremely high absolute sensitivity and high spatial imaging resolution. However, compared to conventional induction mode ESR the technique also has a comparatively poor concentration sensitivity and it introduces complications in interpreting and combining both spectroscopy and imaging. One method to improve both sensitivity and spectral resolution is to operate in high magnetic fields in order to increase the sample magnetization and g-factor resolution. In this article we present FDESR measurements on the organic conductor (fluoranthene)(2)PF(6) at 3.2 T, with a corresponding millimeter-wave frequency of 93.5 GHz, which we believe are the highest field results for FDESR reported in the literature to date. A magnet-on-cantilever approach was used, with a high-anisotropy microwave ferrite as the gradient source and employing cyclic saturation to modulate the magnetization at the cantilever fundamental frequency. PMID:17503940

  15. Nuclear Tuning and Detuning of the Electron Spin Resonance in a Quantum Dot

    OpenAIRE

    Danon, Jeroen; Nazarov, Yuli V.

    2007-01-01

    We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at small frequency mismatch the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch its effect is opposite: The nuclear system is bistable, and in one of the stable states the field accurately tunes the electron spin splitting to resonance. In this state the nuclear field fluctuations are strongly suppressed and nuclear spin relaxation is accelerated.

  16. Nuclear Tuning and Detuning of the Electron Spin Resonance in a Quantum Dot: Theoretical Consideration

    OpenAIRE

    Danon, J.; Nazarov, Y. V.

    2008-01-01

    We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the stable states, the field accurately tunes the electron spin splitting to resonance. In this state, the nuclear field fluctuations are strongly suppressed, and nuclear spin relaxation is accelerated.

  17. Electronic and spin properties of hole point contacts

    OpenAIRE

    Zuelicke, U.

    2006-01-01

    We have studied theoretically the effect of a tuneable lateral confinement on two-dimensional hole systems realised in III-V semiconductor heterostructures. Based on the 4x4 Luttinger description of the valence band, we have calculated quasi-onedimensional (quasi-1D) hole subband energies and anisotropic Lande g-factors. Confinement-induced band mixing results in the possibility to manipulate electronic and spin properties of quasi-1D hole states over a much wider range than is typically poss...

  18. Electron spin resonance in the study of diamond

    International Nuclear Information System (INIS)

    The role of electron spin resonance in the study of both natural and synthetic diamond is reviewed in this article. A brief survey of the physical significance of the constants in the spin Hamiltonian, as well as experimental technique, is given. The review then deals in some detail with the various nitrogen centres found in diamond, treating exchange-interaction, Jahn-Teller and relaxation effects associated with these centres. Acceptor impurities and transition-ion impurities are briefly discussed. The rest of the review is then devoted to centres created by irradiation, subsequent heat treatment, mechanical deformation and ion implantation. The spin Hamiltonian parameters of these centres are tabled and the results are discussed within the framework of the defect molecule approach. In conclusion, the correlation between optical effects and the ESR measurements in the case of four defect centres are discussed in some detail as this seems to be a powerful method of testing the various models suggested for the observed defects. It is hoped that the tables given of the observed centres found in diamond up to the present will be useful to researchers in this field. 155 references. (author)

  19. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  20. Coherent transfer of light polarization to electron spins in a semiconductor.

    Science.gov (United States)

    Kosaka, Hideo; Shigyou, Hideki; Mitsumori, Yasuyoshi; Rikitake, Yoshiaki; Imamura, Hiroshi; Kutsuwa, Takeshi; Arai, Koichiro; Edamatsu, Keiichi

    2008-03-01

    We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation, we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g factors of electrons and light-holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron-spin qubits in semiconductors. PMID:18352739

  1. Spin Relaxation of Electrons in Single InAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    MA Shan-Shan; DOU Xiu-Ming; CHANG Xiu-Ying; SUN Bao-Quan; XIONG Yong-Hua; NIU Zhi-Chuan; NI Hai-Qiao

    2009-01-01

    By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X~+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

  2. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    Science.gov (United States)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  3. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    Science.gov (United States)

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998

  4. Local spin torque induced by electron electric dipole moment in the Ybf molecule

    Science.gov (United States)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo

    2014-10-01

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  5. Local spin torque induced by electron electric dipole moment in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  6. Polarization in elastic electron scattering from spin 1/2 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jakubassa-Amundsen, D.H., E-mail: dj@math.lmu.de [Mathematics Institute, University of Munich, Theresienstrasse 39, 80333 Munich (Germany)

    2012-12-17

    The spin asymmetry in the scattering of highly relativistic spin-polarized electrons from inert nuclei is calculated by means of a coherent superposition of the electric and magnetic transition amplitudes. The potential scattering is treated with the help of a phase shift analysis while the elastic magnetic scattering is described within the Born approximation. With the exception of longitudinally spin-polarized electrons, the spin asymmetry is generally found to be reduced when magnetic scattering is taken into account. Predictions are made for 20-100 MeV electrons scattering from the spin 1/2 nuclei {sup 1}H, {sup 19}F, {sup 31}P and {sup 207}Pb.

  7. Agent-based services for B2B electronic commerce

    Science.gov (United States)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  8. Interaction induced staggered spin-orbit order in two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Das, Tanmoy [Los Alamos National Laboratory

    2012-06-05

    Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.

  9. Electron spin polarization in strong-field ionization of xenon atoms

    Science.gov (United States)

    Hartung, Alexander; Morales, Felipe; Kunitski, Maksim; Henrichs, Kevin; Laucke, Alina; Richter, Martin; Jahnke, Till; Kalinin, Anton; Schöffler, Markus; Schmidt, Lothar Ph. H.; Ivanov, Misha; Smirnova, Olga; Dörner, Reinhard

    2016-08-01

    As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter, from solids to molecules and atoms, for example, by causing magnetism. Yet, despite its importance, the spin dynamics of the electrons released during the interaction of atoms with strong ultrashort laser pulses has remained experimentally unexplored. Here, we report the experimental detection of electron spin polarization by the strong-field ionization of xenon atoms and support our results with theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to the production of sub-femtosecond spin-polarized electron pulses with applications ranging from probing the magnetic properties of matter at ultrafast timescales to testing chiral molecular systems with sub-femtosecond temporal and sub-ångström spatial resolutions.

  10. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  11. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    Science.gov (United States)

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  12. Detection of single electron spin resonance in a double quantum dota)

    Science.gov (United States)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  13. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs

    Science.gov (United States)

    Botzem, Tim; McNeil, Robert P. G.; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-04-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III-V nanowires.

  14. Understanding and controlling spin-systems using electron spin resonance techniques

    Science.gov (United States)

    Martens, Mathew

    Single molecule magnets (SMMs) posses multi-level energy structures with properties that make them attractive candidates for implementation into quantum information technologies. However there are some major hurdles that need to be overcome if these systems are to be used as the fundamental components of an eventual quantum computer. One such hurdle is the relatively short coherence times these systems display which severely limits the amount of time quantum information can remain encoded within them. In this dissertation, recent experiments conducted with the intent of bringing this technology closer to realization are presented. The detailed knowledge of the spin Hamiltonian and mechanisms of decoherence in SMMs are absolutely essential if these systems are to be used in technologies. To that effect, experiments were done on a particularly promising SMM, the complex K6[VIV15AsIII 6O42(H2O)] · 8H2O, known as V15. High-field electron spin resonance (ESR) measurements were performed on this system at the National High Magnetic Field Laboratory. The resulting spectra allowed for detailed analysis of the V15 spin Hamiltonian which will be presented as well as the most precise values yet reported for the g-factors of this system. Additionally, the line widths of the ESR spectra are studied in depth and found to reveal that fluctuations within the spin-orbit interaction are a mechanism for decoherence in V15. A new model for decoherence is presented that describes very well both the temperature and field orientation dependences of the measured ESR line widths. Also essential is the ability to control spin-states of SMMs. Presented in this dissertation as well is the demonstration of the coherent manipulation of the multi-state spin system Mn2+ diluted in MgO by means of a two-tone pulse drive. Through the detuning between the excitation and readout radio frequency pulses it is possible to select the number of photons involved in a Rabi oscillation as well as increase

  15. Conserved Spin and Orbital Angular Momentum Hall Current in a Two-Dimensional Electron System with Rashba and Dresselhaus Spin-orbit Coupling

    OpenAIRE

    Chen, Tsung-Wei; Huang, Chih-Meng; Guo, G. Y.

    2006-01-01

    We study theoretically the spin and orbital angular momentum (OAM) Hall effect in a high mobility two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin and OAM torque corrections, respectively, to the spin and OAM currents. We find that when both bands are occupied, the spin Hall conductivity is still a constant (i.e., independent of the carrier density) which, however, has an opposite sign to the previous value. The spin Hall conductivit...

  16. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    Science.gov (United States)

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-01

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB. PMID:21690828

  17. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    2002-01-01

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet two

  18. Electron-nuclear double resonance spectroscopy (and electron spin-echo envelope modulation spectroscopy) in bioinorganic chemistry

    OpenAIRE

    Hoffman, Brian M.

    2003-01-01

    This perspective discusses the ways that advanced paramagnetic resonance techniques, namely electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) spectroscopies, can help us understand how metal ions function in biological systems.

  19. Onsager relations in a two-dimensional electron gas with spin-orbit coupling.

    Science.gov (United States)

    Gorini, C; Raimondi, R; Schwab, P

    2012-12-14

    Theory predicts for the two-dimensional electron gas with only a Rashba spin-orbit interaction a vanishing spin Hall conductivity and at the same time a finite inverse spin Hall effect. We show how these seemingly contradictory results are compatible with the Onsager relations: The latter do hold for spin and particle (charge) currents in the two-dimensional electron gas, although (i) their form depends on the experimental setup and (ii) a vanishing bulk spin Hall conductivity does not necessarily imply a vanishing spin Hall effect. We also discuss the situation in which extrinsic spin orbit from impurities is present and the bulk spin Hall conductivity can be different from zero.

  20. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings

    Institute of Scientific and Technical Information of China (English)

    XIONG Jian-Wen; HU Liang-Bin; ZHANG Zhen-Xi

    2006-01-01

    @@ Based on the Heisenberg equations of motion for the electron orbital and spin degrees of freedom in two-dimensional electronic systems with both Rashba and Dresselhaus spin-orbit couplings, we show that an ac electric field can cause an ac spin Hall current in such a system. In contrast to some previous theoretical prediction, the spin Hall current will be suppressed completely in the dc limit. We argue that the suppression of dc spin Hall currents in such a system is actually a much natural result of the dynamic spin evolution due to the combined action of a dc external electric field and the intrinsic spin-orbit coupling.

  1. Possible Roles of Neural Electron Spin Networks in Memory and Consciousness

    CERN Document Server

    Hu, H P

    2004-01-01

    Spin is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. Thus, we have recently theorized that spin is the mind-pixel and developed a qualitative model of consciousness based on nuclear spins inside neural membranes and proteins. In this paper, we explore the possibility of unpaired electron spins being the mind-pixels. Besides free O2 and NO, the main sources of unpaired electron spins in neural membranes and proteins are transition metal ions and O2 and NO bound/absorbed to large molecules, free radicals produced through biochemical reactions and excited molecular triplet states induced by fluctuating internal magnetic fields. We show that unpaired electron spin networks inside neural membranes and proteins are modulated by action potentials through exchange and dipolar coupling tensors and spin-orbital coupling and g-factor tensors and perturbed by microscopically strong and fluctuating internal magnetic...

  2. Electron spin resonance of copper labelled myoglobin crystals

    International Nuclear Information System (INIS)

    Single crystals of sperm whale met mioglobin were doped with Cu2+ by immersion in a satured solution of NH3(SO4) containing diluted Cu(SO4). Angular variations of the EPR espectra were measured in the planes: ab, ac* and bc* (c* is an axis perpendicular to the ab plane of the monoclinic crystal). A fitting using a spin Hamiltonian with axial symmetry calculated up to second order gives the EPR hyperfine constants g = (2.328+-0.002), g = (2.069+-0.002), A = (162+-3) gauss and A = (20+-3) gauss. The parallel axis makes an angle of (390 +- 20) with the crystaline b axis. A super hyperfine spectra was evidenciated in a perpendicular direction associated with gxx or gyy. This splitting may be attributed to a spread of a wavefunction of the unpaired electron over one nitrogene of the imidazole ring of the Histidine A10 in Mb: Cu2+

  3. Identification of irradiated chicken meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Studies were carried out on detection of irradiation treatment in chicken using electron spin resonance (ESR) spectroscopy. The effect of gamma- irradiation treatment on radiation induced signal in different types of chicken namely, broiler, deshi and layers was studied. Irradiation treatment induced a characteristic ESR signal that was not detected in non-irradiated samples. The shape of the signal was not affected by type of the bone. The intensity of radiation induced ESR signal was affected by factors such as absorbed radiation dose, bone type irradiation temperature, post-irradiation storage, post-irradiation cooking and age of the bird. Deep-frying resulted in the formation of a symmetric signal that had a different shape and was weaker than the radiation induced signal. This technique can be effectively used to detect irradiation treatment in bone-in chicken meat even if stored and/or subjected to various traditional cooking procedures. (author)

  4. Electron Spin Resonance Imaging Utilizing Localized Microwave Magnetic Field

    Science.gov (United States)

    Furusawa, Masahiro; Ikeya, Motoji

    1990-02-01

    A method for two-dimensional electron spin resonance (ESR) imaging utilizing a localized microwave field is presented with an application of the image processing technique. Microwaves are localized at the surface of a sample by placing a sample in contact with a pinholed cavity wall. A two-dimensional ESR image can be obtained by scanning the sample in contact with the cavity. Some ESR images which correspond to distribution of natural radiation damages and paramagnetic impurities in carbonate fossils of a crinoid and an ammonite are presented as applications in earth science. Resolution of a raw ESR image is restricted by the diameter of the hole (1 mm). Higher resolution of 0.2 mm is obtained by using a deconvolution algorithm and instrument function for the hole. Restored images of a test sample of DPPH and of a fossil crinoid are presented.

  5. Spin and Time-Reversal Symmetries of Superconducting Electron Pairs Probed by the Muon Spin Rotation and Relaxation Technique

    Science.gov (United States)

    Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.

    2016-09-01

    Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.

  6. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution.

    Science.gov (United States)

    Vasilyev, D; Kirschner, J

    2016-08-01

    We describe a new "complete" spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the "spin-polarizing mirror" type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å(-1), at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution. PMID:27587131

  7. Spin-dependent electron transmission through ultra-thin magnetic layers: towards highly discriminative, compact spin detectors

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluijs, A.M.; Drouhin, H.J.; Lampel, G.; Lassailly, Y.; Marliere, C. [Ecole Polytechnique, 91 - Palaiseau (France)

    1994-10-01

    At low energy, a longitudinally spin-polarized electron beam impinges on an ultrathin, self-supported ferromagnetic target, consisting of a 1 nm-thick cobalt film sandwiched between 21 and 2 nm-thick gold layers, and which is magnetized perpendicularly to the surface. The current transmitted by the target depends on the spin of the electrons. Cesium deposition on both sides of the target increases the transmission ratio from about 1 x 10{sup -5} up to 3 x 10{sup -4} and also increases the transmission spin-asymmetry from 15 to about 40%. Such a structure is well suited to the construction of convenient and compact spin-detectors. (authors). 4 figs., 9 refs.

  8. Fast photodriven electron spin coherence transfer: a quantum gate based on a spin exchange J-jump.

    Science.gov (United States)

    Kobr, Lukáš; Gardner, Daniel M; Smeigh, Amanda L; Dyar, Scott M; Karlen, Steven D; Carmieli, Raanan; Wasielewski, Michael R

    2012-08-01

    Photoexcitation of the electron donor (D) within a linear, covalent donor-acceptor-acceptor molecule (D-A(1)-A(2)) in which A(1) = A(2) results in sub-nanosecond formation of a spin-coherent singlet radical ion pair state, (1)(D(+•)-A(1)(-•)-A(2)), for which the spin-spin exchange interaction is large: 2J = 79 ± 1 mT. Subsequent laser excitation of A(1)(-•) during the lifetime of (1)(D(+•)-A(1)(-•)-A(2)) rapidly produces (1)(D(+•)-A(1)-A(2)(-•)), which abruptly decreases 2J 3600-fold. Subsequent coherent spin evolution mixes (1)(D(+•)-A(1)-A(2)(-•)) with (3)(D(+•)-A(1)-A(2)(-•)), resulting in mixed states which display transient spin-polarized EPR transitions characteristic of a spin-correlated radical ion pair. These photodriven J-jump experiments show that it is possible to use fast laser pulses to transfer electron spin coherence between organic radical ion pairs and observe the results using an essentially background-free time-resolved EPR experiment. PMID:22799875

  9. Determination of nitrogen spin concentration in diamond using double electron-electron resonance

    Science.gov (United States)

    Stepanov, Viktor; Takahashi, Susumu

    2016-07-01

    Diamond has been extensively investigated recently due to a wide range of potential applications of nitrogen-vacancy (NV) defect centers existing in a diamond lattice. The applications include magnetometry and quantum information technologies, and long decoherence time (T2) of NV centers is critical for those applications. Although it has been known that T2 highly depends on the concentration of paramagnetic impurities in diamond, precise measurement of the impurity concentration remains challenging. In the present work we show a method to determine a wide range of the nitrogen concentration (n ) in diamond using a wide-band high-frequency electron spin resonance and double electron-electron resonance spectrometer. Moreover, we investigate T2 of the nitrogen impurities and show the relationship between T2 and n . The method developed here is applicable for various spin systems in solid and implementable in nanoscale magnetic resonance spectroscopy with NV centers to characterize the concentration of the paramagnetic spins within a microscopic volume.

  10. Electron transport and spin phenomena in hybrid organic/inorganic systems

    NARCIS (Netherlands)

    Naber, Wouter Johannes Marinus

    2010-01-01

    This thesis describes several experiments in hybrid organic/inorganic systems, in which electron transport and/or spin behavior is studied. The basic concepts of organic electronics and spintronics are given, to understand the described spin-valve experiments. The problems and obstacles for injecti

  11. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  12. Pauli Spin Paramagnetism and Electronic Specific Heat in Generalised d-Dimensions

    Institute of Scientific and Technical Information of China (English)

    Muktish Acharyya

    2011-01-01

    The variations of pauli spin paramagnetic susceptibility and the electronic specific heat of solids, are calculated as functions of temperature following the free electron approximation, in generalised d-dimensions.The results are compared and become consistent with that obtained in three dimensions.Interestingly, the Pauli spin paramagnetic susceptibility becomes independent of temperature only in two dimensions.

  13. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  14. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    Science.gov (United States)

    Wójcik, P.; Spisak, B. J.; Wołoszyn, M.; Adamowski, J.

    2012-11-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner-Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current-voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current-voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current-voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode.

  15. Electronic spin transport in bilayer and single layer graphene

    OpenAIRE

    Yang, Tsung-Yeh

    2011-01-01

    Graphene has drawn plenty of attention since its discovery in 2004. Due to its excellent properties, such as long spin relaxation length and gate-tunable spin transport, graphene is expected to be a potential candidate for spintronics applications. In this thesis, the systematic study of the spin relaxation mechanisms in bilayer and single layer graphene is presented. Graphene-based spin valve devices in four-terminal non-local geometry are fabricated for the investigation of the charge and s...

  16. Electronic spin transport in graphene field-effect transistors

    NARCIS (Netherlands)

    Popinciuc, M.; Jozsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport experiments in graphene, a single layer of carbon atoms ordered in a honeycomb lattice, indicate spin-relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin-relaxation times are due to extrinsic factors,

  17. Universal enhancement of the optical readout fidelity of single electron spins

    CERN Document Server

    Steiner, M; Beck, J; Jelezko, F; Wrachtrup, J

    2009-01-01

    Precise readout of spin states is crucial for any approach towards physical realization of a spin-based quantum computer and for magnetometry with single spins. Here, we report a new method to strongly improve the optical readout fidelity of electron spin states associated with single nitrogen-vacancy (NV) centers in diamond. The signal-to-noise ratio is enhanced significantly by performing conditional flip-flop processes between the electron spin and the nuclear spin of the NV center's nitrogen atom. The enhanced readout procedure is triggered by a short preparatory pulse sequence. As the nitrogen nuclear spin is intrinsically present in the system, this method is universally applicable to any nitrogen-vacancy center.

  18. Generalized Elliott-Yafet theory of electron spin relaxation in metals: origin of the anomalous electron spin lifetime in MgB2.

    Science.gov (United States)

    Simon, F; Dóra, B; Murányi, F; Jánossy, A; Garaj, S; Forró, L; Bud'ko, S; Petrovic, C; Canfield, P C

    2008-10-24

    The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.

  19. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  20. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  1. Spin dynamics of hopping electrons in quantum wires: Algebraic decay and noise

    Science.gov (United States)

    Shumilin, A. V.; Sherman, E. Ya.; Glazov, M. M.

    2016-09-01

    We study theoretically the spin decoherence and intrinsic spin noise in semiconductor quantum wires caused by an interplay of electrons hopping between the localized states and the hyperfine interaction of electron and nuclear spins. At a sufficiently low density of localization sites the hopping rates have an exponentially broad distribution. It allows the description of the spin dynamics in terms of closely situated "pairs" of sites and single "reaching" states, from which the series of hops result in electrons localized inside a "pair." The developed analytical model and numerical simulations demonstrate disorder-dependent algebraic tails in the spin decay and power-law singularities features in the low-frequency part of the spin-noise spectrum.

  2. Fast spin information transfer between distant quantum dots using individual electrons

    Science.gov (United States)

    Bertrand, B.; Hermelin, S.; Takada, S.; Yamamoto, M.; Tarucha, S.; Ludwig, A.; Wieck, A. D.; Bäuerle, C.; Meunier, T.

    2016-08-01

    Transporting ensembles of electrons over long distances without losing their spin polarization is an important benchmark for spintronic devices. It usually requires injecting and probing spin-polarized electrons in conduction channels using ferromagnetic contacts or optical excitation. In parallel with this development, important efforts have been dedicated to achieving control of nanocircuits at the single-electron level. The detection and coherent manipulation of the spin of a single electron trapped in a quantum dot are now well established. Combined with the recently demonstrated control of the displacement of individual electrons between two distant quantum dots, these achievements allow the possibility of realizing spintronic protocols at the single-electron level. Here, we demonstrate that spin information carried by one or two electrons can be transferred between two quantum dots separated by a distance of 4 μm with a classical fidelity of 65%. We show that at present it is limited by spin flips occurring during the transfer procedure before and after electron displacement. Being able to encode and control information in the spin degree of freedom of a single electron while it is being transferred over distances of a few micrometres on nanosecond timescales will pave the way towards ‘quantum spintronics’ devices, which could be used to implement large-scale spin-based quantum information processing.

  3. Organic electron donors as powerful single-electron reducing agents in organic synthesis.

    Science.gov (United States)

    Broggi, Julie; Terme, Thierry; Vanelle, Patrice

    2014-01-01

    One-electron reduction is commonly used in organic chemistry for the formation of radicals by the stepwise transfer of one or two electrons from a donor to an organic substrate. Besides metallic reagents, single-electron reducers based on neutral organic molecules have emerged as an attractive novel source of reducing electrons. The past 20 years have seen the blossoming of a particular class of organic reducing agents, the electron-rich olefins, and their application in organic synthesis. This Review gives an overview of the different types of organic donors and their specific characteristics in organic transformations.

  4. Scattering of spin-polarized electron in an Aharonov Bohm potential

    Science.gov (United States)

    Khalilov, V. R.; Ho, Choon-Lin

    2008-05-01

    The scattering of spin-polarized electrons in an Aharonov-Bohm vector potential is considered. We solve the Pauli equation in 3 + 1 dimensions taking into account explicitly the interaction between the three-dimensional spin magnetic moment of electron and magnetic field. Expressions for the scattering amplitude and the cross section are obtained for spin-polarized electron scattered off a flux tube of small radius. It is also shown that bound electron states cannot occur in this quantum system. The scattering problem for the model of a flux tube of zero radius in the Born approximation is briefly discussed.

  5. Scattering of spin-polarized electron in an Aharonov--Bohm potential

    CERN Document Server

    Khalilov, V R

    2007-01-01

    The scattering of spin-polarized electrons in an Aharonov--Bohm vector potential is considered. We solve the Pauli equation in 3+1 dimensions taking into account explicitly the interaction between the three-dimensional spin magnetic moment of electron and magnetic field. Expressions for the scattering amplitude and the cross section are obtained for spin-polarized electron scattered off a flux tube of small radius. It is also shown that bound electron states cannot occur in this quantum system. The scattering problem for the model of a flux tube of zero radius in the Born approximation is briefly discussed.

  6. Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas

    OpenAIRE

    Schwab, Peter; Raimondi, Roberto; Gorini, Cosimo

    2010-01-01

    We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion symmetry is broken so that the standard arguments do not apply. We demonstrate that in the presence of a Rashba type of spin-orbit...

  7. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  8. Induction-Detection Electron Spin Resonance with Sensitivity of 1000 Spins: En Route to Scalable Quantum Computations

    CERN Document Server

    Blank, Aharon; Shklyar, Roman; Twig, Ygal

    2013-01-01

    Spin-based quantum computation (QC) in the solid state is considered to be one of the most promising approaches to scalable quantum computers. However, it faces problems such as initializing the spins, selectively addressing and manipulating single spins, and reading out the state of the individual spins. We have recently sketched a scheme that potentially solves all of these problems5. This is achieved by making use of a unique phosphorus-doped 28Si sample (28Si:P), and applying powerful new electron spin resonance (ESR) techniques for parallel excitation, detection, and imaging in order to implement QCs and efficiently obtain their results. The beauty of our proposed scheme is that, contrary to other approaches, single-spin detection sensitivity is not required and a capability to measure signals of ~100-1000 spins is sufficient to implement it. Here we take the first experimental step towards the actual implementation of such scheme. We show that, by making use of the smallest ESR resonator constructed to ...

  9. Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization

    Science.gov (United States)

    Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2008-03-01

    We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.

  10. Electron spin and the origin of Bio-homochirality I. Extant enzymatic reaction model

    CERN Document Server

    Wang, Wei

    2013-01-01

    In this paper, I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. Specifically speaking, the electrons released from the coenzyme NAD(P)H of amino acid synthase are heterogeneous in spin states; however, when they pass through the chiral alpha-helix structure of the enzymes to the site of amino acid synthesis at the other end of the helix, their spin states are filtered and polarized, producing only spin up electrons; once the spin-polarized electrons participate in the reductive reaction between alpha-oxo acid and ammonia, only L-amino acids are formed according to the Pauli exclusion principle.

  11. Effect of electron electric dipole moment on the spin dynamics of the YbF molecule

    Science.gov (United States)

    Soga, Kota; Fukuda, Masahiro; Senami, Masato; Tachibana, Akitomo

    2014-09-01

    The existence of the large value of the electron electric dipole moment (EDM) is predicted in extensions of the standard model (SM). To find or exclude physics beyond SM, the EDM is studied in many experiments, where the precession motion of the electron spin is used for the detection. This motion depends on the internal effective electric field (EEF). The accurate prediction of the relation between the EDM and the spin motion is mandatory for deriving the constraint of the EDM. In addition to the computation of EEF, our group studies the spin dynamics by the equation of motion (EOM) of spin. In our group, we have studied the spin motion based on quantum field theory (QFT). In QFT, the spin motion is governed by the spin torque and zeta force. The latter gives local effects and cannot be described in quantum mechanics (QM). Hence, in our approach, there is a difference from ordinary treatment of the spin motion based on QM. In this work, we show that the existence of the EDM modifies our EOM of the spin, that is, the EDM gives the additional contribution to the spin torque. This torque is induced by not only electric field but also magnetic field as a result of relativistic generalization. Then we show our results of the local spin torque distribution for the YbF molecule.

  12. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering

    Energy Technology Data Exchange (ETDEWEB)

    Strocov, Vladimir N., E-mail: vladimir.strocov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Petrov, Vladimir N. [St Petersburg Polytechnical University, Polytechnicheskaya Str. 29, St Petersburg RU-195251 (Russian Federation); Dil, J. Hugo [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-04-10

    The concept of a two-dimensional multichannel electron spin detector based on Mott scattering and imaging-type electron optics is presented. The efficiency increase of about four orders of magnitude opens new scientific fields including buried magnetic interfaces. The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10{sup 4} which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.

  13. Multitudes of Stable States in a Periodically Driven Electron-Nuclear Spin System in a Quantum Dot

    OpenAIRE

    Korenev, V. L.

    2010-01-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. A similar frequency-loc...

  14. Electronic agents on the Internet: A new way to satisfy the consumer?

    OpenAIRE

    Rolland, Sylvie; Wallet-Wodka, Déborah

    2003-01-01

    International audience Our purpose in this article is to present the concept of electronic agent used in e-commerce and its impact on consumer satisfaction. Electronic agents represent the future of electronic business. They help the consumers in an environment where all the information is available but hard to deal with. We try to study the electronic agent in a consumer decision process perspective and to examine the different sort of agents depending on their relationships with vendors ...

  15. Mechanical detection of electron spin resonance beyond 1 THz

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideyuki [Organization of Advanced Science and Technology, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501 (Japan); Ohmichi, Eiji [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)

    2015-11-02

    We report the cantilever detection of electron spin resonance (ESR) in the terahertz (THz) region. This technique mechanically detects ESR as a change in magnetic torque that acts on the cantilever. The ESR absorption of a tiny single crystal of Co Tutton salt, Co(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}⋅6H{sub 2}O, was observed in frequencies of up to 1.1 THz using a backward travelling wave oscillator as a THz-wave source. This is the highest frequency of mechanical detection of ESR till date. The spectral resolution was evaluated with the ratio of the peak separation to the sum of the half-width at half maximum of two absorption peaks. The highest resolution value of 8.59 ± 0.53 was achieved at 685 GHz, while 2.47 ± 0.01 at 80 GHz. This technique will not only broaden the scope of ESR spectroscopy application but also lead to high-spectral-resolution ESR imaging.

  16. A bias-tunable electron-spin filter based on a two-dimensional electron gas modulated by ferromagnetic-Schottky metal stripes

    International Nuclear Information System (INIS)

    We investigate the effect of the bias in an electron-spin filter based on a two-dimensional electron gas modulated by ferromagnetic-Schottky metal stripes. The numerical results show that the electron transmission and the conductance as well as the spin polarization are strongly dependent on the bias applied to the device. - Research highlights: → We propose a bias-tunable electron-spin filter. → The transmission and the conductance depend on the bias and the electron energy. → The spin polarization depends on the bias and the electron energy. → The results are helpful for making new types of bias-tunable spin filters.

  17. The Kondo temperature of a two-dimensional electron gas with Rashba spin-orbit coupling.

    Science.gov (United States)

    Chen, Liang; Sun, Jinhua; Tang, Ho-Kin; Lin, Hai-Qing

    2016-10-01

    We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling. PMID:27494800

  18. Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories

    OpenAIRE

    Sezer, Deniz; Freed, Jack H.; Roux, Benoît

    2008-01-01

    Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of ns) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, two-step procedure, based on the probabilistic framework of hidden Markov models, is developed to build a discr...

  19. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    KAUST Repository

    Bučinský, Lukáš

    2014-06-01

    The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.

  20. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds

    CERN Document Server

    Hoang, Thai M; Bang, Jaehoon; Li, Tongcang

    2015-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potenti...

  1. Nonlinear separate spin evolution in degenerate electron-positron-ion plasmas

    CERN Document Server

    Iqbal, Z

    2016-01-01

    The non-linear evolution of spin-electron acoustic, positron-acoustic, and spin-electron-positron acoustic waves is considered. It is demonstrated that weakly nonlinear dynamics of each wave leads to the soliton formation. Altogether, we report on existence of three different solitons. The spin-electron acoustic soliton known for electron-ion plasmas is described for electron-positron-ion plasmas for the first time. The existence of the spin-electron-positron acoustic soliton is reported for the first time. The positron-acoustic soliton and the spin-electron-positron acoustic soliton arise as the areas of a positive electric potential. The spin-electron acoustic soliton behaves as the area of a negative electric potential at the relatively small positron imbalance $n_{0p}/n_{0e}=0.1$ and as the area of a positive electric potential at the relatively large positron imbalance $n_{0p}/n_{0e}=0.5$.

  2. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A;

    2016-01-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field...

  3. Nuclear Tuning and Detuning of the Electron Spin Resonance in a Quantum Dot: Theoretical Consideration

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2008-01-01

    We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the

  4. Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures

    CERN Document Server

    Fanciulli, Marco

    2009-01-01

    Deals with the discussion of the development of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. This title discusses opportunities for spin resonance techniques, with emphasis on fundamental physics, nanoelectronics, spintronics, and quantum information processing

  5. Correlation energy in a spin polarized two dimensional electron liquid in the high density limit

    OpenAIRE

    Chesi, S; Giuliani, G. F.

    2006-01-01

    We have obtained an analytic expression for the ring diagram contribution to the correlation energy of a two-dimensional electron liquid as a function of the uniform fractional spin polarization. Our results can be used to improve the interpolation formulas which represent the basic ingredient for the construction of modern spin-density functionals in two dimensions.

  6. Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument

    Science.gov (United States)

    Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner

    2014-05-01

    Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.

  7. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  8. The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics

    International Nuclear Information System (INIS)

    The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered. (U.K.)

  9. Mobile agent application and integration in electronic anamnesis system.

    Science.gov (United States)

    Liu, Chia-Hui; Chung, Yu-Fang; Chen, Tzer-Shyong; Wang, Sheng-De

    2012-06-01

    Electronic anamnesis is to transform ordinary paper trails to digitally formatted health records, which include the patient's general information, health status, and follow-ups on chronic diseases. Its main purpose is to let the records could be stored for a longer period of time and could be shared easily across departments and hospitals. Which means hospital management could use less resource on maintaining ever-growing database and reduce redundancy, so less money would be spent for managing the health records. In the foreseeable future, building up a comprehensive and integrated medical information system is a must, because it is critical to hospital resource integration and quality improvement. If mobile agent technology is adopted in the electronic anamnesis system, it would help the hospitals to make the medical practices more efficiently and conveniently. Nonetheless, most of the hospitals today are still using paper-based health records to manage the medical information. The reason why the institutions continue using traditional practices to manage the records is because there is no well-trusted and reliable electronic anamnesis system existing and accepted by both institutions and patients. The threat of privacy invasion is one of the biggest concerns when the topic of electronic anamnesis is brought up, because the security threats drag us back from using such a system. So, the medical service quality is difficult to be improved substantially. In this case, we have come up a theory to remove such security threats and make electronic anamnesis more appealing for use. Our theory is to integrate the mobile agent technology with the backbone of electronic anamnesis to construct a hierarchical access control system to retrieve the corresponding information based upon the permission classes. The system would create a classification for permission among the users inside the medical institution. Under this framework, permission control center would distribute an

  10. Self-spin-controlled rotation of spatial states of a Dirac electron in a cylindrical potential via spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Leary, C C; Reeb, D; Raymer, M G [Oregon Center for Optics and Department of Physics, 1274 University of Oregon, Eugene, OR 97403-1274 (United States)], E-mail: cleary@uoregon.edu

    2008-10-15

    Solution of the Dirac equation predicts that when an electron with nonzero orbital angular momentum (OAM) propagates in a cylindrically symmetric potential, its spin and orbital degrees of freedom interact, causing the electron's phase velocity to depend on whether its spin angular momentum (SAM) and OAM vectors are oriented parallel or anti-parallel with respect to each other. This spin-orbit splitting of the electronic dispersion curves can result in a rotation of the electron's spatial state in a manner controlled by the electron's own spin z-component value. These effects persist at non-relativistic velocities. To clarify the physical origin of this effect, we compare solutions of the Dirac equation to perturbative predictions of the Schroedinger-Pauli equation with a spin-orbit term, using the standard Foldy-Wouthuysen Hamiltonian. This clearly shows that the origin of the effect is the familiar relativistic spin-orbit interaction.

  11. Self-spin-controlled rotation of spatial states of a Dirac electron in a cylindrical potential via spin-orbit interaction

    International Nuclear Information System (INIS)

    Solution of the Dirac equation predicts that when an electron with nonzero orbital angular momentum (OAM) propagates in a cylindrically symmetric potential, its spin and orbital degrees of freedom interact, causing the electron's phase velocity to depend on whether its spin angular momentum (SAM) and OAM vectors are oriented parallel or anti-parallel with respect to each other. This spin-orbit splitting of the electronic dispersion curves can result in a rotation of the electron's spatial state in a manner controlled by the electron's own spin z-component value. These effects persist at non-relativistic velocities. To clarify the physical origin of this effect, we compare solutions of the Dirac equation to perturbative predictions of the Schroedinger-Pauli equation with a spin-orbit term, using the standard Foldy-Wouthuysen Hamiltonian. This clearly shows that the origin of the effect is the familiar relativistic spin-orbit interaction.

  12. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3<γin<3 coinciding with social networks.

  13. The Decoherence of the Electron Spin and Meta-Stability of 13C Nuclear Spins in Diamond

    OpenAIRE

    Peter Crompton

    2011-01-01

    Following the recent successful experimental manipulation of entangled 13C atoms on the surface of Diamond, we calculate the decoherence of the electron spin in Nitrogen Vacancy NV centers of Diamond via a nonperturbative treatment of the time-dependent Greens function of a Central-Spin model in order to identify the Replica Symmetry Breaking mechanism associated with intersystem mixing between the ms = 0 sublevel of the 3A2 and 1A1 states of the NV− centers, which we identify as mediated via...

  14. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease

    Science.gov (United States)

    Casey, Thomas M.; Fanucci, Gail E.

    2016-01-01

    An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron–electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron–electron resonance (DEER). Data are processed with the software package “DeerAnalysis” (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications. PMID:26477251

  15. Spin–spin and spin–orbit interaction effects of two-electron quantum dots

    International Nuclear Information System (INIS)

    Simultaneous effects of spin–spin and spin–orbit interactions on the energy spectrum of a two-electron spherical quantum dot with parabolic confinement and under the influence of external electric and magnetic fields are investigated. We have calculated energy eigenvalues and eigenvectors of the system for different spin states. Results show that effects of spin–spin interactions are negligible in comparison with those of the spin–orbit interactions. Spin–orbit interaction splits energy levels and removes degeneracy of different spin states. Moreover it is seen that energy eigenvalues and levels splitting strongly depend on the external magnetic field and the dot dimensions

  16. Spin–spin and spin–orbit interaction effects of two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vaseghi, B., E-mail: vaseghi@mail.yu.ac.ir [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Rezaei, G.; Taghizadeh, S.F. [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shahedi, Z. [Department of Physics, Payame Noor University, Shiraz (Iran, Islamic Republic of)

    2014-09-15

    Simultaneous effects of spin–spin and spin–orbit interactions on the energy spectrum of a two-electron spherical quantum dot with parabolic confinement and under the influence of external electric and magnetic fields are investigated. We have calculated energy eigenvalues and eigenvectors of the system for different spin states. Results show that effects of spin–spin interactions are negligible in comparison with those of the spin–orbit interactions. Spin–orbit interaction splits energy levels and removes degeneracy of different spin states. Moreover it is seen that energy eigenvalues and levels splitting strongly depend on the external magnetic field and the dot dimensions.

  17. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    CERN Document Server

    Lewis, Alan M; Hore, P J

    2014-01-01

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene (CPF) triad containing considerably more nu...

  18. Electron Spin Resonance of Tetrahedral Transition Metal Oxyanions (MO4n-) in Solids.

    Science.gov (United States)

    Greenblatt, M.

    1980-01-01

    Outlines general principles in observing sharp electron spin resonance (ESR) lines in the solid state by incorporating the transition metal ion of interest into an isostructural diamagnetic host material in small concentration. Examples of some recent studies are described. (CS)

  19. Parametrization, molecular dynamics simulation and calculation of electron spin resonance spectra of a nitroxide spin label on a poly-alanine alpha helix

    OpenAIRE

    Sezer, Deniz; Freed, Jack H.; Roux, Benoît

    2008-01-01

    The nitroxide spin label 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl-methanethiosulfonate (MTSSL), commonly used in site-directed spin labeling of proteins, is studied with molecular dynamics (MD) simulations. After developing force field parameters for the nitroxide moiety and the spin label linker, we simulate MTSSL attached to a poly-alanine alpha helix in explicit solvent to elucidate the factors affecting its conformational dynamics. Electron spin resonance spectra at 9 and 250 GHz are ...

  20. Electronic structure of cuprate superconductors in a full charge-spin recombination scheme

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shiping, E-mail: spfeng@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Kuang, Lülin [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhao, Huaisong [College of Physics, Qingdao University, Qingdao 266071 (China)

    2015-10-15

    Highlights: • We develope a full charge-spin recombination scheme in cuprate superconductors. • Electron self-energy from spin excitations is a key to electronic structure. • Underlying electron Fermi surface fulfills Luttinger’s theorem. • Low-energy excitation in superconducting-state is Bogoliubov quasiparticle. - Abstract: A long-standing unsolved problem is how a microscopic theory of superconductivity in cuprate superconductors based on the charge-spin separation can produce a large electron Fermi surface. Within the framework of the kinetic-energy driven superconducting mechanism, a full charge-spin recombination scheme is developed to fully recombine a charge carrier and a localized spin into a electron, and then is employed to study the electronic structure of cuprate superconductors in the superconducting-state. In particular, it is shown that the underlying electron Fermi surface fulfills Luttinger’s theorem, while the superconducting coherence of the low-energy quasiparticle excitations is qualitatively described by the standard d-wave Bardeen–Cooper–Schrieffer formalism. The theory also shows that the observed peak-dip-hump structure in the electron spectrum and Fermi arc behavior in the underdoped regime are mainly caused by the strong energy and momentum dependence of the electron self-energy.

  1. The electronic structure of spintronic materials as seen by spin-polarized angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Plucinski, L., E-mail: l.plucinski@fz-juelich.de [Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, D-52425 Jülich (Germany); Fakultät f. Physik, Universität Duisburg-Essen, D-47057 Duisburg (Germany); Schneider, C.M. [Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, D-52425 Jülich (Germany); Fakultät f. Physik, Universität Duisburg-Essen, D-47057 Duisburg (Germany)

    2013-08-15

    Highlights: •Introduction of spin-dependent effects in modern angle-resolved photoemission from the point of view of potential applications in spintronics. •Review on modern spin-polarimeters, including the historical development of the field. •Several examples to illustrate the application of spin-polarized photoemission to ferromagnetic and non-ferromagnetic sample systems. -- Abstract: The key quantity in spintronic devices is the spin polarization of the current flowing through the various device components, which in turn is closely determined by the components’ electronic structure. Modern spin- and angle-resolved photoemission spectroscopy (spin-ARPES) can map the details of the spin-polarized electronic structure in many novel material systems – both magnetic and nonmagnetic. In order to separate close-lying electronic states, however, an improvement in energy and angular resolution as well as information depth is still mandatory. We review several types of modern photoemission spectrometers capable of spin analysis and discuss the application of the technique for several physical systems including ferromagnetic thin films and topological insulators.

  2. Proposed Coupling of an Electron Spin in a Semiconductor Quantum Dot to a Nanosize Optical Cavity

    DEFF Research Database (Denmark)

    Majumdar, Arka; Nielsen, Per Kær; Bajcsy, Michal;

    2013-01-01

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in...... in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond the GHz range.......We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable...

  3. Study of f electron correlations in nonmagnetic Ce by means of spin resolved resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S; Komesu, T; Chung, B W; Waddill, G D; Morton, S A; Tobin, J G

    2005-11-28

    We have studied the spin-spin coupling between two f electrons of nonmagnetic Ce by means of spin resolved resonant photoemission using circularly polarized synchrotron radiation. The two f electrons participating in the 3d{sub 5/2} {yields} 4f resonance process are coupled in a singlet while the coupling is veiled in the 3d{sub 3/2} {yields} 4f process due to an additional Coster-Kronig decay channel. The identical singlet coupling is observed in the 4d {yields} 4f resonance process. Based on the Ce measurements, it is argued that spin resolved resonant photoemission is a unique approach to study the correlation effects, particularly in the form of spin, in the rare-earths and the actinides.

  4. Temperature Dependence of Electron Spin Relaxation of 2,2-diphenyl-1-picrylhydrazyl in Polystyrene

    Science.gov (United States)

    Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    The electron spin relaxation rates for the stable radical DPPH (2,2-diphenyl-1-picrylhydrazyl) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01%) spin-lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5%) relaxation is orders of magnitude faster than at the lower concentration, and 1/T1 is approximately linearly dependent on temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups. PMID:23565040

  5. Unified dynamics of electrons and photons via Zitterbewegung and spin-orbit interaction

    Science.gov (United States)

    Leary, C. C.; Smith, Karl H.

    2014-02-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, it experiences both a Zitterbewegung effect and a spin-orbit interaction leading to identical propagation dynamics for both particles. Applying a unified perturbative approach to both particles simultaneously, we find that to first order in perturbation theory, their Hamiltonians each contain identical Darwin (Zitterbewegung) and spin-orbit terms, resulting in the unification of their dynamics. The presence of the Zitterbewegung effect may be interpreted physically as the delocalization of the electron on the scale of its Compton wavelength, or the delocalization of the photon on the scale of its wavelength in the waveguide. The presence of the spin-orbit interaction leads to the prediction of several rotational effects: the spatial or time evolution of either particle's spin or polarization vector is controlled by the sign of its orbital angular momentum quantum number or, conversely, its spatial wave function is controlled by its spin angular momentum.

  6. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    Science.gov (United States)

    Andreev, Pavel A.

    2016-06-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves (SEAWs). This kinetic theory allows us to obtain the spectrum of the SEAWs including the effects of occupation of quantum states more accurately than the quantum hydrodynamic theory. We derive and apply the quantum kinetic theory to calculate the Landau damping of the SEAWs. We consider the contribution of ions dynamics into the SEAW spectrum. We obtain the contribution of ions in the Landau damping in the temperature regime of classic ions. Kinetic analysis for the ion-acoustic, zero sound, and Langmuir waves at the separated spin-up and spin-down electron dynamics is presented as well.

  7. Spin-electron acoustic waves: Linear and nonlinear regimes, and applications

    Science.gov (United States)

    Andreev, Pavel

    2015-11-01

    Considering the spin-up and spin-down electrons as two different fluids we find corresponding hydrodynamic and kinetic equations from the Pauli equation. We find different pressure the spin-up and spin-down electrons due to different concentrations of electrons in the magnetized electron gas. This difference leads to existence of new branches of linear longitudinal waves propagating with small damping. These waves are called the spin-electron acoustic waves (SEAWs) due to linear dispersion dependence at small wave vectors. We obtain two waves at oblique propagation and one wave at propagation parallel or perpendicular to the external magnetic field. Dispersion dependences of these waves are calculated. Contribution of the Coulomb exchange interaction is included in the model and spectrums. Area of existence of nonlinear SEAWs appearing as a spin-electron acoustic soliton is found for the regime of wave propagation parallel to the external magnetic field. It is obtained that the SEAWs lead to formation of the Cooper pairs. This application of our results to the superconductivity phenomenon reveals in a model of the high-temperature superconductivity with the transition temperatures up to 300 K.

  8. Evolution of Spin and Charge in a System with Interacting Impurity and Conducting Electrons

    Institute of Scientific and Technical Information of China (English)

    张永梅; 熊诗杰

    2003-01-01

    We investigate the dynamics of spin and charge in an interacting system consisting of impurity and conducting electrons.The time evolution of spin and charge in the impurity is given by solving the time-dependent Schrodinger equations for the many-body states of the interacting system.By switching on the interaction between impurity and conducting electrons,the spin and charge of the impurity begin oscillations with frequencies that reflect the elementary excitations of the interacting system.The dynamics reflects the basic picture of the Kondo effect.

  9. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano (Italy)

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  10. Effect of Noise on the Decoherence of a Central Electron Spin Coupled to an Antiferromagnetic Spin Bath

    Directory of Open Access Journals (Sweden)

    G. C. Fouokeng

    2014-01-01

    Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.

  11. Measurement of electron spin transport in graphene on 6H-silicon carbide(0001)

    Science.gov (United States)

    Abel, Joseph

    The focus of this thesis is to demonstrate the potential of wafer scale graphene spintronics. Graphene is a single atomic layer of sp 2-bonded carbon atoms that has high carrier mobilities, making it a desirable material for future nanoscale electronic devices. The vision of spintronics is to utilize the spin of the electron to produce novel high-speed low power consuming devices. Materials with long spin relaxation times and spin diffusion lengths are needed to realize these goals. Graphene is an ideal material as it meets these requirements and is amenable to planar device geometries. In this thesis, spin transport in wafer scale epitaxial graphene grown on the silicon face of silicon carbide is demonstrated. Non-local Hanle spin precession measurement devices were fabricated using graphene with and without a hafnium oxide interface layer between the ferromagnetic metal and graphene. The structural properties of the devices were investigated with Raman spectroscopy, x-ray photoelectric spectroscopy, Rutherford backscattering spectroscopy, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The electrical properties of the graphene were measured utilizing Hall transport measurements. The magnetic properties of the contacts were investigated with vibrating sample magnetometery. The processes developed to fabricate the Hanle measurement devices are presented as well. A custom Hanle measurement setup was developed and utilized for the Hanle spin precession measurements. Spin precession is observed in the epitaxial graphene on silicon carbide, with improved spin transport properties with the utilization of a hafnium oxide barrier between the ferromagnetic contacts and graphene. The charge transport and spin transport properties are compared to determine the relevant spin relaxation mechanism in the devices. These results demonstrate that graphene has great potential for wafer scale production of future spintronic devices.

  12. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering

    Science.gov (United States)

    Strocov, Vladimir N.; Petrov, Vladimir N.; Dil, J. Hugo

    2015-01-01

    The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 104 which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities. PMID:25931087

  13. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor

    Science.gov (United States)

    Smet, J. H.; Deutschmann, R. A.; Ertl, F.; Wegscheider, W.; Abstreiter, G.; von Klitzing, K.

    2003-01-01

    Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with applied voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for information processing and fundamental solid-state physics issues. Here, we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and ‘read-out’. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.

  14. Electron spin resonance observation of dehydration-induced spin excitations in quasi-one-dimensional iodo-bridged diplatinum complexes

    Science.gov (United States)

    Tanaka, Hisaaki; Kuroda, Shin-Ichi; Iguchi, Hiroaki; Takaishi, Shinya; Yamashita, Masahiro

    2012-02-01

    Electron spin resonance (ESR) measurements have been performed on a series of quasi-one-dimensional iodo-bridged diplatinum complexes K2[C3H5R(NH3)2][Pt2(pop)4I]·4H2O (pop = P2H2O52-; R = H, CH3, or Cl), where dehydration/rehydration of the crystalline water switches the electronic state reversibly with retention of single crystallinity. We have observed a nonmagnetic nature in as-grown samples, whereas in the dehydrated samples, a clear enhancement of the spin susceptibility has been observed above ˜80 K with the activation energy ranging 50-60 meV. The activated spins originate from isolated Pt3+ state on the chain, as confirmed from the principal g values. Concomitantly, the ESR linewidth exhibits a prominent motional narrowing, suggesting that the activated Pt3+ spins are mobile solitons generated in the doubly degenerate charge-density-wave states of the dehydrated salts.

  15. Ballistic electrons in ferromagnet/semiconductor hybrid structures: from nonomagnetometry to spin injection

    International Nuclear Information System (INIS)

    We review our recent experimental and theoretical studies on ferromagnet/semiconductor hybrid structures and discuss the role of ballistic electrons in such systems. We focus in particular on two particular features: first, ballistic electrons in semiconductors are shown to be in particular sensitive to local details of an inhomogeneous stray field. We argue that this can preferentially be used for nanomagnetometry. Second, we show theoretically that, in case of injection of ballistic electrons from a metallic ferromagnet into a semiconductor, a spin-dependent interface resistance arises due to band-structure mismatch that causes spin filtering at a interface. Recent band-structure calculations suggest that for an experimental interface a nearly 100% spin-polarized current might be generated in a spin-injection experiment. (author)

  16. 3D optical manipulation of a single electron spin

    CERN Document Server

    Geiselmann, Michael; Renger, Jan; Say, Jana M; Brown, Louise J; de Abajo, F Javier García; Koppens, Frank; Quidant, Romain

    2013-01-01

    Nitrogen vacancy (NV) centers in diamond are promising elemental blocks for quantum optics [1, 2], spin-based quantum information processing [3, 4], and high-resolution sensing [5-13]. Yet, fully exploiting these capabilities of single NV centers requires strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and 3D spatial manipulation of individual nano-diamonds hosting a single NV spin. Remarkably, we find the NV axis is nearly fixed inside the trap and can be controlled in-situ, by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescent lifetime measurements near an integrated photonic system, we prove optically trapped NV center as a novel route for both 3D vectorial magnetometry and sensing of the local density of optical states.

  17. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers : a spin-label electron spin resonance study

    OpenAIRE

    Kleinschmidt, Jörg H.; Mahaney, James E.; Thomas, David D.; Marsh, Derek

    1997-01-01

    Electron spin resonance (ESR) spectroscopy was used to study the penetration and interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) and ditetradecylphosphatidylglycerol (DTPG) bilayer membranes. Melittin is a surface-active, amphipathic peptide and serves as a useful model for a variety of membrane interactions, including those of presequences and signal peptides, as well as the charged subdomain of the cardiac regulatory protein phospholamban. Derivatives of phospha...

  18. Spin-orbit coupling in AlGaN/GaN 2-dimensional electron gases

    Energy Technology Data Exchange (ETDEWEB)

    Cabanas, Sergio; Thillosen, Nicolas; Kaluza, Nicoleta; Lehnen, Patrick; Guzenko, Vitaliy; Hardtdegen, Hilde; Schaepers, Thomas [Institute of Bio- and Nanosystems, Research Center Juelich (Germany); Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich (Germany)

    2007-07-01

    AlGaN/GaN is a very promising material system for spin electronic devices, because for GaN-based diluted magnetic semiconductors Curie temperatures above room temperature have been predicted theoretically and confirmed experimentally. We have investigated weak antilocalization in AlGaN/GaN heterostructures. By fitting the experimental curves to a theoretical model we found that the decrease of the peak height in the conductivity with temperature is solely due to the decrease of the phase coherence length. Measurements on gated samples showed that the spin-orbit scattering length is constant for all carrier concentrations. This behavior is due to the fact that the spin-orbit scattering due to crystal inversion asymmetry is the dominant contribution. Although GaN is a large band gap material, the spin-orbit scattering length has a relatively small value of approximately 300 nm, which makes this material interesting for spin electron devices relying on spin precession. If a magnetic field is applied parallel to the plane of the 2-dimensional electron gas the weak antilocalization can be suppressed. We attribute the vanishing of the weak antilocalization peak to the additional contribution of the Zeeman energy competing with the characteristic spin-orbit energy.

  19. Electrical detection of spin transport in Si two-dimensional electron gas systems

    Science.gov (United States)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  20. All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-10-26

    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

  1. Layered Chalcogenides beyond Graphene: from Electronic Structure Evolution to the Spin Transport

    Science.gov (United States)

    Yuan, Hongtao

    2014-03-01

    Recent efforts on graphene-like atomic layer materials, aiming at novel electronic properties and quantum phenomena beyond graphene, have attracted much attention for potential electronics/spintronics applications. Compared to the weak spin-orbit-interaction (SOI) in graphene, metal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way for generating spin polarization based on valleytronics physics. Indeed, such a spin-polarized band structure has been demonstrated theoretically and supported by optical investigations. However, despite these exciting progresses, following two important issues in MX2 community remain elusive: 1. the quantitative band structure of MX2 compounds (where are the valleys -band maxima/minima- locating in the BZ) have not been experimentally confirmed. Especially for those cleaved ultrathin mono- and bi-layer flakes hosting most of recently-reported exotic phenomena at the 2D limit, the direct detection for band dispersion becomes of great importance for valleytronics. 2. Spin transports have seldom been reported even though such a strong SOI system can serve as an ideal platform for the spin polarization and spin transport. In this work, we started from the basic electronic structures of representative MX2, obtained by ARPES, and investigated both the band variation between these compounds and their band evolution from bulk to the monolayer limit. After having a systematic understanding on band structures, we reported a giant Zeeman-type spin-polarization generated and modulated by an external electric field in WSe2 electric-double-layer transistors. The non-magnetic approach for realizing such an intriguing spin splitting not only keeps the system time-reversally invariant but also suggests a new paradigm for manipulating the spin-degrees of freedom of electrons. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  2. Spin-dependent electron transport through a ferromagnetic domain wall

    OpenAIRE

    Ohe, J.; Yamamoto, M.; Ohtsuki, T.; Slevin, K.

    2002-01-01

    We present a theoretical study of spin-dependent transport through a ferromagnetic domain wall. With an increase of the number of components of the exchange coupling, we have observed that the variance of the conductance becomes half. As the strength of the domain wall magnetization is increased, negative magnetoresistance is also observed.

  3. Towards a Methodology for Formal Design and Analysis of Agent Interaction Protocols --An Investigation in Electronic Commerce

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Various extensions of UML have been developed to meet thechallenges of designin g modern software systems, such as agent-based electronic commerce applications . Recent advances in model checking technology have led it to be introduced into the development of approaches and tools to check the correctness of electronic c ommerce protocols. This paper focuses on the research of a method that connects an extension of AUML to model checker-SPIN/Promela for the specification and v e rification of agent interaction protocols (AIP) in electronic commerce. The meth od presented here allows us to combine the benefits of visual specification with the power of some static analysis and model checking. Some algorithms and rules are developed to permit all visual modeling constructs translated mechanically into some Promela models of AIP, as supported by the model checker -SPIN. Moreo v er, a process is illustrated to guide the specification and verification of AIP. The method is demonstrated thoroughly using the e-commerce protocol -NetBill as an example.

  4. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    Science.gov (United States)

    Kattnig, Daniel R.; Sowa, Jakub K.; Solov'yov, Ilia A.; Hore, P. J.

    2016-06-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field. Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin–tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis thaliana cryptochrome 1 were obtained from molecular dynamics (MD) simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes.

  5. TOPICAL REVIEW: Electron spin resonance and related phenomena of low-dimensional electronic systems in III V compounds

    Science.gov (United States)

    Meisels, Ronald

    2005-01-01

    In this work, dc and high-frequency transport phenomena directed primarily at spin properties in two-dimensional electronic systems (2DES) and the quantum Hall effect (QHE) are reviewed. The spin properties are probed by electron spin resonance (ESR). The experimental methods used are presented and the theoretical background based on k sdot p theory is given. The effects of further reducing the dimensionality are discussed in the context of experiments on zero-dimensional systems, 'quantum dots'. To place this work in perspective, the ESR of 'bulk', three-dimensional systems and of strained bulk materials is also treated. Experimental results are presented to clarify the origin of the interaction between the 2DES and the electromagnetic radiation responsible for ESR. These results are compared with theoretical work on the electric dipole and magnetic dipole oscillator strength. The magnetic dipole interaction is found to dominate. The 2DES is subject to electron-electron interaction effects. While no influence on the resonance energy, in accordance with 'Kohn's theorem', is found, indications of many-body effects on the temperature dependence of the spin polarization of the ESR are observed. This is in accordance with other experimental and theoretical works which also found (or predicted) the formation of states with reduced spin polarization. While the influence of the interactions between electrons on the ESR frequency is absent, the hyperfine interaction between electrons and nuclei causes a shift (called the Overhauser shift) of the position of the ESR when the nuclei are spin polarized. Experimental results indicate that the appearance of this shift coincides with magnetic field regions where the plateaus of the quantum Hall effect are present.

  6. Conduction electron spin resonance in Mg 1 - x Al x B2

    Science.gov (United States)

    Likodimos, V.; Koutandos, S.; Pissas, M.; Papavassiliou, G.; Prassides, K.

    2003-01-01

    Conduction electron spin resonance is employed to study the interplay of the electronic and structural properties in the normal state of Mg 1 - x Al x B2 alloys as a function of Al-doping for 0 <= x <= 1. The x-dependence of the spin susceptibility reveals considerable reduction of the total density of states N(EF) with increasing Al concentration, complying with theoretical predictions for a predominant filling effect of the hole σ bands by electron doping. The CESR linewidth exhibits significant broadening, especially prominent in the high-Al-content region, indicative of the presence of enhanced structural disorder, consistent with the presence of compositional fluctuations.

  7. Electron-hole asymmetry of spin injection and transport in single-layer graphene.

    Science.gov (United States)

    Han, Wei; Wang, W H; Pi, K; McCreary, K M; Bao, W; Li, Yan; Miao, F; Lau, C N; Kawakami, R K

    2009-04-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by nonlocal spin valve measurements at room temperature. Gate voltage dependence shows that the nonlocal magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic-nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the nonlocal MR reveal an electron-hole asymmetry in which the nonlocal MR is roughly independent of bias for electrons, but varies significantly with bias for holes. PMID:19392401

  8. Spin dynamics in Kapitza-Dirac scattering of electrons from bichromatic laser fields

    CERN Document Server

    Dellweg, Matthias M; Müller, Carsten

    2016-01-01

    Kapitza-Dirac scattering of nonrelativistic electrons from counterpropagating bichromatic laser waves of linear polarization i s studied. The focus lies on the electronic spin dynamics in the Bragg regime when the laser fields possess a frequency ratio of two. To this end, the time-dependent Pauli equation is solved numerically, both in coordinate space and momentum space. Our numerical results are corroborated by analytical derivations. We demonstrate that, for certain incident electron momenta, the scattering crucially relies on the electron spin which undergo es characteristic Rabi-like oscillations. A parameter regime is identified where the Rabi oscillations reach maximum amplitude. We also briefly discuss spin-dependent Kapitza-Dirac scattering of protons.

  9. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    Energy Technology Data Exchange (ETDEWEB)

    Bučinský, Lukáš, E-mail: lukas.bucinsky@stuba.sk [Slovak University of Technology, FCHPT, Institute of Physical Chemistry and Chemical Physics, Radlinskeho 9, Bratislava SK-812 37 (Slovakia); Kucková, Lenka; Malček, Michal; Kožíšek, Jozef; Biskupič, Stanislav [Slovak University of Technology, FCHPT, Institute of Physical Chemistry and Chemical Physics, Radlinskeho 9, Bratislava SK-812 37 (Slovakia); Jayatilaka, Dylan [University of Western Australia, Department of Chemistry, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Büchel, Gabriel E. [University of Vienna, Institute of Inorganic Chemistry, Währinger Str. 42, A-1090 Vienna (Austria); King Abdullah University of Science and Technology, Division for Physical Sciences and Engineering and KAUST Catalysis Center, Thuwal (Saudi Arabia); Arion, Vladimir B. [University of Vienna, Institute of Inorganic Chemistry, Währinger Str. 42, A-1090 Vienna (Austria)

    2014-06-25

    Highlights: • Quasirelativistic study of electron density topology of Os and Ru complexes. • Electron/spin densities and negative Laplacian of electron density presented. • Analytic correction of picture change error at IOTC level. • Relativistic and spin–orbit effects are considered, IOTC vs. DKH2 compared. - Abstract: The change of picture of the quasirelativistic Hartree–Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl{sub 5}(Hpz)]{sup −} and [RuCl{sub 5}(NO)]{sup 2−} transition metal complexes are considered. Both, scalar relativistic and spin–orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.

  10. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  11. Spin and charge transport in a gated two dimensional electron gas

    NARCIS (Netherlands)

    Lerescu, Alexandru Ionut

    2007-01-01

    The work presented in this thesis is centered around the idea of how one can inject, transport and detect the electron's spin in a two dimensional electron gas (a semiconductor heterostructure). Metal based spintronic devices have been established to be the easy way to implement spintronic concepts

  12. Towards quantum optics and entanglement with electron spin ensembles in semiconductors

    NARCIS (Netherlands)

    van der Wal, Caspar H.; Sladkov, Maksym

    2009-01-01

    We discuss a technique and a material system that enable the controlled realization of quantum entanglement between spin-wave modes of electron ensembles in two spatially separated pieces of semiconductor material. The approach uses electron ensembles in GaAs quantum wells that are located inside op

  13. Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism

    OpenAIRE

    Serebrennikov, Yuri A.

    2005-01-01

    In moderately strong magnetic fields, the difference in Lande g-factors in each of the dots of a coupled double quantum dot device may induce oscillations between singlet and triplet states of the entangled electron pair and lead to a nonequilibrium electron spin polarization. We will show that this polarization may partially survive the rapid inhomogeneous decoherence due to random nuclear magnetic fields.

  14. Agent fabrication and its implementation for agent-based electronic commerce

    OpenAIRE

    Guan, Su; Zhu, F.

    2002-01-01

    In the last decade, agent-based e-commerce has emerged as a potential role for the next generation of e-commerce. How to create agents for e-commerce applications has become a serious consideration in this field. This paper proposes a new scheme named agent fabrication and elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) architecture. First, a conceptual structure is proposed for software agents carrying out e-commerce act...

  15. Macroscopic transverse drift of long current-induced spin coherence in two-dimensional electron gases

    Science.gov (United States)

    Hernandez, F. G. G.; Ullah, S.; Ferreira, G. J.; Kawahala, N. M.; Gusev, G. M.; Bakarov, A. K.

    2016-07-01

    We imaged the transport of current-induced spin coherence in a two-dimensional electron gas confined in a triple quantum well. Nonlocal Kerr rotation measurements, based on the optical resonant amplification of the electrically-induced polarization, revealed a large spatial variation of the electron g factor and the efficient generation of a current-controlled spin-orbit field in a macroscopic Hall bar device. We observed coherence times in the nanoseconds range transported beyond half-millimeter distances in a direction transverse to the applied electric field. The measured long spin transport length can be explained by two material properties: large mean free path for charge diffusion in clean systems and enhanced spin-orbit coefficients in the triple well.

  16. Electron spin-lattice and spin-spin relaxation study of a trinuclear iron(III) complex and its relevance in quantum computing.

    Science.gov (United States)

    Mitrikas, George; Sanakis, Yiannis; Raptopoulou, Catherine P; Kordas, George; Papavassiliou, Georgios

    2008-02-01

    Electron spins of molecular magnets are promising candidates for large scale quantum information processing because they exhibit a large number of low-lying excited states. In this paper X-band pulse electron paramagnetic resonance spectroscopy is used to determine the intrinsic relaxation times T1 and T2 of a molecular magnet with an S = 1/2 ground state, namely the neutral trinuclear oxo-centered iron (III) complex, [Fe3(micro3-O)(O2CPh)5(salox)(EtOH)(EtOH)(H2O)]. The temperature dependence of the spin-lattice relaxation time T1 between 4.5 and 11 K shows that the Orbach relaxation process is dominant with the first excited state lying 57 cm(-1) above the ground state, whereas the phase memory time T(M) is of the order of 2.6 micros and exhibits a modest temperature dependence. These results together with previous magnetic measurements give further insight into the magnetic properties of the complex. The coherent manipulation of the electron spins is also examined by means of transient nutation experiments.

  17. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  18. Strong mechanical driving of a single electron spin

    OpenAIRE

    Barfuss, A; Teissier, J.; Neu, E.; Nunnenkamp, A; Maletinsky, P.

    2015-01-01

    Quantum devices for sensing and computing applications require coherent quantum systems, which can be manipulated in fast and robust ways [1]. Such quantum control is typically achieved using external electromagnetic fields, which drive the system's orbital [2], charge [3] or spin [4, 5] degrees of freedom. However, most existing approaches require complex and unwieldy gate structures, and with few exceptions [6, 7] are limited to the regime of weak coherent driving. Here, we present a novel ...

  19. Effects of spin-orbit interaction on the electronic structure of mono-layer quantum wires

    Science.gov (United States)

    Vaseghi, B.; Ghaffari, A.

    2016-07-01

    Simultaneous effects of spin-orbit interaction, external electric and magnetic fields and dimension on the electronic structure of a mono-layer quantum wire are investigated in this paper. Due to the direct effects of external electric field on the structure's symmetries and spin-orbit interaction, energy eigenvalues and functions of the system are calculated with axial or in-plane electric field. It is shown that spin-orbit interaction modifies energy eigenvalues and functions of the system with regard to external factors.

  20. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    Science.gov (United States)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  1. Spin polarization of two-dimensional electronic gas decoupled from structural asymmetry environment

    Science.gov (United States)

    Pieczyrak, B.; Szary, M.; Jurczyszyn, L.; Radny, M. W.

    2016-05-01

    It is shown, using density functional theory, that a 2D electron gas induced in a monolayer of Pb or Tl adatoms on the Si (111 )-1 ×1 surface is insensitive to the structural asymmetry of the system and its spin polarization is governed by the interaction between the adlayer and the substrate. It is demonstrated that this interaction changes the in-plane inversion symmetry of the charge distribution within the monolayer and can either suppress [Pb/Si(111)] or enhance [Tl/Si(111)] the adatom intra-atomic spin-orbit effect on a Rashba-Bychkov-type spin splitting.

  2. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Subir Sachdev

    2002-02-01

    We discuss the possibility of spin-glass order in the vicinity of the unexpected metallic state of the two-dimensional electron gas in zero applied magnetic field. An average ferromagnetic moment may also be present, and the spin-glass order then resides in the plane orthogonal to the ferromagnetic moment. We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent magnetoconductance measurements. We present a quantum field theory for such a transition and compute its mean field properties.

  3. New insights into electron spin dynamics in the presence of correlated noise.

    Science.gov (United States)

    Spezia, S; Adorno, D Persano; Pizzolato, N; Spagnolo, B

    2012-02-01

    The changes in the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which takes into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examining the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitudes lower than the Gunn field, the dephasing length shortens with increasing noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.

  4. Estimation of the Postmortem Duration of Mouse Tissue by Electron Spin Resonance Spectroscopy

    OpenAIRE

    Toshiko Sawaguchi; Hideko Kanazawa; Tomohisa Mori; Shinobu Ito

    2011-01-01

    Electron spin resonance (ESR) method is a simple method for detecting various free radicals simultaneously and directly. However, ESR spin trap method is unsuited to analyze weak ESR signals in organs because of water-induced dielectric loss (WIDL). To minimize WIDL occurring in biotissues and to improve detection sensitivity to free radicals in tissues, ESR cuvette was modified and used with 5,5-dimethtyl-1-pyrroline N-oxide (DMPO). The tissue samples were mouse brain, hart, lung, liver, kid...

  5. Semiclassical Vlasov and fluid models for an electron gas with spin effects

    OpenAIRE

    Hurst, Jerome; Morandi, Omar; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-01-01

    We derive a four-component Vlasov equation for a system composed of spin-1/2 fermions (typically electrons). The orbital part of the motion is classical, whereas the spin degrees of freedom are treated in a completely quantum-mechanical way. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. This hydrodynamic model is closed using a maximum entropy principle in the case of three or four constraints on the fluid moments, bo...

  6. Hybrid Electron Spin Resonance and Whispering Gallery Mode Resonance Spectroscopy of Fe3+ in Sapphire

    OpenAIRE

    Benmessai, Karim; Farr, Warrick G.; Creedon, Daniel L.; Reshitnyk, Yarema; Floch, Jean-Michel Le; Duty, Timothy; Tobar, Michael E.

    2013-01-01

    The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a new spectroscopic technique which uses traditional Electron Spin Resonance (ESR) combined with the measurement of a large population of electromagnetic Whispering Gallery (WG) modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements...

  7. Imaging spin filter for electrons based on specular reflection from iridium (001)

    Energy Technology Data Exchange (ETDEWEB)

    Kutnyakhov, D.; Lushchyk, P. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Fognini, A.; Perriard, D. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Kolbe, M.; Medjanik, K.; Fedchenko, E.; Nepijko, S.A.; Elmers, H.J. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Salvatella, G.; Stieger, C.; Gort, R.; Bähler, T.; Michlmayer, T.; Acremann, Y.; Vaterlaus, A. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Giebels, F.; Gollisch, H.; Feder, R. [Universität Duisburg-Essen, Theoretische Festkörperphysik, 47057 Duisburg (Germany); Tusche, C. [Max Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); and others

    2013-07-15

    As Stern–Gerlach type spin filters do not work with electrons, spin analysis of electron beams is accomplished by spin-dependent scattering processes based on spin–orbit or exchange interaction. Existing polarimeters are single-channel devices characterized by an inherently low figure of merit (FoM) of typically 10{sup −4}–10{sup −3}. This single-channel approach is not compatible with parallel imaging microscopes and also not with modern electron spectrometers that acquire a certain energy and angular interval simultaneously. We present a novel type of polarimeter that can transport a full image by making use of k-parallel conservation in low-energy electron diffraction. We studied specular reflection from Ir (001) because this spin-filter crystal provides a high analyzing power combined with a “lifetime” in UHV of a full day. One good working point is centered at 39 eV scattering energy with a broad maximum of 5 eV usable width. A second one at about 10 eV shows a narrower profile but much higher FoM. A relativistic layer-KKR SPLEED calculation shows good agreement with measurements. - Highlights: • Novel type of spin polarimeter can transport a full image by making use of k{sup →}{sub ||} conservation in LEED. • When combined with a hemispherical analyzer, it acquires a certain energy and angular interval simultaneously. • Ir (001) based spin-filter provides a high analyzing power combined with a “lifetime” in UHV of a full day. • Parallel spin detection improves spin polarimeter efficiency by orders of magnitude. • A relativistic layer-KKR SPLEED calculation shows good agreement with measurements.

  8. Effect of Quantum Point Contact Measurement on Electron Spin State in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHU Fei-Yun; TU Tao; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping

    2009-01-01

    We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.

  9. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    Science.gov (United States)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  10. Electronic Spin Crossover of Iron in Ferroperclase in Earth?s Lower Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J F; Vanko, G; Jacobsen, S D; Iota, V; Struzhkin, V V; Prakapenka, V B; Kuznetsov, A; Yoo, C S

    2007-01-25

    Pressure-induced electronic spin-pairing transitions of iron and associated effects on the physical properties have been reported to occur in the lower-mantle ferropericlase, silicate perosvkite, and perhaps in post silicate perovskite at high pressures and room temperature. These recent results are motivating geophysicists and geodynamicists to reevaluate the implications of spin transitions on the seismic heterogeneity, composition, as well as the stability of the thermal upwellings of the Earth's lower mantle. Here we have measured the spin states of iron in ferropericlase and its crystal structure up to 95 GPa and 2000 K using a newly constructed X-ray emission spectroscopy and diffraction with the laser-heated diamond cell. Our results show that an isosymmetric spin crossover occurs over a pressure-temperature range extending from the upper part to the lower part of the lower mantle, and low-spin ferropericlase likely exists in the lowermost mantle. Although continuous changes in physical and chemical properties are expected to occur across the spin crossover, the spin crossover results in peculiar behavior in the thermal compression and sound velocities. Therefore, knowledge of the fraction of the spin states in the lower-mantle phases is thus essential to correctly evaluate the composition, geophysics, and dynamics of the Earth's lower mantle.

  11. Spin-orbit coupled two-electron Fermi gases of ytterbium atoms

    CERN Document Server

    Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong

    2016-01-01

    We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.

  12. Electronic spin transport and spin precession in single graphene layers at room temperature

    NARCIS (Netherlands)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-01-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic tra

  13. Effect of Spin-Orbit Coupling on Kondo Phenomena in $f^7$-Electron Systems

    OpenAIRE

    Hotta, Takashi

    2015-01-01

    In order to promote our basic understanding on the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven $f$ electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among $f$ electrons, spin-orbit coupling $\\lambda$, and crystalline electric field (CEF) potentials, while we consider the hybridization $V$ between local $f$ electrons and single-band conduc...

  14. A modularized electronic payment system for agent-based e-commerce

    OpenAIRE

    Guan, Su; Tan, SL; Hua, F.

    2004-01-01

    With the explosive growth of the Internet, electronic-commerce (e-commerce) is an increasingly important segment of commercial activities on the web. The Secure Agent Fabrication, Evolution & Roaming (SAFER) architecture was proposed to further facilitate e-commerce using agent technology. In this paper, the electronic payment aspect of SAFER will be explored. The Secure Electronic Transaction (SET) protocol and E-Cash were selected as the bases for the electronic payment system implementatio...

  15. Electron Spin Resonance in Nitrogen-Vacancy Centers in Diamond and Ionization Fraction vs. Electron Irradiation Dose

    CERN Document Server

    Kim, C; Bauch, E; Budker, D; Hemmer, P R

    2009-01-01

    A high-nitrogen-concentration diamond sample was subject to electron irradiation using a transmission-electron microscope. The optical and spin-resonance properties of the nitrogen-vacancy (NV) color centers were investigated as a function of the irradiation dose. The electron spin transition frequency of the NV- center is found to shift by up to 0.7% (18 MHz) and broaden with increasing electron-irradiation dose up to 6.39x1021e-/cm2. An increase in the fraction of the neutral NV0 centers is also observed with increasing irradiation dose, reaching more than 50% NV0 before the background fluorescence obscures the NV signal.

  16. Spontaneous spin polarization of electrons in quantum wires

    CERN Document Server

    Shelykh, I A; Bagraev, N T; Klyachkin, L E

    2002-01-01

    The quantum ladder of the electric conductivity of an one-dimensional channel is analyzed at weak filling of low one-dimensional subbands when the exchange electron-electron interaction of current carrier dominate over their kinetic energy. The basic attention is given to the consideration of the behaviour of the feature 0.7 (2e sup 2 /h) which is identified as the result of the spontaneous polarization of the one-dimensional electron gas due to the exchange interaction in the zero magnetic field. The critical linear electron concentration is defined in the framework of the phenomenological theory

  17. Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences

    OpenAIRE

    Bahareh Goldozian; Damtie, Fikeraddis A.; Gediminas Kiršanskas; Andreas Wacker

    2016-01-01

    Quantum dots are nanoscopic systems, where carriers are confined in all three spatial directions. Such nanoscopic systems are suitable for fundamental studies of quantum mechanics and are candidates for applications such as quantum information processing. It was also proposed that linear arrangements of quantum dots could be used as quantum cascade laser. In this work we study the impact of electron-electron interactions on transport in a spinful serial triple quantum dot system weakly couple...

  18. Temperature and electron density dependence of spin relaxation in GaAs/AlGaAs quantum well

    Directory of Open Access Journals (Sweden)

    Han Lifen

    2011-01-01

    Full Text Available Abstract Temperature and carrier density-dependent spin dynamics for GaAs/AlGaAs quantum wells (QWs with different structural symmetries have been studied by using time-resolved Kerr rotation technique. The spin relaxation time is measured to be much longer for the symmetrically designed GaAs QW comparing with the asymmetrical one, indicating the strong influence of Rashba spin-orbit coupling on spin relaxation. D'yakonov-Perel' mechanism has been revealed to be the dominant contribution for spin relaxation in GaAs/AlGaAs QWs. The spin relaxation time exhibits non-monotonic-dependent behavior on both temperature and photo-excited carrier density, revealing the important role of non-monotonic temperature and density dependence of electron-electron Coulomb scattering. Our experimental observations demonstrate good agreement with recently developed spin relaxation theory based on microscopic kinetic spin Bloch equation approach.

  19. Spin-tagged electron-hydrogen scattering: Ionization in the near-threshold region

    International Nuclear Information System (INIS)

    We use beams of polarized electrons and polarized hydrogen atoms to measure the ionization-rate asymmetry, ΔI=[R(↑↓)-R(↑↑)]/[R(↑↓)+R(↑↑)], in the near-threshold region, where R(↑↓) and R(↑↑) are the ionization rates when the electron spin is antiparallel and parallel, respectively, to the atomic spins. Within 1.7 eV above threshold, our results reveal the presence of structure, which heretofore has not been predicted by any conventional theoretical calculation

  20. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej;

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic...... to be negative, reducing the energy splitting at high $k$. The interplay of band structure, higher order Rashba effect and tuneable doping offers the opportunity to engineer not only the size of the spin-orbit splitting but also its direction....

  1. Electron spin echo study of Nd3 + solvation in methanol glasses

    Science.gov (United States)

    Janakiraman, R.; Kevan, Larry

    1981-08-01

    Electron spin echo modulation studies have been carried out for Nd3+ in methanol glasses at 4.2 K. By using the partially deuterated methanols (CH3OD and CD3OH), analysis of deuterium modulation in three-pulse electron spin echo decay curves gives the distances and numbers of Nd-D(OD) and Nd-D(CD3) interactions. It is found that Nd3+ is coordinated by nine equivalent methanol molecules, with distances of Nd-H (OH) of 3.1 Å and Nd-H (CH3) of 4.0 Å. These distances establish that the molecular dipole of methanol is oriented toward Nd3+.

  2. Spin excitations and the electronic specific heat of URu2Si2

    DEFF Research Database (Denmark)

    Mason, T.E.; Buyers, W.J.L.

    1991-01-01

    and conduction electrons yields m*/m(b) almost-equal-to 7.7 for T T(N) which is sufficient to account for the difference between band-structure calculations and the measured electronic specific heat. In addition, inclusion of the temperature dependence of the spin...... excitations as T(N) is approached from below reproduces, qualitatively, the peak observed in the specific heat at T(N). The peak arises from a gap in the spin, not charge spectrum below T(N)....

  3. Electron Spin Resonance Spectra of Photogenerated Polarons in Poly(Paraphenylene Vinylene)

    Science.gov (United States)

    Murata, Kazuhiro; Kuroda, Shin-ichi; Shimoi, Yukihiro; Abe, Shuji; Noguchi, Takanobu; Ohnishi, Toshihiro

    1996-12-01

    Light-induced ESR (LESR) measurements have been performed on undoped poly(parapheny- lene vinylene) (PPV) down to 4 K. The ESR signal increases significantly for the excitation energy above 3.1 3.2 eV, as in the case of the excitation spectra of photocarriers reported in PPV derivatives. The anisotropic light-induced ESR spectra in oriented samples are well reproduced by the spectra calculated using a theoretical polaron spin distribution in the case of finite electron-electron interaction. These spectral features indicate that the observed spins are photogenerated polarons.

  4. Electronic Properties and Persistent Spin Currents of Nanospring under Static Magnetic Field

    Science.gov (United States)

    Kosugi, Taichi

    2013-03-01

    Relativistic electronic properties of a nanospring under a static magnetic field are theoretically investigated in the present study. The wave equation accounting for the spin--orbit interaction is derived for the nanospring as a special case of the Pauli equation for a spin-1/2 particle confined to a curved surface under an electromagnetic field. We define the helical momentum operator and show that it commutes with the Hamiltonian owing to the helical geometry of the nanospring. The energy eigenstates are hence also the eigenstates of the helical momentum. We solve the equation numerically to obtain the surface wave functions and the energy spectra. The electronic properties are systematically examined by varying the parameters that characterize the system. It is demonstrated that either the nonzero spin--orbit interaction or the nonzero external magnetic field suffices for the occurrence of the persistent spin current on the nanospring. Two different mechanisms are shown to generate the persistent spin current. One employs the spin--orbit interaction coming from the local inversion asymmetry on the surface, while the other employs the curvature coupling with the external magnetic field.

  5. Magnetic field dependence of spin-forbidden electronic excitations reflects the Haldane or paramagnetic ground state

    Science.gov (United States)

    Long, V. C.; Montague, J. R.; Kozen, A. C.; Wei, X.; Landry, B. R.; Pearson, K. R.; Turnbull, M. M.; Landee, C. P.

    2007-03-01

    We compare the zero-field and magnetic field-dependent optical spectra of the Haldane chain compound NENB (Ni[en]2NO2BF4; en = C2N2H8) and the paramagnetic compound, Ni(en) 3(ClO4)2,H2O. Due to similar electronic coordination of Ni^2+, the two materials show similar zero-field d-d electronic transitions, including a spin-forbidden (SF) transition at 1.58 eV, overlapping a broad spin-allowed band at 1.45 eV. The relatively greater intensity of the SF band in the Haldane compound suggests activation by a spin exchange mechanism, whereas a spin-orbit coupling origin is likely in the paramagnet. A second narrower SF spin flip transition appears in NENB at 1.66 eV. In both compounds, the SF excitations are sensitive to applied field H. In NENB, the SF intensity is suppressed by H, consistent with behavior of spin exchange-activated bands. In Ni(en)3(ClO4)-2,H2O, the SF field sensitivity appears to combine an energy shift and intensity decrease. Details of the H dependence reflect the magnetic ground state of the material: the field sensitivity commences only above HC 10 T, in the Haldane compound, whereas the field-induced modifications begin immediately at H = 0 T in the paramagnet.

  6. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    Science.gov (United States)

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  7. Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors

    Science.gov (United States)

    Linpeng, Xiayu; Karin, Todd; Durnev, M. V.; Barbour, Russell; Glazov, M. M.; Sherman, E. Ya.; Watkins, S. P.; Seto, Satoru; Fu, Kai-Mei C.

    2016-09-01

    We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field (B ) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4, 0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ˜2 T, the spin-relaxation mechanism is strongly density and temperature dependent and is attributed to the random precession of the electron spin in hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe a power-law dependence T1∝B-ν with 3 ≲ν ≲4 . Our theory predicts that the direct spin-phonon interaction is important in all three materials in this regime in contrast to quantum dot structures. In addition, the "admixture" mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe with no free parameters, however a significant discrepancy exists for InP.

  8. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    Science.gov (United States)

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  9. Experimental study on the activation process of GaAs spin-polarized electron source

    Institute of Scientific and Technical Information of China (English)

    阮存军

    2003-01-01

    GaAs spin-polarized electron source is a new kind of electron source, where the GaAs semiconductor crystal is used as a photocathode under the irradiation of helicity light. In this paper the activation process of the GaAs spin-polarized electron source is investigated experimentally in detail, during which the negative electron affinity of the photo cathode should be achieved more carefully by absorbing the caesium and oxygen on the surface of the GaAs crystal under ultrahigh vacuum conditions. Besides the different activation processes, the important physical parameters are studied to achieve the optimum activation results. At the same time the stability and lifetime of the polarized electron beam are explored for future experiments. Some important experimental data have been acquired.

  10. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  11. XMCD as a probe for spin-orbit interaction and spin-resolved electronic structure of Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Peter; Kallmayer, Michael; Arbelo Jorge, Elena; Herbort, Christian; Jakob, Gerhard; Jourdan, Martin; Elmers, Hans Joachim [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Blum, Christian; Graf, Tanja; Balke, Benjamin; Fecher, Gerhard Horst; Felser, Claudia [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany)

    2010-07-01

    To confirm theoretical predictions and optimize material properties of half-metallic Heusler alloys a characterization of the electronic structure is necessary. For this purpose x-ray magnetic circular dicroism (XMCD) is a powerful tool. In addition to the element-specific determination of the spin and orbital moment, XMCD allows a direct experimental observation of the spin-resolved unoccupied density of states (DOS) in Heusler alloys. It is shown that a substitution of Ge by Ga in alloys like Co{sub 2}MnGe shifts the minority DOS maximum with respect to E{sub F}, indicating half-metallic ferromagnetism for the whole series and satisfying the rigid-band like behavior. Results for polycrystalline bulk samples and single crystalline films are discussed. We report on the orbital to spin moment ratio versus composition, relating its variation to the symmetry of the unit cell. For the series Co{sub 2}Ti{sub 1-x}Mn{sub x}Ge the Fermi energy shifts opposite to the expected rigid band behavior, which can be explained by a charge transfer from the light 3d-element Ti with antiparallel moment to Co states.

  12. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Science.gov (United States)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Servet, Bernard; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-02-01

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al2O3 or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al2O3/Alq3/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working "organic" and short-circuited junctions fabricated on the same wafer.

  13. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre, E-mail: pierre.seneor@thalesgroup.com; Mattana, Richard, E-mail: richard.mattana@thalesgroup.com; Petroff, Frédéric [Unité Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay (France); Servet, Bernard [Thales Research and Technology, 1 Av. A. Fresnel, 91767 Palaiseau (France)

    2015-02-23

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al{sub 2}O{sub 3} or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al{sub 2}O{sub 3}/Alq{sub 3}/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working “organic” and short-circuited junctions fabricated on the same wafer.

  14. Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    I. Passchier; L.D. van Buuren; D. Szczerba; R. Alarcon; Th.S. Bauer; D. Boersma; J.F.J. van den Brand; H.J. Bulten; R. Ent; M. Ferro-Luzzi; M. Harvey; P. Heimberg; D.W. Higinbotham; S. Klous; H. Kolster; J. Lang; B.L. Militsyn; D. Nikolenko; G.J.L. Nooren; B.E. Norum; H.R. Poolman; I. Rachek; M.C. Simani; E. Six; H. de Vries; K. Wang; Z.-L. Zhou

    2002-02-25

    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter A{sub ed}{sup V} was measured for the 2{rvec H}({rvec e},e{prime}p)n reaction for missing momenta up to 350 MeV/c at a four-momentum transfer squared of 0.21 (GeV/c){sup 2}. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.

  15. Electron spin relaxation in p-type GaAs quantum wells

    Science.gov (United States)

    Zhou, Y.; Jiang, J. H.; Wu, M. W.

    2009-11-01

    We investigate electron spin relaxation in p-type GaAs quantum wells from a fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings, such as electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb and electron-hole exchange (the Bir-Aronov-Pikus (BAP) mechanism) scatterings, explicitly included. Via this approach, we examine the relative importance of the D'yakonov-Perel' (DP) and BAP mechanisms in wide ranges of temperature, hole density, excitation density and impurity density, and present a phase-diagram-like picture showing the parameter regime where the DP or BAP mechanism is more important. It is discovered that in the impurity-free case the temperature regime where the BAP mechanism is more efficient than the DP one is around the hole Fermi temperature for high hole density, regardless of excitation density. However, in the high impurity density case with the impurity density identical to the hole density, this regime is roughly from the electron Fermi temperature to the hole Fermi temperature. Moreover, we predict that for the impurity-free case, in the regime where the DP mechanism dominates the spin relaxation at all temperatures, the temperature dependence of the spin relaxation time (SRT) presents a peak around the hole Fermi temperature, which originates from the electron-hole Coulomb scattering. We also predict that at low temperature, the hole-density dependence of the electron SRT exhibits a double-peak structure in the impurity-free case, whereas it shows first a peak and then a valley in the case of identical impurity and hole densities. These intriguing behaviors are due to the contribution from holes in high subbands.

  16. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  17. Electron Spin Coherence of Shallow Donors in Natural and Isotopically Enriched Germanium.

    Science.gov (United States)

    Sigillito, A J; Jock, R M; Tyryshkin, A M; Beeman, J W; Haller, E E; Itoh, K M; Lyon, S A

    2015-12-11

    Germanium is a widely used material for electronic and optoelectronic devices and recently it has become an important material for spintronics and quantum computing applications. Donor spins in silicon have been shown to support very long coherence times (T_{2}) when the host material is isotopically enriched to remove any magnetic nuclei. Germanium also has nonmagnetic isotopes so it is expected to support long T_{2}'s while offering some new properties. Compared to Si, Ge has a strong spin-orbit coupling, large electron wave function, high mobility, and highly anisotropic conduction band valleys which will all give rise to new physics. In this Letter, the first pulsed electron spin resonance measurements of T_{2} and the spin-lattice relaxation (T_{1}) times for ^{75}As and ^{31}P donors in natural and isotopically enriched germanium are presented. We compare samples with various levels of isotopic enrichment and find that spectral diffusion due to ^{73}Ge nuclear spins limits the coherence in samples with significant amounts of ^{73}Ge. For the most highly enriched samples, we find that T_{1} limits T_{2} to T_{2}=2T_{1}. We report an anisotropy in T_{1} and the ensemble linewidths for magnetic fields oriented along different crystal axes but do not resolve any angular dependence to the spectral-diffusion-limited T_{2} in samples with ^{73}Ge. PMID:26705654

  18. Electron interaction effect on the spin diffusion and transport in half metallic magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chui, S.T., E-mail: chui@bartol.udel.edu

    2015-11-01

    For half metallic magnets, spin fluctuation is the same as charge fluctuation. The length scale is controlled by electron–electron interaction and is of the order of the screening length, typically of the order of an Angstrom whereas the ordinary spin diffusion length is of the order of 100 Å or more. We examine the eigenstates for charge and spin transport for systems close to half-metallicity. Due to the electron–electron interaction, the decay length of the eigenstate that corresponds to the longitudinal spin diffusion length is much reduced, consistent with recent experimental results. We explore the consequence of this. We find that there are two parameters that characterize half-metallicity and illustrate our results numerically with a simple model. - Highlights: • We show that in half metallic magnets such as the Heusler alloys electron–electron interaction need to be included. • In this class of material the length scale for the transport eigenstates that corresponds to spin diffusion is much reduced. • There are two quantities, the diffusion constant and the density of states, that control the magneto-resistance ratio.

  19. Electron Spin Coherence of Shallow Donors in Natural and Isotopically Enriched Germanium

    Science.gov (United States)

    Sigillito, A. J.; Jock, R. M.; Tyryshkin, A. M.; Beeman, J. W.; Haller, E. E.; Itoh, K. M.; Lyon, S. A.

    2015-12-01

    Germanium is a widely used material for electronic and optoelectronic devices and recently it has become an important material for spintronics and quantum computing applications. Donor spins in silicon have been shown to support very long coherence times (T2 ) when the host material is isotopically enriched to remove any magnetic nuclei. Germanium also has nonmagnetic isotopes so it is expected to support long T2's while offering some new properties. Compared to Si, Ge has a strong spin-orbit coupling, large electron wave function, high mobility, and highly anisotropic conduction band valleys which will all give rise to new physics. In this Letter, the first pulsed electron spin resonance measurements of T2 and the spin-lattice relaxation (T1) times for 75As and 31P donors in natural and isotopically enriched germanium are presented. We compare samples with various levels of isotopic enrichment and find that spectral diffusion due to 73Ge nuclear spins limits the coherence in samples with significant amounts of 73Ge. For the most highly enriched samples, we find that T1 limits T2 to T2=2 T1. We report an anisotropy in T1 and the ensemble linewidths for magnetic fields oriented along different crystal axes but do not resolve any angular dependence to the spectral-diffusion-limited T2 in samples with 73Ge.

  20. Stabilizing effect of nuclear quadrupole interaction on the polarization of electron-nuclear spin system in a quantum dot

    OpenAIRE

    Dzhioev, R. I.; Korenev, V. L.

    2007-01-01

    Nuclear quadrupole interaction extends the limits imposed by hyperfine interaction on the spin coherence of the electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. Th...

  1. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.;

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  2. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.;

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  3. Transport of Spin-Polarized Electrons through an NEM-SET Structure with Ferromagnetic Electrodes

    Science.gov (United States)

    Wang, R.; Jiang, K.

    2009-10-01

    We have investigated the spin-polarized electron transport in a magnetic nanoelectromechanical single-electron-transistor (NEM-SET), with an oscillating quantum dot (QD) coupled to two ferromagnetic electrodes. The interplay between the electronic and mechanical degrees of freedom is considered by using the quantum master equation method within Wigner phase-space. We present a concrete picture for the transition of the QD oscillations from the tunneling state to the shuttling one by analysis of the electron occupation, the effective potential and amplitude probability distribution. It is found that the development of dynamic shuttle instability is dependent on the relative orientation of two leads' magnetizations, which arises a pronounced spin valve effect. For an asymmetric NEM-SET structure, besides the spin valve effect, we unexpectedly find that the shuttle instability is additionally dependent on the the bias-voltage polarities, exhibiting a sizable current rectifica tion. The coexistence of two effects makes it possible to control the spin valve effect electrically or control the rectification magnetically.

  4. Spin-polarized low energy electron microscopy of ferromagnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, E. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ (United States)]. E-mail: ernst.bauer@asu.edu; Duden, T.; Zdyb, R. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ (United States)

    2002-10-07

    After a brief summary of the fundamentals, the possibilities and limitations of spin-polarized low energy electron microscopy and its application is illustrated with examples from recent work. These range from fundamental problems such as the determination of the exchange-split excited state band structure to problems of more practical interest such as the evolution of interlayer coupling with film thickness. (author)

  5. A point of view about identification of irradiated foods by electron spin resonance

    International Nuclear Information System (INIS)

    Principles and conditions required for using electron spin resonance (ESR) in identifying irradiated foods are first put forth. After a literature review, examples of irradiated cereals and French prunes are described in order to derive general conclusions concerning the future of ESR in this field

  6. On the Coupling of Photon Spin to Electron Orbital Angular Momentum

    CERN Document Server

    Fischer, Ulrich C; Fuchs, Harald; Salut, Roland; Lefier, Yannick; Grosjean, Thierry

    2016-01-01

    Partially gold coated 90 degree glass wedges and a semi - infinite slit in a thin film of gold ending in a conducting nano-junction serve as samples to investigate the transfer of photon spin to electron orbital angular momentum. These structures were specifically designed as samples where an incident beam of light is retroreflected. Since in the process of retroreflection the turning sense of a circularly polarized beam of light does not change and the direction of propagation is inverted, the photon spin is inverted. Due to conservation of angular momentum a transfer of photon spin to electron orbital angular momentum of conduction electrons occurs. In the structures a circular movement of electrons is blocked and therefore the transfered spin can be detected as a photovoltage due to an electromotive force which is induced by the transfer of angular momentum. Depending on the polarization of the incident beam, a maximum photovoltage of about 0,2 micro V was measured for both structures. The results are inte...

  7. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  8. Electrons and Spin Waves in Heavy Rare Earth Metals

    DEFF Research Database (Denmark)

    Mackintosh, A. R.

    1972-01-01

    dispersion relations by inelastic neutron scattering has provided a wealth of information about the interactions between the local moments, associated with the incompletely filled 4f subshell, and the rest of the crystal. The main emphasis in these notes will be on the interrelation between the electronic...

  9. Estimation of the Postmortem Duration of Mouse Tissue by Electron Spin Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shinobu Ito

    2011-01-01

    Full Text Available Electron spin resonance (ESR method is a simple method for detecting various free radicals simultaneously and directly. However, ESR spin trap method is unsuited to analyze weak ESR signals in organs because of water-induced dielectric loss (WIDL. To minimize WIDL occurring in biotissues and to improve detection sensitivity to free radicals in tissues, ESR cuvette was modified and used with 5,5-dimethtyl-1-pyrroline N-oxide (DMPO. The tissue samples were mouse brain, hart, lung, liver, kidney, pancreas, muscle, skin, and whole blood, where various ESR spin adduct signals including DMPO-ascorbyl radical (AsA∗, DMPO-superoxide anion radical (OOH, and DMPO-hydrogen radical (H signal were detected. Postmortem changes in DMPO-AsA∗ and DMPO-OOH were observed in various tissues of mouse. The signal peak of spin adduct was monitored until the 205th day postmortem. DMPO-AsA∗ in liver (y=113.8–40.7 log (day, R1=-0.779, R2=0.6, P<.001 was found to linearly decrease with the logarithm of postmortem duration days. Therefore, DMPO-AsA∗ signal may be suitable for detecting an oxidation stress tracer from tissue in comparison with other spin adduct signal on ESR spin trap method.

  10. Topologically nontrivial electronic bands and tunable Dirac cones in graphynes with spin-orbit coupling

    Science.gov (United States)

    Juricic, Vladimir; van Miert, Guido; Morais Smith, Cristiane

    2015-03-01

    Graphynes represent an emerging family of carbon allotropes that differ from graphene by the presence of the triple bonds (-C ≡C-) in their band structure. They have recently attracted much interest due to the tunability of the Dirac cones in the band structure. I will show that the spin-orbit coupling in β-graphyne could produce various effects related to the topological properties of its electronic bands. Intrinsic spin-orbit coupling yields high- and tunable Chern-number bands, which may host both topological and Chern insulators, in the presence and absence of time-reversal symmetry, respectively. Furthermore, Rashba spin-orbit coupling can be used to control the position and the number of Dirac cones in the Brillouin zone. Finally, I will also discuss the electronic properties of α - and γ - graphyne in the presence of the spin-orbit coupling within recently developed general theory of spin-orbit couplings in graphynes. Work supported by the Netherlands Organization for Scientific Research (NWO).

  11. Spin decoherence in electron storage rings --- more from a simple model

    CERN Document Server

    Barber, D P

    2015-01-01

    This is an addendum to the paper "Some models of spin coherence and decoherence in storage rings" by one of the authors [1] in which spin diffusion in simple electron storage rings is studied. In particular, we illustrate in a compact way, a key implication in the Epilogue of [1], namely that the exact formalism of [1] delivers a rate of depolarisation which can differ from that obtained by the conventional treatments of spin diffusion which rely on the use of the derivative $\\partial \\hat n/\\partial\\eta$ [2,3,4]. As a vehicle we consider a ring with a Siberian Snake and electron polarisation in the plane of the ring (Machine II in [1]). For this simple setup with its one-dimensional spin motion, we avoid having to deal directly with the Bloch equation [5,6] for the polarisation density. Our treatment, which is deliberately pedagogical, shows that the use of $\\partial \\hat n/\\partial\\eta$ provides a very good approximation to the rate of spin depolarisation in the model considered. But it then shows that the ...

  12. Spin decoherence in electron storage rings. More from a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Heinemann, K. [The Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mathematics and Statistics

    2015-06-15

    This is an addendum to the paper ''Some models of spin coherence and decoherence in storage rings'' by one of the authors (K. Heinemann, DESY Report 97-166 (1997)), in which spin diffusion in simple electron storage rings is studied. In particular, we illustrate in a compact way, namely that the exact formalism of this article delivers a rate of depolarisation which can differ from that obtained by the conventional treatments of spin diffusion which rely on the use of the derivative ∂n/∂η. As a vehicle we consider a ring with a Siberian Snake and electron polarisation in the plane of the ring. For this simple setup with its one-dimensional spin motion, we avoid having to deal directly with the Bloch equation for the polarisation density. Our treatment, which is deliberately pedagogical, shows that the use of ∂n/∂η provides a very good approximation to the rate of spin depolarisation in the model considered. But it then shows that the exact rate of depolarisation can be obtained by replacing ∂n/∂η by another derivative, while giving a heuristic justification for the new derivative.

  13. Experimental and theoretical study of conduction electron spin resonance in aluminum

    International Nuclear Information System (INIS)

    The purpose of the present work is to contribute to the elucidation of the spin resonance properties of conduction electron in pure metals. We follow three complementary ways: 1) We compare between them all metals where spin resonance has been observed. We show the influence of spin-orbit and of the metal valence, and we deduce the likely importance of the Fermi surface complexity, in particular concerning the g factor. 2) We have assembled an original EPR spectrometer, working at 350 MHz. This 'low' frequency enables to minimize the line broadenings due to g factor distributions over the Fermi surface. Nevertheless we were unable to detect any new resonance. This apparatus performed some experiments on aluminum, an exemplary metal: spin relaxation on dislocations and surfaces; study of g between 50 and 110 K. 3) We calculate the g factor at every point of the Fermi surface of aluminum, by introducing the spin-orbit potential as a perturbation. An important difficulty remains, linked to the choice of the wave function phase. Moreover we propose a phenomenological model based on the narrowing of the so calculated g distribution by two types of motion: a random one corresponding to diffusion of electrons on the crystalline imperfections, and a coherent one around the cyclotron orbits. A qualitative model accounts relatively well for the experimental facts

  14. Recent progress on correlated electron systems with strong spin-orbit coupling.

    Science.gov (United States)

    Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek

    2016-09-01

    The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems. PMID:27540689

  15. Recent progress on correlated electron systems with strong spin-orbit coupling

    Science.gov (United States)

    Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek

    2016-09-01

    The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems.

  16. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field

    Science.gov (United States)

    Shumilin, A. V.

    2016-10-01

    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.

  17. Electron spin resonance (ESR) study of VO{sup 2+} doped germanium dioxide synthesized via the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Vivar, J.; Arroyo, R. [Univ. Autonoma Metropolitana-Iztapalapa (Mexico). Dept. de Quimica

    1994-12-31

    VOSO{sub 4}{center_dot}3H{sub 2}O was used as doping agent to prepare GeO{sub 2} xerogels, via the sol-gel process. Samples were analyzed by Thermal Gravimetric Analysis (TGA), Differential Thermal Analysis, (DTA), Diffuse reflectance (UV-Vis) spectroscopy and electron spin resonance (ESR). Study of thermally treated samples was performed. VO{sup 2+} were found in V{sub 2}O{sub 5} at 350 C. VO{sup 2+} ions were incorporated in the GeO{sub 2} network after thermal treatment at 700 C. From the results the authors propose that VO{sup 2+} acts as crystal former in these samples.

  18. Electron Spin or "Classically Non-Describable Two-Valuedness"

    CERN Document Server

    Giulini, Domenico

    2007-01-01

    In December 1924 Wolfgang Pauli proposed the idea of an inner degree of freedom of the electron, which he insisted should be thought of as genuinely quantum mechanical in nature. Shortly thereafter Ralph Kronig and, independently, Samuel Goudsmit and George Uhlenbeck took up a less radical stance by suggesting that this degree of freedom somehow corresponded to an inner rotational motion, though it was unclear from the very beginning how literal one was actually supposed to take this picture, since it was immediately recognised (already by Goudsmit and Uhlenbeck) that it would very likely lead to serious problems with Special Relativity if the model were to reproduce the electron's values for mass, charge, angular momentum, and magnetic moment. However, probably due to the then overwhelming impression that classical concepts were generally insufficient for the proper description of microscopic phenomena, a more detailed reasoning was never given. In this contribution I shall investigate in some detail what th...

  19. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  20. Magneto-anisotropy of spin dephasing in a [001]-grown high-mobility two-dimensional electron system

    Science.gov (United States)

    Korn, T.; Stich, D.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2010-01-01

    The spin dynamics in [001]-grown two-dimensional electron systems (2DES) at low temperatures are governed by the effective spin-orbit fields, which lead to dephasing via the D'yakonov-Perel mechanism. If both the Rashba and the Dresselhaus spin-orbit fields are present and of the same order, their interference causes a large anisotropy of the spin dephasing times for spin orientation along different in-plane directions. This may be observed in time-resolved Faraday rotation measurements using in-plane magnetic fields. The dephasing anisotropy is strongly reduced for increasing carrier density by the increasing importance of the kubic Dresselhaus term.

  1. Electron density dependence of the spin Hall effect in GaAs probed by scanning Kerr rotation microscopy

    Science.gov (United States)

    Matsuzaka, S.; Ohno, Y.; Ohno, H.

    2009-12-01

    We studied electron density (n) dependence of the extrinsic spin Hall effect in n -doped GaAs with n raging from 1.8×1016 to 3.3×1017cm-3 . By scanning Kerr microscopy measurements, we observed spin accumulation near the channel edges in all the samples due to the extrinsic spin Hall effect. The spin Hall conductivity σSH is obtained for each sample by comparing the Kerr rotation induced by optically injected spins. σSH is found to increase with n , and it is shown that a theoretical model reported earlier agrees well with the experimental n dependence of σSH .

  2. Semiclassical Vlasov and fluid models for an electron gas with spin effects

    CERN Document Server

    Hurst, Jerome; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-01-01

    We derive a four-component Vlasov equation for a system composed of spin-1/2 fermions (typically electrons). The orbital part of the motion is classical, whereas the spin degrees of freedom are treated in a completely quantum-mechanical way. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. This hydrodynamic model is closed using a maximum entropy principle in the case of three or four constraints on the fluid moments, both for Maxwell-Boltzmann and Fermi-Dirac statistics.

  3. An Electron-Nucleon Double Spin Solid-State Quantum Computer

    CERN Document Server

    Long, G L; Chen, H M; Long, Gui Lu; Ma, Ying-Jun; Chen, Hao-Ming

    2003-01-01

    An electron-nucleon double spin(ENDOS) solid-state quantum computer scheme is proposed. In this scheme, the qubits are the nuclear spins of phosphorus ion implanted on the (111) surface of $^{28}$Si substrate. An $^{13}$C atom on a scanning tunnelling probe tip is used both to complete single qubit and two-qubit control-not operation, and single qubit measurement. The scheme does not require interactions between qubits, and can accomplish two qubits without the use of SWAP gate. This scheme is scalable, and can be implemented with present-day or near-future technologies.

  4. Reduced matrix elements of spin–spin interactions for the atomic f-electron configurations

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Y.Y., E-mail: yeungy@acm.org

    2014-03-15

    A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin–spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators z{sub r} (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f{sup 4} to f{sup 7}.

  5. Phase boundary of spin-polarized-current state of electrons in bilayer graphene

    Science.gov (United States)

    Yan, Xin-Zhong; Ma, Yinfeng; Ting, C. S.

    2016-06-01

    Using a four-band Hamiltonian, we study the phase boundary of spin-polarized-current state (SPCS) of interacting electrons in bilayer graphene. The model of spin-polarized-current state has previously been shown to resolve a number of experimental puzzles in bilayer graphene. The phase boundaries of the SPCS with and without the external voltage between the two layers are obtained in this work. An unusual phase boundary where there are two transition temperatures for a given carrier concentration is found at finite external voltage. The physics of this phenomenon is explained.

  6. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    Science.gov (United States)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  7. Electron spin resonance study of Na_{1-x}Li_xV_2O_5

    OpenAIRE

    Lohmann, M.; von Nidda, H. -A. Krug; Loidl, A.; Morre, E.; Dischner, M.; Geibel, C

    1999-01-01

    We measured X-band electron-spin resonance of single crystalline sodium vanadate doped with lithium, Na_{1-x}Li_xV_2O_5 for 0 < x < 1.3% . The phase transition into a dimerized phase that is observed at 34 K in the undoped compound, was found to be strongly suppressed upon doping with lithium. The spin susceptibility was analyzed to determine the transition temperature and the energy gap with respect to the lithium content. The transition temperature Tsp is suppressed following a square depen...

  8. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    Science.gov (United States)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  9. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    Science.gov (United States)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  10. Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin-Echo Envelope Modulation by D2O

    Science.gov (United States)

    Bartucci, R.; Guzzi, R.; Sportelli, L.; Marsh, D.

    2009-01-01

    Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC1 to TOAC8 and TOAC16 but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC16 is located in the bilayer leaflet opposite to that of TOAC1 and TOAC8. Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC8, indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states. PMID:19186137

  11. Dynamics of an electron spin in strong classical and quantized electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Skoromnik, Oleg

    2014-07-09

    The electron motion in the presence of a strong classical and quantized pulse of an electromagnetic field is studied with a special emphasis on the spin degree of freedom. It is shown that the Hamiltonian of this system can be separated into two parts with the help of canonical transformations of the field variables, namely the interaction between an electron and a single collective mode of the field and fluctuations relatively to this collective mode. The application of perturbation theory to the fluctuations allows the conditions of applicability of the single-mode approximation for the quantized external field to be formulated. Furthermore, within this approximation the electron spin evolution is investigated. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity-dependent emissions and absorptions of field quanta, that is collapse and revival dynamics. The effect is observable at the experimentally feasible intensity of 10{sup 18} Wcm{sup 2}. After this, we switch to the regime of higher intensities, when the fluctuations of the external field can be neglected. We investigate the asymmetries in the electron scattering arising due to the electron polarization and pulse duration, and constrain the optimal conditions for the asymmetry observation.

  12. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    International Nuclear Information System (INIS)

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy

  13. Electron spin resonance and electron nuclear double resonance of photogenerated polarons in polyfluorene and its fullerene composite

    Science.gov (United States)

    Marumoto, K.; Kato, M.; Kondo, H.; Kuroda, S.; Greenham, N. C.; Friend, R. H.; Shimoi, Y.; Abe, S.

    2009-06-01

    Electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) of photogenerated polarons in poly(9,9-dioctylfluorene) (PFO) and its composite with fullerene (C60) using variable photoexcitation energy up to 4.1 eV are reported. For PFO, a light-induced ESR (LESR) signal (g=2.003) is observed below 60 K, and its transient response and excitation spectrum indicate that the observed spins are photogenerated polarons on PFO. For the PFO-C60 composite, two LESR signals of photogenerated positive polarons on PFO (g1=2.003) and radical anions on C60 (g2=1.999) , respectively, are observed below 120 K, which are caused by photoinduced electron transfer from PFO to C60 . A remarkable enhancement of the LESR signals in the excitation spectrum at ˜2.8eV is observed compared with the case of pure PFO. The bimolecular-recombination kinetics of photogenerated charge carriers in the composite are confirmed by the dependence of the LESR on excitation-light intensity and by the decay dynamics. Light-induced ENDOR (LENDOR) signals are clearly observed for excitation around 2.8 eV owing to the highly efficient photoinduced electron transfer in the composite. Broad LENDOR shifts directly reflect the spin-density distribution of the polarons in PFO. We have determined its maximum shift using LENDOR-induced ESR, and have evaluated the maximum spin density on the carbon site coupled to the proton as 0.032. This value is consistent with the theoretical result obtained by Pariser-Parr-Pople (PPP) model, where the spatial extent of the polarons is calculated as ˜3 monomer units of PFO. The calculated LESR spectra of PFO based on the PPP model are consistent with the experimental spectra, which confirm the above spatial extension of the polaron in PFO.

  14. Applying Electronic Supply Chain Management Using Multi-Agent System: A Managerial Perspective

    Directory of Open Access Journals (Sweden)

    Haitham Al-zu’bi

    2010-01-01

    Full Text Available In the electronic business environment, supply chain management must deal with globalization, proliferating productvariety, organizational barriers, and quick information sharing. Consequently, appropriate tools are needed to support supply chainmanagement. We believe that software agents are good candidates to overcome these challenges. In this paper, I propose MAS+SCM,which is a Multi-Agent System (MAS to support Electronic Supply Chain Management (E-SCM. The proposed model consists of aset of agents that are working together to maintain supplying, manufacturing, inventory and distributing. The main operations of thesoftware agents include: (1 receiving information from customer orders (2 check the inventory (3 make the production schedule (4issue the order of raw materials from the suppliers (5 receive the raw materials (6 production (7 deliver products to the customer.In addition to the interface agents and communication protocols among agents.

  15. The Decoherence of the Electron Spin and Meta-Stability of 13C Nuclear Spins in Diamond

    Directory of Open Access Journals (Sweden)

    Peter Crompton

    2011-05-01

    Full Text Available Following the recent successful experimental manipulation of entangled 13C atoms on the surface of Diamond, we calculate the decoherence of the electron spin in Nitrogen Vacancy NV centers of Diamond via a nonperturbative treatment of the time-dependent Greens function of a Central-Spin model in order to identify the Replica Symmetry Breaking mechanism associated with intersystem mixing between the ms = 0 sublevel of the 3A2 and 1A1 states of the NV− centers, which we identify as mediated via the meta-stability of 13C nuclei bath processes in our calculations. Rather than the standard exciton-based calculation scheme used for quantum dots, we argue that a new scheme is needed to formally treat the Replica Symmetry Breaking of the 3A2 → 3E excitations of the NV− centers, which we define by extending the existing Generalized Master Equation formalism via the use of fractional time derivatives. Our calculations allow us to accurately quantify the dangerously irrelevant scaling associated with the Replica Symmetry Breaking and provide an explanation for the experimentally observed room temperature stability of Diamond for Quantum Computing applications.

  16. Spin-orbit coupling in gated AlGaN/GaN 2-dimensional electron gases

    Energy Technology Data Exchange (ETDEWEB)

    Schaepers, Th.; Thillosen, N.; Cabanas, S.; Kaluza, N.; Guzenko, V.A.; Hardtdegen, H. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Juelich, 52425 Juelich (Germany)

    2006-07-01

    Weak antilocalization was studied in an Al{sub x}Ga{sub 1-x}N/GaN two-dimensional electron gas as a function of temperature for various gate voltages. By fitting the weak antilocalization measurements by a theoretical model we found that the spin-orbit scattering length does not vary upon changing the carrier concentration or the temperature. The occurrence of spin-orbit coupling was attributed to the crystal inversion asymmetry. The presence of beating patterns observed in the Shubnikov-de Haas oscillations were not assigned to the presence of spin-orbit coupling but rather to structural inhomogeneities in the Al{sub x}Ga{sub 1-x}N/GaN crystal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Spin- and valley-coupled electronic states in monolayer WSe{sub 2} on bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, K.; Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sato, T.; Tanaka, Y. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2015-08-17

    We have fabricated a high-quality monolayer WSe{sub 2} film on bilayer graphene by epitaxial growth and revealed the electronic states by spin- and angle-resolved photoemission spectroscopy. We observed a direct energy gap at the Brillouin-zone corner in contrast to the indirect nature of gap in bulk WSe{sub 2}, which is attributed to the lack of interlayer interaction and the breaking of space-inversion symmetry in monolayer film. A giant spin splitting of ∼0.5 eV, which is the largest among known monolayer transition-metal dichalcogenides, is observed in the energy band around the zone corner. The present results suggest a high potential applicability of WSe{sub 2} to develop advanced devices based with the coupling of spin- and valley-degrees of freedom.

  18. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Weiwei He

    2014-03-01

    Full Text Available Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS. Electron spin resonance (ESR spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.

  19. Magnetic fluctuations and superconductivity in Fe pnictides probed by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Pascher, Nikola; Deisenhofer, Joachim; Krug von Nidda, Hans-Albrecht; Loidl, Alois [Experimentalphysik V, Center for Electronic Correlations and Magnetism, Institute for Physics, Augsburg University, D-86135 Augsburg (Germany); Jeevan, H.S.; Gegenwart, P. [I. Physik. Institut, Georg-August-Universitaet Goettingen, D-37077 Goettingen (Germany)

    2010-07-01

    The electron spin resonance absorption spectrum of Eu{sup 2+} ions serves as a probe of the normal and superconducting state in Eu{sub 0.5}K{sub 0.5}Fe{sub 2}As{sub 2}. The spin-lattice relaxation rate 1/T{sub 1}{sup ESR} obtained from the ESR linewidth exhibits a Korringa-like linear increase with temperature above T{sub C} evidencing a normal Fermi-liquid behavior. Below 45 K deviations from the Korringa-law occur which are ascribed to enhanced magnetic fluctuations upon approaching the superconducting transition. Below T{sub C} the spin lattice relaxation rate 1/T{sub 1}{sup ESR} follows a T{sup 1.5}-behavior without the appearance of a coherence peak.

  20. A Prototype for an Agent-based Secure Electronic Marketplace including Reputation Tracking Mechanisms

    OpenAIRE

    Padovan Boris; Sackmann Stefan; Eymann Thorsten; Pippow Ingo

    2002-01-01

    The future of electronic commerce will be shaped by open, heterogeneous and complex structures, consisting of networked marketplaces. Software agents will interact and negotiate on behalf of their human (or organizational) principals. Principals will be able to implement fraudulent strategies in their agents, which cannot be countered by technical security alone. In the absence of a single correctional institution, agents will have to rely on social mechanisms for assessing reliability and re...

  1. Quantum mechanics of a spin-orbit coupled electron constrained to a space curve

    Science.gov (United States)

    Ortix, Carmine

    2015-06-01

    We derive the effective one-dimensional Schrödinger-Pauli equation for electrons constrained to move on a space curve. The electrons are confined using a double thin-wall quantization procedure with adiabatic separation of fast and slow quantum degrees of freedom. This procedure is capable of yielding a correct Hermitian one-dimensional Schrödinger-Pauli operator. We find that the torsion of the space curve generates an additional quantum geometric potential, adding to the well-known curvature-induced one. Finally, we derive an analytic form of the one-dimensional Hamiltonian for spin-orbit coupled electrons in a nanoscale helical wire.

  2. Charge Transport in a Spin-Polarized 2D Electron System in Silicon

    OpenAIRE

    Knyazev, D. A.; Omelyanovskii, O. E.; Dormidontov, A. S.; Pudalov, V.M.

    2006-01-01

    The temperature dependences of the conductivity \\sigma(T) for strongly interacting 2D electron system in silicon have been analyzed both in zero magnetic field and in spin-polarizing magnetic field of 14.2T, parallel to the sample plane. Measurements were carried out in a wide temperature range (1.4-9)K, in the ballistic regime of electron-electron interaction, i.e., for T\\tau > 1. In zero magnetic field, the data obtained for \\sigma(T) are quantitatively described by the theory of interactio...

  3. Electron Scattering from Freely Moveable spin-$\\frac{1}{2}$ fermion in Strong Laser Field

    CERN Document Server

    Liu, Ai-Hua

    2014-01-01

    We study the electron scatter from the freely movable spin-$\\frac{1}{2}$ particle in the presence of a linearly polarized laser field in the first Born approximation. The dressed state of electrons is described by a time-dependent wave function derived from a perturbation treatment (of the laser field). With the aid of numerical results we explore the dependencies of the differential cross section on the laser field properties such as the strength, the frequency, as well as on the electron-impact energy, etc. Due to the targets are movable, the DCS of this process reduced comparing to the Mott scattering, especially in small scattering angles.

  4. Electronic spin transport and thermoelectric effects in graphene

    OpenAIRE

    Neumann, Ingmar

    2014-01-01

    La espintrónica y la espín caloritronica en grafeno son campos de investigación muy activos, y esta tesis es una contribución a ambos campos. El tema principal es el estudio de la corriente de espín a través de métodos de inyección y detección eléctrica en válvulas de espín no locales de grafeno. Preliminarmente, estudiamos analíticamente el efecto túnel de electrones de conducción entre materiales ferromagnéticos y no magnéticos. En la parte experimental, se investiga la precesión de espín ...

  5. Applying Electronic Supply Chain Management Using Multi-Agent System: A Managerial Perspective

    OpenAIRE

    Haitham Al-zu’bi

    2010-01-01

    In the electronic business environment, supply chain management must deal with globalization, proliferating productvariety, organizational barriers, and quick information sharing. Consequently, appropriate tools are needed to support supply chainmanagement. We believe that software agents are good candidates to overcome these challenges. In this paper, I propose MAS+SCM,which is a Multi-Agent System (MAS) to support Electronic Supply Chain Management (E-SCM). The proposed model consists of as...

  6. Zitterbewegung, internal momentum and spin of the circular travelling wave electromagnetic electron

    CERN Document Server

    Asif, Malik Mohammad

    2016-01-01

    The study of this paper demonstrates that electron has Dirac delta like internal momentum (u,p_{{\\theta}}), going round in a circle of radius equal to half the reduced Compton wavelength of electron with tangential velocity c. The circular momentum p_{{\\theta}} and energy u emanate from circular Dirac delta type rotating monochromatic electromagnetic (EM) wave that itself travels in another circle having radius equal to the reduced Compton wavelength of electron. The phenomenon of Zitterbewegung and the spin of electron are the natural consequences of the model. The spin is associated with the internal circulating momentum of electron in terms of four component spinor, which leads to the Dirac equation linking the EM electron model with quantum mechanical theory. Our model accurately explains the experimental results of electron channelling experiment, [P. Catillon et al., Found.Phys. 38, 659 (2008)], in which the momentum resonance is observed at 161.784MeV/c corresponding to Zitterbewegung frequency of 80.8...

  7. Heavy electrons and symplectic symmetry of a spin

    Science.gov (United States)

    Dzero, Maxim

    2009-03-01

    Motivated by the recent discovery of the heavy fermion materials NpPd5Al2 [1] and PuCoGa5 [2] which transform directly from Curie paramagnets into superconductors, we have developed a novel theory of these materials based on the idea of composite pairing between local moments and electron pairs. This talk will discuss a simple model of this kind of pairing that can be solved exactly in a large-N limit [3]. The talk will discuss how this concept enables us to understand the giant entropy of condensation, the symmetry of the order parameter as well as an enhancement of the Andreev reflection in tunneling measurements and an upturn in the NMR relaxation rate above Tc. [0pt] [1] D. Aoki et al., Jour. Phys. Soc. of Japan 76, 063701 (2007).[0pt] [2] J. Sarrao et al., Nature (London) 420, 297 (2002).[0pt] [3] R. Flint, M. Dzero and P. Coleman, Nature Physics 4, 643 (2008).

  8. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  9. Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels

    Science.gov (United States)

    Bominaar, Emile L.; Achim, Catalina; Peterson, Jim

    1998-07-01

    Magnetic linear dichroism (MLD) spectroscopy is a relatively new technique which previously has been almost exclusively applied to atoms. These investigations have revealed that the study of MLD, in conjunction with electronic absorption and magnetic circular dichroism (MCD) spectroscopies, provides significant additional information concerning the electronic structure of atoms. More recent measurements have indicated that MLD is also observable from transition ions in inorganic compounds and metalloproteins. While the theory for atomic MLD has been worked out in considerable detail during the last two decades, an MLD theory of practical utility for the analysis of the spectra derived from the majority of paramagnetic molecules is not available. In the present contribution, the MLD of an electric-dipole-allowed transition between twofold-degenerate molecular spin levels is analyzed, assuming nonsaturating conditions. As for atomic systems, it is found that the MLD of a single molecule is dominated by the term G0. However, this term vanishes in the powder average evaluated for a randomly oriented ensemble of molecules, leading to a drastic reduction of the MLD differential absorption for systems with spin S=1/2 compared to that observed for systems with higher ground-state spin. It is found that MLD and MCD spectroscopies on solution samples have complementary spin-state specific sensitivities which suggest that the two methods can be used to selectively probe the individual metal sites in multicenter metalloprotein assemblies.

  10. Use of paramagnetic chelated metal derivatives of polysaccharides and spin-labeled polysaccharides as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bligh, S.W.; Harding, C.T.; Sadler, P.J.; Bulman, R.A.; Bydder, G.M.; Pennock, J.M.; Kelly, J.D.; Latham, I.A.; Marriott, J.A. (Department of Chemistry, Birkbeck College, London (England))

    1991-02-01

    Soluble and insoluble polysaccharides were derivatized with diethylenetriaminepentaacetic acid (DTPA) and/or spin-labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Polysaccharides derivatized with DTPA were prepared via cyanogen bromide activation, coupling to a diamine linker, and to DTPA anhydride. Spin-labeled polysaccharides were also prepared via cyanogen bromide activation. The extent of derivatization for dextran (18 kDa) was about 120 glucose units per DTPA, and for cellulose and starch about 15-30 units per DTPA. For spin-labeled polysaccharides, the average loading ranged from 1 nitroxide per 16 glucose units for starch to 181 for dextran (82 kDa). These derivatized paramagnetic polysaccharides were shown to be more effective relaxants than the small paramagnetic molecules alone. Both soluble and insoluble polysaccharide-linker-DTPA-Gd(3) complexes were effectively cleared from the body (rats) after oral administration. After intravenous administration, the biodistribution of dextran-linker-DTPA-Gd(3) complexes differed significantly from that of GdDTPA. Reduction of the nitroxide by ascorbic acid was retarded in the polysaccharide derivatives, particularly in starch derivatized with both nitroxide and linker-DTPA-Cu(2). These agents showed contrast enhancement in the gastrointestinal tract of rabbits.

  11. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    OpenAIRE

    Kurian, P; Verzegnassi, C.

    2015-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values fo...

  12. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond

    OpenAIRE

    Shi, Fazhan; Rong, Xing; Xu, Nanyang; Wang, Ya; Wu, Jie; Chong, Bo; Peng, Xinhua; Kniepert, Juliane; Schoenfeld, Rolf-Simon; Harneit, Wolfgang; Feng, Mang; Du, Jiangfeng

    2010-01-01

    The nitrogen-vacancy defect center (NV center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single NV center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resou...

  13. Universal quantum computation with electron spins in quantum dots based on superpositions of spacetime paths and Coulomb blockade

    CERN Document Server

    Lin, C C Y; Wu, Y Z; Zhang, W M; Lin, Cyrus C.Y.; Soo, Chopin; Wu, Yin-Zhong; Zhang, Wei-Min

    2004-01-01

    Using electrostatic gates to control the electron positions, we present a new controlled-NOT gate based on quantum dots. The qubit states are chosen to be the spin states of an excess conductor electron in the quantum dot; and the main ingredients of our scheme are the superpositions of space-time paths of electrons and the effect of Coulomb blockade. All operations are performed only on individual quantum dots and are based on fundamental interactions. Without resorting to spin-spin terms or other assumed interactions, the scheme can be realized with a dedicated circuit and a necessary number of quantum dots. Gate fidelity of the quantum computation is also presented.

  14. Spin-tagged electron-hydrogen scattering: Ionization in the near-threshold region

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.Q.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Slevin, J.; Eminyan, M. (Department of Physics, City College of the City University of New York, New York, NY (USA) Department of Experimental Physics, St. Patrick' s College, Maynooth, Maynooth, County Kildare (United Kingdom) Laboratoire de Physique Atomique, Tour 24, Universite Paris VII, F-75251 Paris (France))

    1990-10-08

    We use beams of polarized electrons and polarized hydrogen atoms to measure the ionization-rate asymmetry, {Delta}{sub {ital I}}=({ital R}({up arrow}{down arrow}){minus}{ital R}({up arrow}{up arrow}))/({ital R}({up arrow}{down arrow})+{ital R}({up arrow}{up arrow})), in the near-threshold region, where {ital R}({up arrow}{down arrow}) and {ital R}({up arrow}{up arrow}) are the ionization rates when the electron spin is antiparallel and parallel, respectively, to the atomic spins. Within 1.7 eV above threshold, our results reveal the presence of structure, which heretofore has not been predicted by any conventional theoretical calculation.

  15. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model

    CERN Document Server

    Wang, Wei

    2014-01-01

    The emergence of biomolecular homochirality is a critically important question about life phenomenon and the origins of life. In a previous paper (arXiv:1309.1229), I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. However, how a homochirality world of biomolecules could have formed in the absence of enzymatic networks before the origins of life remains unanswered. Here I discussed the electron spin properties in Fe3S4, ZnS, and transition metal doped dilute magnetic ZnS, and their possible roles in the prebiotic synthesis of chiral molecules. Since the existence of these minerals in hydrothermal vent systems is matter of fact, the suggested prebiotic inorganic-organic reaction model, if can be experimentally demonstrated, may help explain where and how life originated on early Earth.

  16. A scheme for spin-selective electron localization in Mn3Ga Heusler material

    International Nuclear Information System (INIS)

    We demonstrate that tetragonal Mn3Ga Heusler material allows for a new possibility of adjusting an electric current by means of the so-called spin-selective localization of conduction electrons. On the basis of a first-principles analysis, we propose possible chemical substitutes for Mn, which, when used in small quantities, can lead to a disorder-induced localization of the conduction electrons in a single spin channel. Replacement of the Mn in Mn3 − xYxGa with other 3d transition metals Y is known not to change the tetragonal structure for a certain range of x. For Y = Co the range is x ⩽ 0.5. Therefore, substitution of Co for Mn is used in the present work as a prototype procedure for a detailed demonstration of the underlying physical mechanisms. (paper)

  17. Electrical conductivity and electron-spin resonance in oxidatively stabilized polyacrylonitrile subjected to elevated temperature

    Science.gov (United States)

    Lerner, N. R.

    1981-01-01

    Electrical conductivity and electron spin resonance measurements are presented for oxidatively stabilized polyacrylonitrile (PAN) fibers subjected to heat treatment at temperatures ranging from 700 to 950 K. Conductivity measurements made at temperatures between 77 and 523 K reveal that PAN fibers heat treated in vacuum behave as semiconductors, with a room-temperature conductivity dominated by the contributions of impurity states, with an activation energy of 88 kcal/mole. A decrease in conductivity is observed upon air which is attributed to a decrease in the electron-phonon scattering time. ESR spectra indicate that conducting pathways having metallic properties are formed at temperatures as low as 715 K, although the contribution of these pathways to the room-temperature conductivity is extremely small next to the contribution of localized spin centers.

  18. Electronic Structure, Magnetism and Spin-Fluctuations in Fe-As Based Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, David J [ORNL; Du, Mao-Hua [ORNL; Zhang, Lijun [ORNL; Subedi, Alaska P [ORNL; An, Jiming [ORNL

    2009-01-01

    The physical properties of the layered iron superconductors and related phases are discussed starting from first principles calculations. The electronic structure is described as that of metallic Fe{sup 2+} square lattice sheets with substantial direct Fe-Fe hopping and interactions with the neighboring anionic pnictogens or chalcogens. The materials have a semi-metallic band structure, and in particular the Fermi surface consists of small cylindrical electron sections centered at the zone corner, and compensating hole sections at the zone boundary. The density of states N(E{sub F}) is high placing the materials near itinerant magnetism in general, and furthermore the small Fermi surface sections are well nested leading to a tendency towards a spin density wave. Comparison of experimental and density functional results imply the presence of exceptionally strong spin fluctuations in these materials. Superconductivity is discussed within this context.

  19. Microscopic Examinations of Co Valences and Spin States in Electron-Doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Syun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Takahashi, Yuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Nojiri, Hiroyuki; Okamoto, Jun; Huang, Di-Jing; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2016-09-01

    We studied the Co valences and spin states in electron-doped LaCo1-yTeyO3 by measuring X-ray absorption spectra and electron spin resonance. The low-temperature insulating state involves the low-spin Co3+ state (S = 0) and the high-spin Co2+ state, where the latter is described by g = 3.8 and jeff = 1/2. The results, in concurrence with the electron-hole asymmetry confirmed in the electrical resistivity, coincide with the spin-blockade phenomenon in this system. Furthermore, we discuss the g factor in terms of the strong covalent-bonding nature and consider multiple origins of this phenomenon.

  20. The role of Co atoms in spin dependent electronic properties of graphite-like ZnO structures

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, S., E-mail: scaliskan@fatih.edu.tr; Guner, S.

    2015-01-01

    A first principles study is employed to reveal the electronic properties of graphite-like Co doped ZnO structures composed of atomic layers when spin property of electrons is involved. The influence of Co atoms, which are substituting the Zn atoms, was addressed through distinct atomic arrangements formed by specific atomic configurations and various Co concentrations. We obtained that the spin dependent behavior is largely determined by the atomic arrangement which can crucially impact the electronic structure for a certain spin orientation. It was observed that atomic configuration is an essential factor which may reduce or enhance the minority-spin energy gap relative to majority one. It was shown that the emerging spin polarization can be manipulated by the atomic arrangement of the layered structures. Both the spin polarization and the magnetic moment were found to be contributed by both Co and O atoms. The stability of a system via formation energy, the role of Co dopants positioned at different Zn sites, the number of both Co atoms and layers in a supercell, and the mechanisms governing the spin dependent behavior of these structures are discussed. - Highlights: • Co dopants at distinct locations yield crucial changes in spin dependent behavior. • Spin dependent behavior is determined by atomic arrangement in Co doped ZnO systems. • Atomic configuration and Co concentration play a crucial role on minority band gap. • The magnetic moment is mostly contributed by Co-3d and O-2p orbitals.

  1. Theoretical and experimental results of electronic transport of spin quantum cross structure devices

    OpenAIRE

    Kondo, Kenji; Kaiju, Hideo; Ishibashi, Akira

    2009-01-01

    Recently, we have proposed quantum cross structure (QCS) devices that consist of two metalthin films deposited on organic films with edge-to-edge configuration like crossed fins for switching devices. In this paper, we propose a spin quantum cross structure (SQCS) device, which is a QCS device consisting of two magnetic thin films. We show theoretical and experimental results of electronic transport characteristics regarding SQCS devices. The calculation of the I-Vcharacteristics has been per...

  2. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    OpenAIRE

    Stefka Valcheva-Kuzmanova; Branka Blagovic; Srecko Valic

    2012-01-01

    Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical wa...

  3. Proposal for a loophole-free Bell test with electron spins of donors

    OpenAIRE

    Hong, Fang-Yu; Xiong, Shi-Jie

    2008-01-01

    So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We propose a feasible setup allowing for a loophole-free test of the Bell inequalities. Two electron spin qubits of phosphorus donors in semiconductors in different cavities 300 m apart are entangled through a bright coherent light and postselections using homodyne measurements. The ...

  4. Electron spin resonance absorption spectrum of trivalent gadolinium in the oxide YAIG

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, S.A. (Argonne National Lab., IL); Marshall, T.; Serway, R.A.

    1978-01-01

    The electron spin resonance absorption spectrum of trivalent gadolinium in single crystals of yttrium-aluminium garnet is re-investigated at X-band and Q-band wavelengths. Fine structure spectral parameters deduced from Q-band wavelength measurements are found to predict satisfactorily spectral observations at both wavelengths. A list of spectral parameters deduced from data taken at 77/sup 0/K is given.

  5. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  6. Spin-dependent electron transport through a magnetic resonant tunneling diode

    OpenAIRE

    Havu, P.; Tuomisto, N.; R. Väänänen; Puska, Martti J.; Nieminen, Risto M.

    2005-01-01

    Electron-transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum-mechanical Green’s function formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green’...

  7. Efficient injection of spin-polarized electrons from manganese arsenide contacts into aluminum gallium arsenide/gallium arsenide spin LEDs

    Science.gov (United States)

    Schweidenback, Lars

    In this thesis we describe two spectroscopic projects project on semiconductor heterostructures, as well as putting together and testing a micro-photoluminescence/7 tesla magnet system for the study of micron size two-dimensional crystals. Below we discuss the three parts in more detail. i) MnAs-based spin light emitting diodes. We have studied the injection of spin-polarized electrons from a ferromagnetic MnAs contact into an AlGaAs(n)/GaAs(i)/AlGaAs(p) n-i-p light emitting diode. We have recorder the emitted electroluminescence as function of magnetic field applied at right angles to the device plane in the 7-300 K temperature range. It was found that at 7 Kelvin the emitted light is circularly polarized with a polarization that is proportional to the MnAs contact magnetization with a saturation value of 26% for B > 1.25 tesla. The polarization persists up to room temperature with a saturation value of 6%. ii) Optical Aharonov-Bohm effect in InGaAs quantum wells. The excitonic photoluminescence intensity from InGaAs quantum wells as function of magnetic field exhibits two local maxima superimposed on a decreasing background. The maxima are attributed to the optical Aharonov-Bohm effect of electrons orbiting around a hole localized at the center of an Indium rich InGaAs islands detected by cross sectional scanning tunneling microscopy. Analysis of the position of the maxima yields a value of the electron orbit radius. iii) Micro-Photoluminescence. We have put together a micro-photoluminescence /7 tesla system for the study of two dimensional crystals. The samples are placed inside a continuous flow cryostat whose tail is positioned in the bore of the 7 tesla magnet. A microscope objective is used to focus the exciting laser light and collect the emitted photoluminescence. The system was tested by recording the photoluminescence spectra of WS2 and WSe 2 monolayers at T = 77 K.

  8. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    International Nuclear Information System (INIS)

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensional electrons is demonstrated.

  9. Photoinduced charge carriers in conjugated polymer–fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.; Sariciftci, N.S.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  10. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  11. Rashba coupling in three-dimensional wurtzite structure electron gas at electric-dipole spin resonance

    Science.gov (United States)

    Ungier, W.

    2014-05-01

    Theoretical description of Rashba effects in three-dimensional electron gas at electric-dipole spin resonance conditions is presented in the frame of conductivity tensor formalism. The details due to anisotropy of the effective mass tensor, as well as the Lande factor, are considered. The absorbed power is calculated for arbitrary orientation of the sample with respect to external fields: constant magnetic field and rf electric field. The differences between resonance signals in two- and three-dimensional electron gas are pointed out.

  12. Spin-dependent electron scattering at graphene edges on Ni(111).

    Science.gov (United States)

    Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A

    2014-02-14

    We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.

  13. The co-evolutionary dynamics of directed network of spin market agents

    OpenAIRE

    Horvath, D.; Z. Kuscsik; Gmitra, M.

    2005-01-01

    The spin market model [S. Bornholdt, Int.J.Mod.Phys. C 12 (2001) 667] is extended into co-evolutionary version, where strategies of interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak - Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Letter 71 (1993) 4083] that includes the processes of selection and extinction actuated by the l...

  14. Coexistence of perfect spin filtering for entangled electron pairs and high magnetic storage efficiency in one setup

    Science.gov (United States)

    Ji, T. T.; Bu, N.; Chen, F. J.; Tao, Y. C.; Wang, J.

    2016-04-01

    For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.

  15. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  16. Spin-dependent asymmetry functions in the elastic and inelastic electron-cesium scattering at intermediate energies

    International Nuclear Information System (INIS)

    In this thesis the measurements of the relative differential cross section, the exchange asymmetry, the spin-orbit asymmetry, and the interference asymmetry for the electron scattering on cesium atoms from 4 to 18 eV is described. (HSI)

  17. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Bourgeois, E.; Jarmola, A.; Siyushev, P.; Gulka, M.; Hruby, J.; Jelezko, F.; Budker, D.; Nesladek, M.

    2015-01-01

    The readout of negatively charged nitrogen-vacancy centre electron spins is essential for applications in quantum computation, metrology and sensing. Conventional readout protocols are based on the detection of photons emitted from nitrogen-vacancy centres, a process limited by the efficiency of photon collection. We report on an alternative principle for detecting the magnetic resonance of nitrogen-vacancy centres, allowing the direct photoelectric readout of nitrogen-vacancy centres spin state in an all-diamond device. The photocurrent detection of magnetic resonance scheme is based on the detection of charge carriers promoted to the conduction band of diamond by two-photon ionization of nitrogen-vacancy centres. The optical and photoelectric detection of magnetic resonance are compared, by performing both types of measurements simultaneously. The minima detected in the measured photocurrent at resonant microwave frequencies are attributed to the spin-dependent ionization dynamics of nitrogen-vacancy, originating from spin-selective non-radiative transitions to the metastable singlet state. PMID:26486014

  18. Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)

    Science.gov (United States)

    Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav

    2016-04-01

    We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene π and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of μ eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.

  19. Spin-Dependent Electron-Proton Scattering in the Delta-Excitation Region

    Energy Technology Data Exchange (ETDEWEB)

    L. D. van Buuren; D. Szczerba; R. Alarcon; D. J. Boersma; J. F. J. van den Brand; H. J. Bulten; R. Ent; M. Ferro-Luzzi; M. Harvey; P. Heimberg; D. W. Higinbotham; S. Klous; H. Kolster; J. Lang; B. L. Militsyn; D. Nikolenko; B. E. Norum; I. Passchier; H. R. Poolman; I. Rachek; M. C. Simani; E. Six; H. de Vries; Z.-L. Zhou

    2002-07-01

    We report on measurements of the cross section and provide first data on spin correlation parameters A{sub TT'} and A{sub TL'} in inclusive scattering of longitudinally polarized electrons from nuclear-polarized hydrogen. Polarized electrons were injected into an electron storage ring operated at a beam energy of 720 MeV. Polarized hydrogen was produced by an atomic beam source and injected into an open-ended cylindrical cell, located in the electron storage ring. The four-momentum transfer squared ranged from Q{sup 2} = 0.2 GeV{sup 2}/c{sup 2} at the elastic scattering peak to Q{sup 2} = 0.11 GeV{sup 2}/c{sup 2} at the Delta (1232) resonance. The data provide a stringent test of pion electroproduction models.

  20. Spin-Dependent Electron-Proton Scattering in the Delta-Excitation Region

    International Nuclear Information System (INIS)

    We report on measurements of the cross section and provide first data on spin correlation parameters ATT' and ATL' in inclusive scattering of longitudinally polarized electrons from nuclear-polarized hydrogen. Polarized electrons were injected into an electron storage ring operated at a beam energy of 720 MeV. Polarized hydrogen was produced by an atomic beam source and injected into an open-ended cylindrical cell, located in the electron storage ring. The four-momentum transfer squared ranged from Q2 = 0.2 GeV2/c2 at the elastic scattering peak to Q2 = 0.11 GeV2/c2 at the Delta (1232) resonance. The data provide a stringent test of pion electroproduction models

  1. Tuning of the spin distribution between ligand- and metal-based spin: electron paramagnetic resonance of mixed-ligand molybdenum tris(dithiolene) complex anions.

    Science.gov (United States)

    Fekl, Ulrich; Sarkar, Biprajit; Kaim, Wolfgang; Zimmer-De Iuliis, Marco; Nguyen, Neilson

    2011-09-19

    Electron paramagnetic resonance spectra of homoleptic and mixed-ligand molybdenum tris(dithiolene) complex anions [Mo(tfd)(m)(bdt)(n)](-) (n + m = 3; bdt = S(2)C(6)H(4); tfd = S(2)C(2)(CF(3))(2)) reveal that the spin density has mixed metal-ligand character with more ligand-based spin for [Mo(tfd)(3)](-) and a higher degree of metal-based spin for [Mo(bdt)(3)](-): the magnitude of the isotropic (95,97)Mo hyperfine interaction increases continuously, by a factor of 2.5, on going from the former to the latter. The mixed complexes fall in between, and the metal character of the spin increases with the bdt content. The experiments were corroborated by density functional theory computations, which reproduce this steady increase in metal-based character. PMID:21853970

  2. Quantum transport phenomena in disordered electron systems with spin-orbit coupling in two dimensions and below

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2005-01-01

    Electron transport phenomena in disordered electron systems with spin-orbit coupling in two dimensions and below are studied numerically. The scaling hypothesis is checked by analyzing the scaling of the quasi-1D localization length. A logarithmic increase of the mean conductance is also confirmed. These support the theoretical prediction that the two dimensional metal in systems with spin-orbit coupling has a perfect conductivity. Transport through a Sierpinski carpet is also reported.

  3. Electronic structure, spin polarization and high critical fields in Chevrel compounds

    Science.gov (United States)

    Jarlborg, T.; Freeman, A. J.

    1982-05-01

    Results are presented of an extensive theoretical study of the origin of high field superconductivity and/or magnetism in a number of Chevrel phase ternary compounds, MMo 6X 8 (with M=Sn, Eu, Gd and X=S and/or Se) based on self-consistent linear muffin-tin orbital (LMTO) energy band calculations using the local density approach (Hedin et al. exchange correlation) for the paramagnetic structures and local spin density formalism (Gunnarsson and Lundqvist) for the ferromagnetic structures. All electrons and all 15 atoms/cell are included with the core electrons (including the 4f's) recalculated in each iteration in a fully relativistic representation and the conduction electrons treated semirelativistically (all relativistic terms except spin-orbit). Superconductivity is found to be due to the high Mo d-band density of states (DOS) at E F resulting from the unusual large charge transfer of Mo electrons to the chalcogen sites. There is also a large charge transfer from the metal site to the cluster (≈2 electrons in Sn and Eu) giving essentially no occupied conduction bands, for example, at the Eu site and a divalent ion isomer shift in very good agreement with the experiments of Dunlap et al. The conduction-electron DOS at the Eu site is found to be reduced by an order of magnitude from its metallic state value - in close agreement with their spin - lattice relaxation rate measurements. This low conduction-electron DOS yields very weak coupling of the 4f electrons to the conduction electrons and only a very weak Ruderman-Kittel-Kasuya-Yosida magnetic interaction showing why all the Chevrel rare-earth compounds - except Ce and Eu - are superconducting despite their having large local magnetic moments. The unusually high upper critical fields, Hc 2, in these materials is found to be due to the unusully flat energy bands near F F. The ferromagnetic (spin polarized) results for the Eu- and Gd-compounds show a net small but positive magnetic moment on the metal site and a

  4. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    Science.gov (United States)

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  5. Electronic structures and the spin polarization of Heusler alloy Co2FeAl surface

    Science.gov (United States)

    Xu, Xiaoguang; Wang, Yankai; Zhang, Delin; Jiang, Yong

    2011-01-01

    The electronic structures of the Heusler alloy Co2FeAl surface are studied theoretically via first-principles calculations. The space localization of the surface states is the key effect on the electronic structures of the Co2FeAl surface. At the surface, the lattice parameter shrinks to minimize the total energy, and the minority spin gap disappears and shows a metallic band gap character. However, with the depth increasing, the lattice parameter equals to that of bulk phase, and there shows an energy gap opening at the Fermi level in the minority spin states. As a result, the spin polarization at the surface is lower than that of the bulk Co2FeAl, while it is close to that of bulk phase beneath the surface. According to the calculations, it is clear that the half-metallic property fading of the Co2FeAl films is caused by the surface states. Therefore, it is important to minimize the lattice mismatch at the interface of Co2FeAl in order to obtain a high tunneling magnetoresistance.

  6. Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens' operator expressions.

    Science.gov (United States)

    McGavin, Dennis G; Tennant, W Craighead

    2009-06-17

    In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS(3) and BS(5). Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, [Formula: see text] Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present. PMID:21693947

  7. Field-assisted electron transport through a symmetric double-well structure with spin-orbit coupling and the Fano-resonance induced spin filtering

    Institute of Scientific and Technical Information of China (English)

    Zhang Cun-Xi; Nie Yi-Hang; Liang Jiu-Qing

    2008-01-01

    We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from O to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.

  8. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  9. Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field

    Science.gov (United States)

    Fang, Jiancheng; Chen, Yao; Zou, Sheng; Liu, Xuejing; Hu, Zhaohui; Quan, Wei; Yuan, Heng; Ding, Ming

    2016-03-01

    In a K-Rb-21Ne co-magnetometer, the Rb electron magnetic field which is experienced by the nuclear spin is about 100 times larger than that of the K in a K-3He co-magnetometer. The large electron magnetic field which is neglected in the K-3He co-magnetometer coupled Bloch equations model is considered here in the K-Rb-21Ne co-magnetometer to study the low frequency magnetic field suppression effect. Theoretical analysis and experimental results shows that in the K-Rb-21Ne spin co-magnetometer, not only the nuclear spin but also the large electron spin magnetic field compensate the external magnetic field noise. By comparison, only the 3He nuclear spins mainly compensate the external magnetic field noise in a K-3He co-magnetometer. With this study, in addition to just increasing the magnetic field of the nuclear spins, we can suppress the magnetic field noise by increasing the density of the electron spin. We also studied how the magnetic field suppression effect relates to the scale factor of the K-Rb-21Ne co-magnetometer and we compared the scale factor with that of the K-3He co-magnetometer. Lastly, we show the sensitivity of our co-magnetometer. The magnetic field noise, the air density fluctuation noise and pumping power optimization are studied to improve the sensitivity of the co-magnetometer.

  10. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates.

    Science.gov (United States)

    Maia, Luisa B; Moura, José J G

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided. PMID:27094413

  11. Anisotropy of superconducting MgB2 as seen in electron spin resonance and magnetization data.

    Science.gov (United States)

    Simon, F; Jánossy, A; Fehér, T; Murányi, F; Garaj, S; Forró, L; Petrovic, C; Bud'ko, S L; Lapertot, G; Kogan, V G; Canfield, P C

    2001-07-23

    We observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is chi(s) = 2.0 x 10(-5) emu/mole in the temperature range of 450 to 600 K. The spin relaxation rate has an anomalous temperature dependence. The CESR measured below T(c) at several frequencies suggests that MgB2 is a strongly anisotropic superconductor with the upper critical field, H(c2), ranging between 2 and 16 T. The high-field reversible magnetization data of a randomly oriented powder sample are well described assuming that MgB2 is an anisotropic superconductor with H(ab)(c2)/H(c)(c2) approximately 6-9.

  12. Measurement of Integrated Stokes Parameters for He 3 3p State Excited by Spin-Polarized Electrons

    Institute of Scientific and Technical Information of China (English)

    DING Hai-Bing; PANG Wen-Ning; LIU Yi-Bao; SHANG Ren-Cheng

    2005-01-01

    @@ Integrated Stokes parameters Pi (i = 1, 2, 3) for the He 3 3p → 2 3S1 (388.9nm) transition after excitation from the ground state to the 3 3 P state by a transversely spin-polarized electron beam are measured in near threshold energy region. The experimental results are presented. The linear-polarization P2 are consistent with zero over the incident energy range, providing evidence for the LS coupling mechanism of the 3 3P state. The measured circular polarization P3 are non-zero, indicating strong electron-electron exchange effects in the spin-polarized electron-atom collision process.

  13. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment

    Science.gov (United States)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.; Capuzzi, Pablo

    2016-07-01

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator S ˆ 2 , avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  14. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    Science.gov (United States)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales.

  15. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  16. Electron Spin Resonance Characterization of Damage and Recovery of Si/SiO2 Interfaces from Electron Beam Lithography

    Science.gov (United States)

    Kim, Jin-Sung; Tyryshkin, Alexei; Lyon, Stephen

    Electron beam lithography (EBL) is an essential tool for the fabrication of few electron silicon quantum devices. However, high-energy electrons and photons from the EBL process create shallow traps and other defects at the Si/SiO2 interface, inhibiting the control of electron populations through electrostatic gating. To reduce defect densities, high temperature and forming gas anneals are commonly used. We studied the effect of these anneals on the reduction of shallow traps created by EBL by fabricating two sets of large area (~1cm2) MOSFETs and characterizing them using transport and electron spin resonance (ESR) measurements. One set was exposed to a typical EBL dosage (10kV, 40 μC/cm2) and the other remained unexposed. All MOSFETs were fabricated from the same commercially grown gate stack (30nm dry thermal oxide, 200nm amorphous silicon gate layer) and were annealed at 900C in N2 and at 435C in forming gas. Our transport data indicate that these annealing steps recover the EBL exposed sample's low temperature (4.2K) peak mobility to 85 % of the unexposed sample's. Additionally, our ESR data indicate that annealing the EBL exposed sample reduces its density of shallow traps (2-4 meV) to the same density as the unexposed sample.

  17. Technique for electron beam spin polarization measurement and equipment for its realization

    International Nuclear Information System (INIS)

    The invention is aimed at the increase in accuracy and fast-response of the device for the measurement of electron spin polarization. The measuring method is an electron beam is directed onto preliminarily purified surface of crystal-analyzer at the angle of THETA and then electrons, scattered at an angle of 2THETA, are recorded. The device, realizing the described measuring method, consists of an electron source, the first system of focusing lenses, monochromator, the second system of focusing lenses, crystal-analyzer and scattered electron collector, located in vacuum chamber in series. To increase the accuracy of measurement, crystal-analyzer with rigidly bound collector of scattered electrons is rotated as to two mutually perpendicular axes and according to the difference in the number of electrons, scattered in two mutually opposite directions, the corresponding projection of polarization vector is determined. High efficiency of the device is ensured at the expense of the preparation of pure surface of the crystal-analyzer by chipping in vacuum directly before measurement. The increase of accuracy of measurement can be achieved by the determination of all the three polarization vector components. It permits to restore completely polarization vector and it increases considerably informativity of the results obtained

  18. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  19. Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies.

    Science.gov (United States)

    Kalyanaraman, B; Korytowski, W; Pilas, B; Sarna, T; Land, E J; Truscott, T G

    1988-10-01

    The cytotoxicity to tumor cells or cardiotoxic side effects of certain para-quinone antitumor drugs have been attributed to the corresponding semiquinones and derived superoxide and hydroxyl radicals. It has also been suggested that ortho-semiquinones, including those that arise during melanogenesis, produced via either the one-electron oxidation of catechol(amine)s or the one-electron reduction of the corresponding quinones, react with molecular oxygen to give superoxide and hydrogen peroxide. Furthermore it has been shown that catechol(amine)s which form noncyclizable quinones are more cytotoxic toward melanogenic cells than those forming cyclizable quinones. In order to provide further kinetic information on the interaction of oxygen with ortho-semiquinones, using pulse radiolysis we directly measured the rates of reaction of various ortho-semiquinones with molecular oxygen. The semiquinones of the corresponding catechol(amine)s were also produced by the horseradish peroxidase/hydrogen peroxide system, and detected by electron spin resonance spectroscopy using the spin stabilization method. Oxygen consumption was monitored using a standard Clark oxygen electrode. Our data indicate that while ortho-semiquinones from catechol(amine)s and catechol estrogens do not react with molecular oxygen at a rate equal to or greater than k less than or equal to 10(5) M-1 s-1, semiquinones from hydroxy-substituted catechol(amine)s react with dioxygen with rates in the range k = 10(6)-10(7) M-1 s-1. PMID:2845864

  20. Model of the electronic structure of electron-doped iron-based superconductors: evidence for enhanced spin fluctuations by diagonal electron hopping.

    Science.gov (United States)

    Suzuki, Katsuhiro; Usui, Hidetomo; Iimura, Soshi; Sato, Yoshiyasu; Matsuishi, Satoru; Hosono, Hideo; Kuroki, Kazuhiko

    2014-07-11

    We present a theoretical understanding of the superconducting phase diagram of the electron-doped iron pnictides. We show that, besides the Fermi surface nesting, a peculiar motion of electrons, where the next nearest neighbor (diagonal) hoppings between iron sites dominate over the nearest neighbor ones, plays an important role in the enhancement of the spin fluctuation and thus superconductivity. In the highest T(c) materials, the crossover between the Fermi surface nesting and this "prioritized diagonal motion" regime occurs smoothly with doping, while in relatively low T(c) materials, the two regimes are separated and therefore results in a double dome T(c) phase diagram. PMID:25062222

  1. An Electron Spin Resonance Study of Stearic Acid Interactions in Model Wheat Starch and Gluten Systems

    OpenAIRE

    Pearce, L. E.; Davis, E. A.; Gordon, J.; Miller, W. G.

    1987-01-01

    Electron spin resonance (ESR) was used to examine interactions of 16- Doxyl stearic acid in wheat starch-water (starch:water "'1: 1), vital wheat gluten-water and glut en-starch-water model systems, Immobilization of the 16-Doxyl stearic acid, shown by broadIine ESR powder patterns , occurred in wheat starch model systems. In contrast to the starch systems, 16-Doxylstearic acid in gluten-water systems did not display broad line powder patterns. Broadened 3- line ESR spectra were recorded for ...

  2. Electron spin resonance (ESR) in multiferroic TbMnO3

    International Nuclear Information System (INIS)

    We report temperature dependent X-Band (ν∼9.4GHz) electron spin resonance (ESR) measurement in a single crystal of TbMnO3. A single Lorentzian ESR line with an isotropic g∼ 1.96 was observed for T>=120K up to 600K. The ESR signal is attributed to the Mn3+ ions in a insulator environment. For the three crystallographic axes the temperature dependence ESR linewidth shows a strong broadening as the temperature decreases due to the presence of short range magnetic correlations

  3. Electronic structure of the quantum spin Hall parent compound CdTe and related topological issues

    Science.gov (United States)

    Ren, Jie; Bian, Guang; Fu, Li; Liu, Chang; Wang, Tao; Zha, Gangqiang; Jie, Wanqi; Neupane, Madhab; Miller, T.; Hasan, M. Z.; Chiang, T.-C.

    2014-11-01

    Cadmium telluride (CdTe), a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. We report herein a study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. Through a theoretical simulation a topological phase transition as well as the Dirac-Kane semimetal phase at the critical point was demonstrated in the mixed compound H gxC d1 -xTe .

  4. SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Prokudin, Alexey [JLAB

    2013-11-01

    QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

  5. Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

    CERN Document Server

    Ficek, Filip; Kozlov, Mikhail; Leefer, Nathan; Pustelny, Szymon; Budker, Dmitry

    2016-01-01

    Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles, ALPs) with masses $10^{-2}~{\\rm eV} \\lesssim m \\lesssim 10^{4}~{\\rm eV}$ are improved by a factor of $\\sim 100$. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

  6. Electron-Mediated Nuclear-Spin Interactions Between Distant NV Centers

    CERN Document Server

    Bermudez, A; Plenio, M B; Retzker, A

    2011-01-01

    We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum information processor or quantum simulator based on solid-state technology.

  7. Determination of the feasibility of directly dating quartz by electron spin resonance

    International Nuclear Information System (INIS)

    Electron spin resonance (ESR) analyses have been made of natural quartz samples ranging in age from 100 ka to 1.4 Ga. Signal intensities of two ESR centres that can be associated with Schottky-Frenkel (SF) defects are significantly correlated with age. These defects are thought to accumulate naturally as a result of elastic collisions in the quartz lattice initiated by the recoil of alpha-emitting nuclides present in the impurities. Preliminary indications are that recoil-induced SF defects can be significantly more abundant than original SF defects in samples older than several million years. These considerations provide the theoretical basis for a long-ranging quartz geochronometer

  8. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

    Science.gov (United States)

    Hensen, B.; Bernien, H.; Dréau, A. E.; Reiserer, A.; Kalb, N.; Blok, M. S.; Ruitenberg, J.; Vermeulen, R. F. L.; Schouten, R. N.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M. W.; Markham, M.; Twitchen, D. J.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.

    2015-10-01

    More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in `loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 +/- 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S certification.

  9. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    Science.gov (United States)

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  10. Experimental observation of spin-dependent electron many-body effects in CdTe

    International Nuclear Information System (INIS)

    In semiconductors, the spin degree of freedom is usually disregarded in the theoretical treatment of electron many-body effects such as band-gap renormalization and screening of the Coulomb enhancement factor. Nevertheless, as was observed experimentally in GaAs, not only the single-particle phase-space filling but also many-body effects are spin sensitive. In this paper, we report on time- and polarization-resolved differential transmission pump-probe measurements in CdTe, which has the same zincblende crystal structure but different material parameters compared to that of GaAs. We show experimentally that at room temperature in CdTe—unlike in GaAs—the pump-induced decrease of transmission due to the band-gap renormalization can even exceed the transmission increase due to the phase-space filling, which enables to measure directly the spin-sensitivity of the band-gap renormalization. We also observed that the influence of the band-gap renormalization is more prominent at low temperatures

  11. Experimental observation of spin-dependent electron many-body effects in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Horodyská, P.; Němec, P., E-mail: nemec@karlov.mff.cuni.cz; Novotný, T.; Trojánek, F.; Malý, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2014-08-07

    In semiconductors, the spin degree of freedom is usually disregarded in the theoretical treatment of electron many-body effects such as band-gap renormalization and screening of the Coulomb enhancement factor. Nevertheless, as was observed experimentally in GaAs, not only the single-particle phase-space filling but also many-body effects are spin sensitive. In this paper, we report on time- and polarization-resolved differential transmission pump-probe measurements in CdTe, which has the same zincblende crystal structure but different material parameters compared to that of GaAs. We show experimentally that at room temperature in CdTe—unlike in GaAs—the pump-induced decrease of transmission due to the band-gap renormalization can even exceed the transmission increase due to the phase-space filling, which enables to measure directly the spin-sensitivity of the band-gap renormalization. We also observed that the influence of the band-gap renormalization is more prominent at low temperatures.

  12. Agent-based inter-organizational workflow management system for electronic institutions

    OpenAIRE

    Leitão, Paulo; Mendes, João M.

    2008-01-01

    Indexado Inspec An Electronic Institution is a computational framework that provides a set of services supporting the Virtual Organization lifecycle, namely its formation, operation and dissolution. A crucial service is related to the coordination of the corresponding inter-organizational workflow defined by the established contract. This paper introduces an agent-based interorganizational workflow management system, part of an Electronic Institution, aiming to coordinate the contract exec...

  13. Effect of Spin-Orbit Coupling on Kondo Phenomena in f7-Electron Systems

    Science.gov (United States)

    Hotta, Takashi

    2015-11-01

    In order to promote our basic understanding of the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven f electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among f electrons, spin-orbit coupling λ, and crystalline electric field (CEF) potentials, while we consider the hybridization V between local f electrons and single-band conduction electrons with au symmetry. For λ = 0, we observe underscreening Kondo behavior for appropriate values of V, characterized by an entropy change from ln 8 to ln 7, in which one of the seven f electrons is screened by conduction electrons. When λ is increased, we obtain two types of behavior depending on the value of V. For large V, we find an entropy release of ln 7 at low temperatures, determined by the level splitting energy due to the hybridization. For small V, we also observe an entropy change from ln 8 to ln 2 by the level splitting due to the hybridization, but at low temperatures, ln 2 entropy is found to be released, leading to the Kondo effect. We emphasize that the Kondo behavior for small V is observed for realistic values of λ on the order of 0.1 eV. We also discuss the effect of CEF potentials and the multipole properties in the Kondo behavior reported in this paper.

  14. First principles study on the spin dependent electronic behavior of Co doped ZnO structures joining the Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, S., E-mail: scaliskan@fatih.edu.tr; Guner, S.

    2015-01-15

    Highlights: • An atomic configuration joining the electrodes can govern spin resolved transport. • Co position and concentration in ZnO have a crucial effect on electronic behavior. • It is possible to obtain high spin polarization in Al–Co doped ZnO–Al systems. • Al–Co doped ZnO–Al device structures reveal Schottky-like contact at the interface. - Abstract: Employing first principles, Co doped ZnO systems between the Al electrodes were investigated through the Density Functional Theory combined with Non Equilibrium Green’s Function Formalism. Electronic transport properties of these systems, in the presence of spin property, were revealed using substitutional Co atoms in a supercell. Spin resolved electronic behavior was observed to be crucially governed by atomic configuration, defined by doping position and concentration, of the system joining the electrodes. Using this feature, one can manipulate both the electronic transport and magnetic properties of an Al–Co doped ZnO–Al device structure. A nonlinearity was exhibited in current–voltage characteristics for Co doped ZnO systems attached to the Al electrodes, which implies a Schottky-like contact at the interface. The induced magnetic moment and spin polarization in the system, yielding the spin dependent transport, were elucidated.

  15. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, D. V., E-mail: dariyasavchenko@gmail.com [Institute of Physics AS CR, Prague 182 21, Czech Republic and V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Kyiv 03028 (Ukraine)

    2015-01-28

    The magnetic and electronic properties of heavily doped n-type 6H SiC samples with a nitrogen concentration of 10{sup 19} and 4 × 10{sup 19 }cm{sup −3} were studied with electron spin resonance (ESR) at 5–150 K. The observed ESR line with a Dysonian lineshape was attributed to the conduction electrons (CE). The CE ESR (CESR) line was fitted by Lorentzian (insulating phase) (T < 40 K) and by Dysonian lineshape (metallic phase) above 40 K, demonstrating that Mott insulator-metal (IM) transition takes place at ∼40 K, accompanied by significant change in the microwave conductivity. The temperature dependence of CESR linewidth follows the linear Korringa law below 40 K, caused by the coupling of the localized electrons (LE) and CE, and is described by the exponential law above 40 K related to the direct relaxation of the LE magnetic moments via excited levels driven by the exchange interaction of LE with CE. The g-factor of the CESR line (g{sub ‖} = 2.0047(3), g{sub ⊥} = 2.0034(3)) is governed by the coupling of the LE of nitrogen donors at hexagonal and quasi-cubic sites with the CE. The sharp drop in CESR line intensity (25–30 K) was explained by the formation of antiferromagnetic ordering in the spin system close to the IM transition. The second broad ESR line overlapped with CESR signal (5–25 K) was attributed to the exchange line caused by the hopping motion of electrons between occupied and non-occupied positions of the nitrogen donors. Two mechanisms of conduction, hopping and band conduction, were distinguished in the range of T = 10–25 K and T > 50 K, respectively.

  16. Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences

    Science.gov (United States)

    Goldozian, Bahareh; Damtie, Fikeraddis A.; Kiršanskas, Gediminas; Wacker, Andreas

    2016-03-01

    Quantum dots are nanoscopic systems, where carriers are confined in all three spatial directions. Such nanoscopic systems are suitable for fundamental studies of quantum mechanics and are candidates for applications such as quantum information processing. It was also proposed that linear arrangements of quantum dots could be used as quantum cascade laser. In this work we study the impact of electron-electron interactions on transport in a spinful serial triple quantum dot system weakly coupled to two leads. We find that due to electron-electron scattering processes the transport is enabled beyond the common single-particle transmission channels. This shows that the scenario in the serial quantum dots intrinsically deviates from layered structures such as quantum cascade lasers, where the presence of well-defined single-particle resonances between neighboring levels are crucial for device operation. Additionally, we check the validity of the Pauli master equation by comparing it with the first-order von Neumann approach. Here we demonstrate that coherences are of relevance if the energy spacing of the eigenstates is smaller than the lead transition rate multiplied by ħ.

  17. HERA variable-energy 'mini' spin rotator and head-on ep collision scheme with choice of electron helicity

    International Nuclear Information System (INIS)

    The novel scheme of spin rotation and head-on collision in the HERA electron-proton collider is described with emphasis on the means for obtaining a high degree of longitudinal electron polarization of either sign at the interaction points. The variable-energy ''mini'' rotator employed in this scheme is described and discussed, and also the depolarizing effect of radiative spin diffusion and the means to counteract it. The designed scheme covers the whole range of electron energies between 27 and 35 GeV, with a maximum degree of Sokolov-Ternov polarization of 84% at 35 GeV. (orig.)

  18. Effects of electron correlation, electron-phonon coupling, and spin-orbit coupling on the isovalent Pd-substituted superconductor SrPt3P

    Science.gov (United States)

    Hu, Kangkang; Gao, Bo; Ji, Qiucheng; Ma, Yonghui; Li, Wei; Xu, Xuguang; Zhang, Hui; Mu, Gang; Huang, Fuqiang; Cai, Chuanbing; Xie, Xiaoming; Jiang, Mianheng

    2016-06-01

    We present a systematical study on the roles of interactions among electron correlation, electron-phonon coupling, and spin-orbit coupling in the isovalent Pd-substituted superconductor SrPt3P . By using the solid state reaction method, the Pd element with the 4 d orbital was successfully substituted in the strong spin-orbit coupling superconductors Sr (Pt1-xPdx) 3P . As increasing the isovalent Pd concentrations without introducing any extra electron/hole carriers, the superconducting transition temperature Tc decreases monotonously. In addition, combining the data of resistivity and specific heat, as well as electronic band structure calculations, we found that the electron correlation is enhanced while the electron-phonon coupling and the spin-orbit coupling are suppressed by Pd substitution. Our results may provide significant insights in the natures of the interplay among the electron correlation, electron-phonon coupling, and spin-orbit coupling in superconductivity, and may also pave a route for understanding the mechanism of superconductivity in heavily 5 d -based superconductors.

  19. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    CERN Document Server

    Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao, Y C; Chattopadhyay, S; Clark, R; Covrig, S; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van de Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V

    2007-01-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99 (stat) +- 0.63 (syst) and A_n = -4.82 +- 1.87 (stat) +- 0.98 (syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  20. Spin-polarized electronic properties of NiHe0.25 under pressure

    Institute of Scientific and Technical Information of China (English)

    San Xiao-Jiao; Liu Zhi-Ming; Ma Yan-Ming; Cui Tian; Liu Bing-Bing; Zou Guang-Tian

    2009-01-01

    This paper studies the effects of He atom on the spin-polarized electronic properties of nickel under pressures using ab initio pseudopotential plan-wave method. Under high pressures, the compound of NiHeo.25 can exist and helium-bubble can not create in Ni. A pressure-induced ferromagnetic to paramagnetic phase transition has been predicted in NiHe0.25 at about 218 GPa. It is found that under pressures, the magnetic property of Ni atoms is more strongly affected by He atom than by H atom and that the behaviour of He atom in Ni are completely different from that of H atom, like the bonding characteristics and the electron transfer.

  1. Analysis of electron spin resonance spectra of irradiated gingers: Organic radical components derived from carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoki, Rumi, E-mail: yamaoki@gly.oups.ac.j [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Kimura, Shojiro [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Ohta, Masatoshi [Faculty of Engineering, Niigata University, 8050 Igarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan)

    2010-04-15

    Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.

  2. On Photon Spin and the Electrodynamic Origin of the charge of the Electron

    CERN Document Server

    Fischer, Ulrich C

    2016-01-01

    We recently performed experiments on the transfer of photon spin to electron orbital angular momentum. For an interpretation of the experimental results we used a classical electrodynamic model of the photon as a propagating electromagnetic solitary wave which is developed in detail here. A linearly polarized monochromatic photon is considered as a propagating solitary electromagnetic wave of finite energy hf which carries an angular momentum h/2pi with the frequency f and Plancks constant h. This model has, apart from being a tool for an interpretation of our experimental results, far reaching consequences of fundamental relevance and guides us to an outline to a unified quantum theory of electromagnetism and gravitation including an explanation of the electrodynamic origin of the quantized charge of an electron.

  3. Electron dynamics in the carbon atom induced by spin-orbit interaction

    CERN Document Server

    Rey, H F

    2014-01-01

    We use R-Matrix theory with Time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number $M_L$=0 and $M_L$=1 at a laser wavelength of 390 nm and peak intensity of 10$^{14}$ W cm$^{-2}$. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for $M_L$. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with $M_L=0$, the dynamics with respect to time delay of an ionizing probe pulse modelled using RMT theory is found to be in good agreement with available experimental data.

  4. Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices.

    Science.gov (United States)

    Iovan, Adrian; Fischer, Marco; Lo Conte, Roberto; Korenivski, Vladislav

    2012-01-01

    Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task. In this work, we extend the practice of colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic materials with relatively short characteristic relaxation lengths.

  5. Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

    Directory of Open Access Journals (Sweden)

    Adrian Iovan

    2012-12-01

    Full Text Available Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task. In this work, we extend the practice of colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic materials with relatively short characteristic relaxation lengths.

  6. Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

    Science.gov (United States)

    Iovan, Adrian; Fischer, Marco; Lo Conte, Roberto

    2012-01-01

    Summary Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task. In this work, we extend the practice of colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic materials with relatively short characteristic relaxation lengths. PMID:23365801

  7. Ground state and the spin precession of the Dirac electron in counterpropagating plane electromagnetic waves

    Science.gov (United States)

    Borzdov, G. N.

    2016-06-01

    The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate solutions is suggested.

  8. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. PMID:27157714

  9. HNS+ and HSN+ cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications

    Science.gov (United States)

    Trabelsi, Tarek; Ben Yaghlane, Saida; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-08-01

    Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS+ and HSN+ isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H+/H + SN+/SN, S/S+ + NH+/NH, N/N+ + SH+/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN+(12A″) and HNS+(12A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NOṡ donor in vivo and as a possible marker for the detection of intermediates in nitrites + H2S reactions at the cellular level. The full spin rovibronic levels of HNS+ are presented, which may assist in the experimental identification of HNS+ and HSN+ ions and in elucidating their roles in astrophysical and biological media.

  10. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  11. Influence of soliton distributions on the spin-dependent electronic transport through polyacetylene molecule

    Indian Academy of Sciences (India)

    Ketabi S A; Nakhaee M

    2016-03-01

    In this paper, a detailed numerical study of the role of selected soliton distributions on the spin-dependent transport through {\\it trans}-polyacetylene (PA) molecule is presented. The molecule is attached symmetrically to magnetic semi-infinite three-dimensional electrodes. Based on Su–Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green’s function formalism, wecalculate the spin-dependent currents, the electronic transmission and tunnelling magnetoresistance (TMR). We found that the presence of a uniform distribution of the soliton centres along the molecular chain reduced the size of the band gap of {\\it trans}-PA molecule. Moreover, a sublattice of the correlated solitons as binary clusters, which are randomly distributed along the chain, can induce extended electronic states in the band gap of the molecule. In this case, the band gap of the molecule is suppressed and at lower voltages, the TMR bandwidth is narrowed. The current–voltage characteristic then shows an ohmic-like behaviour.

  12. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond

    CERN Document Server

    Shi, Fazhan; Xu, Nanyang; Wang, Ya; Wu, Jie; Chong, Bo; Peng, Xinhua; Kniepert, Juliane; Schoenfeld, Rolf-Simon; Harneit, Wolfgang; Feng, Mang; Du, Jiangfeng

    2010-01-01

    The nitrogen-vacancy defect center (NV center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single NV center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.

  13. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond.

    Science.gov (United States)

    Shi, Fazhan; Rong, Xing; Xu, Nanyang; Wang, Ya; Wu, Jie; Chong, Bo; Peng, Xinhua; Kniepert, Juliane; Schoenfeld, Rolf-Simon; Harneit, Wolfgang; Feng, Mang; Du, Jiangfeng

    2010-07-23

    The nitrogen-vacancy defect center (N-V center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single N-V center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture. PMID:20867828

  14. Role of spin-orbit coupling on the electronic structure and properties of SrPtAs

    OpenAIRE

    Youn, S. J.; Rhim, S. H.; Agterberg, D. F.; Weinert, M.; Freeman, A. J.

    2012-01-01

    The effect of spin-orbit coupling on the electronic structure of the layered iron-free pnictide superconductor, SrPtAs, has been studied using the full potential linearized augmented plane wave method. The anisotropy in Fermi velocity, conductivity and plasma frequency stemming from the layered structure are found to be enhanced by spin-orbit coupling. The relationship between spin-orbit interaction and the lack of two-dimensional inversion in the PtAs layers is analyzed within a tight-bindin...

  15. Low-energy electron reflection from Au-passivated Ir(0 0 1) for application in imaging spin-filters

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Tusche, C. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Giebels, F.; Gollisch, H. [Universität Duisburg-Essen, Fakultät für Physik, Campus Duisburg, Lotharstr. 1, 47048 Duisburg (Germany); Feder, R. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Universität Duisburg-Essen, Fakultät für Physik, Campus Duisburg, Lotharstr. 1, 47048 Duisburg (Germany); Kirschner, J., E-mail: sekrki@mpi-halle.mpg.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, 06099 Halle (Germany)

    2015-02-15

    We describe the principle, the preparation, and the calibration of a spin-polarizing electron mirror in multichannel spin polarimetry. We show data obtained by two independent devices (a goniometer-type LEED set-up and a momentum-microscope set-up) and compare them to the results of a relativistic multiple scattering theory. We also discuss the effects of misalignment and mosaic structure of the crystal. For multi-channel detection we find a 5000-fold increase of efficiency over a single-channel spin-detector. The lifetime of the detector is more than 6 months in ultra-high vacuum.

  16. Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance.

    OpenAIRE

    Ajtai, K; French, A R; Burghardt, T P

    1989-01-01

    The tilt series electron spin resonance (ESR) spectrum from muscle fibers decorated with spin labeled myosin subfragment 1 (S1) was measured from fibers in rigor and in the presence of MgADP. ESR spectra were measured at low amplitude modulation of the static magnetic field to insure that a minimum of spectral lineshape distortion occurs. Ten tilt series ESR data sets were fitted simultaneously by the model-independent methodology described in the accompanying paper (Burghardt, T. P., and A. ...

  17. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device, Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan); Yamauchi, Jun [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Emeritus Professor of Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502 (Japan)

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  18. High Efficiency and Light Mobile Electronic Business System Based on Mobile Agent Middleware

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunyong; LIU Jinde

    2004-01-01

    Mobile Network technology has been being the research focus during the 1990's.The middleware technology is imported for the sake of running distributed transaction smoothly.In this paper,a mobile agent based middleware high efficiency mobile electronic business oriented middleware (HEMEBOM) is designed and implemented based on the requirement and background of collaborative electronic business.Its architecture,elements and excellent properties are mainly focused.Then high efficiency mobile electronic business systemμMcommerce is built using HEMEBOM.

  19. Studies on electronic spectrum and electron spin resonance of vanadium (IV) complexes with organophosphorus compounds and high molecular weight amines

    International Nuclear Information System (INIS)

    In the extraction of vanadium (IV) from aqueous solutions containing hydrochloric acid and/or a mixture of hydrochloric acid and lithium chloride by bis(2-ethylhexyl) hydrogenphosphate (DEHPA; HX), trioctylmethylammonium chloride (Aliquat-336), trioctylamine (TOA), trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), the complexes formed in the organic phases have been examined by spectrophotometry and electron spin resonance spectroscopy. It is found that in the extraction by DEHPA, the vanadium in the organic phase exists as the monomeric species, VO(X2H)2, or the polymeric one, (VOX2)sub(n), and that in the extractions by Aliquat-336, TOA, TOPO, and TBP, tetravalent vanadium complexes are stable in the organic phases extracted from a mixed solution of hydrochloric acid and lithium chloride, while complexes containing pentavalent vanadium and VOV4+ ions are formed in the organic phases extracted from hydrochloric acid solutions. (author)

  20. Effects of spin-orbit interaction and magnetic field on the electron transport in quasi-1D ferromagnetic/semiconductor/ferromagnetic system

    Institute of Scientific and Technical Information of China (English)

    Li Yu-Xian; Li Bo-Zang

    2005-01-01

    Based on the transfer matrix method, we investigate the effects of Rashba spin-orbit interaction and magnetic field on the electron transport in a quasi one-dimensional FM/S/FM system, where FM and S represent the ferromagnetic metal and semiconductor, respectively. The results show that the oscillating scope of the transmission increases with the magnetic field increasing. In the antiferromagnetic alignment, the spin-up and spin-down electrons make the same contribution to the transmission even if a magnetic field is applied. In the ferromagnetic alignment, however, at certain strengths of Rashba spin-orbit interaction and of magnetic field, the transmission coefficient for spin-up electrons is larger than that for spin-down electrons, and the sign of the spin polarization changes, which is opposite to that in the absence of the magnetic field.

  1. Spin of the ground quantum state of electrons from first principles in the representation of Feynman path integrals

    Science.gov (United States)

    Shevkunov, S. V.

    2016-08-01

    A method for calculating the spin of the ground quantum state of nonrelativistic electrons and distance between energy levels of quantum states differing in the spin magnitude from first principles is proposed. The approach developed is free from the one-electron approximation and applicable in multielectron systems with allowance for all spatial correlations. The possibilities of the method are demonstrated by the example of calculating the energy gap between spin states in model ellipsoidal quantum dots with a harmonic confining field. The results of computations by the Monte Carlo method point to high sensitivity of the energy gap to the break of spherical symmetry of the quantum dot. For three electrons, the phenomenon of inversion has been revealed for levels corresponding to high and low values of the spin. The calculations demonstrate the practical possibility to obtain spin states with arbitrarily close energies by varying the shape of the quantum dot, which is a key condition for development prospects in technologies of storage systems based on spin qubits.

  2. 18. Within the atom economical electronic "s, p, d, f Type electron hull shell" forming principle and spin Elliptical orbit parameters variation analysis

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang and Huang Yuxiang

    2013-10-01

    Full Text Available In chapter 16 we have about three of hydrogen, lithium, helium atoms "s type ball shell electron cloud" describes forming principle and calculation. Therefore: each electronic in nucleus and other electronic electric, magnetic field force, not only along the spin elliptical orbits around the nucleus, there are different degrees of lateral additional movement, as shown in figure 18.2, 18.4, 18.6... As shown. It formed the spin elliptical orbit revolving curved surface. When same layer n of rotating ellipsoid surface "electron hull shell" under the action of electric field repelling force symmetry respectively to different space position and direction, were composed "s, p, d, f type electron hull shell". From (1.2-1 type, electronic wave radius:

  3. Spin Texture and Spin Dynamics in Superconducting Cuprates Near the Phase Transition Revealed by the Electron Paramagnetic Resonance

    Science.gov (United States)

    Kochelaev, B. I.

    2016-04-01

    A short review of experimental results and theoretical models of the spin texture and spin dynamics in superconducting cuprates near the phase transition developed on the basis of the EPR measurements is given. Distortions of the long-range antiferromagnetic order in the YBa_2 Cu_3 O_{6+y} were investigated for y=0.1-0.4 using Yb^{3+} ions as the EPR probe. In weakly doped samples with y=0.1 , a strong anisotropy of the EPR linewidth is revealed which was related to the indirect spin-spin interaction between the ytterbium ions via antiferromagnetic spin-waves. In the case of the doping level y=0.2-0.3 , the EPR signal consists of narrow and broad lines, which were attributed to formation of charged domain walls. A theoretical analysis is well consistent with experimental results for the case of coplanar elliptical domain walls. A discussion of possible reasons for the observed unusual planar oxygen isotope effect on a critical temperature T_c related to charge heterogeneity in underdoped cuprates is given.

  4. Electron-spin-polarization effects in low-energy electron diffraction, ion neutralization and metastable-atom deexcitation at solid surfaces

    International Nuclear Information System (INIS)

    This project is directed towards development of new surface-sensitive spectroscopies based on electron-spin dependences in electron-atom- and ion-surface interactions. Spin polarization effects in LEED (i.e., PLEED) can be exploited to provide structural information at crystalline surfaces. During the current contract year, a comprehensive study of nickel (110) has yielded polarization vs. energy profiles that are rich in structure and with surprisingly large peak polarizations (approx. 20%). Addition of an ordered tellurium adlayer significantly changes both the PLEED polarization and intensity profiles. Study of Te/Ni fractional order beams is expected to provide new insight on the potential of PLEED as a new diagnostic with particular sensitivity to adlayer properties. Work has begun on construction of a GaAs spin-polarized electron source that should provide improved accuracy and data acquisition rates in future PLEED experiments

  5. Native defect induced charge and ferromagnetic spin ordering and coexisting electronic phases in CoO epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Negi, D. S., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Loukya, B.; Datta, R., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-12-07

    We report on the observation of Co vacancy (V{sub Co}) induced charge ordering and ferromagnetism in CoO epitaxial thin film. The ordering is associated with the coexistence of commensurate, incommensurate, and discommensurate electronic phases. Density functional theory calculation indicates the origin of ordering in Co atoms undergoing high spin to low spin transition immediately surrounding the V{sub Co(16.6 at. %)}. Electron magnetic chiral dichroism experiment confirms the ferromagnetic signal at uncompensated Co spins. Such a native defects induced coexistence of different electronic phases at room temperature in a simple compound CoO is unique and adds to the richness of the field with the possibility of practical device application.

  6. Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling

    Science.gov (United States)

    Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang

    2016-06-01

    The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.

  7. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  8. Collective Character of Spin Excitations in a System of Mn2+ Spins Coupled to a Two-Dimensional Electron Gas

    Science.gov (United States)

    Teran, F. J.; Potemski, M.; Maude, D. K.; Plantier, D.; Hassan, A. K.; Sachrajda, A.; Wilamowski, Z.; Jaroszynski, J.; Wojtowicz, T.; Karczewski, G.

    2003-08-01

    We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical, an anomalously large Knight shift is observed. Our findings suggest the existence of a magnetic-field-induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [J. König and A. H. MacDonald, Phys. Rev. Lett.PRLTAO0031-9007 91, 077202 (2003)].

  9. Electron spin resonance study of free radicals produced from ethanol and acetaldehyde after exposure to a Fenton system or to brain and liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, B.; Jeunet, A.; Barret, L. (Departement de Toxicologie, C.H.R.U. de Grenoble, (France))

    1991-09-01

    Free radical formation from ethanol and acetaldehyde was studied in the presence of a spin-trap and a NADPH generating system with a chemical model, Fenton's reagent, or by enzymatic oxidation of these solvents by rat liver and brain microsomes. The free radicals were detected by electron spin resonance spectroscopy (E.S.R.), using the spin-trapping agent, alpha-(4-pyridyl l-oxide)-N-tertbutyl-nitrone (POBN). Under such conditions, the hydroxyethyl radical derived from ethanol was obtained after both incubation in liver and brain microsomes as well as after exposure to the Fenton system. Enzymatic inhibition and activation showed that the mixed function oxidase system plays an important role in the generation of such a radical, even in the brain. Under all the experimental conditions acetaldehyde could also generate a free radical deriving directly from the parent molecule and modified by enzymatic activation or inhibition. A second, longer lasting radical was also observed in the presence of acetaldehyde. On the basis of a comparative study to a known process causing lipoperoxidation, its lipidic origin was suggested.

  10. Structure of Self-Aggregated Alamethicin in ePC Membranes Detected by Pulsed Electron-Electron Double Resonance and Electron Spin Echo Envelope Modulation Spectroscopies

    Science.gov (United States)

    Milov, Alexander D.; Samoilova, Rimma I.; Tsvetkov, Yuri D.; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio; Handgraaf, Jan-Willem; Raap, Jan

    2009-01-01

    Abstract PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)7,18,19]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70–1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n ≈ 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and ∼5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 ≈ TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)18,19 residues are suggested to stabilize the self-aggregate superstructure. PMID:19383464

  11. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  12. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  13. Polarized light emission after grazing ion-surface scattering due to capture of spin-polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Hagedorn, H.; Zimny, R.; Nienhaus, H.; Kirschner, J.

    1989-01-16

    We have observed the capture of polarized electrons into excited terms of atoms after the interaction of fast ions with a magnetized Fe(110) surface at grazing incidence. The spin polarization of captured electrons results in a modified circular polarization fraction of fluorescence light. This experiment has considerable potential as a new analytical tool for investigating surface magnetism with extreme surface sensitivity, as a method for detailed studies of ion-surface interaction, and as a means to produce nuclear spin-polarized beams.

  14. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  15. Effects of spin-orbit coupling on the electronic states and spectroscopic properties of diatomic SeS

    Science.gov (United States)

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2016-03-01

    The electronic states and spectroscopic properties of selenium monosulfide (78Se32S) have been studied using relativistic configuration interaction methodology that includes effective core potentials of the constituent atoms. Potential energy curves of several spin-excluded (Λ-S) electronic states have been constructed and spectroscopic constants of low-lying bound Λ-S states within 5.1 eV are reported in the first stage of the calculations. In the next stage, the spin-orbit interaction has been incorporated and its effects on the potential energy curves and spectroscopic properties of the species have been investigated in detail. After the inclusion of spin-orbit coupling, the {{{{X}}}{{1}}}{{3}}{Σ }{0+}- is identified as the spin-orbit (Ω) ground state of the species. The transition moments of several important dipole-allowed and spin-forbidden transitions are calculated and the radiative lifetimes of the excited states involved in the respective transitions are computed. Electric dipole moments (μ z) for some low-lying bound Λ-S states as well as a few low-lying spin-orbit states (Ω-states) are also calculated in the present study.

  16. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao

    2010-09-27

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5 is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic. © 2010 IOP Publishing Ltd.

  17. Spin-orbit coupling in InGaSb-based two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Guzenko, Vitaliy; Schaepers, Thomas; Cabanas, Sergio [Institute of Bio- and Nanosystems (IBN 1), Reserach Centre Juelich, 52425 Juelich (Germany); Akabori, Masashi; Sato, Taku; Suzuki, Toshi-kazu; Yamada, Syoji [Center for Nano-Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi (Japan)

    2007-07-01

    Two-dimensional electron gases (2DEG) formed in high-mobility InGaSb-based heterostructures with high indium content are promising candidates for spintronic applications because of their strong spin-orbit coupling and large g-factor. To investigate these properties magnetoconductance measurements around zero magnetic field (localization measurements) as well as in strong magnetic fields (coincidence method) were performed. A pronounced enhancement of magnetoconductance at B=0 T due to the weak antilocalization effect was observed, which is an unambiguous indication of the spin-orbit coupling in these samples. Experimental curves measured as a function of temperature could be fitted by a theoretical model, and a quantitative estimation of the characteristic scattering times was done. By the coincidence method g-factor as large as 31 could be determined. By applying an additional constant magnetic field in the plane of 2DEG a strong suppression of the weak antilocalization peak was achieved. This is a qualitative confirmation of the result of the coincidence measurements.

  18. Magnetic dipole-dipole sensing at atomic scale using electron spin resonance STM

    Science.gov (United States)

    Choi, T.; Paul, W.; Rolf-Pissarczyk, S.; MacDonald, A.; Yang, K.; Natterer, F. D.; Lutz, C. P.; Heinrich, A. J.

    Magnetometry having both high magnetic field sensitivity and atomic resolution has been an important goal for applications in diverse fields covering physics, material science, and biomedical science. Recent development of electron spin resonance STM (ESR-STM) promises coherent manipulation of spins and studies on magnetic interaction of artificially built nanostructures, leading toward quantum computation, simulation, and sensors In ESR-STM experiments, we find that the ESR signal from an Fe atom underneath a STM tip splits into two different frequencies when we position an additional Fe atom nearby. We measure an ESR energy splitting that decays as 1/r3 (r is the separation of the two Fe atoms), indicating that the atoms are coupled through magnetic dipole-dipole interaction. This energy and distance relation enables us to determine magnetic moments of atoms and molecules on a surface with high precision in energy. Unique and advantageous aspects of ESR-STM are the atom manipulation capabilities, which allow us to build atomically precise nanostructures and examine their interactions. For instance, we construct a dice cinque arrangement of five Fe atoms, and probe their interaction and energy degeneracy. We demonstrate the ESR-STM technique can be utilized for quantum magnetic sensors.

  19. Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Uvarov, Mikhail N., E-mail: uvarov@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3, 630090 Novosibirsk (Russian Federation); Behrends, Jan [Berlin Joint EPR Lab, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Kulik, Leonid V. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova St. 2, Novosibirsk (Russian Federation)

    2015-12-28

    Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about ten times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.

  20. A Novel Spin-Light Polarimeter for the Electron Ion Collider

    CERN Document Server

    Mohanmurthy, Prajwal

    2013-01-01

    A novel precision polarimeter will go a long way in satisfying the requirements of the precision experiments being planned for a future facility such as the Electron Ion Collider. A polarimeter based on the asymmetry in the spacial distribution of the spin light component of synchrotron radiation will make for a fine addition to the existing-conventional M{\\o}ller and Compton polarimeters. The spin light polarimeter consists of a set of wriggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by an ionization chamber after being collimated. The up-down spacial asymmetry in the transverse plane is used to quantify the polarization of the beam. As a part of the design process, firstly, a rough calculation was drawn out to establish the validity of such an idea. Secondly, the fringe fields of the wriggler magnet was simulated using a 2-D magnetic field simulation toolkit called Poisson Superfish, which is maintained by Los Alamos Natio...

  1. Spin electronic magnetic sensor based on functional oxides for medical imaging

    Science.gov (United States)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  2. Electron spin resonance study of the kerogen/asphaltene vanadyl porphyrins: air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Premovic, P.I.; Tonsa, I.R.; Pajovic, M.T.; Lopez, L.; Monaco, S.L.; Dordevic, D.M.; Pavlovic, M.S. [University of Nis, Nis (Yugosalvia). Lab. for Geochemistry and Cosmochemistry, Dept. of Chemistry

    2001-04-01

    Thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of the kerogens isolated from the La Luna (Venezuela), Maganik (Montenegro) and Serpiano (Switzerland) bituminous rocks at 150 and 250{degree}C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens the vanadyl porphyrins' resonance signals decrease monotonically and become quite small after six days of heating. Concomitantly, new vanadyl signals appear, and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversion of vanadyl porphyrins are observed under the same experimental conditions for the asphaltenes extracted from the La Luna and Serpiano rocks, and the floating asphalt from the Dead Sea (Israel). A comparison of the spin-Hamiltonian parameters for vandyl porphyrisn and vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that these are of non-porphyrin type. For comparison, a study was conducted on the Western Kentucky No. 9 coal enriched with vanadium (up to 800 ppm) from six mines. All coal samples show only the presence of predominant vanadyl-non-porphyrin compounds similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins. 21 refs., 2 figs.

  3. Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study

    Directory of Open Access Journals (Sweden)

    MIRJANA S. PAVLOVIC

    2000-02-01

    Full Text Available The thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of kerogens, isolated from the La Luna (Venezuela and Serpiano (Switzerland bituminous rocks, at 25°C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens, the vanadyl porphyrins resonance signals decrease monotonically and become quite small after 6 days of heating. Concomitantly, new vanadyl signals appear and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversions of vanadyl porphyrins are observed under the same experimental conditions for asphaltenes extracted from the La Luna and Serpiano rocks, and floating asphalt from the Dead Sea (Israel. A comparison of the spin-Hamiltonian parameters for vanadyl porphyrins and the vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that the latter are of a non-porphyrin type. For comparison a study was conducted on Western Kentucky No. 9 coal enriched with vanadium (>>400 ppm from six mines. All the coal samples show only the presence of predominant by non-porphyrin vanadyl compounds, similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins.

  4. Spin-polarized electronic structure of the Ni(001) surface and thin films

    DEFF Research Database (Denmark)

    Jepsen, O.; Madsen, J.; Andersen, O. K.

    1982-01-01

    of the five-layer film is used to calculate the electronic structure of a 13-layer film. The theoretical work function of 5.4 eV agrees well with the experimental value of 5.2 eV. The calculated spin moments are ordered ferromagnetically in all the films considered, and the moments of the atoms in the surface...... layer are 0.95, 0.69, and 0.65 Bohr magnetons for the one-, three-, and five-layer films, respectively. The moment of an atom in the central layer of the five-layer film is 0.61 Bohr magnetons as compared with the calculated (experimental) bulk value of 0.59±0.01 (0.56) Bohr magnetons. The increase...... of the magnetic moment at the surface is mainly of d(x2-y2) character. The calculated 4s contribution to the hyperfine field changes sign and becomes positive in the outermost layer. Near k=0, between the Fermi level and the d-band edge (which lies 0.3 eV below the Fermi level), we find no majority-spin surface...

  5. Assessment of fluidity of different invasomes by electron spin resonance and differential scanning calorimetry.

    Science.gov (United States)

    Dragicevic-Curic, Nina; Friedrich, Manfred; Petersen, Silvia; Scheglmann, Dietrich; Douroumis, Dennis; Plass, Winfried; Fahr, Alfred

    2011-06-30

    The aim of this study was to investigate the influence of membrane-softening components (terpenes/terpene mixtures, ethanol) on fluidity of phospholipid membranes in invasomes, which contain besides phosphatidylcholine and water, also ethanol and terpenes. Also mTHPC was incorporated into invasomes in order to study its molecular interaction with phospholipids in vesicular membranes. Fluidity of bilayers was investigated by electron spin resonance (ESR) using spin labels 5- and 16-doxyl stearic acid and by differential scanning calorimetry (DSC). Addition of 1% of a single terpene/terpene mixture led to significant fluidity increase around the C16 atom of phospholipid acyl chains comprising the vesicles. However, it was not possible to differentiate between the influences of single terpenes or terpene mixtures. Incorporation of mTHPC into the bilayer of vesicles decreased fluidity near the C16 atom of acyl chains, indicating its localization in the inner hydrophobic zone of bilayers. These results are in agreement with DSC measurements, which showed that terpenes increased fluidity of bilayers, while mTHPC decreased fluidity. Thus, invasomes represent vesicles with very high membrane fluidity. However, no direct correlation between fluidity of invasomes and their penetration enhancing ability was found, indicating that besides fluidity also other phenomena might be responsible for improved skin delivery of mTHPC.

  6. Building blocks of an artificial kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands

    Science.gov (United States)

    Mengotti, E.; Heyderman, L. J.; Fraile Rodríguez, A.; Bisig, A.; Le Guyader, L.; Nolting, F.; Braun, H. B.

    2008-10-01

    Arrays of dipolar coupled ferromagnetic islands arranged in specific geometries provide ideal systems to directly study frustration. We have examined with photoemission electron microscopy the magnetic configurations in three basic building blocks of an artificial kagome spin ice consisting of one, two, and three rings. The kagome spin ice arrangement is particularly interesting because it is highly frustrated and the three interactions at a vertex are equivalent. Employing dipolar energy calculations, we are able to make a full characterization of the magnetic states and therefore identify the lowest energy states. Experimentally we find that the ice rule is always obeyed even at low dipolar coupling strengths. However, as the number of rings increases there is a drastic decrease in the ability to achieve the low-energy states via demagnetization, a behavior also identified in the magnetization reversal. This carries the implication that the ground state will never be achieved in the infinite system. Finally, we show that at low coupling, the applied field direction governs the resulting states. This work opens the door to a novel class of systems for future spintronic applications.

  7. Large in-plane spin-dephasing anisotropy in a [0 0 1]-grown two-dimensional electron system

    Science.gov (United States)

    Korn, T.; Stich, D.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2008-03-01

    A large anisotropy in the spin dephasing times for the different in-plane directions of [0 0 1] quantum wells has been predicted in calculations by Averkiev and Golub [Phys. Rev. B 60 (1999) 15582] for systems with both Rashba and Dresselhaus spin-orbit fields. Here, we present time-resolved Faraday rotation measurements performed in the Voigt geometry on a high-mobility 2D electron system grown on a [0 0 1] substrate. An out-of-plane spin polarization is created in the sample by a circularly polarized pump pulse. The magnetic field applied in the sample plane forces the spins to precess perpendicular to it. For a magnetic field applied along [1 1 0], the spins precess into the [1 1bar 0] direction, which is in the sample plane, for a magnetic field along [1 1bar 0], the spins precess into the [1 1 0] direction. The experimentally determined spin dephasing times for these two different cases differ by about 60%, demonstrating that the predicted anisotropy is present in our sample.

  8. In situ electrochemical-electron spin resonance investigations of multi-electron redox reaction for organic radical cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia; Choi, Daiwon; Lemmon, John P.

    2016-02-29

    Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstrate a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.

  9. Optimal Dense Coding and Swap Operation Between Two Coupled Electronic Spins: Effects of Nuclear Field and Spin-Orbit Interaction

    Science.gov (United States)

    Jiang, Li; Zhang, Guo-Feng

    2016-08-01

    The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.

  10. Spin injection into semiconductors

    Science.gov (United States)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  11. Insight into the spin state at the surface of LaCoO3 revealed by photoemission electron microscopy

    Science.gov (United States)

    Yaroslavtsev, A. A.; Izquierdo, M.; Carley, R.; Dávila, M. E.; Ünal, A. A.; Kronast, F.; Lichtenstein, A.; Scherz, A.; Molodtsov, S. L.

    2016-04-01

    The evolution of the spin transition in LaCoO3 has been investigated with photoemission electron microscopy (PEEM) as a function of temperature. The investigated temperature range spanned from a predominantly low spin configuration (125 K) to the proposed percolation limit for metallization (413 K). The data show that the spin configuration exhibits an inhomogeneous spatial distribution that is very sensitive to the surface preparation method. In the region of the semiconductor-to-metal transition (300 to 450 K), the spatial contrast is continuously reduced, indicating a smooth transition without domain percolation. These observations support a new interpretation of the temperature evolution of the system that is in agreement with current theoretical understanding of the spin transition.

  12. Spin-dependent Fano resonance induced by a conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    International Nuclear Information System (INIS)

    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. The transmission and conductance for an arbitrary CCH spiral period are obtained. Due to the spin-spiral coupling, interference between the direct and inter-subband transmission channels gives rise to a spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin-spiral period in the CCH.

  13. Spin Magnetohydrodynamics. Energy density and vorticity evolution in electron-ion quantum plasmas

    CERN Document Server

    Trukhanova, Mariya Iv

    2014-01-01

    In this paper, we explain a magneto quantum hydrodynamics (MQHD) method for the study of the quantum evolution of a system of spinning fermions in an external electromagnetic field. The fundamental equations of microscopic quantum hydrodynamics (the momentum balance equation, the energy evolution equation and the magnetic moment density equation) were derived from the many-particle microscopic Schredinger equation with a Spin-spin and Coulomb modified Hamiltonian. It has been showed that in the absence of external electromagnetic field the system of particles are subject to the usual quantum force (Bohm potential) and spin-dependent addition (Spin stress). Using the developed approach, an extended vorticity evolution equation for the quantum spinning plasma has been derived. The effects of the new spin forces and Spin-spin interaction contributions on the motion of fermions, the evolution of the magnetic moment density, the energy dynamics and vorticity generation have been predicted. The explicated MQHD appr...

  14. SPIN AND RELATIVITY: A SEMICLASSICAL MODEL FOR ELECTRON SPIN ESPÍN Y RELATIVIDAD: UN MODELO SEMICLASICO PARA EL ESPÍN DEL ELECTRÓN

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available The quantum relationship may be regarded as the equivalence between two expressions for the rest energy of the particle, if is considered as the spin angular velocity of the particle in its rest frame. The invariance of the relativistic space-time interval to such a spin motion (space isotropy leads to the spin momentum for all structureless particles irrespective of their mass values. The inertia is an intrinsic property due to the spin motion of the particles. The signs of the mass values occurring in the solutions of the Dirac equation might be related to the orientation of the spin motion, as suggested by the fundamental relationship . Besides it deals with the electron, and more specifically with two key properties: its complex wavefunction, and its intrinsic spin. In the standard interpretation, there is no clear real-space picture of what is oscillating in the wave, or what is rotating in the spin. Indeed, it is generally believed that no simple model of rotation can account for the spin of the electron. On the contrary, the present paper shows that a crude mechanical model of coherently rotating vortices can account quantitatively not only for spin, but also for the wavefunction itself. The implications of this are discussed in this paper.La relación cuántica puede ser considerada como la equivalencia entre dos expresiones para la energía en reposo de la partícula, si se considera la velocidad angular de giro de partículas en su marco en reposo. La invariancia del intervalo relativista espacio- tiempo para tal movimiento de espín (isotropía espacial conduce al impulso de espín para todas las partículas sin estructura, independientemente de sus valores de masa. La inercia es una propiedad intrínseca debido al movimiento de spin de las partículas. Los signos de los valores de masa que se producen en las soluciones de la ecuación de Dirac podrían estar relacionados con la orientación del espín, según lo sugerido por la

  15. Electrical properties comparison of TiO2/PS/Si devices fabricated by spin coating and electron beam gun

    Science.gov (United States)

    Dariani, R. S.; Faraji, F.

    2016-04-01

    Three porous silicon (PS) samples with different porosities by electrochemical anodization are fabricated. Then, TiO2 nanoparticles are deposited on PS by two methods, spin coating and electron beam gun. I- V characteristics of all samples show diode behavior. Our result showed that transient current decreases with increasing porosity for PS/Si samples while increases for TiO2/PS/Si samples in both deposition methods. The reason could be due to filling pores by TiO2 nanoparticles and reduction of resistivity on PS surface. Also, our result showed that transient current increases highly for samples which were deposited by electron beam gun with respect to spin coating. The reason could be that in spin coating method TiO2 sol with high viscosity was used and causes that TiO2 nanoparticles cannot easily penetrate into PS pores. But in electron beam gun method TiO2 nanoparticles reaches to PS surface as a few atoms and can easily penetrate into PS pores. Ideality factor of our samples reduces after TiO2 deposition. Also, ideality factor of samples which were deposited by electron beam gun decreases with respect to spin coating, since transient current and I- V curve slop increase in electron beam gun.

  16. Detection of organic free radicals in irradiated pepper by electron spin resonance

    International Nuclear Information System (INIS)

    Using electron spin resonance (ESR) spectroscopy, we revealed various free radicals in a Japanese commercially available black pepper before and after γ-irradiation. The representative ESR spectrum of the pepper is composed of a sextet centered at g=2.0, a singlet at the same g-value and a singlet at g=4.0. The first one is attributable to a signal with hyperfine interactions of Mn2+ ion (7.4 mT). The second one is due to an organic free radical. The third one may be originated from Fe3+ ion of the non-hem Fe in proteins. A pair of signals appeared in the black pepper after γ-irradiation. The progressive saturation behavior reconfirmed the signal identification for the radicals in the black pepper. (author)

  17. Electron spin resonance dating of teeth from Western Brazilian megafauna - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Angela, E-mail: angela.kinoshita@usc.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Universidade Sagrado Coracao, Rua Irma Arminda 10-50, 17011-160 Bauru - Sao Paulo (Brazil); Jose, Flavio A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Sundaram, Dharani; Paixao, Jesus da S.; Soares, Isabella R.M. [Universidade Federal de Mato Grosso, Departamento de Geologia Geral, 78090-000 Cuiaba-MT (Brazil); Figueiredo, Ana Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN), 05422-970 Sao Paulo-SP (Brazil); Baffa, Oswaldo [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil)

    2011-09-15

    Electron Spin Resonance (ESR) was applied to determine ages of Haplomastodon teeth from Western Brazilian Megafauna. The Equivalent Doses (D{sub e}) of (1.3 {+-} 0.2)kGy, (800 {+-} 100)Gy and (140 {+-} 20)Gy were found and the software ROSY ESR dating was employed to convert D{sub e} in age, using isotope concentrations determined by neutron activation analysis (NAA) and other information, resulting in (500 {+-} 100)ka, (320 {+-} 50) and (90 {+-} 10)ka considering the Combination Uptake (CU) model for Uranium uptake, set as an Early Uptake (EU) for dentine and Linear Uptake (LU) for enamel. There are scarce reports about Pleistocene Megafauna in this area. This paper presents the first dating of megafauna tooth and this study could contribute to improve the knowledge about the paleoclimate and paleoenvironment of this region and prompt more investigations in this area.

  18. Inversion of electron spin resonance signal of P1-center in synthetic crystalline diamond

    International Nuclear Information System (INIS)

    We have studied the electron spin resonance (ESR) of a 0.59 carat synthetic diamond single crystal at room temperature. The crystal was grown on a 'split-sphere' apparatus in the Fe-Ni-C system by the temperature gradient method. After high-temperature/high-pressure treatment of the diamond, it was observed that as the microwave power supplied to the sample increased from 70 μW to 70 mW in an H102 cavity, the ESR signal from the P1 center (a nitrogen atom substituting for carbon at a lattice point of the diamond crystal: C-form nitrogen) is inverted. In the original diamond (before high-temperature/high-pressure treatment), no inversion of the ESR signal was observed. (authors)

  19. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    Science.gov (United States)

    Chen, Y. S.; Lin, J. G.; Titov, I. S.; Granovsky, A. B.

    2016-06-01

    Shape memory Heusler alloy Ni50Mn35In12Si3 is investigated with electron spin resonance (ESR) technique in a temperature range of 200-300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: TcA (271 K), TM (247 K) and TcM (212 K), where TcA is the Curie temperature of austenitic phase, TM and TcM are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200-300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations.

  20. Detection of irradiated fruits and vegetables by gas-chromatographic methods and electron spin-resonance

    Energy Technology Data Exchange (ETDEWEB)

    Farag, S.E.A. (National Centre for Radiation Research and Technology, Cairo (Egypt))

    1993-01-01

    Gas chromatographic methods detected some hydrocarbons esp. 17:1, 16:2, 15:0 and 14:1 in irradiated, Avocado, Papaya, Mangoes with 0.75, 1.5, 3.0 kGy and Apricot with 0.5 and 3.0 kGy. The detection of hydrocarbons was clearly at high doses but the low doses need more sensitive conditions using Liquid-Liquid-Gas chromatographic method as used here. Using Electron Spin-Resonance, produce a specific signal from irradiated onion (dried leaves) as well as apricot (hard coat of kernels) after some weeks of irradiation process but not clear with the other foodstuffs. (orig.)

  1. Electron Spin Resonance and Atomic Force Microscopy Study on Gadolinium Doped Ceria

    Directory of Open Access Journals (Sweden)

    Cesare Oliva

    2015-01-01

    Full Text Available A combined electron spin resonance (ESR and atomic force microscopy (AFM study on Ce1−xGdxO2−x/2 samples is here presented, aimed at investigating the evolution of the ESR spectral shape as a function of x in a wide composition range. At low x=0.02, the spectrum is composed of features at geff≈2; 2.8; 6. With increasing x, this pattern merges into a single geff≈2 broad ESR curve, which assumes a Dysonian-shaped profile at x≥0.5, whereas, at these x values, AFM measurements show an increasing surface roughness. It is suggested that the last could cause the formation of surface polaritons at the origin of the particular ESR spectral profile observed at these high Gd doping levels.

  2. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    Science.gov (United States)

    Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko

    2012-01-01

    Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity. PMID:22701293

  3. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    Directory of Open Access Journals (Sweden)

    Stefka Valcheva-Kuzmanova

    2012-01-01

    Full Text Available Background: The fruits of Aronia melanocarpa (Michx. Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ. Materials and Methods: The method used was electron spin resonance (ESR spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity.

  4. Electron Spin Resonance Dating of Some Animal Teeth Enamel and Shell Fossils

    International Nuclear Information System (INIS)

    Full text: Electron spin resonance (ESR) dating was conducted for some ungulate tooth enamel samples and shell fossils of the the Tham Lod rock shelter Area I (S23W10) located in Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province, Thailand. Age estimation for wave-induced breaching of the cavity and initial sand deposition (Level 19-29) was 33,200 - 18,700 years and 32,300 years for teeth enamel and the shell fossils of Nodularia scobinata sp. (Carditidae) respectively. ESR spectra showed g-factor g1 (gll, gcenter) = 2.0030 - 2.0036, g2 = 2.0040 - 2.0041 and g3 (g?) = 1.997 - 1.9988 formed by CO2- orthorhombic free radical for teeth enamel and g-factor (gcenter) = 2.0042 + 0.0003 formed by SO3- free radical for fresh shell fossils

  5. ESR (electron spin resonance)-determined osmotic behavior of bull spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Kleinhans, F.W.; Spitzer, V.J.; Critser, J.K. (Methodist Hospital, Indianapolis, IN (USA). Dept. of Medical Research); Horstman, L. (Purdue Univ., Lafayette, IN (USA). School of Veterinary Medicine); Mazur, P. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    Our laboratories are pursuing a fundamental approach to the problems of semen cryopreservation. For many cell types (human red cells, yeast, HeLa) it has been demonstrated that there is an optimum cooling rate for cryopreservation. Faster rates allow insufficient time for cell dehydration and result in intracellular ice formation and cell death. It is possible to predict this optimal rate provided that the cell acts as an ideal osmometer and several other cell parameters are known such as the membrane hydraulic conductivity. It is the purpose of this work to examine the osmotic response of bull sperm to sucrose and NaCl utilizing electron spin resonance (ESR) to measure cell volume. For calibration purposes we also measured the ESR response of human red cells (RBC), the osmotic response of which is well documented with other methods. 15 refs., 1 fig.

  6. High-resolution electron microscopy in spin pumping NiFe/Pt interfaces

    Science.gov (United States)

    Ley Domínguez, D.; Sáenz-Hernández, R. J.; Faudoa Arzate, A.; Arteaga Duran, A. I.; Ornelas Gutiérrez, C. E.; Solís Canto, O.; Botello-Zubiate, M. E.; Rivera-Gómez, F. J.; Azevedo, A.; da Silva, G. L.; Rezende, S. M.; Matutes-Aquino, J. A.

    2015-05-01

    In order to understand the effect of the interface on the spin pumping and magnetic proximity effects, high resolution transmission electron microscopy and ferromagnetic resonance (FMR) were used to analyze Py/Pt bilayer and Pt/Py/Pt trilayer systems. The samples were deposited by dc magnetron sputtering at room temperature on Si (001) substrates. The Py layer thickness was fixed at 12 nm in all the samples and the Pt thickness was varied in a range of 0-23 nm. A diffusion zone of approximately 8 nm was found in the Py/Pt interfaces and confirmed by energy dispersive X-ray microanalysis. The FMR measurements show an increase in the linewidth and a shift in the ferromagnetic resonance field, which reach saturation.

  7. Detection of irradiated fruits and vegetables by gas-chromatographic methods and electron spin-resonance

    International Nuclear Information System (INIS)

    Gas chromatographic methods detected some hydrocarbons esp. 17:1, 16:2, 15:0 and 14:1 in irradiated, Avocado, Papaya, Mangoes with 0.75, 1.5, 3.0 kGy and Apricot with 0.5 and 3.0 kGy. The detection of hydrocarbons was clearly at high doses but the low doses need more sensitive conditions using Liquid-Liquid-Gas chromatographic method as used here. Using Electron Spin-Resonance, produce a specific signal from irradiated onion (dried leaves) as well as apricot (hard coat of kernels) after some weeks of irradiation process but not clear with the other foodstuffs. (orig.)

  8. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    Science.gov (United States)

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E. P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]- coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

  9. Resonant Spin-Flavor Conversion of Supernova Neutrinos: Dependence on Electron Mole Fraction

    CERN Document Server

    Yoshida, T; Kimura, K; Yokomakura, H; Kawagoe, S; Kajino, T

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Ye is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Ye. At an adiabatic high RSF resonance the flavor conversion of bar{nu}_e -> nu_{mu,tau} occurs in Ye 0.5 and inverted mass hierarchy. In other cases of Ye values and mass hierarchies, the conversion of nu_e -> bar{nu}_{mu,tau} occurs. The final bar{nu}_e spectrum is evaluated in the cases of Ye 0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low bar{nu}_e energy to high bar{nu}_e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron frac...

  10. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    Science.gov (United States)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  11. Spin-Orbit induced semiconductor spin guides

    OpenAIRE

    Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens

    2002-01-01

    The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.

  12. Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    Science.gov (United States)

    Derzhko, Oleg; Richter, Johannes; Maksymenko, Mykola

    2015-05-01

    On a large class of lattices (such as the sawtooth chain, the kagome and the pyrochlore lattices), the quantum Heisenberg and the repulsive Hubbard models may host a completely dispersionless (flat) energy band in the single-particle spectrum. The flat-band states can be viewed as completely localized within a finite volume (trap) of the lattice and allow for construction of many-particle states, roughly speaking, by occupying the traps with particles. If the flat-band happens to be the lowest-energy one, the manifold of such many-body states will often determine the ground-state and low-temperature physics of the models at hand even in the presence of strong interactions. The localized nature of these many-body states makes possible the mapping of this subset of eigenstates onto a corresponding classical hard-core system. As a result, the ground-state and low-temperature properties of the strongly correlated flat-band systems can be analyzed in detail using concepts and tools of classical statistical mechanics (e.g., classical lattice-gas approach or percolation approach), in contrast to more challenging quantum many-body techniques usually necessary to examine strongly correlated quantum systems. In this review, we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. The main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems, we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat-band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli

  13. Spin decoherence in n-type GaAs: The effectiveness of the third-body rejection method for electron-electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Gionni, E-mail: gionnimarchetti@gmail.com; Hodgson, Matthew, E-mail: matthew.hodgson@york.ac.uk; D' Amico, Irene, E-mail: irene.damico@york.ac.uk [Department of Physics, University of York, York, Heslington YO10 5DD (United Kingdom)

    2014-10-28

    We study the spin decoherence in n-type bulk GaAs for moderate electronic densities at room temperature using the Ensemble Monte Carlo method. We demonstrate that a technique called “third-body rejection method” devised by B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977) can be successfully adapted to Ensemble Monte Carlo method and used to tackle the problem of the electron-electron contribution to spin decoherence in the parameter region under study, where the electron-electron interaction can be reasonably described by a Yukawa potential. This scattering technique is employed in a doping region where one can expect that multiple collisions may play a role in carrier dynamics. By this technique, we are able to calculate spin relaxation times which are in very good agreement with the experimental results found by Oertel et al., Appl. Phys. Lett. 93, 13 (2008). Through this method, we show that the electron-electron scattering is overestimated in Born approximation, in agreement with previous results obtained by C. A. Kukkonen and H. Smith, Phys. Rev. B 8, 4601 (1973).

  14. Spin interference and the Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot

    International Nuclear Information System (INIS)

    We investigate the electron transport through a mesoscopic ring side-coupled with a quantum dot (QD) in the presence of Rashba spin-orbit (SO) interaction. It is shown that both the Fano resonance and the spin interference effects play important roles in the electron transport properties. As the QD level is around the Fermi energy, the total conductance shows a typical Fano resonance line shape. By applying an electrical gate voltage to the QD, the total transmission through the system can be strongly modulated. By threading the mesoscopic ring with a magnetic flux, the time-reversal symmetry of the system is broken, and a spin polarized current can be obtained even though the incident current is unpolarized.

  15. Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - a way to spintronics?

    International Nuclear Information System (INIS)

    We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires (∝100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction. Moreover, we show

  16. Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - a way to spintronics?

    Energy Technology Data Exchange (ETDEWEB)

    Birkholz, Jens Eiko

    2008-10-06

    We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires ({proportional_to}100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction

  17. Magnetization and susceptibility of a parabolic InAs quantum dot with electron-electron and spin-orbit interactions in the presence of a magnetic field at finite temperature

    Science.gov (United States)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron-electron and spin-orbit interactions as a function of magnetic field and temperature. The spin-orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron-electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron-electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin-orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin-orbit interaction shifts it to the lower magnetic field side. Spin-orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  18. Identification of Copper(II) Complexes in Aqueous Solution by Electron Spin Resonance: An Undergraduate Coordination Chemistry Experiment.

    Science.gov (United States)

    Micera, G.; And Others

    1984-01-01

    Background, procedures, and results are provided for an experiment which examines, through electron spin resonance spectroscopy, complex species formed by cupric and 2,6-dihydroxybenzoate ions in aqueous solutions. The experiment is illustrative of several aspects of inorganic and coordination chemistry, including the identification of species…

  19. Pair distribution function of the spin-polarized electron gas: A first-principles analytic model for all uniform densities

    OpenAIRE

    Gori-Giorgi, Paola; Perdew, John P.

    2002-01-01

    We construct analytic formulas that represent the coupling-constant-averaged pair distribution function $\\gxcav(r_s,\\zeta, k_Fu)$ of a uniform electron gas with density parameter $r_s =(9\\pi/4)^{1/3}/k_F$ and relative spin polarization $\\zeta$ over the whole range $0

  20. Use of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy

    NARCIS (Netherlands)

    Orlinkskii, S.B.; Borovykh, I.V.; Zielke, V.; Steinhoff, H.J.

    2007-01-01

    The applicability of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy is demonstrated. With the use of bacteriorhodopsin embedded in a lipid membrane as an example, the spectra of protons of neighboring amino acids are recorded, electric field g