WorldWideScience

Sample records for agents cell survival

  1. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2016-05-01

    Full Text Available It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis.

  2. Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2017-05-01

    Full Text Available The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1 levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell

  3. An unexpected caffeine-enhanced survival in x-ray-sensitive variant cells

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1985-01-01

    The sensitivity of normal Chinese hamster cell lines, V79 and CHO, mouse cell lines, L5178Y and L, and human HeLa cells to the killing effect of x-ray is enhanced with addition of caffeine following x-ray irradiation in a dose-dependent fashion. However, the survival rate of variant cell (V79-AL162/S-10) increased with addition of low concentration of caffeine (caffeine-enhanced survival phenomenon). Therefore, the effects of protein synthesis-inhibiting agents, such as cycloheximide and puromycin, on caffeine-enhanced survival phenomenon were examined. This phenomenon was completely abolished by the inhibitory agents, but not abolished by DNA synthesis-damaging agents, such as excess thymidine and aphidicolin. DNA-damaging physiochemical factors, such as neutrons, U.V., methyl methanesulfonate and mitomycin C, were examined in relation to variant cells' sensitivity and caffeine-enhanced survival phenomenon. V79-AL162/S-10 cells showed high sensitivity to the killing effect of mitomycin C, but their survival rate returned to the rate of normal V79-B310H cells with addition of caffeine. (Namekawa, K.)

  4. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Directory of Open Access Journals (Sweden)

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  5. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  6. Concepts, problems and the role of modifying agents in the relationship between recovery of cells' survival ability and mechanisms of repair of radiation lesions

    International Nuclear Information System (INIS)

    Orr, J.S.

    1984-01-01

    The two strands of the problem are the shapes and changes with time of cell survival curves on the one hand and the responses of cell constituents to radiation on the other. Evidence of correlations between results of studies of these two types of phenomena under the influence of a wide range of modifying agents is required to establish mechanisms. Recovery may be defined as referring to the whole cell, while repair should be regarded as a process carried out by one substance on another. The degrees of usefulness and possible deficiencies of a multi-hit/target model and a repair model for explaining cell survival curves and cell recovery are compared in a range of circumstances. A fully satisfactory model is not yet available. (author)

  7. Lung cells support osteosarcoma cell migration and survival.

    Science.gov (United States)

    Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard

    2017-01-25

    Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline

  8. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  9. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  10. Fractionated dose studies with X-rays and various alkylating agents in P388 mouse lymphoma cells

    International Nuclear Information System (INIS)

    Anderson, D.

    1981-01-01

    The fractionated dose technique has been used in P388F cells to examine the effects of X-rays and four alkylating agents on survival and induction of 5-iodo-2-deoxyuridine (IudR) resistant variants. Fractionation intervals up to 5 1/2 h were used for X-rays and for the alkylating agents up to 192 h. Fractionation of the X-ray dose resulted in a sparing effect for survival and variant induction. A sparing effect was also observed for survival after treatment with alkylating agents. However, variant frequencies were observed as large as or greater than those produced by the full doses of alkylating agents. For such agents this would suggest that survival and variant induction are independent events. Differences in the effects of X-rays and alkylating agents cannot be explained by differences in growth rate or the recovery of viability after treatment

  11. Fractionated dose studies with X-rays and various alkylating agents in P388 mouse lymphoma cells

    International Nuclear Information System (INIS)

    Anderson, D.

    1981-01-01

    The fractionated dose technique was used in P388F cells to examine the effects of X-rays and four alkylating agents on survival and induction of 5-iodo-2-deoxyuridine (IudR) resistant variants. Fractionation intervals up to 51/2 h were used for X-rays and for the alkylating agents up to 192 h. Fractionation of the X-ray dose resulted in a sparing effect for survival and variant induction. A sparing effect was also observed for survival after treatment with alkylating agents. However, variant frequencies were observed as large as or greater than those produced by the full doses of alkylating agents. For such agents this would suggest that survival and variant induction are independent events. Differences in the effects of X-rays and alkylating agents cannot be explained by differences in growth rate or the recovery of viability after treatment. (author)

  12. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  13. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  14. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  15. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  16. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    International Nuclear Information System (INIS)

    Achour, Ammar; M'Bika, Jean-Pierre; Biquard, Jean-Michel

    2009-01-01

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation

  17. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  18. Inhibition of human lung cancer cell proliferation and survival by wine

    Science.gov (United States)

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  19. Survival curves for irradiated cells

    International Nuclear Information System (INIS)

    Gibson, D.K.

    1975-01-01

    The subject of the lecture is the probability of survival of biological cells which have been subjected to ionising radiation. The basic mathematical theories of cell survival as a function of radiation dose are developed. A brief comparison with observed survival curves is made. (author)

  20. Stimulated human fibroblast cell survival

    International Nuclear Information System (INIS)

    Smith, B.P.; Gale, K.L.; Einspenner, M.; Greenstock, C.L.; Gentner, N.E.

    1992-01-01

    Techniques for cloning cultured mammalian cells have supported the most universally-accepted method for measuring the induction of lethality by geno-toxicants such as ionizing radiation: the 'survival of colony-forming ability (CFA)' assay. Since most cultured human cell lines exhibit plating efficiency (i.e. the percentage of cells that are capable of reproductively surviving and dividing to form visible colonies) well below 100%, such assays are in essence 'survival of plating efficiency' assays, since they are referred to the plating (or cloning) efficiency of control (i.e. unirradiated) cells. (author). 8 refs., 2 figs

  1. Radionuclide blood cell survival studies

    International Nuclear Information System (INIS)

    Bentley, S.A.; Miller, D.T.

    1986-01-01

    Platelet and red cell survival studies are reviewed. The use of 51 Cr and di-isopropylfluoridate labelled with tritium or 32 P is discussed for red cell survival study and 51 Cr and 111 In-oxine are considered as platelet labels. (UK)

  2. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

    Directory of Open Access Journals (Sweden)

    Damiano Conte

    Full Text Available Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU. Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.

  3. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.

    Science.gov (United States)

    Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.

  4. Cell survival after the combined action of manganese (MnCl2) and X-rays in synchronized Chinese hamster cells

    International Nuclear Information System (INIS)

    Skreb, Y.; Nagy, B.

    1984-01-01

    The interactions between the effects of manganese chloride and X-rays were studied in synchronized populations of V79 Chinese hamster fibroblasts. The cells were selected by shaking off asynchronous cultures for detachment of mitotic cells which were plated in petri dishes and exposed to various treatments. Irradiation was carried out with a Philips RT-100 X-ray unit. A final concentration of 0.25 mM MnCl 2 was used. The main parameter was the colony forming ability of the surviving cell fraction. When MnCl 2 was administered over 1 h, its toxicity was low regardless of the phase of the cell cycle. Administered separately, 2 Gy irradiation produced only a slight decrease in survival, less marked in the S phase. However, the two agents together induced a synergistic inhibition of the surviving fraction in the S phase when the metal was given immediately after irradiation. If manganese wad administered 3 h after irradiation the two inhibitory effects apparently remained only additive. It seems that MnCl 2 can impair some repair processes starting immediately after irradiation. (orig.)

  5. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  6. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.

    Science.gov (United States)

    Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier

    2016-10-01

    The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  8. A track-event theory of cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Besserer, Juergen; Schneider, Uwe [Zuerich Univ. (Switzerland). Inst. of Physics; Radiotherapy Hirslanden, Zuerich (Switzerland)

    2015-09-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  9. A track-event theory of cell survival

    International Nuclear Information System (INIS)

    Besserer, Juergen; Schneider, Uwe

    2015-01-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  10. Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane

    International Nuclear Information System (INIS)

    Kotowski, Ulana; Heiduschka, Gregor; Brunner, Markus; Fahim, Tammer; Thurnher, Dietmar; Czembirek, Cornelia; Eder-Czembirek, Christina; Schmidt, Rainer

    2011-01-01

    Sulforaphane is a naturally occurring compound found in broccoli and other cruciferous vegetables. Recently it gained attention because of its antiproliferative properties in many cancer cell lines. The aim of this study was to investigate whether sulforaphane could act as a radiosensitizer in head and neck squamous cell carcinoma cell lines. Four head and neck squamous cell carcinoma cell lines (i.e., (HNSCC) SCC9, SCC25, CAL27, and FADU) were treated with sulforaphane and subsequently irradiated. Then proliferation and clonogenic assays were performed. Apoptosis was detected by flow cytometry. Possible regulation of Akt and Mcl-1 was investigated by western blotting. Sulforaphane and radiation in combination leads to stronger inhibition of cell proliferation and of clonogenic survival than each treatment method alone. Western blot analysis of Akt and Mcl-1 showed no changed expression. Sulforaphane is a promising agent in the treatment of head and neck cancer due to its antiproliferative and radio-sensitizing properties. A combination of sulforaphane and radiation decreases clonogenic survival. Apoptosis is not regulated through Akt or the Mcl-1 protein. (orig.)

  11. Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Kotowski, Ulana; Heiduschka, Gregor; Brunner, Markus; Fahim, Tammer; Thurnher, Dietmar [Medical University of Vienna (Austria). Dept. of Otorhinolaryngology, Head and Neck Surgery; Czembirek, Cornelia; Eder-Czembirek, Christina [Medical University of Vienna (Austria). Dept. of Cranio-, Maxillofacial and Oral Surgery; Schmidt, Rainer [Medical University of Vienna (Austria). Dept. of Radiotherapy and -biology

    2011-09-15

    Sulforaphane is a naturally occurring compound found in broccoli and other cruciferous vegetables. Recently it gained attention because of its antiproliferative properties in many cancer cell lines. The aim of this study was to investigate whether sulforaphane could act as a radiosensitizer in head and neck squamous cell carcinoma cell lines. Four head and neck squamous cell carcinoma cell lines (i.e., (HNSCC) SCC9, SCC25, CAL27, and FADU) were treated with sulforaphane and subsequently irradiated. Then proliferation and clonogenic assays were performed. Apoptosis was detected by flow cytometry. Possible regulation of Akt and Mcl-1 was investigated by western blotting. Sulforaphane and radiation in combination leads to stronger inhibition of cell proliferation and of clonogenic survival than each treatment method alone. Western blot analysis of Akt and Mcl-1 showed no changed expression. Sulforaphane is a promising agent in the treatment of head and neck cancer due to its antiproliferative and radio-sensitizing properties. A combination of sulforaphane and radiation decreases clonogenic survival. Apoptosis is not regulated through Akt or the Mcl-1 protein. (orig.)

  12. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.

    Science.gov (United States)

    Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus

    2015-07-25

    Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this

  13. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  14. Tracking plasma cell differentiation and survival.

    Science.gov (United States)

    Roth, Katrin; Oehme, Laura; Zehentmeier, Sandra; Zhang, Yang; Niesner, Raluca; Hauser, Anja E

    2014-01-01

    Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow. © 2013 International Society for Advancement of Cytometry.

  15. Radiobilogical cell survival models

    International Nuclear Information System (INIS)

    Zackrisson, B.

    1992-01-01

    A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)

  16. The output of neuronotrophic and neurite-promoting agents from rat brain astroglial cells: a microculture method for screening potential regulatory molecules.

    Science.gov (United States)

    Rudge, J S; Manthorpe, M; Varon, S

    1985-04-01

    Throughout embryonic development, as well as in response to injury of the central nervous system, astroglial cells may present neurons with a critical supply of neuronotrophic and neurite-promoting factors which control, respectively, neuronal survival and axonal growth. The identification of such astroglial cell-derived factors, as well as of specific extrinsic agents regulating their production, will require the use of in vitro techniques. We define here a new microculture system in which added agents can be screened for their ability to enhance or inhibit the output of trophic and neurite-promoting factors from purified neonatal rat brain astroglial cells. With such a procedure, thousands of replicate secondary astroglial cultures can be set-up and maintained in chemically defined medium, on a defined substratum and in a viable, low proliferative stable state. These cultured astroglial cells release into their medium at least three distinct and separable types of agents addressing nerve cells in vitro: (i) high molecular weight trophic factors (Mr greater than 10,000) which support the survival of embryonic peripheral neurons; (ii) low molecular weight trophic agents (Mr less than 10,000) supporting embryonic central neurons; and (iii) polyornithine-binding neurite-promoting factors which enhance neuritic regeneration for both peripheral and central neurons. The temporal release patterns of these three agents from astroglial cultures are quite distinct suggesting that their output is independently regulated.

  17. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment

    International Nuclear Information System (INIS)

    Adomako, Alfred; Calvo, Veronica; Biran, Noa; Osman, Keren; Chari, Ajai; Paton, James C; Paton, Adrienne W; Moore, Kateri; Schewe, Denis M; Aguirre-Ghiso, Julio A

    2015-01-01

    The mechanisms allowing residual multiple myeloma (MM) cells to persist after bortezomib (Bz) treatment remain unclear. We hypothesized that studying the biology of bortezomib-surviving cells may reveal markers to identify these cells and survival signals to target and kill residual MM cells. We used H2B-GFP label retention, biochemical tools and in vitro and in vivo experiments to characterize growth arrest and the unfolded protein responses in quiescent Bz-surviving cells. We also tested the effect of a demethylating agent, 5-Azacytidine, on Bz-induced quiescence and whether inhibiting the chaperone GRP78/BiP (henceforth GRP78) with a specific toxin induced apoptosis in Bz-surviving cells. Finally, we used MM patient samples to test whether GRP78 levels might associate with disease progression. Statistical analysis employed t-test and Mann-Whitney tests at a 95% confidence. We report that Bz-surviving MM cells in vitro and in vivo enter quiescence characterized by p21 CIP1 upregulation. Bz-surviving MM cells also downregulated CDK6, Ki67 and P-Rb. H2B-GFP label retention showed that Bz-surviving MM cells are either slow-cycling or deeply quiescent. The Bz-induced quiescence was stabilized by low dose (500nM) of 5-azacytidine (Aza) pre-treatment, which also potentiated the initial Bz-induced apoptosis. We also found that expression of GRP78, an unfolded protein response (UPR) survival factor, persisted in MM quiescent cells. Importantly, GRP78 downregulation using a specific SubAB bacterial toxin killed Bz-surviving MM cells. Finally, quantification of Grp78 high /CD138+ MM cells from patients suggested that high levels correlated with progressive disease. We conclude that Bz-surviving MM cells display a GRP78 HIGH /p21 HIGH /CDK6 LOW /P-Rb LOW profile, and these markers may identify quiescent MM cells capable of fueling recurrences. We further conclude that Aza + Bz treatment of MM may represent a novel strategy to delay recurrences by enhancing Bz

  18. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    Science.gov (United States)

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  19. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Tanmay M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Green, Maja M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Department of Anatomy & Neuroscience, The University of Melbourne, Parkville 3010 (Australia); Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia)

    2015-07-15

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  20. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    International Nuclear Information System (INIS)

    Shekhar, Tanmay M.; Green, Maja M.; Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M.; Hawkins, Christine J.

    2015-01-01

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  1. Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling

    Science.gov (United States)

    Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735

  2. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo.

    Science.gov (United States)

    Susanto, Johana M; Colvin, Emily K; Pinese, Mark; Chang, David K; Pajic, Marina; Mawson, Amanda; Caldon, C Elizabeth; Musgrove, Elizabeth A; Henshall, Susan M; Sutherland, Robert L; Biankin, Andrew V; Scarlett, Christopher J

    2015-05-01

    Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5‑AZA‑2' deoxycytidine (5‑AZA‑dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5‑AZA‑dc, resulted in higher cell death and lower DNA synthesis compared to 5‑AZA‑dc alone and controls (DMSO). Further, combination treatment with SAHA and 5‑AZA‑dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.

  3. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    Science.gov (United States)

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  4. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo

    Science.gov (United States)

    Ponader, Sabine; Chen, Shih-Shih; Buggy, Joseph J.; Balakrishnan, Kumudha; Gandhi, Varsha; Wierda, William G.; Keating, Michael J.; O'Brien, Susan; Chiorazzi, Nicholas

    2012-01-01

    B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent. PMID:22180443

  5. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    Science.gov (United States)

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Repair models of cell survival and corresponding computer program for survival curve fitting

    International Nuclear Information System (INIS)

    Shen Xun; Hu Yiwei

    1992-01-01

    Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells

  7. Cell Survival Signaling in Neuroblastoma

    Science.gov (United States)

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  8. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    Science.gov (United States)

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  9. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    Science.gov (United States)

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  10. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  11. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    International Nuclear Information System (INIS)

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P.

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions

  12. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. (Kernforschungszentrum Karlsruhe, Karlsruhe (Germany, F.R.))

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  13. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents.

    Science.gov (United States)

    Kaina, B; Lohrer, H; Karin, M; Herrlich, P

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions. Images PMID:2320583

  14. Modification of bacterial cell survival by postirradiation hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Vexler, F B; Eidus, L Kh

    1986-01-27

    It is shown that postirradiation hypoxia affects the survival of E.coli. Hypoxic conditions immediately after a single-dose irradiation diminish cell survival in nutrient medium. Increasing time intervals between irradiation and hypoxia decrease the efficiency of the latter, while 1 h after irradiation hypoxia does not modify the survival of irradiated cells. These findings reveal that the mechanisms of action of postirradiation hypoxia on eu- and prokaryotic cells are similar.

  15. Biomorphic Multi-Agent Architecture for Persistent Computing

    Science.gov (United States)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  16. Cell survival and radiation induced chromosome aberrations. Pt. 2

    International Nuclear Information System (INIS)

    Bauchinger, M.; Schmid, E.; Braselmann, H.

    1986-01-01

    Human peripheral lymphocytes were irradiated in whole blood with 0.5-4.0 Gy of 220 kVp X-rays and the frequency of chromosome aberrations was determined in 1st or 2nd division metaphases discriminated by fluorescence plus giemsa staining. Using the empirical distributions of aberrations among cells, cell survival and transmission of aberrations were investigated. Considering both daughter cells, we found that 20% of fragments and 55% of dicentrics or ring chromosomes are lost during the 1st cell division; i.e. cell survival rate from 1st to 2nd generation is mainly influenced by anaphase bridging of these two-hit aberrations. Cell survival to 2nd mitosis was calculated considering this situation and compared with the survival derived from the fraction of M1 cells without unstable aberrations. The resulting shouldered survival curves showed significantly different slopes, indicating that cell reproductive death is overestimated in the latter approach. (orig.)

  17. 16,16-dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation

    International Nuclear Information System (INIS)

    Hanson, W.R.; Thomas, C.

    1983-01-01

    A variety of prostaglandins (PG) protect the gastric and intestinal mucosa when given before damaging agents as absolute ethanol, acidified taurocholate, boiling water, or nonsteroidal anti-inflammatory agents (NSAI). A synthetic prostaglandin, 16,16-dimethyl PGE 2 , shown to be cytoprotective at physiologic levels to the above agents was given to mice 1 h before or 15 min after 137 Cs gamma(γ) whole-body irradiation. The survival of intestinal stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased when 16,16-dimethyl PGE 2 was given before but not after 137 Cs γ irradiation. The maximum degree of 16,16-dimethyl PGE 2 -induced radioprotection was seen when the drug was given 1 h before irradiation. No radioprotection was seen when the interval between drug and irradiation was 3 h or longer. When the time between 16,16-dimethyl PGE 2 and irradiation was kept at 1 h, the degree of radioprotection was dependent on the PG drug dose. There was a steep rise in the number of surviving cells at low doses of PG. These results imply that tumors which secrete PGE 2 may in part be protected from the lethal effects of ionizing photon radiation

  18. Deferasirox and vitamin D improves overall survival in elderly patients with acute myeloid leukemia after demethylating agents failure.

    Directory of Open Access Journals (Sweden)

    Etienne Paubelle

    Full Text Available The prognosis of acute myeloid leukemia (AML in elderly (≥65 years patients is poor and treatment remains non-consensual especially for those who are not eligible for intensive therapies. Our group has shown that in vitro the iron chelator deferasirox (DFX synergizes with vitamin D (VD to promote monocyte differentiation in primary AML cells. Herein, we present results from a retrospective case-control study in which the association of DFX (1-2 g/d and 25-hydroxycholecalciferol (100,000 IU/week (DFX/VD was proposed to patients following demethylating agents failure. Median survival of patients treated with DFX/VD combination (n = 17 was significantly increased in comparison with matched patients receiving best supportive care (BSC alone (n = 13 (10.4 versus 4 months respectively. In addition, the only factor associated to an increased overall survival in DFX/VD-treated patients was serum VD levels. We conclude that DFX/VD treatment correlated with increased overall survival of AML patients in this retrospective cohort of elderly patients.

  19. Expressions of topoisomerase IIα and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients.

    Science.gov (United States)

    Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter

    2011-09-01

    The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.

  20. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  1. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Beard, Peter

    2012-01-01

    Highlights: ► Unknown cellular mutations complement papillomavirus-induced carcinogenesis. ► Hedgehog pathway components are expressed by cervical cancer cells. ► Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. ► Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  2. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents.

    Directory of Open Access Journals (Sweden)

    Ryan W Benson

    Full Text Available DinB (DNA Pol IV is a translesion (TLS DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ, a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS. Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.

  3. The slow cell death response when screening chemotherapeutic agents.

    Science.gov (United States)

    Blois, Joseph; Smith, Adam; Josephson, Lee

    2011-09-01

    To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.

  4. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  5. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes.

    Science.gov (United States)

    Rigo, Antonella; Vinante, Fabrizio

    2016-08-01

    The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell.

  6. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael

    2006-01-01

    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  7. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  8. 16,16-dimethyl prostaglandin E/sub 2/ increases survival of murine intestinal stem cells when given before photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.R.; Thomas, C.

    1983-11-01

    A variety of prostaglandins (PG) protect the gastric and intestinal mucosa when given before damaging agents as absolute ethanol, acidified taurocholate, boiling water, or nonsteroidal anti-inflammatory agents (NSAI). A synthetic prostaglandin, 16,16-dimethyl PGE/sub 2/, shown to be cytoprotective at physiologic levels to the above agents was given to mice 1 h before or 15 min after /sup 137/Cs gamma(..gamma..) whole-body irradiation. The survival of intestinal stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased when 16,16-dimethyl PGE/sub 2/ was given before but not after /sup 137/Cs ..gamma.. irradiation. The maximum degree of 16,16-dimethyl PGE/sub 2/-induced radioprotection was seen when the drug was given 1 h before irradiation. No radioprotection was seen when the interval between drug and irradiation was 3 h or longer. When the time between 16,16-dimethyl PGE/sub 2/ and irradiation was kept at 1 h, the degree of radioprotection was dependent on the PG drug dose. There was a steep rise in the number of surviving cells at low doses of PG. These results imply that tumors which secrete PGE/sub 2/ may in part be protected from the lethal effects of ionizing photon radiation.

  9. Change Agent Survival Guide

    Science.gov (United States)

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  10. Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu® disables cancer cell survival in human pancreatic cancer with acquired chemoresistance

    Directory of Open Access Journals (Sweden)

    O’Shea LK

    2014-01-01

    Full Text Available Leah K O'Shea,1 Samar Abdulkhalek,1 Stephanie Allison,2 Ronald J Neufeld,2 Myron R Szewczuk11Department of Biomedical and Molecular Sciences, 2Department of Chemical Engineering, Queen's University, Kingston, ON, CanadaBackground: Resistance to drug therapy, along with high rates of metastasis, contributes to the low survival rate in patients diagnosed with pancreatic cancer. An alternate treatment for human pancreatic cancer involving targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu® was investigated in human pancreatic cancer (PANC1 cells with acquired resistance to cisplatin and gemcitabine. Its efficacy in overcoming the intrinsic resistance of the cell to chemotherapeutics and metastasis was evaluated.Methods: Microscopic imaging, immunocytochemistry, immunohistochemistry, and WST-1 cell viability assays were used to evaluate cell survival, morphologic changes, and expression levels of E-cadherin, N-cadherin, and VE-cadherin before and after treatment with oseltamivir phosphate in PANC1 cells with established resistance to cisplatin, gemcitabine, or a combination of the two agents, and in archived paraffin-embedded PANC1 tumors grown in RAGxCγ double mutant mice.Results: Oseltamivir phosphate overcame the chemoresistance of PANC1 to cisplatin and gemcitabine alone or in combination in a dose-dependent manner, and disabled the cancer cell survival mechanism(s. Oseltamivir phosphate also reversed the epithelial-mesenchymal transition characteristic of the phenotypic E-cadherin to N-cadherin changes associated with resistance to drug therapy. Low-dose oseltamivir phosphate alone or in combination with gemcitabine in heterotopic xenografts of PANC1 tumors growing in RAGxCγ double mutant mice did not prevent metastatic spread to the liver and lung.Conclusion: Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate at the growth factor receptor level disables the intrinsic signaling platform for cancer cell survival

  11. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  12. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates.

    Science.gov (United States)

    Ezzelarab, M B; Zahorchak, A F; Lu, L; Morelli, A E; Chalasani, G; Demetris, A J; Lakkis, F G; Wijkstrom, M; Murase, N; Humar, A; Shapiro, R; Cooper, D K C; Thomson, A W

    2013-08-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Endotoxins, Glucans and Other Microbial Cell Wall Agents

    NARCIS (Netherlands)

    Basinas, Ioannis; Elholm, Grethe; Wouters, Inge M.

    2017-01-01

    During the last decades an increasing interest in microbial cell wall agents has been established, since exposure to these agents has been linked to a wide range of adverse and beneficial health effects. The term microbial cell wall agents refers to a group of molecules of different composition that

  14. Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Anvekar, Rina A.; Asciolla, James J.; Missert, Derek J.; Chipuk, Jerry E., E-mail: jerry.chipuk@mssm.edu [Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY (United States); Department of Dermatology, Mount Sinai School of Medicine, New York, NY (United States); The Tisch Cancer Institute, Mount Sinai Medical Center, New York, NY (United States)

    2011-10-13

    The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.

  15. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells.

    Science.gov (United States)

    Sastry, K S R; Al-Muftah, M A; Li, Pu; Al-Kowari, M K; Wang, E; Ismail Chouchane, A; Kizhakayil, D; Kulik, G; Marincola, F M; Haoudi, A; Chouchane, L

    2014-12-01

    Emerging evidence suggests that the resistance of cancer stem cells (CSC) to many conventional therapies is one of the major limiting factors of cancer therapy efficacy. Identification of mechanisms responsible for survival and self-renewal of CSC will help design new therapeutic strategies that target and eliminate both differentiated cancer cells and CSC. Here we demonstrated the potential role of proapoptotic protein BAD in the biology of CSC in melanoma, prostate and breast cancers. We enriched CD44(+)/CD24(-) cells (CSC) by tumorosphere formation and purified this population by FACS. Both spheres and CSC exhibited increased potential for proliferation, migration, invasion, sphere formation, anchorage-independent growth, as well as upregulation of several stem cell-associated markers. We showed that the phosphorylation of BAD is essential for the survival of CSC. Conversely, ectopic expression of a phosphorylation-deficient mutant BAD induced apoptosis in CSC. This effect was enhanced by treatment with a BH3-mimetic, ABT-737. Both pharmacological agents that inhibit survival kinases and growth factors that are involved in drug resistance delivered their respective cytotoxic and protective effects by modulating the BAD phosphorylation in CSC. Furthermore, the frequency and self-renewal capacity of CSC was significantly reduced by knocking down the BAD expression. Consistent with our in vitro results, significant phosphorylation of BAD was found in CD44(+) CSC of 83% breast tumor specimens. In addition, we also identified a positive correlation between BAD expression and disease stage in prostate cancer, suggesting a role of BAD in tumor advancement. Our studies unveil the role of BAD in the survival and self-renewal of CSC and propose BAD not only as an attractive target for cancer therapy but also as a marker of tumor progression.

  16. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  17. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy.

    Science.gov (United States)

    Park, Jungsun; Li, Haiyan; Zhang, Mingjun; Lu, Yong; Hong, Bangxing; Zheng, Yuhuan; He, Jin; Yang, Jing; Qian, Jianfei; Yi, Qing

    2014-08-01

    Dendritic cells (DCs) are professional antigen-presenting cells to initiate immune responses, and DC survival time is important for affecting the strength of T-cell responses. Interleukin (IL)-9-producing T-helper (Th)-9 cells play an important role in anti-tumor immunity. However, it is unclear how Th9 cells communicate with DCs. In this study, we investigated whether murine Th9 cells affected the survival of myeloid DCs. DCs derived from bone marrow of C57BL/6 mice were cocultured with Th9 cells from OT-II mice using transwell, and the survival of DCs was examined. DCs cocultured with Th9 cells had longer survival and fewer apoptotic cells than DCs cultured alone in vitro. In melanoma B16-OVA tumor-bearing mice, DCs conditioned by Th9 cells lived longer and induced stronger anti-tumor response than control DCs did in vivo. Mechanistic studies revealed that IL-3 but not IL-9 secreted by Th9 cells was responsible for the prolonged survival of DCs. IL-3 upregulated the expression of anti-apoptotic protein Bcl-xL and activated p38, ERK and STAT5 signaling pathways in DCs. Taken together, our data provide the first evidence that Th9 cells can promote the survival of DCs through IL-3, and will be helpful for designing Th9 cell immunotherapy and more effective DC vaccine for human cancers.

  18. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps

    Science.gov (United States)

    Sharma, Padmanee; Wagner, Klaus; Wolchok, Jedd D.; Allison, James P.

    2012-01-01

    The US Food and Drug Administration (FDA) recently approved two novel immunotherapy agents, sipuleucel-T and ipilimumab, which showed a survival benefit for patients with metastatic prostate cancer and melanoma, respectively. The mechanisms by which these agents provide clinical benefit are not completely understood. However, knowledge of these mechanisms will be crucial for probing human immune responses and tumour biology in order to understand what distinguishes responders from non-responders. The following next steps are necessary: first, the development of immune-monitoring strategies for the identification of relevant biomarkers; second, the establishment of guidelines for the assessment of clinical end points; and third, the evaluation of combination therapy strategies to improve clinical benefit. PMID:22020206

  19. Nerve Growth Factor in Cancer Cell Death and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M., E-mail: adrienne.gorman@nuigalway.ie [Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway (Ireland)

    2011-02-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75{sup NTR}, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75{sup NTR}. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75{sup NTR}. This latter signaling through p75{sup NTR} promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75{sup NTR} mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.

  20. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells

    International Nuclear Information System (INIS)

    Li, Hai-zhi; Yi, Tong-bo; Wu, Zheng-yan

    2008-01-01

    Cancer stem cell (CSC) hypothesis has not been well demonstrated by the lack of the most convincing evidence concerning a single cell capable of giving rise to a tumor. The scarcity in quantity and improper approaches for isolation and purification of CSCs have become the major obstacles for great development in CSCs. Here we adopted suspension culture combined with anticancer regimens as a strategy for screening breast cancer stem cells (BrCSCs). BrCSCs could survive and be highly enriched in non-adherent suspension culture while chemotherapeutic agents could destroy most rapidly dividing cancer cells and spare relatively quiescent BrCSCs. TM40D murine breast cancer cells were cultured in serum-free medium. The expression of CD44 + CD24 - was measured by flow cytometry. Cells of passage 10 were treated in combination with anticancer agents pacilitaxel and epirubicin at different peak plasma concentrations for 24 hours, and then maintained under suspension culture. The rate of apoptosis was examined by flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining method. Selected cells in different amounts were injected subcutaneously into BALB/C mice to observe tumor formation. Cells of passage 10 in suspension culture had the highest percentage of CD44 + CD24 - (about 77 percent). A single tumor cell in 0.35 PPC could generate tumors in 3 of 20 BALB/C mice. Suspension culture combined with anticancer regimens provides an effective means of isolating, culturing and purifying BrCSCs

  1. Relationship between spermatogonial stem cell survival and testis function after cytotoxic therapy

    International Nuclear Information System (INIS)

    Meistrich, M.L.

    1986-01-01

    This review, with substantial bibliography, concludes that the acute effects of radiation and cytotoxic drugs are a result of toxicity to the most sensitive of the germ cells, which in most cases are the differentiating spermatogonia. Long-term sterility or reduction in sperm production depends directly on killing of spermatogonial stem cells. For a variety of cytotoxic agents, the same relationship holds between the stem cell survival index and the prompt recovery level of sperm production (at 56 days), the maximal recovered level of sperm production, and the time required for fertility to return. It also appears that the spermatogonial stem cell is the target for long-term sterility in man following cytotoxic therapy. It is not known whether the delay in recovery is a result of this direct damage to the stem cell or an effect on another target cell in the tissue. Data obtained in both experimental animals and man indicate very little direct changes in the secretory cells and other stromal cells of the testis, and there is no evidence as yet that any alterations in these cells adversely affect sperm production or reproductive performance. (UK)

  2. SINGLE AGENT DOCETAXEL AS SECOND- LINE CHEMOTHERAPY FOR PRETREATED PATIENTS WITH RECURRENT NON- SMALL CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    Deyan N. Davidov

    2013-04-01

    Full Text Available Objective: Single agent Docetaxel is a standard therapy for patients with non- small cell lung cancer after the failure of platinum- containing regimens. The aim of this study was to explore the efficacy and safety of Docetaxel monotherapy as second- line chemotherapy in pretreated patient with inoperable non- small cell lung cancer. Methods: From January 2005 to May 2008 thirty- six consecutive patients with locally advanced or metastatic morphologically proven stage IIIB/ IV non- small cell lung cancer entered the study after failure of previous platinum- based regimens. Treatment schedule consist of Docetaxel 75 mg/m2 administered every three weeks with repetition after 21 days with Dexamethasone premedication. Results: Overall response rate, median time to progression and median survival was 16,6 %, 4,5 months and 5,6 months respectively. The main hematological toxicity was neutropenia. Conclusions: That data suggest that single agent Docetaxel remain reasonable choices for the chemotherapy in pretreated patients with non- small cell lung cancer.

  3. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents.

    Science.gov (United States)

    Cai, Shanbao; Xu, Yi; Cooper, Ryan J; Ferkowicz, Michael J; Hartwell, Jennifer R; Pollok, Karen E; Kelley, Mark R

    2005-04-15

    DNA repair capacity of eukaryotic cells has been studied extensively in recent years. Mammalian cells have been engineered to overexpress recombinant nuclear DNA repair proteins from ectopic genes to assess the impact of increased DNA repair capacity on genome stability. This approach has been used in this study to specifically target O(6)-methylguanine DNA methyltransferase (MGMT) to the mitochondria and examine its impact on cell survival after exposure to DNA alkylating agents. Survival of human hematopoietic cell lines and primary hematopoietic CD34(+) committed progenitor cells was monitored because the baseline repair capacity for alkylation-induced DNA damage is typically low due to insufficient expression of MGMT. Increased DNA repair capacity was observed when K562 cells were transfected with nuclear-targeted MGMT (nucl-MGMT) or mitochondrial-targeted MGMT (mito-MGMT). Furthermore, overexpression of mito-MGMT provided greater resistance to cell killing by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) than overexpression of nucl-MGMT. Simultaneous overexpression of mito-MGMT and nucl-MGMT did not enhance the resistance provided by mito-MGMT alone. Overexpression of either mito-MGMT or nucl-MGMT also conferred a similar level of resistance to methyl methanesulfonate (MMS) and temozolomide (TMZ) but simultaneous overexpression in both cellular compartments was neither additive nor synergistic. When human CD34(+) cells were infected with oncoretroviral vectors that targeted O(6)-benzylguanine (6BG)-resistant MGMT (MGMT(P140K)) to the nucleus or the mitochondria, committed progenitors derived from infected cells were resistant to 6BG/BCNU or 6BG/TMZ. These studies indicate that mitochondrial or nuclear targeting of MGMT protects hematopoietic cells against cell killing by BCNU, TMZ, and MMS, which is consistent with the possibility that mitochondrial DNA damage and nuclear DNA damage contribute equally to alkylating agent-induced cell killing during chemotherapy.

  4. The statistical treatment of cell survival data

    International Nuclear Information System (INIS)

    Boag, J.W.

    1975-01-01

    The paper considers the sources of experimental error in cell survival experiments and discusses in simple terms how these combine to influence the accuracy of single points and the parameters of complete survival curves. Cell sampling and medium-dilution errors are discussed at length and one way of minimizing the former is examined. The Monte-Carlo method of estimating the distribution of derived parameters in small samples is recommended and illustrated. (author)

  5. Single Agent Polysaccharopeptide Delays Metastases and Improves Survival in Naturally Occurring Hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Dorothy Cimino Brown

    2012-01-01

    Full Text Available The 2008 World Health Organization World Cancer Report describes global cancer incidence soaring with many patients living in countries that lack resources for cancer control. Alternative treatment strategies that can reduce the global disease burden at manageable costs must be developed. Polysaccharopeptide (PSP is the bioactive agent from the mushroom Coriolus versicolor. Studies indicate PSP has in vitro antitumor activities and inhibits the growth of induced tumors in animal models. Clear evidence of clinically relevant benefits of PSP in cancer patients, however, is lacking. The investment of resources required to complete large-scale, randomized controlled trials of PSP in cancer patients is more easily justified if antitumor and survival benefits are documented in a complex animal model of a naturally occurring cancer that parallels human disease. Because of its high metastatic rate and vascular origin, canine hemangiosarcoma is used for investigations in antimetastatic and antiangiogenic therapies. In this double-blind randomized multidose pilot study, high-dose PSP significantly delayed the progression of metastases and afforded the longest survival times reported in canine hemangiosarcoma. These data suggest that, for those cancer patients for whom advanced treatments are not accessible, PSP as a single agent might offer significant improvements in morbidity and mortality.

  6. Radiation cell survival and growth delay studies in multicellular spheroids of small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Duchesne, G.M.; Peacock, J.H.

    1987-01-01

    The radiation sensitivity of two small-cell lung carcinoma cell lines growing as multicellular spheroids in static culture was determined using clonogenic cell survival and growth delay as endpoints. Growth delay determination suggested that clonogenic cell kill was less than was obtained by direct assay of cell survival. Recovery from potentially lethal damage was assayed in one line (HC12) but was not demonstrable, and clonogenic cell survival decreased with time in treated spheroids with diameters greater than 300 μm which contained a hypoxic cell population. Microscopic examination of the treated spheroids showed the emergence of an abnormal giant-cell population, and the progressive clonogenic cell loss that occurred after treatment was thought to be due to oxygen and nutrient deprivation of the remaining viable cells by this doomed cell population. Correction of the growth delay measurements for changes in cell size and clonogenic cell population allowed correlation of the growth delay and cell survival data. (author)

  7. The Bmi-1 helix–turn and ring finger domains are required for Bmi-1 antagonism of (–) epigallocatechin-3-gallate suppression of skin cancer cell survival

    Science.gov (United States)

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M.; Han, Bingshe; Xu, Wen; Eckert, Richard L.

    2016-01-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (–) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21Cip1 and p27Kip1 expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix–turn–helix–turn–helix–turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. PMID:25843776

  8. Regulatory dendritic cell infusion prolongs kidney allograft survival in non-human primates

    Science.gov (United States)

    Ezzelarab, M.; Zahorchak, A.F.; Lu, L.; Morelli, A.E.; Chalasani, G.; Demetris, A.J.; Lakkis, F.G.; Wijkstrom, M.; Murase, N.; Humar, A.; Shapiro, R.; Cooper, D.K.C.; Thomson, A.W.

    2014-01-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically-relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5–10×106/kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on day −2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n=6) and 113.5 days (pDCreg-treated animals (n=6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95+ T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further pre-clinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. PMID:23758811

  9. Radiation protective agents possessing anti-oxidative properties

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo [National Inst. of Radiological Sciences, Research Center for Radiation Safety, Chiba, Chiba (Japan)

    2005-11-15

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  10. Radiation protective agents possessing anti-oxidative properties

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo

    2005-01-01

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  11. Techniques for measuring red cell, platelet, and WBC survival

    International Nuclear Information System (INIS)

    Mayer, K.; Freeman, J.E.

    1986-01-01

    Blood cell survival studies yield valuable information concerning production and destruction of cells circulating in the bloodstream. Methodologies for the measurement of red cell survival include nonisotopic methods such as differential agglutination and hemolysis. The isotopic label may be radioactive or, if not, will require availability of a mass spectrograph. These methods fall into two categories, one where red cells of all ages are labeled ( 51 Cr, DFP32, etc.) and those employing a cohort label of newly formed cells ( 14 C glycine, 75 Se methionine, etc.). Interpretation of results for methodology employed and mechanism of destruction, random or by senescence, are discussed. A similar approach is presented for platelet and leukocyte survival studies. The inherent difficulties and complications of sequestration, storage, and margination of these cells are emphasized and discussed. 38 references

  12. Modelling of robotic work cells using agent based-approach

    Science.gov (United States)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  13. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  14. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    International Nuclear Information System (INIS)

    Tanaka, Mamoru; Kamiya, Takeshi; Joh, Takashi; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Kawamoto, Keisuke; Shibahara, Takashi; Mizoshita, Tsutomu; Mori, Yoshinori; Tanida, Satoshi

    2013-01-01

    Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl 2 (L)] and [PdCl 2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl 2 (L)] and [PdCl 2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl 2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl 2 (L)] induced DNA double-strand breaks. These results indicate that [PdCl 2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications

  15. Additive effects of 5-Aza-2'-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Patties, Ina; Jahns, Jutta; Kortmann, Rolf-Dieter; Glasow, Annegret [Dept. of Radiotherapy and Radiooncology, Universitaetsklinikum Leipzig AoeR (Germany); Hildebrandt, Guido [Dept. of Radiotherapy and Radiooncology, Universitaetsklinikum Leipzig AoeR (Germany); Dept. of Radiotherapy, Univ. of Rostock (Germany)

    2009-05-15

    Background and purpose: in recent years, epigenetic modulators were introduced into tumor therapy. Here, the authors investigated the antitumor effect of 5-aza-2'-deoxycytidine-(5-aza-dC-)induced demethylation combined with irradiation on human medulloblastoma (MB) cells, which form the most common malignant brain tumor in children. Material and methods: three MB cell lines were treated with 5-aza-dC in a low-dose (0.1 {mu}M, 6 days) or high-dose (3/5 {mu}M, 3 days) setting and irradiated with 2, 4, 6, or 8 Gy single dose on an X-ray unit. Methylation status and mRNA expression of three candidate genes were analyzed by methylation-specific PCR (polymerase chain reaction) and quantitative real-time RT-PCR. Cell survival and mortality were determined by trypan blue exclusion test. Proliferation was analyzed by BrdU incorporation assay, and long-term cell survival was assessed by clonogenic assay. Results: 5-aza-dC treatment resulted in partial promoter demethylation and increased expression of hypermethylated candidate genes. A significant decrease of vital cell count, proliferation inhibition and increase of mortality was observed in 5-aza-dC-treated as well as in irradiated MB cells, whereby combination of both treatments led to additive effects. Although high-dose 5-aza-dC treatment was more effective in terms of demethylation, clonogenic assay revealed no differences between high- and low-dose settings indicating no relevance of 5-aza-dC-induced demethylation for decreased cell survival. MB cells pretreated with 5-aza-dC showed significantly lower plating efficiencies than untreated cells at all irradiation doses investigated. Analysis of surviving curves in irradiated MB cells, however, revealed no significant differences of {alpha}-, {beta}-values and 2-Gy surviving fraction with or without 5-aza-dC treatment. Conclusion: 5-aza-dC did not enhance radiation sensitivity of MB cells but significantly reduced the clonogenicity versus irradiation alone, which

  16. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  17. Effect of dihydroxyanthraquinone (DHAQ) and radiation on the survival of cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1983-01-01

    Dihydroxyanthraquinone (DHAQ) is currently being tested as a cancer chemotherapeutic agent because of its structural similarity to Adriamycin (ADR) and other DNA-intercalating antibiotics. The interaction of DHAQ and ionizing radiation on the induction of cell lethality was investigated in Chinese hamster ovary cells in culture. In asynchronous populations of cells, DHAQ produced a slight enhancement of radiation-induced cell lethality as evidenced by changes in both shoulder and slope of the radiation dose-survival curves. However, DHAQ had no effect on either the extent or time course of recovery from sublethal radiation damage. In synchronous populations of cells treated at various times before or after selection in mitosis, the combination of DHAQ and radiation produced greater cell killing than that predicted based on simple additivity of effect, with a decided enhancement for cells treated during S phase. These results indicate that DHAQ is similar to other DNA-intercalating antibiotics in regard to the interaction with ionizing radiation to produce cell lethality

  18. Cell survival studies using ultrasoft x rays

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Raju, M.R.; Carpenter, S.; Cornforth, M.; Wilder, M.

    1987-01-01

    Cell survival was studied for V79 hamster, 10T1/2 mouse, and human skin fibroblast cell lines, using carbon K (0.28 keV), copper K (8.0 keV), and 250 kVp x rays. Because of the rapid attenuation of the carbon x rays, cellular dimensions at the time of exposure were measured using optical and electron microscopy, and frequency distributions of mean dose absorbed by the cell nucleus were obtained. The results indicate that the differences in cell killing between ultra-soft and hard x rays may depend on the nuclear thickness of the cells. Studies of the effects of hypoxia on V79 and 10T1/2 cells using carbon K, aluminum K (1.5 keV), and copper K x rays show decreasing OER values with decreasing x-ray energy and no difference between the two cell lines. Age response studies with V79 cells show similar cell-cycle variation of survival for carbon K and aluminum K x rays as for hard x rays

  19. First-line single agent treatment with gefitinib in patients with advanced non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Shu Yong-Qian

    2010-09-01

    Full Text Available Abstract Background Lung cancer is a malignant carcinoma which has the highest morbidity and mortality in Chinese population. Gefitinib, a tyrosine kinase (TK inhibitor of epidermal growth factor receptor (EGFR, displays anti-tumor activity. The present data regarding first-line treatment with single agent gefitinib against non-small-cell lung cancer (NSCLC in Chinese population are not sufficient. Purpose To assess the efficacy and toxicity of gefitinib in Chinese patients with advanced non-small-cell lung cancer (NSCLC, a study of single agent treatment with gefitinib in Chinese patients was conducted. Methods 45 patients with advanced NSCLC were treated with gefitinib (250 mg daily until the disease progression or intolerable toxicity. Results Among the 45 patients, 15 patients achieved partial response (PR, 17 patients experienced stable disease (SD, and 13 patients developed progression disease (PD. None of the patients achieved complete response (CR. The tumor response rate and disease control rate was 33% and 71.1%, respectively. Symptom remission rate was 72.5%, and median remission time was 8 days. Median overall survival and median progression-free survival was 15.3 months and 6.0 months, respectively. The main induced toxicities by gefitinib were skin rash and diarrhea (53.3% and 33.3%, respectively. The minor induced toxicities included dehydration and pruritus of skin (26.7% and 22.2%, respectively. In addition, hepatic toxicity and oral ulceration occurred in few patients (6.7% and 4.4%2, respectively. Conclusions Single agent treatment with gefitinib is effective and well tolerated in Chinese patients with advanced NSCLC.

  20. XIAP is not required for human tumor cell survival in the absence of an exogenous death signal

    International Nuclear Information System (INIS)

    Sensintaffar, John; Scott, Fiona L; Peach, Robert; Hager, Jeffrey H

    2010-01-01

    The X-linked Inhibitor of Apoptosis (XIAP) has attracted much attention as a cancer drug target. It is the only member of the IAP family that can directly inhibit caspase activity in vitro, and it can regulate apoptosis and other biological processes through its C-terminal E3 ubiquitin ligase RING domain. However, there is controversy regarding XIAP's role in regulating tumor cell proliferation and survival under normal growth conditions in vitro. We utilized siRNA to systematically knock down XIAP in ten human tumor cell lines and then monitored both XIAP protein levels and cell viability over time. To examine the role of XIAP in the intrinsic versus extrinsic cell death pathways, we compared the viability of XIAP depleted cells treated either with a variety of mechanistically distinct, intrinsic pathway inducing agents, or the canonical inducer of the extrinsic pathway, TNF-related apoptosis-inducing ligand (TRAIL). XIAP knockdown had no effect on the viability of six cell lines, whereas the effect in the other four was modest and transient. XIAP knockdown only sensitized tumor cells to TRAIL and not the mitochondrial pathway inducing agents. These data indicate that XIAP has a more central role in regulating death receptor mediated apoptosis than it does the intrinsic pathway mediated cell death

  1. Long-term survival in small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Osterlind, K; Hansen, M

    1995-01-01

    PURPOSE: To describe in patients with small-cell lung cancer (SCLC) the characteristics of those who survive for > or = 5 years, to identify long-term prognostic factors, to analyze survival data of 5-year survivors, and to study 10-year survival in patients entered before 1981. PATIENTS......, especially tobacco-related cancers and other tobacco-related diseases....

  2. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    Directory of Open Access Journals (Sweden)

    Schultz Chad R

    2012-04-01

    Full Text Available Abstract Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ, followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1 SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2 Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3 Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4 Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5 However, inhibiting pAKT suppresses tumor cell survival. 6 Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7 There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8 This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1 SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2 Despite this enhanced signaling, SPARC protects cells against TMZ. 3 This protection can be reduced

  3. Alkylating agents for Waldenstrom's macroglobulinaemia.

    Science.gov (United States)

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  4. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-01-01

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  5. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  6. Dose-rate dependent stochastic effects in radiation cell-survival models

    International Nuclear Information System (INIS)

    Sachs, R.K.; Hlatky, L.R.

    1990-01-01

    When cells are subjected to ionizing radiation the specific energy rate (microscopic analog of dose-rate) varies from cell to cell. Within one cell, this rate fluctuates during the course of time; a crossing of a sensitive cellular site by a high energy charged particle produces many ionizations almost simultaneously, but during the interval between events no ionizations occur. In any cell-survival model one can incorporate the effect of such fluctuations without changing the basic biological assumptions. Using stochastic differential equations and Monte Carlo methods to take into account stochastic effects we calculated the dose-survival rfelationships in a number of current cell survival models. Some of the models assume quadratic misrepair; others assume saturable repair enzyme systems. It was found that a significant effect of random fluctuations is to decrease the theoretically predicted amount of dose-rate sparing. In the limit of low dose-rates neglecting the stochastic nature of specific energy rates often leads to qualitatively misleading results by overestimating the surviving fraction drastically. In the opposite limit of acute irradiation, analyzing the fluctuations in rates merely amounts to analyzing fluctuations in total specific energy via the usual microdosimetric specific energy distribution function, and neglecting fluctuations usually underestimates the surviving fraction. The Monte Carlo methods interpolate systematically between the low dose-rate and high dose-rate limits. As in other approaches, the slope of the survival curve at low dose-rates is virtually independent of dose and equals the initial slope of the survival curve for acute radiation. (orig.)

  7. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    International Nuclear Information System (INIS)

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-01

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL

  8. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival

    NARCIS (Netherlands)

    Abbondandolo, A.; Dogliotti, E.; Lohman, P.H.M.; Berends, F.

    1982-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially

  9. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  10. A Crisis Management Approach To Mission Survivability In Computational Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Byrski

    2010-01-01

    Full Text Available In this paper we present a biologically-inspired approach for mission survivability (consideredas the capability of fulfilling a task such as computation that allows the system to be aware ofthe possible threats or crises that may arise. This approach uses the notion of resources usedby living organisms to control their populations.We present the concept of energetic selectionin agent-based evolutionary systems as well as the means to manipulate the configuration ofthe computation according to the crises or user’s specific demands.

  11. Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.

    Science.gov (United States)

    Taupin, Philippe

    2009-05-01

    The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.

  12. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  13. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  14. Characterization of the response of a human breast carcinoma cell line (T-47D) to radiation and chemotherapeutic agents

    International Nuclear Information System (INIS)

    Prager, A.; Ben-Hur, E.; Riklis, E.

    1981-01-01

    The response of a human breast carcinoma cell line (T-47D) to various antitumour agents, gamma irradiation, UV light and heat was studied, using the colony-forming ability technique. Combinations of radiation with drugs and heat were also tested. The resulting survival curves corresponded to one of five patterns: simple exponential, biphasic exponential, threshold exponential, exponential plateau and ineffectual. Whereas the cells were particularly sensitive to gamma irradiation, the response to UV light was normal. The patient from whom this cell line originated did not respond to METHOTREXATEsup(R) therapy. The in vitro results correlated with this observation. (author)

  15. Effect of oxygen on formation of micronuclei and binucleated cells and cell survival in γ-irradiated 3T3 cells

    International Nuclear Information System (INIS)

    Zhang Peng; Zheng Xiulong

    1991-01-01

    Formation of micronuclei and binucleate cells and their relationships with cell survival were studied in the aerobically- and anaerobically-irradiated 3T3 cells. The results showed taht frequency of micronuclei, percentage of micronucleus cells and percentage of binucleate cells increased linearly with the radiation dose in certain range. Oxygen enhancement ratios (OER) of micronucleus frequency, percentage of micronucleus cells, percentage of binucleate cells and cell survival were 2.02, 1.96, 1.87 and 1.83 respectively. The percentage of micronucleus cells or the percentage of micronucleus cells plus binucleate cells correlated negatively well with cell survival. The mechanism of oxygen effect in the radiation response of 3T3 cells and the significance of formation of micronuclei and binucleate cells were discussed

  16. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    Science.gov (United States)

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  17. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  18. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  19. Clinical features and outcomes of plasma cell leukemia: a single-institution experience in the era of novel agents

    Directory of Open Access Journals (Sweden)

    Giampaolo Talamo

    2012-08-01

    Full Text Available Plasma cell leukemia (PCL is a rare hematologic malignancy with aggressive clinical and biologic features. Data regarding its prognosis with the use of the novel agents, i.e., the immunomodulatory drugs thalidomide and lenalidomide, and the proteasome inhibitor bortezomib, are limited. We retrospectively reviewed clinical outcomes, response to therapy, and survival of 17 patients seen at the Penn State Hershey Cancer Institute since the availability of novel agents (2006-2011. Twelve patients had primary PCL (pPCL, and 5 second- ary PCL (sPCL. PCL was associated with aggressive clinicobiological features, such as high-risk cytogenetics, elevated serum beta-2-microglobulin and lactate dehydrogenase, International Staging System stage III, and rapid relapse after therapy. With the use of thalidomide, lenalidomide, and bortezomib in 53%, 53%, and 88% patients, respectively, median overall survival (OS was 18 months in the whole group (95% confidence interval, 11-21 months, and 21 and 4 months in pPCL and sPCL, respectively (P=0.015. OS was inferior to that of 313 consecutive patients with multiple myeloma (MM treated in the same period, even when compared with a subset of 47 MM with high-risk cytogenetics. Although our data are limited by the small sample size, we conclude that novel agents may modestly improve survival in patients with PCL, when compared to historical controls. Novel therapies do not seem to overcome the negative prognosis of PCL as compared with MM.

  20. Clinical features and outcomes of plasma cell leukemia: a single-institution experience in the era of novel agents.

    Science.gov (United States)

    Talamo, Giampaolo; Dolloff, Nathan G; Sharma, Kamal; Zhu, Junjia; Malysz, Jozef

    2012-06-26

    Plasma cell leukemia (PCL) is a rare hematologic malignancy with aggressive clinical and biologic features. Data regarding its prognosis with the use of the novel agents, i.e., the immunomodulatory drugs thalidomide and lenalidomide, and the proteasome inhibitor bortezomib, are limited. We retrospectively reviewed clinical outcomes, response to therapy, and survival of 17 patients seen at the Penn State Hershey Cancer Institute since the availability of novel agents (2006-2011). Twelve patients had primary PCL (pPCL), and 5 secondary PCL (sPCL). PCL was associated with aggressive clinicobiological features, such as high-risk cytogenetics, elevated serum beta-2-microglobulin and lactate dehydrogenase, International Staging System stage III, and rapid relapse after therapy. With the use of thalidomide, lenalidomide, and bortezomib in 53%, 53%, and 88% patients, respectively, median overall survival (OS) was 18 months in the whole group (95% confidence interval, 11-21 months), and 21 and 4 months in pPCL and sPCL, respectively (P=0.015). OS was inferior to that of 313 consecutive patients with multiple myeloma (MM) treated in the same period, even when compared with a subset of 47 MM with high-risk cytogenetics. Although our data are limited by the small sample size, we conclude that novel agents may modestly improve survival in patients with PCL, when compared to historical controls. Novel therapies do not seem to overcome the negative prognosis of PCL as compared with MM.

  1. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  2. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival and

    Directory of Open Access Journals (Sweden)

    Dmytro Starenki

    2015-12-01

    Full Text Available BackgroundMedullary thyroid carcinoma (MTC is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenografts by inducing apoptosis and RET downregulation. These observations led us to hypothesize that mitochondria are potential therapeutic targets for MTC. This study further tests this hypothesis using1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (MKT-077, a water-soluble rhodocyanine dye analogue, which can selectively accumulate in mitochondria.MethodsThe effects of MKT-077 on cell proliferation, survival, expression of RET and tumor protein 53 (TP53, and mitochondrial activity were determined in the human MTC lines in culture and in mouse xenografts.ResultsMKT-077 induced cell cycle arrest in TT and MZ-CRC-1. Intriguingly, MKT-077 also induced RET downregulation and strong cell death responses in TT cells, but not in MZ-CRC-1 cells. This discrepancy was mainly due to the difference between the capacities of these cell lines to retain MKT-077 in mitochondria. The cytotoxicity of MKT-077 in TT cells was mainly attributed to oxidative stress while being independent of TP53. MKT-077 also effectively suppressed tumor growth of TT xenografts.ConclusionMKT-077 can suppress cell survival of certain MTC subtypes by accumulating in mitochondria and interfering with mitochondrial activity although it can also suppress cell proliferation via other mechanisms. These results consistently support the hypothesis that mitochondrial targeting has therapeutic potential for MTC.

  3. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    International Nuclear Information System (INIS)

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-01-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the α-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  4. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  5. Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Jacobs, Stephanie; Liu Jimei; Hu, Tom C.-C.; Siegfired, Matthew; Serkiz, Steven M.; Hudson, Joan

    2012-01-01

    We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol −1 s −1 ). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.

  6. Effects of Anticipation in Individually Motivated Behaviour on Survival and Control in a Multi-Agent Scenario with Resource Constraints

    Directory of Open Access Journals (Sweden)

    Christian Guckelsberger

    2014-06-01

    Full Text Available Self-organization and survival are inextricably bound to an agent’s ability to control and anticipate its environment. Here we assess both skills when multiple agents compete for a scarce resource. Drawing on insights from psychology, microsociology and control theory, we examine how different assumptions about the behaviour of an agent’s peers in the anticipation process affect subjective control and survival strategies. To quantify control and drive behaviour, we use the recently developed information-theoretic quantity of empowerment with the principle of empowerment maximization. In two experiments involving extensive simulations, we show that agents develop risk-seeking, risk-averse and mixed strategies, which correspond to greedy, parsimonious and mixed behaviour. Although the principle of empowerment maximization is highly generic, the emerging strategies are consistent with what one would expect from rational individuals with dedicated utility models. Our results support empowerment maximization as a universal drive for guided self-organization in collective agent systems.

  7. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    Science.gov (United States)

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  8. Intercellular contact: its influence on the Dsub(q) of mammalian cell survival curves

    International Nuclear Information System (INIS)

    Durand, R.E.; Sutherland, R.M.

    1975-01-01

    Cell survival in tissues exposed to a given dose of ionizing radiation is usually greater than that of similar cells grown individually in vitro, despite the fact that the radiosensitivities (D 0 ) are virtually identical under the two conditions. An analogous increase in cell survival is observed when Chinese hamster V79-171 cells are grown in suspension culture and irradiated as multicell spheroids. Unfortunately, the information gained from the survival curves so obtained is limited by the inhomogeneity of the cell population with respect to both degree of contact and cell cycle position. The latter can be studied using synchronized small spheroids. The ratio of Dsub(q) of spheroid cells to Dsub(q) of single cells increased as the cells progressed through the cell cycle, from a minimum of 1.3 for G 1 phase cells to a maximum of 2.2 for late S-phase cells. The enhanced survival, or 'contact effect', developed slowly as the spheroids grew, after an initial latent period of about one generation cycle of the cells. A second effect of intercellular contact on mammalian cell survival has also been observed. When cells are assayed under conditions in which intercellular contact is maintained, the net cellular survival is increased further. This effect is different from the usual repair of potentially lethal damage, in that it occurs much more slowly and results in modification of the survival-curve shoulder. Not all cell types tested have shown enhanced survival when grown as spheroids. Several MNNG-induced mutants of the Chinese hamster V79-171 line have been isolated and sublines which do and do not show the contact effect are now available. These may permit study of the mechanism(s) of contact effects. (author)

  9. Bone-Marrow Stem-Cell Survival in the Non-Uniformly Exposed Mammal

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V. P.; Robinson, C. V. [Brookhaven National Laboratory, Medical Research Center, Upton, Long Island, NY (United States)

    1967-07-15

    For comparison of the effectiveness of non-uniform versus uniform irradiations in causing haematological death in mammals, a model of the irradiated haemopoietic system has been proposed. The essential features of this model are: (1) that different parts of the haemopoietic system have numbers of stem cells which are proportioned to the amounts of active marrow in those parts as measured by {sup 59}Fe uptake, (2) that stem cells in the different parts are subject to the, same dose-survival relationship, and (3) that survival of the animal depends on survival of a critical fraction of the total number of stem cells independent of their distribution among the parts of the total marrow mass. To apply this model one needs to know: (a) the relative {sup 59}Fe uptakes of the different parts of the haemopoietic system, (b) the doses delivered to those parts by each of the exposures to be compared, and (c) the dose-survival curve applicable to the stem cells. From these one can calculate the fraction of stem cells surviving each exposure. In a preliminary communication the applicability of the model was investigated using data obtained entirely from the literature. Additional data, particularly on bone-marrow distribution, have since been obtained and are included here. The primary object of the present paper is to test further the validity of the above 'stem-cell survival model'. Data on bilateral (essentially uniform) versus unilateral and non-uniform rotational exposures in mammals are examined with respect to the surviving fraction of stem cells at the LD{sub 50/30} day dose level. Although an adequate test is not possible at present for lack of a full set of data in any one species, a partial test indicates compatibility with data for dogs and rats. Other possible mortality determinants such as doses or exposures at entrance, midline or exit, or the gram-rads or average dose to the marrow, appear to be less useful than the critical stem-cell survival fraction.

  10. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    Science.gov (United States)

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  11. Estimation of transfused red cell survival using an enzyme-linked antiglobulin test

    International Nuclear Information System (INIS)

    Kickler, T.S.; Smith, B.; Bell, W.; Drew, H.; Baldwin, M.; Ness, P.M.

    1985-01-01

    An enzyme-linked antiglobulin test (ELAT) method was developed to estimate survival of transfused red cells. This procedure is based on a principle analogous to that of the Ashby technique were antigenically distinct red cells are transfused and their survival studied. The authors compared the ELAT survival to the 51 Chromium method ( 51 Cr) in four patients. Three patients with hypoproliferative anemias showed T 1/2 by ELAT of 17.5, 18, and 17 days versus 18.5, 20, and 19 days by the 51 Cr method. A fourth patient with traumatic cardiac hemolysis had two studies performed. In this case, the ELAT showed a T 1/2 of 10 and 8.1 days while 51 Cr T 1/2 values were 11 and 10.5 days. The ELAT method for measuring red cell survival yielded data which agreed closely with the results of the 51 Cr method. Although 51 Cr is the accepted method for red cell survival, the ELAT method can be used to estimate transfused red cell survival

  12. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release.

    Directory of Open Access Journals (Sweden)

    Yuki Ishii

    Full Text Available Knockout serum replacement (KOSR is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors--imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.

  13. Induction of cell death by chemotherapeutic methylating agents

    International Nuclear Information System (INIS)

    Quiros Barrantes, Steve

    2012-01-01

    The mechanism of cell death induced by O 6 MeG has been investigated and inhibition of homologous recombination as a strategy for sensitization of tumor cells against methylating agents S N 1. Dependence of the cell cycle was determined toxic responses triggered by O''6 MeG and evaluated by proliferation assays if apoptotic cells have originated exclusively from the second post-treatment cycle. Dependence of O''6 MeG was found at DSB formation. The activation of the control points of the cell cycle and induction of apoptosis is generated during the second cell cycle. Additionally, a portion of the cells has been determined that triggers apoptosis in subsequent generations in the second cell cycle. Inhibition of homologous recombination has been a reasonable strategy to increase S N 1 alkylating agent effectiveness. Evidence has been provided in NHEJ dependent inhibition of DNA-PK that not significantly sensitizes the glioblastoma cells against temozolomide [es

  14. Survival outcomes following salvage surgery for oropharyngeal squamous cell carcinoma: systematic review.

    Science.gov (United States)

    Kao, S S; Ooi, E H

    2018-04-01

    Recurrent oropharyngeal squamous cell carcinoma causes great morbidity and mortality. This systematic review analyses survival outcomes following salvage surgery for recurrent oropharyngeal squamous cell carcinoma. A comprehensive search of various electronic databases was conducted. Studies included patients with recurrent or residual oropharyngeal squamous cell carcinoma treated with salvage surgery. Primary outcomes were survival rates following salvage surgery. Secondary outcomes included time to recurrence, staging at time of recurrence, post-operative complications, and factors associated with mortality and recurrence. Methodological appraisal and data extraction were conducted as per Joanna Briggs Institute methodology. Eighteen articles were included. The two- and five-year survival rates of the patients were 52 per cent and 30 per cent respectively. Improvements in treatment modalities for recurrent oropharyngeal squamous cell carcinoma were associated with improvements in two-year overall survival rates, with minimal change to five-year overall survival rates. Various factors were identified as being associated with long-term overall survival, thus assisting clinicians in patient counselling and selection for salvage surgery.

  15. DNA repair in mammalian cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors

  16. Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells

    Directory of Open Access Journals (Sweden)

    Deangelis Stephanie

    2009-08-01

    Full Text Available Abstract The Signal Transducer and Activator of Transcription (STAT proteins comprise a family of latent transcription factors with diverse functions. STAT3 has well established roles in cell proliferation, growth and survival, and its persistent activation has been detected with high frequency in many human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables, such as Benzyl isothiocyanate (BITC and sulforaphane, extended to STAT3 activation in PANC-1 human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These findings suggest that the combination of the dietary agents BITC and sulforaphane has potent inhibitory activity in pancreatic cancer cells and that they may have translational potential as chemopreventative or therapeutic agents.

  17. Repair-dependent cell radiation survival and transformation: an integrated theory

    International Nuclear Information System (INIS)

    Sutherland, John C

    2014-01-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  18. Survival of mouse testicular stem cells after γ or neutron irradiation

    International Nuclear Information System (INIS)

    Lu, C.C.; Meistrich, M.L.; Thames, H.D. Jr.

    1980-01-01

    The survival of mouse testicular stem cells after γ or neutron irradiation was measured by counts of repopulated tubular cross sections and by the numbers of differentiated spermatogenic cells produced. The numbers of such cells were determined either by sperm head counts of the X-isozyme of lactate dehydrogenase enzyme levels. Qualitatively similar results were obtained with all three assays. The results have confirmed that, with C3H mice, stem-cell survival is higher when the γ-radiation dose is fractionated by a 24-h interval. Single-dose γ-radiaton survival curves for the stem cell had large shoulders and also showed the presence of a radioresistant subpopulation which predominated after doses greater than 600 rad. Part of the shoulder must have resulted from repair of sublethal damage since neutron irradiation produced survival curves with smaller shoulders. The relative biological effectiveness for stem-cell killing for these neutrons (mean energy, 22 MeV) varied from about 2.9 at 10 rad of γ radiation to 2.2 at 600 rad

  19. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation

    International Nuclear Information System (INIS)

    Leigh, B.R.; Khan, W.; Hancock, S.L.

    1995-01-01

    Recombinant rat stem cell factor (SCF) has been shown to decrease lethality in mice exposed to total-body irradiation (TBI) in the lower range of lethality through radioprotection of hematopoietic stem cells and acceleration of bone marrow repopulation. This study evaluates the effect of SCF on the survival of the intestinal mucosal stem cell after TBI. This non-hematopoietic cell is clinically relevant. Gastrointestinal toxicity is common during and after abdominal and pelvic radiation therapy and limits the radiation dose in these regions. As observed with bone marrow, the administration of SCF to mice prior to TBI enhanced the survival of mouse duodenal crypt stem cells. The maximum enhancement of survival was seen when 100 μ/kg of SCF was given intraperitoneally 8 h before irradiation. This regimen increased the survival of duodenal crypt stem cells after 12.0 Gy TBI from 22.5 ± 0.7 per duodenal cross section for controls to 30.0 ± 1.7 after treatment with SCF (P=0.03). The TBI dose producing 50% mortality of 6 days (LD 50/6 ) was increased from 14.9 Gy for control mice to 19.0 Gy for mice treated with SCF (dose modification factor = 1.28). These findings demonstrate that SCF (dose modification factor = 1.28). These findings demonstrate that SCF has radioprotective effects on a non-hematopoietic stem cell population and suggest that SCF may be of clinical value in preventing radiation injury to the intestine. 29 refs., 4 figs

  20. The independent action of radiation and cisplatin on the survival or recovery of human normal or tumour cells in vitro or in vivo

    International Nuclear Information System (INIS)

    Basham, C.; Mills, J.; Roberts, J.J.

    1989-01-01

    Recovery from γ-radiation- or cisplatin-induced lethal damage was studied in euoxic normal human foetal lung fibroblasts (HFL cells). After 1 hour treatment with cisplatin the half-time of recovery was about 2 days. Recovery after radiation presented half-times of approximately 10 h, with further measurable recovery after 2 days. With either agent recovery ratios (RR) were dose-dependent but recovery (following treatment with equitoxic doses of both agents) was appreciably greater after cisplatin (RR ''approx.'' 123 after 40μm for 1 h) than after radiation (RR ''approx.'' 15 after 900 cGy). When radiation (900 cGy) was combined with cisplatin (40 μm for 1 h) the cell survival (measured at 5 days post-treatment or later) was not significantly less than that predicted by the additive, independent effects of both agents irrespective of whether cisplatin was given 1 h before, during or for 1 h after radiation. In euoxic, exponentially growing HFL or HeLa cells there was no evidence that combinations of cisplatin and radiation gave more than additive toxic effects. The combined effects of cisplatin or carboplatin and whole-body irradiation given 45 min later, on human melanoma cells were essentially the same as that predicted by the additive, independent effects of both agents. (author)

  1. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: Possible involvement of inhibition of survival signal transduction pathways

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Ishikawa, Hitoshi; Sakurai, Hideyuki; Saitoh, Jun-ichi; Takahashi, Takeo; Mitsuhashi, Norio

    2001-01-01

    Purpose: The effect of genistein, a tyrosine kinase inhibitor, on radiosensitivity was examined, especially focusing on 'survival signal transduction pathways'. Methods and Materials: Two human esophageal squamous cell cancer cell lines, TE-1 (p53, mutant) and TE-2 (p53, wild), were used. Radiosensitivity was determined by clonogenic assay, and activation of survival signals was examined by Western blot. Results: Genistein (30 μM) greatly enhanced radiosensitivity in these cell lines by suppressing radiation-induced activation of survival signals, p42/p44 extracellular signal-regulated kinase and AKT/PKB. Significant increase in the percentage of apoptotic cells and increased poly[ADP-ribose] polymerase cleavage were observed in TE-2, but not in TE-1 even after combination of genistein with irradiation. In terms of changes in expression of p53-related proteins, increase in expression of Bax and decrease in that of Bcl-2 were observed in TE-2 but not in TE-1, suggesting that the main mode of cell death induced by genistein in a cell line with wild type p53 differed from that with mutant p53. Conclusions: This study suggested that survival signals, including p42/p44 ERK and AKT/PKB, may be involved in determining radiosensitivity, and genistein would be a potent therapeutic agent that has an enhancing effect on radiation

  2. In vivo studies of the long-term 51Cr red cell survival of serologically incompatible red cell units

    International Nuclear Information System (INIS)

    Baldwin, M.L.; Ness, P.M.; Barrasso, C.; Kickler, T.S.; Drew, H.; Tsan, M.F.; Shirey, R.S.

    1985-01-01

    The long-term survival of serologically incompatible red cell units was measured in five patients with antibodies to high-frequency antigens. Initially, the survival of 1 ml of 51 Cr-labeled incompatible red cells was measured over 1 hour. After demonstrating that the 1-hour survival times were successful (greater than 70%), each patient then received 5 ml of the same 51 Cr-labeled red cells followed by the transfusion of the remainder of the red cell unit. The long-term T 1/2Cr survival for each case was patient 1 (anti-McCa), 15 days; patient 2 (anti-JMH), 12 days; patient 3 (anti-Kna), 31 days; patient 4 (anti-McCa), 12 days; and patient 5 (anti-Hya), 14 days. Each antibody tested in an in vitro homologous macrophage assay showed less than 5 percent phagocytosis. Anti-JMH was the only antibody to react with IgG subclass antisera and was determined to be IgG4. The macrophage assay, IgG subclass testing, and short-term (1 hour, 1 ml) 51 Cr survival studies all indicated that the short-term survival was good. However, only the measurement of long-term survival with transfused units of serologically incompatible red cells was able to determine the actual survival, and clinical significance of the alloantibodies. Determining the actual long-term survival by the method described here can be of importance for patients requiring chronic red cell transfusion

  3. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  4. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  5. Culture conditions affecting the survival response of Chinese hamster ovary cells treated by hyperthermia

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Dewey, W.C.

    1982-01-01

    Using lethally irradiated feeder cells to control cell population densities, researchers investigated the survival of Chinese hamster ovary cells heated between 42.2 and 45.5 degrees C. Test cells were plated into T25 flasks with or without feeder cells, incubated 2 hours at 37 degrees C, and then given various heat treatments. Under all heating conditions, survival increased in those flasks containing feeder cells. Increased survival (by as much as a factor of 100 for cells heated at 42.4 degrees C for 6-10 hr) was most apparent when cells were heated to thermotolerance. By adjustment of test and feeder cell numbers, survival increased as density increased; however, maximum survival followed a transition period that occurred between the plating of 1 X 10(4) and 6 X 10(4) cells. Experimental artifacts due to improper control of cell density was demonstrated

  6. Promotion of Metastasis-associated Gene Expression in Survived PANC-1 Cells Following Trichostatin A Treatment.

    Science.gov (United States)

    Chen, Zongjing; Yang, Yunxiu; Liu, Biao; Wang, Benquan; Sun, Meng; Zhang, Ling; Chen, Bicheng; You, Heyi; Zhou, Mengtao

    2015-01-01

    Histone deacetylase inhibitors represent a promising class of potential anticancer agents for the treatment of human malignancies. In this study, the effects of trichostatin A (TSA) on apoptosis, metastasis-associated gene expression, and activation of the Notch pathway in human pancreatic cancer cell lines were investigated. After treatment with TSA, cell viability and apoptosis were evaluated using the MTT [3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, and flow cytometry. Moreover, RT-PCR and western blot analyses were performed to measure the expression levels of apoptosis-associated genes (Bcl-2, Bax, and caspase-3), metastasis-associated genes (E-cadherin, vimentin, and matrix metalloproteinases), and Notch pathway activation (Notch intracellular domain, NICD). The levels of matrix metalloproteinase 2 and NICD were also semi-quantified by immunoassay. Following treatment with TSA for 24 h, PANC-1, SW1990, and MIATACA-2 cells exhibited cell death. The MTT assay revealed that TSA significantly decreased cell viability in a dose-dependent manner in PANC-1 cells. The Hoechst 33258 staining and flow cytometry results evidenced a significant increase in PANC-1 cell apoptosis following TSA treatment. The expression levels of Bax and caspase-3 were increased significantly, whereas Bcl-2 was down-regulated after TSA treatment. In the PANC-1 cells that survived after TSA treatment, the expression levels of vimentin, E-cadherin, and MMP genes were altered by the promotion of potential metastasis and increased expression of NICD. TSA can induce apoptosis of pancreatic cancer cells. In addition, the up-regulation of metastasis-related genes and the activation of the Notch pathway in the survived PANC-1 cells may be associated with a too-low level of TSA or resistance to TSA.

  7. The role of the HCR system in the repair of lethal lesions of Bacillus subtilis phages and their transfecting DNA damaged by radiation and alkylating agents

    International Nuclear Information System (INIS)

    Vizdalova, M.; Janovska, E.; Zhestyanikov, V.D.

    1980-01-01

    The role of the HCR system in the repair of prelethal lesions induced by UV light, γ radiation and alkylating agents was studied in the Bacillus subtilis SPP1 phage, its heat sensitive mutants (N3, N73 nad ts 1 ) and corresponding infectious DNA. The survival of phages and their transfecting DNA after treatment with UV light is substantially higher in hcr + cells than in hcr cells, the differences being more striking in intact phages than in their transfecting DNA's. Repair inhibitors reduce survival in hcr + cells: caffeine lowers the survival of UV-irradiated phage SPP1 in exponentially growing hcr + cells but has no effect on its survival in competent hcr + cells; acriflavin and ethidium bromide decrease the survival of the UV-irradiated SPP1 phage in both exponentially growing and competent hcr + cells to the level of survival observed in hcr cells; moreover, ethidium bromide lowers the number of infective centres in hcr + cells of the UV-irradiated DNA of the SPP1 phage. Repair inhibitors do not lower the survival of the UV-irradiated phages or their DNA in hcr cells. The repair mechanism under study also effectively repairs lesions induced by polyfunctional alkylating agents in the transfecting DNA's of B. subtilis phages but is not functional with lesions induced by these agents in free phages and lesions caused in the phages and their DNA by ethyl methanesulphonate or γ radiation. (author)

  8. An enzyme-linked immunoabsorbent assay for estimating red cell survival of transfused red cells-validation using CR-51 labeling

    International Nuclear Information System (INIS)

    Drew, H.; Kickler, T.; Smith, B.; LaFrance, N.

    1984-01-01

    The survival time of transfused red cells antigenically distinct from the recipient's red cells was determined using an indirect enzyme linked antiglobulin test. These results were then compared to those determined by Cr-51 labeling. Three patients with hypoproliferative anemias and one patient (2 studies) with traumatic hemolytic anemia caused by a prosthetic heart valve were studied. Survival times were performed by transfusing a 5cc aliquot of Cr-51 labeled cells along with the remaining unit. One hour post transfusion, a blood sample was drawn and used as the 100% value. Subsequent samples drawn over a 2-3 week period were then compared to the initial sample to determine percent survival for both methods. The ELISA method for measuring red cell survival in antigenically distinct cells is in close agreement with the Cr-51 method. Although CR-51 labeling is the accepted method for red cell survival determination the ELISA method can be used when radioisotopes are unavailable or contraindicated or when the decision to estimate red cell survival is made after transfusion

  9. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Koike, Taro; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-01-01

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  10. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  11. Inherent characteristics of metachronous metastatic renal cell carcinoma in the era of targeted agents.

    Science.gov (United States)

    Han, Jang Hee; Lee, Seung Hwan; Ham, Won Sik; Han, Woong Kyu; Rha, Koon Ho; Choi, Young Deuk; Hong, Sung Joon; Yoon, Young Eun

    2017-10-03

    To assess the prognostic and predictive factors of time to treatment failure (TTF) and overall survival (OS), respectively, in patients with metachronous metastatic renal cell carcinoma (mRCC) who were treated with targeted agents. We retrospectively reviewed metachronous mRCC patients, defined as individuals diagnosed with metastatic disease >3 months after initial nephrectomy, treated at an institute since 2005. Cox proportional hazard regression analysis was performed to discover the most determinant variables associated with TTF and OS. Sarcomatoid features, absence of metastasectomy, multiple site metastasis, time to metastasis risk group (0-1 risk factors) did not reach the median OS, whereas the OS for the intermediate (2 risk factors) and high risk groups (3-5 risk factors) were 58.6 and 23.6 months, respectively (prisk criteria models. Initial tumor size or T stage did not affect TTF or OS. Patients who could not undergo metastasectomy and rapidly developed multiple metastases with higher corrected calcium and initial tumors with sarcomatoid features were less likely to benefit from targeted therapy; thus, the new agents under development or clinical trials could be more helpful than the use of standard targeted agents.

  12. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    International Nuclear Information System (INIS)

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo

    2005-01-01

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein

  13. Optimal Classes of Chemotherapeutic Agents Sensitized by Specific Small-Molecule Inhibitors of Akt In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2005-11-01

    Full Text Available Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies. We have developed small-molecule Akt inhibitors that are potent and specific. These Akt inhibitors can inhibit Akt activity and block phosphorylation by Akt on multiple downstream targets in cells. Synergy in apoptosis induction was observed when Akt inhibitors were combined with doxorubicin or camptothecin. Akt inhibitor-induced enhancement of topoisomerase inhibitor cytotoxicity was also evident in long-term cell survival assay. Synergy with paclitaxel in apoptosis induction was evident in cells pretreated with paclitaxel, and enhancement of tumor delay by paclitaxel was demonstrated through cotreatment with Akt inhibitor Compound A (A-443654. Combination with other classes of chemotherapeutic agents did not yield any enhancement of cytotoxicity. These findings provide important guidance in selecting appropriate classes of chemotherapeutic agents for combination with Akt inhibitors in cancer treatment.

  14. Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology

    Directory of Open Access Journals (Sweden)

    Wilk Nicolai

    2016-01-01

    Full Text Available In classic monolayer cell culture, the world is flat. In contrast, tissue-embedded cells experience a three-dimensional context to interact with. We assessed a selection of natural gelling agents of non-animal origin (ι- and κ-carrageenan, gellan gum, guar gum, locust bean gum, sodium alginate, tragacanth and xanthan gum in serum-free medium at 1–4% (w/v concentration for their suitability as a more natural 3D culture environment for brain-derived cells. Their biophysical properties (viscosity, texture, transparency, gelling propensity resemble those of the extracellular matrix (ECM. Gels provide the neurons with a 3D scaffold to interact with and allow for an increase of the overall cell density compared to classical monolayer 2D culture. They not only protect neurons in cell culture from shear forces and medium evaporation, but stabilize the microenvironment around them for efficient glial proliferation, tissue-analog neural differentiation and neural communication. We report on their properties (viscosity, transparency, their ease of handling in a cell culture context and their possible use modalities (cell embedment, as a cell cover or as a cell culture substrate. Among the selected gels, guar gum and locust bean gum with intercalated laminin allowed for cortical cell embedment. Neurons plated on and migrating into gellan gum survived and differentiated even without the addition of laminin. Sodium alginate with laminin was a suitable cell cover. Finally, we exemplarily demonstrate how guar gum supported the functional survival of a cortical culture over a period of 79 days in a proof-of-concept long-term microelectrode array (MEA electrophysiology study.

  15. Disease-specific survival in de novo metastatic renal cell carcinoma in the cytokine and targeted therapy era.

    Directory of Open Access Journals (Sweden)

    Sumanta K Pal

    Full Text Available Recent phase III studies of targeted agents for metastatic renal cell carcinoma (mRCC have generated median survival estimates that far exceed those observed during the cytokine era. However, substantial population-based data does not exist to confirm this trend. We sought to determine whether survival has improved for patients with mRCC diagnosed in the era of targeted therapies, as compared to the era of immunotherapy.The Surveillance, Epidemiology, and End Results (SEER Registry was used to identify patients aged 18 and older diagnosed stage IV RCC between 1992 and 2009. Patients had documented clear cell, papillary or chromophobe histology. The Kaplan Meier method and log-rank test were used to compare disease-specific survival (DSS for patients diagnosed from 1992-2004 (i.e., the cytokine era and 2005-2009 (i.e., the targeted therapy era. Univariate and multivariate analyses of relevant clinicopathologic characteristics were also performed.Of 5,176 patients identified using the above characteristics, 2,392 patients were diagnosed from 1992-2004 and 2,784 from 2005-2009. Median DSS was improved in those patients diagnosed from 2005-2009 (16 months vs 13 months; P<0.0001. A similar temporal trend towards improving survival was noted in patients with clear cell (P = 0.0006, but not in patients with non-clear cell disease (P = 0.32. Notable findings on multivariate analysis include an association between shorter DSS and the following characteristics: (1 diagnosis from 1992-2004, (2 advanced age (80+, and (3 absence of cytoreductive nephrectomy.These data reflect progress in the management of mRCC, specifically in the era of targeted therapies. Notably, it was inferred that certain treatment strategies were employed during pre-specified time periods, representing a major caveat of the current analysis. Further studies related to the influence of age and race/ethnicity are warranted, as are studies exploring the role of cytoreductive nephrectomy

  16. Relation of intracellular cyclic AMP to the shape of mammalian cell survival curves

    International Nuclear Information System (INIS)

    Lehnert, S.

    1975-01-01

    Results of experiments with V79 cells growing in tissue culture indicate that the reproductive survival of cells following irradiation is influenced by the level of intracellular 3', 5'-cyclic adenosine monophosphate (cyclic AMP) at the time of irradiation. Cells containing high levels of cyclic AMP induced by treatments with drugs show a characteristic survival curve in which the extent of the shoulder is increased so that the survival after low doses is enhanced. The exponential slope or D 0 , however, is decreased so that at high doses the survival of cells containing high levels of cyclic AMP may be less than that of controls. Naturally occurring changes in radiosensitivity such as those observed as cells pass through the division cycle, may also be related to parallel changes in cyclic AMP concentration occurring during the cycle. Injection of mice with compounds producing elevated cyclic AMP prior to whole-body irradiation increases survival at seven days post-irradiation. The shape of the survival curve for intestinal stem cells in these mice differs from that of the control in having an increased extrapolation number; no change in D 0 is observed in this in vivo situation. (author)

  17. The application of Gadopentate-Dimeneglumin has no impact on progression free and overall survival as well as renal function in patients with monoclonal plasma cell disorders if general precautions are taken

    Energy Technology Data Exchange (ETDEWEB)

    Hillengass, J. [University of Heidelberg, Department of Hematology, Oncology and Rheumatology, Heidelberg (Germany); German Cancer Research Center Heidelberg, Department of Radiology, Heidelberg (Germany); Stoll, J.; Wagner, B.; Goldschmidt, H. [University of Heidelberg, Department of Hematology, Oncology and Rheumatology, Heidelberg (Germany); Zechmann, C.M. [Rinecker Proton Therapy Center, Munich (Germany); Kunz, C.; Heiss, C. [German Cancer Research Center Heidelberg, Department of Biostatistics, Heidelberg (Germany); Sumkauskaite, M. [University of Heidelberg, Department of Radiology, Heidelberg (Germany); Moehler, T.M. [InVentiv Health Clinical, Wiesbaden (Germany); Schlemmer, H.P.; Delorme, S. [German Cancer Research Center Heidelberg, Department of Radiology, Heidelberg (Germany)

    2014-10-31

    The current analysis investigated the prognostic significance of gadopentetate dimeglumine on survival and renal function in patients with monoclonal plasma cell disorders. In this study 263 patients who had received gadopentetate dimeglumine within a prospective trial investigating dynamic contrast-enhanced magnetic resonance imaging (MRI) were compared with 335 patients who had undergone routine, unenhanced MRI. We found no significant prognostic impact of the application of contrast agent on progression-free survival in patients with either monoclonal gammopathy of undetermined significance, smouldering or symptomatic myeloma and no significant prognostic impact on overall survival in patients with symptomatic myeloma. Since renal impairment is a frequent complication of myeloma, and decreased renal function is associated with a higher risk of complications in patients receiving contrast agents, we evaluated the impact of contrast agent on renal function after 1 year. In the present analysis the only significant adverse impact on kidney function occurred in symptomatic myeloma patients who already had impaired renal parameters at baseline. Here, the renal function did not recover during therapy, whereas it did so in patients with normal or only slightly impaired renal function. If general recommendations are adhered to, gadopentetate dimeglumine can be safely applied in patients with monoclonal plasma cell disease. (orig.)

  18. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  19. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell

    International Nuclear Information System (INIS)

    Stamato, T.D.; Weinstein, R.; Giaccia, A.; Mackenzie, L.

    1983-01-01

    A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma ray-sensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and then a flattening of the curve at about 10% survival. Subsequently, it was found that this cell is sensitive to gamma irradiation in G1, early S, and late G2 phases of the cell cycle, whereas in the resistant phase (late S phase) its survival approaches that of the parental cells. The D37 in the sensitive G1 period is approximately 30 rads, compared with 300 rads of the parental cell. This mutant cell is also sensitive to killing by the DNA breaking agent, bleomycin, but is relatively insensitive to UV light and ethyl methane sulfonate, suggesting that the defect is specific for agents that produce DNA strand breakage

  20. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    2009-06-01

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  1. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    Science.gov (United States)

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  2. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Elisa [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Bonvini, Paolo, E-mail: paolo.bonvini@unipd.it [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza (Italy)

    2011-10-21

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  3. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Science.gov (United States)

    Zorzi, Elisa; Bonvini, Paolo

    2011-01-01

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells. PMID:24213118

  4. Survival and kinetics of Chinese hamster ovary cell subpopulations induced by Adriamycin and radiation

    International Nuclear Information System (INIS)

    Schneiderman, M.H.

    1979-01-01

    Mitotic selection of Chinese hamster ovary (CHO) cells, at 10 min intervals after the initiation of Adriamycin and/or x-ray treatment was used to measure the kinetics and survival of cells which progressed without delay, the ''refractory'' cells, the cells that reached mitosis only after recovery from the treatment-induced delay, the ''recovered'' cells, and the survival of the cells remaining attached to the flask 5 h after treatment. The cell kinetics were determined from the rate at which cells entered mitosis, and the reproductive integrity from the survival of the selected refractory, recovered and remaining (unselected) cells

  5. Association of ultraviolet-induced retrovirus expression with anchorage-independent survival in rat embryo cells

    International Nuclear Information System (INIS)

    Suk, W.A.

    1985-01-01

    The authors have shown in the AI assay that the nontransforming retrovirus increases the differential in enhanced survival response in infected cultures. To more fully understand this aspect of the system, they examined the effect of UV irradiation on infected and uninfected FRE cells. In this communication the authors report that UV irradiation induces AI survival in infected and uninfected cells;in uninfected cells there is a concomitant induction of endogenous retrovirus expression. The AI survival of both cell lines was determined using a previously described procedure. Anchorage-dependent media control and solvent control cells, when suspended in medium above an agar base layer, showed a rapid decline in cell survival;however, cells that had been treated with carcinogen did not undergo the destructive process that took place in control cells, indicating specificity

  6. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-01-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 μg/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. Exposure of cells to 10 μg/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 ± 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs

  7. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A. [Henry Ford Hospital, Detroit, MI (United States)] [and others

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.

  8. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    International Nuclear Information System (INIS)

    Jae, Ho Kim; Sang, Hie Kim; Kolozsvary, Andrew; Brown, Stephen L.; Ok, Bae Kim; Freytag, Svend O.

    1995-01-01

    Purpose: To demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Methods and Materials: Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses of irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. Results: The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 μg/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. Exposure of cells to 10 μg/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 ± 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. Conclusion: An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors

  9. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review.

    Science.gov (United States)

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H; Godwin, Andrew K; Van Veldhuizen, Peter J; Banerjee, Snigdha; Banerjee, Sushanta K

    2017-12-31

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.

  10. Iron Oxide as an Mri Contrast Agent for Cell Tracking: Supplementary Issue

    Directory of Open Access Journals (Sweden)

    Daniel J. Korchinski

    2015-01-01

    Full Text Available Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.

  11. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  12. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  13. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1983-01-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal

  14. Intracellular contacts - effect of survival curve of mammal cells on the Dq value

    International Nuclear Information System (INIS)

    Durand, R.E.; Sutherland, R.M.

    1980-01-01

    Survival increase is observed in cells of the Chinese hamster of the V79-171 line which grow in the composition of multicell spheroids as compared with the survival after irradiation in a single state. The ratio of the Dsub(q) cell value in the composition of spheroids to Dsub(q) of separately growing cells increases as the mitotic cycle proceeds from the minimum value of 1.3 for cells in the Gi phase to the maximum value of 2.2 for cells in a late S-phase. The increase of survival during growth in the composition of spheroids is not characteristic for all cell types. Only a part of cultured MNNG-mutants of cells of the V79-171 Chinese hamster reveal radiomodifying effect of cell contact acting [ru

  15. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-05

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  16. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  17. Mitochondria-Targeted Nitroxide, Mito-CP, Suppresses Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo

    Science.gov (United States)

    Starenki, Dmytro

    2013-01-01

    Context: Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the RET proto-oncogene. For MTC therapy, the U.S. Food and Drug Administration recently approved vandetanib and cabozantinib, multikinase inhibitors targeting RET and other tyrosine kinase receptors of vascular endothelial growth factor, epidermal growth factor, or hepatocyte growth factor. Nevertheless, not all patients with the progressive MTC respond to these drugs, requiring the development of additional therapeutic modalities that have distinct activity. Objective: We aimed to evaluate mitochondria-targeted carboxy-proxyl (Mito-CP), a mitochondria-targeted redox-sensitive agent, for its tumor-suppressive efficacy against MTC. Design: In vitro cultures of 2 human MTC cell lines, TT and MZ-CRC-1, and TT xenografts in mice were treated with Mito-CP in comparison with vandetanib. The effects on cell survival/death, RET expression, mitochondrial integrity, and oxidative stress were determined. Results: Contrary to vandetanib, Mito-CP induced RET downregulation and strong cytotoxic effects in both cell lines in vitro, including caspase-dependent apoptosis. These effects were accompanied by mitochondrial membrane depolarization, decreased oxygen consumption, and increased oxidative stress in cells. Intriguingly, Mito-CP–induced cell death, but not RET downregulation, was partially inhibited by the reactive oxygen species scavenger, N-acetyl-cysteine, indicating that Mito-CP mediates tumor-suppressive effects via redox-dependent as well as redox-independent mechanisms. Orally administered Mito-CP effectively suppressed TT xenografts in mice, with an efficacy comparable to vandetanib and relatively low toxicity to animals. Conclusion: Our results suggest that Mito-CP can effectively suppress MTC cell growth/survival via a mechanism distinct from vandetanib effects. Mitochondrial targeting may be a potential strategy for MTC therapy. PMID:23509102

  18. New cancer cells apoptosis agents: Fluorinated aza-heterocycles

    Science.gov (United States)

    Prima, D. O.; Baev, D. S.; Vorontsova, E. V.; Frolova, T. S.; Bagryanskaya, I. Yu.; Slizhov, Yu. G.; Tolstikova, T. G.; Makarov, A. Yu.; Zibarev, A. V.

    2017-09-01

    Fluorinated benzo-fused 1,3-diazoles, 1,2,3-triazoles, 1,2,5-thia/selenadiazoles and 1,4-diazines were synthesized and tried for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma) cells. The diazoles, triazoles and selenadiazoles were cytotoxic with IC50 = 2.2-26.4 µM and induced the cells apoptosis at concentrations C = 1-25 µM. At the same time, they were nontoxic towards normal cells. Due to this, these scaffolds were used in the computer-aided molecular design of new antitumor agents. Particularly, novel 1,2,3-triazole and 1,3-diazole derivatives for the binding site of the PAS domain of the transcription factor HIF were designed and some of them synthesized for further study. Overall, new anticancer agents featuring apoptotic activity are suggested.

  19. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    Science.gov (United States)

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC

  20. Editor’s Pick: Targeted Agents in Patients with Metastatic Renal Cell Carcinoma on Dialysis: Myths and Reality

    Directory of Open Access Journals (Sweden)

    Annalisa Guida

    2016-07-01

    Full Text Available Agents targeting the vascular endothelial growth factor (VEGF/VEGF receptor (VEGFR pathway, as well as mammalian target of rapamycin (mTOR inhibitors have revolutionised the therapeutic landscape of metastatic renal cell carcinoma (mRCC in the past decade, greatly improving the survival rates of these patients. However, translating results of registrative Phase III trials into everyday clinical practice is often troublesome, since real-world patients are completely different from those enrolled in randomised controlled Phase III trials. Prospective data on active oncological treatments in mRCC patients on dialysis are dramatically lacking. This literature review summarises and critically comments on available data relative to mRCC patients on dialysis receiving either VEGF/VEGFR-targeting agents, or mTOR inhibitors. Although prospective studies would definitely be warranted in these specific patient populations, all the available data suggest that mRCC patients on dialysis have the same outcome, both in terms of efficacy and safety, as mRCC patients with normal or marginally impaired kidney function, when treated with VEGF/VEGFR-targeting agents and/or mTOR inhibitors.

  1. Lack of survival improvement with novel anti-myeloma agents for patients with multiple myeloma and central nervous system involvement: the Greek Myeloma Study Group experience.

    Science.gov (United States)

    Katodritou, Eirini; Terpos, Evangelos; Kastritis, Efstathios; Delimpasis, Sossana; Symeonidis, Argiris S; Repousis, Panagiotis; Kyrtsonis, Marie-Christine; Vadikolia, Chrysa; Michalis, Eurydiki; Polychronidou, Genovefa; Michael, Michael; Papadaki, Sofia; Papathanasiou, Maria; Kokoviadou, Kyriaki; Kioumi, Anna; Vlachaki, Eythimia; Hadjiaggelidou, Christina; Kouraklis, Alexandra; Patsias, Ioannis; Gavriatopoulou, Maria; Kotsopoulou, Maria; Verrou, Evgenia; Gastari, Vasiliki; Christoulas, Dimitrios; Giannopoulou, Evlambia; Pouli, Anastasia; Konstantinidou, Pavlina; Anagnostopoulos, Achilles; Dimopoulos, Meletios-Athanasios

    2015-12-01

    Involvement of the central nervous system (CNS) is a rare complication of multiple myeloma (MM). Herein, we have described the incidence, characteristics, prognostic factors for post CNS-MM survival, and outcome of CNS-MM and explored the efficacy of novel agents (NA) (thalidomide, bortezomib, lenalidomide) in this setting. Between 2000 and 2013, 31 (0.9 %) out of 3408 newly diagnosed symptomatic MM patients, consecutively diagnosed and treated during the same period in 12 Greek centers, developed CNS-MM (M/F 15/16, median age 59 years, range 20-96 years; newly diagnosed/relapsed-refractory 2/29; median time to CNS-MM diagnosis 29 months). Clinical and laboratory characteristics were retrospectively recorded. Twenty-six percent of patients had circulating plasma cells (PCs) or plasma cell leukemia (PCL) at CNS-MM and 39 % had skull-derived plasmacytomas, suggesting hematological and contiguous spread. Treatment for CNS-MM was offered in 29/31 patients and 11/29 responded (NA 18/29, additional radiotherapy 9/28, intrathecal chemotherapy 13/29). The median post CNS-MM survival was 3 months (95 % CI 1.9-4.1) and did not differ between patients treated with NA and/or radiotherapy vs. others. In the multivariate analysis, prior treatment of MM with NA, extramedullary disease (EMD) during MM course (i.e., plasmacytomas, circulating PCs, or documented PCL) and abnormally high LDH at MM diagnosis were independent prognostic factors, whereas treatment of CNS-MM with NA did not predict for post CNS-MM survival. Despite the relatively limited number of patients due to the rarity of CNS-MM, our results suggest that NA do not seem to improve post CNS-MM survival. Patients with EMD display shortened post CNS-MM survival and should be followed thoroughly.

  2. Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, David A.; Meyers, Mark; Odegaard, Eric; Wang, Meizhi

    1996-01-01

    Adaptive survival responses (ASRs) are observed when cells become more resistant to a high dose of a cytotoxic agent after repeated low dose exposures to that agent or another genotoxic agent. Confluent (G 0 /G 1 ) human normal (GM2936B, GM2937A, AG2603, IMR-90), cancer-prone (XPV2359), and neoplastic (U1-Mel, HEp-2, HTB-152) cells were primed with repeated low doses of X-rays (ranging from 0.05-10 cGy/day for 4 days), then challenged with a high dose (290-450 cGy) on day 5. U1-Mel and HEp-2 cells showed greater than 2-fold transient survival enhancement when primed with 1-10 cGy. ASRs in U1-Mel or HEp-2 cells were blocked by cycloheximide or actinomycin D. Increases in cyclins A and D1 mRNAs were noted in primed compared to unirradiated U1-Mel and HEp-2 cells; however, only cyclin A protein levels increased. Cyclin D1 and proliferating cell nuclear antigen (PCNA) protein levels were constitutively elevated in HEp-2 and U1-Mel cells, compared to the other human normal and neoplastic cells examined, and were not altered by low or high doses of radiation. Low dose primed U1-Mel cells entered S-phase 4-6 h faster than unprimed U1-Mel cells upon low-density replating. Similar responses in terms of survival recovery, transcript and protein induction, and altered cell cycle regulation were not observed in the other human normal, cancer-prone or neoplastic cells examined. We hypothesize that only certain human cells can adapt to ionizing radiation by progressing to a point later in G 1 (the A point) where DNA repair processes and radioresistance can be induced. ASRs in human cells correlated well with constitutively elevated levels of PCNA and cyclin D1, as well as inducibility of cyclin A. We propose that a protein complex composed of cyclin D1, PCNA, and possibly cyclin A may play a role in cell cycle regulation and DNA repair, which determine ASRs in human cells

  3. EDAG promotes the expansion and survival of human CD34+ cells.

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    Full Text Available EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.

  4. Ensemble of cell survival experiments after ion irradiation for validation of RBE models

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Thomas; Scholz, Uwe; Scholz, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Institut fuer Festkoerperphysik, TU Darmstadt, Darmstadt (Germany)

    2012-07-01

    There is persistent interest in understanding the systematics of the relative biological effectiveness (RBE). Models such as the Local Effect Model (LEM) or the Microdosimetric Kinetic Model have the goal to predict the RBE. For the validation of these models a collection of many in-vitro cell survival experiments is most appropriate. The set-up of an ensemble of in-vitro cell survival data comprising about 850 survival experiments after both ion and photon irradiation is reported. The survival curves have been taken out from publications. The experiments encompass survival curves obtained in different labs, using different ion species from protons to uranium, varying irradiation modalities (shaped or monoenergetic beam), various energies and linear energy transfers, and a whole variety of cell types (human or rodent; normal, mutagenic or tumor; radioresistant or -sensitive). Each cell survival curve has been parameterized by the linear-quadratic model. The photon parameters have been added to the data base to allow to calculate the experimental RBE to any survival level. We report on experimental trends found within the data ensemble. The data will serve as a testing ground for RBE models such as the LEM. Finally, a roadmap for further validation and first model results using the data base in combination with the LEM are presented.

  5. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  6. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    International Nuclear Information System (INIS)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-01-01

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16 INK , p21 and p19 ARF . VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI

  7. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  8. IR-induced autophagy plays a role in survival of HeLa cells

    International Nuclear Information System (INIS)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu

    2014-01-01

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival

  9. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  10. Radiation survival of cells from spheroids grown in different oxygen concentrations

    International Nuclear Information System (INIS)

    Franko, A.J.; Sutherland, R.M.

    1979-01-01

    The position of the internal, chronically hypoxic cells in spheroids was varied by alterations in the oxygen concentration in the growth medium. Such alterations were expected to cause large changes in the size of the radiobiologically hypoxic fraction. This was tested by growing and irradiating spheroids in oxygen concentrations between 5 and 20.3%, ensuring that the irradiation and growth conditions were as similar as possible. The survival curves appeared to be linear below a surviving fraction of 3 x 10 -2 , and the slopes were intermediate between the slopes of control curves for cells from spheroids irradiated in nitrogen or when fully oxygenated. Thus direct estimates of the hypoxic fractions could not be made. Two models of oxygen diffusion might explain the data. One model assumes that a large fraction of cells was fully hypoxic (radiobiologically) and that these internal, G 1 -confined, chronically hypoxic cells had a lower inherent radioresistance than the outer proliferating cells. Evidence was presented which indicated that this model was unlikely to be correct. The other model assumes that the inherent radioresistance was equal throughout the spheroid, and that the innermost cells died before the oxygen concentration was reduced sufficiently to cause full hypoxic protection. Theoretical survival curves based on this model were generated using the measured geometries ofthe spheroids and multitarget single-hit survival theory. Acceptable agreement with the postulate that the innermost cells of spheroids die at between 0.2 and 0.4% oxygen was obtained. These data may have implications regarding the relative contributions of chronic and acute hypoxia to the fraction of hypoxic cells in tumors

  11. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines

    Directory of Open Access Journals (Sweden)

    Chang Wei-Ting

    2011-06-01

    Full Text Available Abstract Background Damage-associated molecular patterns (DAMPs are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs. Specific microtubule-depolymerizing agents (MDAs such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT. DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.

  12. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review

    Science.gov (United States)

    Haque, Inamul; Subramanian, Arvind; Huang, Chao H.; Godwin, Andrew K.; Van Veldhuizen, Peter J.; Banerjee, Snigdha; Banerjee, Sushanta K.

    2017-01-01

    Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC. PMID:29301217

  13. Conditional survival of patients with diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Pedersen, Niels Tinggaard; Christensen, Bjarne E

    2006-01-01

    BACKGROUND: Prognosis of lymphoma patients is usually estimated at the time of diagnosis and the estimates are guided by the International Prognostic Index (IPI). However, conditional survival estimates are more informative clinically, as they consider those patients only who have already survive...... survival probability provides more accurate prognostic information than the conventional survival rate estimated from the time of diagnosis.......BACKGROUND: Prognosis of lymphoma patients is usually estimated at the time of diagnosis and the estimates are guided by the International Prognostic Index (IPI). However, conditional survival estimates are more informative clinically, as they consider those patients only who have already survived...... a period of time after treatment. Conditional survival data have not been reported for lymphoma patients. METHODS: Conditional survival was estimated for 1209 patients with diffuse large B-cell lymphoma (DLBCL) from the population-based LYFO registry of the Danish Lymphoma Group. The Kaplan-Meier method...

  14. Nivolumab versus Cabozantinib: Comparing Overall Survival in Metastatic Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Witold Wiecek

    Full Text Available Renal-cell carcinoma (RCC affects over 330,000 new patients every year, of whom 1/3 present with metastatic RCC (mRCC at diagnosis. Most mRCC patients treated with a first-line agent relapse within 1 year and need second-line therapy. The present study aims to compare overall survival (OS between nivolumab and cabozantinib from two recent pivotal studies comparing, respectively, each one of the two emerging treatments against everolimus in patients who relapse following first-line treatment. Comparison is traditionally carried out using the Bucher method, which assumes proportional hazard. Since OS curves intersected in one of the pivotal studies, models not assuming proportional hazards were also considered to refine the comparison. Four Bayesian parametric survival network meta-analysis models were implemented on overall survival (OS data digitized from the Kaplan-Meier curves reported in the studies. Three models allowing hazard ratios (HR to vary over time were assessed against a fixed-HR model. The Bucher method favored cabozantinib, with a fixed HR for OS vs. nivolumab of 1.09 (95% confidence interval: [0.77, 1.54]. However, all models with time-varying HR showed better fits than the fixed-HR model. The log-logistic model fitted the data best, exhibiting a HR for OS initially favoring cabozantinib, the trend inverting to favor nivolumab after month 5 (95% credible interval <1 from 10 months. The initial probability of cabozantinib conferring superior OS was 54%, falling to 41.5% by month 24. Numerical differences in study-adjusted OS estimates between the two treatments remained small. This study evidences that HR for OS of nivolumab vs. cabozantinib varies over time, favoring cabozantinib in the first months of treatment but nivolumab afterwards, a possible indication that patients with poor prognosis benefit more from cabozantinib in terms of survival, nivolumab benefiting patients with better prognosis. More evidence, including real

  15. Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells

    Science.gov (United States)

    Patzelt, Thomas; Keppler, Selina J.; Gorka, Oliver; Thoene, Silvia; Wartewig, Tim; Reth, Michael; Förster, Irmgard; Lang, Roland; Buchner, Maike; Ruland, Jürgen

    2018-01-01

    The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma. PMID:29507226

  16. In vitro sensitivity of normal and hereditary retinoblastoma fibroblasts to DNA-damaging agents

    International Nuclear Information System (INIS)

    Woods, W.G.; Byrne, T.D.

    1986-01-01

    We investigated the ability of nine fibroblast cell strains from patients with the hereditary form of retinoblastoma (RB) to handle various types of DNA-damaging agents and compared the results with those obtained in nine normal strains. Cell strains were exposed to gamma-radiation, which causes DNA scission; actinomycin D, a DNA-intercalating agent; and mitomycin C, a bifunctional alkylating agent leading to DNA-DNA cross-linking. Cell strains were studied for their ability to survive in a cytotoxicity assay. Nine normal strains exhibited a mean D0 (inverse of the slope of the straight line portion of the survival curve) of 134-178 cGy after radiation exposure, compared to a range of 119-186 cGy in the nine RB strains (P = 0.33). Similarly, exposure to actinomycin D led to D0 values of 0.024-0.069 microgram/ml in the nine normal strains and D0 values of 0.016-0.067 microgram/ml in the RB strains (P = 0.64). The nine RB strains did exhibit a small overall increase in sensitivity after exposure to mitomycin C, with D0 values ranging from 0.14-0.32 microgram/ml versus 0.19-0.66 microgram/ml in the nine normal strains (P = 0.002); however, when the two most resistant normal strains were excluded from analysis, results were similar. Three RB cell strains derived from individuals who had either developed second cancers or who had a family history of additional sarcomas consistently exhibited increases in sensitivity to all three DNA-damaging agents studied compared with other hereditary RB cell strains as well as normal strains. The results suggest that normal human fibroblast cell strains exhibit a wide response to DNA-damaging agents, especially chemical agents. Most hereditary RB strains exhibit sensitivity well within the normal range; however, strains from RB patients predisposed to second cancers exhibit increases in sensitivity to DNA-damaging agents

  17. Gender-Dependent Survival of Allogeneic Trophoblast Stem Cells in Liver

    Science.gov (United States)

    Epple-Farmer, Jessica; Debeb, Bisrat G.; Smithies, Oliver; Binas, Bert

    2012-01-01

    In view of the well-known phenomenon of trophoblast immune privilege, trophoblast stem cells (TSCs) might be expected to be immune privileged, which could be of interest for cell or gene therapies. Yet in the ectopic sites tested so far, TSC transplants fail to show noticeable immune privilege and seem to lack physiological support. However, we show here that after portal venous injection, green fluorescent protein (GFP)-labeled TSCs survive for several months in the livers of allogeneic female but not male mice. Gonadectomy experiments revealed that this survival does not require the presence of ovarian hormones but does require the absence of testicular factors. By contrast, GFP-labeled allogeneic embryonic stem cells (ESCs) are reliably rejected; however, these same ESCs survive when mixed with unlabeled TSCs. The protective effect does not require immunological compatibility between ESCs and TSCs. Tumors were not observed in animals with either successfully engrafted TSCs or coinjected ESCs. We conclude that in a suitable hormonal context and location, ectopic TSCs can exhibit and confer immune privilege. These findings suggest applications in cell and gene therapy as well as a new model for studying trophoblast immunology and physiology. PMID:19523327

  18. Survival outcomes for oligometastasis in resected non-small cell lung cancer.

    Science.gov (United States)

    Shimada, Yoshihisa; Saji, Hisashi; Kakihana, Masatoshi; Kajiwara, Naohiro; Ohira, Tatsuo; Ikeda, Norihiko

    2015-10-01

    We investigated the factors associated with post-recurrence survival and the treatment for non-small-cell lung cancer patients with postoperative distant recurrence, especially oligometastasis. We reviewed the data of 272 patients with distant recurrence who underwent resection of non-small-cell lung cancer from January 2000 through December 2011. The type of distant recurrence was classified as oligometastasis (n = 76, 28%) or polymetastasis (n = 196, 72%). Forty-seven (62%) patients with oligometastasis received local therapy (surgery 5, radiotherapy 9, sequential local and systemic therapy 28, chemoradiotherapy 5). Multivariate analysis revealed older age, non-adenocarcinoma, shorter disease-free interval, no pulmonary metastasis, liver metastases, bone metastases, and polymetastasis had significant associations with unfavorable post-recurrence survival. Subgroup analysis of patients with oligometastasis showed histology and disease-free interval had a great impact on survival. Smoking history and histology were associated with survival in patients with lung oligometastasis, whereas systemic treatment and longer disease-free interval were related to increased post-recurrence survival in those with brain oligometastasis. This study showed that an oligometastatic state per se was a significant favorable factor. Optimization of personalized systemic treatment and adding local treatment are important in the management of patients with non-small-cell lung cancer and oligometastasis. © The Author(s) 2015.

  19. TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters

    International Nuclear Information System (INIS)

    Schneiderman, Rosa S; Shmueli, Esther; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    Exposure of cancer cells to chemotherapeutic agents may result in reduced sensitivity to structurally unrelated agents, a phenomenon known as multidrug resistance, MDR. The purpose of this study is to investigate cell growth inhibition of wild type and the corresponding MDR cells by Tumor Treating Fields - TTFields, a new cancer treatment modality that is free of systemic toxicity. The TTFields were applied alone and in combination with paclitaxel and doxorubicin. Three pairs of wild type/MDR cell lines, having resistivity resulting from over-expression of ABC transporters, were studied: a clonal derivative (C11) of parental Chinese hamster ovary AA8 cells and their emetine-resistant sub-line Emt R1 ; human breast cancer cells MCF-7 and their mitoxantrone-resistant sub lines MCF-7/Mx and human breast cancer cells MDA-MB-231 and their doxorubicin resistant MDA-MB-231/Dox cells. TTFields were applied for 72 hours with and without the chemotherapeutic agents. The numbers of viable cells in the treated cultures and the untreated control groups were determined using the XTT assay. Student t-test was applied to asses the significance of the differences between results obtained for each of the three cell pairs. TTFields caused a similar reduction in the number of viable cells of wild type and MDR cells. Treatments by TTFields/drug combinations resulted in a similar increased reduction in cell survival of wild type and MDR cells. TTFields had no effect on intracellular doxorubicin accumulation in both wild type and MDR cells. The results indicate that TTFields alone and in combination with paclitaxel and doxorubicin effectively reduce the viability of both wild type and MDR cell sub-lines and thus can potentially be used as an effective treatment of drug resistant tumors

  20. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

    Science.gov (United States)

    Tomasetti, Marco; Nocchi, Linda; Neuzil, Jiri; Goodwin, Jacob; Nguyen, Maria; Dong, Lanfeng; Manzella, Nicola; Staffolani, Sara; Milanese, Claudio; Garrone, Beatrice; Alleva, Renata; Borghi, Battista; Santarelli, Lory; Guerrieri, Roberto

    2012-01-01

    The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF) release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.

  1. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

    Directory of Open Access Journals (Sweden)

    Marco Tomasetti

    Full Text Available BACKGROUND: The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS was found to synergistically cooperate with vitamin K3 (VK3 plus ascorbic acid (AA in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. CONCLUSIONS/SIGNIFICANCE: α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.

  2. Survival of egg-laying controlling neuroendocrine cells during reproductive senescence of a mollusc

    NARCIS (Netherlands)

    Janse, C.

    2004-01-01

    During brain aging neuronal degradation occurs. In some neurons this may result in degeneration and cell death, still other neurons may survive and maintain their basic properties. The present study deals with survival of the egg-laying controlling neuroendocrine caudodorsal cells (CDCs) during

  3. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment.

    Science.gov (United States)

    Hawk, Mark A; Schafer, Zachary T

    2018-01-16

    Non-transformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECM-detached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  5. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  6. Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents.

    Science.gov (United States)

    Guo, Jun; Cui, Qiu; Jiang, WeiHao; Liu, Cheng; Li, DingFeng; Zeng, Yanjun

    2013-08-01

    The objective of this study was to explore the O(6)-methylguanine-DNA methyltransferase (MGMT) gene methylation status and its protein expression, as well as the effects of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on MGMT gene expression and its resistance to alkylating agents, and to elucidate MGMT expression mechanism and significance in osteosarcoma. The human osteosarcoma cell lines Saos-2 and MG-63 were collected and treated with 5-Aza-CdR for 6 days. The cells not treated with 5-Aza-CdR were set as a negative control. The genomic DNA was extracted from the Saos-2 and MG-63 cells using methylation-specific PCR to detect the promoter CpG island methylation status of the MGMT gene. Cell sensitivity to alkylating agents before and after drug administration was detected by the MTT method. The variation in MGMT gene mRNA and protein was detected by reverse transcription PCR (RT-PCR) and Western blotting. The MGMT promoter gene of normal Saos-2 cells was methylated, with reduced MGMT mRNA and protein expression; the MGMT mRNA and protein expression of Saos-2 cells treated with 5-Aza-CdR was obviously enhanced, and its sensitivity to alkylating agents was reversed. Meanwhile, with promoter CpG island unmethylation of the MGMT gene, MGMT protein was expressed in the normal MG-63 cells and the MG-63 cells treated with 5-Aza-CdR, and both showed resistance to alkylating agents. The methylation status of the MGMT gene promoter in human osteosarcoma cells reflected the cells' ability to induce MGMT protein expression and can be used as a molecular marker to project the sensitivity of cancer tissues to alkylating agent drugs.

  7. Magnitude of the benefit of progression-free survival as a potential surrogate marker in phase 3 trials assessing targeted agents in molecularly selected patients with advanced non-small cell lung cancer: systematic review.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Hotta

    Full Text Available BACKGROUND: In evaluation of the clinical benefit of a new targeted agent in a phase 3 trial enrolling molecularly selected patients with advanced non-small cell lung cancer (NSCLC, overall survival (OS as an endpoint seems to be of limited use because of a high level of treatment crossover for ethical reasons. A more efficient and useful indicator for assessing efficacy is needed. METHODS AND FINDINGS: We identified 18 phase 3 trials in the literature investigating EGFR-tyrosine kinase inhibitor (TKIs or ALK-TKIs, now approved for use to treat NSCLC, compared with standard cytotoxic chemotherapy (eight trials were performed in molecularly selected patients and ten using an "all-comer" design. Receiver operating characteristic analysis was used to identify the best threshold by which to divide the groups. Although trials enrolling molecularly selected patients and all-comer trials had similar OS-hazard ratios (OS-HRs (0.99 vs. 1.04, the former exhibited greater progression-free survival-hazard ratios (PFS-HR (mean, 0.40 vs. 1.01; P<0.01. A PFS-HR of 0.60 successfully distinguished between the two types of trials (sensitivity 100%, specificity 100%. The odds ratio for overall response was higher in trials with molecularly selected patients than in all-comer trials (mean: 6.10 vs. 1.64; P<0.01. An odds ratio of 3.40 for response afforded a sensitivity of 88% and a specificity of 90%. CONCLUSION: The notably enhanced PFS benefit was quite specific to trials with molecularly selected patients. A PFS-HR cutoff of ∼0.6 may help detect clinical benefit of molecular targeted agents in which OS is of limited use, although desired threshold might differ in an individual trial.

  8. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  9. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume

  10. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    International Nuclear Information System (INIS)

    Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S

    2014-01-01

    Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured

  11. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    International Nuclear Information System (INIS)

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  12. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Gagan [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Kumar, Rahul; Jain, Anil K. [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Agarwal, Rajesh, E-mail: Rajesh.agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States)

    2014-10-15

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  13. Optimal fractionation for the radiotherapy of tumour cells possessing wide-shouldered survival curves

    International Nuclear Information System (INIS)

    Wheldon, T.E.

    1979-01-01

    A recent publication (Zeitz, L., and McDonald, J.M., 1978, Br. J. Radiol., vol. 51, 637) has considered the use of in vitro survival curves in the evaluation of different treatment schedules. Several studies of oxygenated melanoma cell have demonstrated a wider than average shoulder width for the survival curves. It is possible that hypoxia reduces the width of this shoulder. Theoretical cell survival probabilities were calculated for each of the four treatment schedules considered by Zeitz and McDonald. The calculations were based on hypothetical survival curves for anoxic melanoma cells with the shoulder either fully retained or completely abolished. No allowance was made for either re-population or re-oxygenation. The advantage of small doses per fraction was demonstrated for both types of survival curve. Re-oxygenation during therapy could therefore mean that a non-uniform treatment schedule is the appropriate choice for this type of tumour. (U.K.)

  14. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  15. Radiobiological effects of tritiated water short-term exposure on V79 clonogenic cell survival

    DEFF Research Database (Denmark)

    Siragusa, Mattia; Fredericia, Nina Pil Møntegaard; Jensen, Mikael

    2018-01-01

    We set out to improve the accuracy of absorbed dose calculations for in-vitro measurements of the Relative Biological Effectiveness (RBE) of tritiated water (HTO) for the clonogenic cell survival assay, also considering the influence of the end-of-track Linear Energy Transfer (LET) of low-energy...... in suspension are usually comparable to those for adherent cells. RBEs calculated at the 10% survival fraction through the use of the average energy are almost similar to those obtained with the beta-spectrum. For adherent cells, an RBE of 1.6 was found when HTO cell survival curves were compared to acute γ...

  16. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells

    Directory of Open Access Journals (Sweden)

    Izraeli Shai

    2011-09-01

    Full Text Available Abstract Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers.

  17. Homeostatic Agent for General Environment

    Science.gov (United States)

    Yoshida, Naoto

    2018-03-01

    One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.

  18. Neutron-energy-dependent cell survival and oncogenic transformation.

    Science.gov (United States)

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  19. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  20. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    International Nuclear Information System (INIS)

    Onodera, Akira; Kawai, Yuichi; Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio

    2013-01-01

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  1. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Akira, E-mail: onodera@pharm.kobegakuin.ac.jp [Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Kawai, Yuichi [Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Kashimura, Asako; Ogita, Fumiya; Tsutsumi, Yasuo; Itoh, Norio [Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity

  2. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  3. The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dai, Fuqiang; Liu, Lunxu; Che, Guowei; Yu, Nanbin; Pu, Qiang; Zhang, Shangfu; Ma, Junliang; Ma, Lin; You, Zongbing

    2010-01-01

    Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time. Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0). The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma

  4. Initial slope of human tumor cell survival curves: its modification by the oxic cell sensitizer beta-arabinofuranosyladenine

    International Nuclear Information System (INIS)

    Chavaudra, N.; Halimi, M.; Parmentier, C.; Gaillard, N.; Grinfeld, S.; Malaise, E.P.

    1989-01-01

    The initial slope of the survival curve, which is a characteristic of each tumor cell line, varies with the histological group of the tumor. It is one of the factors on which clinical radioresponsiveness depends. The DNA dependant DNA polymerase inhibitor beta-ara A acts as an oxic cell sensitizer. This study was carried out on human tumor cell lines to look for a correlation between the degree of radiosensitization induced by beta-ara A and the radiosensitivity of a given cell line. Six human tumor cell lines with different radiosensitivities were used (the survival rate at 2 Gy and D ranged from 20 to 73% and from 1.2 to 3.2 Gy, respectively). beta-ara A had a major toxic effect on all cell lines but this varied greatly from one cell line to another and was concentration dependant; this toxic effect was taken into account when calculating the surviving fractions. For all cell lines, beta-ara A acted as an oxic radiosensitizer and the radiosensitization was concentration dependant. Analysis of the survival curves of the 6 cell lines using the linear quadratic model showed that concentrations of beta-ara A between 200 and 1000 microM induced an increase in the linear component while the quadratic component underwent no systematic change. The sensitizing enhancement ratio (SER) measured from the Ds ratios, varied greatly from one line to another. For example, at a concentration of 500 microM, the extreme values of Ds ratios were 1.5 and 2.6. The radiosensitization is greater, the higher the radiosensitivity of the cell line studied during exponential growth. The results do not favor the use of beta-ara A in the treatment of intrinsically radioresistant human tumors

  5. Initial slope of human tumor cell survival curves: its modification by the oxic cell sensitizer beta-arabinofuranosyladenine

    Energy Technology Data Exchange (ETDEWEB)

    Chavaudra, N.; Halimi, M.; Parmentier, C.; Gaillard, N.; Grinfeld, S.; Malaise, E.P.

    1989-05-01

    The initial slope of the survival curve, which is a characteristic of each tumor cell line, varies with the histological group of the tumor. It is one of the factors on which clinical radioresponsiveness depends. The DNA dependant DNA polymerase inhibitor beta-ara A acts as an oxic cell sensitizer. This study was carried out on human tumor cell lines to look for a correlation between the degree of radiosensitization induced by beta-ara A and the radiosensitivity of a given cell line. Six human tumor cell lines with different radiosensitivities were used (the survival rate at 2 Gy and D ranged from 20 to 73% and from 1.2 to 3.2 Gy, respectively). beta-ara A had a major toxic effect on all cell lines but this varied greatly from one cell line to another and was concentration dependant; this toxic effect was taken into account when calculating the surviving fractions. For all cell lines, beta-ara A acted as an oxic radiosensitizer and the radiosensitization was concentration dependant. Analysis of the survival curves of the 6 cell lines using the linear quadratic model showed that concentrations of beta-ara A between 200 and 1000 microM induced an increase in the linear component while the quadratic component underwent no systematic change. The sensitizing enhancement ratio (SER) measured from the Ds ratios, varied greatly from one line to another. For example, at a concentration of 500 microM, the extreme values of Ds ratios were 1.5 and 2.6. The radiosensitization is greater, the higher the radiosensitivity of the cell line studied during exponential growth. The results do not favor the use of beta-ara A in the treatment of intrinsically radioresistant human tumors.

  6. Overall survival patterns in patients with multiple myeloma in the era of novel agents and the role of initial clinical presentation and comorbidities: A population-based study

    NARCIS (Netherlands)

    Oortgiesen, Berdien; Van Roon, Eric N.; Joosten, Peter; Kibbelaar, Robby; Storm, Huib; Hovenga, Sjoerd; Van Rees, Bas P.; Woolthuis, Gerhard; Veeger, Nic J. G. M.; Hoogendoorn, Mels

    2014-01-01

    Introduction Clinical trials have shown improved response rates, progression-free survival and overall survival (OS) in patients with multiple myeloma (MM) when using the novel agents thalidomide, lenalidomide and bortezomib. However, outcome data provided by population-based registries, reflecting

  7. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  8. Reproductive survival of explanted human tumor cells after exposure to nitrogen mustard or x irradiation; differences in response with subsequent subculture in vitro

    International Nuclear Information System (INIS)

    Wells, J.; Berry, R.J.; Laing, A.H.

    1977-01-01

    Curves for the survival of reproductive capacity of explanted human tumor cells, following exposure to the alkylating agent nitrogen mustard (mustine hydrochloride) or 250-kVp x rays, were obtained as soon as a satisfactory plating efficiency, i.e., greater than or approximately equal to 10 percent, was obtained from the tumor cells in vitro (usually within 2-10 weeks of explanation). It was found that all six tumor explants tested became more sensitive to the action of nitrogen mustard on serial subculture, whereas the response of four explants which were X-irradiated was invariant with further subculturing. Furthermore, all but one explant yielded survival curves which were extremely similar, with D/sub q/ values circa 440-610 rad. One line, from a seminoma, however, had a D/sub q/ of 150 rad. These radiosensitive seminoma cells were, however, the most resistant to the action of nitrogen mustard. The increase in sensitivity to nitrogen mustard with serial subculture in vitro was not associated with any change in the proliferative rate of the cells, although it may be associated with an increase in the efficiency of transport

  9. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  10. Flow cytometric determination of radiation-induced chromosome damage and its correlation with cell survival

    International Nuclear Information System (INIS)

    Welleweerd, J.; Wilder, M.E.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Chinese hamster M3-1 cells were irradiated with several doses of x rays or α particles from 238 Pu. Propidium iodide-stained chromosome suspensions were prepared at different times after irradiation; cells were also assayed for survival. The DNA histograms of these chromosomes showed increased background counts with increased doses of radiation. This increase in background was cell-cycle dependent and was correlated with cell survival. The correlation between radiation-induced chromosome damage and cell survival was the same for X rays and α particles. Data are presented which indicate that flow cytometric analysis of chromosomes of irradiated cell populations can be a useful adjunct to classical cytogenic analysis of irradiation-induced chromosomal damage by virtue of its ability to express and measure chromosomal damage not seen by classical cytogenic methods

  11. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion

    Directory of Open Access Journals (Sweden)

    Alison Roos

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent primary brain tumor in adults with a 5-year survival rate of 5% despite intensive research efforts. The poor prognosis is due, in part, to aggressive invasion into the surrounding brain parenchyma. Invasion is a complex process mediated by cell-intrinsic pathways, extrinsic microenvironmental cues, and biophysical cues from the peritumoral stromal matrix. Recent data have attributed GBM invasion to the glioma stem-like cell (GSC subpopulation. GSCs are slowly dividing, highly invasive, therapy resistant, and are considered to give rise to tumor recurrence. GSCs are localized in a heterogeneous cellular niche, and cross talk between stromal cells and GSCs cultivates a fertile environment that promotes GSC invasion. Pro-migratory soluble factors from endothelial cells, astrocytes, macrophages, microglia, and non-stem-like tumor cells can stimulate peritumoral invasion of GSCs. Therefore, therapeutic efforts designed to target the invasive GSCs may enhance patient survival. In this review, we summarize the current understanding of extrinsic pathways and major stromal and immune players facilitating GSC maintenance and survival.

  12. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  13. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  14. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Fujitake, Hideki; Okamoto, Yuruko; Okubo, Hiroshi; Miyanomae, Takeshi; Kumagai, Keiko; Mori, K.J.

    1981-01-01

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 10 7 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 10 6 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 10 7 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  15. Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Eugene Gu, Wen-Yi Chen, Jay Gu, Paul Burridge, Joseph C. Wu

    2012-01-01

    Full Text Available Being able to self-renew and differentiate into virtually all cell types, both human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs have exciting therapeutic implications for myocardial infarction, neurodegenerative disease, diabetes, and other disorders involving irreversible cell loss. However, stem cell biology remains incompletely understood despite significant advances in the field. Inefficient stem cell differentiation, difficulty in verifying successful delivery to the target organ, and problems with engraftment all hamper the transition from laboratory animal studies to human clinical trials. Although traditional histopathological techniques have been the primary approach for ex vivo analysis of stem cell behavior, these postmortem examinations are unable to further elucidate the underlying mechanisms in real time and in vivo. Fortunately, the advent of molecular imaging has led to unprecedented progress in understanding the fundamental behavior of stem cells, including their survival, biodistribution, immunogenicity, and tumorigenicity in the targeted tissues of interest. This review summarizes various molecular imaging technologies and how they have advanced the current understanding of stem cell survival, biodistribution, immunogenicity, and tumorigenicity.

  16. Sustainable Society Formed by Unselfish Agents

    Science.gov (United States)

    Kikuchi, Toshiko

    It has been pointed out that if the social configuration of the three relations (market, communal and obligatory relations) is not balanced, a market based society as a total system fails. Using multi-agent simulations, this paper shows that a sustainable society is formed when all three relations are integrated and function respectively. When agent trades are based on the market mechanism (i.e., agents act in their own interest and thus only market relations exist), weak agents who cannot perform transactions die. If a compulsory tax is imposed to enable all weak agents to survive (i.e., obligatory relations exist), then the fiscal deficit increases. On the other hand, if agents who have excess income undertake the unselfish action of distributing their surplus to the weak agents (i.e., communal relations exist), then trade volume increases. It is shown that the existence of unselfish agents is necessary for the realization of a sustainable society. However, the survival of all agents is difficult in a communal society. In an artificial society, for all agents survive and fiscal balance to be maintained, all three social relations need to be fully integrated. These results show that adjusting the balance of the three social relations well lead to the realization of a sustainable society.

  17. Survival of transfused red blood cells: In vivo compatibility testing with chromium-51

    International Nuclear Information System (INIS)

    Dharkar, D.D.; Pineda, A.A.

    1983-01-01

    The /sup 51/Cr red cell survival test and specific test for measurement of the disappearance rate of labeled red cells. This procedure can be used for the assessment of red cell compatibility testing in vivo. The authors recommend that more routine transfusions as well as ''difficult'' transfusions be monitored by /sup 51/Cr in vivo compatibility testing before the actual transfusions, so that more consistent and reliable survival values are achieved

  18. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  19. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  20. Genomic instability induced by 137Cs γ-ray irradiation in CHL surviving cells

    International Nuclear Information System (INIS)

    Yue Jingyin; Liu Bingchen; Wu Hongying; Zhou Jiwen; Mu Chuanjie

    1999-01-01

    Objective: To study in parallel several possible manifestations of instability of surviving CHL cells after irradiation, namely the frequencies of mutation at locus, micronuclei and apoptosis. Methods: The frequencies of mutation at HGPRT locus, micronuclei and apoptosis were assayed at various times in surviving cells irradiated with γ-rays. Results: The surviving cells showed a persistently increased frequency of mutation at the HGPRT locus after irradiation until 53 days. Mutant fraction as high as 10 -4 was scored, tens of times higher than those assayed in control cells studied in parallel. The frequency of bi nucleated cells with micronuclei determined within 24 hours after irradiation increased with dose and reached a peak value of (26.58 +- 2.48)% at 3 Gy, decreasing at higher doses to a plateau around 20%. The micronucleus frequency decreased steeply to about (14.47 +- 2.39)% within the first 3 days post-irradiation, and fluctuated at around 10% up to 56 days post-irradiation. The delayed efficiency of irradiated cells was significantly decreased. The frequency of apoptosis peaked about (24.90 +- 4.72)% at 10 Gy 48 h post-irradiation (γ-ray dose between 3-10 Gy) and then decreased to about 12% within 3 days. It was significantly higher than in control cells until 14 days. Conclusions: It shows that genomic instability induced by radiation can be transmitted to the progeny of surviving cells and may take many forms of expression such as lethal mutation, chromosome aberrations, gene mutation, etc

  1. Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts.

    Science.gov (United States)

    Furlong, Suzanne J; Mader, Jamie S; Hoskin, David W

    2010-06-01

    Although current treatments based on the use of B-cell-specific anti-CD20 monoclonal antibodies and aggressive combinatorial chemotherapy have improved the survival of patients suffering from B-cell non-Hodgkin's lymphoma (NHL), some individuals fail to respond to treatment and relapses remain common. New and more effective treatments for B-cell NHL are therefore required. Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that is cytotoxic for several human tumor cell lines but does not harm healthy cells. Here we show that in vitro treatment with LfcinB caused Raji and Ramos human B-lymphoma cells to die by apoptosis, as indicated by DNA fragmentation, chromatin condensation, and nuclear disintegration. LfcinB killed B-lymphoma cells more efficiently at low serum concentrations and was inhibited in the presence of exogenous bovine serum albumin, suggesting partial neutralization of cationic LfcinB by anionic serum components. LfcinB-induced apoptosis in B-lymphoma cells was caspase-independent since caspase-3 activation was not detected by Western blotting and the general caspase inhibitor z-VAD-fmk did not prevent LfcinB-induced DNA fragmentation. Importantly, immune-deficient SCID/beige mice that were inoculated intravenously with Ramos B-lymphoma cells in order to model B-cell NHL exhibited extended survival following systemic administration of LfcinB, indicating that LfcinB warrants further investigation as a novel therapeutic agent for the possible treatment of B-cell NHL. Copyright 2010 Elsevier Inc. All rights reserved.

  2. DOCK8 is critical for the survival and function of NKT cells.

    Science.gov (United States)

    Crawford, Greg; Enders, Anselm; Gileadi, Uzi; Stankovic, Sanda; Zhang, Qian; Lambe, Teresa; Crockford, Tanya L; Lockstone, Helen E; Freeman, Alexandra; Arkwright, Peter D; Smart, Joanne M; Ma, Cindy S; Tangye, Stuart G; Goodnow, Christopher C; Cerundolo, Vincenzo; Godfrey, Dale I; Su, Helen C; Randall, Katrina L; Cornall, Richard J

    2013-09-19

    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1(+) NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.

  3. DOCK8 is critical for the survival and function of NKT cells

    Science.gov (United States)

    Crawford, Greg; Enders, Anselm; Gileadi, Uzi; Stankovic, Sanda; Zhang, Qian; Lambe, Teresa; Crockford, Tanya L.; Lockstone, Helen E.; Freeman, Alexandra; Arkwright, Peter D.; Smart, Joanne M.; Ma, Cindy S.; Tangye, Stuart G.; Goodnow, Christopher C.; Cerundolo, Vincenzo; Godfrey, Dale I.; Su, Helen C.; Randall, Katrina L.

    2013-01-01

    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper–immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1+ NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease. PMID:23929855

  4. α-Lactose Improves the Survival of Septic Mice by Blockade of TIM-3 Signaling to Prevent NKT Cell Apoptosis and Attenuate Cytokine Storm.

    Science.gov (United States)

    Yao, Yao; Deng, Hai; Li, Pingfei; Zhang, Jian; Zhang, Junbo; Wang, Deping; Li, Songbo; Luo, Yixing; Wei, Zhengping; Bi, Guoyu; Yang, Xiang-Ping; Tang, Zhao-Hui

    2017-03-01

    Sepsis is the leading cause of death among critically ill patients and natural killer T (NKT) cell activation is essential to induce inflammatory cytokine cascade in sepsis. However, little is known about what regulates the NKT cell function during sepsis. Herein, we showed that T-cell immunoglobulin and mucin domain 3 (Tim-3) expression in NKT cells is elevated in experimental mice during sepsis. Tim-3 expression was positively correlated with NKT cell activation and apoptosis. In sepsis, interleukin (IL)-12 secreted by dendritic cell exposure to lipopolysaccharide increased the expression of Tim-3 in NKT cells. Administration of α-lactose to block Tim-3 signaling pathway significantly improved the survival of septic mice, concomitant with reduced IL-12 production by dendritic cells, reduced Tim-3 expression, prevented NKT cell apoptosis, and attenuated production of inflammatory cytokines. Collectively, Tim-3 signaling in NKT cells plays a critical role in the immunopathogenesis of sepsis. Thus, α-lactose could be a promising immunomodulatory agent in the treatment of sepsis.

  5. Preclinical Studies of a Kidney Safe Iodinated Contrast Agent.

    Science.gov (United States)

    Rowe, Elizabeth S; Rowe, Vernon D; Biswas, Sangita; Mosher, Gerold; Insisienmay, Lovella; Ozias, Marlies K; Gralinski, Michael R; Hunter, John; Barnett, James S

    2016-09-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the use of iodinated contrast agents. This problem is particularly acute in interventional neurology and interventional cardiology, probably due to the intra-arterial route of injection, high contrast volumes, and preexisting risk factors of these patients. In an attempt to develop a contrast agent that is less damaging to the kidneys, we have studied the effects of adding a small amount of the substituted cyclodextrin, sulfobutyl-ether-β-cyclodextrin (SBECD), to iohexol in rodent models of renal toxicity. Renally compromised mice and rats were injected with iohexol and iohexol-SBECD via the tail vein. The renal pathology, creatinine clearance, and survival benefits of iohexol-SBECD were studied. The safety of direct intra-arterial injection of the iohexol-SBECD formulation was studied in a dog heart model system. Mechanism of action studies in cell culture model using a human kidney cell line was performed using flow cytometry. Nephrotoxicity was significantly reduced using iohexol-SBECD compared to iohexol alone, at mole ratios of iohexol:SBECD of 1:0.025. SBECD increased survival from 50% to 88% in a rat survival study. In the dog heart model, iohexol-SBECD was safe. Cell culture studies suggest that SBECD interferes with the early stages of contrast-induced apoptosis in a human renal cell line. We have shown that the addition of a small amount of SBECD (one molecule of SBECD per 40 iohexol molecules) significantly protects rodent kidneys from CI-AKI. Further development of this new formulation of iodinated contrast is warranted. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  6. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    NARCIS (Netherlands)

    Kim, D.; Fiske, B.P.; Birsoy, K.; Freinkman, E.; Kami, K.; Possemato, R.L.; Chudnovsky, Y.; Pacold, M.E.; Chen, W.W.; Cantor, J.R.; Shelton, L.M.; Gui, D.Y.; Kwon, M.; Ramkissoon, S.H.; Ligon, K.L.; Kang, S.W.; Snuderl, M.; der Heiden, M.G. Van; Sabatini, D.M.

    2015-01-01

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain

  7. Study on the Measurement of 51Cr-tagged Red Cell Survival: Reevaluation of its method and the effect of Blood loss on red cell survival with 51Cr

    International Nuclear Information System (INIS)

    Choi, Hak Yong; Koh, Chang Soon; Lee, Moon Ho

    1970-01-01

    Reappraisal measurement of apparent half survival time of red cell by 51 Cr method was made and effects of blood-letting over red cell survival were observed. The study was performed on 53 normal male subjects under three different experimental conditions. 1) Group 1: Mean 51 Cr red cell half survival by ACD wash method was 29.7 days. T 1 /2 of Ascorbic acid method was 29.0 days in group with 100 mg dose and 29.1 days in group with 50 mg dose respectively. There was no difference between these two methods in regards to red cell half survival. No difference were noted in amount of ascorbic acid administered. 2) Group 2: As daily amount of blood loss in increased the shortening of red cell half survival was noted. Rapid phase was seen when blood loss ranged 10 to 25 ml per day, while slow phase noted when more loss amounted 25 ml more daily. Thus, it was clear that there was more than an exponential relation between T 1 /2 and the amount of blood loss. 3) Group 3: T 1 /2 measured cpm per whole blood was within normal range and T 1 /2 measured by cpm per red mass showed shortening tendency when compared with the former in the group measured after blood loss (from 25 ml daily up to 100 ml daily in 10 days). In the group with rather constant blood loss of 100 ml daily for 10 consecutive days revealed the significant difference in two measurement (P 1 /2 in non-steady state. When red cell production is increased compared with red cell destruction, T 1 /2 measured by cpm per red cell mass shorter than that by cpm per whole blood. Shortening of T 1 /2 measured by cpm per whole blood is more prominent, if red destruction is enhanced and exceeds production. 5) It is clear that when expressing red cell destruction rate, T 1 /2 measured by cpm per whole blood is more adequate and production more consistent with cpm red cell mass. 6) T 1 /2 measured during blood-letting, when corrected by amount of blood loss, it remains normal. It is erroneous to use conventional equational

  8. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  9. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    Science.gov (United States)

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  10. Cell survival in spheroids irradiated with heavy-ion beams

    International Nuclear Information System (INIS)

    Rodriguez, A.; Alpen, E.L.

    1981-01-01

    Biological investigations with accelerated heavy ions have been carried out regularly at the Lawrence Berkeley Laboratory Bevalac for the past four years. Most of the cellular investigations have been conducted on cell monolayer and suspension culture systems. The studies to date suggest that heavy charged particle beams may offer some radiotherapeutic advantages over conventional radiotherapy sources. The advantages are thought to lie primarily in an increased relative biological effectiveness (RBE), a decrease in the oxygen enhancement ratio (OER), and better tissue distribution dose. Experiments reported here were conducted with 400 MeV/amu carbon ions and 425 MeV/amu neon ions, using a rat brain gliosarcoma cell line grown as multicellular spheroids. Studies have been carried out with x-rays and high-energy carbon and neon ion beams. These studies evaluate high-LET (linear energy transfer) cell survival in terms of RBE and the possible contributions of intercellular communication. Comparisons were made of the post-irradiation survival characteristics for cells irradiated as multicellular spheroids (approximately 100 μm and 300 μm diameters) and for cells irradiated in suspension. These comparisons were made between 225-kVp x-rays, 400 MeV/amu carbon ions, and 425 MeV/amu neon ions

  11. Impact of CD133 positive stem cell proportion on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kase, Marju; Minajeva, Ave; Niinepuu, Kristi; Kase, Sandra; Vardja, Markus; Asser, Toomas; Jaal, Jana

    2013-01-01

    The aim of the study was to assess the impact of CD133-positive (CD133+) cancer stem cell proportions on treatment results of glioblastoma multiforme (GBM) patients. Patients with GBM (n = 42) received postoperative radiotherapy (± chemotherapy). Surgically excised GBM tissue sections were immunohistochemically examined for CD133 expression. The proportions of CD133+ GBM cells were determined (%). The proportion of CD133+ GBM stem cells was established by 2 independent researchers whose results were in good accordance (R = 0.8, p < 0.01). Additionally, CD133 expression levels were correlated with patients overall survival. The proportion of CD133+ cells varied between patients, being from 0.5% to 82%. Mean and median proportions of CD133+ cells of the entire study group were 33% ± 24% (mean ± SD) and 28%, respectively. Clinical data do not support the association between higher proportion of stem cells and the aggressiveness of GBM. Median survival time of the study group was 10.0 months (95% CI 9.0–11.0). The survival time clearly depended on the proportion of CD133+ cells (log rank test, p = 0.02). Median survival times for patients with low (< median) and high (≥ median) proportion of CD133+ cells were 9.0 months (95% CI 7.6–10.5) and 12.0 months (95% CI 9.3–14.7), respectively. In multivariate analysis, the proportion of CD133+ cells emerged as a significant independent predictor for longer overall survival (HR 2.0, 95% CI 1.0–3.8, p = 0.04). In patients with higher stem cell proportion, significantly longer survival times after postoperative radiotherapy were achieved. Underlying reasons and possible higher sensitivity of GBM stem cells to fractionated radio-therapy should be clarified in further studies

  12. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  13. The survival of Coxiella burnetii in soils

    Science.gov (United States)

    Evstigneeva, A. S.; Ul'Yanova, T. Yu.; Tarasevich, I. V.

    2007-05-01

    Coxiella burnetii is a pathogen of Q-fever—a widespread zoonosis. The effective adaptation of C. burnetii to intracellular existence is in contrast with its ability to survive in the environment outside the host cells and its resistance to chemical and physical agents. Its mechanism of survival remains unknown. However, its survival appears to be related to the developmental cycle of the microorganism itself, i.e., to the formation of its dormant forms. The survival of Coxiella burnetii was studied for the first time. The pathogenic microorganism was inoculated into different types of soil and cultivated under different temperatures. The survival of the pathogen was verified using a model with laboratory animals (mice). Viable C. burnetii were found in the soil even 20 days after their inoculation. The relationship between the organic carbon content in the soils and the survival of C. burnetii was revealed. Thus, the results obtained were the first to demonstrate that the soil may serve as a reservoir for the preservation and further spreading of the Q-fever pathogen in the environment, on the one hand, and reduce the risk of epidemics, on the other.

  14. Action of caffeine on the survival of x-irradiated cells

    International Nuclear Information System (INIS)

    Busse, P.M.

    1978-01-01

    Post-irradiation treatment of HeLa S3 cells with 1 mM caffeine results in a marked diminution of the surviving fraction as scored by colony formation. The decrease is dose-dependent; the effect of a 24-h post-irradiation treatment of a non-synchronous population with caffeine is to change the terminal slope of the survival curve and its intercept. Do is reduced from 130 to 60 rad; the extrapolation number is increased about twofold. The amount of post-irradiation killing is maximal if cells are exposed to caffeine at a concentration of at least 1 mM for 8 hours; less than 10% of unirradiated cells are killed under these conditions. Dose-response curves were also obtained for synchronous cells at various phases of the cell cycle. Similar results were obtained at all cell ages, but the magnitude of the effect is age-dependent. This age dependence was further explored in experiments in which mitotically collected cells were exposed to 300 or 500 rad doses at 2-hour intervals throughout the cell cycle. Treatment with caffeine for 24 hours after irradiation enhances the killing of cells late in the cycle more than in G 1 . The sensitivities of two other cell lines, CHO and EMT6, also were examined; both are substantially less sensitive to caffeine. The smaller cell-cycle dependence of CHO cells is qualitatively the same as that of HeLa cells

  15. Influence of preirradiational and postirradiational heating of lyophilized Micrococcus radioproteolyticus cells on their survival

    Energy Technology Data Exchange (ETDEWEB)

    Ryznar, L; Drasil, V [Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav

    1981-12-10

    The survival curve of Micrococcus radioproteolyticus following gamma irradiation of lyophilized cells is characterized by a broad shoulder reaching as far as the dose range 10 - 20 kGy (1 - 2 Mrad). The course of the curve indicates that under these conditions most of the changes induced by irradiation have the character of sublethal damage, which the cell can repair. The course of the survival curve does not change if the lyophilized cells are heated prior to irradiation for 2 h at 60 /sup 0/C. Certain changes do occur if the preirradiational temperature is 80 /sup 0/C. If the cells are exposed to increased temperature after irradiation even a temperature of 60 /sup 0/C brings about a marked decrease in survival. A temperature of 80 /sup 0/C after irradiation leads to extensive changes in the shape of survival curves, which are characterized by a narrowing or even disappearing of the shoulders. It can be concluded from the results obtained that an increased temperature modifies the capability of irradiated lyophilized cells to repair radiation damage.

  16. Influence of preirradiational and postirradiational heating of lyophilized Micrococcus radioproteolyticus cells on their survival

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1981-01-01

    The survival curve of Micrococcus radioproteolyticus following gamma irradiation of lyophilized cells is characterized by a broad shoulder reaching as far as the dose range 10 - 20 kGy (1 - 2 Mrad). The course of the curve indicates that under these conditions most of the changes induced by irradiation have the character of sublethal damage, which the cell can repair. The course of the survival curve does not change if the lyophilized cells are heated prior to irradiation for 2 h at 60 0 C. Certain changes do occur if the preirradiational temperature is 80 0 C. If the cells are exposed to increased temperature after irradiation even a temperature of 60 0 C brings about a marked decrease in survival. A temperature of 80 0 C after irradiation leads to extensive changes in the shape of survival curves, which are characterized by a narrowing or even disappearing of the shoulders. It can be concluded from the results obtained that an increased temperature modifies the capability of irradiated lyophilized cells to repair radiation damage. (author)

  17. Altering Cell Survival by Modulating Levels of Mitochondrial DNA Repair Enzymes

    National Research Council Canada - National Science Library

    Shokolenko, Inna

    2002-01-01

    .... Our previous results demonstrated that stable expression of E.coli Exonuclease III in mitochondria of breast cancer cells diminishes mtDNA repair capacity following oxidative stress, which leads to a decrease in long-term cell survival...

  18. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    Science.gov (United States)

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  19. Transitional-2 B cells acquire regulatory function during tolerance induction and contribute to allograft survival.

    Science.gov (United States)

    Moreau, Aurélie; Blair, Paul A; Chai, Jian-Guo; Ratnasothy, Kulachelvy; Stolarczyk, Emilie; Alhabbab, Rowa; Rackham, Chloe L; Jones, Peter M; Smyth, Lesley; Elgueta, Raul; Howard, Jane K; Lechler, Robert I; Lombardi, Giovanna

    2015-03-01

    In humans, tolerance to renal transplants has been associated with alterations in B-cell gene transcription and maintenance of the numbers of circulating transitional B cells. Here, we use a mouse model of transplantation tolerance to investigate the contribution of B cells to allograft survival. We demonstrate that transfer of B cells from mice rendered tolerant to MHC class I mismatched skin grafts can prolong graft survival in a dose-dependent and antigen-specific manner to a degree similar to that afforded by graft-specific regulatory T (Treg) cells. Tolerance in this model was associated with an increase in transitional-2 (T2) B cells. Only T2 B cells from tolerized mice, not naïve T2 nor alloantigen experienced T2, were capable of prolonging skin allograft survival, and suppressing T-cell activation. Tolerized T2 B cells expressed lower levels of CD86, increased TIM-1, and demonstrated a preferential survival in vivo. Furthermore, we demonstrate a synergistic effect between tolerized B cells and graft-specific Treg cells. IL-10 production by T2 B cells did not contribute to tolerance, as shown by transfer of B cells from IL-10(-/-) mice. These results suggest that T2 B cells in tolerant patients may include a population of regulatory B cells that directly inhibit graft rejection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phosphodiesterase type 4 inhibitor rolipram improves survival of spiral ganglion neurons in vitro.

    Directory of Open Access Journals (Sweden)

    Katharina Kranz

    Full Text Available Sensorineural deafness is caused by damage of hair cells followed by degeneration of the spiral ganglion neurons and can be moderated by cochlear implants. However, the benefit of the cochlear implant depends on the excitability of the spiral ganglion neurons. Therefore, current research focuses on the identification of agents that will preserve their degeneration. In this project we investigated the neuroprotective effect of Rolipram as a promising agent to improve the viability of the auditory neurons. It is a pharmaceutical agent that acts by selective inhibition of the phosphodiesterase 4 leading to an increase in cyclic AMP. Different studies reported a neuroprotective effect of Rolipram. However, its significance for the survival of SGN has not been reported so far. Thus, we isolated spiral ganglion cells of neonatal rats for cultivation with different Rolipram concentrations and determined the neuronal survival rate. Furthermore, we examined immunocytologically distinct proteins that might be involved in the neuroprotective signalling pathway of Rolipram and determined endogenous BDNF by ELISA. When applied at a concentration of 0.1 nM, Rolipram improved the survival of SGN in vitro. According to previous studies, our immunocytological data showed that Rolipram application induces the phosphorylation and thereby activation of the transcription factor CREB. This activation can be mediated by the cAMP-PKA-signalling pathway as well as via ERK as a part of the MAP-kinase pathway. However, only in cultures pre-treated with BDNF, an endogenous increase of BDNF was detected. We conclude that Rolipram has the potential to improve the vitality of neonatal auditory nerve cells in vitro. Further investigations are necessary to prove the effect of Rolipram in vivo in the adult organism after lesion of the hair cells and insertion of cochlear implants.

  1. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Woo, Sang-Keun; Lee, Kyo Chul; An, Gwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Pandya, Darpan [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Park, Noh Won; Nahm, Sang-Soep; Eom, Ki Dong [College of Veterinary Medicine, Konkuk University, Seoul (Korea, Republic of); Kim, Kwang Il; Lee, Tae Sup [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Chan Wha [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kang, Joo Hyun [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoo, Jeongsoo, E-mail: yooj@knu.ac.kr [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Lee, Yong Jin, E-mail: yjlee@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.

  2. A comparison of methods of determining the 100 percent survival of preserved red cells

    International Nuclear Information System (INIS)

    Valeri, C.R.; Pivacek, L.E.; Ouellet, R.; Gray, A.

    1984-01-01

    Studies were done to compare three methods to determine the 100 percent survival value from which to estimate the 24-hour posttransfusion survival of preserved red cells. The following methods using small aliquots of 51 Cr-labeled autologous preserved red cells were evaluated: First, the 125 I-albumin method, which is an indirect measurement of the recipient's red cell volume derived from the plasma volume measured using 125 I-labeled albumin and the total body hematocrit. Second, the body surface area method (BSA) in which the recipient's red cell volume is derived from a body surface area nomogram. Third, an extrapolation method, which extrapolates to zero time the radioactivity associated with the red cells in the recipient's circulation from 10 to 20 or 15 to 30 minutes after transfusion. The three methods gave similar results in all studies in which less than 20 percent of the transfused red cells were nonviable (24-hour posttransfusion survival values of between 80-100%), but not when more than 20 percent of the red cells were nonviable. When 21 to 35 percent of the transfused red cells were nonviable (24-hour posttransfusion survivals of 65 to 79%), values with the 125 I-albumin method and the body surface area method were about 5 percent lower (p less than 0.001) than values with the extrapolation method. When greater than 35 percent of the red cells were nonviable (24-hour posttransfusion survival values of less than 65%), values with the 125 I-albumin method and the body surface area method were about 10 percent lower (p less than 0.001) than those obtained by the extrapolation method

  3. A preliminary study on action mechanisms of surviving expression in cell apoptosis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Gong Li; Wu Qingfeng; Li Ping; Dai Zhongying; Liu Xinguo; Tao Jiajun

    2010-01-01

    It has been proven that over-expression of surviving in cancerous cell lines is related to the radioresistance of cells to high-LET radiation in previous work. In this study, action mechanisms of surviving gene in apoptosis induced by high-LET radiation were investigated. We found that inhibiting surviving by siRNA had no notable influence on Bcl-2 and Bax expressions induced by carbon ions. Surviving depressed cell apoptosis through the inhibition of the activities of caspase-3 and -9 possibly in cell apoptosis induced by high-LET radiation. (authors)

  4. Gemtuzumab Ozogamicin (GO Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Cathy C Zhang

    2018-01-01

    Full Text Available Gemtuzumab ozogamicin (GO is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML. Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs. Herein, we use cell line and patient-derived xenograft (PDX AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34. In vivo, the two chemoresistant subpopulations (CLL1+/CD117− and CD34+/CD38+ showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.

  5. Tumor cell survival dependence on helical tomotherapy, continuous arc and segmented dose delivery

    International Nuclear Information System (INIS)

    Yang Wensha; Wang Li; Larner, James; Read, Paul; Benedict, Stan; Sheng Ke

    2009-01-01

    The temporal pattern of radiation delivery has been shown to influence the tumor cell survival fractions for the same radiation dose. To study the effect more specifically for state of the art rotational radiation delivery modalities, 2 Gy of radiation dose was delivered to H460 lung carcinoma, PC3 prostate cancer cells and MCF-7 breast tumor cells by helical tomotherapy (HT), seven-field LINAC (7F), and continuous dose delivery (CDD) over 2 min that simulates volumetric rotational arc therapy. Cell survival was measured by the clonogenic assay. The number of viable H460 cell colonies was 23.2 ± 14.4% and 27.7 ± 15.6% lower when irradiated by CDD compared with HT and 7F, respectively, and the corresponding values were 36.8 ± 18.9% and 35.3 ± 18.9% lower for MCF7 cells (p < 0.01). The survival of PC3 was also lower when irradiated by CDD than by HT or 7F but the difference was not as significant (p = 0.06 and 0.04, respectively). The higher survival fraction from HT delivery was unexpected because 90% of the 2 Gy was delivered in less than 1 min at a significantly higher dose rate than the other two delivery techniques. The results suggest that continuous dose delivery at a constant dose rate results in superior in vitro tumor cell killing compared with prolonged, segmented or variable dose rate delivery.

  6. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  7. Models for cell survival with low LET radiation

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1975-01-01

    A model for cell survival under low LET irradiation was developed in which the cell is considered to have N 0 -independent sensitive sites, each of which can exist in either an undamaged state (state A) or one of two damaged states. Radiation can change the sensitive sites from the undamaged state to either of two damaged states. The first damaged state (state B) can either be repaired or be promoted on the second damaged state (state C), which is irreparable. The promotion from the first damaged state to the second can occur due to any of the following: (1) further radiation damage, (2) an abortive attempt to repair the site, or (3) the arrival at a part of the cell cycle where the damage is ''fixed.'' Subject to the further assumptions that radiation damage can occur either indirectly (i.e., through radiation products) or due to direct interaction, and that repair of the first damaged state is a one-step process, expressions can be derived for P(N/sub A/, N/sub B/,t) = probability that after time t a cell will have N/sub A/ sites in state A and N/sub B/ in state B. The problem of determining P(N/sub A/, N/sub B/, t) is formulated for arbitrary time dependences of the radiation field and of all rate coefficients. A large family of cell-survival models can be described by interpreting the sensitive sites in different ways and by making different choices of rate coefficients and of the combinations of numbers of sites in different states that will lead to cell death. (U.S.)

  8. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    Science.gov (United States)

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  9. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells.

    Science.gov (United States)

    Mendoza, Alejandra; Fang, Victoria; Chen, Cynthia; Serasinghe, Madhavika; Verma, Akanksha; Muller, James; Chaluvadi, V Sai; Dustin, Michael L; Hla, Timothy; Elemento, Olivier; Chipuk, Jerry E; Schwab, Susan R

    2017-06-01

    Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P 1 receptor (S1P 1 R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P 1 R on T cells, and that the requirement for S1P 1 R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.

  10. Calcium-independent phospholipase A₂, group VIA, is critical for RPE cell survival

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vohra, Rupali; Westlund, Barbro S.

    2014-01-01

    PURPOSE: To investigate the significance of calcium-independent phospholipase A₂, group VIA (iPLA2-VIA), in RPE cell survival following responses to sodium iodate (SI) in cell cultures. METHODS: The human retinal pigment epithelium (RPE) cell line (ARPE-19) cells and primary mouse-RPE cultures were...

  11. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  12. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  13. Argyrophilic nucleolar organizer region in MIB-1 positive cells in non-small cell lung cancer: clinicopathological significance and survival

    International Nuclear Information System (INIS)

    Kobyakov, Dmitriy Sergeevich; Avdalyan, Ashot Merudzhanovich; Lazarev, Aleksandr Fedorovich; Lushnikova, Elena Leonidovna; Nepomnyashchikh, Lev Moiseevich

    2014-01-01

    To evaluate the relation between argyrophilic nucleolar organizer region (AgNOR)-associated proteins and clinicopathological parameters and survival in non-small-cell lung cancer (NSCLC). A total of 207 surgical specimens diagnosed as NSCLC were included in this study. Double-staining procedures were performed using antigen Ki-67 (clone MIB-1) and silver nitrate by immunohistochemical and AgNOR-staining methods. The AgNOR area in MIB-1-positive cells of NSCLC is related to clinicopathological parameters under the TNM (tumor, node, and metastasis) system. The survival of patients with small AgNOR area in MIB-1-positive cells is better than that of patients with large AgNOR area. Molecular, biological (AgNOR area in MIB-1-positive cells), and clinicopathological (greatest tumor dimension, metastases to regional lymph nodes, histology, and differentiation) parameters are independent prognostic factors of NSCLC. The AgNOR area in MIB-1-positive cells is related to clinicopathological parameters and survival in NSCLC

  14. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-κB-mediated survival signaling

    International Nuclear Information System (INIS)

    Leskinen, Markus J.; Heikkilae, Hanna M.; Speer, Mei Y.; Hakala, Jukka K.; Laine, Mika; Kovanen, Petri T.; Lindstedt, Ken A.

    2006-01-01

    Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-κB-mediated survival signaling. Following chymase treatment, the translocation of active NF-κB/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1β-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-κB-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-κB-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques

  15. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  16. Correlation of hedgehog signal activation with chemoradiotherapy sensitivity and survival in esophageal squamous cell carcinomas

    International Nuclear Information System (INIS)

    Zhu Weiguo; You Zhenbin; Li Tao; Yu Changhua; Tao Guangzhou; Hu Mingli; Chen Xiaofei

    2011-01-01

    The objective of this study was to investigate the significance of hedgehog signaling pathway in chemoradiotherapy sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma. In the present study, we used the method of immunohistochemistry to examine the expression status of two hedgehog components, PTCH1 and glioma-associated oncogene GLI-1, in 100 pre-treated biopsy specimens of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. We find that high levels of PTCH1 and GLI-1 were detected in 76.0 and 72.0% of esophageal squamous cell carcinoma, respectively. Significant associations of high PTCH1 and GLI-1 expression with large tumor size (both P=0.01), locoregional progression (P=0.001 and 0.003, respectively) and the lack of complete response to chemoradiotherapy (P=0.008 and 0.01, respectively) were observed. Univariate analysis revealed that high PTCH1 and GLI-1 expression was associated with poor locoregional progression-free survival, distant progression-free survival and overall survival. Furthermore, esophageal squamous cell carcinoma patients with high PTCH1 and GLI-1 expression have the shorter survival time than the subgroups with negative and low PTCH1 and GLI-1 expression. In multivariate analysis, PTCH1 and GLI-1 expression status were both evaluated as independent prognostic factors for locoregional progression-free survival, distant progression-free survival and overall survival. These findings suggest an important role for the activation of hedgehog signaling in esophageal squamous cell carcinoma progression and that PTCH1 and GLI-1 expression may be significantly associated with esophageal squamous cell carcinoma resistance to chemoradiotherapy. (author)

  17. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Directory of Open Access Journals (Sweden)

    DiGiovanni John

    2006-04-01

    Full Text Available Abstract Background Squamous cell carcinoma (SCC of the skin is the most aggressive form of non-melanoma skin cancer (NMSC, and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3 in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK, to non-tumorigenic transformed skin cells (HaCaT, to highly tumorigenic cells (SRB1-m7 and SRB12-p9 and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN. The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM. This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or

  18. Effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells

    International Nuclear Information System (INIS)

    Hochberg, Z.; Kuten, A.; Hertz, P.; Tatcher, M.; Kedar, A.; Benderly, A.

    1983-01-01

    Cranial irradiation has been shown to impair growth hormone secretion in children. In this study a cell culture of dispersed rat anterior pituitary cells was exposed to single doses of radiation in the range of 100 to 1500 rad. Survival curves were obtained for the different anterior pituitary cell lines, and growth hormone secretion was measured in the tissue culture medium. Both survival and growth hormone secretion curves showed an initial shoulder in the range of 0 to 300 rad, followed by a decline between 300 to 750 rad. It is concluded that growth hormone secreting acidophilic pituicytes are sensitive to radiation at single doses greater than 300 rad

  19. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  20. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  1. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  2. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard L; Chudnovsky, Yakov; Pacold, Michael E; Chen, Walter W; Cantor, Jason R; Shelton, Laura M; Gui, Dan Y; Kwon, Manjae; Ramkissoon, Shakti H; Ligon, Keith L; Kang, Seong Woo; Snuderl, Matija; Vander Heiden, Matthew G; Sabatini, David M

    2015-04-16

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.

  3. Trends in incidence, treatment and survival of aggressive B-cell lymphoma in the Netherlands 1989–2010

    Science.gov (United States)

    Issa, Djamila E.; van de Schans, Saskia A.M.; Chamuleau, Martine E.D.; Karim-Kos, Henrike E.; Wondergem, Marielle; Huijgens, Peter C.; Coebergh, Jan Willem W.; Zweegman, Sonja; Visser, Otto

    2015-01-01

    Only a small number of patients with aggressive B-cell lymphoma take part in clinical trials, and elderly patients in particular are under-represented. Therefore, we studied data of the population-based nationwide Netherlands Cancer Registry to determine trends in incidence, treatment and survival in an unselected patient population. We included all patients aged 15 years and older with newly diagnosed diffuse large B-cell lymphoma or Burkitt lymphoma in the period 1989–2010 and mantle cell lymphoma in the period 2001–2010, with follow up until February 2013. We examined incidence, first-line treatment and survival. We calculated annual percentage of change in incidence and carried out relative survival analyses. Incidence remained stable for diffuse large B-cell lymphoma (n=23,527), while for mantle cell lymphoma (n=1,634) and Burkitt lymphoma (n=724) incidence increased for men and remained stable for women. No increase in survival for patients with aggressive B-cell lymphoma was observed during the period 1989–1993 and the period 1994–1998 [5-year relative survival 42% (95%CI: 39%–45%) and 41% (38%–44%), respectively], but increased to 46% (43%–48%) in the period 1999–2004 and to 58% (56%–61%) in the period 2005–2010. The increase in survival was most prominent in patients under 65 years of age, while there was a smaller increase in patients over 75 years of age. However, when untreated patients were excluded, patients over 75 years of age had a similar increase in survival to younger patients. In the Netherlands, survival for patients with aggressive B-cell lymphoma increased over time, particularly in younger patients, but also in elderly patients when treatment had been initiated. The improvement in survival coincided with the introduction of rituximab therapy and stem cell transplantation into clinical practice. PMID:25512643

  4. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  5. Sensitivity of HTB140 cell exposed to protons and alkylating agents

    International Nuclear Information System (INIS)

    Koricanac, L.; Petrovic, I.; Privitera, G.; Cuttone, G.; Ristic-Fira, A.

    2006-01-01

    Malignant melanoma is a highly aggressive cancer with a poor prognosis due to resistance to radiotherapy and chemotherapy regimens. The mainstay of treatment remains DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), chloroethylnitrosourea agent, also has demonstrated significant antitumoral effects in malignant melanoma. However, the resistance of melanoma cells limits their clinical application. In order to enhance the inhibition of melanoma cell growth, in this study, combined treatment of FM and DTIC with proton irradiation, was investigated. We analyzed the effects of combined treatment on HTB140 melanoma cell viability and proliferation. Significant inhibition of cell growth, especially cell proliferation, was obtained after treatment with protons and FM compare to single irradiation or drug treatment. Treatment with protons and DTIC has shown improved growth inhibition compare to appropriate single drug treatment, but not compare to irradiation as a single treatment. (author)

  6. Survival and DNA repair in ultraviolet-irradiated haploid and diploid cultured frog cells

    International Nuclear Information System (INIS)

    Freed, J.J.; Hoess, R.H.; Angelosanto, F.A.; Massey, H.C. Jr.

    1979-01-01

    Survival and repair of DNA following ultraviolet (254-nm) radiation have been investigated in ICR 2A, a cultured cell line from haploid embryos of the grassfrog, Rana pipiens. Survival curves from cells recovering in the dark gave mean lethal dose value (D 0 ) in the range 1.5-1.7 Jm -2 for both haploid and diploid cell stocks. The only significant difference observed between haploids and diploids was in the extent of the shoulder at low fluence (Dsub(q)), the value for exponentially multiplying diploid cells (3.0 Jm -2 ) being higher than that found for haploids (1.2 Jm -2 ). Irradiation of cultures reversibly blocked in the G1 phase of the cell cycle gave survival-curve coefficients indistinguishable between haploids and diploids. Post-irradiation exposure to visible light restored colony-forming capacity and removed chromatographically estimated pyrimidine dimers from DNA at the same rates. After fluences killing 90% of the cells, complete restoration of survival was obtained after 60-min exposure to 500 foot-candles, indicating that in this range lethality is entirely photoreversible and therefore attributable to pyrimidine dimers in DNA. Dimer removal required illumination following ultraviolet exposure, intact cells and physiological temperature, implying that the photoreversal involved DNA photolyase activity. Excision-repair capacity was slight, since no loss of dimers could be detected chromoatographically during up to 48 h incubation in the dark and since autoradiographically detected 'unscheduled DNA synthesis' was limited to a 2-fold increase saturated at 10 Jm -2 . These properties make ICR 2A frog cells useful to explore how DNA-repair pathways influence mutant yield. (Auth.)

  7. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells.

    Directory of Open Access Journals (Sweden)

    Ryunosuke Muro

    Full Text Available The Ras-mitogen-activated protein kinase (MAPK pathway is crucial for T cell receptor (TCR signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3 is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.

  8. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Hussein Akil

    Full Text Available Interleukin-22 (IL-22 is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1 and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM. Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  9. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  10. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463.

    Science.gov (United States)

    Zhu, Yi; Doornebal, Ewald J; Pirtskhalava, Tamar; Giorgadze, Nino; Wentworth, Mark; Fuhrmann-Stroissnigg, Heike; Niedernhofer, Laura J; Robbins, Paul D; Tchkonia, Tamara; Kirkland, James L

    2017-03-08

    Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-X L inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.

  11. Effects of low dose rate γ-rays on cell proliferation and survival in exponentially growing and plateau phase cultures of normal rat kidney cells

    International Nuclear Information System (INIS)

    Tsuboi, A.

    1982-01-01

    The effects of 60 Co γ-rays on cell clonogenicity and cell proliferation were examined in NRK cells in exponential and plateau growth phases during and after irradiation at various dose rates. The typical dese rate effect for the survival responses was observed between acute irradiation and continuous irradiation at dose rates of 9.6-44 rads/h. Similar dose rate effect for the perturbation of the proliferation was observed in exponentially growing cells during irradiation. Some differences were found in survival when the cells were exposed to γ-rays at 9.6 rads/h or at 13.7 rads/h. The survival curves of exponential phase cells irradiated at these dose rates showed a shape different from that observed in plateau phase cells. Namely, a steady state of survival appeared around an accumulated dose of 1000 rads (dose-rate of 9.6 rads/h) and an accumulated dose of 1500 rads (dose-rate of 13.7 rads/h) in the exponential phase cells, while such a steady state of survival was not detected in plateau phase cells after similar conditions of irradiation. Moreover, the extrapolation number of the survival curve was much larger at the lower dose rate in exponential phase cells, in contrast to a value of the unity oberved in plateau phase cells, The radiosensitivity of plateau phase cells was somewhat lower compared to exponential phase cells over the range of accumulated doses at the dose rates used. These differences in cellular responses to the radiation between the two phases could be explained by changes in cell proliferation, the redistribution of the cell cycle compartments and the repair capacity of cellular damage during irradiation. (author)

  12. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    Science.gov (United States)

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505

  13. Red blood cell labeling with technetium-99m. Effect of radiopaque contrast agents

    International Nuclear Information System (INIS)

    Finkel, J.; Chervu, L.R.; Bernstein, R.G.; Srivastava, S.C.

    1988-01-01

    Radiographic contrast agents have been reported in the literature to interfere significantly with red blood cell (RBC) labeling in vivo by Tc-99m. Moreover, in the presence of contrast agents, red cells have been known to undergo significant morphologic changes. These observations led to the current RBC labeling study in patients (N = 25) undergoing procedures with the administration of contrast media. Before and after contrast administration, blood samples were drawn from each patient into vacutainer tubes containing heparin and RBC labeling was performed using 1-ml aliquots of these samples following the Brookhaven National Laboratory protocol. The differences in average percentage labeling yield with and without contrast media were not significant. In vivo labeling in hypertensive rats with administration of contrast media up to 600 mg likewise consistently gave high labeling yields at all concentrations. Purported alterations in cell labeling attributed to contrast agents are not reflected in these studies, and other pathophysiologic factors need to be identified to substantiate the previous reports. In vitro study offers a potentially useful and simple method to delineate effects of various agents on cell labeling

  14. Rac1 selective activation improves retina ganglion cell survival and regeneration.

    Directory of Open Access Journals (Sweden)

    Erika Lorenzetto

    Full Text Available In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.

  15. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    International Nuclear Information System (INIS)

    Cordes, N.; Meineke, V.

    2003-01-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit β1, were irradiated, and clonogenic cell survival, β1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, β1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in β1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the β1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  16. Expression of delayed cell death (DCD) in the progeny of fish cells surviving 2,4-dichloroaniline (2,4-DCA) exposure

    International Nuclear Information System (INIS)

    Kilemade, Michael; Mothersill, Carmel

    2003-01-01

    Interest in and concern for the quality of the environment has prompted a great deal of research into methods of measuring and assessing changes in it. One problem of major interest is that of increasing amounts of mutagenic/carcinogenic chemicals generated and released into marine and freshwater ecosystems. Numerous techniques involving whole animals and cell culture for these genotoxic changes have been devised to assay specific chemicals. Little has been done to determine the effects of potential genotoxicants on aquatic organisms. The purpose of this study was to investigate if 2,4-Dichloroaniline (2,4-DCA) (CASRN: 554-00-7), induced delayed cell death (DCD) or delayed reproductive cell death a.k.a. as lethal mutations in a teleost cell line, CHSE-214. Delayed expression of cell death in the progeny of cells, which survived a toxic insult, was first shown for ionizing radiation and is one of the signs of induced genomic instability. The survival of cells initially treated with 2,4-DCA and the survival of their progeny were determined. When cells are exposed to a toxic insult, the component cells of a normal appearing survivor colony or clone were commonly thought to have proliferative capacity equivalent to that of the untreated cells. In this study, however, it was found that CHSE-214 cells surviving 2,4-DCA exposure carried heritable lethal defects, which came to light only after numerous apparently successful divisions, in the form of plating efficiencies, which were reduced below those of the untreated, control cells. DCD expression did not appear to be dose-dependent with poor cell survival occurring at the lower end of 2,4-DCA exposure and remained constant until recovering to something like 60% of the controls. A study of the CHSE-214 kinetics post-exposure showed that the apparent reduced growth rate of the cells was due to reduced numbers of reproductively viable cells in the population. Results showed that the expression of DCD occurred persistently

  17. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  18. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  19. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  20. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    Science.gov (United States)

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  1. Chemotherapeutic agents attenuate CXCL12-mediated migration of colon cancer cells by selecting for CXCR4-negative cells and increasing peptidase CD26

    International Nuclear Information System (INIS)

    Cutler, Murray J.; Lowthers, Erica L.; Richard, Cynthia L.; Hajducek, Dagmar M.; Spagnuolo, Paul A.; Blay, Jonathan

    2015-01-01

    Recurrence of colorectal cancer (CRC) may arise due to the persistence of drug-resistant and cancer-initiating cells that survive exposure to chemotherapy. Proteins responsible for this recurrence include the chemokine receptor CXCR4, which is known to enable CRC metastasis, as well as the cancer-initiating cell marker and peptidase CD26, which terminates activity of its chemokine CXCL12. We evaluated the expression and function of CXCR4 and CD26 in colon cancer cell lines and xenografts following treatment with common chemotherapies using radioligand binding, flow cytometry, immunofluorescence, and enzymatic assays. 5-Fluorouracil, oxaliplatin and SN-38 (the active metabolite of irinotecan), as well as cisplatin, methotrexate and vinblastine, each caused decreases in cell-surface CXCR4 and concomitant increases in CD26 on HT-29, T84, HRT-18, SW480 and SW620 CRC cell lines. Flow cytometry indicated that the decline in CXCR4 was associated with a significant loss of CXCR4+/CD26- cells. Elevations in CD26 were paralleled by increases in both the intrinsic dipeptidyl peptidase activity of CD26 as well as its capacity to bind extracellular adenosine deaminase. Orthotopic HT-29 xenografts treated with standard CRC chemotherapeutics 5-fluorouracil, irinotecan, or oxaliplatin showed dramatic increases in CD26 compared to untreated tumors. Consistent with the loss of CXCR4 and gain in CD26, migratory responses to exogenous CXCL12 were eliminated in cells pretreated with cytotoxic agents, although cells retained basal motility. Analysis of cancer-initiating cell CD44 and CD133 subsets revealed drug-dependent responses of CD26/CD44/CD133 populations, suggesting that the benefits of combining standard chemotherapies 5-fluoruracil and oxaliplatin may be derived from their complementary elimination of cell populations. Our results indicate that conventional anticancer agents may act to inhibit chemokine-mediated migration through eradication of CXCR4+ cells and attenuation of

  2. A feeding protocol for delivery of agents to assess development in Varroa mites.

    Directory of Open Access Journals (Sweden)

    Ana R Cabrera

    Full Text Available A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to deliver selected agents and then returned to bee larvae. Transcript levels of two reference genes, actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, as well as for nine selected genes involved in reproductive processes showed that the starvation and feeding protocol periods did not pose a high level of stress to the mites as transcript levels remained comparable between phoretic mites and those completing the protocol. The feeding protocol was used to deliver molecules such as hormone analogs or plasmids. Mites fed with Tebufenozide, an ecdysone analog, had higher transcript levels of shade than untreated or solvent treated mites. In order to extend this feeding protocol, cultured insect cells were incorporated to a final ratio of 1 part cells and 2 parts hemolymph. Although supplementation with Bombyx mori Bm5 cells increased the amount of hemolymph consumed per mite, there was a significant decrease in the percentage of mites that fed and survived. On the other hand, Drosophila melanogaster S2 cells reduced significantly the percentage of mites that fed and survived as well as the amount of hemolymph consumed. The feeding protocol provides a dynamic platform with which to challenge the Varroa mite to establish efficacy of control agents for this devastating honey bee pest.

  3. Comparison of six different models describing survival of mammalian cells after irradiation

    International Nuclear Information System (INIS)

    Sontag, W.

    1990-01-01

    Six different cell-survival models have been compared. All models are based on the similar assumption that irradiated cells are able to exist in one of three states. S A is the state of a totally repaired cell, in state S C the cell contains lethal lesions and in state S b the cell contains potentially lethal lesions i.e. those which either can be repaired or converted into lethal lesions. The differences between the six models lie in the different mathematical relationships between the three states. To test the six models, six different sets of experimental data were used which describe cell survival at different repair times after irradiation with sparsely ionizing irradiation. In order to compare the models, a goodness-of-fit function was used. The differences between the six models were tested by use of the nonparametric Mann-Whitney two sample test. Based on the 95% confidence limit, this required separation into three groups. (orig.)

  4. Implications of tissue target-cell survival-curve shape for values of split-dose recovery doses: late versus early effects

    International Nuclear Information System (INIS)

    Redpath, J.L.; Peel, D.M.; Hopewell, J.W.

    1984-01-01

    Recent data from this laboratory on split-dose recovery for early and late effects in pig skin are consistent with the linear-quadratic model for cell survival, and with relative cell survival-curve shapes for early- and late-effect target cells where the early-effect cells have an intially steeper and straighter survival-curve than the late-effect cells. (author)

  5. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival.

    Science.gov (United States)

    Webster, K E; Kim, H-O; Kyparissoudis, K; Corpuz, T M; Pinget, G V; Uldrich, A P; Brink, R; Belz, G T; Cho, J-H; Godfrey, D I; Sprent, J

    2014-09-01

    Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt(+) NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt(+) innate lymphoid cells and CD4(+) Th17 cells, and suggests common survival requirements for functionally similar cells.

  6. Cellular Glycolysis and The Differential Survival of Lung Fibroblast and Lung Carcinoma Cell Lines.

    Science.gov (United States)

    Farah, Ibrahim O

    2016-04-01

    Tumor growth and abnormal cell survival were shown to be associated with a number of cellular metabolic abnormalities revealed by impaired oral glucose tolerance, depressed lipoprotein lipase activity leading to hypertriglyceridemia, and changes in amino acid profile as evidenced by increased plasma free tryptophan levels in patients with breast, lung, colon, stomach, and other cancers from various origins. The above findings seem to relate to or indicate a shift to non-oxidative metabolic pathways in cancer. In contrast to normal cells, cancer cells may lose the ability to utilize aerobic respiration due to either defective mitochondria or hypoxia within the tumor microenvironments. Glucose was shown to be the major energy source in cancer cells where it utilizes aerobic /anaerobic glycolysis with the resultant lactic acid formation. The role of energetic modulations and use of glycolytic inhibitors on cancer/normal cell survival is not clearly established in the literature. We hypothesize that natural intermediates of glycolysis and the citric acid cycle will differentially and negatively impact the cancer phenotype in contrast to their no effects on the normal cell phenotype. Therefore, the purpose of this study was to evaluate six potential glycolytic modulators namely, Pyruvic acid, oxalic acid, Zn acetate, sodium citrate, fructose diphosphate (FDP) and sodium bicarbonate at μM concentrations on growing A549 (lung cancer) and MRC-5 (normal; human lung fibroblast) cell lines with the objective of determining their influence on visual impact, cell metabolic activity, cell viability and end-point cell survival. Exposed and non-exposed cells were tested with phase-contrast micro-scanning, survival/death and metabolic activity trends through MTT-assays, as well as death end-point determinations by testing re-growth on complete media and T4 cellometer counts. Results showed that oxalic acid and Zn acetate both influenced the pH of the medium and resulted in

  7. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death.

    Science.gov (United States)

    Ur Rahman, Muhammad Saif; Zhang, Ling; Wu, Lingyan; Xie, Yuqiong; Li, Chunchun; Cao, Jiang

    2017-01-01

    Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC 50 ) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G 0 /G 1 and G 1 /S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs.

  8. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  9. Erythrokinetics, ferrokinetics and red cell survival in sickle cell anaemia under subtropical climatic conditions

    International Nuclear Information System (INIS)

    Cardenas, R.

    1975-01-01

    Ferrokinetic parameters were evaluated with 59 Fe and red-cell survival with 51 Cr by classical techniques in a total of 17 patients with sickle-cell disease. The mean plasma 59 Fe half-disappearance time in these patients was 29.5 min as compared with a normal value of 92 min, and the t1/2 51 Cr 8.0 days as compared with a normal value of 26.0 days. The mean red-cell iron turnover rate was elevated to 9 times normal. The increased destruction of red cells appeared to take place predominantly, though not entirely, in the spleen. Eight of the 17 patients studied were identified as having intercurrent complications, but these did not significantly affect the results of the investigations. A group of 5 boys in whom the red-cell iron turnover rate was elevated to a lesser degree than in the other patients were subjected to more detailed studies of plasma 59 Fe clearance with particular reference to ineffective erythropoiesis. In these patients, the plasma 59 Fe clearance curves showed precocious humps characteristic of ineffective erythropoiesis. Detailed analysis of the results indicated ineffective erythropoiesis corresponding to 3.6, 16.0, 22.6, 32.0 and 50.0 % of the iron initially taken up by the bone marrow. It is concluded that while the anaemia in most patients with sickle-cell disease is mainly due to shortened survival of the circulating red cells, with increased destruction of red cells in the spleen, ineffective erythropoiesis may none the less be an important factor determining the actual degree of this anaemia

  10. Mathematical analysis of 51Cr-labelled red cell survival curves in congenital haemolytic anaemias

    International Nuclear Information System (INIS)

    Kasfiki, A.G.; Antipas, S.E.; Dimitriou, P.A.; Gritzali, F.A.; Melissinos, K.G.

    1982-01-01

    The parameters of 51 Cr labelled red cell survival curves were calculated in 26 patients with homozygous β-thalassaemia, 8 with sickle-cell anaemia and 3 with s-β-thalassaemia, using a non-linear weighted least squares analysis computer program. In thalassaemic children the calculated parameters denote that the shorting of the mean cell life is due to early senescence alone, while there is some evidence that in thalassaemic adults additional extracellular destruction mechanisms participate as well. Red cell survival curves from patients with sickle-cell anaemia and s-β-thalassaemia resemble each other, while their parameters indicate an initial rapid loss of radioactivity, early senescence and the presence of extracellular red cell destruction factors. (orig.)

  11. Withdrawal of immunosuppresive agents in the treatment of disseminated coccidioidomycosis.

    Science.gov (United States)

    Kaplan, J E; Zoschke, D; Kisch, A L

    1980-04-01

    Disseminated coccidioidomycosis is a systemic fungal infection that causes high mortality in the renal transplatn patient. Cell-mediated immunity, which appears to be the relevant host defense mechanism, is impaired by the immunosupressive agents used to prevent allograft rejection. In the case presented, immunosuppressive therapy was stopped as an adjunct to treatment of this infection. The patient has shown evidence of improvement, and his allograft has continued to function nine months after the withdrawal of immunosuppressive therapy and 18 months after the diagnosis. In vitro lymphocyte function studies indicate that the impairment in cell-mediated immunity detected prior to withdrawal of immunosuppressive therapy has persisted, probably accounting for allograft survival. Withdrawal of immunosuppressive therapy may prolong survival in renal transplant patients with disseminated coccidioidomycosis. Additionally, depression in cell-mediated immunity associated with the fungal infection itself may be sufficient to prevent allograft rejection in these patients.

  12. More than 10 years survival with sequential therapy in a patient with advanced renal cell carcinoma: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.L.; Wang, F.L.; Yi, X.M.; Qin, W.J.; Wu, G.J. [Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi (China); Huan, Y. [Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, L.J.; Zhang, G.; Yu, L.; Zhang, Y.T.; Qin, R.L.; Tian, C.J. [Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi (China)

    2014-10-31

    Although radical nephrectomy alone is widely accepted as the standard of care in localized treatment for renal cell carcinoma (RCC), it is not sufficient for the treatment of metastatic RCC (mRCC), which invariably leads to an unfavorable outcome despite the use of multiple therapies. Currently, sequential targeted agents are recommended for the management of mRCC, but the optimal drug sequence is still debated. This case was a 57-year-old man with clear-cell mRCC who received multiple therapies following his first operation in 2003 and has survived for over 10 years with a satisfactory quality of life. The treatments given included several surgeries, immunotherapy, and sequentially administered sorafenib, sunitinib, and everolimus regimens. In the course of mRCC treatment, well-planned surgeries, effective sequential targeted therapies and close follow-up are all of great importance for optimal management and a satisfactory outcome.

  13. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    Full Text Available Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria.

  14. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [Northwestern Memorial Hospital, Chicago, IL (United States); Georgia Institute of Technology, Atlanta, GA (Georgia); Wang, C [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2016-06-15

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities. These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell

  15. The regulation of function, growth and survival of GLP-1-producing L-cells

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Holst, Jens Juul; Kappe, Camilla

    2016-01-01

    that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells...... absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous...... secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms...

  16. Metastatic renal cell carcinoma management

    Directory of Open Access Journals (Sweden)

    Flavio L. Heldwein

    2009-06-01

    Full Text Available PURPOSE: To assess the current treatment of metastatic renal cell carcinoma, focusing on medical treatment options. MATERIAL AND METHODS: The most important recent publications have been selected after a literature search employing PubMed using the search terms: advanced and metastatic renal cell carcinoma, anti-angiogenesis drugs and systemic therapy; also significant meeting abstracts were consulted. RESULTS: Progress in understanding the molecular basis of renal cell carcinoma, especially related to genetics and angiogenesis, has been achieved mainly through of the study of von Hippel-Lindau disease. A great variety of active agents have been developed and tested in metastatic renal cell carcinoma (mRCC patients. New specific molecular therapies in metastatic disease are discussed. Sunitinib, Sorafenib and Bevacizumab increase the progression-free survival when compared to therapy with cytokines. Temsirolimus increases overall survival in high-risk patients. Growth factors and regulatory enzymes, such as carbonic anhydrase IX may be targets for future therapies. CONCLUSIONS: A broader knowledge of clear cell carcinoma molecular biology has permitted the beginning of a new era in mRCC therapy. Benefits of these novel agents in terms of progression-free and overall survival have been observed in patients with mRCC, and, in many cases, have become the standard of care. Sunitinib is now considered the new reference first-line treatment for mRCC. Despite all the progress in recent years, complete responses are still very rare. Currently, many important issues regarding the use of these agents in the management of metastatic renal cancer still need to be properly addressed.

  17. Ten-year survival of patients with oesophageal squamous cell ...

    African Journals Online (AJOL)

    Objectives. The standard predictive factors of actuarial survival such as T and N stage become less important as patients live for more than 10 years after treatment of cancer. Reports of actual 10-year survivors of oesophageal squamous cell carcinoma (SCC) are rare, and demographic and clinicopathological factors ...

  18. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  19. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  20. High endothelin-converting enzyme-1 expression independently predicts poor survival of patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun

    2017-09-01

    Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression

  1. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia

    International Nuclear Information System (INIS)

    Saland, E; Boutzen, H; Castellano, R; Pouyet, L; Griessinger, E; Larrue, C; Toni, F de; Scotland, S; David, M; Danet-Desnoyers, G; Vergez, F; Barreira, Y; Collette, Y; Récher, C; Sarry, J-E

    2015-01-01

    Relevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2Rγ c null mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies

  2. Mathematical simulation of influence of irradiated cell reparative system saturation on cell survival. Communication 1. Simulation of survival curves in prokaryotes

    International Nuclear Information System (INIS)

    Knyigavko, V.G.; Meshcheryakova, O.P.; Radzyishevs'ka, Je.B.

    2004-01-01

    Mathematical models of the processes of forming survival curves for prokaryotes which are based on the idea about the possibility of saturation of radiation lesion reparation systems of DNA of the irradiated cells at the dose increase were worked out. For the simplest of the discussed models the authors discuss the question about the methods of evaluation of the model parameters

  3. Proliferation and clonal survival of human lung cancer cells treated with fractionated irradiation in combination with paclitaxel

    International Nuclear Information System (INIS)

    Rijn, Johannes van; Berg, Jaap van den; Meijer, Otto W.M.

    1995-01-01

    Purpose: This study was performed to determine the effects of a continuous exposure to paclitaxel (taxol) in combination with fractionated irradiation on cell proliferation and survival. Methods and Materials: Human lung carcinoma cells (SW1573) were given a daily treatment with 3 Gy of x-rays during 5 days in the continuous presence of 5 nM taxol. The surviving fraction and the total number of cells were determined every 24 h before and immediately after irradiation. Results: Irradiation with 5 x 3 Gy and 5 nM taxol cause approximately the same inhibition of cell proliferation. In combination these treatments have an additional effect and the cell population increases no further after the first 24 h. Whereas the cells become more resistant to taxol after the first 24 h with a minimum survival of 42%, taxol progressively reduces the population of surviving cells in combination with x-rays when the number of fractions increases, up to 25-fold relative to irradiation alone. The enhancement effect of 5 nM taxol is likely to be attributed to an inhibition of the repopulation during fractionated irradiation and not to an increased radiosensitivity. Only after treatment with 10 or 100 nM taxol for 24 h, which is attended with a high cytotoxicity, is moderate radiosensitization observed. Conclusion: Taxol, continuously present at a low concentration with little cytotoxicity, causes a progressive reduction of the surviving cell population in combination with fractionated irradiation, mainly by an inhibition of the repopulation of surviving cells between the dose fractions

  4. Reactions of human dental pulp cells to capping agents in the presence or absence of bacterial exposure.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Tribble, Gena; Chen, Wei

    2017-01-01

    An ideal pulp-capping agent needs to have good biocompatibility and promote reparative dentinogenesis. Although the effects of capping agents on healthy pulp are known, limited data regarding their effects on bacterial contaminated pulp are available. This study aimed to evaluate the reaction of contaminated pulps to various capping agents to assist clinicians in making informed decisions. Human dental pulp (HDP) cell cultures were developed from extracted human molars. The cells were exposed to a bacterial cocktail comprising Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus gordonii before being cocultured with capping agents such as mineral trioxide aggregate (MTA) Portland cement (PC), and Dycal. HDP cell proliferation was assayed by MTS colorimetric cell proliferation assay, and its differentiation was evaluated by real-time PCR for detecting alkaline phosphatase, dentin sialophosphoprotein, and osteocalcin expressions. MTA and PC had no apparent effect, whereas Dycal inhibited HDP cell proliferation. PC stimulated HDP cell differentiation, particularly when they were exposed to bacteria. MTA and Dycal inhibited differentiation, regardless of bacterial infection. In conclusion, PC was the most favorable agent, followed by MTA, and Dycal was the least favorable agent for supporting the functions of bacterial compromised pulp cells.

  5. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  6. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2010-01-01

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  7. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji, E-mail: kzsuzuki@nagasaki-u.ac.jp [Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Kodama, Seiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-machi, Sakai 599-8570 (Japan); Watanabe, Masami [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun, Osaka 590-0494 (Japan)

    2010-01-05

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  8. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  9. Prolongation of rat islet allograft survival by direct ultraviolet irradiation of the graft

    International Nuclear Information System (INIS)

    Lau, H.; Reemtsma, K.; Hardy, M.A.

    1984-01-01

    Ultraviolet irradiation of rat dendritic cells completely abrogated their allostimulatory capacity in a mixed lymphocyte reaction. Rat islets of Langerhans similarly irradiated remained hormonally functional when transplanted into syngeneic diabetic rats. Allogeneic transplantation across a major histocompatibility barrier of islets initially treated in vitro with ultraviolet irradiation resulted in prolonged allograft survival without the use of any immunosuppressive agents

  10. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  11. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation

    International Nuclear Information System (INIS)

    Wang Jufang; Li Renming; Guo Chuanling; Fournier, C.; K-Weyrather, W.

    2008-01-01

    To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated with 250 kV X-rays, or 266 MeV/u, 195 MeV/u and 11 MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The relative biological effective (RBE) 10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is 1 for both single and two fractionated irradiation of NHDF cells. Using 11 MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE 10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region, RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions. (author)

  12. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  13. Survival of irradiated glia and glioma cells studied with a new cloning technique

    International Nuclear Information System (INIS)

    Nilsson, S.; Carlsson, J.; Larsson, B.; Ponten, J.

    1980-01-01

    A method allowing cloning of monolayer cultured cells with a low plating efficiency was developed. Cells were grown in several small palladium squares to obtain a high cell density. These squares were surrounded by non-adhesive agarose to prevent large distance migration and thereby mixing of the clones. By using easily-cloned hamster cells for comparison it was found that the survival curves were similar to the curves obtained with conventional cloning. The new method was used to compare the radiosensitivity of cultured human glia and glioma cells which both have a low plating efficiency ( 0 -values (1.5 to 2.5 Gy) and large shoulders (extrapolation numbers around 5) indicating that they were rather resistant and had a high capacity for accumulation of sublethal damage. The survival curves for glia cells had lower D 0 -values (1.3 to 1.5 Gy) and no shoulders at all, indicating that they were more sensitive than the glioma cells. (author)

  14. Postirradiation DNA synthesis is inversely related to cell survival

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1987-01-01

    Postirradiation (PI) events which might lead to cellular reproductive death or survival were studied in L5178Y-S (LY-S) cells. PI incubation at 25 0 C protects LY-S cells against the PLD fixation which takes place at 37 0 C. An optimal condition for the repair of PLD is 1h at 37 0 C followed by 4h holding at 25 0 C prior to the second half of a split dose, or 5L holding at 25 0 C without a 37 0 C incubation. Longer incubations at 37 0 C resulted in progressively decreased survivals. Postirradiation inhibition of DNA synthesis at 37 0 C was observed only during the first 30 min; thereafter, /sup 3/H-dThd incorporation was higher than in unirradiated controls. This excess synthesis effect was removed by shifting irradiated cells to 25 0 C holding. The inhibition observed at 25 0 C was reversed by shifting to 37 0 C. Thus the degree of postirradiation DNA synthesis is inversely related to PLD/SLD repair. DNA filter elution shows complete SSB repair by 3h at both temperatures (with faster kinetics at 37 0 C), and DSB repair plateaus at 80% (37 0 C) and 60% (25 0 C) after 90 min

  15. Novel radiosensitizers for locally advanced epithelial tumors: inhibition of the PI3K/Akt survival pathway in tumor cells and in tumor-associated endothelial cells as a novel treatment strategy?

    International Nuclear Information System (INIS)

    Riesterer, Oliver; Tenzer, Angela; Zingg, Daniel; Hofstetter, Barbara; Vuong, Van; Pruschy, Martin; Bodis, Stephan

    2004-01-01

    In locally advanced epithelial malignancies, local control can be achieved with high doses of radiotherapy (RT). Concurrent chemoradiotherapy can improve tumor control in selected solid epithelial adult tumors; however, treatment-related toxicity is of major concern and the therapeutic window often small. Therefore, novel pharmacologic radiosensitizers with a tumor-specific molecular target and a broad therapeutic window are attractive. Because of clonal heterogeneity and the high mutation rate of these tumors, combined treatment with single molecular target radiosensitizers and RT are unlikely to improve sustained local tumor control substantially. Therefore, radiosensitizers modulating entire tumor cell survival pathways in epithelial tumors are of potential clinical use. We discuss the preclinical efficacy and the mechanism of three different, potential radiosensitizers targeting the PTEN/PI3K/Akt survival pathway. These compounds were initially thought to act as single-target agents against growth factor receptors (PKI 166 and PTK 787) or protein kinase C isoforms (PKC 412). We describe an additional target for these compounds. PKI 166 (an epidermal growth factor [EGF] receptor inhibitor) and PKC 412, target the PTEN/PI3K/Akt pathway mainly in tumor cells, and PTK 787 (a vascular endothelial growth factor [VEGF] receptor inhibitor) in endothelial cells. Even for these broader range molecular radiosensitizers, the benefit could be restricted to human epithelial tumor cell clones with a distinct molecular profile. Therefore, these potential radiosensitizers have to be carefully tested in specific model systems before introduction in early clinical trials

  16. Combining Targeted Agents With Modern Radiotherapy in Soft Tissue Sarcomas

    Science.gov (United States)

    Wong, Philip; Houghton, Peter; Kirsch, David G.; Finkelstein, Steven E.; Monjazeb, Arta M.; Xu-Welliver, Meng; Dicker, Adam P.; Ahmed, Mansoor; Vikram, Bhadrasain; Teicher, Beverly A.; Coleman, C. Norman; Machtay, Mitchell; Curran, Walter J.

    2014-01-01

    Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes. PMID:25326640

  17. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  18. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival

    Directory of Open Access Journals (Sweden)

    Joffrey ePelletier

    2012-02-01

    Full Text Available The hypoxia-inducible factor 1 (HIF-1, in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1, were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these hypoxia-preconditioned cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an alarm that prepares the cells to face subsequent nutrient depletion and to survive.

  19. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Joffrey; Bellot, Grégory [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France); Gounon, Pierre; Lacas-Gervais, Sandra [Centre Commun de Microscopie Appliquée, University of Nice-Sophia Antipolis, Nice (France); Pouysségur, Jacques; Mazure, Nathalie M., E-mail: mazure@unice.fr [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France)

    2012-02-28

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO{sub 2} acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  20. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    International Nuclear Information System (INIS)

    Pelletier, Joffrey; Bellot, Grégory; Gounon, Pierre; Lacas-Gervais, Sandra; Pouysségur, Jacques; Mazure, Nathalie M.

    2012-01-01

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO 2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  1. Current treatments for advanced stage non-small cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E; Socinski, Mark A

    2009-04-15

    Lung cancer remains the leading cause of cancer mortality in the United States, and the majority of patients will have non-small cell lung cancer (NSCLC) and will present with locally advanced or metastatic disease. In the United States, the most common histology is adenocarcinoma, followed by squamous cell, large cell, and not otherwise specified. For patients with a preserved performance status (PS), double agent platinum-based therapy extends survival, improves quality of life (Qol), and reduces disease-related symptoms. The addition of a third cytotoxic agent increases toxicity without any clinical benefit. However, the addition of a targeted agent (bevacizumab, an antiangioegenesis agent, or cetuximab, an antibody against the epidermal growth factor receptor [EGFR]) to platinum-based therapy has yielded an improvement in survival compared with platinum-based therapy alone. To receive bevacizumab, patients are required to have nonsquamous histology, a PS of 0 or 1, and no evidence of brain metastases, hemoptysis, uncontrolled hypertension, and no need for therapeutic anticoagulation. The benefits of chemotherapy for patients with a poor performance status are less well defined, and the current recommendations are for treatment with single-agent chemotherapy. Elderly patients (defined as age > or = 70 yr) derive a survival and Qol benefit from chemotherapy treatment, and for the majority of elderly patients single-agent chemotherapy is the standard. However, elderly patients with a good performance status and without co-morbidities can tolerate platinum-based therapy without excessive toxicity and appear to derive a survival benefit similar to that in younger patients. Recently, a separate population of patients defined by a light or never-smoking history has been identified. This patient population appears to have unique clinical and molecular characteristics, and may benefit from initial therapy with an EGFR tyrosine kinase inhibitor. Once patients have

  2. Survival and photoreactivability of ultraviolet-irradiated cultured fish cells (CAF-MM1)

    International Nuclear Information System (INIS)

    Mano, Y.; Mitani, H.; Etoh, H.; Egami, N.

    1980-01-01

    The sensitivity to ultraviolet light (uv) and photoreactivating ability of cultured fish clone cells (CAF-MM1) were investigated. Dose-survival relationship curves were obtained using the colony-forming technique at various postirradiation temperatures (33, 26, and 20 0 C). At 26 0 C the values of D 0 , D/sub q/, and the extrapolation number (n) were 1.74 J/m 2 , 2.62 J/m 2 , and 4.5, respectively; no marked differences in these values were found among different temperatures. Visible light illumination after uv irradiation produced a marked increase in survival. No photoreactivation effects were observed beyond about 30 h. Caffeine increased uv sensitivity of the CAF-MM1 cells, and from the results it is suggested that the cells have some caffeine-sensitive dark repair mechanisms

  3. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells

    International Nuclear Information System (INIS)

    Jeon, Jeong Yong; Kim, Seung Won; Park, Ki Cheong; Yun, Mijin

    2015-01-01

    Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis. Prostate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins. We demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth. Given these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of

  4. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    Science.gov (United States)

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  5. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  6. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a.

    Science.gov (United States)

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Sheila; Kabiri, Mahboubeh; Mahmoudi Saber, Mohaddeseh; Dorkoosh, Farid Abedin

    2017-12-01

    Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H 2 O 2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  9. Hyperthermic survival of Chinese hamster ovary cells as a function of cellular population density at the time of plating

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Holahan, P.K.; Dewey, W.C.

    1984-01-01

    The survival of synchronous G 1 or asynchronous Chinese hamster ovary cells in vitro to heat treatment may depend on the cellular population density at the time of heating and/or as the cells are cultured after heating. The addition of lethally irradiated feeder cells may increase survival at 10 -3 by as much as 10- to 100-fold for a variety of conditions when cells are heated either in suspension culture or as monolayers with or without trypsinization. The protective effect associated with feeder cells appears to be associated with close cell-to-cell proximity. However, when cells are heated without trypsinization about 24 hr or later after plating, when adaptation to monolayer has occurred, the protective effect is reduced; i.e., addition of feeder cells enhances survival much less, for example, about 2- to 3-fold at 10 -2 -10 -3 survival. Also, the survival of a cell to heat is independent of whether the neighboring cell in a microcolony is destined to live or die. Finally, if protective effects associated with cell density do occur and are not controlled, serious artifacts can result as the interaction of heat and radiation is studied; for example, survival curves can be moved upward, and thus changed in shape as the number of cells plated is increased with an increase in the hyperthermic treatment or radiation dose following hyperthermia. Therefore, to understand mechanisms and to obtain information relevant to populations of cells in close proximity, such as those in vivo, these cellular population density effects should be considered and understood

  10. Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo

    International Nuclear Information System (INIS)

    Chen, Zhihong; Forman, Lora W; Williams, Robert M; Faller, Douglas V

    2014-01-01

    A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach. shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA. We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human

  11. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    Science.gov (United States)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  12. Foxp3 overexpression in tumor cells predicts poor survival in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Song, Jing-Jing; Zhao, Si-Jia; Fang, Juan; Ma, Da; Liu, Xiang-Qi; Chen, Xiao-Bing; Wang, Yun; Cheng, Bin; Wang, Zhi

    2016-01-01

    Forkhead Box P3 (Foxp3) is a regulatory T cells marker, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of Foxp3 expression with clinicopathological parameters and prognosis in oral squamous cell carcinoma (OSCC). Foxp3 expression was examined using immunohistochemistry (IHC) in paraffin-embedded tissue samples from 273 OSCC patients. Statistical analysis was performed to evaluate the associations between Foxp3 expression, the clinicopathologic characteristics and prognostic factors in OSCC. Foxp3 protein expression was significantly associated with lymph node metastasis (P <0.01). Both univariate and multivariate analyses revealed that Foxp3 was an independent factor for both 5 years overall survival (OS) and relapse-free survival (RFS) (both P <0.01). Patients with Foxp3 overexpression had shorter OS and RFS. Our results determined that elevated Foxp3 protein expression was a predictive factor of outcome in OSCC and could act as a promising therapeutic target

  13. A Preclinical Evaluation of Antimycin A as a Potential Antilung Cancer Stem Cell Agent

    Directory of Open Access Journals (Sweden)

    Chi-Tai Yeh

    2013-01-01

    Full Text Available Drug resistance and tumor recurrence are major obstacles in treating lung cancer patients. Accumulating evidence considers lung cancer stem cells (CSCs as the major contributor to these clinical challenges. Agents that can target lung CSCs could potentially provide a more effective treatment than traditional chemotherapy. Here, we utilized the side-population (SP method to isolate lung CSCs from A549 and PC-9 cell lines. Subsequently, a high throughput platform, connectivity maps (CMAPs, was used to identify potential anti-CSC agents. An antibiotic, antimycin A (AMA, was identified as a top candidate. SP A549 cells exhibited an elevated stemness profile, including Nanog, β-catenin, Sox2, and CD133, and increased self-renewal ability. AMA treatment was found to suppress β-catenin signaling components and tumor sphere formation. Furthermore, AMA treatment decreased the proliferation of gefitinib-resistant PC-9/GR cells and percentage of SP population. AMA demonstrated synergistic suppression of PC-9/GR cell viability when combined with gefitinib. Finally, AMA treatment suppressed tumorigenesis in mice inoculated with A549 SP cells. Collectively, we have identified AMA using CMAP as a novel antilung CSC agent, which acts to downregulate β-catenin signaling. The combination of AMA and targeted therapeutic agents could be considered for overcoming drug resistance and relapse in lung cancer patients.

  14. Cross-sensitivity of X-ray-hypersensitive cells derived from LEC strain rats to DNA-damaging agents

    International Nuclear Information System (INIS)

    Okui, T.; Endoh, D.; Arai, S.; Isogai, E.; Hayashi, M.

    1996-01-01

    The cross-sensitivity of X-ray-hypersensitive lung fibroblasts from LEC strain (LEC) rats to other DNA-damaging agents was examined. The LEC cells were 2- to 3-fold more sensitive to bleomycin (BLM) that induces DNA double-strand breaks, and to a cross-linking agent, mitomycin C, than the cells from WKAH strain (WKAH) rats, while they were slightly sensitive to alkylating agents, ethyl nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine, but not to UV-irradiation. Although no difference was observed in the initial yields of DNA double-strand breaks induced by BLM between LEC and WKAH cells, the repair process of DNA double-strand breaks was significantly slower in LEC cells than in WKAH cells

  15. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    Science.gov (United States)

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  16. Survival and mortality among users and non-users of hydroxyurea with sickle cell disease.

    Science.gov (United States)

    de Araujo, Olinda Maria Rodrigues; Ivo, Maria Lúcia; Ferreira Júnior, Marcos Antonio; Pontes, Elenir Rose Jardim Cury; Bispo, Ieda Maria Gonçalves Pacce; de Oliveira, Eveny Cristine Luna

    2015-01-01

    to estimate survival, mortality and cause of death among users or not of hydroxyurea with sickle cell disease. cohort study with retrospective data collection, from 1980 to 2010 of patients receiving inpatient treatment in two Brazilian public hospitals. The survival probability was determined using the Kaplan-Meier estimator, survival calculations (SPSS version 10.0), comparison between survival curves, using the log rank method. The level of significance was p=0.05. of 63 patients, 87% had sickle cell anemia, with 39 using hydroxyurea, with a mean time of use of the drug of 20.0±10.0 years and a mean dose of 17.37±5.4 to 20.94±7.2 mg/kg/day, raising the fetal hemoglobin. In the comparison between those using hydroxyurea and those not, the survival curve was greater among the users (p=0.014). A total of 10 deaths occurred, with a mean age of 28.1 years old, and with Acute Respiratory Failure as the main cause. the survival curve is greater among the users of hydroxyurea. The results indicate the importance of the nurse incorporating therapeutic advances of hydroxyurea in her care actions.

  17. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  18. Oral squamous cell carcinoma: survival, recurrence and death

    Directory of Open Access Journals (Sweden)

    Antônio Camilo Souza Cruz

    2014-10-01

    Full Text Available This paper was based in data survey from macro and microscopic oral lesions characteristics, personal data and medical history of patients diagnosed with oral squamous cell carcinoma in the Lab of Pathological Anatomy from the Federal University of Alfenas from January 2000 to December 2010, establishing comparative parameters among clinical data, type of treatment, recurrence, survival and anatomic pathological characteristics of the lesions. Were analyzed the histopathological reports, dental and hospital records. The highest incidence was in white men, age between 50 and 60 years, married, with low education and socioeconomic levels. The beginning of treatment occurred in average 67 days after the histopathological diagnosis. The estimated survival of patients at five years was 42%. The consumption of alcohol and tobacco and the occurrence of metastasis were statistically significant for the increase of recurrence and lethality.

  19. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    Science.gov (United States)

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  1. Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells.

    Science.gov (United States)

    Knapp, David J H F; Hammond, Colin A; Miller, Paul H; Rabu, Gabrielle M; Beer, Philip A; Ricicova, Marketa; Lecault, Véronique; Da Costa, Daniel; VanInsberghe, Michael; Cheung, Alice M; Pellacani, Davide; Piret, James; Hansen, Carl; Eaves, Connie J

    2017-01-10

    The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation. However, serial transplantability was not detectably compromised by many conditions that reduced human HSC proliferation and/or survival. These results demonstrate the dissociated control of these three human HSC bio-responses, and set the stage for future improvements in strategies to modify and expand human HSCs ex vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  3. Respiratory activity as a determinant of radiation survival response

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, A K; Berner, J D [State Univ. of New York, Buffalo (USA). Dept. of Biology

    1976-09-01

    Respiration is depressed in irradiated bacteria reaching a minimum level in most strains at 1-3 h after exposure when incubated in growth medium. Since a delay in response is observed, direct action on respiratory enzymes is unlikely. The dosage response of respiration varies widely in the strains studied. All strains exhibit two-component dosage-response curves. The facts suggest that respiration is a major factor in influencing cell survival and may be the principal mechanism through which chemical agents modify radiation response.

  4. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    International Nuclear Information System (INIS)

    Porquet, Nicolas; Huot, Jacques; Poirier, Andrée; Houle, François; Pin, Anne-Laure; Gout, Stéphanie; Tremblay, Pierre-Luc; Paquet, Éric R; Klinck, Roscoe; Auger, François A

    2011-01-01

    Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of

  5. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    Directory of Open Access Journals (Sweden)

    Paquet Éric R

    2011-07-01

    Full Text Available Abstract Background Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Methods Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Results Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT

  6. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    Science.gov (United States)

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-01-01

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  8. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  9. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    Science.gov (United States)

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  10. Progranulin is expressed within motor neurons and promotes neuronal cell survival

    Directory of Open Access Journals (Sweden)

    Kay Denis G

    2009-10-01

    Full Text Available Abstract Background Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. Results In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months. This is mediated at least in part through

  11. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-11-29

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  12. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Directory of Open Access Journals (Sweden)

    Rodrigo Delvecchio

    2016-11-01

    Full Text Available Zika virus (ZIKV infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  13. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-01-01

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837

  14. Mcl-1 is essential for the survival of plasma cells

    NARCIS (Netherlands)

    Peperzak, Victor; Vikström, Ingela; Walker, Jennifer; Glaser, Stefan P.; LePage, Melanie; Coquery, Christine M.; Erickson, Loren D.; Fairfax, Kirsten; Mackay, Fabienne; Strasser, Andreas; Nutt, Stephen L.; Tarlinton, David M.

    2013-01-01

    The long-term survival of plasma cells is entirely dependent on signals derived from their environment. These extrinsic factors presumably induce and sustain the expression of antiapoptotic proteins of the Bcl-2 family. It is uncertain whether there is specificity among Bcl-2 family members in the

  15. Adoptive cell transfer after chemotherapy enhances survival in patients with resectable HNSCC.

    Science.gov (United States)

    Jiang, Pan; Zhang, Yan; J Archibald, Steve; Wang, Hua

    2015-09-01

    The aims of this study were to evaluate the therapeutic efficacy and to determine the immune factors for treatment success in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemotherapy followed by adoptive cell transfer (ACT). A total of 43 HNSCC patients who received radical resection and chemotherapy were analysed in this study. Twenty-one of the patients were repeatedly treated with ACT after chemotherapy (ACT group), and the other twenty-two patients without ACT treatment were included as part of the control group. To investigate the immunological differences underlying these observations, we expanded and profiled improving cytokine-induced killer cells (iCIK) from peripheral blood mononuclear cells (PBMCs) with the timed addition of RetroNectin, OKT3 mAb, IFN γ and IL-2. The median of progression-free survival (PFS) and overall survival (OS) in the ACT group were significantly higher as compared to the control group (56 vs. 40; 58 vs. 45 months). In iCIK culture, there was a significant reduction in CD3+CD4+ T-cell proliferation and cytokines (IL-2, TNF) production from patients who received chemotherapy compared to patients without chemotherapy. Intra-arterial infusion of iCIK, in coordination with chemotherapy, considerably rescued iCIK culture from the suppression of systemic immunity induced by chemotherapy and induced tumour regression. Altogether, these findings suggest that ACT is an effective neo-adjuvant therapy for rescuing systemic immune suppression and improving survival time in patients with HNSCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ionizing radiation-induced MEK and Erk activation does not enhance survival of irradiated human squamous carcinoma cells

    International Nuclear Information System (INIS)

    Bonner, James A.; Vroman, Benjamin T.; Christianson, Teresa J.H.; Karnitz, Larry M.

    1998-01-01

    Purpose: Ionizing radiation (IR) triggers several intracellular signaling cascades that have commonly been regarded as mitogenic, including the Raf-MEK-Erk kinase cascade. In addition to promoting proliferation, activated MEK and Erk may also prevent cell death induced by cytotoxic stimuli. Because Raf, MEK, and Erk are activated by IR in some tumor cell lines, this suggests that IR-induced activation of the kinase cascade may enhance the survival of irradiated cells. Methods and Materials: IR-induced activation of MEK and Erk was assessed in irradiated UM-SCC-6 cells, a human squamous carcinoma cell line. Activation of MEK and Erk was blocked with the pharmacological inhibitor of MEK activation, PD098059. Clonogenic survival was assessed in irradiated UM-SCC-6 cells that were pretreated with nothing or with the MEK inhibitor. Results: In UM-SCC-6 cells, IR doses as low as 2 Gy rapidly activated MEK and Erk. Pretreatment of the cells with the pharmacological inhibitor of MEK activation, PD098059, effectively blocked IR-induced activation of MEK and Erk. However, inhibition of the kinase cascade did not affect the clonogenic survival of irradiated cells in either early or delayed-plating experiments. Conclusion: Taken together, these results suggest that although MEK and Erk are rapidly activated by IR treatment, these protein kinases do not affect the clonogenic survival of irradiated UM-SCC6 cells

  17. Hyperstructures, genome analysis and I-cells

    DEFF Research Database (Denmark)

    Amar, P.; Ballet, P.; Barlovatz-Meimon, G.

    2002-01-01

    familiar to biologists. Finally, we speculate on how a variety of in silico approaches involving cellular automata and multi-agent systems could be combined to develop new concepts in the form of an Integrated cell (I-cell) which would undergo selection for growth and survival in a world of artificial...

  18. Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

    Science.gov (United States)

    Hoefert, Sebastian; Sade Hoefert, Claudia; Munz, Adelheid; Schmitz, Inge; Grimm, Martin; Yuan, Anna; Northoff, Hinnak; Reinert, Siegmar; Alexander, Dorothea

    2016-03-01

    Immune deficiency and bacterial infection have been suggested to play a role in the pathophysiology of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Zoledronate was previously found to promote THP-1 cell death. To examine this hypothesis with all commonly prescribed bisphosphonates, we tested the effect of (nitrogen-containing) ibandronate, risedronate, alendronate, pamidronate, and (non-nitrogen-containing) clodronate on macrophagic THP-1 cells. Activated THP-1 cells were exposed to .5 to 50 μM of nitrogen-containing bisphosphonates and .5 to 500 μM of clodronate. Cell adherence and survival were assessed in vitro using the xCELLigence real-time monitoring system. Results were confirmed histologically and verified with Live/Dead staining. All bisphosphonates inhibited THP-1 cell adherence and survival dose and time dependently, significant for zoledronate, alendronate, pamidronate, and clodronate in high concentrations (50 μM and 500 μM; P THP-1 cell survival compared with controls (P THP-1 cells exhibited no cytomorphologic changes at all concentrations. Commonly prescribed bisphosphonates inhibit the survival of macrophagic THP-1 cells dose-dependently without altering morphology. This may suggest a local immune dysfunction reflective of individual bisphosphonate potency leading to the pathogenesis of BRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of time intervals between irradiation and chemotherapeutic agents on the normal tissue damage. Comparison between in vivo and in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hisao; Nakayama, Toshitake; Hashimoto, Shozo (Keio Univ., Tokyo (Japan). School of Medicine)

    1989-05-01

    Experiments have been carried out to determine the effect on the cell survivals at different time intervals between irradiation and chemotherapeutic agents (BLM, cisDDP, ADM and ACNU) in either the in vivo or the in vitro system. The intestinal epithelial assay was applied on the in vivo system. The clonogenic cell survivals of V/sub 79/ cells, both in the proliferative and the plateau phases, were determined in the in vitro system. The V/sub 79/ cells in the plateau phase were more sensitive to BLM, cisDDP and ACNU than those in the proliferative phase, however, the result was reverse with ADM. When BLM, cisDDP or ACNU was combined with irradiation at different time intervals, the response of the plateau phase V/sub 79/ cells to combination therapies were very similar to those of the intestinal epithelial cells. On the other hand, V/sub 79/ cells in the proliferative phase, which were treated with ADM and irradiation, showed the similar response as the intestinal cells. These results suggest that studies of chemo-radiotherapy with cultured cells which are sensitive to chemotherapeutic agents might be suitable to expect the in vivo damage of the normal tissue. (author).

  20. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  1. Plasmodium strain determines dendritic cell function essential for survival from malaria.

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2007-07-01

    Full Text Available The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune responses. Since immunity is initiated by dendritic cells (DCs, we compared their phenotype and function following infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes.

  2. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell.

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host's immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz . DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3'-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3'-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also

  3. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    International Nuclear Information System (INIS)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells

  4. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents.

    OpenAIRE

    Kaina, B; Lohrer, H; Karin, M; Herrlich, P

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of re...

  5. Study of HeLa cells clone survival after X-ray irradiation in the presence of cisplatin

    Science.gov (United States)

    Baulin, A. A.; Sukhikh, E. S.; Vasilyev, S. A.; Sukhikh, L. G.; Sheino, I. N.

    2017-09-01

    Radiation therapy in the presence of heavy elements nuclei (Z > 53) is widely developed these days. The presence of such nuclei in cancer cells results in the local increase of energy release from primary photon beam thus increasing relative biological efficiency. In this paper we present the preliminary results of the cell survival study while irradiating cells by X-Ray photon beam in the presence of cisplatin (Pt, Z = 78). The preliminary results show the decrease of the cell survival in the presence of both radiation and cisplatin.

  6. Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy.

    Science.gov (United States)

    Trendowski, Matthew; Fondy, Thomas P

    2015-08-01

    Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.

  7. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Science.gov (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    Science.gov (United States)

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  9. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death

    Directory of Open Access Journals (Sweden)

    Ur Rahman MS

    2017-08-01

    Full Text Available Muhammad Saif Ur Rahman,1 Ling Zhang,2 Lingyan Wu,1 Yuqiong Xie,1 Chunchun Li,1 Jiang Cao1 1Clinical Research Center, 2Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China Abstract: Severe side effects are major problems with chemotherapy of gastric cancer (GC. These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB was used with other DNA linker agents mitomycin C (MMC, cisplatin (DDP, or cyclophosphamide (CTX to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC50 by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G0/G1 and G1/S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC

  10. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase.

    Science.gov (United States)

    Shiraishi, A; Sakumi, K; Sekiguchi, M

    2000-10-01

    O(6)-methylguanine-DNA methyltransferase plays vital roles in preventing induction of mutations and cancer as well as cell death related to alkylating agents. Mice defective in the MGMT: gene, encoding the methyltransferase, were used to evaluate cell death-inducing and tumorigenic activities of therapeutic agents which have alkylation potential. MGMT(-/-) mice were considerably more sensitive to dacarbazine, a monofunctional triazene, than were wild-type mice, in terms of survival. When dacarbazine was administered i.p. to 6-week-old mice and survival at 30 days was enumerated, LD(50) values of MGMT(-/-) and MGMT(+/+) mice were 20 and 450 mg/kg body wt, respectively. Increased sensitivity of MGMT(-/-) mice to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosou rea (ACNU), a bifunctional nitrosourea, was also noted. On the other hand, there was no difference in survival of MGMT(+/+) and MGMT(-/-) mice exposed to cyclophosphamide, a bifunctional nitrogen mustard. It appears that dacarbazine and ACNU produce O(6)-alkylguanine as a major toxic lesion, while cyclophosphamide yields other types of modifications in DNA which are not subjected to the action of the methyltransferase. MGMT(-/-) mice seem to be less refractory to the tumor-inducing effect of dacarbazine than are MGMT(+/+) mice. Thus, the level of O(6)-methylguanine-DNA methyltransferase activity is an important factor when determining susceptibility to drugs with the potential for alkylation.

  11. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  12. New small molecule inhibitors of UPR activation demonstrate that PERK, but not IRE1α signaling is essential for promoting adaptation and survival to hypoxia

    International Nuclear Information System (INIS)

    Cojocari, Dan; Vellanki, Ravi N.; Sit, Brandon; Uehling, David; Koritzinsky, Marianne; Wouters, Bradly G.

    2013-01-01

    Background and purpose: The unfolded protein response (UPR) is activated in response to hypoxia-induced stress in the endoplasmic reticulum (ER) and consists of three distinct signaling arms. Here we explore the potential of targeting two of these arms with new potent small-molecule inhibitors designed against IRE1α and PERK. Methods: We utilized shRNAs and small-molecule inhibitors of IRE1α (4μ8c) and PERK (GSK-compound 39). XBP1 splicing and DNAJB9 mRNA was measured by qPCR and was used to monitor IRE1α activity. PERK activity was monitored by immunoblotting eIF2α phosphorylation and qPCR of DDIT3 mRNA. Hypoxia tolerance was measured using proliferation and clonogenic cell survival assays of cells exposed to mild or severe hypoxia in the presence of the inhibitors. Results: Using knockdown experiments we show that PERK is essential for survival of KP4 cells while knockdown of IRE1α dramatically decreases the proliferation and survival of HCT116 during hypoxia. Further, we show that in response to both hypoxia and other ER stress-inducing agents both 4μ8c and the PERK inhibitor are selective and potent inhibitors of IRE1α and PERK activation, respectively. However, despite potent inhibition of IRE1α activation, 4μ8c had no effect on cell proliferation or clonogenic survival of cells exposed to hypoxia. This was in contrast to the inactivation of PERK signaling with the PERK inhibitor, which reduced tolerance to hypoxia and other ER stress inducing agents. Conclusions: Our results demonstrate that IRE1α but not its splicing activity is important for hypoxic cell survival. The PERK signaling arm is uniquely important for promoting adaptation and survival during hypoxia-induced ER stress and should be the focus of future therapeutic efforts

  13. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1984-01-01

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  14. Follicles in gut-associated lymphoid tissues create preferential survival niches for follicular Th cells escaping Thy-1-specific depletion in mice.

    Science.gov (United States)

    Mihalj, Martina; Kellermayer, Zoltán; Balogh, Peter

    2013-07-01

    Although a substantial number of T cells may escape depletion following in vivo mAb treatment in patients undergoing immunosuppression, their specific tissue location and phenotypic characteristics in different peripheral lymphoid tissues have not been analyzed in detail. Here we investigated the survival of CD4(+) T cells immediately following anti-Thy-1 mAb treatment in mice. We found a preferential survival of CD4(+) T cells expressing Thy-1 antigen in the Peyer's patches (PP) and also in mesenteric lymph nodes (MLN), where the relative majority of the surviving CD4(+) T cells displayed CD44(high)/CD62L(-) phenotype corresponding to effector memory T-cell features. These CD4(+) T cells also expressed CXCR5 and PD-1 (programmed cell death-1) markers characteristic for follicular Th cells (TFH). We also demonstrate that the immediate survival of these cells does not involve proliferation and is independent of IL-7. Induction of germinal center formation in spleen enhanced while the dissolution of follicular architecture by lymphotoxin-β receptor antagonist treatment slightly reduced TFH survival. Our results thus raise the possibility that the follicles within PP and MLN may create natural support niches for the preferential survival of TFH cells of the memory phenotype, thus allowing their escape during T-cell depletion.

  15. Urinary collecting system invasion is associated with poor survival in patients with clear-cell renal cell carcinoma.

    Science.gov (United States)

    Bailey, George C; Boorjian, Stephen A; Ziegelmann, Matthew J; Westerman, Mary E; Lohse, Christine M; Leibovich, Bradley C; Cheville, John C; Thompson, R Houston

    2017-04-01

    To evaluate the prognostic significance of urinary collecting system invasion (UCSI) in a large series of patients with clear-cell renal cell carcinoma (RCC). Patients with clear-cell RCC treated with nephrectomy between 2001 and 2010 were reviewed from a prospectively maintained registry. One urological pathologist re-reviewed all slides. Cancer-specific survival was estimated using the Kaplan-Meier method, and associations of UCSI with death from RCC were evaluated using Cox models. Of the 859 patients with clear-cell RCC, 58 (6.8%) had UCSI. At last follow-up, 310 patients had died from RCC at a median of 1.8 years after surgery. The median follow-up for patients alive at last follow-up was 8.2 years. The estimated cancer-specific survival at 10 years after surgery for patients with UCSI was 17%, compared with 60% for patients without UCSI (P system invasion is associated with poor prognosis among patients with clear-cell RCC. If validated, consideration should be given to including UCSI in future staging systems. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  16. Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae Sobrevivência e obtenção de mutantes induzidos por agentes mutagênicos em Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    V. Kava - Cordeiro

    1995-12-01

    Full Text Available A wild strain of Metarhizium anisopliae, an entomopathogenic fungus, was submitted to three mutagenic agents: gamma radiation, ultraviolet light and nitrous acid. Survival curves were obtained and mutants were selected using different mutagenic doses which gave 1 to 5% survival. Morphological and auxotrophic mutants were isolated. Morphological mutants were grouped in a class with yellow conidia and other with pale vinaceous conidia as opposed to the green wild type conidia. Auxotrophic mutants had requirements for vitamin and aminoacid biosynthesis. More than 58% of the total auxotrophk mutants required proline/aipnine. Gamma radiation showed to be the most efficient mutagenic agent giving 0.2% of auxotrophk mutants followed by ultraviolet light (0.12% and nitrous acid (0.06%.The conidial colour and auxotrophk mutants isolated until now from M. anisopliae were reviewed.Uma linhagem selvagem do fungo entomopatogênico Metarhizium anisopliae foi submetida à ação de três agentes mutagênicos: radiação gama, luz ultravioleta e ácido nitroso. Curvas de sobrevivência foram obtidas para cada mutagênicos utilizado e mutantes foram selecionados a partir de doses dos mutagênicos que proporcionassem de 1 a 5% de sobrevivência. Mutantes morfológicos para a coloração de conídios e mutantes auxotróficos foram isolados. Mutantes para coloração de conidios foram agrupados em duas classes, uma com conídios amarelos e outra com conídios vinho pálido. Os mutantes auxotróficos obtidos foram deficientes para aminoácidos e vitaminas e mais de 58% deles eram auxotróficos para prolina/argmina. Radiação gama foi o mutagênico mais eficiente com uma porcentagem de obtenção de mulantes auxotróficos de aproximadamente 0,2%, seguido pela luz ultravioleta (0.12% e pelo ácido nitroso (0.06%.Os mulantes morfológicos e auxotróficos obtidos até o momento em Metarhizium anisopliae foram revistos.

  17. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  18. SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance

    Science.gov (United States)

    Kim, Dohoon; Fiske, Brian P.; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard; Chudnovsky, Yakov; Pacold, Michael E.; Chen, Walter W.; Cantor, Jason R.; Shelton, Laura M.; Gui, Dan Y.; Kwon, Manjae; Ramkissoon, Shakti H.; Ligon, Keith L.; Kang, Seong Woo; Snuderl, Matija; Heiden, Matthew G. Vander; Sabatini, David M.

    2015-01-01

    SUMMARY Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumor microenvironment1–3. Here, we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischemic zones of gliomas. In human glioblastoma multiforme (GBM), mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumor regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumor environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  19. Apoptosis by antitumor agents and other factors in relation to cell cycle checkpoints

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    More than a cancer patients died in 1993 after treatment with antineoplastic derivatives of 5-fluorouracil and the antiherpes drug Sorivudine. This paper gives a short review of previous reports showing that killing of cells by 5-fluorouracil and other antitumor agents, including radiation at high doses, results from activation of apoptosis in the G2 phase. On the other hand, apoptosis of lymphocytes by radiation at low doses and treatment with other agents is known to occur in the G1 phase. The cells dying in the G1 or G2 phase could share the same final self-killing steps. For these common steps, I assume a mitotic catastrophe model, in which commitment to self-killing results from premature activation of the mitosis machinery, and propose a concept of a 'G1/G2 death circuit' for cells dying in the G1/G2 phase by short circuit to the M phase. Based on this model, reported modes of cell death, spontaneously occurring or after treatment with various agents, are classified by the phase of dying cells. The associations of incomplete apoptosis with production of chromosomal aberrations and prevention of tumorigenesis by complete apoptosis of carcinogen-treated cells are discussed. A presumptive rule for differentiation of G1 apoptosis and G2 apoptosis is proposed. (author)

  20. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  1. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    Science.gov (United States)

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  2. Effect of doxorubicin on cell survival and micronuclei formation in HeLa cells exposed to different doses of gamma-radiation

    International Nuclear Information System (INIS)

    Jagetia, G.C.; Nayak, V.

    2000-01-01

    Purpose: The present study was undertaken to obtain an insight into the combined effects of doxorubicin with radiation on the cell survival and micronuclei induction in HeLa cells. Material and Methods: HeLa S3 cells were allowed to grow till they reached plateau phase, inoculated with 10 μg/ml doxorubicin hydrochloride and then exposed to 0, 0.5, 1, 2 and 3 Gy γ-radiation. Clonogenicity of cell was measured using the colony forming assay, micronuclei formation using the micronucleus assay. Results: The treatment of HeLa cells with doxorubicin (adriamycin) for 2 hours before exposure to different doses of γ-radiation resulted in a significant and dose-dependent decline in the cell survival and cell proliferation when compared to the PBS+irradiation group. Conversely, the frequency of micronuclei increased in a dose-related manner in both the PBS+irradiation and doxorubicin+irradiation groups. The pretreatment of HeLa cells with doxorubicin before irradiation to various doses of γ-rays resulted in a significant elevation in the frequency of micronuclei when compared with the concurrent PBS+irradiation group. The dose-response relationship for both PBS+irradiation and doxorubicin+irradiation groups was linear. The correlation between cell survival and micronuclei induction was also determined for PBS or doxorubicin+irradiation group, where the clonogenicity of cells declined with the increase in micronuclei formation. The correlation between cell survical and micronuclei induction was linear quadratic for both PBS+irradiation and doxorubicin+irradiation groups. Conclusion: From our study it can be concluded that combination treatment with doxorubicin and radiation increased the genotoxic effect of the either treatment given alone. (orig.) [de

  3. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  4. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  5. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  6. IPO survival in a reputational market

    OpenAIRE

    Espenlaub, Susanne; Khurshed, Arif; Mohamed, Abdulkadir

    2012-01-01

    We examine IPO survival in a 'reputational' market, the Alternative Investment Market (AIM), where principle-based regulation pivots on the role of a regulatory agent, the nominated advisor (Nomad) to the IPO company. We find that Nomad reputation has a significant impact on IPO survival. IPOs backed by reputable Nomads 'survive longer (by about two years) than those backed by other Nomads. We also find that survival rates of AIM IPOs are broadly comparable to those of North American IPOs. Wh...

  7. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  8. Determination of the oxygen enhancement ratio (OER) of human colon tumor cells in vitro after chronic exposure to the differentiation-inducing agents n-methylformamide (NMF) and sodium butyrate (NAB)

    International Nuclear Information System (INIS)

    Hallows, K.; Bliven, S.; Leith, J.T.

    1987-01-01

    The authors previously showed that both rodent and human tumor cells in either exponentially growing or plateau phase cultures can be sensitized to X-irradiation by chronic exposure to NMF or NAB. This effect is particularly evident in the low dose region of the survival curve as noted by a significant increase in the term of the linear-quadratic equation or by a significant decrease in the D/sub q/ value using single-hit, multitarget nomenclature. However, these agents are operationally distinct, as these changes are accompanied by inhibition of sublethal damage recovery (SLDR) after NAB treatment, while no effect on SLDR is seen with NMF treatment. As they think that the use of differentiation-inducing agent such as NMF or NAB may be useful in combining modality therapy of solid tumors, the authors extended their previous studies to note if any change in the OER accompanying this observed radiosensitization of oxic cells could be found. Tumor cells were grown in either 170mM NMF or 2 mM NAB and were irradiated with 250 kVp x-rays. Data is presented

  9. A theoretical study on the influence of the homogeneity of heavy-ion irradiation field on the survival fraction of cells

    International Nuclear Information System (INIS)

    Wen Xiaoqiong; Li Qiang; Zhou Guangming; Li Wenjian; Wang Jufang; Wei Zengquan

    2001-01-01

    In order to provide theoretical basis for the homogeneity request of heavy-ion irradiation field, the most important design parameter of the heavy-ion radiotherapy facility planned in IMP (Institute of Modern Physics), the influence of the homogeneity of heavy-ion irradiation field on the survival fraction of cells was investigated theoretically. A formula for survival fraction of cells irradiated by the un-uniform heavy-ion irradiation field was deduced to estimate the influence of the homogeneity of heavy-ion irradiation field on the survival fraction of cells. The results show that the survival fraction of cells irradiation by the un-uniform irradiation field is larger than that of cells irradiated by the uniform irradiation field, and the survival fraction of cells increases as the homogeneity of heavy-ion irradiation field decreasing. Practically, the heavy-ion irradiation field can be treated as uniform irradiation field when its homogeneity is better than 95%. According to these results, design request for the homogeneity of heavy-ion irradiation field should be better than 95%. The present results also show that the agreement of homogeneity of heavy-ion irradiation field must be checked while comparing the survival fraction curves obtained by different laboratory

  10. Copper-64 Dichloride as Theranostic Agent for Glioblastoma Multiforme: A Preclinical Study

    Directory of Open Access Journals (Sweden)

    Cristina Ferrari

    2015-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most common primary malignant brain tumor in adults with a median survival time less than one year. To date, there are only a limited number of effective agents available for GBM therapy and this does not seem to add much survival advantage over the conventional approach based on surgery and radiotherapy. Therefore, the development of novel therapeutic approaches to GBM is essential and those based on radionuclide therapy could be of significant clinical impact. Experimental evidence has clearly demonstrated that cancer cells have a particularly high fractional content of copper inside the nucleus compared to normal cells. This behavior can be conveniently exploited both for diagnosis and for delivering therapeutic payloads (theranostic of the radionuclide copper-64 into the nucleus of cancerous cells by intravenous administration of its simplest chemical form as dichloride salt [64Cu]CuCl2. To evaluate the potential theranostic role of [64Cu]CuCl2 in GBM, the present work reports results from a preclinical study carried out in a xenografted GBM tumor mouse model. Biodistribution data of this new agent were collected using a small-animal PET tomograph. Subsequently, groups of tumor implanted nude mice were treated with [64Cu]CuCl2 to simulate single- and multiple-dose therapy protocols, and results were analyzed to estimate therapeutic efficacy.

  11. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  12. In vitro oxygen-dependent survival of two human cell lines after combined radiations tirapazamin and cisplatin

    International Nuclear Information System (INIS)

    Lartigau, E.; Stern, S.; Guichard, M.

    2000-01-01

    Recent data have shown that the in vitro and in vivo cytotoxicity of bioreductive drugs could be significantly cytotoxicity of bioreductive drugs could be significantly increased by combination with ionising radiation or chemotherapy. Various parameters such as oxygen tension and timing of administration of the drugs could play a crucial role in the efficacy of combined treatment modalities. The aim of this study was to define the oxygen dependency of cell survival after in vitro irradiation and incubation with tirapazamin, a bioreductive drug, and cisplatin given alone or simultaneously. Two human cell lines were studied: one cell line sensitive to tirapazamin, Na11+, a pigmented melanoma with a high percentage of hypoxic cells, and a less sensitive cell line to tirapazamin, HRT18, a rectal adenocarcinoma. Gas changes were made to study cell survival at four different oxygen concentrations (pO 2 ): air (20.9 % O 2 ), 10.2 and 0.2 %. Cells were incubated with tirapazamin and cisplatin alone or combined for one hour at 37 deg C, then irradiated and cultured. For Na11+, cell survival after irradiation was comparable in air and at 10 % oxygen with the two drugs given alone or combined. At 2 and 0.2 % oxygen, cell killing was largely increased by tirapazamin and was not modified by the addition of cisplatin. For HRT18, cell survival was not modified when cisplatin was added to radiation, whatever the oxygen partial pressure. At low pO 2 (2 and 0.2 %) the cytotoxic effect of tirapazamin was not significantly decreased by the addition of cisplatin. When cytotoxic and bioreductive drugs are combined to radiation, the magnitude of the observed effect is highly dependent on the partial oxygen pressure and on the sensitivity of the cell line to the individual drugs. This has very important implications for clinical strategies based on combined chemo-radiotherapy. (authors)

  13. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.

    1991-01-01

    The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab

  14. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    Science.gov (United States)

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  15. Dose-rate effects on the cell cycle and survival of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The effects of continuous irradiation at different dose rates on the cell cycle and on cell survival were studied using synchronized S3 HeLa and V79 cells. The minimum dose rate necessary to stop cell division was found to be approximately 23 rad/hr for HeLa cells and 270 rad/hr for V79 cells. For dose rates that stop cell division, cells progress through G 1 and S, with a small delay in the S phase, and are blocked in G 2 . Appreciable mitotic accumulation was observed for HeLa cells at dose rates which stopped cell division. By comparison, much less mitotic accumulation was observed for V79 cells over a range of dose rates from 37 to 270 rad/hr. Minimum mitotic delays for a variety of dose rates were determined for both cell lines. S3 HeLa cells are much more sensitive in this respect than V79 cells; however, it appeared that for higher dose rates the minimum mitotic delay in HeLa cells asymptotically approached a value of about 35 hr. In addition to the qualitative differences observed for the two cell lines in regard to mitotic accumulation, HeLa cells accumulated for prolonged periods in the presence of colcemid while V79 cells were blocked for only a few hours, HeLa cells show a dramatic effect of redistribution of cells into sensitive phases of the cell cycle during exposure, which was reflected in the survival curves at low dose rate. More cell killing per unit dose was observed at 37 than at 74 rad/hr

  16. Red cell survival and sequestration in acute intermittent porphyria

    International Nuclear Information System (INIS)

    Nawalkha, P.L.; Soni, S.G.; Agrawal, V.K.; Misra, S.N.

    1980-01-01

    Life span and sequestration of red cells have been studied in twenty one proved cases of acute intermittent porphyria of different age and sex group from Bikaner District, Rajasthan State (India). Chromium-51 labelled red cells were used in the study and the excess count method of Bughe Jones and Szur was used to calculate the index of sequestration. The mean apparent half survival time of erythrocytes in the control subjects was 25.9 +- 2.9 (S.D.) days and the same in the prophyria patients was 27.0 +- 3.8 days. This shows that the life span of red cells is normal in both the patient and the control. Excess destruction of red blood cells was found to take place in either spleen or liver in the disease and no excess accumulation of erythrocytes occurred over spleen as compared to liver. (M.G.B.)

  17. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  18. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice

    DEFF Research Database (Denmark)

    Kamoun, Walid S; Ley, Carsten D; Farrar, Christian T

    2009-01-01

    anti-VEGF agents may decrease tumor contrast-enhancement, vascularity, and edema, the mechanisms leading to improved survival in patients remain incompletely understood. Our goal was to determine whether alleviation of edema by anti-VEGF agents alone could increase survival in mice. METHODS: We treated...... mice bearing three different orthotopic models of glioblastoma with a VEGF-targeted kinase inhibitor, cediranib. Using intravital microscopy, molecular techniques, and magnetic resonance imaging (MRI), we measured survival, tumor growth, edema, vascular morphology and function, cancer cell apoptosis...... by an increase in plasma collagen IV. These rapid changes in tumor vascular morphology and function led to edema alleviation -- as measured by MRI and by dry/wet weight measurement of water content -- but did not affect tumor growth. By immunohistochemistry, we found a transient decrease in macrophage...

  19. Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery

    International Nuclear Information System (INIS)

    Sergeant, Gregory; Eijsden, Rudy van; Roskams, Tania; Van Duppen, Victor; Topal, Baki

    2012-01-01

    Most cancer deaths are caused by metastases, resulting from circulating tumor cells (CTC) that detach from the primary cancer and survive in distant organs. The aim of the present study was to develop a CTC gene signature and to assess its prognostic relevance after surgery for pancreatic ductal adenocarcinoma (PDAC). Negative depletion fluorescence activated cell sorting (FACS) was developed and validated with spiking experiments using cancer cell lines in whole human blood samples. This FACS-based method was used to enrich for CTC from the blood of 10 patients who underwent surgery for PDAC. Total RNA was isolated from 4 subgroup samples, i.e. CTC, haematological cells (G), original tumour (T), and non-tumoural pancreatic control tissue (P). After RNA quality control, samples of 6 patients were eligible for further analysis. Whole genome microarray analysis was performed after double linear amplification of RNA. ‘Ingenuity Pathway Analysis’ software and AmiGO were used for functional data analyses. A CTC gene signature was developed and validated with the nCounter system on expression data of 78 primary PDAC using Cox regression analysis for disease-free (DFS) and overall survival (OS). Using stringent statistical analysis, we retained 8,152 genes to compare expression profiles of CTC vs. other subgroups, and found 1,059 genes to be differentially expressed. The pathway with the highest expression ratio in CTC was p38 mitogen-activated protein kinase (p38 MAPK) signaling, known to be involved in cancer cell migration. In the p38 MAPK pathway, TGF-β1, cPLA2, and MAX were significantly upregulated. In addition, 9 other genes associated with both p38 MAPK signaling and cell motility were overexpressed in CTC. High co-expression of TGF-β1 and our cell motility panel (≥ 4 out of 9 genes for DFS and ≥ 6 out of 9 genes for OS) in primary PDAC was identified as an independent predictor of DFS (p=0.041, HR (95% CI) = 1.885 (1.025 – 3.559)) and OS (p=0.047, HR

  20. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen*

    Science.gov (United States)

    Sharma, Aditya K.; Arora, Divya; Singh, Lalit K.; Gangwal, Aakriti; Sajid, Andaleeb; Molle, Virginie; Singh, Yogendra; Nandicoori, Vinay Kumar

    2016-01-01

    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events. PMID:27758870

  1. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  2. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake.

    Science.gov (United States)

    Maekawa, Yoichi; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Yagita, Hideo; Yasutomo, Koji

    2015-01-01

    CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.

  3. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Fluorescent in situ hybridization (FISH) on corneal impression cytology specimens (CICS): study of epithelial cell survival after keratoplasty.

    Science.gov (United States)

    Catanese, Muriel; Popovici, Cornel; Proust, Hélène; Hoffart, Louis; Matonti, Frédéric; Cochereau, Isabelle; Conrath, John; Gabison, Eric E

    2011-02-22

    To assess corneal epithelial cell survival after keratoplasty. Corneal impression cytology (CIC) was performed on sex-mismatched corneal transplants. Fluorescent in situ hybridization (FISH) with sex chromosome-specific probes was performed to identify epithelial cell mosaicism and therefore allocate the donor or recipient origin of the cells. Twenty-four samples of corneal epithelial cells derived from 21 transplanted patients were analyzed. All patients received post-operative treatment using dexamethasone eye drops, with progressive tapering over 18 months, and nine patients also received 2% cyclosporine eye drops. Out of the 24 samples reaching quality criteria, sex mosaicism was found in 13, demonstrating the presence of donor-derived cells at the center of the graft for at least 211 days post keratoplasty. Kaplan-Meier analysis established a median survival of donor corneal epithelial cells of 385 days. Although not statistically significant, the disappearance of donor cells seemed to be delayed and the average number of persistent cells appeared to be greater when 2% cyclosporine was used topically as an additional immunosuppressive therapy. The combination of corneal impressions and FISH analysis is a valuable tool with negligible side effects to investigate the presence of epithelial cell mosaicism in sex-mismatched donor transplants. Epithelial cells survived at the center of the graft with a median survival of more than one year, suggesting slower epithelial turnover than previously described.

  5. Menahydroquinone-4 Prodrug: A Promising Candidate Anti-Hepatocellular Carcinoma Agent.

    Science.gov (United States)

    Enjoji, Munechika; Watase, Daisuke; Matsunaga, Kazuhisa; Kusuda, Mariko; Nagata-Akaho, Nami; Karube, Yoshiharu; Takata, Jiro

    2015-07-22

    Recently, new therapeutics have been developed for hepatocellular carcinoma (HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the reasons for this is the high frequency of recurrence after radical treatment. Consequently, to improve prognosis, it will be important to develop a novel anti-tumor agent that is especially effective against HCC recurrence. For clinical application, long-term safety, together with high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 1,4-bis- N,N -dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model, MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects in vivo . The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this review article.

  6. Tumour cell dormancy as a contributor to the reduced survival of GBM patients who received standard therapy.

    Science.gov (United States)

    Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun

    2018-07-01

    Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.

  7. Survival of V79 cells after low doses of X-rays

    International Nuclear Information System (INIS)

    Watts, M.E.; Fowler, J.F.; Hodgkiss, R.J.; Jones, N.R.

    1984-01-01

    Doses of X-rays of the order 1-3 Gy are used in clinical multifraction regimes. Reduction in oxygen enhancement ratios (OER) and sensitizer enhancement ratios have been reported for CHO cells. The errors in determining low levels of cell kill are largely influenced by sampling and dilution errors. The authors have aimed to reduce these errors by increasing the sample size and reducing dilutions. To further assess the uncertainties involved in these experiments the data were pooled from three independent series of experiments. Asynchronous log phase Chinese hamster lung fibroblast cells have been irradiated attached to glass Petri dishes in Eagle's MEM + 10% fcs at a dose rate of 0.61 Gy min/sup -1/ under air + 5% CO/sub 2/ or nitrogen + 5% CO/sub 2/ at 18 0 C. Survival in the range 10/sup -1/ to 5 x 10/sup -3/ surviving fraction (SF) was identical at 0.61 Gy min/sup -1/ and 3.93 Gy min/sup -1/. Many previous experiments have given an OER = 3.1 at 10/sup -2/-10/sup -3/ survival. Least squares fit to the linear quadratic function log S = -(αD + βD/sup 2/) gave an OER≅3.2 at SF = 10/sup -2/. Below 6 Gy air dose (>0.2 SF) OER was reduced, but was still ≅ 2.4 at 2 Gy. The linear quadratic function gave an OER for a ≅ 1.5 (the limiting low-dose OER) and √β≅3.2

  8. Gastrointestinal viral load and enteroendocrine cell number are associated with altered survival in HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Guido van Marle

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS. The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM enrolled pre-HAART (Highly Active Antiretroviral Therapy. We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum and somatostatin (duodenum and colon immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.

  9. Long-term in vivo survival of Rh(D)-negative donor red cells in a patient with anti-LW

    International Nuclear Information System (INIS)

    Chaplin, H.; Hunter, V.L.; Rosche, M.E.; Shirey, R.S.

    1985-01-01

    The present study documents immediate and long-term survival of crossmatch-incompatible Rh(D)-negative donor red cells in a patient with anti-LW. A 67-year-old group A Rh(D)-positive man was admitted for urgent coronary artery bypass surgery. The direct antiglobulin test (DAT) was weakly positive in two of five laboratories. His serum contained anti-LW (two laboratories); his red cells were LW negative (three antisera). Two siblings were LW-positive. Surgery was delayed, and 3 ml Rh(D)-negative crossmatch-incompatible red cells stored in citrate-phosphate-dextrose-adenine-one were labeled with 25 microCi of 51 Cr and injected. Immediate survival was approximately 100 percent with 92 percent survival at 20 hours. Six daily blood samples showed a decreased red cell lifespan, (T 1/2 . 14 days). Because of medical complications, 4 units of Rh(D)-negative crossmatch-incompatible blood were then transfused without clinical or hemolytic reaction. The anti-IgG DAT became stronger. In vivo survival of the remaining 51 Cr-RBCs became normal (T 1/2 28 days over the succeeding 20 days). Following transfusion, no change in serum antibody strength was demonstrated by double-blind titration of seven coded samples. The observations support modest reduction of lifespan for 3 ml of LW-positive red cells, but normal survival following subsequent transfusion of approximately 700 ml of LW-positive red cells

  10. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  11. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  12. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung; Nili, Michael A.

    2013-01-01

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD 50 ) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative stress by

  13. Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus.

    Science.gov (United States)

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Koo, Ja Wook; Shahid, Mohammed; Henry, Brian; Duman, Ronald S

    2009-10-01

    Currently available antidepressants upregulate hippocampal neurogenesis and prefrontal gliogenesis after chronic administration, which could block or reverse the effects of stress. Allosteric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators (ARPs), which have novel targets compared to current antidepressants, have been shown to have antidepressant properties in neurogenic and behavioral models. This study analyzed the effect of the ARP Org 26576 on the proliferation, survival, and differentiation of neurons and glia in the hippocampus and prelimbic cortex of adult rats. Male Sprague-Dawley rats received acute (single day) or chronic (21 day) twice-daily intraperitoneal injections of Org 26576 (1-10 mg/kg). Bromodeoxyuridine (BrdU) immunohistochemistry was conducted 24 h or 28 days after the last drug injection for the analysis of cell proliferation or survival, respectively. Confocal immunofluorescence analysis was used to determine the phenotype of surviving cells. Acute administration of Org 26576 did not increase neuronal cell proliferation. However, chronic administration of Org 26576 increased progenitor cell proliferation in dentate gyrus (approximately 40%) and in prelimbic cortex (approximately 35%) at the 10-mg/kg dosage. Cells born in response to chronic Org 26576 in dentate gyrus exhibited increased rates of survival (approximately 30%) with the majority of surviving cells expressing a neuronal phenotype. Findings suggest that Org 26576 may have antidepressant properties, which may be attributed, in part, to upregulation of hippocampal neurogenesis and prelimbic cell proliferation.

  14. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  15. Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand

    DEFF Research Database (Denmark)

    Engström, Maria; Karlsson, Richard; Jönsson, Jan-Ingvar

    2003-01-01

    OBJECTIVE: Kit ligand (KL) is a major survival factor for hematopoietic stem cells. Although anti-apoptotic bcl-2 family members are expressed in these cells, the survival effects by KL appear to involve other mechanisms. Survival signals can also be elicited by the activation of phosphatidylinos......OBJECTIVE: Kit ligand (KL) is a major survival factor for hematopoietic stem cells. Although anti-apoptotic bcl-2 family members are expressed in these cells, the survival effects by KL appear to involve other mechanisms. Survival signals can also be elicited by the activation......, immunofluorescence, and subcellular fractionation, we analyzed the effects of KL on PKB and different forkhead family members in two factor-dependent cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow-derived Lin(-) progenitors. Forced overexpression of triple mutated form of FoxO3 by retroviral...

  16. Immunohistochemical detection of cdc2 is useful in predicting survival in patients with mantle cell lymphoma.

    Science.gov (United States)

    Hui, David; Reiman, Tony; Hanson, John; Linford, Rick; Wong, Winson; Belch, Andrew; Lai, Raymond

    2005-09-01

    Recent cDNA microarray studies have reported the prognostic value of several genes in mantle cell lymphoma patients. We aimed to validate the prognostic significance of three of these genes: alpha-tubulin, cdc2, and CENP-F. The protein expression of alpha-tubulin, cdc2, and CENP-F was assessed using immunohistochemistry. Their immunoreactivity in 48 formalin-fixed/paraffin-embedded mantle cell lymphoma tumors was determined by estimating the percentage of positive cells. These results were correlated with the expression of proliferation marker Ki67 and survival. Of these 48 mantle cell lymphoma patients, 41 were men and seven were women. The median age at time of diagnosis was 64.5 years, and the overall median survival was 40 months. In benign lymph nodes, the expression of cdc2 and alpha-tubulin was restricted to the germinal centers; mantle zones were negative. Expression of CENP-F was more uniformly distributed. In mantle cell lymphoma, Ki67 significantly correlated with all three markers (P50%) and cdc2 (>25%) significantly correlated with shorter survival (Por=2 correlated with worse clinical outcome, and high clinical stage (ie 4 vs survival. The prognostic significance of cdc2 and Ki67 was independent of international prognostic index and clinical stage. We have validated the prognostic value of cdc2, and confirmed that of Ki67, in a cohort of mantle cell lymphoma patients. Immunohistochemical detection of cdc2 and Ki67 may be a useful and simple method in evaluating the prognosis of mantle cell lymphoma patients.

  17. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S

    2007-01-01

    )), and the Cip1/Waf1/Kip1-2-family (p21(Cip1/Waf1), p27(Kip1), p57(Kip2)) are shown both in the context of proliferation regulators and as contributors to the apoptotic machinery. Bcl2-family members (i.e. Bcl2, Bcl-X(L) Mcl-1(L); Bax, Bok/Mtd, Bak, and Bcl-X(S); Bad, Bid, Bim(EL), Bmf, Mcl-1(S)) are highlighted...... approaches that would involve redirecting over-active survival and proliferation pathways towards induction of apoptosis in cancer cells....

  18. The Herb Medicine Formula “Chong Lou Fu Fang” Increases the Cytotoxicity of Chemotherapeutic Agents and Down-Regulates the Expression of Chemotherapeutic Agent Resistance-Related Genes in Human Gastric Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Yongping Liu

    2011-01-01

    Full Text Available The herb medicine formula “Chong Lou Fu Fang” (CLFF has efficacy in inhibiting the proliferation of human gastric cancer in vitro and in vivo. To explore the potentially useful combination of CLFF with chemotherapeutic agents commonly used in gastric cancer therapy, we assess the interaction between CLFF and these chemotherapeutic agents in both SGC-7901 cell lines and BGC-823 cell lines using a median effect analysis and apoptosis analysis, and we also investigate the influence of CLFF on chemotherapeutic agent-associated gene expression. The synergistic analysis indicated that CLFF had a synergistic effect on the cytotoxicity of 5-fluorouracil (5-FU in a relative broad dose inhibition range (20–95% fraction affected in SGC-7901cell lines and 5–65% fraction affected in BGC-823 cell lines, while the synergistic interaction between CLFF and oxaliplatin or docetaxel only existed in a low dose inhibition range (≤50% fraction affected in both cell lines. Combination of CLFF and chemotherapeutic agents could also induce apoptosis in a synergistic manner. After 24 h, CLFF alone or CLFF combination with chemotherapeutic agents could significantly suppress the levels of expression of chemotherapeutic agent resistance related genes in gastric cancer cells. Our findings indicate that there are useful synergistic interactions between CLFF and chemotherapeutic agents in gastric cancer cells, and the possible mechanisms might be partially due to the down-regulation of chemotherapeutic agent resistance related genes and the synergistic apoptotic effect.

  19. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients.

    Directory of Open Access Journals (Sweden)

    Brendan Fong

    Full Text Available PURPOSE: Dendritic cell (DC vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL subsets in glioblastoma patients treated with DC vaccination at UCLA. EXPERIMENTAL DESIGN: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. RESULTS: The change in regulatory T cell (CD3(+CD4(+CD25(+CD127(low frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623 after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3(+CD4(+ T cells (p = 0.0191; hazard ratio = 2.840 and CD3(+CD8(+ T cells (p = 0.0273; hazard ratio = 2.690, while that of activation markers (CD25, CD69 was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. CONCLUSIONS: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future

  20. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Angeletti, Ruth H; Horwitz, Susan Band

    2014-01-01

    Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellula...

  1. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    Science.gov (United States)

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  2. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Silvia Baldari

    2016-07-01

    Full Text Available Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs, suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2. Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential.

  3. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways.

    Science.gov (United States)

    Bijangi-Vishehsaraei, Khadijeh; Reza Saadatzadeh, M; Wang, Haiyan; Nguyen, Angie; Kamocka, Malgorzata M; Cai, Wenjing; Cohen-Gadol, Aaron A; Halum, Stacey L; Sarkaria, Jann N; Pollok, Karen E; Safa, Ahmad R

    2017-12-01

    OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN

  4. HIV Latency Reversing Agents have diverse effects on Natural Killer Cell Function

    Directory of Open Access Journals (Sweden)

    Carolina Garrido

    2016-09-01

    Full Text Available In an effort to clear persistent HIV infection, and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is therefore critical to understand the impact of latency reversing agents (LRAs on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors (SAHA or vorinostat, romidepsin and panobinostat and two protein kinase C (PKC agonists (prostratin and ingenol on the antiviral activity, cytotoxicity, cytokine secretion, phenotype and viability of primary NK cells. We found that ex vivo exposure to vorinostat had minimal impact on all parameters assessed, while panobinostat caused a decrease in NK cell viability, antiviral activity and cytotoxicity. Prostratin caused NK cell activation and interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection.

  5. Remembrance of Dead Cells Past: Discovering That the Extracellular Matrix Is a Cell Survival Factor

    OpenAIRE

    Schwartz, Martin A.

    2010-01-01

    In 1992, Jere Meredith and I followed up on a serendipitous observation and showed that matrix deprivation can lead to apoptosis. Our article in Molecular Biology of the Cell, together with work form Steve Frisch's lab, helped establish the paradigm that integrin signals control cell survival in a variety of systems. It has been a pleasure to watch that work take on a life of its own as other investigators have explored its role in processes such as cavitation, regression of the mammary gland...

  6. Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor

    OpenAIRE

    Xia, Wenzheng; Xie, Congying; Jiang, Miaomiao; Hou, Meng

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with progenitor cell survival and potently inhibits apoptosis. We examined the protective effect of MIF on hypoxia/serum deprivation (SD)-induced apoptosis of mesenchymal stem cells (MSCs), as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by culturing MSCs under hypoxia/SD conditions for up to 24?h and assessed by...

  7. Endothelial Progenitor Cell Mobilization in Preterm Infants With Sepsis Is Associated With Improved Survival.

    Science.gov (United States)

    Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi

    2017-10-01

    Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  9. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  10. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  11. Delivery of Optical Contrast Agents using Triton-X100, Part 1: Reversible permeabilization of live cells for intracellular labeling

    OpenAIRE

    van de Ven, Anne L; Adler-Storthz, Karen; Richards-Kortum, Rebecca

    2009-01-01

    Effective delivery of optical contrast agents into live cells remains a significant challenge. We sought to determine whether Triton-X100, a detergent commonly used for membrane isolation and protein purification, could be used to effectively and reversibly permeabilize live cells for delivery of targeted optical contrast agents. Although Triton-X100 is widely recognized as a good cell permeabilization agent, no systematic study has evaluated the efficiency, reproducibility, and reversibility...

  12. Effects of insulin on the survival of irradiated chinese hamster lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P S; Kwock, L; Hefter, K; Wallach, D F.H.; Brotman, R [Tufts-New England Medical Center, Boston, Mass. (USA)

    1977-01-01

    Insulin treatment (10/sup -7/-10/sup -9/ M) before ..gamma.. irradiation (50 to 500 rads) increases the long term survival of Chinese hamster lung cells (DON). Our data indicates that the radioprotective effect of insulin is not due to a modulation of cyclic-adenosine-3',5'-monophosphate levels within these cells. The results suggest that the radiosensitive plasma membrane component postulated to be involved in the interphase death of thymocytes and protected by insulin may have a counterpart in DON cells.

  13. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Domnik Bayer

    2011-01-01

    Full Text Available Acidic or alkaline direct ethanol fuel cells (DEFCs can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution. Beside, basic electrochemical tests, differential electrochemical mass spectrometry (DEMS and fuel cell tests were conducted. It was found that fusel oil is not suitable as denaturing agent for DEFC. However, tert-butyl ethyl ether does not seem to hinder the ethanol conversion as much. Finally, a mixture of tert-butyl ethyl ether and Bitrex can be proposed as promising candidate as denaturing agent for use in acidic and alkaline DEFC.

  14. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of gamma irradiation on proliferation and survival of Sf9 cells: radioresistance in a Lepidopteran insect cell line

    International Nuclear Information System (INIS)

    Seth, R.K.; Lovell, K.V.; Reynolds, S.E.

    2003-01-01

    Sf9 cells of Spodoptera frugiperda, when exposed to gamma-irradiation from a 60 Co source, were found markedly less sensitive to ionising radiation than mammalian cells in terms of both growth kinetics and survival. Following irradiation at 1.2 Gy S -1 there was a dose-dependent delay in Sf9 cell proliferation and plateau cell density was reduced. These effects were dependent on dose rate too. In the range 0.3 - 1.2 Gy s -1 , growth was delayed longer and reached a lower plateau with increasing dose rate. Exposure to radiation caused a decrease in adherence of cells to the substrate, and an increase in number of enlarged ('giant') cells. Analysis of colony formation after irradiation at 1.2 Gy s -1 gave a survival curve of conventional shape but with a very large D o value of 24 Gy. Extrapolation number (N) was 2.9, a value within the normal range for mammalian cells. At 0.12 Gy s -1 N had a similar value of 3.2, but D o was higher (30 Gy) than at the higher dose rate. This study indicates that the relative insensitivity of lepidoptera insects may be attributed to some extent to the intrinsic properties of their constituent cells. (author)

  16. The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents.

    Science.gov (United States)

    Rasmussen, L J; Rasmussen, M; Lützen, A; Bisgaard, H C; Singh, K K

    2000-05-25

    DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.

  17. Marital status and survival of patients with oral cavity squamous cell carcinoma: a population-based study

    OpenAIRE

    Shi, Xiao; Zhang, Ting-ting; Hu, Wei-ping; Ji, Qing-hai

    2017-01-01

    Background The relationship between marital status and oral cavity squamous cell carcinoma (OCSCC) survival has not been explored. The objective of our study was to evaluate the impact of marital status on OCSCC survival and investigate the potential mechanisms. Results Married patients had better 5-year cancer-specific survival (CSS) (66.7% vs 54.9%) and 5-year overall survival (OS) (56.0% vs 41.1%). In multivariate Cox regression models, unmarried patients also showed higher mortality risk ...

  18. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  19. Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Wahl, A.; Tveit, K.M.; Monge, O.R.; Brustad, T.

    1985-01-01

    X-ray and heat survival curves were established for melanoma cells derived directly from surgical specimens of tumours in man by using the Courtenay soft agar colony assay. The plating efficiency for 11 of the 14 melanomas studied was sufficiently high (PE = 0.3-58%) to measure cell survival over at least two decades. Experiments repeated with cells stored in liquid nitrogen showed that the survival assay gave highly reproducible results. The melanomas exhibited individual and characteristic survival curves whether exposed to radiation or heat (43.5 0 C). The D 0 -values were in the ranges 0.63-1.66 Gy (X-rays) and 33-58 min (heat). The survival curves were similar to those reported previously for human melanoma xenografts. The radiation sensitivity of the cells was not correlated to the heat sensitivity. Since the melanomas appeared to be very heterogeneous in radiation response in vitro as melanomas are known to be clinically, it is suggested that melanomas may be suitable for prospective studies aimed at establishing whether clinical radioreponsiveness somehow is related to in vitro survival curve parameters. (orig.)

  20. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Loo, Suet K; Ch'ng, Ewe S; Md Salleh, Md Salzihan

    2017-01-01

    to investigate TRPM4 protein expression pattern in non-malignant tissues and DLBCL cases, and its association with clinico-demographic parameters and survival in DLBCL. METHODS AND RESULTS: Analysis of publicly available DLBCL microarray data sets showed that TRPM4 transcripts were up-regulated in DLBCL compared...... to normal germinal centre B (GCB) cells, were expressed more highly in the activated B cell-like DLBCL (ABC-DLBCL) subtype and higher TRPM4 transcripts conferred worse overall survival (OS) in R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL cases (P ... immunohistochemical analysis showed that TRPM4 was expressed in various human tissues but not in normal B cells within lymphoid tissues (reactive tonsil, lymph node and appendix). TRPM4 protein was present in 26% (n = 49 of 189) of our cohort of R-CHOP-treated DLBCL cases and this was associated significantly...

  1. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    International Nuclear Information System (INIS)

    Lohrer, H.; Robson, T.

    1989-01-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd 1 ), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author)

  2. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Lohrer, H.; Robson, T. (Newcastle upon Tyne Univ. (UK). Cancer Research Unit)

    1989-12-01

    Metallothionein protein protects cells from the toxic effects of heavy metal ions. To establish its protective function against ionizing radiation and alkylating agents, a model system was created by transfecting two CHO cell lines (wild-type, K1-2 and X-ray sensitive, xrs-2 subclone Bc11) with the human metallothionein II-A (hMTII-A) gene integrated in a bovine papilloma derived autonomously replicating vector. The isolated transfectants are cadmium-resistant (Cd{sup 1}), due to the overexpression of the hMTII-A gene. Their steady-state level of hMTII-A mRNA can be increased up to 40-fold after Cd treatment and 20-fold after induction with ionizing radiation. The transfected cell lines proved to be as sensitive as the recipient cell lines to ionizing radiation and bleomycin but the transfectants were significantly more resistant to N-methyl-nitro-nitrosoguanidine (MNNG) and mitomycin C (MMC). These results lead to the conclusion that the MT protein does provide a defence mechanism to protect cells from monofunctional alkylating and cross-linking agents but not from free radicals. (author).

  3. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  4. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    Science.gov (United States)

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  5. Effects of Nicotinamide N-Methyltransferase on PANC-1 Cells Proliferation, Metastatic Potential and Survival Under Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2015-01-01

    Full Text Available Background: Aberrant expression of Nicotinamide N-methyltransferase (NNMT has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Methods: Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. Results: NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. Conclusions: These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress.

  6. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  7. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    International Nuclear Information System (INIS)

    Chvetsov, A

    2014-01-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method where the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S 2 =0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S 2 =0.7 and then approached zero as S 2 is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S 2 is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S 2 are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation

  8. Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis.

    Science.gov (United States)

    Chang, Xiaofeng; Zhang, Fan; Liu, Tieshi; Wang, Wei; Guo, Hongqian

    2017-06-01

    To investigate the role of neutrophil-to-lymphocyte ratio as a prognostic indicator in patients with localized clear cell renal cell carcinoma treated with radiofrequency ablation. We retrospectively analyzed data from patients with renal cell carcinoma who underwent radiofrequency ablation from 2006 to 2013. The Kaplan-Meier method was used to generate the survival curves according to different categories of neutrophil-to-lymphocyte ratio. Relationships between preoperative neutrophil-to-lymphocyte ratio or the change of neutrophil-to-lymphocyte ratio and survival were evaluated with multivariable Cox proportional hazards regression analysis. A propensity score matching analysis was carried out to avoid confounding bias. A total of 185 patients were included in present study. When stratified by preoperative neutrophil-to-lymphocyte ratio cutoff value of 2.79, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio analysis, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio ratio with the change of neutrophil-to-lymphocyte ratio, patients with both preoperative neutrophil-to-lymphocyte ratio ≥2.79 and the change of neutrophil-to-lymphocyte ratio ≥0.40 had the worst disease-free survival. Results of multivariable analysis showed that preoperative neutrophil-to-lymphocyte ratio and the change of neutrophil-to-lymphocyte ratio correlated with cancer relapse remarkably. High preoperative neutrophil-to-lymphocyte ratio and elevated postoperative neutrophil-to-lymphocyte ratio are associated with significant increase in risk of local recurrence as well as distant metastasis. The combination of neutrophil-to-lymphocyte ratio with the other prognostic indicators can be applied in the evaluation of relapse risk in patients with clear cell renal cell carcinoma after radiofrequency ablation.

  9. Late Release of Circulating Endothelial Cells and Endothelial Progenitor Cells after Chemotherapy Predicts Response and Survival in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Jeanine M. Roodhart

    2010-01-01

    Full Text Available We and others have previously demonstrated that the acute release of progenitor cells in response to chemotherapy actually reduces the efficacy of the chemotherapy. Here, we take these data further and investigate the clinical relevance of circulating endothelial (progenitor cells (CE(PCs and modulatory cytokines in patients after chemotherapy with relation to progression-free and overall survival (PFS/OS. Patients treated with various chemotherapeutics were included. Blood sampling was performed at baseline, 4 hours, and 7 and 21 days after chemotherapy. The mononuclear cell fraction was analyzed for CE(PC by FACS analysis. Plasma was analyzed for cytokines by ELISA or Luminex technique. CE(PCs were correlated with response and PFS/OS using Cox proportional hazard regression analysis. We measured CE(PCs and cytokines in 71 patients. Only patients treated with paclitaxel showed an immediate increase in endothelial progenitor cell 4 hours after start of treatment. These immediate changes did not correlate with response or survival. After 7 and 21 days of chemotherapy, a large and consistent increase in CE(PC was found (P < .01, independent of the type of chemotherapy. Changes in CE(PC levels at day 7 correlated with an increase in tumor volume after three cycles of chemotherapy and predicted PFS/OS, regardless of the tumor type or chemotherapy. These findings indicate that the late release of CE(PC is a common phenomenon after chemotherapeutic treatment. The correlation with a clinical response and survival provides further support for the biologic relevance of these cells in patients' prognosis and stresses their possible use as a therapeutic target.

  10. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2011-04-01

    Full Text Available Abstract Background Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+ and recurrent head and neck squamous cell carcinoma (HNSCC may increase our understanding of the complex biology of this disease. Methods Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative or tumor recurrence (recurrent or non-recurrent tumor after treatment (surgery with neck dissection followed by radiotherapy. Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results The most frequent alterations were the repression of modules in negative lymph node (N0 and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway

  11. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    Science.gov (United States)

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  12. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Science.gov (United States)

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  13. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  14. Bone Marrow PDGFR+Sca-1+ Enriched Mesenchymal Stem Cells Support Survival of and Antibody Production by Plasma Cells in vitro through IL-6.

    Science.gov (United States)

    Kayaba, Atsuko; Itoh-Nakadai, Ari; Niibe, Kunimichi; Shirota, Matsuyuki; Funayama, Ryo; Sugahara-Tobinai, Akiko; Wong, Yi Li; Inui, Masanori; Nakayama, Keiko; Takai, Toshiyuki

    2018-02-24

    Plasma cells (PCs) acquiring with long lives in bone marrow (BM) play a pivotal role in the humoral arm of immunological memory. The PCs reside in a special BM niche and produce antibodies against past-encountered pathogens or vaccine components for a long time. In BM, cysteine-X-cysteine (CXC) chemokine receptor type 4-expressing PCs and myeloid cells such as dendritic cells are attracted to and held by CXC chemokine ligand 12-secreting stromal cells, where survival of the PCs is supported by soluble factors such as IL-6 and a proliferation-inducing ligand or APRIL produced by neighboring myeloid cells. Although these stromal cells are also supposed to be involved in the support of the survival and antibody production, the full molecular mechanism has not been clarified yet. Here we show that BM PDGFR+Sca-1+ enriched mesenchymal stem cells (MSCs), which can contribute as stromal cells for hematopoietic stem cells, also support in vitro survival of and antibody production by BM PCs. IL-6 produced by MSCs was found to be involved in the support. Immunohistochemistry of BM sections suggested a co-localization of a minor population of PCs with PDGFR+Sca-1+ MSCs in the BM. We also found that the sort-purified MSC preparation was composed of multiple cell groups with different gene expression profiles, as found on single-cell RNA sequencing, to which multiple roles in the in vitro PC support could be attributed.

  15. Lack of retroperitoneal lymphadenopathy predicts survival of patients with metastatic renal cell carcinoma.

    Science.gov (United States)

    Vasselli, J R; Yang, J C; Linehan, W M; White, D E; Rosenberg, S A; Walther, M M

    2001-07-01

    Patients with metastatic renal cell carcinoma have a reported 5-year survival of 0% to 20%. The ability to predict which patients would benefit from nephrectomy and interleukin-2 (IL-2) therapy before any treatment is initiated would be useful for maximizing the advantage of therapy and improving the quality of life. A retrospective analysis of the x-rays and charts of patients treated at the National Institutes of Health Surgery Branch between 1985 and 1996, who presented with metastatic renal cancer beyond the locoregional area and the primary tumor in place, was performed. Preoperative computerized tomography or magnetic resonance imaging, or radiological reports if no scans were available, were used to obtain an estimate of the volume of retroperitoneal lymphadenopathy. Operative notes were used to evaluate whether all lymphadenopathy was resected or disease left in situ, or if any extrarenal resection, including venacavotomy, was performed. Mean survival rate was calculated from the time of nephrectomy to the time of death or last clinical followup. If patients received IL-2 therapy, the response to treatment was recorded. Mean survival and response rate for IL-2 were compared among patients in 3 separate analyses. Patients without preoperatively detected lymphadenopathy were compared with those with at least 1 cm.3 retroperitoneal lymphadenopathy. Also, the patients who had detectable lymphadenopathy were divided into subgroups consisting of all resected, incompletely resected, unresectable and unknown if all disease was resected. Each subgroup was compared with patients without detectable preoperative lymphadenopathy. Patients with less than were compared to those with greater than 50 cm.3 retroperitoneal lymphadenopathy. Patients undergoing extrarenal resection at nephrectomy (complex surgery) due to direct invasion of the tumor into another intra-abdominal organ were compared with those undergoing radical nephrectomy alone, regardless of lymph node status

  16. Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study.

    Science.gov (United States)

    Gomes Cornélio, Ana Lívia; Salles, Loise Pedrosa; Campos da Paz, Mariana; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru Filho, Mário

    2011-02-01

    The aim of this study was to investigate the cytotoxicity of white Portland cement (PC) alone or associated with bismuth oxide (PCBi), zirconium oxide (PCZir), and calcium tungstate (PCCa) in 2 cell lineages. Murine periodontal ligament cells (mPDL) and rat osteosarcoma cells (ROS 17/2.8) were exposed for 24 hours to specific concentrations of fresh PC and PC associations with radiopacifiers. Zinc oxide-eugenol cement and hydrogen peroxide treatment were applied as cytotoxic positive controls. Cell viability after incubation with the cements was assessed by mitochondrial dehydrogenase enzymatic assay. Cell morphology was microscopically analyzed by cresyl violet staining, and the mechanism of cell death was determined by acridine orange/ethidium bromide methodology. All data were analyzed statistically by analysis of variance and Tukey post hoc test (P cement elutes. PC alone was not cytotoxic, even at 100 mg/mL. Microscopic images showed that none of the PC formulations caused damage to any cell lines. Statistical analysis of apoptosis/necrosis data demonstrated that PC and PC plus radiopacifying agents promoted significant necrosis cell death only at 100 mg/mL. The mPDL cells were more sensitive than ROS17/2.8. The results showed that PC associated with bismuth oxide, zirconium oxide, or calcium tungstate is not cytotoxic to mPDL or ROS17/2.8. Zirconium oxide and calcium tungstate might be good alternatives as radiopacifying agents. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    Science.gov (United States)

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260

  18. Squamous cell carcinoma of the breast in the United States: incidence, demographics, tumor characteristics, and survival.

    Science.gov (United States)

    Yadav, Siddhartha; Yadav, Dhiraj; Zakalik, Dana

    2017-07-01

    Squamous cell carcinoma of breast accounts for less than 0.1% of all breast cancers. The purpose of this study is to describe the epidemiology and survival of this rare malignancy. Data were extracted from the National Cancer Institute's Surveillance, Epidemiology and End Results Registry to identify women diagnosed with squamous cell carcinoma of breast between 1998 and 2013. SEER*Stat 8.3.1 was used to calculate age-adjusted incidence, age-wise distribution, and annual percentage change in incidence. Kaplan-Meier curves were plotted for survival analysis. Univariate and multivariate Cox proportional hazard regression model was used to determine predictors of survival. A total of 445 cases of squamous cell carcinoma of breast were diagnosed during the study period. The median age of diagnosis was 67 years. The overall age-adjusted incidence between 1998 and 2013 was 0.62 per 1,000,000 per year, and the incidence has been on a decline. Approximately half of the tumors were poorly differentiated. Stage II was the most common stage at presentation. Majority of the cases were negative for expression of estrogen and progesterone receptor. One-third of the cases underwent breast conservation surgery while more than half of the cases underwent mastectomy (unilateral or bilateral). Approximately one-third of cases received radiation treatment. The 1-year and 5-year cause-specific survival was 81.6 and 63.5%, respectively. Excluding patient with metastasis or unknown stage at presentation, in multivariate Cox proportional hazard model, older age at diagnosis and higher tumor stage (T3 or T4) or nodal stage at presentation were significant predictors of poor survival. Our study describes the unique characteristics of squamous cell carcinoma of breast and demonstrates that it is an aggressive tumor with a poor survival. Older age and higher tumor or nodal stages at presentation were independent predictors of poor survival for loco-regional stages.

  19. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells

    Science.gov (United States)

    Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy

    2018-01-01

    Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391

  20. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  1. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  2. Gadolinium-Hematoporphyrin: new potential MRI contrast agent for detection of breast cancer cell line (MCF-7

    Directory of Open Access Journals (Sweden)

    D Shahbazi Gahrouei

    2005-09-01

    Full Text Available Background: Gadolinium-porphyrins have been synthesized and are currently being investigated as magnetic resonance imaging (MRI contrast agents. This study aimed to synthesize Gd-hematoporphyrin and applicate it for in vitro detection of breast cancer cell line (MCF-7. Methods: The naturally occurring porphyrin (hematoporphyrin was inserted with gadolinium (III nitrate hexahydrate to yield Gd-H. T1 relaxation times and signal enhancement of the contrast agents were presented, and the results were compared. UV spectrophotometer measured the attachment of Gd to the cell membrane of MCF-7. Results: Most of gadolinium chloride (GdCl3 was found in the washing solution, indicate that it didn`t fixed to the breast cell membranes during incubation. Gd-DTPA showed some uptake into the MCF-7 cell membranes with incubation, however, its uptake was significantly lower than Gd-H. Conclusion: Good cell memberan uptake of Gd-porphyrin is comparable to controls, indicating selective delivery it to the breast cell line and considerable potency in diagnostic MR imaging for detection of breast cancer. Key Words: Porphyrin, Contrast agent, MRI, Hematoporphyrin, Breast cancer cell (MCF-7

  3. Response of the microtubular cytoskeleton following hyperthermia as a prognostic indicator of survival of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Coss, Ronald A.; Alden, Mark E.; Wachsberger, Phyllis R.; Smith, Nancy N.

    1996-01-01

    Purpose: The response of the microtubular (MT) cytoskeleton to hyperthermia was assessed as a prognostic indicator of cytotoxicity. Methods and Materials: Heat-induced collapse and subsequent recovery of the MT system were compared with survival for both nonthermotolerant (NT) and thermotolerant (TT) G1 populations of Chinese hamster ovary (CHO) cells. The response of the MT system was monitored using immunofluorescence staining. The G1 populations of NT and TT cells were heated by submersion in 45.0 and 43.0 deg. C waterbaths. Results: Heat-induced perinuclear collapse of the MT system did not correlate with survival for the NT and TT populations. However, recovery of the organization of the MT cytoskeleton was correlatable with survival. The regression line of survival plotted as a function of MT recovery is fit by: y = -0.43 + 1.03x, r 2 = 0.95 (p < 0.0005). Conclusion: Restoration of the organization of the MT cytoskeleton following hyperthermia may be used as a prognostic indicator of survival of CHO cells heated in G1

  4. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  5. Irradiation effects of ultraviolet rays on Leptospira cells. Loss of motility, survive ability, and damages of cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hidezo (Yamaguchi Univ., Ube (Japan). School of Medicine)

    1982-12-01

    The irradiation effects of ultraviolets rays (UV) on leptospira cells were investigated. Four serovar strains of Genus Leptospira ; L. copenhageni, L. canicola, L. biflexa and L. illini were used. A sterilization lamp (Toshiba-GL-15) was lighted at intervals of 90mm on the sample fluid for several minutes. Loss of motility, survival growth and morphological damages were recognized under several conditions. The medium conditions were important, that is, the Korthof's medium was less effective than phosphate buffered saline (PBS). The irradiation time was also important, that is, L. canicola cells in PBS lost their motility and survive ability within 300sec. of irradiation, however, much more time, such as 1.200sec. was necessary in Korthof's medium. This phenomenon may be depended upon defensibility of albumin in the latter. Among the strains, L. biflexa cells showed the highest resistance in loss of motility and survive ability, and other three strains were inferior. The remarkable efects of cellular structures were also seen in the materials with 30 min. of irradiation, in both immediate time or after 24h incubation. The damages observed after 24th of irradiation were much more drastic than those of immediate time. No effect could be seen on the cells suspended in the Korthof's medium irradiated for 24h. Regarding morphological effect, there appeared relaxation of helical body, spherical body and semighost as the immediate changes. Structural damages were recognized as the collapse of cell body, such as scattering of capsule, release of axial flagella, loss or change of cytoplasmic density and break down of wall membrane complex. These phenomena were regarded as the indirect effects of UV-irradiation and autolysis in a post-mortem change.

  6. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.

    Science.gov (United States)

    Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah A

    2017-04-20

    Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.

  7. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  8. Natural Killer/T-cell Neoplasms: Analysis of Incidence, Patient Characteristics, and Survival Outcomes in the United States.

    Science.gov (United States)

    Kommalapati, Anuhya; Tella, Sri Harsha; Ganti, Apar Kishore; Armitage, James O

    2018-05-04

    Limited data are available regarding the incidence, survival patterns, and long-term outcomes of natural killer (NK)/T-cell neoplasms in the United States. We performed a retrospective study of patients with NK/T-cell neoplasms diagnosed from 2001 to 2014 using the Surveillance, Epidemiology, and End Results program database. The Kaplan-Meier method was used to estimate the overall survival difference among the subgroups. Multivariate analyses were used to determine the factors affecting survival. For the 797 patients with NK/T-cell lymphoma, nasal type, the median age at diagnosis was 53 years, and males tended to be younger at diagnosis (P < .0001). The incidence of the disease increased from 0.4 in 2001 to 0.8 in 2014 per 1,000,000 individuals. The incidence was significantly greater in Hispanic patients compared with that in non-Hispanic patients (rate ratio, 3.03; P = .0001). The median overall survival was 20 months (range, 2-73 months) and varied significantly according to the primary site (P < .0001) and the disease stage at diagnosis (P < .0001). NK/T-cell lymphoma patients had an increased risk of acute myeloid leukemia (standardized incidence ratio, 18.77; 95% confidence interval, 2.27-67.81). For the 105 NK/T-cell leukemia patients, the median age at diagnosis was 58 years (range, 4-95 years). The overall incidence of the disease was 0.09 per 1,000,000 individuals and was significantly greater in males (rate ratio, 0.41; P < .0001). Unlike NK/T-cell lymphoma, no racial disparities were found in the incidence. The median overall survival was 17 months (range, 0-36 months). The incidence of NK/T-cell lymphoma, nasal type, in the United States has at least doubled in the past decade, with the greatest predilection among Hispanics. Patients with NK/T-cell lymphoma might have an increased risk of the subsequent development of acute myeloid leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Do Fanconi anemia genes control cell response to cross-linking agents by modulating cytochrome P-450 reductase activity?

    NARCIS (Netherlands)

    Kruyt, FAE; Youssoufian, H

    2000-01-01

    The Fanconi anemia (FA) genes play an important role in maintaining chromosomal stability and the defense of mammalian cells against cross-linking agents, such as cisplatin and mitomycin C (MMC). Cells derived from FA patients display a characteristic hypersensitivity toward cross-linking agents.

  10. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  11. Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model

    Science.gov (United States)

    Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank

    2013-01-01

    The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma. PMID:23396474

  12. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  13. Long-term survival in an adolescent with widely metastatic renal cell carcinoma with rhabdoid features.

    Science.gov (United States)

    Ettinger, L J; Goodell, L A; Javidian, P; Hsieh, Y; Amenta, P

    2000-01-01

    Renal cell carcinoma is rarely seen in children and adolescents. Patients with widespread disease at diagnosis have a particularly poor survival rate. Currently, all known chemotherapy has been ineffective in improving the median survival in patients with advanced disease. A 13-year-old black boy with stage IV renal cell carcinoma with rhabdoid features is a long-term disease-free survivor after aggressive multiagent chemotherapy. After the initial evaluation and histologic diagnosis of renal cell carcinoma, the patient received three courses of an aggressive chemotherapy regimen consisting of vincristine, doxorubicin, cyclophosphamide with mesna uroprotection, granulocyte colony-stimulating factor and erythropoietin (Epogen). After an almost complete response, a radical nephrectomy was performed and results demonstrated a solitary small nodule with viable tumor. After surgery, he received floxuridine infusion for 14 days by circadian schedule at 28-day intervals for a total of 1 year. The patient is well and free of disease 5 years after initial presentation. The dramatic response to treatment and long-term disease-free survival of this patient suggest this chemotherapeutic approach warrants additional investigation.

  14. The survival effects of V79 cells irradiated with carbon ions in different let

    International Nuclear Information System (INIS)

    Wang Jufang; Zhou Guangming; He Jing; Li Wenjian; Li Qiang; Dang Bingrong; Li Xinglin; Weng Xiaoqiong; Xie Hongmei; Wei Zengquan; Gao Qingxiang

    2001-01-01

    The survival of cultured Chinese V79 hamster cells irradiated with carbon ions with different LETs were investigated. Irradiation was performed at the heavy Ion Research Facility in Lanzhou (HIRFL). Results were compared with those obtained from the experiments with γ rats and could be concluded as follows: The survival curves for carbon ions showed as straight lines and were fitted to the one-target one-hit model, but for γ rays the curves with shoulders were fitted to the multi-target one-hit model. As the LETs were 125, 200 and 700 keV/μm for carbon ions, the inactivation cross section 35, 12 and 8 μm 2 , respectively, which suggested that under the experimental conditions, the lower the LET of carbon ions, the more seriously the irradiation killed cells. In the case of 125 keV/μm, the RBEs of carbon ions at the 0.1 and 0.37 survival levels were 1.47 and 2.19 respectively

  15. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    Ehrkamp, Anja; Herrmann, Christian; Stoll, Raphael; Heumann, Rolf

    2013-01-01

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  16. Ras and Rheb Signaling in Survival and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: rolf.heumann@rub.de [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)

    2013-05-28

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  17. Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    International Nuclear Information System (INIS)

    Beal, Kathryn; Abrey, Lauren E; Gutin, Philip H

    2011-01-01

    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy

  18. 51Chromium survival of Yt(a+) red cells as a determinant of the in vivo significance of anti-Yta

    International Nuclear Information System (INIS)

    Davey, R.J.; Simpkins, S.S.

    1981-01-01

    A case is presented in which anti-Yta produced a moderately accelerated removal of chromium-labeled Yt(a+) red blood cells (T1/2, 96 hours). Other reported examples of anti-Yta either have rapidly removed transfused Yt(a+) red blood cells or have permitted apparently normal survival of these cells. In light of this wide variation in in vivo potency of anti-Yta, it is recommended that chromium red blood cell survival studies be done before transfusion of Yt(a+) red blood cells in sensitized individuals

  19. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  20. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis.

    Science.gov (United States)

    Silva, Carlos A M; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S; Oliveira, Albanita V; Bermudez, Luiz E; Pessolani, Maria C V

    2013-07-01

    This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.