WorldWideScience

Sample records for agent ni yoru

  1. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    International Nuclear Information System (INIS)

    Ma, J; Chen, K

    2016-01-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni 3 S 2 @Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2 /r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol −1 L s −1 (for the kale-like and cabbage-like Ni 3 S 2 @Ni, respectively) will shed some light on the development of new-type MRI contrast agents. (paper)

  2. FY1995 community support by mobile agents; 1995 nendo mobile agent ni yoru community keisei shien

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose is to develop fundamental technologies for navigation systems and mobile computing systems in museums, theme parks and cities. Concretely, we implement software agents into the mobile computing environment which consists of PHS, mobile computers and mobile robots, and realize various functions to access regional information. We have studied on Communityware which supports human activities and communities by using mobile agents implemented into mobile computers and town robots. The mobile agents, which intelligently process information obtained in physical and virtual worlds, access regional information which is omnipresent in the environment. With respect to the approach using mobile computers, we have provided one hundred mobile computers in the international conference on multiagent systems 1996 and carried out the first experimentation of mobile computing in the world. The mobile computer has two functions: Community Viewer which displays interactions between members of communities and Social Matchmaker which supports to hold meetings by searching for people who have common interests. With respect to the approach using town robots, we have developed a robot system which can robustly behave in a complex outdoor environment by using vision agents embedded in the environment. The system aims at support of people in streets. (NEDO)

  3. Protective agent-free synthesis of Ni-Ag core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: chendh@mail.ncku.edu.tw; Wang, S.-R. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-10

    Ni-Ag core-shell nanoparticles have been prepared by successive hydrazine reduction in ethylene glycol in the absence of protective agents. TEM analysis indicated the product was very fine and the thickness of Ag nanoshells could be controlled by the added silver nitrate concentration. The analyses of electron diffraction pattern and XRD revealed that both Ni cores and Ag shells had a fcc structure. The surface composition analysis by XPS indicated that Ni cores were fully covered by Ag nanoshells. Because of the absence of protective agent, the appropriate nickel concentration for the coating of Ag nanoshells should be less than 1.0 mM to avoid particle agglomeration. The product possessed the surface character of Ag and the magnetic property of Ni, and may have many potential applications in optical, magnetic, catalytic, biochemical, and biomedical fields.

  4. Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2014-01-01

    Highlights: • Reduction agents were compared from a viewpoint of the facility for topotactic reduction of LaNiO 3 to LaNiO 2 films. • TiH 2 and CaH 2 yielded infinite-layer LaNiO 2 with low and metallic resistivity. • H 2 released from metal hydrides plays a dominant role in the topotactic reduction. - Abstract: Reduction agents, such as activated carbon, TiH 2 , and CaH 2 , were compared from a viewpoint of the facility for the topotactic reduction of LaNiO 3 to LaNiO 2 films. Activated carbon did not yield infinite-layer LaNiO 2 whereas both of TiH 2 and CaH 2 yielded infinite-layer LaNiO 2 with low resistivity (∼1 mΩ cm at 300 K) as well as metallic behavior down to 70 K. Thermal desorption spectroscopy indicated that H 2 released from metal hydrides plays a dominant role in the topotactic reduction

  5. Comparison of reduction agents in the synthesis of infinite-layer LaNiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science, Ichiban-cho 8, Chiyoda, Tokyo 102-8472 (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    Highlights: • Reduction agents were compared from a viewpoint of the facility for topotactic reduction of LaNiO{sub 3} to LaNiO{sub 2} films. • TiH{sub 2} and CaH{sub 2} yielded infinite-layer LaNiO{sub 2} with low and metallic resistivity. • H{sub 2} released from metal hydrides plays a dominant role in the topotactic reduction. - Abstract: Reduction agents, such as activated carbon, TiH{sub 2}, and CaH{sub 2}, were compared from a viewpoint of the facility for the topotactic reduction of LaNiO{sub 3} to LaNiO{sub 2} films. Activated carbon did not yield infinite-layer LaNiO{sub 2} whereas both of TiH{sub 2} and CaH{sub 2} yielded infinite-layer LaNiO{sub 2} with low resistivity (∼1 mΩ cm at 300 K) as well as metallic behavior down to 70 K. Thermal desorption spectroscopy indicated that H{sub 2} released from metal hydrides plays a dominant role in the topotactic reduction.

  6. Study of removing a peat-layer from surface active agents; Deitanso ni yoru kaimen kasseizai no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Kitamura, K [Yamagata University, Yamagata (Japan)

    1996-10-27

    An experiment was performed on a system for recycling water resources by using a peat-layer. A laboratory device was also made in order to examine the effects of a peat-layer on surface active agents. In the experiment, a water examination was carried out in which a mixture of water and kitchen detergent at the rate of 15,000 to 1 was filtered through a peat-layer of 2-3cm thick, as was a mixture of water, kitchen detergent and oil at the rate of 15,000 to 1 to 2. In the water examination, various measurements were done such as the measurement of COD by potassium permanganate acid process, measurement of pH by a pH meter with glass electrodes and measurement of coefficient of permeability by a variable water level permeability test. As a result of the experiment, it was revealed that a peat-layer had ability to remove surface active agents, that injection water tended to increase acidity in a peat-layer and that a peat-layer had ability to remove foaming of surface active agents. The COD of domestic waste water decreased from 12mg/l to 0.16mg/l in the system for recycling water resources using a peat-layer. 3 refs., 10 figs., 1 tab.

  7. Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films

    Science.gov (United States)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2014-11-01

    Reduction agents, such as activated carbon, TiH2, and CaH2, were compared from a viewpoint of the facility for the topotactic reduction of LaNiO3 to LaNiO2 films. Activated carbon did not yield infinite-layer LaNiO2 whereas both of TiH2 and CaH2 yielded infinite-layer LaNiO2 with low resistivity (∼1 mΩ cm at 300 K) as well as metallic behavior down to 70 K. Thermal desorption spectroscopy indicated that H2 released from metal hydrides plays a dominant role in the topotactic reduction.

  8. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  9. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Directory of Open Access Journals (Sweden)

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  10. Characterization of Cu–Ni nanostructured alloys obtained by a chemical route. Influence of the complexing agent content in the starting solution

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola (IFEG), Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba—CONICET, Medina Allende s/n, Ciudad Universitaria, 5016 Córdoba (Argentina); Cangiano, María de los A.; Ojeda, Manuel W.; Ruiz, María del C. [Instituto de Investigaciones en Tecnología Qumica (INTEQUI), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis—CONICET, Chacabuco y Pedernera, 5700 San Luis (Argentina)

    2015-03-15

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. In the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.

  11. Classical group theory adapted to the mechanism of Pt3Ni nanoparticle growth: the role of W(CO)6 as the "shape-controlling" agent.

    Science.gov (United States)

    Radtke, M; Ignaszak, A

    2016-01-07

    Classical group theory was applied to prove the Pt3Ni crystallographic transformation from Platonic cubic to Archimedean cuboctahedral structures and the formation of Pt3Ni polypods. The role of W(CO)6 as a shape-controlling agent is discussed with respect to the crystallographic features of the clusters and superstructures generated as control samples.

  12. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    Science.gov (United States)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  13. Influence of silane agent in magnetic properties of the type MFe2O4 (M = Co e NiZn)

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Araujo, P.M.A.G.; Costa, A.C.F.M.; Cornejo, D.R.

    2014-01-01

    This paper proposes to evaluate the influence of silane agent on the magnetic properties of ferrite is a MFe 2 O 4 (M = Co and NiZn). The ferrites were synthesized by combustion reaction, the surface modified with 3-aminopropyltrimethoxysilane agent silane (APTS) and characterized by XRD, FTIR, EDX and magnetic measurements. The results indicated that after modification of the surface of the spinel single phase was maintained. Surface modification was achieved with efficiency and Si-O confirmed by FTIR analysis. The surface modification kept the ferrimagnetic behavior of ferrites. (author)

  14. The effect of reducing agents on the electronic, magnetic and electrocatalytic properties of thiol-capped Pt/Co and Pt/Ni nanoparticles

    CSIR Research Space (South Africa)

    Mathe, NR

    2015-05-01

    Full Text Available The electronic, magnetic and electrocatalytic properties of bimetallic thiol-capped Pt/Co and Pt/Ni nanoparticles were synthesised using two reducing agents, NaBH(sub4) and N(sub2)H(sub4). X-ray diffraction analysis of the nanoparticles showed Pt...

  15. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  16. Study of highly efficient power generation system based on chemical-looping combustion; Chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, S; Suzuki, T; Yamamoto, M [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory of Resources Utilization

    1997-02-01

    This paper describes the research and development of power generation system by means of chemical-looping combustion. For this system, fuel flows in a reduction reactor and air flows in an oxidation reactor. These two flows are separated. As a result, recovery of CO2 without energy consumption, drastic improvement of power generation efficiency, and suppression of NOx emission are expected. To realize the above, two promising candidates, NiCoO2/YSZ and NiO2/NiAl2O4, have been found as recycle solid particles between the both reactors. These have excellent oxidation/reduction cycle characteristics. By these particles as well as the existing particle, NiO/YSZ, practical application of the chemical-looping combustion is realized. Besides LNG, coal and hydrogen were considered as fuels. When using coal or hydrogen, it was found that temperature of the reduction reactor should be increased the same as that of the oxidation reactor. This is a different point from a case using LNG as a fuel. 5 refs., 2 figs.

  17. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-10-15

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties.

  18. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    International Nuclear Information System (INIS)

    Gheisari, Kh.; Javadpour, S.

    2013-01-01

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties

  19. Hydrogenation of heteroaromatics by high pressure DTA techniques. 3; Koatsu DTA ho ni yoru hokozoku kagobutsu no suisoka (rutenium tanji shokubai ni yoru kakusuisoka datsu hetero hanno)

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Kotanigawa, T. [Japan International Cooperation Agency, Tokyo (Japan)

    1996-10-28

    Ring-opening of heteroaromatics and heteroatom-removal reaction were studied experimentally using the acidic catalyst containing phosphoric acid for improvement of an upgrading method of coal derived oils. In experiment, some Ru-carrying metal oxide catalysts such as RMZ, RML and RMN catalyst, and MNP catalyst containing phosphoric acid were used as specimens. Nuclear hydrogenation reaction and hydro-denitrogenation reaction of dibenzothiophene and carbazole were compared with each other. The experimental results are as follows. Both RMN and RMNP catalysts offer a superior selectivity in nuclear hydrogenation reaction and hydro-denitrogenation reaction of carbazole. Although both catalysts offer an extremely high nuclear hydrogenation activity at 360{degree}C, these offer the high selectivity of denitrogenation products at 430{degree}C. In comparison of the activities of MN and MNP catalysts with the same Mn2O3:NiO ratio, MNP catalyst offers the higher denitrogenation activity than MN catalyst at 430{degree}C. 1 ref., 3 tabs.

  20. Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

    CSIR Research Space (South Africa)

    Mathe, MK

    2011-08-01

    Full Text Available Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  1. Rates of nickel(II) capture from complexes with NTA, EDDA, and related tetradentate chelating agents by the hexadentate chelating agents EDTA and CDTA: Evidence of a "semijunctive" ligand exchange pathway

    Science.gov (United States)

    Boland, Nathan E.; Stone, Alan T.

    2017-09-01

    Many siderophores and metallophores produced by soil organisms, as well as anthropogenic chelating agent soil amendments, rely upon amine and carboxylate Lewis base groups for metal ion binding. UV-visible spectra of metal ion-chelating agent complexes are often similar and, as a consequence, whole-sample absorbance measurements are an unreliable means of monitoring the progress of exchange reactions. In the present work, we employ capillary electrophoresis to physically separate Ni(II)-tetradentate chelating agent complexes (NiL) from Ni(II)-hexadentate chelating agent complexes (NiY) prior to UV detection, such that progress of the reaction NiL + Y → NiY + L can be conveniently monitored. Rates of ligand exchange for Ni(II) are lower than for other +II transition metal ions. Ni(II) speciation in environmental media is often under kinetic rather than equilibrium control. Nitrilotriacetic acid (NTA), with three carboxylate groups all tethered to a central amine Lewis base group, ethylenediamine-N,N‧-diacetic acid (EDDA), with carboxylate-amine-amine-carboxylate groups arranged linearly, plus four structurally related compounds, are used as tetradentate chelating agents. Ethylenediaminetetraacetic acid (EDTA) and the structurally more rigid analog trans-cyclohexaneethylenediaminetetraacetic acid (CDTA) are used as hexadentate chelating agents. Effects of pH and reactant concentration are explored. Ni(II) capture by EDTA was consistently more than an order of magnitude faster than capture by CDTA, and too fast to quantify using our capillary electrophoresis-based technique. Using NiNTA as a reactant, Ni(II) capture by CDTA is independent of CDTA concentration and greatly enhanced by a proton-catalyzed pathway at low pH. Using NiEDDA as reactant, Ni(II) capture by CDTA is first order with respect to CDTA concentration, and the contribution from the proton-catalyzed pathway diminished by CDTA protonation. While the convention is to assign either a disjunctive

  2. Determination of standard Ghibbs free energy of formation of NiW sub 2 B sub 2 and activity of Ni-W binary system by EMF measurement. Kidenryokuho ni yoru NiW sub 2 B sub 2 no hyojun seisei Gibbs jiyu energy to Ni-W 2 seibunkei no katsuryo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Kayama, Koichiro; Hashimoto, Yasuhiko; Suzuki, Kenji; Matsuo, Hideki (Himeji Inst. of Tech., Hyogo (Japan) Fukushin Electric Co., Ltd., Hyogo (Japan))

    1989-12-25

    NiW {sub 2} B {sub 2} (M phase), existing in trinary Ni-W-B system, was measured in standard Gibbs free energy (GF) of formation in the temperature range from 1273K to 1423K by an electromotive force method (EMF) with use of solid oxide electrolyte. First, oxide phase in equilibrium with three-phase M-W-Ni solid solution region was confirmed to be B {sub 2} O {sub 3}. Binary Ni-W system solid solution in equilibrium with M phase and W phase is constant in composition with Ni-16.4mo1%W in the above temperature range. WO {sub 2} and WO {sub 2.72} were actually measured in GF. As Ni-W solid solution is in equilibrium with WO {sub 2} and WO {sub 2.72}, binary Ni-W system was measured in activity by the EMF, and Ni-16.4mo1%W solid solution was calculated in GF of mixing by use of the above measured GF of WO {sub 2} and WO {sub 2.72}. Finally with use of sample in M-W-Ni solid solution region, M phase was calculated in GF by the EMF. The result of those calculations were expressed with experimental formulas. 19 refs., 10 figs., 3 tabs.

  3. FY1995 study of highly efficient power generation system based on chemical-looping combustion; 1995 nendo chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Synthesis of highly efficient and low emission power generation plant with chemical-looping combustion using various fuels such as natural gas, coal gas and hydrogen. Development of new looping materials with suitable reactivity, regenerative ability, and avoidance of carbon deposition. To obtain the design data for demo-plant by using the current experiment high- pressure fixed bed reactor. From the viewpoint of application of the proposed power generation system with chemical-looping combustion, the following main results were obtained. 1. New looping materials: NiO/NiAl{sub 2}O{sub 4}, CoO-NiO/YSZ, and Co{sub 3}O{sub 4}/CoAl{sub 2}O{sub 4}. These materials have high reactivity, repeatability, and avoidance of carbon deposition which play important roles in application of this new combustor. 2. NO{sub x} formation can be completely avoided; both fuel NO{sub x} in reduction reactor for coal gas as fuel and thermal NO{sub x} in oxidation reactor. 3. It is identified from the experiment using fixed bed reactor with the elevated pressure that NiO/NiAl{sub 2}O{sub 4} is a suitable material for coal gas or hydrogen. These promising results have provided valuable data for industrial application. (NEDO)

  4. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63 Ni, 109 Cd, 203 Hg, 144 Ce, 95 Nb and the excretion of 210 Po, 63 Ni, 48 V, 239 Pu, 241 Am, 54 Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  5. Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents

    Science.gov (United States)

    Pourmasoud, Saeid; Sobhani-Nasab, Ali; Behpour, Mohsen; Rahimi-Nasrabadi, Mehdi; Ahmadi, Farhad

    2018-04-01

    YbVO4 nanoparticles YbVO4/NiWO4 nanocomposites were synthesized by simple and new method. The effect of various polymeric capping agents such as Tween 80, Tween 20 and PEG on the shape and size of YbVO4/NiWO4 nanocomposites were investigated. YbVO4/NiWO4 nanocomposites were analyzed through some techniques including, X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), thermogravimetry differential thermal analysis (TG-DTA), transmission electron microscopy (TEM), field emission electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis), and energy-dispersive X-ray spectroscopy (EDX). This attempt is the first study on the photocatalytic performance of the YbVO4/NiWO4 nanocomposites in various conditions such as size of particles and kind of dyes (rhodamine B (Rh B), methylene blue (MB), methyl orange (MO), and phenol red (Ph R)), under visible light.

  6. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  7. Distributed scheduling for autonomous vehicles by reinforcement learning; Kyoka gakushu ni yoru mujin hansosha no bunsangata scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Unoki, T.; Suetake, N. [Oki Electric Industry Co. Ltd., Tokyo (Japan)

    1997-08-20

    In this paper, we propose an autonomous vehicle scheduling schema in large physical distribution terminals publicly used as the next generation wide area physical distribution bases. This schema uses Learning Automaton for vehicles scheduling based on Contract Net Protocol, in order to obtain useful emergent behaviors of agents in the system based on the local decision-making of each agent. The state of the automaton is updated at each instant on the basis of new information that includes the arrival estimation time of vehicles. Each agent estimates the arrival time of vehicles by using Bayesian learning process. Using traffic simulation, we evaluate the schema in various simulated environments. The result shows the advantage of the schema over when each agent provides the same criteria from the top down, and each agent voluntarily generates criteria via interactions with the environment, playing an individual role in tie system. 22 refs., 5 figs., 2 tabs.

  8. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  9. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    Science.gov (United States)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  10. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  11. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    Science.gov (United States)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  12. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface. 

  13. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  14. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  15. Percepciones en salud bucal de los niños y niñas

    Directory of Open Access Journals (Sweden)

    Catalina González-Penagos, Colombia.

    2015-07-01

    Full Text Available (analítico: Identificamos las necesidades de salud bucal de los niños y niñas de 2 a 5 años del programa Buen Comienzo-Fantasías de las Américas, desde la percepción de las agentes educativas en la ciudad de Medellín, en el año 2013. Realizamos un estudio cualitativo, con enfoque histórico hermenéutico; la población de estudio correspondió a 65 agentes educativas. Los resultados preliminares reflejan necesidades relacionadas con el acceso y oportunidad de atención odontológica, la deficiencia en las acciones de promoción de la salud y prevención de las enfermedades prevalentes en salud bucal, el desconocimiento y la falta de motivación de los hábitos de higiene bucal, su importancia en la prevención de las patologías bucales y su implicación con el crecimiento y desarrollo, y con la salud general de los menores y las menores.

  16. Sorption properties of new composite materials suitable for radioanalytical determination of 59-Ni and 63-Ni

    International Nuclear Information System (INIS)

    Fisera, O.; Sebesta, F.

    2006-01-01

    New composite materials for separation and radioanalytical determination of radionickel ( 59, 63 Ni) were prepared and their sorption properties were examined. Chelating agents dimethylglyoxime (DMG) and diphenylglyoxime (DFG) as active components were immobilized in porous matrix of binding polymer polyacrylonitrile (PAN). Sorption properties of these materials were compared with commercial Ni Resin (Eichrom Technologies, USA). Weight distribution ratios, sorption kinetics and operating capacities were investigated during experiments performed. The highest weight distribution ratios were found for the material DFG-PAN. The sorbent DMG-PAN has the highest operating capacity. The fastest kinetics of nickel sorption was determined for the commercial Ni Resin. Elution of nickel with nitric acid solution allows subsequent and direct determination of radionickel by liquid scintillation counting. (author)

  17. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    Science.gov (United States)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-03-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × } , and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot } , and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot } , were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  18. Preparation of binder-free porous ultrathin Ni(OH)2 nanoleafs using ZnO as pore forming agent displaying both high mass loading and excellent electrochemical energy storage performance

    International Nuclear Information System (INIS)

    Xu, Panpan; Miao, Chenxu; Cheng, Kui; Ye, Ke; Yin, Jinling; Cao, Dianxue; Wang, Guiling; Zhang, Xianfa

    2016-01-01

    Highlights: • Porous Ni(OH) 2 nanoleaf is prepared by using ZnO as pore forming agent. • The mass loading of active material on binder-free Ni(OH) 2 /NF electrode is as high as 10 mg. • The porous Ni(OH) 2 /NF electrode displays high specific capacitance of 1142C g −1 . - Abstract: Ni(OH) 2 has been reported widely as one of the most promising supercapactior electrode materials due to its high specific capacitance, yet which were only based on low mass loading. Thus, it is desirable to promote supercapacitor performance for high mass loading Ni(OH) 2 through optimizing microstructure. In this work, we first prepared crossed ultrathin Ni(OH) 2 /ZnO nanoleafs directly grown on nickel foam via hydrothermal method, and then we produced pores on the nanoleafs by dissolving ZnO in alkaline solution. Definitely, this unique structure design for high mass loading binder-free Ni(OH) 2 electrode could benefit the penetration of electrolyte and the transportation of electrons, efficiently improving the supercapacitor performance. The obtained porous Ni(OH) 2 /NF electrode exhibits a mass specific capacity of 1142C g −1 based on 10 mg active materials, equating to a areal specific capaciy of 11.4C cm −2 , and pleasant cycling stability with retention of 85% of initial capacity after 10000 charge-discharge cycles. The fabricated asymmetric device shows a high energy density of 42 Wh kg −1 (4.73 mWh cm −3 ) at power density of 105 W kg −1 (17 mW cm −3 ). These results demonstrate the optimized structure makes the high mass loading binder-free Ni(OH) 2 /NF electrode could also display excellent supercapacitor performance.

  19. Development of a new electroplating process for Ni-W alloy deposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2005-01-01

    In the present work, the effect of the complexing agents citrate, glycine and triethanolamine (TEA) on the electrodeposition of Ni-W layers from electrolytes based on NiSO4 and Na2WO4, is investigated. The investigations include measurement of the current efficiencies, determination of the tungst...

  20. Development of a new electrolyte for deposition of Ni-W alloys

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2005-01-01

    In the present work, the effect of the complexing agents citrate, glycine and triethanolamine (TEA) on the electrodeposition of Ni-W layers from electrolytes based on NiSO4 and Na2WO4, is investigated. The investigations include measurement of the current efficiencies, determination of the tungst...

  1. Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors

    KAUST Repository

    Lee, Daeho

    2014-10-28

    © 2014 American Chemical Society. We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  2. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.

    Science.gov (United States)

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P

    2014-10-28

    We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  3. Formation of fine aggregate structure by solid-state displacement reaction of Ti with CoO or NiO. CoO oyobi NiO to Ti kan no koso chikan hanno ni yoru bisai fukugo soshiki no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Taimatsu, H; Kaneko, H [Akita Univ., Akita (Japan). Mining College; Wada, K [Akita Univ., Akita (Japan). Graduate School

    1992-09-20

    As a result of search for systems which have aggregate structures, the displacement reaction products of Ti with CoO or NiO are found to have aggregate structures in which the produced oxides and metals are entangled with each other. The displacement reaction of Ti with CoO or NiO is investigated at the temperature of 1273K. In the reaction of either couple, aggregate products are produced, and reacted layer is observed in the TiO2 matrix wherein Co or Ni phases are three dimensionally entangled in finely dispersed state of micron order. 2 layers of cavitated and dense TiO2 layers are found in the reacted layer. The thicknesses of the reacted layer are not constant according to locations, but thick portions are grown obeying the parabolic rate law. As a result of the study on the possibility of fabricating cermet by the reaction between powders, finely mixed characteristic structures are found to be easily obtained using systems which can produce aggregate structures. 24 refs., 9 figs.

  4. Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Jun; Fukase, Yasushi [Toshiba Machine Co., Ltd, Ooka 2068-3, Numazu-Shi, Shizuoka-Ken, 410-8510 (Japan); Yan Jiwang; Zhou Tianfeng; Kuriyagawa, Tsunemoto, E-mail: yanjw@pm.mech.tohoku.ac.jp [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-06-01

    In a glass moulding press (GMP) for refractive/diffractive hybrid lenses, to improve the service life of nickel-phosphorus (Ni-P) plated moulds, it is necessary to control the diffusion of constituent elements from the mould into the release agent coating. In this study, diffusion phenomena of constituents of Ni-P plating are investigated for two types of release agent coatings, iridium-platinum (Ir-Pt) and iridium-rhenium (Ir-Re), by cross-sectional observation, compositional analysis and stress measurements. The results show that Ni atoms in the plating layer flow from regions of compressive stress to regions of tensile stress. In the case of the Ir-Pt coated mould, the diffusion of Ni is promoted from the grain boundaries between the Ni and Ni{sub 3}P phases in the plating towards the surface of the Ir-Pt coating. However, in the Ir-Re coated mould, the diffusion of Ni is suppressed because the diffusion coefficient of Ni in the Ir-Re alloy is smaller than that in the Ir-Pt alloy, although the stress state is similar in both cases. By controlling the diffusion of Ni atoms, the use of Ir-Re alloy as a release agent coating for Ni-P plated moulds is expected to lead to a high degree of durability.

  5. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  6. Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy

    International Nuclear Information System (INIS)

    Ozge Er; Fatma Yurt Lambrecht; Kasim Ocakoglu; Cagla Kayabasi; Cumhur Gunduz

    2015-01-01

    In this study, the biological potential of a nickel chlorophyll derivative (Ni-PH-A) as a multimodal agent for tumor imaging and photodynamic therapy (PDT) was investigated. Optimum conditions of labeling with 131 I were investigated and determined as pH 10 and 1 mg amount of iodogen. Biodistribution results of 131 I labeled Ni-PH-A in female rats indicated that radiolabeled Ni-PH-A maximum uptake in the liver, spleen and ovary was observed at 30 min. Intercellular uptake and PDT efficacy of Ni-PH-A were better in MDAH-2774 (human ovarian endometrioid adenocarcinoma) than in MCF-7 (human breast adenocarcinoma) cells. Ni-PH-A might be a promising multimodal agent for lung, ovary and liver tumor imaging and PDT. (author)

  7. Modification of the ferrite load Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 3} by silane agent for improving the interface in the absorbing composite; Modificacao da carga de ferrita Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 3} por agente silano para melhoria da interface no composito absorvedor

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, P.C.F.; Santos, P.T.A.; Silva, T.R.G.; Costa, A.C.F.M.; Araujo, E.M., E-mail: patricia.fernandes24@hotmail.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The main challenge of composite materials processing technology is the obtaining of an adequate interface between the components of a composite. Thus, this work aims to promote the modification of the ferrite load surface Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 3} (inorganic), by the silane agent (3-aminopropyltriethoxysilane) for introduction into the matrix of silicone (organic) rubber, and thus obtaining a efficient composite for use in electromagnetic radiation absorbing materials.

  8. Paramagnetic probes to study PrNi5?

    International Nuclear Information System (INIS)

    Hutchinson, W.D.; Harker, S.J.; Stewart, G.A.; Chaplin, D.H.; Kaplan, N.

    1996-01-01

    The Van-Vleck paramagnet PrNi 5 has been the focus of many studies in the past as a result of its usefulness as a nuclear cooling agent. Extensive continuous wave praseodymium NMR measurements have been carried out on this compound. However pulsed NMR and therefore precise relaxation measurements particularly at mK temperatures have proved elusive. In this work we have proposed to use radiative gamma-ray detection to indirectly measure Pr NMR in PrNi 5 via cross relaxation to suitable paramagnetic impurity probes placed at Ni lattice sites. 57 Co was chosen as the most compatible nuclear orientation isotope with an appropriate nuclear g-factor. The choice of 57 Co also allows the use of Moessbauer spectroscopy to check the site occupancy. This poster details the production of a 57 Co doped PrNi 5 single crystal specimen including the specimen preparation problems encountered, 57 Fe Moessbauer and preliminary nuclear orientation measurements

  9. Ni(OH)2 Aerogels Incorporated with Polypyrrole as Electrodes for Supercapacitors

    Science.gov (United States)

    Scarabelot, Letícia T.; Muller, Daliana; de Souza, Luciana V.; Hotza, Dachamir; Rambo, Carlos R.

    2017-08-01

    This work reports the synthesis of Ni(OH)2 aerogels incorporated in situ with polypyrrole (PPy) for application as electrodes in high-capacity energy storage devices. Ni(OH)2 gels were prepared by the sol-gel method from NiCl2 as precursor and propylene oxide as gelling agent in ethanol. Pyrrole monomer was added prior to gelling of the sol and in situ polymerized using ammonium persulfate as oxidant agent. After solvent exchanges from ethanol to acetone, the gels were dried in a CO2 supercritical point drier. Powdered aerogels were deposited onto both sides of a poly(vinyl alcohol)/H3PO4 film (electrolyte/separator) and the contacts were closed with copper foils, resulting in a complete device. Through cyclic voltammetry and charge/discharge curves, the performance of the supercapacitors was evaluated by the specific capacitance, power and energy densities and series resistance. The specific capacitance was increased by 43% with the incorporation of 0.2 mol/L PPy (276 F/g) and the series resistance obtained decreased by 79% (46.5 Ω/cm2), which reflects the enhanced performance and electrochemical properties of Ni(OH)2 aerogel- based devices incorporated with PPy.

  10. Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles

    Directory of Open Access Journals (Sweden)

    H. T. Rahal

    2017-01-01

    Full Text Available The effect of ethylenediaminetetraacetic acid (EDTA as a capping agent on the structure, morphology, optical, and magnetic properties of nickel oxide (NiO nanosized particles, synthesized by coprecipitation method, was investigated. Nickel chloride hexahydrate and sodium hydroxide (NaOH were used as precursors. The resultant nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. XRD patterns showed that NiO have a face-centered cubic (FCC structure. The crystallite size, estimated by Scherrer formula, has been found in the range of 28–33 nm. It is noticed that EDTA-capped NiO nanoparticles have a smaller size than pure nanoparticles. Thus, the addition of 0.1 M capping agent EDTA can form a nucleation point for nanoparticles growth. The optical and magnetic properties were investigated by Fourier transform infrared spectroscopy (FTIR and UV-vis absorption spectroscopy (UV as well as electron paramagnetic resonance (EPR and magnetization measurements. FTIR spectra indicated the presence of absorption bands in the range of 402–425 cm−1, which is a common feature of NiO. EPR for NiO nanosized particles was measured at room temperature. An EPR line with g factor ≈1.9–2 is detected for NiO nanoparticles, corresponding to Ni2+ ions. The magnetic hysteresis of NiO nanoparticles showed that EDTA capping recovers the surface magnetization of the nanoparticles.

  11. Residual stress in Ni-W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2006-01-01

    In the present work, the residual stress in Ni–W layers electrodeposited from electrolytes based on NiSO4 and Na2WO4, is investigated. Citrate, glycine and triethanolamine were used as complexing agents, enabling complex formation between the nickel ion and tungstate. The results show that the type...... of complexing agent and the current efficiency have an influence on the residual stress. In all cases, an increase in tensile stress in the deposit with time after deposition was observed. Pulse plating could improve the stress level for the electrolyte containing equal amounts of citrate...

  12. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  13. Synthesis of hierarchical Ni(OH)(2) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water.

    Science.gov (United States)

    Cheng, Bei; Le, Yao; Cai, Weiquan; Yu, Jiaguo

    2011-01-30

    Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water

    International Nuclear Information System (INIS)

    Cheng Bei; Le Yao; Cai Weiquan; Yu Jiaguo

    2011-01-01

    Ni(OH) 2 and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH) 2 and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH) 2 nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH) 2 and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas.

  15. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  16. Effects of Fluoride on NiTi Orthodontic Archwires: An X-ray Diffraction Study

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Yadav

    2013-01-01

    Results: Unloading force values of NiTi orthodontic wires were significantly decreased after exposure to both fluoride solutions (p < 0.001. Corrosive changes in surface topography were observed for both fluoride solutions. Wires exposed to acidic fluoride appeared as more severely affected. X-ray diffraction analysis showed no change in crystal lattice of NiTi wires in both solutions. Conclusion: The results suggest that using topical fluoride agents with NiTi wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.

  17. Study on the improvement of toughness of Nb-based super high temperature materials by forming solid solution and composites; Niobuki chokoon zairyo no koyoka to fukugoka ni yoru kyojinsei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    If materials superior to Ni-based and Co-based super alloys could be developed, great progress is expected in the energy source saving, enhancement of aircraft speed, and simplification of member structure. Metals having high fusing point are prospective as well as C/C composites and ceramics among possible materials. Especially, Nb has a similar density to Ni, and its fusing point is 1,000 centigrade higher than Ni. It has also ductility. Furthermore, it is characterized by the formation of solid solution with other various metals having high fusing point. Accordingly, Nb-based composite alloys having excellent high temperature strength as well as excellent ductility and toughness can be developed by enhancing the solid solution formation and the dispersion with composites of compound phases using Nb as a base material. The purpose of this study is to provide fundamental data for the development of Nb-based composite alloys. The optimum matrix materials and their fabrication processes have been investigated, to evaluate their high temperature properties. Consequently, it was found that the enhancement by the deposition of intermetallic compounds or by the dispersion of oxides was an effective method for the formation of composites of Nb-based alloys. 4 refs., 88 figs., 24 tabs.

  18. Visual communication system among underwater robots and divers. Kaichu robot ya diver kan no shikaku ni yoru tsushin

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, H. (East Japan Railway Co., Tokyo (Japan)); Ura, T.; Fujii, T. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)

    1993-07-01

    Performing coordinated works between underwater robots and divers, often called undersea agents, requires communication means to promote mutual understanding. This paper describes a system to make visual communications as a communication means used under sea, and discusses elementary technologies to realize mutual communications between the agents. The visual communication system comprises a device to indicate command patterns that correspond to intentions to be communicated using five electroluminescence (EL) panels, a CCD camera, and a transponder. Discussions were given on image processing to recognize the command patterns, EL panel positions, and communication protocols. As a result of experiments assuming underwater communications between divers and robots, using a water tank, it was found that the command patterns can be recognized if illuminance in the water tank is 100 lux or lower. Validity of the system was verified in the experiments. 4 refs., 9 figs., 1 tab.

  19. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products

    International Nuclear Information System (INIS)

    Xiao Ting; Tang Yiwen; Jia Zhiyong; Li Dawei; Hu Xiaoyan; Li Bihui; Luo Lijuan

    2009-01-01

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni 2+ -Fe 3+ layered double hydroxides (LDHs). Flower-like Ni 2+ -Fe 3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 0 C in nitrogen gas, porous NiO/NiFe 2 O 4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni 2+ -Fe 3+ LDHs as well as porous NiO/NiFe 2 O 4 nanosheets.

  20. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  1. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  2. Synthesis and characterization of NiO nanopowder by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ningsih, Sherly Kasuma Warda [Department of Chemistry, Faculty of Mathematics and Natural Sciences Padang State University, Kampus Air Tawar, Jl. Prof. Dr. Hamka, West Sumatera, 25161, Indonesia Email: sherly-kasuma@yahoo.com (Indonesia)

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms were produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.

  3. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  4. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  5. Predicting utterance pitch targets in Yoruba for tone realisation in speech synthesis

    CSIR Research Space (South Africa)

    Van Niekerk, DR

    2013-01-01

    Full Text Available well studied African tone language of which the linguistic details of the tone system have been thoroughly described. Three level tones, labelled High (H), Mid (M) and Low (L) are associated with syllables and have a high functional load (Courtenay... (see Figure 1). Distinct intra-syllable patterns occurring in Yoru`ba´ are falling and rising pitch contours when L and H tones are realised after H and L tones respectively. downstep downstep H L Figure 1: A simplified illustration of terracing...

  6. Effect of Ni doping on the structural and magnetic properties of FePt nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.-W.; Chung, C.-M.; Ding, Jack Y.

    2007-01-01

    A serial of FePtNi nanoparticles were investigated on their crystal structure and magnetic properties. The FePtNi nanoparticles were synthesized simultaneously by the reduction of iron (III) acetylacetonate, platinum (II) acetylacetonate and nickel (II) acetylacetonate with 1,2-hexadecanediol as the reducing agent. The X-ray diffraction patterns indicate that the addition of 8, 12, 17 at% Ni in FePt nanoparticles suppressed the transformation of the particles from disorder face-centered cubic to order face-centered tetragonal L1 0 -phase under annealing treatment. However, further increasing Ni contents to 21 at%, the nanoparticle transformed to L1 2 phase. Doping of Ni into the FePt compound system may decrease coercivity and crystal anisotropy energy. A maximum coercivity of 7 KOe at room temperature was obtained for (Fe 52 Pt 48 ) 92 Ni 8 nanoparticles after annealing at 600 deg. C for 30 min

  7. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  8. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  9. Hydrophobization og the surface fo malachite with some fluorosurfactants. 2,3 no fussokei kaimen kasseizai ni yoru malachite hyomen no sosuika

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M [National Reserach Institute for Pollution and Resources, Tsukuba (Japan); Wakamatsu, T [Kyoto University, Kyoko (Japan). Faculty of Engineering

    1991-10-18

    The depleting trends of high-grade ores in recent years make it unavoidable to float ores in fine powder forms. To achieve this, research and development is important on such a recovering agent that can hydrophobize the surfaces of useful ores selectively and powerfully. This paper describes the discussion on three kinds of fluorosurfactant, namely perfluorooctanoic acid, Ftergent-100 and Ftergent-150, whic were used to hydrophobize the surface of malachite, and compared of its utilization possibility as a recovery agent with other surfactants. As a result, it was found that the Ftergent-100, which contains five CF{sub 3}{sup {minus}} in one molecule having extremely low critical surface tension, and the Ftergent-150 can hydrophobize sufficiently the malachite surface and provide good deposition. The region providing good deposition was at a weak-acidic to weak-alkali region in the case of the Ftergent-150. Therefore, both materials are thought they could be used as a recovering agent. 8 refs., 10 figs., 3 tabs.

  10. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application

    Science.gov (United States)

    Zhou, Qingfeng; Gong, Yun; Lin, Jianhua

    2018-05-01

    In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.

  11. Determination of 59Ni in radioactive waste

    International Nuclear Information System (INIS)

    Fisera, O.; Sebesta, F.

    2010-01-01

    Composite material PAN-DMG, containing chelating agent dimethylglyoxime (DMG) immobilized in porous matrix of binding polymer polyacrylonitrile (PAN), was used for nickel separation and concentration. Method for preparation of 59 Ni source for low energy photon spectrometry was developed using homogeneous precipitation of nickel with DMG. The proposed method was tested with two types of real radioactive waste (boric acid concentrate from nuclear power plant (NPP) evaporator and spent ion exchanger from NPP). (author)

  12. Sol-gel auto-combustion synthesis of SiO{sub 2}-doped NiZn ferrite by using various fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China)]. E-mail: khwu@ccit.edu.tw; Ting, T.H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Li, M.C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, No. 190, Sanyuan 1st Street, Dashi Jen, Tahsi, Taoyuan 335, Taiwan (China); Ho, W.D. [Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Taoyuan, Taiwan (China)

    2006-03-15

    A nitrate-chelate-silica gel was prepared from metallic nitrates, citric acid and tetraethoxysilane (TEOS) by sol-gel process with different complexing agents such as glycine, hydrazine and citric acid, and it was further used to synthesize Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}/20 wt% SiO{sub 2} nanocomposites by auto-combustion. The effect of varying complexing agent on the structural and magnetic properties of the composites was studied by FTIR, {sup 29}Si CP/MAS NMR, XRD, TEM, EPR and SQUID measurements. The complexing agent in the starting solution influenced the magnetic interaction between NiZn ferrite and silica, and then determined on the particle size. Further, the complexing agent type had a direct effect on the EPR parameters ({delta}H {sub PP}, g-factor and T {sub 2}) and SQUID parameters (M {sub s}, M {sub r} and H {sub c}) of the as-synthesized powder.

  13. Infiltração marginal de agentes cimentantes em coroas metálicas fundidas Marginal microleakage of cast metal crowns luting agents

    Directory of Open Access Journals (Sweden)

    Tomie Nakakuki de CAMPOS

    1999-12-01

    Full Text Available Um dos principais objetivos do cimento, que fixa a restauração protética ao dente, é o selamento da fenda existente entre os mesmos. Para avaliar a infiltração marginal, foram feitos preparos cavitários padronizados, em 20 dentes naturais extraídos. As coroas totais foram fundidas em NiCr, sendo 10 cimentadas com cimento de fosfato de zinco e 10 com cimento resinoso Panavia 21. As amostras foram submetidas à ciclagem térmica e em seguida foram colocadas em solução de azul de metileno a 0,5%. Após o seccionamento vestíbulo-lingual, os corpos-de-prova foram examinados com lupa de aumento. Houve diferença significante entre os dois cimentos testados, sendo que 100% das amostras cimentadas com cimento de fosfato de zinco apresentaram infiltração atingindo dentina e polpa e 100% das amostras cimentadas com Panavia 21 não sofreram qualquer tipo de infiltração. Conclui-se que: o cimento resinoso Panavia 21 apresentou melhores resultados, quanto ao grau de infiltração, quando comparado com o cimento de fosfato de zinco, na cimentação de coroas metálicas fundidas em NiCr.One of the main goals of the luting agent, which bonds the cast restoration to the prepared tooth, is to seal the gap between them. Standardized preparations were made on 20 extracted teeth in order to evaluate microleakage. The crowns were made in NiCr, and in one group of 10 crowns zinc phosphate was used as the luting agent; in the other 10, Panavia 21 was used. The samples were thermocycled and then put into methylene blue solution (0.5%. After buccolingual sectioning of the cemented crowns, the samples were examined with a magnifier. There was a significant difference between the two groups: 100% of the zinc phosphate cemented crowns presented microleakage reaching the dentin and the pulp and 100% of the samples with Panavia 21 did not suffer any microleakage. So, as to the marginal microleakage with cast metal crowns in NiCr, the Panavia 21 luting agent

  14. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    Science.gov (United States)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  15. Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples

    International Nuclear Information System (INIS)

    Saraji, Mohammad; Yousefi, Hamideh

    2009-01-01

    A new ion-imprinted polymer (IIP) material was synthesized by copolymerization of 4-vinylpyridine as monomer, ethyleneglycoldimethacrylate as crosslinking agent and 2,2'-azobis-sobutyronitrile as initiator in the presence of Ni-dithizone complex. The IIP was used as sorbent in a solid-phase extraction column. The effects of sampling volume, elution conditions, sample pH and sample flow rate on the extraction of Ni ions form water samples were studied. The maximum adsorption capacity and the relative selectivity coefficients of imprinted polymer for Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were calculated. Compared with non-imprinted polymer particles, the IIP had higher selectivity for Ni(II). The relative selectivity factor (α r ) values of Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were 21.6, 54.3, and 22.7, respectively, which are greater than 1. The relative standard deviation of the five replicate determinations of Ni(II) was 3.4%. The detection limit for 150 mL of sample was 1.6 μg L -1 using flame atomic absorption spectrometry. The developed method was successfully applied to the determination of trace nickel in water samples with satisfactory results.

  16. Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B

    2017-01-25

    Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).

  17. Large-scale synthesis of Ni-Ag core-shell nanoparticles with magnetic, optical and anti-oxidation properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung-Che; Chen, Dong-Hwang [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan (China)

    2006-07-14

    The large-scale synthesis and characterization of Ni-core/Ag-shell (Ni at Ag) nanoparticles by the successive hydrazine reduction of nickel chloride and silver nitrate in ethylene glycol using polyethyleneimine (PEI) as a protective agent are described. The resultant Ni at Ag nanoparticles had a mean core diameter of 6.2 nm and a shell thickness of 0.85 nm, without significant change in the nickel concentration of 0.25-25 mM for the Ag coating. Also, both Ni cores and Ag nanoshells had an fcc structure and PEI was capped on the particle surface. X-ray photoelectron spectroscopy analysis confirmed that the Ni cores were fully covered by Ag nanoshells. In addition, the Ni at Ag nanoparticles exhibited a characteristic absorption band at 430 nm and were nearly superparamagnetic. Based on the weight of Ni cores, the saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and coercivity (H{sub c}) were obtained as 17.2 emu g{sup -1}, 4.0 emu g{sup -1} and 81 Oe, respectively. Furthermore, the resultant Ni at Ag nanoparticles exhibited better anti-oxidation properties than Ni nanoparticles did due to the protection of the Ag nanoshells.

  18. Potentiodynamic studies of Ni-P-TiO{sub 2} nano-composited coating on the mild steel deposited by electroless plating method

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in [Department of Metallurgical and Materials Engineering, MNIT Jaipur (India)

    2016-05-06

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.

  19. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-06-01

    Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC)2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  20. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    Science.gov (United States)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  1. Disinfectants used in medal field and problems caused from their use. Igaku ryoiki ni okeru sakkinzai to sorera shiyo ni yoru mondaiten

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, K; Watabe, S [Yokohama City University, Yokohama (Japan). School of Medicine

    1994-04-05

    This paper describes typical anti-microorganism chemicals used in hospitals, and touches on measures against intra-hospital infection. Killing microorganisms reliably by using a high-pressure steam sterilization method is the best means for medical devices and apparatuses. However, there are high-priced medical devices that cannot withstand such a method and require other processes according to the situations, such as gas sterilization and alcohol disinfection. In addition to such sterilization methods as using heat, alcohols, and gases, methods that have been developed recently may include the following: use of Bronopol (an antiseptic) and anti-mold agents that have electronphilic functional groups, disinfectants using metal ions from silver, zinc and copper, and other materials. The problem of intra-hospital infection is caused typically by MRSA, hepatitis virus and Pseudomonas aeruginosa. Preventive measures require good knowledge about their infection courses and disinfecting technologies, as well as an attention not to cause change in the ecology as a result of using excessively strong chemicals. 18 refs., 1 fig., 1 tab.

  2. Electrochemical behavior and microstructural characterization of 1026 Ni-B coated steel

    International Nuclear Information System (INIS)

    Contreras, A.; Leon, C.; Jimenez, O.; Sosa, E.; Perez, R.

    2006-01-01

    Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 deg. C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni 3 B and Ni 4 B 3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution

  3. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition; Etude exclusive des collisions centrales Ni+Ni et Ni+Au: coexistence de phase et decomposition spinodale

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, B

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  4. Study on hydrogen storage alloy for NiMH EV battery; EV yo NiMH denchi no suiso kyuzogokin ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, M.; Tanaka, T.; Furukawa, K.; Watada, M.; Oshitani, M. [Yuasa Corp., Osaka (Japan)

    1998-10-30

    We have developed a high performance hydrogen storage alloy (MH alloy) suited to NiMH batteries for EV use. During the course of the development, the effects of alloy composition and structure (B/A ratio in AB{sub 5}) on cycle life and high-rate discharge of MH electrodes were investigated using mainly SEM, XRD, TEM analysis. It was found that Co content and B/A ratio (5.1/5) of MH alloy have significant effects on corrosion resistance and high-rate discharge at low temperature. Further, the surface treatments of MH alloy with weak acids and hydrophobic agents were effective for improving the initial activation and for depressing the cell internal pressure build-up. (author)

  5. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Maiyalagan, T.; Scott, Keith [School of Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2010-08-15

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH{sub 4} as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 C had a great effect on increasing the ethanol oxidation activity. (author)

  6. Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- An approach for attenuation of Ni stress

    Directory of Open Access Journals (Sweden)

    Nilima Patnaik

    2012-08-01

    Full Text Available The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid and metal ions (Zn2+ /Mg2+. Wheat (Triticum aestivum L cv UP262 seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2–Zn2+ (100μM and minimum with NiCl2–EDTA (100μM treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100μM and minimum in NiCl2-EDTA (100μM treatments. NiCl2–EDTA (100μM showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2–EDTA (100μM treatment. Similar observation was found by NiCl2 –EDTA (200μM treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.

  7. Controllable hydrothermal synthesis of Ni/H-BEA with a hierarchical core-shell structure and highly enhanced biomass hydrodeoxygenation performance.

    Science.gov (United States)

    Ma, Bing; Cui, Huimei; Wang, Darui; Wu, Peng; Zhao, Chen

    2017-05-11

    Ni based catalysts are wildly used in catalytic industrial processes due to their low costs and high activities. The design of highly hierarchical core-shell structured Ni/HBEA is achieved using a sustainable, simple, and easy-tunable hydrothermal synthesis approach using combined NH 4 Cl and NH 3 ·H 2 O as a co-precipitation agent at 120 °C. Starting from a single-crystalline hierarchical H + -exchanged beta polymorph zeolite (HBEA), the adjustment of the precipitate conditions shows that mixed NH 4 Cl and NH 3 ·H 2 O precipitates with proper concentrations are vital in the hydrothermal synthesis for preserving a good crystalline morphology of HBEA and generating abundant highly-dispersed Ni nanoparticles (loading: 41 wt%, 5.9 ± 0.7 nm) encapsulated onto/into the support. NH 4 Cl solution without an alkali is unable to generate abundant Ni nanoparticles from Ni salts under the hydrothermal conditions, whereas NH 3 ·H 2 O seriously damages the pore structure. After studying the in situ changes in infrared, X-ray diffractometry, temperature-programmed reduction, and scanning electron microscopy measurements, as well as variations in the filtrate pH, Si/Al ratios, and solid sample Ni loading, a two-step dissolution-recrystallization process is proposed. The process consists of Si dissolution and no change in elemental Al, and after the dissolved Si(iv) concentrations have promoted Ni phyllosilicate nanosheet solubility, further growth of multilayered Ni phyllosilicate nanosheets commences. The precursor Ni phyllosilicate is changeable between Ni 3 Si 2 O 5 (OH) 4 and Ni 3 Si 4 O 10 (OH) 2 , because of competition in kinetically-favored and thermodynamically-controlled species caused by different basic agents. The superior catalytic performance is demonstrated in the metal/acid catalyzed biomass derived bulky stearic acid hydrodeoxygenation with 90% octadecane selectivity and a promising rate of 54 g g -1 h -1 , which highly excels the reported rates catalyzed by

  8. Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-01-01

    Dispersive liquid–liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2–3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL −1 . If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL −1 . In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL −1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation‐inductively coupled plasma‐mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry. - Highlights: ► Multielement trace analysis using dried-spot technique and dispersive liquid–liquid microextraction. ► Possibility of combination of LPME with EDXRF, LIBS or LA-ICP-MS. ► Comparison of APDC and DDTC as chelating agents.

  9. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  10. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium Wires: An in vitro Study

    Directory of Open Access Journals (Sweden)

    S R Harish Koushik

    2011-01-01

    Conclusion : The results suggest that using topical fluoride agents with NiTi wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.

  11. [Antibibiotic resistance by nosocomial infections' causal agents].

    Science.gov (United States)

    Salazar-Holguín, Héctor Daniel; Cisneros-Robledo, María Elena

    2016-01-01

    The antibibiotic resistance by nosocomial infections (NI) causal agents constitutes a seriously global problematic that involves the Mexican Institute of Social Security's Regional General Hospital 1 in Chihuahua, Mexico; although with special features that required to be specified and evaluated, in order to concrete an effective therapy. Observational, descriptive and prospective study; by means of active vigilance all along 2014 in order to detect the nosocomial infections, for epidemiologic study, culture and antibiogram to identify its causal agents and antibiotics resistance and sensitivity. Among 13527 hospital discharges, 1079 displayed NI (8 %), standed out: the related on vascular lines, of surgical site, pneumonia and urinal track; they added up two thirds of the total. We carried out culture and antibiogram about 300 of them (27.8 %); identifying 31 bacterian species, mainly seven of those (77.9 %): Escherichia coli, Staphylococcus aureus and epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Enterobacter cloacae; showing multiresistance to 34 tested antibiotics, except in seven with low or without resistance at all: vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, piperacilin-tazobactam, amikacin and carbapenems. When we contrasted those results with the recommendations in the clinical practice guides, it aroused several contradictions; so they must be taken with reserves and has to be tested in each hospital, by means of cultures and antibiograms in practically every case of nosocomial infection.

  12. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties

    International Nuclear Information System (INIS)

    Li, Lingjun; Xu, Ming; Chen, Zhaoyong; Zhou, Xiang; Zhang, Qiaobao; Zhu, Huali; Wu, Chun; Zhang, Kaili

    2015-01-01

    The mechanisms and effects of three typical chelating agents, namely glucose, citric acid and sucrose on the sol-gel synthesis process, electrochemical degradation and structural evolution of 0.5Li 2 MnO 3 ·0.5LiNi 0.5 Co 0.2 Mn 0.3 O 2 (LLMO) materials are systematically compared for the first time. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis indicate that the sample synthesized from sucrose owns well structure, homogenous distribution, low Ni 3+ concentration and good surface structural stability during cycling, respectively. Electrochemical tests further prove that the LLMO material obtained from sucrose maintains 258.4 mAh g −1 with 94.8% capacity retention after 100 cycles at 0.2 C. The superior electrochemical performance can be ascribed to the exceptional complexing mechanism of sucrose, compared to those of the glucose and citric acid. Namely, one mole sucrose can be hydrolyzed into two different monosaccharides and further chelates three M (Li, Ni, Co and Mn) ions to form a more uniform ion-chelated matrix during sol-gel process. This discovery is an important step towards understanding the selection criterion of chelating agents for sol-gel method, that chelating agent with excellent complexing capability is beneficial to the distribution, structural stability and electrochemical properties of advanced lithium-rich layered materials

  13. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition

    International Nuclear Information System (INIS)

    Guiot, B.

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  15. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  16. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  17. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  18. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  19. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, Udumula; Marakatti, Vijaykumar S. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Amshumali, Mungalimane K. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Department of Chemistry and Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Bellary 583105 (India); Loukya, B. [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Singh, Dheeraj Kumar [Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Datta, Ranjan [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2016-12-15

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  20. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-01-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH 4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  1. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  2. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    Science.gov (United States)

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  3. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  4. Improvement of the detection limits in radio-frequency-powered glow discharge optical emission spectrometry associated with bias-current conduction method; Jiko bias denryu donyuho ni yoru koshuha glow hoden hakko bunseki ni okeru kenshutsu genkai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Wagatsuma, K. [Tohoku University, Sendai (Japan). Research Institute for Materials

    1999-01-01

    A d.c. bias current driven by the self-bias voltage which is conducted through the r.f.-powered glow discharge plasma varies the emission characteristics drastically, leading to improvement of the detection power in the optical emission spectrometry. By conducting the bias currents of 20-30 mA, the emission intensities of the atomic resonance lines were 10-20 times larger than those obtained with conventional r.t.- powered plasmas. The detection limits for determination of alloyed elements in the re-based binary alloy samples were estimated to be l.6 x 10{sup -3}% Cr for CrI 425.43nm, 7 x 10{sup -4}% Mn for MnI 403.10nm, 1.9>10{sup -3}% Cu for CuI 327.40nm, 1.1 x 10{sup -3}% Al for AlI 396.16nm, and 6.6 x 10{sup -3}% Ni for NiI 352.45 nm. (author)

  5. Preparation of nickel and Ni_3Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    International Nuclear Information System (INIS)

    Li, Pingyun; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-01-01

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N_2 atmosphere. Ni and Ni_3Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni_3Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni_3Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N_2 protecting atmosphere. The Ni and Ni_3Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni_3Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni_3Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni_3Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  6. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  7. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    Science.gov (United States)

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  8. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    Science.gov (United States)

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-rate oil removing scouring agent. Koyubun jokyoyo seirenzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, K.; Sato, Y. (Dai-Ichi Kogyo Seiyaku Co. Ltd., Kyoto (Japan))

    1991-11-01

    Fiber forming, scutching and knitting processes in recent years are performed three to five times faster than in the conventional processes. Associated therewith, oil solutions are taken importantly for their stability and workability, such as smoothing properties, heat resistance and abrasion resistance. On the other hand, difficulty is increasing in removing the oils after scutching and knitting. This paper explains basic rinsing activities required in oil removal, and describes various test characteristics and compatibility of various high-rate oil removing scouring agents. An oil-in-water rinsing mechanism relies upon comprehensive actions of a surfactant in wetting, permeation, emulsified dispersion and solubilization. The most importantly taken among them is the emulsifying action, which largely depends upon its chemical structure. Therefore, for a high-rate oil removing scouring agent, creation of activators is required that make the above basic characteristics and activities compatible for various applications. For example, the above product covers a great variety of kinds for diverse applications, based on non-ionic and anion-based activators. 6 figs., 20 tabs.

  10. Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shraddha; Parveen, Azra, E-mail: azrap2015@gmail.com; Azam, Ameer

    2017-04-15

    Nanoparticles of Co doped NiO of the composition Co{sub x}Ni{sub 1-x}O(x=0, 0.03, 0.07, 0.10, 0.13, 0.15) have been successfully synthesized by microwave gel combustion method using citric acid as a chelating agent. The microstructural and compositional analyses have been carried out by XRD, TEM, FESEM and EDAX. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. Particle size was estimated from XRD and Hall-Williamson relation and was found to increase with the increase in Co content. Fourier transform infrared spectra (FTIR) show the bonding relations of Co ions with the Ni lattice framework. Optical analyses were done by UV–visible absorption and fluorescence emission spectroscopy. The absorbance spectra depict an increasing tendency and corresponding decrease in the band gap with the dopant concentration.

  11. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  12. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  13. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  14. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  15. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  16. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  17. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  18. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  19. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  1. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    Science.gov (United States)

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Environment purification using microorganisms. Biseibutsu ni yoru kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H [Asahi Glass Co. Ltd., Tokyo (Japan); Harada, S

    1993-12-01

    Technologies to purify polluted soils vary with kinds of pollutants, spread of pollution, and shapes of water veins. A method is used often that several wells are drilled in a polluted area, and water is circulated between upstream wells and downstream wells, where activities of microorganisms living in that particular environment are utilized to biodegrade the pollutants. This technology is called bioremediation. This paper deals with soil pollution by chemical substances, and describes development of a technology to remove pollution caused by PCB and petroleum which is thought difficult to apply the bioremediation technology among environment purifying technologies using microorganisms. The bioremediation of petroleum pollution assumes petroleum pollution on seashores. Discussions have been given on separation from sea water of petroleum decomposing microorganisms to be used in the bioremediation, and the number of petroleum decomposing bacteria in seas near Japan. As a result, it was made clear that a few kinds of bacteria will suffice for decomposition of main components in a mixture as complex as petroleum. 5 refs., 4 figs.

  3. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.

    Science.gov (United States)

    Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang

    2016-09-21

    In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.

  4. Relation between shape of Ni-particles and Ni migration in Ni-YSZ electrodes – a hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2016-01-01

    This is an attempt to explain a phenomenon of total depletion of Ni next to the electrolyte in Ni-YSZ cermet electrodes in solid oxide electrolysis cells during electrolysis at high current density/overpotential. Intuitively, we would think that Ni would always migrate down the steam partial...

  5. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  6. Magnetoresistance of nanogranular Ni/NiO controlled by exchange anisotropy

    International Nuclear Information System (INIS)

    Del Bianco, L.; Spizzo, F.; Tamisari, M.; Allia, P.

    2013-01-01

    A link between exchange anisotropy and magnetoresistance has been found to occur in a Ni/NiO sample consisting of Ni nanocrystallites (mean size ∼13 nm, Ni content ∼33 vol%) dispersed in a NiO matrix. This material shows metallic-type electric conduction and isotropic spin-dependent magnetoresistance as well as exchange bias effect. The latter is the outcome of an exchange anisotropy arising from the contact interaction between the Ni phase and the NiO matrix. Combined analysis of magnetization M(H) and magnetoresistance MR(H) loops measured in the 5–250 K temperature range after zero-field-cooling (ZFC) and after field-cooling (FC) from 300 K reveals that the magnetoresistance is influenced by exchange anisotropy, which is triggered by the FC process and can be modified in strength by varying the temperature. Compared to the ZFC case, the exchange anisotropy produces a horizontal shift of the FC MR(H) loop along with a reduction of the MR response associated to the reorientation of the Ni moments. A strict connection between magnetoresistance and remanent magnetization of FC loops on one side and the exchange field on the other, ruled by exchange anisotropy, is indicated. - Highlights: • Nanogranular Ni/NiO with giant magnetoresistance (MR) and exchange bias effect. • Exchange anisotropy produces a shift of the field-cooled MR(H) loop and reduces MR. • MR, remanence of field-cooled loops and exchange field are three correlated quantities. • It is possible to control MR of nanogranular systems through the exchange anisotropy

  7. Niños y niñas como cuidadores familiares

    OpenAIRE

    María Rosa Estupiñán Aponte

    2015-01-01

    En el contexto familiar, el cuidado de otra persona por parte de niños y niñas constituye un terreno inexplorado tanto en su significado como en las implicaciones que podrían darse en el proceso. Aunque históricamente se ha asignado el cuidado familiar a las mujeres generando condiciones de inequidad, incrementada con los cambios sociales de los últimos tiempos, es necesario reconocer que en muchos hogares niños y niñas se han visto obligados a desempeñar esta labor sin la preparación ni las ...

  8. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    International Nuclear Information System (INIS)

    Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-01-01

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  9. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  10. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  11. Formation enthalpy of NiBe and Ni5Be21

    International Nuclear Information System (INIS)

    Ivanov, M.I.; Karpova, T.F.; Dalago, N.Yu.

    1981-01-01

    The method of dissolution calorimetry is used to determine standard enthalpies of NiBe and Ni 5 Be 21 formation, which are 84.8+-2.2 and (-669+-37)kJ/mol. The enthalpy values of NiBe and Ni 5 Be 21 at 331 K are shown to coincide (within the limits of errors of these values) with the values at the standard temperature of 298.15 K [ru

  12. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  13. Solvent Extraction of Co, Ni and Mn from NCM Sulfate Leaching Solution of Li(NCMO2 Secondary Battery Scraps

    Directory of Open Access Journals (Sweden)

    Hong Hyun Seon

    2017-06-01

    Full Text Available As a part of the study on recycling Li(NCMO2 lithium-ion battery scraps, solvent extraction experiments were performed using different extraction agents such as PC88A, Cyanex272 and D2EHPA to separate Co, Ni and Mn from the leaching solution. When the ratio of Mn to Ni was about 0.4 in the leaching solution, the separation factor for Co and Mn was found to be less than 10 so that the separation of Co and Ni was insufficient. When solvent extraction was done using the solution with the lower Mn/Ni ratio of 0.05 where Mn was removed by potassium permanganate and chlorine dioxide, more than 99% of Mn could be extracted through five courses of extraction using 30vol% D2EHPA while the extraction rates of Co and Ni were around 17% and 11%, respectively. In the case that Mn was removed from the solution, the extraction rate of Co was higher than 99% whereas less than 7% Ni was extracted using Cyanex272 suggesting that Co and Ni elements were effectively separated.

  14. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  15. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  16. EL ALBÚM ILUSTRADO COMO AGENTE DE EDUCACIÓN ARTÍSTICO-LITERARIA Y DE GÉNERO EL CASO DE MAMÁ, DE MARINA RUÍZ JOHNSON

    OpenAIRE

    Senis Fernandez, Juan

    2014-01-01

      RESUMENEl álbum ilustrado es uno de los principales materiales impresos a los que acceden los niños y las niñas en sus primeras etapas del aprendizaje. Al ser una manifestación literaria en la que el texto y las ilustraciones tienen la misma entidad, es instrumento de educación literaria, artística, y también social, por su potencial para introducir a los niños y las niñas en el imaginario propio de una sociedad. De ahí su importancia como agente educativo en tres niveles: literario, artíst...

  17. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  18. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    Science.gov (United States)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  19. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  20. One-pot synthesis of powder-form β-Ni(OH)2 monolayer nanosheets with high electrochemical performance

    International Nuclear Information System (INIS)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao

    2013-01-01

    In this work, β-Ni(OH) 2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH) 2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH) 2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH) 2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH) 2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure

  1. Study of the central collisions in the reactions Ni + Al and Ni + Ni at 28 A.MeV; Etude des collisions centrales dans les reactions Ni + Al et Ni + Ni a 28 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, L.

    1995-12-01

    The work is in characterisation of mechanisms in the energy range of onset of multifragmentation (excitation energy of composed nucleus around 4 - 5 AMeV). This work focused on an experiment performed at the SARA facility, in Grenoble, using the AMPHORA multi detection array. I have been particularly interested in central collisions in the Ni + Al and Ni + Ni systems. The possibility to detect complete events for Ni + Al, and quasi-complete events for the Ni + Ni case, is the reason of this choice. Furthermore Ni + Ni presents the interest of a symmetrical system, for which the excitation energy per nucleon is maximum. The study of these reactions has been focused on the quasi-complete events (events for which at least 80 % of the total charge has been detected). Heavy ions produced in peripheral collisions are very likely emitted along the beam line or stopped in the plastic detectors, energy thresholds are too high for the quasi-target products detection, consequently by requiring complete or quasi-complete measurement of the total charge, we are able to detect mostly central events. The knowledge of informations like charge, energy or detection angles allows to isolate the source(s) and to reconstruct the size and the excitation energy of the source(s). Comparisons with simulations like sequential emission (GEMINI code), very deep inelastic collision or instantaneous emission (Berliner code) allows to characterise the first stage of the collision (binary collisions or central collisions) and the type of deexcitation of the source(s). Some calculations was also performed with the statistical model code MODGAN. Indeed azimuthal correlations seem to be a good tool in getting more information about involved reaction mechanisms. Comparisons with MODGAN provide information about angular momentum of the source and time delay between emissions of the two particles (separation between sequential or instantaneous process). (author). 69 refs.

  2. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  3. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  4. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  5. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-01-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  6. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw

    2017-02-15

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  7. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  8. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  9. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    Science.gov (United States)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  10. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  11. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  12. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  13. Investigation into the MgF2-NiF2, CaF2-NiF2, SrF2-NiF2 systems

    International Nuclear Information System (INIS)

    Ikrami, D.D.; Petrov, S.V.; Fedorov, P.P.; Ol'khovaya, L.A.; Luginina, A.A.; AN SSSR, Moscow. Inst. Fizicheskikh Problem; AN SSSR, Moscow. Inst. Kristallografii)

    1984-01-01

    Using the methods of differential thermal and X-ray phase analyses the systems MgF 2 -NiF 2 , CaF 2 -NiF 2 , SrF 2 -NiF 2 have been studied. In the system SrF 2 -NiF 2 the only orthorhombic compounds SrNiF 4 (a=14.43; b=3.93; c=5.66 (+-0.01 A)) is formed. SrNiF 4 density constitutes: dsub(X-ray)=4.60+-0.01 g/cm 3 , dsub(exp.)=4.60+-0.03 g/cm 3 . Refraction indices are as follows SrNiF 4 :Ng=1.500; Nsub(m)=1.497; Nsub(p)=1.479. SrNiF 4 magnetic ordering temperature Tsub(N) approximately 100 K

  14. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  15. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  16. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  17. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  18. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  19. Preparation of one-step NiO/Ni-CGO composites using factorial design

    International Nuclear Information System (INIS)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A.; Loureiro, F. J.A.; Fagg, D.P.

    2016-01-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  20. One-pot synthesis of powder-form {beta}-Ni(OH){sub 2} monolayer nanosheets with high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao, E-mail: htcui@ytu.edu.cn [Yantai University, Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization, College of Chemistry and Chemical Engineering (China)

    2013-08-15

    In this work, {beta}-Ni(OH){sub 2} monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH){sub 2} layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of {beta}-Ni(OH){sub 2} by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of {beta}-Ni(OH){sub 2} from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that {beta}-Ni(OH){sub 2} monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  1. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  2. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    Science.gov (United States)

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  4. Comparative study between traditional and modified Pechini synthesis methods in the preparation of LaNiO_3 and LaNi_0_,_8Co_0_,_2O_3 catalysts

    International Nuclear Information System (INIS)

    Silva, F.E.F.; Aquino, F.M.; Silva, M.C.M.F.

    2016-01-01

    One of the ways of obtaining hydrogen is from the methane reforming reaction, which is an endothermic and non-spontaneous reaction. In order to minimize this energy, nickel catalysts are used. This work aims to synthesize and characterize the catalysts LaNiO_3 and LaNi_0_,_8Co_0_,_2O_3 using the Pechini method, making use of citric acid and ethylene glycol and modified Pechini, using the edible gelatin as a chelating and polymerizing agent. The obtained materials were characterized by X-Ray Diffraction (XRD), where the formation of peaks characteristic of perovskite and monophasic structures was observed. Scanning Electron Microscopy (SEM) showed that porosity and powders with few agglomerates were observed by both methods. In the analysis of determination of the specific surface area (BET) the materials were shown with areas that are according to the literature

  5. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-01-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe 2 O 4 ) nanoparticles as both T 1 and T 2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T 1 and T 2 relaxivities were 0.858±0.04 and 1.71±0.03 mM −1 s −1 , respectively. In animal experimentation, both a 25% signal enhancement in the T 1 -weighted mage and a 71% signal loss in the T 2 -weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T 1 and T 2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T 1 and T 2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe 2 O 4 ) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T 1 and T 2 contrast agents for MRI by measuring T 1 and T 2 relaxation times as a function of iron concentration. • Both T 1 and T 2 effects were also observed in animal experimentation

  6. Synthesis of Ni core NiO shell nanostructure and magnetic investigation for shell thickness determination

    International Nuclear Information System (INIS)

    Arabi, H.; Bruck, E.; Tichelaar, F.D.

    2007-01-01

    Full text: Nickel oxide has received a considerable amount of attention in recent years for its catalytic, electronic and magnetic properties. Ni nanoparticles with an average size of 8 nm were prepared by dc - arc discharge in argon atmosphere. A current of 130 A and 300 milli bar pressure of argon have been applied. The produced Ni nanoparticles were annealed for oxidizing in air at 350 for six hours to produce antiferromagnetic NiO particles. The structure of Ni and NiO nanoparticles and size estimation of them studied by means of X-ray diffraction. The size and morphology of the particles were also characterized by high resolution transmission microscopy (TEM). The Ni core NiO shell structure, resulting from the oxidation process, were studied by magnetic properties measurements. A quantum design squid magnetometer, model MPMS5S was used for measuring saturation magnetization of both nanoparticles of Ni with and without NiO layer. By knowing the density of Ni and NiO, we were able to deduce the thickness of the Ni core and NiO outer layer. They are around 3 and 5 nanometers respectively. (authors)

  7. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  8. Electrochemical Behaviour of Ni and Ni-PVC Electrodes for the Electroxidation of Ethanol

    International Nuclear Information System (INIS)

    Mohd Syafiq Hamdan; Norazzizi Nordin; Siti Fathrita Mohd Amir; Riyanto; Mohamed Rozali Othman

    2011-01-01

    In this study, two nickel based electrodes were prepared; nickel foil and nickel-polyvinylchloride (Ni-PVC), in order to study their electrochemical behavior using cyclic voltammetry, CV and chronocoulometry, CC. Ni electrode was prepared from Ni metal foil while Ni-PVC electrode was prepared by mixing a weighed portion of Ni powder and PVC in THF solvent, swirled until the suspension was homogeneous and drying the suspension in an oven at 50 degree Celsius for 3 h. The dry sample was then placed in a 1 cm diameter stainless steel mould and pressed at 10 ton/ cm 2 . From CV data, Ni-PVC electrode showed a better electrochemical behavior compared to Ni metal foil electrode. The use of Ni-PVC electrode at higher concentration of supporting electrolyte (1.0 M KOH) was better than at lower concentration of the same supporting electrolyte in electroxidation of ethanol. In addition to acetic acid, the oxidation of ethanol also produced ethyl acetate and acetaldehyde. (author)

  9. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  10. Nonenzymatic Glucose Sensor Based on In Situ Reduction of Ni/NiO-Graphene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhang

    2016-10-01

    Full Text Available Ni/NiO nanoflower modified reduced graphene oxide (rGO nanocomposite (Ni/NiO-rGO was introduced to screen printed electrode (SPE for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (GO hybrid Nafion sheets first chemical adsorbed Ni ions and assembled on the SPE. Subsequently, GO and Ni ions were reduced by hydrazine hydrate. The electrochemical properties of such a Ni/NiO-rGO modified SPE were carefully investigated. It showed a high activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed nonenzymatic sensor can be utilized for quantification of glucose with a wide linear range from 29.9 μM to 6.44 mM (R = 0.9937 with a low detection limit of 1.8 μM (S/N = 3 and a high sensitivity of 1997 μA/mM∙cm−2. It also exhibited good reproducibility as well as high selectivity.

  11. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe 2 O 4 ) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe 2 O 4 and TEM image showed spherical particles of sizes 2–10 nm. These NiFe 2 O 4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  12. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Zakharchuk, I.; Lähderanta, E. [Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Baidakov, K.V.; Knyazeva, S.S. [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Ladenkov, I.V. [Joint-stock Company “Research and Production Company “Salut”, Nizhni Novgorod (Russian Federation)

    2017-08-01

    Highlights: • Ni-Zn and Ni-Zn-Co ferrite powders were prepared by the solid-state reaction at 1073 K. • The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. • The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. • The temperature dependences of magnetization exhibit large spin frustration and spin-glass-like behavior. - Abstract: Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130–630 nm for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 140–350 nm for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  13. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  14. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  15. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  16. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  17. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    Science.gov (United States)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  18. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  19. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  20. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  1. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  2. Ultrathin NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties

    International Nuclear Information System (INIS)

    Du, Dejian; Yue, Wenbo; Fan, Xialu; Tang, Kun; Yang, Xiaojing

    2016-01-01

    Highlights: • Ultrathin NiO/NiFe 2 O 4 nanoplates derived from NiFe layered double hydroxides are fabricated on the graphene. • NiO/NiFe 2 O 4 nanoplates on the graphene show superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates. • The effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are studied. • Graphene-encapsulated NiO/NiFe 2 O 4 is prepared and shows slightly decreased performance compared to graphene-based composite. - Abstract: As anode materials for lithium-ion batteries, bicomponent metal oxide composites show high reversible capacities; but the morphology and particle size of the composites are hardly controllable, which may reduce their electrochemical properties. In this work, ultrathin NiO/NiFe 2 O 4 nanoplates with a diameter of 5 ∼ 7 nm and a thickness of ∼2 nm are controllably fabricated on the graphene derived from NiFe layered double hydroxides (NiFe-LDHs), and exhibit superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates without graphene. The nanosized NiO and NiFe 2 O 4 plates are separated from each other and the graphene substrate can prevent the aggregation of NiO/NiFe 2 O 4 as well as enhance the electronic conductivity of the composite, which is beneficial to improving the electrochemical performance. Moreover, the effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are also studied in order to achieve optimal performance. Ultrathin NiO/NiFe 2 O 4 nanoplates are further encapsulated by graphene nanosheets and show slightly decreased performance compared to those supported by graphene nanosheets. The different electrochemical behaviors of graphene-containing composites may be attributed to the different interactions between graphene nanosheets and NiO/NiFe 2 O 4 nanoplates.

  3. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  4. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    Science.gov (United States)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  5. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  6. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    Science.gov (United States)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  7. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    Science.gov (United States)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  8. Heavy metal environmental impact. Nickel (Ni); Impatto ambientale da metalli pesanti. Il Nichel (Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ. Padua (Italy). Dipt. di Farmacologia, Lab. di Tossicologia

    2001-02-01

    Nickel (Ni) is a heavy metal in over 3.000 different alloys used to produce kitchen utensils, batteries, coins, etc.. Human extractive and industrial activities are therefore a cause for environmental dispersion of this metal into the biosphere. This shows how in urban areas car traffic and house-heating are the main sources of nickel pollution. Nickel is relatively non-toxic, such as iron, cobalt, copper and zinc; nevertheless prolonged inhalation of dust containing such compounds as Ni O or NiCl{sub 2} concurs in the outbreak of respiratory pathologies. The carcinogenic effect of such compounds as Ni S, Ni O and Ni(CO){sub 4} has been confirmed by experiments on laboratory animals. Ni potentially toxic concentrations, and as a consequence of potential environmental impact, are to be mainly found in populated areas where the main sources are represented by industries and landfills. [Italian] Il nichel (Ni) e' un metallo presente in oltre 3.000 differenti leghe che vengono utilizzate per la produzione di utensili da cucina, batterie, monete, ecc.. Le attivita' estrattive ed industriali dell'uomo sono quindi causa di una dispersione del metallo nella biosfera. Sono stati riscontrati elevati tassi di Ni nell'atmosfera di aree urbane. Cio' sta a dimostrare che nelle aree urbane il traffico automobilistico e il riscaldamento domestico sono le fonti principali di inquinamento da tale metallo. Il nichel e' relativamente atossico, analogamente a ferro, cobalto, rame e zinco, tuttavia l'inalazione protratta di polveri contenenti composti come il NiO o il NiCl{sub 2} contribuisce al manifestarsi di patologie dell'apparato respiratorio. E' stato confermato sperimentalmente su animali da laboratorio l'effetto cancerogeno di alcuni composti quali NiS, NiO e Ni(CO){sub 4}. Concentrazioni potenzialmente tossiche di Ni, e quindi di probabile impatto ambientale, sono maggiormente da ricercare nelle zone antropizzate dove le fonti

  9. Positron annihilation studies in CeNiIn and LaNiIn

    International Nuclear Information System (INIS)

    Ray, R.; Giri, S.; Sen, M.; Nambissan, P.M.G.; Ghoshray, K.; Ghoshray, A.; Sen, P.

    1997-01-01

    Doppler broadened positron annihilation spectral lineshape (DBPAS) and positron lifetime measurements in the temperature range 18-280 K have been performed in CeNiIn and LaNiIn systems. The nature of the temperature variations of the lifetime in both systems is almost similar in the whole temperature range studied, whereas the nature of the temperature variation of the S parameter in CeNiIn is similar to that in LaNiIn except in the temperature region 18-40 K. For the former system there is a dip around 20 K in the S parameter versus temperature curve. The lifetime versus T curve in both systems could be explained by the thermal expansion of the lattice. The S parameter versus T curve in LaNiIn could also be attributed to the thermal expansion of the lattice, whereas in CeNiIn the above mentioned dip seems an extra feature of the thermal expansion of the lattice. To understand this low temperature behaviour other results on the same system have been discussed. (orig.)

  10. Interacción familiar y desarrollo emocional en niños y niñas

    Directory of Open Access Journals (Sweden)

    Gloria Cecilia Henao López

    2009-01-01

    Full Text Available En la presente investigación se tuvo como objetivo principal abordar los estilos de interacción de padres y madres de niños y niñas preescolares y su relación con el desarrollo emocional de sus hijos e hijas (235 niños y 169 niñas entre cinco y seis años de edad. Las dimensiones que se consideraron para evaluar el nivel emocional de los niños y niñas fueron: autorregulación, comprensión emocional, y empatía. Como primer aspecto describimos los tipos de interacción con sus hijos e hijas y el desarrollo emocional de los niños y niñas evaluados. Un segundo aspecto que se abordó, es el de explorar las asociaciones entre el estilo de interacción familiar y el desarrollo emocional infantil. El instrumento utilizado dirigido a los padres y madres fue la Escala de Identificación de Prácticas Educativas Familiares (PEF, versión española realizada por Alonso y Román; a los niños y niñas les aplicamos la evaluación del desempeño emocional (EDEI, que se construye como parte de esta investigación. Se trabajó con una muestra de 404 niños y niñas, y sus respectivos padres y madres. Los resultados obtenidos en esta investigación resaltan el estilo equilibrado como generador de conductas adecuadas y adaptativas en el niño o niña, al igual que rescata este estilo como el que más posibilita el nivel de comprensión emocional en los niños y niñas de nuestro estudio.

  11. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  12. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  13. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  14. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  15. Assessment of Phytoextraction Potential of Fenugreek (Trigonellafoenum-graecum L. to Remove Heavy Metals (Pb and Ni from Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Leela Kaur

    2015-02-01

    Full Text Available The objective of the present study was to evaluate the effect of metal mobilizing agents, ethelynediaminetetraacetic acid (EDTA and salicylic acid (SA, on the accumulation and translocation of lead (Pb and nickel (Ni by fenugreek (Trigonellafoenum-graecumL. plants in contaminated soil. EDTA and SA were amended at 100 mM and 1.0 mM respectively. Pb and Ni content were estimated using ICP-OES. Plant samples were prepared for scanning electron microscope (SEM analysis to investigate metals distribution in different tissues (root, stem and leaf of plant. The results showed that EDTA increased Pb and Ni uptake as compared to SA. SEM analysis revealed that in the presence of EDTA, the deposition of Pb particles was predominantly in vascular tissues of the stem and leaf.    

  16. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants.

    Science.gov (United States)

    Saleem, Samia; Ahmed, Bilal; Khan, Mohammad Saghir; Al-Shaeri, Majed; Musarrat, Javed

    2017-10-01

    Nanotechnology based therapeutics has emerged as a promising approach for augmenting the activity of existing antimicrobials due to the unique physical and chemical properties of nanoparticles (NPs). Nickel oxide nanoparticles (NiO-NPs) have been suggested as prospective antibacterial and antitumor agent. In this study, NiO-NPs have been synthesized by a green approach using Eucalyptus globulus leaf extract and assessed for their bactericidal activity. The morphology and purity of synthesized NiO-NPs determined through various spectroscopic techniques like UV-Visible, FT-IR, XRD, EDX and electron microscopy differed considerably. The synthesized NiO-NPs were pleomorphic varying in size between 10 and 20 nm. The XRD analysis revealed the average size of NiO-NPs as 19 nm. The UV-Vis spectroscopic data showed a strong SPR of NiO-NPs with a characteristic spectral peak at 396 nm. The FTIR data revealed various functional moieties like C=C, C-N, C-H and O-H which elucidate the role of leaf biomolecules in capping and dispersal of NiO-NPs. The bioactivity assay revealed the antibacterial and anti-biofilm activity of NiO-NPs against ESβL (+) E. coli, P. aeruginosa, methicillin sensitive and resistant S. aureus. Growth inhibition assay demonstrated time and NiO-NPs concentration dependent decrease in the viability of treated cells. NiO-NPs induced biofilm inhibition was revealed by a sharp increase in characteristic red fluorescence of PI, while SEM images of NiO-NPs treated cells were irregular shrink and distorted with obvious depressions/indentations. The results suggested significant antibacterial and antibiofilm activity of NiO-NPs which may play an important role in the management of infectious diseases affecting human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  18. Niños y niñas como cuidadores familiares

    Directory of Open Access Journals (Sweden)

    María Rosa Estupiñán Aponte

    2015-01-01

    Full Text Available En el contexto familiar, el cuidado de otra persona por parte de niños y niñas constituye un terreno inexplorado tanto en su significado como en las implicaciones que podrían darse en el proceso. Aunque históricamente se ha asignado el cuidado familiar a las mujeres generando condiciones de inequidad, incrementada con los cambios sociales de los últimos tiempos, es necesario reconocer que en muchos hogares niños y niñas se han visto obligados a desempeñar esta labor sin la preparación ni las destrezas necesarias. Desde una perspectiva de género, el artículo busca evidenciar esta situación mediante la revisión de los abordajes que sobre el tema se han hecho en países de Europa y Norteamérica, así como el análisis de información obtenida a partir de las Encuestas de Hogares y Uso del Tiempo (EUT en algunos países de Latinoamérica. Se establece la forma como las problemáticas sociales inciden en las dinámicas, tipo de tareas y responsabilidades que deben asumir niños y niñas en los hogares, mostrando delgados límites entre la colaboración al interior de las familias, la transmisión cultural de roles y funciones y las actividades que podrían incidir negativamente en su crecimiento y el ejercicio de sus derechos.

  19. Iodine capture by Hofmann-type clathrate Ni(II)(pz)[Ni(II)(CN)_4

    International Nuclear Information System (INIS)

    Massasso, Giovanni; Long, Jerome; Haines, Julien; Devautour-Vinot, Sabine; Maurin, Guillaume; Larionova, Joulia; Guerin, Christian; Guari, Yannick; Grandjean, Agnes; Onida, Barbara; Donnadieu, Bruno

    2014-01-01

    The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)_4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I_2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I_2 per 1 mol of Ni(II)pz)[Ni(II)(CN)_4] in solution. (authors)

  20. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun, E-mail: hxqiu@usst.edu.cn; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe, E-mail: jhyang@usst.edu.cn

    2017-06-15

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC){sub 2} as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  1. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-01-01

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC) 2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  2. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  3. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material

    Science.gov (United States)

    Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang

    2018-03-01

    An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.

  4. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  5. Olivine-type cathode for rechargeable batteries: Role of chelating agents

    International Nuclear Information System (INIS)

    Kandhasamy, Sathiyaraj; Singh, Pritam; Thurgate, Stephen; Ionescu, Mihail; Appadoo, Dominique; Minakshi, Manickam

    2012-01-01

    Highlights: ► Olivine powder was synthesized by sol–gel method using a range of chelating agents. ► Role of chelating agents in olivine cathode was investigated for battery application. ► Battery was fabricated with olivine cathode, Zn anode and aqueous electrolyte. ► Synergetic effect of additives (CA + TEA + PVP) led to improved storage capacity. - Abstract: Olivine (LiCo 1/3 Mn 1/3 Ni 1/3 PO 4 ) powders were synthesized at 550–600 °C for 6 h in air by a sol–gel method using multiple chelating agents and used as a cathode material for rechargeable batteries. Range of chelating agents like a weak organic acid (citric acid – CA), emulsifier (triethanolamine – TEA) and non-ionic surfactant (polyvinylpyrrolidone – PVP) in sol–gel wet chemical synthesis were used. The dependence of the physicochemical properties of the olivine powders such as particle size, morphology, structural bonding and crystallinity on the chelating agent was extensively investigated. Among the chelating agents used, unique cycling behavior (75 mAh/g after 25 cycles) is observed for the PVP assisted olivine. This is due to volumetric change in trapped organic layer for first few cycles. The trapped organic species in the electrode–electrolyte interface enhances the rate of lithium ion diffusion with better capacity retention. In contrast, CA and TEA showed a gradual capacity fade of 30 and 38 mAh/g respectively after multiple cycles. The combination of all the three mixed chelating agents showed an excellent electrochemical behavior of 100 mAh/g after multiple cycles and the synergistic effect of these agents are discussed.

  6. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper

    Directory of Open Access Journals (Sweden)

    Ruoyu Zhang

    2016-12-01

    Full Text Available Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10–20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm−2 at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm−2 at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.

  7. Study on the Relation between the Mn/Al Mixed Oxides Composition and Performance of FCC Sulfur Transfer Agent

    Directory of Open Access Journals (Sweden)

    Ruiyu Jiang

    2016-01-01

    Full Text Available A sulfur transfer agent in catalysts can effectively reduce the emission of SO2 with minimum adverse effects on the catalytic cracking ability of the primary catalyst. In this paper, the composition and performance of sulfur transfer agents with different oxidative active components (such as Cu, Fe, Ni, Co, Ba, Zn and Cr were prepared by acid peptization technique and characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and N2 adsorption-desorption technique. The relationship between the composition and performance of the new sulfur transfer agents was investigated and the regeneration and recycling of the agents were performed. The results indicates that copper is a very good desulfurization active component. Moreover, the presence of CO has no significant effect on the absorption ability of SO2 by the sulfur transfer agent.

  8. Identificación y caracterización genética de agentes virales diarreagénicos en niños menores de cinco años de edad con o sin diarrea en Bucaramanga

    Directory of Open Access Journals (Sweden)

    Nayibe Tatiana Sánchez Álvarez

    2016-06-01

    Full Text Available Introducción: La enfermedad diarreica aguda (EDA, es una de las principales causas de morbi-mortalidad en todos los grupos de edad, con mayor incidencia en niños menores de cinco años. EDA es causada por diversos agentes. Entre los que se asocian de tipo bacteriano, parasitario y principalmente viral. La epidemiología y el diagnóstico en las infecciones virales es limitado debido a los altos costos en las técnicas moleculares y al desconocimiento por parte del personal de salud sobre su importancia. En Colombia son escasos los estudios reportados sobre la prevalencia de las infecciones virales diarreagénicas. Objetivo: Identificar la frecuencia de agentes virales asociados a las enfermedades diarreicas y caracterizar el agente viral más en los niveles genéticos y filogenéticos. Materiales y métodos: Este estudio hace parte de un estudio de casos y controles aprobado por el National Institutes of Health (NIH, en esta investigación se incluyeron 405 niños con EDA y 405 controles de niños sanos. Las muestras de heces se procesaron por métodos moleculares basados en la detección de adenovirus, norovirus, sapovirus, y astrovirus. Rotavirus se detectó mediante un ensayo de ELISA convencional. Análisis filogenético se llevó a cabo tanto para rotavirus como norovirus, mediante la amplificación de secuencia de ADN de los fragmentos de la región C de la cápside y detección de las proteínas VP4 y VP7 respectivamente. Las secuencias para cada tipo de virus se compararon y se construyó un árbol filogenético utilizando secuencias de referencia. Resultados: En general 243 virus fueron detectados entre las 810 muestras, 183 en casos y 60 en controles. El virus con mayor prevalencia fue norovirus GII con 10.9 %, seguido de rotavirus sapovirus con 5.1 %. Norovirus GI, astrovirus y adenovirus fueron identificados en 3.8 %, 3.2 % y 1.7 % respectivamente. La positividad fue más frecuente en el rango de edad  de 12 a 23 meses y de 24 a

  9. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  10. Ultrasound imaging with a micromotor; Micromotor ni yoru choonpa imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, O.; Salimuzzaman, M.; Matani, A.; Chihara, K. [Nara Institute of Science and Technology, Nara (Japan); Asao, M. [Osaka National Hospital, Osaka (Japan)

    1998-03-01

    This paper describes a new ultrasound intravascular imaging system. In this system, an ultrasound probe consists of a micromotor, an ultrasound reflecting mirror attached with the micromotor and an ultrasound transducer. Ultrasound is scanned radially by a micromotor instead of a rotation transmitting wire and the rotation of the micromotor is performed and controlled by an external magnetic field. This ultrasound imaging system with a micromotor was applied to observe the inside of blood vessels through in vitro experiments. The preliminary results suggest that this system has the sufficient ability to define the blood vessel morphology and that the simple image processing enhances signal-to-noise ratio of the reconstructed image. 12 refs., 5 figs.

  11. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  12. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  13. Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties

    Science.gov (United States)

    Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.

    2018-04-01

    In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.

  14. Catalytic performance of Ni/MgO catalyst in methane dry reforming

    Science.gov (United States)

    Al-Swai, Basem M.; Osman, N. B.; Abdullah, Bawadi

    2017-10-01

    Methane dry reforming to synthesis gas over nickel catalysts supported on magnesium oxide has been studied. The support was prepared via co-precipitation method using ammonia solution (20 wt% in water) as the precipitating agent. 10 wt% of Ni metal was impregnated to form Ni/MgO catalyst. The prepared catalyst was characterized by different techniques, such as XRD, BET, SEM, and TGA analysis. The effect of reaction conditions on the conversions of CH4 and CO2, selectivity of H2 and CO, and carbon deposition were investigated in a tabular furnace reactor. The catalyst afforded as high as 93% CH4 conversion at 900 °C. The catalyst has also shown excellent stability during reaction at relatively higher space velocity (1.8×104 ml g-1 h-1) and 800 °C reaction temperature. TGA characterization of spent catalyst has shown lesser magnitude of carbon deposition on the surface of the catalyst at 900 °C.

  15. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of Various Solvent on the Synthesis of NiO Nanopowders by Simple Sol-Gel Methods and Its Characterization

    Directory of Open Access Journals (Sweden)

    Sherly Kasuma Warda Ningsih

    2015-03-01

    Full Text Available Synthesis of nickel oxide (NiO with various solvents by simple sol-gel process has been done. NiO nanopowders were obtained by using nickel nitrate hexahydrate and sodium hydroxide 5 M were used as precursor and agent precipitator, respectively. The addition of various solvents that used in this research were aquadest, methanol and isopropanol. The powders were formed by drying in the temperature of 100-110 °C for 1 h and after heating at ±450 °C for 1 h. The products were obtained black powders. The products were characterized by Energy Dispersive X-Ray Fluorescence (ED-XRF, X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. The ED-XRF pattern show that composition of NiO produced was 96.9%. The XRD patterns showed NiO forms were in monoclinic structure with aquadest solvent and cubic structure with methanol and isopropanol used. Crystal sizes of NiO particles produced with aquadest, methanol, isopropanol were obtained in the range 37.05; 72.16; 66.04 nm respectively. SEM micrograph clearly showed that powder had a spherical shape with uniform distribution size is 0.1-1.0 µm approximately.

  17. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  18. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  19. Características clínicas y epidemiológicas de enterobiasis en niños escolarizados de una zona rural del estado falcón, Venezuela

    OpenAIRE

    PERFETTI, DALMIRO CAZORLA; ACOSTA-QUINTERO, MARÍA; MORALES-MORENO, PEDRO

    2016-01-01

    El entero-helminto Enterobius vermicularis es el agente causal de la enterobiasis u oxiuriasis, la cual se encuentra con mayor prevalencia en niños. Se realizó un estudio para determinar la prevalencia y los parámetros clínicos y epidemiológicos de la enterobiasis en niños escolarizados de la población rural El Paso Acurigua, estado Falcón, Venezuela. El estudio de tipo descriptivo, prospectivo y transversal, se llevó a cabo entre noviembre 2006 y abril de 2007, en un total de 82 niños. Para ...

  20. Ni nanoparticles decorated onto graphene oxide with SiO2 as interlayer for high performance on histidine-rich protein separation

    Science.gov (United States)

    Yang, Xiaodan; Zhang, Min; Zheng, Jing; Li, Weizhen; Gan, Wenjun; Xu, Jingli; Hayat, Tasawar; Alharbi, Njud S.; Yang, Fan

    2018-05-01

    Sandwich-like structure of graphene oxide (GO) @SiO2@C-Ni nanosheets were prepared by combining an extended stöber method with subsequent carbonization treatment, in which polydopamine was used as reducing agent and carbon source. Firstly, the GO nanosheets were covered with SiO2 interlayer and finally coated with a outer shell of nickel ion doped polydopamine (PDA-Ni2+) with an extended stöber method. Followed by a carbonization to produce the GO@SiO2@C-Ni sheets with metallic nickel nanoparticles embedded in PDA-derived thin graphic carbon layer. Notably, silica interlayer played a vital role in the formation of such GO@SiO2@C-Ni sheets. Without the protection of SiO2, the hydrophobic graphene@C-Ni composites were obtained instead. While with silica layer as the spacer, the obtained hydrophilic GO@SiO2@C-Ni composites were not only well dispersed in the solution, but also can be adjusted in terms of the size and density of Ni nanoparticles (NPs) on surface by changing the calcination temperature or the molar ratio between dopamine and nickel salt. Furthermore, nickel nanoparticles decorated on GO@SiO2 sheets were employed to enrich His-rich proteins (BHb and BSA) via specific metal affinity force between polyhistidine groups and nickel nanoparticles.

  1. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance

    International Nuclear Information System (INIS)

    Tao, Yan; Ruiyi, Li; Lin, Zhou; Chenyang, Ma; Zaijun, Li

    2015-01-01

    We reported a new strategy for fabricating three-dimensiona electrode of Ni/Co layered double hydroxide@NiCo 2 S 4 @graphene@Ni foam for supercapacitors. The resulting 3D electrode offers a jungle-like architecture. The unique structure creates ultra fast electron transfer and electrolyte transport as well as the maximum utilization rate of the space and the surface. The electrode exhibits a prominent advantage of high specific capacitance, high-current capacitive behaviour and cycle stability. - Highlights: • The study developed a new strategy for fabricating 3D electrode of Ni/Co-LDH@NiCo 2 S 4 @G. • The as-prepared 3D electrode offers a jungle-like architecture. • The unique structure creates an efficient conduction network and high mass loading. • The electrode achieves significantly synergetic effect among different materials. • The electrode exhibits an excellent electrochemical performance for supercapacitors. - ABSTRACT: Great challenge for the fabrication of free-standing three-dimensional electrode still remains to simultaneously achieve high specific capacitance, rate performance and cycle stability. The paper reprted a new three-dimensional (3D) electrode of Ni/Co layered double hydroxide@NiCo 2 S 4 @graphene@Ni foam (Ni/Co-LDH@NiCo 2 S 4 @G) for supercapacitors. The as-prepared 3D electrode offers an unique architecture, which create an efficient conduction network and maximum utilization of space and interface. The graphene acts as well-knit and conductive skin coated on the skeleton of Ni foam for growing NiCo 2 S 4 . The conductive NiCo 2 S 4 array serves as bridge between Ni/Co-LDH and graphene, leading to ultrafast electron transfer and electrolyte transport. A slew of splits and holes existing in the NiCo 2 S 4 array play one role as the ion-reservoir to contain host of electrolyte ions. To evaluate the feasibility of 3D electrode’s application in supercapacitors, the electrochemical performance was investigated by using the three

  2. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-01-01

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi 5 composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi 5 particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi 5 coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol -1 for the Ni-Co-LaNi 5 , Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi 5 proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi 5 is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface

  3. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  4. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  5. Galvanic displacement synthesis of Al/Ni core–shell pigments and their low infrared emissivity application

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Le, E-mail: yuanle.cn@gmail.com [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China); Hu, Juan [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); Weng, Xiaolong [National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China); Zhang, Qingyong [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China)

    2016-06-15

    We have successfully developed a magnetic Al/Ni core–shell pigment via a galvanic displacement reaction to obtain low infrared emissivity pigment with low lightness and visible light reflectance. Al/Ni core–shell particles were prepared via a simple one-step synthetic method where Ni was deposited onto the Al surface at the expense of Al atoms. The influence of pH and the amount of NH{sub 4}F complexing agent on phase structure, surface morphology, optical and magnetic properties were studied systematically. The neutral condition and high concentration of NH{sub 4}F forms smooth, flat, uniform and dense Ni shell on the surface of flake Al particles, which can significantly reduce the lightness and visible light reflectance but slightly increase the infrared emissivity. When the core–shell pigments are prepared in neutral pH solution at NH{sub 4}F = 11.2 g/L, the lightness (L{sup *}) and visual light reflectivity can be reduced by 12.6 and 0.46, respectively versus uncoated flake Al pigments, but the infrared emissivity is only increased by 0.02. The color changes from brilliant silver to gray black and the saturation magnetization value is 6.59 emu/g. Therefore, these Al/Ni magnetic composite pigments can be used as a novel low infrared emissivity pigment to improve the multispectral stealth performance of low-E coatings in the visual, IR and Radar wavebands. - Highlights: • Prepared magnetic Al/Ni core–shell pigment with low lightness and low emissivity. • Used one-pot galvanic displacement reaction to form smooth and dense Ni shell. • Show enhanced stealth performance in the visual, IR and Radar wavebands. • The lightness and visible light reflectance was decreased by 12.6 and 0.46. • But the infrared emissivity was only increases by 0.02.

  6. Galvanic displacement synthesis of Al/Ni core–shell pigments and their low infrared emissivity application

    International Nuclear Information System (INIS)

    Yuan, Le; Hu, Juan; Weng, Xiaolong; Zhang, Qingyong; Deng, Longjiang

    2016-01-01

    We have successfully developed a magnetic Al/Ni core–shell pigment via a galvanic displacement reaction to obtain low infrared emissivity pigment with low lightness and visible light reflectance. Al/Ni core–shell particles were prepared via a simple one-step synthetic method where Ni was deposited onto the Al surface at the expense of Al atoms. The influence of pH and the amount of NH_4F complexing agent on phase structure, surface morphology, optical and magnetic properties were studied systematically. The neutral condition and high concentration of NH_4F forms smooth, flat, uniform and dense Ni shell on the surface of flake Al particles, which can significantly reduce the lightness and visible light reflectance but slightly increase the infrared emissivity. When the core–shell pigments are prepared in neutral pH solution at NH_4F = 11.2 g/L, the lightness (L"*) and visual light reflectivity can be reduced by 12.6 and 0.46, respectively versus uncoated flake Al pigments, but the infrared emissivity is only increased by 0.02. The color changes from brilliant silver to gray black and the saturation magnetization value is 6.59 emu/g. Therefore, these Al/Ni magnetic composite pigments can be used as a novel low infrared emissivity pigment to improve the multispectral stealth performance of low-E coatings in the visual, IR and Radar wavebands. - Highlights: • Prepared magnetic Al/Ni core–shell pigment with low lightness and low emissivity. • Used one-pot galvanic displacement reaction to form smooth and dense Ni shell. • Show enhanced stealth performance in the visual, IR and Radar wavebands. • The lightness and visible light reflectance was decreased by 12.6 and 0.46. • But the infrared emissivity was only increases by 0.02.

  7. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  8. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  9. Comparative study between traditional and modified Pechini synthesis methods in the preparation of LaNiO{sub 3} and LaNi{sub 0,8}Co{sub 0,2}O{sub 3} catalysts; Estudo comparativo entre os metodos de sintese Pechini tradicional e modificado na confeccao dos catalisadores LaNiO{sub 3} e LaNi{sub 0,8}Co{sub 0,2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.E.F.; Aquino, F.M.; Silva, M.C.M.F., E-mail: fabio@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Energias Renovaveis

    2016-07-01

    One of the ways of obtaining hydrogen is from the methane reforming reaction, which is an endothermic and non-spontaneous reaction. In order to minimize this energy, nickel catalysts are used. This work aims to synthesize and characterize the catalysts LaNiO{sub 3} and LaNi{sub 0,8}Co{sub 0,2}O{sub 3} using the Pechini method, making use of citric acid and ethylene glycol and modified Pechini, using the edible gelatin as a chelating and polymerizing agent. The obtained materials were characterized by X-Ray Diffraction (XRD), where the formation of peaks characteristic of perovskite and monophasic structures was observed. Scanning Electron Microscopy (SEM) showed that porosity and powders with few agglomerates were observed by both methods. In the analysis of determination of the specific surface area (BET) the materials were shown with areas that are according to the literature.

  10. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    International Nuclear Information System (INIS)

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-01-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α E,31 = 2.8 V ⋅ cm −1 ⋅ Oe −1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors

  11. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  12. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    D’Addato, S., E-mail: sergio.daddato@unimore.it [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Spadaro, M.C. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Luches, P. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Grillo, V. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, 43100 Parma (Italy); Frabboni, S.; Valeri, S. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [CNR-ISTM, Laboratorio di Nanotecnologie, via G. Fantoli 16/15, 20138 Milano (Italy)

    2014-07-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  13. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    International Nuclear Information System (INIS)

    D’Addato, S.; Spadaro, M.C.; Luches, P.; Grillo, V.; Frabboni, S.; Valeri, S.; Ferretti, A.M.; Capetti, E.; Ponti, A.

    2014-01-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  14. The large magnetoelectric effect in Ni-lead zirconium titanate-Ni trilayers derived by electroless deposition

    International Nuclear Information System (INIS)

    Bi, K; Wang, Y G; Wu, W; Pan, D A

    2010-01-01

    Magnetoelectric (ME) Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure and magnetic properties of the electroless deposited Ni layers with different pH values are characterized by x-ray diffraction and vibrating sample magnetometer. The influence of the bias magnetic field and the magnetic field frequency (f) on ME coupling is discussed. It is seen that α E,31 depends strongly on H dc and f. The value of the ME coefficient increases as the thickness of the Ni layer and the pH of the bath increase. A maximum of the ME voltage coefficient α E,31 = 5.77 V cm -1 Oe -1 at resonance frequency with a deposited Ni layer thickness t Ni = 302 μm is obtained. The large ME coefficient makes these Ni-PZT-Ni trilayers suitable for applications in sensors, actuators and transducers. (fast track communication)

  15. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  16. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  17. Decay of 57Ni

    International Nuclear Information System (INIS)

    Santos Scardino, A.M. dos.

    1987-01-01

    The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt

  18. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae

    2016-01-01

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery

  19. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery.

  20. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  1. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  2. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  3. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  4. The LiyNi0.2Mn0.2Co0.6O2 electrode materials: A structural and magnetic study

    International Nuclear Information System (INIS)

    Labrini, Mohamed; Saadoune, Ismael; Almaggoussi, Abdelmajid; Elhaskouri, Jamal; Amoros, Pedro

    2012-01-01

    Graphical abstract: EPR signal of the Li 0.6 Co 0.6 Ni 0.2 Mn 0.2 O 2 composition showing that Mn 4+ ions are the solely paramagnetic ions in the structure. Highlights: ► LiCo 0.6 Ni 0.2 Mn 0.2 O 2 was prepared by the combustion method with sucrose as a fuel. ► Chemical delithiaition was performed by using NO 2 BF 4 oxidizing agent. ► The rhombohedral symmetry was preserved upon lithium removal. ► Lithium extraction leads to Ni 2+ oxidation to Ni 4+ followed by Co 3+ oxidation. ► The EPR narrow signal of Li 0.6 Co 0.6 Ni 0.2 Mn 0.2 O 2 is due to the only active Mn 4+ ions. -- Abstract: Layered LiNi 0.2 Mn 0.2 Co 0.6 O 2 phase, belonging to a solid solution between LiNi 1/2 Mn 1/2 O 2 and LiCoO 2 most commercialized cathodes, was prepared via the combustion method at 900 °C for a short time (1 h). Structural and magnetic properties of this material during chemical extraction were investigated. The powders adopted the α-NaFeO 2 structure with almost none of the well-known Li/Ni cation disorder. The analysis of the magnetic properties in the paramagnetic domain agrees with the combination of Ni 2+ (S = 1), Co 3+ (S = 0) and Mn 4+ (S = 3/2) spin-only values. X-ray analysis of the chemically delithiated Li y Ni 0.2 Mn 0.2 Co 0.6 O 2 reveals no structural transition. The process of lithium extraction from and insertion into LiNi 0.2 Mn 0.2 Co 0.6 O 2 was discussed on the basis of ex situ EPR experiments and magnetic susceptibility. Oxidation of Ni 2+ (S = 1) to Ni 3+ (S = 1/2) and to Ni 4+ (S = 0) was observed upon lithium removal.

  5. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  6. Ni3d-Gd4f correlation effects on the magnetic behaviour of GdNi

    Energy Technology Data Exchange (ETDEWEB)

    Paulose, P L [Tata Inst. of Fundamental Research, Bombay (India); Patil, Sujata [Tata Inst. of Fundamental Research, Bombay (India); Mallik, R [Tata Inst. of Fundamental Research, Bombay (India); Sampathkumaran, E V [Tata Inst. of Fundamental Research, Bombay (India); Nagarajan, V [Tata Inst. of Fundamental Research, Bombay (India)

    1996-07-01

    The results of magnetization and heat-capacity measurements on the alloys, Gd{sub 1-x}Y{sub x}Ni (x=0.0, 0.25, 0.5, 0.75 and 0.9) are reported. The data suggest that there is a Gd induced magnetic moment on Ni, which may in turn enhance Gd-Gd exchange interaction strength in GdNi. The induced moment (on Ni) apparently exhibits itinerant ferromagnetism in the magnetically ordered state of GdNi. (orig.).

  7. Ni-Ni ion pair excitation transfer in D sub(3h) symmetry

    International Nuclear Information System (INIS)

    Terrile, M.C.

    1990-01-01

    The mechanisms contributing to excitation transfer are examined for Ni-Ni ion pairs in order to explain the delocalized character of electronic excitations observed in CsNiF sub(3). Using both first-and second-order perturbation theory and from symmetry arguments, the kind of interactions giving matrix elements between states connecting different sites for the position of the excitation are discussed. (author)

  8. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  9. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Frandsen, Henrik Lund; Kaiser, Andreas

    2010-01-01

    for the dimensional change arises from the volumetric change related to the phase change NiO ↔ Ni. The measurable change in bulk length is given by the ceramic YSZ backbone as a response to the stress created by the chemical strain. The different subprocesses described in the model for YSZ were elastic and anelastic...... expansion, diffusional creep, grain boundary sliding (GBS) and microcracking due to excessive stress. In the Ni/NiO phase, nonelastic strains in terms of diffusional and power law creep were implemented, and additionally for NiO deformation due to microcracking and/or pseudoplasticity. Semi...

  10. Tensiones que surgen entre los agentes socializadores primarios en la vida del niño

    OpenAIRE

    Garjon Alastuey, Maider

    2013-01-01

    La sociedad actual ha sufrido numerosos cambios en estos últimos siglos. Un proceso importante es, que se pasa de una familia tradicional, en la que la mujer era quien se dedicaba a las labores del hogar y cuidado de los hijos, a la incorporación de esta en el mundo laboral y una repartición más igualitaria en las tareas referentes al hogar y los hijos. El hecho de que la mujer se incorpore al mercado laboral hace que se demande una institución que se encargue de los niños, por lo que la e...

  11. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. H.; Wang, Y. G.; Bi, K., E-mail: bike@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Fan, H. P. [School of Mechanical and Electrical Engineering, Qingdao Technological University Qindao College, Qingdao 266106 (China); Zhao, Z. S. [Shandong Engineering Consulting Institute, Jinan 250013 (China)

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  12. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  13. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    Directory of Open Access Journals (Sweden)

    Sonia A. Barczak

    2018-03-01

    Full Text Available TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  14. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  15. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    International Nuclear Information System (INIS)

    Liu, Tong; Pang, Yu; Xie, Xiubo; Qi, Wen; Wu, Ying; Kobayashi, Satoru; Zheng, Jie; Li, Xingguo

    2016-01-01

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m"2/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m"2/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  16. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Pang, Yu; Xie, Xiubo [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Qi, Wen; Wu, Ying [China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd, No.76 Xueyuannanlu, Haidian District, Beijing, 100081 (China); Kobayashi, Satoru [Faculty of Engineering, Iwate University, Ueda, Morioka, 020-8551 (Japan); Zheng, Jie; Li, Xingguo [Beijing National Laboratory for Molecular Sciences (BNLMS), The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China)

    2016-05-15

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m{sup 2}/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m{sup 2}/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  17. Cartografías de la actividad de atención directa a niños, niñas y adolescentes en situación de calle en Montevideo, Uruguay

    Directory of Open Access Journals (Sweden)

    Daniel Fagundez

    2015-08-01

    Full Text Available Este artículo presenta resultados de una investigación realizada sobre el estudio de la actividad de atención directa a niños, niñas y adolescentes (NNA en situación de calle. En Uruguay son atendidos 1100 NNA por diferentes dispositivos gestionados y controlados por el Estado. Esto representa un alto nivel de atención de una población extremadamente vulnerable. Los educadores sociales y psicólogos son las principales profesiones que participan de la atención directa, constituyendo un modelo educativo hibrido entre varios enfoques disciplinares. El estudio se realizó a partir de un seguimiento de un equipo de atención directa a esta población en Montevideo, Uruguay, mediante la metodología etnográfica y cartográfica. Los resultados plantean la complejidad por la cual los trabajadores atraviesan, en una actividad que tiene una alta carga de frustración y creatividad. Se discute sobre la implicación de los educadores entre ser agentes técnicos del Estado y ejercer una ética desde la educación social y desde una perspectiva de los derechos del niño.

  18. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tanveer [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan (Pakistan); Bae, Hongsub; Iqbal, Yousaf [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Chang, Yongmin; Lee, Jaejun [Department of Diagnostic Radiology, College of Medicine, Kyungpook National University and Hospital, Daegu 700-721 (Korea, Republic of); Sohn, Derac [Department of Physics, Hannam University, Daejon (Korea, Republic of)

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe{sub 2}O{sub 4}) nanoparticles as both T{sub 1} and T{sub 2} contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T{sub 1} and T{sub 2} relaxivities were 0.858±0.04 and 1.71±0.03 mM{sup −1} s{sup −1}, respectively. In animal experimentation, both a 25% signal enhancement in the T{sub 1}-weighted mage and a 71% signal loss in the T{sub 2}-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T{sub 1} and T{sub 2} contrast agents in MRI. We note that the applicability of our nanoparticles as both T{sub 1} and T{sub 2} contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe{sub 2}O{sub 4}) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T{sub 1} and T{sub 2} contrast agents for MRI by measuring T{sub 1} and T{sub 2} relaxation times as a function of iron concentration. • Both T{sub 1} and T{sub 2} effects were also observed in animal experimentation.

  19. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  20. Size-controlled synthesis of NiFe{sub 2}O{sub 4} nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-05-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe{sub 2}O{sub 4}) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe{sub 2}O{sub 4} and TEM image showed spherical particles of sizes 2–10 nm. These NiFe{sub 2}O{sub 4} NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  1. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  2. A Study on Production of Carbon Nanotubes by CH4 Decomposition over LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotubes (CNTs) of narrow size distribution can be abundantly produced in the catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4.The CNTs obtained were characterized by means of transmission electron microscopy (TEM).Thermal oxidation of CNTs in air was monitored thermogravimetrically (TG). The resultsrevealed that a lower La/Ni ratio of the catalysts would lead to a wider diameter distribution and a higher degree of graphitic nature.

  3. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng; Li, Zhilin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Feng, E-mail: wangf@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jingjun; Ji, Jing [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Park, Ki Chul [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Endo, Morinobu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  4. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  5. Hard X-ray MCD in GdNi/sub 5/ and TbNi/sub 5/ single crystals

    CERN Document Server

    Galera, R M

    1999-01-01

    XMCD experiments have been performed at the R L/sub 2,3/ and Ni K- edges on magnetically saturated single crystals of GdNi/sub 5/ and Tb Ni/sub 5/ ferromagnetic compounds. The spectra present huge and well structured dichroic $9 signals at both the R L/sub 2,3/ and the Ni K- edges. Structures from the quadrupolar (2p to 4f) transitions are clearly observed at the R L/sub 2,3/-edges. Though Ni is not magnetic, large intensities, up to 0.4, are measured at the $9 Ni K- edge. The Ni K-edge XMCD shows a three-peak structure which intensities dependent on the rare earth. (7 refs).

  6. Lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite for electrochemical supercapacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingnan [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wen, Ming, E-mail: m_wen@tongji.edu.cn [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China); Chen, Shipei [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wu, Qingsheng [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China)

    2015-10-15

    Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure with a single lamellar spacing of ∼5 nm was effectively constructed through two-phase-interface reaction process followed by the CNTs crossed among the lamellar-nanostructured Ni(OH){sub 2}. The resultant nanocomposite can offer large active surface areas and short diffusion paths for electrons and ions, and is investigated as a potential pseudocapacitor electrode material for electrochemical energy storage applications. Electrochemical data demonstrate that the as-prepared nanocomposite exhibits a high specific capacitance of ∼1600 F g{sup −1} at the scan rate of 1 mV s{sup −1} in 6 M KOH solution at normal pressure and temperature, which is great higher than Ni(OH){sub 2} (∼1200 F g{sup −1}). Furthermore, Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite shows a higher energy density (∼125 Wh kg{sup −1}, 2 A g{sup −1}) and has a slightly decrease of 5% in specific capacitance after 1000 continuous charge/discharge cycles. - Graphical abstract: As-constructed Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure exhibits remarkable enhancement in electrochemical stability and high specific capacity of ∼1600 F g{sup −1} at a scan rate of 1 mV s{sup −1}, suggesting promising potential for supercapacitor applications. - Highlights: • New designed lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have been firstly reported in this work. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructures show firm nanostructure and excellent electrochemical stability. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites exhibit excellent specific capacitance. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have the potential application in electrochemical energy storage applications.

  7. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  8. Fe-solubility of Ni7S6 and Ni9S8: Thermodynamic analysis

    International Nuclear Information System (INIS)

    Waldner, P.

    2011-01-01

    Experimental data on phase equilibria have been used for thermodynamic analysis of the iron solubility of the nickel sulfides Ni 7 S 6 and Ni 9 S 8 . For both compounds, a two-sublattice approach within the framework of the compound energy formalism has been applied to perform Gibbs free energy modelling at 0.1 MPa total pressure consistently embedded in recent thermodynamic assessment studies of other iron-nickel-sulfides. The predicted maxima of iron solubility around 3 at% of Ni 7 S 6 and 5.5 at% of Ni 9 S 8 are confirmed by experimental data. The calculations of complex ternary phase relations with Fe-bearing Ni 7 S 6 and Ni 9 S 8 gain further improvement. The first internally consistent description of all thermodynamically stable phases known in the literature for the iron-nickel-sulfur system is completed.

  9. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  10. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  11. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  12. Development of new supervisory system with ITV. ITV ni yoru kanshi system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimonaga, S; Matsunaga, R; Ono, H [The Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1994-02-28

    This paper describes an automatic trespassing supervisory system with ITV and picture processing (PP). The paper details an integrated control system and automatic supervision. The system functions to automatically detect a trespassing by means of PP, transfers items of information collected by sensors to a remote control center, and records relevant data. The operation principle consists of measurement of change in two or more images of moving bodies with binary value at a certain interval, determination on acceptability of the moving bodies represented by human characteristics, and identification of a trespasser. The system consists of an automatic supervisory device using PP and an automatic patrolling and searching device by means of sensor measurements. The supervisory device has images outputted from ITV and VTR processed by PP, host computer, and HD, and linked to an indication mechanism. According to the result of a site test at wireless transmission station of Kyushu Electric Power Company, the difference between measurement values collected by the searching device and those by the supervisory device was [plus minus]3% or less (other than EG output current), which is a useful value for verification. Although the basic technique has been established, practical use of the system still has some problems including performance improvement in picture processing. 37 refs., 38 figs., 18 tabs.

  13. Reduction mechanism of Ni2+ into Ni nanoparticles prepared from ...

    Indian Academy of Sciences (India)

    journal of. March 2009 physics pp. 577–586. Reduction mechanism of Ni2+ into Ni ..... and at high field, no domain wall is available and hence, the system becomes a .... [23] J Ding, T Tsuzuki, P G McCormick and R Street, J. Phys. D: Appl.

  14. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES

    Science.gov (United States)

    Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C.

    2018-06-01

    Ultramafic (UM) rocks are known to be nickel (Ni) rich and to weather quickly, which makes them a good candidate to look at the Ni isotope systematics during weathering processes at the Earth's surface. The present study aims at identifying the Ni solid speciation and discussing the weathering processes that produce Ni isotope fractionation in two deep laterite profiles under tropical conditions (Barro Alto, Goiás State, Brazil). While phyllosilicates and to a lower extent goethite are the main Ni-bearing phases in the saprolitic part of the profile, iron (Fe) oxides dominate the Ni budget in the lateritic unit. Nickel isotopic composition (δ60Ni values) has been measured in each unit of the regolith, i.e., rock, saprock, saprolite and laterite (n = 52). δ60Ni varies widely within the two laterite profiles, from -0.10 ± 0.05‰ to 1.43 ± 0.05‰, showing that significant Ni isotope fractionation occurs during the weathering of UM rocks. Overall, our results show that during weathering, the solid phase is depleted in heavy Ni isotopes due to the preferential sorption and incorporation of light Ni isotopes into Fe oxides; the same mechanisms likely apply to the incorporation of Ni into phyllosilicates (type 2:1). However, an isotopically heavy Ni pool is observed in the solid phase at the bottom of the saprolitic unit. This feature can be explained by two hypotheses that are not mutually exclusive: (i) a depletion in light Ni isotopes during the first stage of weathering due to the preferential dissolution of light Ni-containing minerals, and (ii) the sorption or incorporation of isotopically heavy Ni carried by percolating waters (groundwater samples have δ60Ni of 2.20 and 2.27‰), that were enriched in heavy Ni isotopes due to successive weathering processes in the overlying soil and laterite units.

  15. Probing the semi-magicity of $^{68}$Ni via the $^{3}$H($^{66}$Ni,$^{68}$Ni)p two-neutron transfer reaction in inverse kinematics

    CERN Multimedia

    Reiter, P; Blazhev, A A; Kruecken, R; Franchoo, S; Mertzimekis, T; Darby, I G; Van de walle, J; Raabe, R; Elseviers, J; Gernhaeuser, R A; Sorlin, O H; Georgiev, G P; Bree, N C F; Habs, D; Chapman, R; Gaudefroy, L; Diriken, J V J; Jenkins, D G; Kroell, T; Axiotis, M; Huyse, M L; Patronis, N

    We propose to perform the two-neutron transfer reaction $^{3}$H($^{66}$Ni, $^{68}$Ni)$p$ using the ISOLDE radioactive ion beam at 2.7 $A$ MeV and the MINIBALL + T-REX setup to characterize the 0$^{+}$ and 2$^{+}$ states in $^{68}$Ni.

  16. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    Science.gov (United States)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  17. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni

    International Nuclear Information System (INIS)

    Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.

    2010-01-01

    Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.

  18. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  19. Electrochemical preparation and characteristics of Ni-Co-LaNi{sub 5} composite coatings as electrode materials for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-02-15

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi{sub 5} composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi{sub 5} particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi{sub 5} coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol{sup -1} for the Ni-Co-LaNi{sub 5}, Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi{sub 5} proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi{sub 5} is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface.

  20. Compositional and structural characterisation of Ni-phyllosilicates in hydrous silicate type Ni-laterite deposits

    OpenAIRE

    Villanova de Benavent, Cristina

    2015-01-01

    Ni-bearing Mg-phyllosilicates (commonly known as garnierites) are significant ore minerals in many Ni-laterite deposits worldwide. However, the characterisation of these mineral phases is complex, as well as their classification and nomenclature, due to their fine-grained nature, low crystallinity and frequent occurrence as mixtures. The aim of this study is to shed some light to the nature of the Ni-bearing Mg-phyllosilicates occurring at the Falcondo Ni-laterite. In this deposit, these ...

  1. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3)O2 via the sol-gel process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; LIU Hanxing; HU Chen; ZHU Xianjun; LI Yanxi

    2008-01-01

    To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were +3,+2,and +4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.

  2. Influence of Ni Solute segregation on the intrinsic growth stresses in Cu(Ni) thin films

    International Nuclear Information System (INIS)

    Kaub, T.M.; Felfer, P.; Cairney, J.M.; Thompson, G.B.

    2016-01-01

    Using intrinsic solute segregation in alloys, the compressive stress in a series of Cu(Ni) thin films has been studied. The highest compressive stress was noted in the 5 at.% Ni alloy, with increasing Ni concentration resulting in a subsequent reduction of stress. Atom probe tomography quantified Ni's Gibbsian interfacial excess in the grain boundaries and confirmed that once grain boundary saturation is achieved, the compressive stress was reduced. This letter provides experimental support in elucidating how interfacial segregation of excess adatoms contributes to the post-coalescence compressive stress generation mechanism in thin films. - Graphical abstract: Cu(Ni) film stress relationship with Ni additions. Atom probe characterization confirms solute enrichment in the boundaries, which was linked to stress response.

  3. Preparation, characterization, and antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Allafchian, Alireza, E-mail: Allafchian@cc.iut.ac.ir [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Jalali, Seyed Amir Hossein [Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Department of Natural Resources, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Bahramian, Hamid; Ahmadvand, Hossein [Department of physics, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of)

    2016-04-15

    We have described a facile fabrication of silver deposited on the TiO{sub 2}, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2}) through a three-step procedure. A pre-synthesized NiFe{sub 2}O{sub 4} was first coated with PAMA polymer and then Ag–TiO{sub 2} was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/Ag, AgNPs and NiFe{sub 2}O{sub 4}/PAMA. The results demonstrated that the AgNPs, when embedded in TiO{sub 2} and combined with NiFe{sub 2}O{sub 4}/PAMA, became an excellent antibacterial agent. The NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field. - Highlights: • A novel NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} magnetic nanocomposite has been prepared. • This nanocomposite displays potent antimicrobial activity. • The antibacterial effect was evaluated by the disk diffusion method. • Recyclable antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} was studied.

  4. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  5. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  6. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  7. Radioactive 63Ni in biological research

    International Nuclear Information System (INIS)

    Kasprzak, K.S.; Sunderman, F.W. Jr.

    1979-01-01

    Applications of 63 Ni in biological research are reviewed, with emphasis upon recent investigations of nickel metabolism and toxicology in experimental animals. The radiochemistry of 63 Ni is summarized, including consideration of the preparation of certain 63 Ni compounds (e.g. 63 Ni(CO) 4 and 63 Ni 3 S 2 ) that are of current interest in toxicology, teratology and cancer research. Practical guidance is given regarding the detection and determination of 63 Ni in biological materials by autoradiography and liquid scintillation spectrometry. (author)

  8. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  9. Neutron enrichment at midrapidity in 58Ni + 58Ni at 52 MeV/u

    International Nuclear Information System (INIS)

    Theriault, D.; Vallee, A.; Gingras, L.; Larochelle, Y.; Roy, R.; April, A.; Beaulieu, L.; Grenier, F.; Lemieux, F.; Moisan, J.; Samri, M.; Saint-Pierre, C.; Turbide, S.; Yennello, S.J.; Martin, E.; Winchester, E.

    2003-01-01

    By combining data from a charged particle 58 Ni + 58 Ni experiment at 52 MeV/u with an 36 Ar + 58 Ni experiment at 50 MeV/u for which free neutrons have been detected, an increase in the neutron to proton ratio of the whole nuclear material at midrapidity has been experimentally observed in the reaction 58 Ni + 58 Ni at 52 MeV/u. The neutron to proton ratio is measured above the initial neutron to proton ratio of the system. Neutron to proton ratio of the quasi-projectile emission is analysed for the same reactions and is seen to decrease below the ratio of the initial system. (authors)

  10. XRD studies on solid state amorphisation in electroless Ni/P and Ni/B deposits

    International Nuclear Information System (INIS)

    Sampath Kumar, P.; Kesavan Nair, P.

    1996-01-01

    The decomposition of electroless Ni-P and Ni-B deposits on annealing at various temperature is studied using x-ray diffraction techniques employing profile deconvolution and line profile analysis. It appears that solid state amorphisation takes place in the Ni-B deposits in a narrow temperature range just prior to the onset of crystallization of amorphous phase. In the case of Ni-P deposits no evidence for solid state amorphisation could be obtained. Thermodynamic and kinetic considerations also support such a conclusion

  11. Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Shun-Myung Shin

    2018-01-01

    Full Text Available In this study, a fabrication of nickel nanoparticles from LNO(LiNiO2, which is a cathode active material, was synthesized by the liquid reduction process of NiSO4, obtained through a leaching and purification process. Hydrazine monohydrate (N2H4·H2O was used as a liquid reducing agent and it was added to NiSO4 at a volume ratio of NiSO4:N2H4·H2O = 10:3 and reacted for 10 min to synthesize the nickel hydrazine complex. Sodium hydroxide was added to the nickel hydrazine complex at the weight ratio of NiSO4:NaOH = 10:1.25–1.5 and the reduction reaction was performed at 80 °C for 15 min to synthesize nickel particles. Synthesized nickel particles were agglomerated and had a mean size of 200 nm to 300 nm. Ultrasonic dispersion, which is a physical dispersion method, was conducted. The nickel had particles of 100 nm or less when dispersed for 2 h at an ultrasonic intensity of 40 kHz. In order to prevent the agglomeration of the dispersed particles again, polyvinylpyrrolidone (PVP, an interfacial stabilizer, was added to stabilize the dispersed particles. It was confirmed that the nanoparticles were stably retained when PVP was added in an amount of 1 to 2 wt % based on the weight of the nickel. The purity of nickel recovered was found to be 99.62 wt %.

  12. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → NiS is synthesized by means of the H 2 O/CS 2 interface under hydrothermal treatment. → NiS itself owns poor electrochemical capacitance in 2 M KOH solution. → NiS is electrochemically induced and transformed into electroactive Ni(OH) 2 . → Ni(OH) 2 is responsible for good energy storage of the NiS in the KOH solution. → The new formed Ni(OH) 2 delivers large energy density at high rates. - Abstract: Nickel sulfide nanoparticles (NPs) are first synthesized by virtue of a unique H 2 O/CS 2 interface under mild hydrothermal treatment. Electrochemical data reveals that the as-synthesized NiS NPs themselves own poor supercapacitive behavior at initial cyclic voltammetry (CV) cycles in 2 M KOH solution, while a specific capacitance of 893 F g -1 can be surprisingly obtained at a current density of 5 A g -1 just after continuous 320 CV cycles. X-ray diffraction and Fourier transform infrared techniques demonstrate that what is really responsible for the good electrochemical capacitance in the KOH aqueous solution is the new electrochemically formed Ni(OH) 2 phase, rather than NiS NPs themselves. The Ni(OH) 2 is slowly formed during the continuous CV cycling process, in which the electrochemically induced phase transformation from NiS to Ni(OH) 2 phase takes place. Furthermore, the new Ni(OH) 2 phase demonstrates the great ability of delivering large specific capacitance at high rates.

  13. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy

    International Nuclear Information System (INIS)

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-01-01

    Composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 was prepared by mechanical milling starting with nanocrystalline Mg 2 Ni and amorphous Mg 50 Ni 50 powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg 50 Ni 50 improved the hydriding and dehydriding kinetics of Mg 2 Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: → First study of the hydriding behavior of composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 . → Microstructural characterization of composite material using XRD and SEM was obtained. → An improved effect of Mg 50 Ni 50 on the Mg 2 Ni hydriding behavior was verified. → The apparent activation energy for the hydrogen desorption of composite was obtained.

  14. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  15. Detection of seismic phases by wavelet transform. Dependence of its performance on wavelet functions; Wavelet henkan ni yoru jishinha no iso kenshutsu. Wavelet ni yoru sai

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)

    1997-10-22

    A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.

  16. Precipitation of Ni4Ti3-variants in a polycrystalline Ni-rich NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bojda, Ondřej; Eggeler, G.; Dlouhý, Antonín

    2005-01-01

    Roč. 53, č. 1 (2005), s. 99-104 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitation * Transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.228, year: 2005

  17. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Idris, Nurul Hayati; Rahman, Md Mokhlesur; Chou, Shu-Lei; Wang Jiazhao; Wexler, David; Liu, Hua-Kun

    2011-01-01

    Highlights: ► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). ► At high rates, the sample operated at a good fraction of its capacity. - Abstract: To reduce the reaction time, electrical energy consumption, and cost, binary α-NiS–β-NiS has been synthesized by a rapid, one-pot, hydrothermal autoclave microwave method within 15 min at temperatures of 160–180 °C. The microstructure and morphology of the α-NiS–β-NiS products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). At 140 °C, pure hexagonal NiAs-type α-NiS phase was identified from the XRD patterns. With increasing reaction temperature (160–180 °C), the XRD evidence indicates that an increasing fraction of rhombohedral millerite-like β-NiS is formed as a secondary phase. The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in term of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). Even at high rates, the sample operated at a good fraction of its capacity. The likely contributing factor to the superior electrochemical performance of the α-NiS–β-NiS sample could be related to the improved morphology. TEM imaging confirmed that needle-like protrusions connect the clusters of α-NiS particles, and the individual protrusions indicated a very high surface area including folded sheet morphology, which helps to dissipate the surface accumulation of Li + ions and facilitate rapid mobility. These factors help to enhance the amount of lithium intercalated within the material.

  18. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  19. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  20. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    International Nuclear Information System (INIS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Li, Run-Wei; Wu, Y. H.; Zhang, S.

    2016-01-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y_3Fe_5O_1_2 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  1. Chemical vapor deposition of NiSi using Ni(PF3)4 and Si3H8

    International Nuclear Information System (INIS)

    Ishikawa, M.; Muramoto, I.; Machida, H.; Imai, S.; Ogura, A.; Ohshita, Y.

    2007-01-01

    NiSi x films were deposited using chemical vapor deposition (CVD) with a Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system. The step coverage quality of deposited NiSi x was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF 3 gas from decomposition of Ni(PF 3 ) 4 increased. By injecting PF 3 gas into the Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF 3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 deg. C is larger than at 180 deg. C. It caused a decreasing relative deposition rate of Ni to Si. PF 3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species

  2. Tracer diffusion of 60Co and 63Ni in amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of 60 Co and 63 Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641 0 K can be described by: D/sub Co/sup */ = 3.7 x 10 -7 exp[-(135 +- 14) kJ mole -1 /RT] m 2 /sec and D/sub Ni//sup */ = 1.7 x 10 -7 exp[-(140 +- 9) kJ mole -1 /RT] m 2 /sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs

  3. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  4. Electroplated Ni on the PN Junction Semiconductor

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae

    2015-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm 2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased

  5. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  6. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications

    KAUST Repository

    Liang, Hanfeng

    2017-04-11

    Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 mA cm–2 at an extremely low overpotential (258 mV, after ohmic-drop correction), along with a small Tafel slope of 39 mV decade–1 and outstanding long-term durability in alkaline media.

  7. Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces

    International Nuclear Information System (INIS)

    Garcia, D.; Bruyere, V.I.E.; Bordoni, R.; Olmedo, A.M.; Morando, P.J.

    2011-01-01

    The ability of malonic acid as a dissolution agent toward synthetic Ni ferrite and Alloy 600 and 800 corrosion products was explored. Its performance in the dissolution kinetics of Ni ferrite powders was compared with the one of oxalic acid. Kinetic parameters were obtained and the dependency on external Fe(II) was modelled. Oxidized samples used in descaling tests were prepared by exposure of coupons of both alloys to lithiated aqueous solutions, under hydrothermal conditions and hydrogen overpressure, simulating PHWR conditions. Oxide layer morphology, the influence of exposure time to corrosive medium and LiOH concentration on its thickness were characterized. Descaling tests consisting on a two-stage method (a first oxidizing step with alkaline permanganate followed by a reducing step with oxalic or malonic acid were carried out). Results were compared to those obtained with a well known chemical cleaning formulation (APAC: Alkaline Permanganate Ammonium Citrate) used in decontamination of several reactors and loops and the competitiveness of malonic acid was demonstrated.

  8. Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D.; Bruyere, V.I.E. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Bordoni, R.; Olmedo, A.M. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Morando, P.J., E-mail: morando@cnea.gov.ar [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2011-05-01

    The ability of malonic acid as a dissolution agent toward synthetic Ni ferrite and Alloy 600 and 800 corrosion products was explored. Its performance in the dissolution kinetics of Ni ferrite powders was compared with the one of oxalic acid. Kinetic parameters were obtained and the dependency on external Fe(II) was modelled. Oxidized samples used in descaling tests were prepared by exposure of coupons of both alloys to lithiated aqueous solutions, under hydrothermal conditions and hydrogen overpressure, simulating PHWR conditions. Oxide layer morphology, the influence of exposure time to corrosive medium and LiOH concentration on its thickness were characterized. Descaling tests consisting on a two-stage method (a first oxidizing step with alkaline permanganate followed by a reducing step with oxalic or malonic acid were carried out). Results were compared to those obtained with a well known chemical cleaning formulation (APAC: Alkaline Permanganate Ammonium Citrate) used in decontamination of several reactors and loops and the competitiveness of malonic acid was demonstrated.

  9. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    Science.gov (United States)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  10. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    Science.gov (United States)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-08-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  11. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors.

    Science.gov (United States)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  12. Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation

    International Nuclear Information System (INIS)

    García-Escorial, A.; Lieblich, M.

    2014-01-01

    Highlight: ► Successful production of gas atomised Ni75Al25 and Ni31.5Al68.5 powder particles. ► Characterization of the as-solidified microstructure of 75 Al 25 and Ni 31.5 Al 68.5 at.% powder particles below 100 μm in size have been studied. The gas atomised Ni 75 Al 25 powder particles are mainly spherical. The solidification of this alloy is very fast, and its microstructure consists of a dendrite and lamellar structure of partially ordered γ-(Ni), γ′-Ni 3 Al L1 2 phase, and β-NiAl phase. The order increases with the powder particle size. The gas atomised Ni 31.5 Al 68.5 powder particles are also spherical in shape. The microstructure consists of Ni 2 Al 3 dendrites with interdendritic peritectic NiAl 3 and eutectic NiAl 3 + α-Al. The amount of the Ni 2 Al 3 increases as the cooling rate increases. NiAl phase is absent in the gas atomised Ni 31.5 Al 68.5 powder

  13. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by μsR

    OpenAIRE

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P.V.; Timco, G.; Winpenny, R. E.P.; Blundell, S. J.; Lascialfari, A.

    2017-01-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J, while Cr7Ni-Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J ≪ J. The longitudinal muon relaxation rate λ collected at low magnetic fields...

  14. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  15. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Melvin David; Kim, Hyunki [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806 (Korea, Republic of); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of)

    2015-05-15

    Highlights: • Ni-embedding transparent conductor effectively reduces the resistivity. • Ni insertion improves the carrier mobility and collection efficiencies. • ITO/Ni/AZO is effective to improve photo-responses compared to ITO/AZO. - Abstract: A thin Ni layer of 5 nm thickness was deposited in between indium-tin-oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers of 50 nm thickness each. The Ni inserting tri-layer structure (ITO/Ni/AZO) showed lower resistivity of 5.51 × 10{sup −4} Ωcm which is nearly 20 times lesser than 97.9 × 10{sup −4} Ωcm of bilayer structure (ITO/AZO). A thin Ni layer in between ITO and AZO enhanced the carrier concentration, mobility and photoresponse behaviors so that figure of merit (FOM) value of ITO/Ni/AZO device was greater than that of ITO/AZO device. ITO/Ni/AZO structure showed improved quantum efficiencies over a broad range of wavelengths (∼350–950 nm) compared to that of ITO/AZO bilayer structure, resulting in enhanced photoresponses. These results show that the optical, electrical and photoresponse properties of ITO/AZO structure could be enhanced by inserting Ni layer of 5 nm thickness in between ITO and AZO layers.

  16. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    Science.gov (United States)

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  17. Structure-activity relations for Ni-containing zeolites during NO reduction. II. Role of the chemical state of Ni

    NARCIS (Netherlands)

    Mosqueda Jimenez, B.I.; Jentys, A.; Seshan, Kulathuiyer; Lercher, J.A.

    2003-01-01

    The influence of the metal in Ni-containing zeolites used as catalysts for the reduction of NO with propane and propene was studied. In the fresh catalysts, Ni is located in ion exchange positions for Ni/MOR, Ni/ZSM-5, and Ni/MCM-22. The formation of carbonaceous deposits, the removal of Al from

  18. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    Science.gov (United States)

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  20. Participar como niña o niño en el mundo social

    Directory of Open Access Journals (Sweden)

    Silvia Paulina Díaz

    2010-01-01

    Full Text Available En este artículo presento la participación como resultado de un trabajo investigativo realizado durante el año 2007, con niños y niñas escolarizados habitantes de la ciudad de Medellín, Colombia, cuyo objetivo fue analizar las representaciones sociales que ellos y ellas comparten sobre el ejercicio ciudadano. El análisis de la información tiene como ejes fundamentales, la salud colectiva, la sociología de la infancia y la participación en la niñez, en una aproximación que se realiza desde un enfoque cualitativo y etnográfico. En los hallazgos, sobresale cómo las niñas y niños se muestran preparados para ejercer su derecho a la participación como aspecto de sus vidas que se haría posible dentro del marco normativo existente, pero que aún no es asumido en prácticas sociales que los incluyan.

  1. Participar como niña o niño en el mundo social

    Directory of Open Access Journals (Sweden)

    Silvia Paulina Díaz

    2010-10-01

    Full Text Available En este artículo presento la participación como resultado de un trabajo investigativo realizado durante el año 2007, con niños y niñas escolarizados habitantes de la ciudad de Medellín, Colombia, cuyo objetivo fue analizar las representaciones sociales que ellos y ellas comparten sobre el ejercicio ciudadano. El análisis de la información tiene como ejes fundamentales, la salud colectiva, la sociología de la infancia y la participación en la niñez, en una aproximación que se realiza desde un enfoque cualitativo y etnográfico. En los hallazgos, sobresale cómo las niñas y niños se muestran preparados para ejercer su derecho a la participación como aspecto de sus vidas que se haría posible dentro del marco normativo existente, pero que aún no es asumido en prácticas sociales que los incluyan.

  2. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    Science.gov (United States)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  3. OpenNI cookbook

    CERN Document Server

    Falahati, Soroush

    2013-01-01

    This is a Cookbook with plenty of practical recipes enriched with explained code and relevant screenshots to ease your learning curve. If you are a beginner or a professional in NIUI and want to write serious applications or games, then this book is for you. Even OpenNI 1 and OpenNI 1.x programmers who want to move to new versions of OpenNI can use this book as a starting point. This book uses C++ as the primary language but there are some examples in C# and Java too, so you need to have about a basic working knowledge of C or C++ for most cases.

  4. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    International Nuclear Information System (INIS)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung

    2015-01-01

    Ni-YSZ (Y_2O_3-stabilized ZrO_2) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  5. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung [Korea Institute of Ceramic Engineering and Technology (KICET), Seoul (Korea, Republic of)

    2015-04-15

    Ni-YSZ (Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  6. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  7. Hydrogen absorption kinetics and structural properties of Mg85Ni10Ca5 and Mg90Ni10

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Saito, Katsushi; Towata, Shin-ichi

    2005-01-01

    Mg 85 Ni 10 Ca 5 and Mg 90 Ni 10 were prepared by melting mixtures of the elements in mild steel crucibles and pouring them into copper molds. Hydrogen absorption kinetics and structural properties of the alloys were characterized by the volumetric method using a Sievert's apparatus, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystallite size of Mg in Mg 85 Ni 10 Ca 5 , which is evaluated by XRD peak broadening, is about 50% smaller than that in Mg 90 Ni 10 . In addition, the nanometer-scale structure composed of Mg, Mg 2 Ni, Mg 2 Ca was observed in Mg 85 Ni 10 Ca 5 . Mg 85 Ni 10 Ca 5 shows better hydrogen absorption kinetics than Mg 90 Ni 10 in the temperature range of room temperature to 573 K. The better absorption kinetics of Mg 85 Ni 10 Ca 5 is mainly attributed to the nanometer-scale structure

  8. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  9. Coarsening of Ni-Ge solid-solution precipitates in 'inverse' Ni{sub 3}Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ardell, Alan J., E-mail: alan.ardell@gmail.com [National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Ma Yong [Aquatic Sensor Network Technology LLC, Storrs, CT 06268 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We report microstructural evolution of disordered Ni-Ge precipitates in Ni{sub 3}Ge alloys. Black-Right-Pointing-Pointer Coarsening kinetics and particle size distributions are presented. Black-Right-Pointing-Pointer Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. Black-Right-Pointing-Pointer The shapes of large precipitates are unusual, with discus or boomerang cross-sections. Black-Right-Pointing-Pointer Results are compared with morphology, kinetics of Ni-Al in inverse Ni{sub 3}Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni-Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni{sub 3}Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 Degree-Sign C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni{sub 3}Ge precipitates in normal Ni-Ge alloys and of Ni-Al precipitates in inverse Ni{sub 3}Al alloys. The activation energy for coarsening, 275.86 {+-} 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni{sub 3}Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  10. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  11. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  12. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-01-01

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g −1 at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g −1 after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g −1 when lowering the charge/discharge rate to 0.06 C

  13. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levo, E. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Fridlund, C.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland)

    2017-07-15

    Single-phase multicomponent alloys of equal atomic concentrations (“equiatomic”) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  14. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  15. Low energy structure of even-even Ni isotopes close to 78Ni

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Mazzocchi, C.; Grzywacz, Robert Kazimierz; Batchelder, J.C.; Bingham, Carrol R.; Fong, D.; Hamilton, J.H.; Hwang, J.K.; Karny, M.; Krolas, W.; Liddick, S.N.; Lisetskiy, A. F.; Morton, N.H.; Mantica, P.F.; Mueller, W.F.; Steiner, M.; Stolz, A.; Winger, J.A.

    2005-01-01

    The structure of magic neutron-rich nickel isotopes produced in the fragmentation of a 140 A MeV 86 Kr beam was investigated. For the first time four gamma transitions were assigned to the decay of the I π =8 + , T 1/2 = 590 +180 -110 isomer, thus establishing the 0 + -2 + -4 + -6 + -8 + ground-state band in 76 Ni. The previously unknown 2 + and 4 + levels belonging to the ground-state band in 74 Ni were identified in the β decay of 74 Co (T 1/2 =30(3) ms). The decay properties of 72 Co → 72 Ni were verified and confirmed on the basis of γ-γ coincidence data. The relevance of the measured level properties for the magicity of 78 Ni is analyzed with the help of advanced shell-model predictions

  16. Competencia social y status sociométrico escolar en niños y niñas con TDAH

    Directory of Open Access Journals (Sweden)

    Daiana Russo, Argentina

    2015-07-01

    Full Text Available (analítico: Objetivo: Establecer relaciones entre la autopercepción de la competencia social en niños y niñas con TDAH y el status sociométrico escolar. Alcance: Los resultados obtenidos permitirán elaborar estrategias de intervención psicológica como también diseñar abordajes educativos en el aula que fortalezcan la interacción social de estos niños y niñas. Metodología: Estudio descriptivo correlacional con un diseño ex post facto retrospectivo (Montero & León, 2007. La muestra estuvo compuesta por 157 niños y niñas con edades comprendidas entre 8 y 12 años. Conformamos dos grupos, clínico (n=5 y control (n=152, pareados por edad. Administramos el cuestionario Messy (Matson, Rotatori & Helsel, 1983 y el Test sociométrico (Moreno, 1962. Resultados: Los niños y niñas con TDAH son menos asertivos que los niños y niñas del grupo control. La mayoría presenta una posición aislada con respecto a su grupo de pares. Conclusiones: Estos niños y niñas presentan dificultad para establecer relaciones vinculares con sus compañeros y compañeras. No obstante, la autopercepción de sus competencias sociales no coincide en todos los casos con su status sociométrico escolar.

  17. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    Science.gov (United States)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  18. Bonding Strength of Ni/Ni3Al Interface with Different Lattice Misfit

    Institute of Scientific and Technical Information of China (English)

    Ping PENG; Caixing ZHENG; Shaochang HAN; Zhaohui JIN; Rui YANG; Zhuangqi HU

    2003-01-01

    The interfacial binding covalent bond density (CBD) and the local environmental total bond order (LTBO) of the Ni/Ni3Alinterface with different lattice misfits (δ) were calculated by using first-principles discrete variation Xα method. It was foundthat

  19. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    Science.gov (United States)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  20. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  1. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  2. The role of Ni in sulfided carbon-supported Ni-Mo hydrodesulfurization catalysts

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Barthe-Zahir, N.; Beer, de V.H.J.; Prins, R.

    1991-01-01

    The thiophene hydrodesulfurization activities of Ni and Ni---Mo sulfide catalysts supported on activated carbon were measured at atmospheric pressure and the catalyst structures were studied by means of X-ray photoelectron spectroscopy, dynamic oxygen chemisorption, and chemical sulfur analysis. The

  3. Separation and radiometric determination of 59Ni, 63Ni, 55Fe, 99Tc and 94Nb in radioactive wastes of low and intermediate activities from PWR nuclear power plants

    International Nuclear Information System (INIS)

    Temba, Eliane Silvia Codo

    2016-01-01

    The objective of this work was the development and establishment of a specific analytical protocol for the determination of the 59 Ni, 63 Ni, 55 Fe, 99 Tc and 94 Nb radionuclides in low and intermediate radioactive waste samples of Almirante Alvaro Alberto Nuclear Power Plant, CNAAA, located in the city of Angra dos Reis, RJ. The separation and purification techniques used have taken into account the particularities of each radionuclide studied. Chemical separation methods were used, as well as carriers and radioisotope tracers, and ion-exchange and extraction chromatography involving specific resins. The main techniques used for the analysis and determination of the radionuclides were Liquid Scintillation Counting (LSC) and Gamma Spectrometry. Also used were Atomic Emission Spectroscopy with Inductively Coupled Plasma (ICP-AES) and Neutron Activation Analysis (NAA) for the chemical yield determination. Concerning to the 59 Ni, 63 Ni, 55 Fe radionuclides, the methodology of sequential separation proved to be very appropriate for their separation and determination, as could be observed by the results obtained. Chemical yields in the range from 39 to 100%, and LSC counting efficiencies in the range of 37.8% for 55 Fe, and 71.5% for 63 Ni, are in accordance with the results found in the literature. The spectra of LSC showed that the methodology used to separation and purification of these radionuclides was very successful. The results for 59 Ni have shown that the use of a 55 Fe certified standard for calibration of the equipment was a viable alternative. In the case of the 99 Tc radionuclide the use of rhenium as carrier and chemical yield monitor, resulted in high chemical yields. Use of Gamma Spectrometry analysis made it possible to check that the main interfering agents were actually removed with the combined use of anion exchange chromatography and TEVA resin. The chemical yield of 94 Nb was measured by Gamma Spectrometry analysis of the 94 mNb nuclide formed by

  4. Controlled synthesis of mesoporous β-Ni(OH)2 and NiO nanospheres with enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Xing, Shengtao; Wang, Qian; Ma, Zichuan; Wu, Yinsu; Gao, Yuanzhe

    2012-01-01

    Highlights: ► Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH) 2 and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH) 2 and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  5. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    International Nuclear Information System (INIS)

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-01-01

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  6. Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids

    Directory of Open Access Journals (Sweden)

    Smirnova Marina Yu.

    2017-12-01

    Full Text Available Ce0.5Zr0.5O2 mixed oxides were prepared in a flow reactor in supercritical isopropanol with acetylacetone as a complexing agent. Variation of the nature of the Zr salt and the temperature of synthesis affected the phase composition, morphology and specific surface area of oxides. X-ray diffraction and Raman spectroscopy studies revealed formation of metastable t” and t’ phases. Oxides are comprised of agglomerates with sizes depending on the synthesis parameters. Loading NiO decreases the specific surface area without affecting X-ray particle sizes of supports. Such sintering was the most pronounced for a support with the highest specific surface area, which resulted in the lowest surface content of Ni as estimated by X-ray photoelectron spectroscopy and in the formation of flattened NiO particles partially embedded into the support. The catalytic activity and stability of these samples in the dry reforming of methane were determined by the surface concentration of Ni and the morphology of its particle controlled by the metal-support interaction, which also depends on the type of catalyst pretreatment. Samples based on ceria-zirconia oxides prepared under these conditions provide a higher specific catalytic activity as compared with the traditional Pechini route, which makes them promising for the practical application.

  7. Archaeological prospecting by DEF method; Denkai zansaho ni yoru iseki tansa

    Energy Technology Data Exchange (ETDEWEB)

    Kishikawa, H; Aono, T; Tanaka, T; Mizunaga, H [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-05-01

    A study is made of a newly-developed differential electric field (DEF) method, wherein potentials between potential electrodes equidistant from a current electrode is measured for directly detecting the secondary potential attributable to an anomalous-resistivity body. In this method, a current is fed into the ground from a point source C1, and four potential electrodes, two each on the X-axis and Y-axis, are provided equidistant from the point source C1 for the measurement of the potentials in the directions of X and Y. Numerical experiments and field experiments in a playground were conducted for this DEF method, and it was found that this method is effective in detecting an anomalous-resistivity bodies (ruins, etc.) situated in a homogeneous medium or in a horizontal multi-layer structure, is capable of displaying anomalous vectors enabling the estimation of the direction from the observation point of the anomalous-resistivity body, improves on work efficiency over the conventional mapping method, enables the estimation of the boundary of the anomalous-resistivity body on the basis of the peak of the anomalous electric field residue on the display, and that the obtained data can be easily processed by use of a personal computer on the site. 3 refs., 9 figs.

  8. CVT control and vehicle acceleration; CVT hensoku ni yoru shasoku otosei

    Energy Technology Data Exchange (ETDEWEB)

    Takiyama, T; Morita, S [Osaka City University, Osaka (Japan)

    1997-10-01

    For the drivetrain control, it becomes important for fuel economy or AHS to control the throttle valve of the engine and the gear ratio of CVT simultaneously by DBW when CVT is equipped with the automobile. In this paper, LQI control theory was applied to control the drivetrain as 2-I/O system to satisfy the commanded speed and better fuel economy. And modification of the weight parameter of LQI was investigated to obtain the desired performance for fuel economy or vehicle acceleration. Relatively good expected results were obtained. 5 refs., 7 figs., 1 tab.

  9. Preparation of one-step NiO/Ni-CGO composites using factorial design; Efeitos do processamento e do teor de formador de poros na microestrutura de cermets Ni-CGO

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Loureiro, F. J.A.; Fagg, D.P., E-mail: allanjp1993@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  10. Probing the semi-magicity of $^{68}$Ni via the $^{66}$Ni(t,p)$^{68}$Ni two-neutron transfer reaction in inverse kinematics

    CERN Document Server

    AUTHOR|(CDS)2079390; Van Duppen, Piet

    The region around the nucleus $^{68}$Ni, with a shell closure for its protons at Z=28 and a harmonic oscillator shell gap for its neutrons at N=40, has drawn considerable interest over the past decades. $^{68}$Ni has properties that are typical for a doubly-magic nucleus, such as a high excitation energy and low B($E2:2^{+} \\rightarrow 0^{+}$) transition probability for the first excited 2$^{+}$ level and a 0$^{+}$ level as the first excited state. However, it has been suggested that the magic properties of $^{68}$Ni arise due to the fact that the N=40 separates the negative parity $pf$-shell from the positive parity 1$g_{9/2}$ orbital, and indeed, recent mass measurements have not revealed a clear N = 40 energy gap. Despite all additional information that was acquired over the last decade the specific role of the N=40 is not yet understood and a new experimental approach to study $^{68}$Ni was proposed. Namely, a two-neutron transfer reaction on $^{66}$Ni to characterize and disentangle the structure of the ...

  11. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  12. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    Science.gov (United States)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  13. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS_2/γ-Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Itthibenchapong, Vorranutch; Srifa, Atthapon; Kaewmeesri, Rungnapa; Kidkhunthod, Pinit; Faungnawakij, Kajornsak

    2017-01-01

    Highlights: • The Ni-MoS_2/γ-Al_2O_3 catalysts synthesized using thiourea solution processing. • The Ni-MoS_2 showed semi-amorphous crystallinity with crystallite size of 5–10 nm. • The Ni K-edge XANES and EXAFS indicated the Ni substitution in MoS_2 structure. • A high yield of jet fuel-like hydrocarbon (>90%) from the palm kernel oil feedstock. • The HDO pathway was highly selective, while the DCO_2 and DCO pathways were minor. - Abstract: In the current study, palm kernel oil was used as a renewable feedstock for production of jet fuel-like hydrocarbons via the deoxygenation over the Ni-MoS_2/γ-Al_2O_3 catalyst. The dominant C12 fatty acid content in palm kernel oil makes it promising for jet fuel application. Synthesized by a liquid processing method with thiourea organosulfur agent, the catalyst revealed MoS_2 structure with low stacking, while Ni substitution in the MoS_2 structure and interaction with the Al_2O_3 support were determined based on the Ni K-edge XANES and EXAFS results. A high hydrodeoxygenation (HDO) activity, which as the major pathway in the deoxygenation, was observed upon application of a H_2 pressure of 30–50 bar over Ni-MoS_2/γ-Al_2O_3. The optimum product yield of approximately 92% was obtained mainly from the HDO pathway (∼60%) with 58% selectivity to C10–C12 jet fuel hydrocarbons. The flow property of the jet fuel-like hydrocarbons was more desirable than those obtained from palm olein oil-derived fuel.

  14. Selective dispersive liquid–liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiff's base bisazanyl derivative

    International Nuclear Information System (INIS)

    Alizadeh, Kamal; Nemati, Hadi; Zohrevand, Somaieh; Hashemi, Payman; Kakanejadifard, Ali; Shamsipur, Mojtaba; Ganjali, Mohammad Reza; Faridbod, Farnoush

    2013-01-01

    A simple, rapid and sensitive method was developed for the selective separation and preconcentration of Ni(II) using dispersive liquid–liquid microextraction, by a yellow Schiff's base bisazanyl derivative, as a selective complexing agent. In this method, a mixture of 45 μL chloroform (extraction solvent) and 450 μL tetrahydrofuran (dispersive solvent) is rapidly injected by syringe into a 5 mL aqueous sample containing 3% (w/v) sodium chloride and an appropriate amount of the Schiff's base. As a result, a cloudy solution is formed by entire dispersion of the extraction solvent into the aqueous phase. After centrifuging for 5 min at 5000 rpm, the sedimented phase is directly injected into the electrothermal atomic absorption spectrometry for Ni(II) determination. Some important parameters, such as kind and volume of extraction and dispersive solvents, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor for the presented method is 138. The calibration curve was linear over a nickel concentration range of 10–50 ng mL −1 . The detection limit and relative standard deviation were 0.04 ng mL −1 and 2.1%, respectively. The method was successfully applied to the extraction and determination of Ni(II) in different water samples. - Highlights: ► A new synthesized schiff's base was used for selective separation of Ni(II) ions. ► The method based on DLLME was successfully applied to the determination of Ni(II). ► A cloudy solution is formed by entire dispersion of the extraction solvent into the aqueous phase. ► In this work, the response surface analysis was used for the optimization purpose. ► The curvature of response surface reflects the interactive effect of the variables.

  15. Nipah Virus (NiV)

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Nipah Virus (NiV) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Nipah virus (NiV) is a member of the family Paramyxoviridae , ...

  16. Thermal stability of electrodeposited Ni and Ni-Co layers; an EBSD-study

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Gholinia, A.; Trimby, P.W.

    2004-01-01

    The influence of heat treatment on the microstructure and the microtexture of electrodeposited Ni and Ni-Co layers was investigated with Electron Backscatter Diffraction (EBSD) with high resolution. Samples were annealed for 1 hour at 523 K and 673 K, the temperature region wherein...

  17. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor.

    Science.gov (United States)

    Chen, D Z; Patel, D V; Hackbarth, C J; Wang, W; Dreyer, G; Young, D C; Margolis, P S; Wu, C; Ni, Z J; Trias, J; White, R J; Yuan, Z

    2000-02-15

    Peptide deformylase (PDF) is essential in prokaryotes and absent in mammalian cells, thus making it an attractive target for the discovery of novel antibiotics. We have identified actinonin, a naturally occurring antibacterial agent, as a potent PDF inhibitor. The dissociation constant for this compound was 0.3 x 10(-)(9) M against Ni-PDF from Escherichia coli; the PDF from Staphylococcus aureus gave a similar value. Microbiological evaluation revealed that actinonin is a bacteriostatic agent with activity against Gram-positive and fastidious Gram-negative microorganisms. The PDF gene, def, was placed under control of P(BAD) in E. coli tolC, permitting regulation of PDF expression levels in the cell by varying the external arabinose concentration. The susceptibility of this strain to actinonin increases with decreased levels of PDF expression, indicating that actinonin inhibits bacterial growth by targeting this enzyme. Actinonin provides an excellent starting point from which to derive a more potent PDF inhibitor that has a broader spectrum of antibacterial activity.

  18. Polyaza macroligands as potential agents for heavy metal removal from wastewater

    Directory of Open Access Journals (Sweden)

    Elizondo Martínez Perla

    2013-01-01

    Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

  19. Preparation, characterization and enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4 by twice pore-forming method

    International Nuclear Information System (INIS)

    Jia, Zhigang; Peng, Kuankuan; Xu, Lixin

    2012-01-01

    Magnetic mesoporous NiFe 2 O 4 with higher surface area has been prepared by the twice pore-forming method, including the calcination of the oxalate precursor and leaching of ZnO pore-forming agent. The X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and BET surface area measurement are used to evaluate the pore structural parameters and surface chemistry of the adsorbent respectively. The pore-forming mechanism is proposed based on the experimental results. The adsorption behavior of mesoporous NiFe 2 O 4 for Cr(VI) is investigated in detail. The results show that kinetic data follow a pseudo-second-order model and equilibrium data are well fitted by the Langmuir model. The maximum adsorption capacity is 43.68 mg g −1 at pH 2. The removal for Cr(VI) is mainly physisorption process derived from coulombic interaction. The as-prepared TPF-NiFe 2 O 4 is promising as sorbent for Cr(VI) removal because of its higher adsorption capacity, separation convenience and highly efficient reusability. -- Highlights: ► The increase of BET area was realized by leaching of ZnO from mesoporous ZnO/NiFe 2 O 4 . ► TPF-NiFe 2 O 4 demenstrates higher adsorption capacity for Cr(VI) in aqueous solution. ► TPF-NiFe 2 O 4 with magnetic sensitivity is promosing for Cr(VI) removal. ► The used TPF-NiFe 2 O 4 adsorbent can be recycled.

  20. Structure characterization of Ni/NiO and Ti/TiO2 interfaces

    International Nuclear Information System (INIS)

    Lamine, Brahim

    1983-01-01

    This research thesis reports the structure characterization of Ni-NiO and Ti-TiO 2 interfaces through an in-situ investigation of thin blade oxidation, of oxide germination and growth, and through a determination of mutual metal/oxide orientation relationships. Thin films of TiO 2 have also been characterized and the study of the influence of vacuum annealing on TiO 2 layer structure and morphology has been attempted. The examination of metal-oxide interface reveals a duplex structure of NiO and TiO 2 layers, and a preferential grain boundary oxidation of the underlying metal [fr

  1. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  2. Bulk-compositional changes of Ni2Al3 and NiAl3 during ion etching

    International Nuclear Information System (INIS)

    Chen Houwen; Wang Rong

    2008-01-01

    Bulk-compositional changes of Ni 2 Al 3 and NiAl 3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar + ions for 15, 24 and 100 h nickel contents in both Ni 2 Al 3 and NiAl 3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar + ions the compositions of these two compounds reached a similar value, about Ni 80-83 Al 12-15 Fe 3-4 Cr 1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film

  3. Fragmentation of neutron-hole strengths in 59Ni observed in the 60Ni(p, d) 59Ni reaction at 65 MeV

    International Nuclear Information System (INIS)

    Matoba, M.; Ohgaki, H.; Kugimiya, H.; Ijiri, H.; Maki, T.; Nakano, M.

    1995-01-01

    The 60 Ni(p, d) 59 Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in 59 Ni up to the excitation energies of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta l, j and spectroscopic factors for thirty-nine transitions. The nuclear damping mechanism of the single hole states is discussed. ((orig.))

  4. Impact of La Niña and La Niña Modoki on Indonesia rainfall variability

    Science.gov (United States)

    Hidayat, R.; Juniarti, MD; Ma’rufah, U.

    2018-05-01

    La Niña events are indicated by cooling SST in central and eastern equatorial Pacific. While La Niña Modoki occurrences are indicated by cooling SST in central Pacific and warming SST in western and eastern equatorial Pacific. These two events are influencing rainfall variability in several regions including Indonesia. The objective of this study is to analyse the impact of La Niña and La Niña Modoki on Indonesian rainfall variability. We found the Nino 3.4 index is highly correlated (r = -0.95) with Indonesian rainfall. Positive rainfall anomalies up to 200 mm/month occurred mostly in Indonesian region during La Niña events, but in DJF several areas of Sumatera, Kalimantan and eastern Indonesia tend to have negative rainfall. During La Niña Modoki events, positive rainfall anomaly (up to 50 mm/month) occurred in Sumatera Island, Kalimantan, Java and eastern Indonesia in DJF and up to 175 mm/month occurred only in Java Island in MAM season. La Niña events have strong cooling SST in central and eastern equatorial Pacific (-1.5°C) in DJF. While La Niña Modoki events warming SST occurred in western and eastern equatorial Pacific (0.75°C) and cooling SST in central Pacific (- 0.75°C) in DJF and MAM. Walker circulation in La Niña Modoki events (on DJF and MAM) showed strong convergence in eastern Pacific, and weak convergence in western Pacific (Indonesia).

  5. Influence of Ni/Co molar ratio on electromagnetic properties and microwave absorption performances for Ni/Co paraffin composites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Department of Structural Steel, Functional Materials and Heat Treatment Processing, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing 100095 (China); Dai, S.L. [The Office of AVIC Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Ding, H.Y.; Wang, Z.Y. [Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing 100095 (China); Liu, D.B [Department of Structural Steel, Functional Materials and Heat Treatment Processing, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2014-05-01

    Ni and Co metallic microparticles with submicron size were synthesized with a simple wet chemical reduction method at a relatively low temperature. Then their morphologies and structures were characterized by SEM and XRD. Ni metallic microparticles have spherical-shape morphology with fcc crystalline structure, however, Co has a distinct leaf-like morphology with the fcc and hcp mixed phases crystalline structures. For the characterization of their electromagnetic properties, paraffin matrix composites containing different molar ratio Ni and Co mixture powder as fillers were prepared. It was found that both the electromagnetic properties and electromagnetic microwave absorption performances of absorber layer were remarkably influenced by Ni/Co molar ratio. The electromagnetic microwave absorption performances were significantly improved by blending Ni and Co metallic microparticles into paraffin matrix with changing Ni/Co molar ratio, and enhanced mechanism were discussed. - Highlights: • Ni and Co microparticles were synthesized by a wet chemical reduction method. • EM properties of absorber were remarkably influenced by Ni/Co molar ratio. • EMA performances can be adjusted by artificially changing Co/Ni molar ratio. • Enhanced EMA performances result from multiple EM attenuation mechanisms.

  6. Neutron enrichment at midrapidity in {sup 58}Ni + {sup 58}Ni at 52 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D; Vallee, A; Gingras, L; Larochelle, Y; Roy, R; April, A; Beaulieu, L; Grenier, F; Lemieux, F; Moisan, J; Samri, M; Saint-Pierre, C; Turbide, S [Laval Univ., Lab. de Physique Nucleaire, Dept. de Physique, Quebec City, PQ (Canada); Yennello, S J; Martin, E; Winchester, E [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.

    2003-07-01

    By combining data from a charged particle {sup 58}Ni + {sup 58}Ni experiment at 52 MeV/u with an {sup 36}Ar + {sup 58}Ni experiment at 50 MeV/u for which free neutrons have been detected, an increase in the neutron to proton ratio of the whole nuclear material at midrapidity has been experimentally observed in the reaction {sup 58}Ni + {sup 58}Ni at 52 MeV/u. The neutron to proton ratio is measured above the initial neutron to proton ratio of the system. Neutron to proton ratio of the quasi-projectile emission is analysed for the same reactions and is seen to decrease below the ratio of the initial system. (authors)

  7. Superstructure of NiAs

    International Nuclear Information System (INIS)

    Nozue, Tatsuhiro; Kobayashi, Hisao; Kamimura, Takashi; Yamaguchi, Yasuo

    2001-01-01

    The structural transition in NiAs was studied by neutron diffraction on the single crystalline sample. The crystal structure of NiAs has been reported to be bottom-centered orthorhombic with Cmc2 1 symmetry (niccolite-type). The measurement of temperature dependence of the powder X-ray diffraction revealed that NiAs undergoes a structural transition to the NiAs-type at T t =335 K. In present neutron diffraction experiment at room temperature, we observed the reflections indexed on the basis of the orthorhombic unit cell. The intensities of these reflections are qualitatively explained in terms of the niccolite-type structure with taking account of three domain structures, except for the weak reflections indexed as (001), (003) and (012). Then, the intensities of (001), (002) and (004) reflections were measured in temperature range of 20 to 420 K. The temperature dependences of (002) and (004) reflections qualitatively agree with those of the calculated intensities using the atomic positions of niccolite-type structure. However, the temperature dependence of (001) reflection shows the anomaly around T t , which suggests the symmetry of crystal structure of NiAs is not the Cmc2 1 symmetry. (author)

  8. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  9. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    Science.gov (United States)

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ni(salen): a system that forms many solvates with interacting Ni atoms

    NARCIS (Netherlands)

    Siegler, M.A.M.; Lutz, M.

    2009-01-01

    Recrystallization of [N,N’-Ethylene-bis(salicylideneiminato)]-nickel(II) [Ni(salen)] has been carried out from a large selection of solvents. Crystals can be either solvent free or solvates. This study is based on X-ray crystal structure determinations, which include the redetermination of Ni(salen)

  11. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Faculty of Materials Science, Moscow State University, Leninskie Gory, House 1, Building 73, Moscow, GSP-1, 119991 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, 59082-970 (Brazil)

    2016-11-15

    The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce{sub 2}Ni{sub 15.8}Si{sub 1.2} (Th{sub 2}Ni{sub 17}-type), Ce{sub 2}Ni{sub 15-14}Si{sub 2-3} (Th{sub 2}Zn{sub 17}-type), CeNi{sub 8.6}Si{sub 2.4} (BaCd{sub 11}-type), CeNi{sub 8.8}Si{sub 4.2} (LaCo{sub 9}Si{sub 4}-type), CeNi{sub 6}Si{sub 6} (CeNi{sub 6}Si{sub 6}-type), CeNi{sub 5}Si{sub 1-0.3} (TbCu{sub 7}-type), CeNi{sub 4}Si (YNi{sub 4}Si-type), CeNi{sub 2}Si{sub 2} (CeGa{sub 2}Al{sub 2}-type), Ce{sub 2}Ni{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type), Ce{sub 3}Ni{sub 6}Si{sub 2} (Ce{sub 3}Ni{sub 6}Si{sub 2}-type), Ce{sub 3}Ni{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type), CeNiSi{sub 2} (CeNiSi{sub 2}-type), ~CeNi{sub 1.3}Si{sub 0.7} (unknown type structure), Ce{sub 6}Ni{sub 7}Si{sub 4} (Pr{sub 6}Ni{sub 7}Si{sub 4}-type), CeNiSi (LaPtSi-type), CeNi{sub 0.8-0.3}Si{sub 1.2-1.7} (AlB{sub 2}-type), ~Ce{sub 2}Ni{sub 2}Si (unknown type structure), ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (unknown type structure), Ce{sub 15}Ni{sub 7}Si{sub 10} (Pr{sub 15}Ni{sub 7}Si{sub 10}-type), Ce{sub 5}Ni{sub 1.85}Si{sub 3} (Ce{sub 5}Ni{sub 1.85}Si{sub 3}-type), Ce{sub 6}Ni{sub 1.4}Si{sub 3.4} (Ce{sub 6}Ni{sub 1.67}Si{sub 3}-type), Ce{sub 7}Ni{sub 2}Si{sub 5} (Ce{sub 7}Ni{sub 2}Si{sub 5}-type) and Ce{sub 3}NiSi{sub 3} (Y{sub 3}NiSi{sub 3}-type) has been confirmed in this section. Moreover, the type structure has been determined for ~Ce{sub 2}Ni{sub 2}Si (Mo{sub 2}NiB{sub 2}-type Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}) and ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (W{sub 3}CoB{sub 3}-type Ce{sub 3}Ni{sub 3-2.7}Si{sub 1-1.3}) and new ternary phases Ce{sub 2}Ni{sub 6.25}Si{sub 0.75} (Gd{sub 2}Co{sub 7}-type), CeNi{sub 7-7.6}Si{sub 6-5.4} (GdNi{sub 7}Si{sub 6}-type) and ~Ce{sub 27}Ni{sub 42}Si{sub 31} (unknown type structure) have been identified in this system. Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi{sub 5}, CeNi{sub 3} and Ce

  12. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  13. Tritium-tracer study of catalytic hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt

    International Nuclear Information System (INIS)

    Matsuyama, M.; Yasuda, Y.; Takeuchi, T.

    1978-01-01

    The influence of the pressure of tritiated hydrogen on the rate of the formation of tritiated ethylene, X, and that of tritiated ethane, Z, in the hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt (1:1) alloy catalysts was investigated. The ratio of the rate of the exchange to that of the hydrogenation, selectivity X/Z, decreased markedly with the increase in the pressure of the tritiated hydrogen and the order of X/Z was Ni>Ni-Pt>Pt. These results were interpreted in terms of the difference in the amount of chemisorbed tritium on each metal catalyst. (orig.) [de

  14. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  15. Photochemical deposition of NiCoO x thin films from Ni/Co heteronuclear triketonate complexes

    International Nuclear Information System (INIS)

    Buono-Core, G.E.; Tejos, M.; Cabello, G.; Guzman, N.; Hill, R.H.

    2006-01-01

    UV light irradiation of thin films of a polyketonate Ni/Co heteronuclear complex, NiCo(DBA) 2 [DBA, dibenzoylacetone)], spin coated on Si(1 0 0) substrates produced NiCoO x mixed oxides as amorphous films. On annealing at 600 deg. C under air, the mixed oxide film decomposed to NiO and CoO as indicated by XRD measurements. The morphology of the as-deposited films was examined by AFM analysis showing a smooth surface with low rms roughness values. The ratio of Ni/Co (1.08) present in the film reflects the stoichiometry in the starting compound within the experimental error, as shown by XPS analysis. The large amount of carbon (20.8%) detected on the surface of the film may be due to the presence of phenyl rings in the precursor complex

  16. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    Science.gov (United States)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  17. The constitution of the ternary system Ti-Ni-C; Die Konstitution des Dreistoffes Ti-Ni-C

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, J.C.; Du, Y. [Technische Univ., Vienna (Austria). Inst. fuer Physikalische Chemie

    1998-12-31

    The system Ti-Ni-C was completely re-examined taking a new approach applying XRD, DTA, SEM-EDX and light microscopy, for elaboration of a complete thermodynamic description of the system. The carbon solubility in the binary Ti-Ni compounds is of significance only in the Ti{sub 2}Ni phase, and was found to be 4 at% at 900 C. The thermodynamic description thus achieved enables precise determination of the solubilities of Ti and C in solid or liquid nickel. (orig./CB) [Deutsch] Das System Ti-Ni-C wurde mittels XRD, DTA, SEM-EDX und Lichtmikroskopie umfassend neu untersucht mit dem Ziel, eine komplette thermodynamische Beschreibung zu ermoeglichen. Die Kohlenstoffloeslichkeit in den binaeren Ti-Ni Verbindungen ist nur fuer die Phase Ti{sub 2}Ni signifikant. Bei 900 C betrug sie 4 at% C. Die erarbeitete thermodynamische Beschreibung erlaubt eine praezise Darstellung der Ti- und C-Loeslichkeiten in festem und fluessigem Nickel. (orig.)

  18. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  19. Estilos de vida saludables de niños, niñas y adolescentes

    Directory of Open Access Journals (Sweden)

    Lilia Campo-Ternera

    2017-01-01

    Full Text Available Objetivo: Describir los estilos de vida saludables de niños, niñas y adolescentes de Barranquilla. Materiales y métodos: Estudio descriptivo de corte transversal en 991 niños, niñas y ado - lescentes. Se evaluó la actividad física mediante los cuestionarios de Actividad Física para Adolescentes y para niños escolares; se aplicó una encuesta que midió los conocimientos y prácticas de los escolares sobre salud bucal, lavado de manos, consumo de frutas y verduras y cuidado postural; la Lista de Chequeo “Mi Vida en la Escuela”, la cual evalúa los índices de “bullying” y agresión; y la inteligencia emocional a través dela escala TMMS -24. Resultados: El 65,4 % se categoriza como inactivos físicamente. Solo el 14,7% de los estudiantes reconoce que el peso máximo del bolso es el 10 % de su peso corporal; el 34,1 % cambia el cepillo de dientes cada 3 meses, como lo recomiendan los expertos, y 48,4 % se cepilla los dientes entre 2 y 3 veces al día. El 16,6 % no se lava las manos antes y después de ir al baño y 9,4 % no lo hace antes y después de las comidas; el 17,5 % no tiene un buen consumo de verduras y frutas; y se encontró un Índice de “bullying” en el 55,6 % de los participantes. Conclusión: Los anteriores resultados obligan a plantear intervenciones que incrementen las prácticas saludables en niños, niñas y adolescentes.

  20. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  1. Niños y Violencia

    OpenAIRE

    International Child Development Centre

    1997-01-01

    Este Innocenti Digest explora la violencia de los niños y hacia los niños, usando el marco de la Convención de los Derechos del Niño de las Naciones Unidas. Se centra en la violencia interpersonal, tanto intrafamiliar como extrafamiliar. Se incluye el abuso sexual y la explotación ya que a pesar de no implicar obligatoriamente violencia o coerción, la mayor parte de la evidencia demuestra su efectos dañinos tanto físicos como psicológicos. También se discute la implicación de los niños en los...

  2. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  3. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.

    Science.gov (United States)

    Wang, Wanren; Wang, Wenhua; Wang, Mengjiao; Guo, Xiaohui

    2014-09-01

    Herein, we report the in situ growth of single-crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as-prepared Ni/Ni(OH)2 sponges were well-characterized by using X-ray diffraction (XRD), SEM, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel-skeleton-supported Ni(OH)2 rope-like aggregates were composed of numerous intercrossed single-crystal Ni(OH)2 flake-like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g(-1)) and excellent rate-capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  5. Fabrication and characterization of single segment CoNiP and multisegment CoNiP/Au nanowires

    International Nuclear Information System (INIS)

    Luu Van Thiem; Le Tuan Tu

    2014-01-01

    This paper presents the fabrication of CoNiP single segment and CoNiP/Au multisegment nanowires. We have fabricated these nanowires by electrodeposition method into polycarbonate templates with a nominal pore diameter about 100 nm. The hysteresis loops were measured with the applied magnetic field parallel and perpendicular to the wire axis using a vibrating sample magnetometer (VSM). The structure morphology was observed by Scanning Electron Microscopy (SEM) and the element composition of CoNiP/Au multisegment nanowires were analyzed by EDS. The results show that nanowires are very uniform with the diameter of 100 nm. The observed coercivity (H C ) and squareness (Mr/Ms) of CoNiP single segment nanowires are larger than the CoNiP/Au multisegment nanowires. (author)

  6. Natural Ni speciation in the Callovo-Oxfordian clay rocks: implications for potential 63Ni isotopic exchange and retention mechanisms

    International Nuclear Information System (INIS)

    Grangeon, S.; Tournassat, C.; Schaefer, T.; Lerouge, C.; Wille, G.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. In the perspective of deep underground long-term nuclear waste storage, 63 Ni is considered as a priority radio-element to be studied. 63 Ni behaviour prediction is made difficult mainly because its geochemical behaviour is still subject to debate. For instance, the solubility of Ni simple compounds at high pH is ill-defined, and the knowledge on solubility control phases is still pending. Clay rocks such as Callovo-Oxfordian (COx) contain non negligible amounts of natural and stable isotopes of Ni. As a consequence, a good understanding of the natural speciation of Ni in the formation could help to understand 63 Ni controls in this environment, including long term isotopic exchange with naturally present Ni. We focused our study on the COx formation, where the Bure (France) ANDRA underground research laboratory is located. Speciation of naturally occurring Ni was studied by combining chemical, microscopic and spectrometric methods. Chemical methods consisted of total rock analyses and sequential extractions on various COx samples representative of the variability of the formation (from carbonate rich samples to clay rich samples). This method enabled quantifying the main Ni reservoirs. Physical methods were used to get a closer look at the Ni-bearing phases. Optical and scanning electron microscopy techniques were used to identify and isolate minerals from thin rock sections, originating from different geological horizons. Chemical results indicate that the mean Ni concentration in the Callovo-Oxfordian clay rock is of ∼30 ppm (10 -6 g/g). Identified Ni-bearing minerals were mainly primary minerals (biotite, chlorite, muscovite), calcite and pyrite; organic matter being also observed. Electron microprobe and X-ray fluorescence analyses were performed in order to quantify the amounts and variability of Ni contents in these different Callovo-Oxfordian components. Ni is occasionally present in primary minerals with

  7. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits.

    Science.gov (United States)

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-05-25

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p - Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni 2+ without reducing agent. It is found that at elevated temperature during immersion, Ni 2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p - Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  8. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    Directory of Open Access Journals (Sweden)

    King-Ning Tu

    2011-05-01

    Full Text Available A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  9. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    Science.gov (United States)

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-01-01

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz. PMID:28879960

  10. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    Directory of Open Access Journals (Sweden)

    Xin-Ling Liu

    2015-10-01

    Full Text Available The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h−1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  11. Controlled synthesis of mesoporous β-Ni(OH){sub 2} and NiO nanospheres with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Shengtao; Wang, Qian [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Ma, Zichuan, E-mail: mazc@vip.163.com [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Wu, Yinsu; Gao, Yuanzhe [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China)

    2012-09-15

    Highlights: ► Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH){sub 2} and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH){sub 2} and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  12. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  13. 11C-radioisotope study of methanol co-reaction with ethanol over Ni-MCM-41 silica-alumina and Ni-alumina

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Tsoncheva, T.; Kumar, N.; Murzin, D.Yu.

    2009-01-01

    Complete text of publication follows. The Ni modifies the properties of acidic alumina and light acidic MCM-41 silica-alumina supports. The radioisotopic method is a suitable tool for distinction of the 11 Cradioisotopic methanol and its co-derivates from derivates of non-radioactive ethanol on these catalysts. Experimental. The Ni/A l 2O 3 (5 wt % Ni) is commercially available while H-MCMN-41 (Si/Al=20) and Ni-ion-exchanged MCM-41 silica-alumina (5 wt % Ni) were prepared and characterized in previous works. Before catalysis the Ni/Al 2 O 3 and Ni-MCM-41 were pre-reduced. The 11 C-methanol was formed by a radiochemical process from 11 C-carbon dioxide produced at cyclotron (T 1/2 = 20.4 min). The mixture of equivalent volume of radioactive methanol and non-radioactive ethanol was introduced into glass tube micro-flow reactor at ambient temperature. After adsorption, the valves were closed and the catalyst was heated up to the required temperatures. The desorption rate of the remaining 11 C-derivatives on catalysts were continuously followed by radiodetectors and the derivatives of methanol with ethanol were analyzed by Radio/FID-gas chromatography (FID is coupled on-line with a radiodetector). The ethanol and its derivates were identified by FID while the 11 C-methanol and its co-derivates (with ethanol) were detected by both of FID and radiodetector. Results The 11 C-dimethyl ether was the common product of the single 11 C-methanol transformation on H-MCM-41, Ni-MCM-41 and Ni- Al 2 O 3 at low temperature (200-280 degC) due to middle strong acid sites. At higher temperature (280-350 degC), the dimethyl ether and hydrocarbons were the dominant products on H-MCM-41 while dimethyl ether selectivity decreased on Ni-alumina and Ni-MCM-41 in favor of methane. The selectivities of methanol to formaldehyde and methane were the highest on Ni-MCM-41. During co-reaction of 11 C-methanol with non-radioactive ethanol, the 11 C-labeled coethers, namely 11 C-methyl ethyl ether

  14. Effects of Ni-5%RExOy Composite Additives on Electrochemical Hydrogen Storage Performances of Mg2Ni

    Directory of Open Access Journals (Sweden)

    ZHANG Guo-fang

    2017-11-01

    Full Text Available The Ni-5%RExOy (CeO2, La2O3, Eu2O3 as composite additives, Mg2Ni-Ni-5%RExOy composites were prepared by the ball milling method. The effects of different additives on the structure, morphology, electrochemistry and kinetic properties of Mg2Ni alloy were studied systematically. The results show that composite additives can improve the proportion of amorphous and nanocrystalline structure of Mg2Ni alloy. The particle size is homogeneous but the agglomeration is observed in the sample with Ni-5%CeO2 additives. The composites with additives show higher maximum discharge capacity and better cycle stabilities. All of these three kinds of composite additives can improve the kinetic properties of the composites effectively, including optimizing the charge-transfer ability, the reversibility of the electrochemical reaction on the alloy surface, and enhancing the diffusion coefficients of H atoms in the bulk of alloy. Among these three kinds of additives, Ni-5%CeO2 additive shows the best catalysis effect on promoting the kinetic properties of the composites.

  15. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  16. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  17. La diversidad en la construcción de mundo de niños y niñas de dos culturas

    Directory of Open Access Journals (Sweden)

    Nolfa Ibáñez-Salgado

    2015-02-01

    Full Text Available Asumiendo la concepción de diversidad como distintas construcciones de mundo, pretendo en este trabajo develar las lógicas que guían las interacciones en las que participan niños y niñas de dos culturas: cultura mayor y cultura mapuche. Comparo las interacciones habituales en el hogar de niños y niñas de clase media de Santiago, y de niños y niñas mapuche de comunidades rurales, y posteriormente en sus respectivas aulas. La metodología es cualitativa, de enfoque etnográfico. Los resultados muestran que las lógicas que guían la interacción en las familias de los niños y niñas mapuche son distintas y en algunos casos opuestas a las que imperan en la escuela, que la diversidad no es acogida pedagógicamente por el profesorado, y que aprendizajes previos de los niños y niñas mapuche se invisibilizan en el aula.

  18. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    Science.gov (United States)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  19. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  20. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting.

    Science.gov (United States)

    Wang, Dewen; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2018-01-24

    The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS 2 nanosheet array on carbon cloth (NiO@Ni/WS 2 /CC) composite. This composite serves as a unique three-dimensional (3D) synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS 2 , but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS 2 . This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO 2 , as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm -2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS 2 . Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.

  1. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    International Nuclear Information System (INIS)

    Atli, K C; Karaman, I; Noebe, R D; Bigelow, G; Gaydosh, D

    2015-01-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni 50.3 Ti 29.7 Hf 20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni 49.9 Ti 50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni 50.3 Ti 29.7 Hf 20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g −1 , compared to a maximum value of 0.06 J g −1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni 50.3 Ti 29.7 Hf 20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni 50.3 Ti 29.7 Hf 20 , in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation. (paper)

  2. Percepción de los agentes educativos respecto de la atención a la diversidad en establecimientos educativos

    Directory of Open Access Journals (Sweden)

    Carolina Genoveva Cornejo-Valderrama

    2017-08-01

    Full Text Available Este artículo tiene como objetivo conocer la percepción de los agentes educativos respecto de la atención a la diversidad de establecimientos educacionales de las comunas de Talca y Curicó (Chile. La muestra está compuesta por 446 profesionales de la educación, agrupados en personal directivo, docente de aula y de apoyo a niños, niñas y jóvenes que presentan necesidades educativas especiales. El método utilizado es no experimental, con propósitos descriptivos, transaccional, se usa un cuestionario como instrumento de recogida de información. El análisis de la información se realiza a través de tablas de frecuencia. Como conclusión se puede indicar que los agentes educativos tienen una percepción favorable en cuanto a la atención a la diversidad, el concepto de diversidad lo ven como algo enriquecedor que permite la flexibilización del currículo, el trabajo interdisciplinario, ajustar las exigencias curriculares a las necesidades estudiantiles para generar oportunidades de aprendizaje a todo el estudiantado.

  3. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  4. Nonvolatile memory characteristics influenced by the different crystallization of Ni-Si and Ni-N nanocrystals

    International Nuclear Information System (INIS)

    Chen, W.-R.; Yeh, J.-L.; Chang, C.-Y.; Chang, T.-C.; Chen, S.-C.

    2008-01-01

    The formation of Ni-Si and Ni-N nanocrystals by sputtering a Ni 0.3 Si 0.7 target in argon and nitrogen environment were proposed in this paper. A transmission electron microscope analysis shows the nanocrystals embedded in the nitride layer. X-ray photoelectron spectroscopy and x-ray diffraction also offer the chemical material analysis of nanocrystals with surrounding dielectric and the crystallization of nanocrystals for different thermal annealing treatments. Nonvolatile Ni-Si nanocrystal memories reveal superior electrical characteristics for charge storage capacity and reliability due to the improvement of thermal annealing treatment. In addition, we used energy band diagrams to explain the significance of surrounding dielectric for reliability

  5. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  6. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  7. Development of improved HP/IP rotor material 2% CrMoNiWV (23 CrMoNiWV 88)

    International Nuclear Information System (INIS)

    Wiemann, W.

    1989-01-01

    The new 2% CrMoNiWV steel has a sufficient strength level, a very good creep (rupture) behaviour and an excellent toughness behaviour for a creep resistant steel. Even after long time high temperature exposure the toughness degradation is so small that it is still better than this of best 1% CrMo(Ni)V steels. The fatigue behaviour is well comparable to this of 1% CrMo(Ni)V. The 2% CrMoNiWV steel has the capability to substitute the traditional 1% CrMo(Ni)V. (orig.) With 26 annexes

  8. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  9. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  10. Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir; Darafarin, Soraya

    2014-05-01

    Nanocrystalline Ni doped ZnS thin films were deposited on quartz, silicon, and glass substrates using chemical bath deposition method in a weak acidic solution containing ethylenediamine tetra acetic acid disodium salt (Na{sub 2}EDTA) as a complexing agent for zinc ions and thioacetamide (TAA) as a sulfide source at 80 °C. The films were characterized by energy-dispersive X-ray spectrometer (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectrophotometry, and photoluminescence (PL) spectroscopy. UV–vis transmission data showed that the films were transparent in the visible region. The X-ray diffraction analysis showed a cubic zinc blend structure. FE-SEM revealed a homogeneous morphology and dense nanostructures. The PL spectra of the ZnS:Ni films showed two characteristic bands, one broad band centered at 430 and another narrow band at 523 nm. Furthermore, concentration quenching effect on the photoluminescence intensity has been observed. - Highlights: • Nanocrystalline ZnS:Ni thin films were prepared by the chemical bath deposition method. • The size of ZnS:Ni nanocrystals was less than 10 nm showing quantum size effect. • SEM images demonstrated a dense and uniform surface that was free of pinholes. • The deposited films were highly transparent (>70%) in the visible region. • The PL spectra of ZnS:Ni thin films showed two emission peaks at 430 and 523 nm.

  11. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  12. Growing imbedded Ni3C-rich layer with sharp interfaces by means of ion beam mixing of C/Ni layers

    International Nuclear Information System (INIS)

    Barna, Arpad; Kotis, Laszlo; Labar, Janos; Sulyok, Attila; Toth, Attila L; Menyhard, Miklos; Panjan, Peter

    2011-01-01

    C/Ni bilayers of various layer thicknesses (20-40 nm) were ion bombarded using Ga + and Ni + projectiles of energies 20 and 30 keV. Ion bombardment resulted in the growth of a Ni 3 C rich layer with the following features: (a) sharp carbon/Ni 3 C rich layer interface, (b) the amount of Ni 3 C produced by the irradiation proportional to the square root of the fluence and dependent on the type of projectile, (c) good correlation between the distribution of vacancies produced by the ion bombardment and the distribution of Ni 3 C. The formation of the metastable Ni 3 C compound was explained by a vacancy-assisted process. The sharp interface is the consequence of a relaxation process removing the intermixed Ni from the carbon layer. The square root of fluence dependence of the thickness of the Ni 3 C-rich layer can be explained by a usual diffusion equation considering moving boundaries.

  13. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  14. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  15. Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)

    2014-12-15

    We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.

  16. Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure

    International Nuclear Information System (INIS)

    Kurnia, F.; Hadiyawarman, H.; Jung, C. U.; Liu, C. L.; Lee, S. B.; Yang, S. M.; Park, H. W.; Song, S. J.; Hwang, C. S.

    2010-01-01

    We deposited NiO thin films with SrRuO 3 bottom electrodes on SrTiO 3 (001) substrates by using pulsed laser deposition. The growth temperature and the oxygen pressure were varied in order to obtain NiO films with different structural and electrical properties. We investigated the I-V characteristics of the Pt/NiO/SRO structures and observed a strong dependence of bipolar resistance switching on the growth conditions of the NiO thin films. Stable bipolar memory resistance switching was observed only in the devices with NiO films deposited at 400 .deg. C and 10 mTorr of O 2 . The off-state I-V curve of bipolar switching showed a linear fitting to the Schottky effect, indicating its origin in the NiO/SRO interface. Our results suggest that the growth conditions of NiO may affect the bipolar switching behavior through the film's resistance, the film's crystallinity, or the status of the grain boundaries.

  17. Sputtering yields of Si and Ni from the Ni sub(1-x)Si sub(x) system studied by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S C; Yamaguchi, S; Kataoka, Y; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering; Satou, M; Fujimoto, F

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni sub(1-x)Si sub(x)), including the pure materials (Ni and Si), caused by 5keV Ar/sup +/ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni sub(1-x)Si sub(x) increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi/sub 2/ to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni sub(1-x)Si sub(x) which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  18. Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges.

    Science.gov (United States)

    Chauke, Vongani; Matemadombo, Fungisai; Nyokong, Tebello

    2010-06-15

    This work reports the electrocatalysis of bisphenol A on Ni(II) tetraamino metallophthalocyanine (NiTAPc) polymer modified gold electrode containing Ni-O-Ni bridges (represented as Ni(OH)TAPc). The Ni(II)TAPc films were electro-transformed in 0.1 mol L(-1) NaOH aqueous solution to form 'O-Ni-O oxo bridges', forming poly-n-Ni(OH)TAPc (where n is the number of polymerising scans). poly-30-Ni(OH)TAPc, poly-50-Ni(OH)TAPc, poly-70-Ni(OH)TAPc and poly-90-Ni(OH)TAPc films were investigated. The polymeric films were characterised by electrochemical impedance spectroscopy and the charge transfer resistance (R(CT)) values increased with film thickness. The best catalytic activity for the detection of bisphenol A was on poly-70-Ni(OH)TAPc. Electrode resistance to passivation improved with polymer thickness. The electrocatalytic behaviour of bisphenol A was compared to that of p-nitrophenol in terms of electrode passivation and regeneration. The latter was found to passivate the electrode less than the former. The poly-70-Ni(OH)TAPc modified electrode could reliably detect bisphenol A in a concentration range of 7x10(-4) to 3x10(-2)mol L(-1) with a limit of detection of 3.68x10(-9)mol L(-1). The sensitivity was 3.26x10(-4)A mol(-1) L cm(-2). Copyright 2010 Elsevier B.V. All rights reserved.

  19. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  20. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    Science.gov (United States)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  1. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  3. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  4. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  5. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting

    Directory of Open Access Journals (Sweden)

    Dewen Wang

    2017-12-01

    Full Text Available The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER and oxygen evolution reaction (OER is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS2 nanosheet array on carbon cloth (NiO@Ni/WS2/CC composite. This composite serves as a unique three-dimensional (3D synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS2, but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS2. This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO2, as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm–2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS2. Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.

  6. Distribution of black flies (Diptera: Simuliidae) along an elevational gradient in the Andes Mountains of Colombia during the El Niño Southern Oscillation.

    Science.gov (United States)

    Mantilla, Juan S; Moncada, Ligia I; Matta, Nubia E; Adler, Peter H

    2018-07-01

    Vector ecology is a key factor in understanding the transmission of disease agents, with each species having an optimal range of environmental requirements. Scarce data, however, are available for how interactions of local and broad-scale climate phenomena, such as seasonality and the El Niño Southern Oscillation (ENSO), affect simuliids. We, therefore, conducted an exploratory study to examine distribution patterns of species of Simuliidae along an elevational gradient of the Otún River in the Colombian Andes, encompassing four ecoregions. Larval and pupal simuliids were sampled at 52 sites ranging from 1800 to 4750 m above sea level in dry and wet seasons and during the La Niña phase (2011-2012) and the El Niño phase (2015-2016) of the ENSO; physicochemical measurements were taken during the El Niño phase. Twenty-seven species in two genera (Gigantodax and Simulium) were collected. Species richness and occurrence in each ecoregion were influenced by elevation, seasonality, and primarily the warm El Niño and cool La Niña phases of the ENSO. The degree of change differed among ecoregions and was related to physicochemical factors, mainly with stream discharge. Some putative simuliid vectors of Leucocytozoon, such as G. misitu and S. muiscorum, markedly changed in distribution and occurrence, potentially influencing parasite transmission. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    Science.gov (United States)

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    2018-04-01

    Full Text Available Pure Ni12P5/SiO2 and pure Ni2P/SiO2 catalysts were obtained by adjusting the Ni and P molar ratios, while Ni/SiO2 catalyst was prepared as a reference against which the deoxygenation pathways of palmitic acid were investigated. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission election microscopy (TEM, infrared spectroscopy of pyridine adsorption (Py-IR, H2-adsorption and temperature-programmed desorption of hydrogen (H2-TPD. The crystallographic planes of Ni(111, Ni12P5(400, Ni2P(111 were found mainly exposed on the above three catalysts, respectively. It was found that the deoxygenation pathway of palmitic acid mainly proceeded via direct decarboxylation (DCO2 to form C15 on Ni/SiO2. In contrast, on the Ni12P5/SiO2 catalyst, there were two main competitive pathways producing C15 and C16, one of which mainly proceeded via the decarbonylation (DCO to form C15 accompanying water formation, and the other pathway produced C16 via the dehydration of hexadecanol intermediate, and the yield of C15 was approximately twofold that of C16. Over the Ni2P/SiO2 catalyst, two main deoxygenation pathways formed C15, one of which was mainly the DCO pathway and the other was dehydration accompanying the hexadecanal intermediate and then direct decarbonylation without water formation. The turn over frequency (TOF followed the order: Ni12P5/SiO2 > Ni/SiO2 > Ni2P/SiO2.

  9. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  10. Structural conditions of achieving maximum ductility of two-phase Ni-NiO alloys

    International Nuclear Information System (INIS)

    Grabin, V.V.; Dabizha, E.V.; Movchan, B.A.

    1984-01-01

    A study was made on possibility of increasing ductility of two-phase Ni-NiO alloys, proJuced by traditional technology: ingot smelting, rolling and corresponding annealing for production of grain with certain size. The correlation of mechanical properties of Ni-NiO alloys and pure nickel shows that completion of the structural conJition D--lambda (where D - the average grain diameter, lambda - the value of free path between particles) in two-phase alloys enables: to increase the ultimate strength 1.5 times and preserve the basic level of pure nickel plasticity - at 20 deg C; to increase plasticity 1.4-1.5 times with preserved basic level of pure nickel plasticity - at 800 deg C. The conclusions testify to possibility of controlling mechanical properties of two-phase alloys using structural D and lambda parameters It is proposed that creation of structures with more unifor m particle distribution with respect to sizes will the accompanied by further increase of plasticity under D=lambda condition

  11. Rate of hydrogen motion in Ni-substituted LaNi5Hx from NMR

    International Nuclear Information System (INIS)

    Mendenhall, Michael P.; Bowman, Robert C.; Ivancic, Timothy M.; Conradi, Mark S.

    2007-01-01

    Partial substitution of Sn, Ge, or Si for Ni in LaNi 5 H x greatly enhances the stability under repeated hydrogen-cycling. Proton NMR relaxation measurements are reported here to determine the rates of H hopping in the substituted metals LaNi 4.6 M 0.4 H x with M = Sn, Ge, and Si, for comparison to bare LaNi 5 H x . The relaxation times T 2 * (FID), T 2 (Hahn echo), T 2 -CPMG, T 1 , and T 1ρ were determined from 130 to 375 K. The three substituents result in only small increases in the average rate of motion at a given temperature but with a broader distribution of rates over the many inequivalent H sites and hopping paths. Evidently, the average energy barriers along the paths for H motion are only little affected by these substituents. Changes of H content x produce only minor changes in the relaxation times

  12. BTX production by in-situ contact reforming of low-temperature tar from coal with zeolite-derived catalysts; Zeolite kei shokubai wo mochiita sekitan teion tar no sesshoku kaishitsu ni yoru BTX no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, T.; Fuda, K.; Murakami, K.; Kyo, M.; Hosoya, S.; Kobayashi, S. [Akita University, Akita (Japan). Mining College

    1996-10-28

    On BTX production process from low-temperature tar obtained by pyrolysis of coal, the effect of exchanged metallic species and reaction temperature were studied using metallic ion-exchanged Y-zeolite as catalyst. In experiment, three kinds of coals with different produced tar structures such as Taiheiyo and PSOC-830 sub-bituminous coals and Loy Yang brown coal were used. Y-zeolite ion-exchanged with metal chloride aqueous solution was used as catalyst. Zn{sup 2+}, Ni{sup 2+} and In{sup 3+} were used as metal ions to be exchanged. The experiment was conducted by heating a pyrolysis section up to 600{degree}C for one hour after preheating a contact reforming section up to a certain proper temperature. As a result, the Ni system catalyst was effective for BTX production from aromatic-abundant tar, while the Zn system one from lower aromatic tar. In general, relatively high yields of toluene and xylene were obtained at lower temperature, while those of benzene at higher temperature. 4 figs., 1 tab.

  13. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  14. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    Science.gov (United States)

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  15. Separation and preparation of "6"2Ni isotope

    International Nuclear Information System (INIS)

    Ren Xiuyan; Mi Yajing; Zeng Ziqiang; Li Gongliang; Tu Rui

    2014-01-01

    Micro nuclear battery is the perfect power of space craft equipment. "6"3Ni is the core operation material of the "6"3Ni battery. It can produce radioisotope "6"3Ni while high abundance "6"2Ni is irradiated in the reactor. In order to meet the requirements of the abundance and the purity, research of the separation for "6"2Ni isotope was developed. The magnetic field and beam transmission status were simulated. The improvement designs of the ion source and the collector pocket were carried out. The process flow of high abundance "6"2Ni using electromagnetic separation method was established. The experiment of "6"2Ni isotope was developed by using electromagnetism isotope separator. The results show that the enrichment of "6"2Ni isotope is more than 90%. (authors)

  16. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  17. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  18. Magnetic Properties of Porous Metal-Organic Frameworks: Ni2(BODC)2(TED) and Ni2(BDC)2(TED)

    Science.gov (United States)

    Hamida, Youcef; Danilovic, Dusan; Lin, Chyan; Yuen, Tan; Li, Kunhao; Padmanabhan, Moothetty; Li, Jing

    2010-03-01

    Results of χ(T), M(H), and heat capacity C(T) measurements on two Ni dimer based porous materials Ni2(BODC)2(TED) and Ni2(BDC)2(TED) are reported. These materials form a tetragonal crystal structure of space group P4/ncc with a=b = 14.9 å and c = 19.4 å and Ni-Ni separation of 2.61å within the dimer. Magnetic data of Ni2(BODC)2(TED) revealed a ferromagnetic-like transition at about 17 K with θ = 8 K, and a coercivity field of 1700 G was observed in the hysteresis curve. Though isostructural to Ni2(BODC)2(TED), χ(T) and M(H) results of Ni2(BDC)2(TED) showed an antiferromagnetic transition at 10 K with θ = - 132 K, and no hysteresis was observed. Although specific heat data C(T) showed no clear transition in both compounds, nonlinear behavior is clearly seen in C/T vs. T plots, and a fit to the electron and phonon contributions to C(T) gives a large heavy-fermion-like γ in both cases. A model for the magnetic interactions is proposed and a comparison to the Cu and Co analogues is also made.

  19. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  20. Detection of strain behavior during phase-transformation in welds by the laser speckle method. Report 3. Application of the laser speckle method to strain masurement in the welding process; Reza supekkuru ho ni yoru yosetsubu no sohentai tojo no hizumi kenshutsu. 3. Reza supekkuru ni yoru hizumi sokuteiho no yosetsu eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Kuroda, S. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Gross, H-G. [Rostock Univ., Rostock (Germany)

    1996-11-05

    It corresponds to an information relating to defect formation due to residual stress and its accompanying defect formation to find out the period of phase-transformation and expansion volume on the transformation forming at welding. In order to estimate texture of the heat affected zone, there is an SH-CCT diagram, which is important on weld metallurgy. However, this is formed by giving a thermal recycling to a small size specimen under stress-free, which has some problems to estimate the transformation starting period in actual welding. And, the expansion volume containing the transformation cannot be found out directly by this. In this study, as the first step adaptable to this problem with laser speckle method measurable with non-contact and high precision, a linear heating with TIG to a SUS304 stainless steel thin plate without transformation was executed at first, the strain behavior accompanied with it was confirmed. Secondly, using a thin plate of 9% Ni steel showing any transformation at comparatively low temperature, probability of a phase transformation detection was investigated on a way of cooling by executing resemble linear heating. As a result, the laser speckle method was confirmed to be adaptable to this problem. 14 refs., 17 figs., 1 tab.

  1. In Situ Synthesis and Electrophoretic Deposition of NiO/Ni Core-Shell Nanoparticles and Its Application as Pseudocapacitor

    Directory of Open Access Journals (Sweden)

    Joaquin Yus

    2017-11-01

    Full Text Available A simple, low cost and transferable colloidal processing method and the subsequent heat treatment has been optimized to prepare binder-free electrodes for their application in supercapacitors. NiO/Ni core–shell hybrid nanostructures have been synthetized by heterogeneous precipitation of metallic Ni nanospheres onto NiO nanoplatelets as seed surfaces. The electrophoretic deposition (EPD has been used to shape the electroactive material onto 3D substrates such as Ni foams. The method has allowed us to control the growth and the homogeneity of the NiO/Ni coatings. The presence of metallic Nickel in the microstructure and the optimization of the thermal treatment have brought several improvements in the electrochemical response due to the connectivity of the final microstructure. The highest specific capacitance value has been obtained using a thermal treatment of 325 °C during 1 h in Argon. At this temperature, necks formed among ceramic-metallic nanoparticles preserve the structural integrity of the microstructure avoiding the employment of binders to enhance their connectivity. Thus, a compromise between porosity and connectivity should be established to improve electrochemical performance.

  2. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  3. Matriz de relación primaria en casos de niños y niñas con problemas de aprendizaje

    Directory of Open Access Journals (Sweden)

    Marta Isabel López

    2010-10-01

    Full Text Available La relación entre las dificultades de aprendizaje (DA y el contexto relacional primario de niño o niña que las presenta, es un aspecto importante reportado en la literatura y en la práctica clínica, y constituye un factor esencial en la comprensión del fenómeno de las DA. Nuestro objetivo en el estudio fue comprender la historia del desarrollo relacional de nueve niños y niñas con DA en la ciudad de Medellín, Colombia, para encontrar relaciones de sentido entre dicha historia y sus DA. La metodología utilizada fue cualitativa desde el enfoque hermenéutico-fenomenológico. Encontramos una dinámica de relación primaria caracterizada por ansiedad y apoyo constante al niño o niña por parte de la madre, y por un padre por fuera de la relación madre - niño o niña. Esa dinámica se reproduce en las relaciones con otras personas y situaciones, favoreciendo la emergencia de un niño o niña en un lugar de discapacidad.

  4. Matriz de relación primaria en casos de niños y niñas con problemas de aprendizaje

    Directory of Open Access Journals (Sweden)

    Marta Isabel López

    2010-01-01

    Full Text Available La relación entre las dificultades de aprendizaje (DA y el contexto relacional primario del niño o niña que las presenta, es un aspecto importante reportado en la literatura y en la práctica clínica, y constituye un factor esencial en la comprensión del fenómeno de las DA. Nuestro objetivo en el estudio fue comprender la historia del desarrollo relacional de nueve niños y niñas con DA en la ciudad de Medellín, Colombia, para encontrar relaciones de sentido entre dicha historia y sus DA. La metodología utilizada fue cualitativa desde el enfoque hermenéutico-fenomenológico. Encontramos una dinámica de relación primaria caracterizada por ansiedad y apoyo constante al niño o niña por parte de la madre, y por un padre por fuera de la relación madre - niño o niña. Esa dinámica se reproduce en las relaciones con otras personas y situaciones, favoreciendo la emergencia de un niño o niña en un lugar de discapacidad.

  5. Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming

    Science.gov (United States)

    Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja

    2018-05-01

    El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.

  6. The complex transfer reaction (14C, 15O) on Ni, Zn and Ge targets: existence and mass of 69Ni

    International Nuclear Information System (INIS)

    Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.; Morrison, G.C.

    1984-01-01

    The ( 14 C, 15 O) complex transfer reaction has been studied at 72 MeV incident energy on 58 Ni, 60 Ni, 62 Ni, 64 Ni, 68 Zn, 70 Zn and 74 Ge, 76 Ge targets. Spectra and differential cross sections have been measured in a 5 0 angular range centred around a laboratory angle of 6 0 . The nucleus 69 Ni has been observed and its mass determined for the first time

  7. Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni_5Zr eutectic composites

    International Nuclear Information System (INIS)

    Maity, T.; Singh, A.; Dutta, A.; Das, J.

    2016-01-01

    The evolution of microstructure and the mechanical properties of a series of (Ni_0_._9_1_2Zr_0_._0_8_8)_1_0_0_-_xAl_x (0≤x≤4) eutectic composites, constitute of γ-Ni and Ni_5Zr nanolamellar phases, have been presented. Al dissolves in γ-Ni phase preferentially, decreases its hardness and refines the microstructure. Strain rate jump test was performed in order to investigate the rate sensitivity. It has been found that activation volume increases from 39b"3 to 46b"3 upon Al addition. The strain rate sensitivity of the composites has been estimated to be ~0.008. The scanning and transmission electron microscopic studies have confirmed that dislocation meditated flow in nano-lamellar phases dominates the plastic deformation mechanism. Analysis based on Stroh's pile-up model suggests that the required shear stress for slip decreases and that for cleavage crack nucleation increases around a dislocation pile-up at the lamellae interface, upon Al addition. The nano-lamellar Ni_5Zr strengthen the composite, whereas, dislocation slip endorses the global plasticity of high strength Ni-Zr-(Al) nanoeutectic composites.

  8. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  9. Superconducting properties of Zr1+xNi2-xGa and Zr1-xNi2+xGa Heusler compounds

    Directory of Open Access Journals (Sweden)

    Saad Alzahrani

    2017-05-01

    Full Text Available The superconducting properties of a series of Zr1+xNi2-xGa and Zr1-xNi2+xGa compounds have been investigated by x-ray diffraction, electrical resistivity, dc magnetization, and ac susceptibility measurements. While the parent compound, ZrNi2Ga, exhibited the cubic L21 Heusler structure, multiple non-cubic structures formed in the Zr and Ni rich doped materials. For x ≤ 0.3, all Zr1-xNi2+xGa compounds demonstrated superconducting behavior, but no superconductivity was observed in the Zr1+xNi2-xGa alloys for x > 0.2. The magnetization data revealed that all materials in both Zr1+xNi2-xGa and Zr1-xNi2+xGa series exhibited type-II superconductivity. With increasing doping concentration x, the paramagnetic ordering were enhanced in both systems while the superconducting properties were found to weaken. The observations are discussed considering the structural disorders in the systems.

  10. Fate of half-metallicity near interfaces: The case of NiMnSb/MgO and NiMnSi/MgO

    KAUST Repository

    Zhang, Ruijing

    2014-08-27

    The electronic and magnetic properties of the interfaces between the half-metallic Heusler alloys NiMnSb, NiMnSi, and MgO have been investigated using first-principles density-functional calculations with projector augmented wave potentials generated in the generalized gradient approximation. In the case of the NiMnSb/MgO (100) interface, the half-metallicity is lost, whereas the MnSb/MgO contact in the NiMnSb/MgO (100) interface maintains a substantial degree of spin polarization at the Fermi level (∼60%). Remarkably, the NiMnSi/MgO (111) interface shows 100% spin polarization at the Fermi level, despite considerable distortions at the interface, as well as rather short Si/O bonds after full structural optimization. This behavior markedly distinguishes NiMnSi/MgO (111) from the corresponding NiMnSb/CdS and NiMnSb/InP interfaces. © 2014 American Chemical Society.

  11. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  12. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  13. Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M = Ni, Pd) with methylation agents

    KAUST Repository

    Lee, S. Y Tina; Ghani, Amylia Abdul; D'Elia, Valerio; Cokoja, Mirza; Herrmann, Wolfgang A.; Basset, Jean-Marie; Kü hn, Fritz

    2013-01-01

    Ring opening of various nickela- and palladalactones induced by the cleavage of the M-O bond by methyl trifluoromethanesulfonate (MeOTf) and methyl iodide (MeI) is examined. Experimental evidence supports the mechanism of ring opening by the alkylating agent followed by β-H elimination leading to methyl acrylate and a metal-hydride species. MeOTf shows by far higher efficiency in the lactone ring opening than any other methylating agent including the previously reported methyl iodide. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  14. Studies on the valence electronic structure of Fe and Ni in FexNi1−x ...

    Indian Academy of Sciences (India)

    structure of Fe and Ni in various Fex Ni1−x alloys. Since Kβ-to-Kα X-ray intensity ratio has been reported [2–7] to be a sensitive physical parameter to investigate the changes in the valence electronic structure of 3d-transition metals [2], we have undertaken the study of the valence electronic structure of Fe and Ni in the Fex ...

  15. Ni-CeO2 Cermets Synthesis by Solid State Sintering of Ni/CeO2 Multilayer

    Directory of Open Access Journals (Sweden)

    Aleksandras ILJINAS

    2013-12-01

    Full Text Available Nickel and gadolinium doped cerium oxide (GDC cermet is intensively investigated for an application as an anode material for solid oxide fuel cells based on various electrolytes. The purpose of the present investigation is to analyze morphology, microstructure, and optical properties of deposited and annealed for one hour in the temperatures from 500 ºC to 900 ºC Ni/CeO2 multilayer thin films deposited by sputtering. The crystallographic structure of thin films was investigated by X-ray diffraction. The morphology of the film cross-section was investigated with scanning electron microscope. The elemental analysis of samples was investigated by energy-dispersive X-ray spectroscopy. The fitting of the optical reflectance data was made using Abeles matrix method that is used for the design of interference coatings. The film cross-section of the post-annealed samples consisted of four layers. The first CeO2 layer (on Si had the same fine columnar structure with no features of Ni intermixing. The part of Ni (middle-layer after annealing was converted to NiO with grain size exceeding 100 nm. The CeO2 layer deposited on Ni was divided into two layers. Lower layer had small grains not exceeding 25 nm and consisting of NiO and CeO2 mixture. Upper layer consisted of CeO2 columns with approximate thickness of 50 nm. Ni sample annealed at 600 ºC was fully oxidized. The NiO thickness and refraction index were almost steady after annealing in various temperatures. The approximation of experimental reflectance data was successful only for the samples with one transparent homogeneous layer. The reflectance of the Ni/CeO2 samples annealed at intermediate temperatures could not be fitted using one-layer or three-layer model. That may show that a simplified model could not be implemented.  The real system has complicated distribution of refraction index. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3073

  16. Preparation, mechanical strengths, and thermal stability of Ni-Si-B and Ni-P-B amorphous wires

    International Nuclear Information System (INIS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-01-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni/sub 75/Si/sub 8/B/sub 17/ and Ni/sub 78/P/sub 12/B/sub 10/ alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin Al/sub 2/O/sub 3/ film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (N/sub 0.75/Si/sub 0.08/B/sub 0.17/)/sub 99/Al/sub 1/ wire and 2170 MPa and 2.4 pct for (Ni/sub 0.78/P/sub 0.12/B/sub 0.1/)/sub 99/Al/sub 1/ wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a NiSi-B-Al wire, which is higher by 0.15 pct than that of a Fe/sub 75/Si/sub 10/B/sub 15/ amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance

  17. Magnetic properties of two new compounds: Pr2Ni3Si5 and Ho2Ni3Si5

    International Nuclear Information System (INIS)

    Mazumdar, C.; Padalia, B.D.; Godart, C.

    1994-01-01

    Formation of two more new materials, Pr 2 Ni 3 Si 5 and Ho 2 Ni 3 Si 5 , of the series, R 2 Ni 3 Si 5 (R = rare earth and Y) and their magnetic properties are reported here. These materials crystallize in the orthorhombic U 2 Co 3 Si 5 -type structure (space group Ibam). Magnetic susceptibility measurement in the temperature range 5 K--300 K show that the compound Pr 2 Ni 3 Si 5 order antiferromagnetically at T N ∼ 8.5 K and Ho 2 Ni 3 Si 5 at ∼ 6 K. Considering T N (Gd 2 Ni 3 Si 5 ) ∼ 15 K, T N (Pr 2 Ni 3 Si 5 ) ∼ 8.5 K is rather high. The magnetic susceptibility of both of the materials, in the paramagnetic state, follows a Curie-Weiss law with effective moment close to that of the corresponding free trivalent rare earth ion

  18. Cryptosporidium y blastocistis hominis como agentes patógenos en el síndrome diarréico

    Directory of Open Access Journals (Sweden)

    Ligia I. Moncada

    1989-12-01

    Full Text Available En una comunidad de escasos recursos de Bogotá se tomaron muestras de heces de niños menores de diez años con diarrea y de niños sin diarrea. Las muestras del grupo de estudio y del grupo control resultaron negativas para el Cryptosporidium. Se encontraron positivas para Blastocistis hominis 17 muestras del grupo de estudio (8.3%. y 5 del grupo control (10.4%. Los síntomas predominantes fueron fiebre, dolor abdominal y pérdida del apetito. El B. hominis se asoció con la Escherichia coli, Salmonella campylobacter, E. histiolytica, Giardia lamblia, Ascaris lumbricoides y rotavírus. No se confirmó el papel que en los últimos años se le atribuye al Cryptosporidium y al B. hominis como agentes productores de diarrea.

  19. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  20. Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure.

    Science.gov (United States)

    Zhang, Yan; Wang, Yang; Anderson, Kirsten; Novikov, Andrey; Liu, Zikou; Pacheco, Karin; Dai, Shaodong

    2017-09-15

    T cell mediated hypersensitivity to nickel (Ni 2+ ) is one of the most common causes of allergic contact dermatitis. Ni 2+ sensitization may also contribute to the failure of Ni 2+ containing joint implants, and revision to non-Ni 2+ containing hardware can be costly and debilitating. Previously, we identified Ni 2+ mimotope peptides, which are reactive to a CD4 + T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni 2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni 2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni 2+ induced contact dermatitis. Here, we generated DR52c/Ni 2+ mimotope tetramers, and used them to test if the same Ni 2+ T cell activation mechanism could be generalized to Ni 2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni 2+ mimotope tetramer detected Ni 2+ reactive CD4 + T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni 2+ sensitized by patch testing and a positive Ni 2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni 2+ stimulation induced the expansion of Vβ17 positive CD4 + T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni 2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni 2+ independent mimotope tetramers may be a useful tool to identify the Ni 2+ reactive CD4 + T cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    Science.gov (United States)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  2. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    Science.gov (United States)

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  3. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  4. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ)69Ni

    Science.gov (United States)

    Spyrou, A.; Larsen, A. C.; Liddick, S. N.; Naqvi, F.; Crider, B. P.; Dombos, A. C.; Guttormsen, M.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Lewis, R.; Mosby, S.; Mumpower, M. R.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Renstrøm, T.; Siem, S.; Surman, R.

    2017-04-01

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n, γ)69Ni reaction rate. This is done by populating the compound nucleus 69Ni via the β decay of 69Co and measuring the γ-ray deexcitation of excited states in 69Ni. The β-Oslo method was used to extract the γ-ray strength function and the nuclear level density. In addition the half-life of 69Co was extracted and found to be in agreement with previous literature values. Before the present results, the 68Ni(n, γ)69Ni reaction was unconstrained and the purely theoretical reaction rate was highly uncertain. The new uncertainty on the reaction rate based on the present experiment (variation between upper and lower limit) is approximately a factor of 3. The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-process calculations is discussed.

  5. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    Science.gov (United States)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  6. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  7. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  8. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 deg C

    International Nuclear Information System (INIS)

    Hayashi, S.; Ford, S.I.; Young, D.J.; Sordelet, D.J.; Besser, M.F.; Gleeson, B.

    2005-01-01

    The α-NiPt(Al) phase and its associated equilibria in the Ni-Al-Pt system at 1150 deg C were investigated by analyzing equilibrated bulk alloys and the interdiffusion zones of diffusion couples. Phase constitutions, tie-lines and microstructures were determined using a combination of techniques, including high-energy synchrotron X-ray diffraction, scanning electron microscopy and electron probe microanalysis. A large Pt solubility limit was found to exist in the β-NiAl, ∼42 at.%, and in γ'-Ni 3 Al, ∼32 at.%. The α-NiPt(Al) phase was found to have wide Pt solubility range of about 33-60 at.% and to skew along an almost constant Pt/Al ratio of 1.5. The α-NiPt(Al) has an ordered face-centered tetragonal L1 0 crystal structure, with the Al and Pt atoms found to be preferentially located in the corners and prismatic faces, respectively. The temperature dependence of the lattice parameters and unit cell volume of the α phase were also determined

  9. Chemical and electrical characteristics of annealed Ni/Au and Ni/Ir/Au contacts on AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Ngoepe, P.N.M., E-mail: phuti.ngoepe@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Meyer, W.E.; Auret, F.D.; Omotoso, E.; Diale, M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Swart, H.C.; Duvenhage, M.M.; Coetsee, E. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    The evolution of Ni/Au and Ni/Ir/Au metal contacts deposited on AlGaN was investigated at different annealing temperatures. The samples were studied with electrical and chemical composition techniques. I–V characteristics of the Schottky diodes were optimum after 500 and 600 °C annealing for Ni/Au and Ni/Ir/Au based diodes, respectively. The depth profiles of the contacts were measured by x-ray photoelectron spectroscopy and time of flight secondary ion mass spectroscopy. These chemical composition techniques were used to examine the evolution of the metal contacts in order to verify the influence the metals have on the electrical properties of the diodes. The insertion of Ir as a diffusion barrier between Ni and Au effected the electrical properties, improving the stability of the contacts at high temperatures. Gold diffused into the AlGaN film, degrading the electrical properties of the Ni/Au diode. At 500 °C, the insertion of Ir, however, prevented the in-diffusion of Au into the AlGaN substrate.

  10. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  11. Study of shell evolution in the Ni isotopes via one-neutron transfer reaction in $^{70}$Ni

    CERN Multimedia

    This proposal aims at the study of the single particle properties of the neutron-rich nickel isotopes, specifically of the $^{71}$Ni isotope via a $^{70}$Ni(d,p) $^{71}$Ni reaction. The $^{70}$Ni beam will be delivered by HIE-ISOLDE at 5.5 MeV/u onto a 1.0 mg/cm$^{2}$ CD$_{2}$ target. The protons produced in the (d,p) reaction will be detected with the T-REX silicon array either in singles or in coincidence with $\\gamma$- rays recorded by MINIBALL. The experimental results will be compared with large-scale shell-model calculations using effective interactions that involve large valence spaces for protons and neutrons, with excitations beyond the Z =28 and N=50 shell gap. This comparison will permit the study of the single-particle orbital d$_{5/2}$ that together with the quasi-SU3 partner g$_{9/2}$ gives rise to the collectivity in this region and has direct implications on the $^{78}$Ni.

  12. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  13. Rinovirus: Frecuencia en niños con infección respiratoria aguda, no internados

    Directory of Open Access Journals (Sweden)

    Débora N. Marcone

    2012-02-01

    Full Text Available Los métodos moleculares para diagnosticar rinovirus humanos (RVH han aumentado la sensibilidad de detección. Esto ha permitido documentar la asociación entre los RVH y las infecciones respiratorias agudas (IRA altas y bajas. La infección por RVH durante la infancia se asoció con posterior desarrollo de asma. Se estudió la frecuencia de RVH en 186 niños menores de 6 años ambulatorios con IRA (alta o baja, durante 2 años consecutivos (1/6/2008 - 31/5/2010. Se correlacionó la presencia de RVH con los antecedentes y características clínico-epidemiológicas. La detección de RVH se realizó con una RT-PCR en tiempo real que amplifica parte de la región 5' no codificante del genoma. Los virus respiratorios clásicos se estudiaron por inmunofluorescencia. En el 61% de los niños se detectó etiología viral. Las frecuencias fueron: RVH 27%, virus sincicial respiratorio (VSR 16%, influenza A y B 9%, parainfluenza 8%, metapneumovirus 7% y adenovirus 0.5%. Se observaron coinfecciones duales en 8 casos, siendo RVH el más frecuente (en 4 de ellos. Los RVH circularon durante todo el período estudiado, con picos en invierno y primavera. No se observaron diferencias clínico-epidemiológicas significativas entre pacientes con o sin RVH, excepto un mayor porcentaje de niños afebriles con RVH. Los RVH fueron los virus más detectados en niños ambulatorios, principalmente en menores de 2 años, los segundos virus asociados a bronquiolitis, luego del VSR, y detectados tres veces más en los niños expuestos a tabaquismo pasivo (OR: 2,91; p = 0.012 que en el resto. Fueron identificados como único agente en el 28% de las bronquiolitis.

  14. Comparison of three Ni-Hard I alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.; Rice, J. (Texaloy Foundry Co., Inc., Floresville, Texas)

    2004-09-01

    This report documents the results of an investigation which was undertaken to reveal the similarities and differences in the mechanical properties and microstructural characteristics of three Ni-Hard I alloys. One alloy (B1) is ASTM A532 class IA Ni-Hard containing 4.2 wt. pct. Ni. The second alloy (B2) is similar to B1 but higher in Cr, Si, and Mo. The third alloy (T1) also falls in the same ASTM specification, but it contains 3.3 wt. pct. Ni. The alloys were evaluated in both as-cast and stress-relieved conditions except for B2, which was evaluated in the stress-relieved condition only. While the matrix of the high Ni alloys is composed of austenite and martensite in both conditions, the matrix of the low Ni alloy consists of a considerable amount of bainite, in addition to the martensite and the retained austenite in as cast condition, and primarily bainite, with some retained austenite, in the stress relieved condition. It was found that the stress relieving treatment does not change the tensile strength of the high Ni alloy. Both the as cast and stress relieved high Ni alloys had a tensile strength of about 350 MPa. On the other hand, the tensile strength of the low Ni alloy increased from 340 MPa to 452 MPa with the stress relieving treatment. There was no significant difference in the wear resistance of these alloys in both as-cast and stressrelieved conditions.

  15. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  16. Magnetic studies in evaporated Ni/Pd multilayers

    International Nuclear Information System (INIS)

    Chafai, K.; Salhi, H.; Lassri, H.; Yamkane, Z.; Lassri, M.; Abid, M.; Hlil, E.K.; Krishnan, R.

    2011-01-01

    The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. The Ni thickness dependence of the magnetization and magnetic anisotropy is discussed. The temperature dependence of the spontaneous magnetization is well described by a T 3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization, and the approximate values for the exchange interactions for various Ni layer thicknesses have been obtained. - Research highlights: → The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. → The temperature dependence of the spontaneous magnetization is well described by a T 3/2 law in Ni/Pd multilayers. → The spin-wave constant B was observed to depend on t Ni nonmonotonically. → A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization. → The approximate values for the exchange interactions for various Ni layer thicknesses have been obtained.

  17. Viviendo con VIH/SIDA: Las voces ocultas de los niños y niñas afectados

    OpenAIRE

    Luz Adriana Aristizábal Becerra

    2015-01-01

    El VIH/SIDA no es solamente un problema de salud, sino también un problema social. Los primeros casos de VIH/SIDA en niños se describen en 1982 en Estados Unidos, y desde entonces el número de niños infectados y afectados continúa incrementándose, hasta convertirse en lo que en la actualidad se denota como una pandemia. Objetivo. Posibilitar un espacio para que los niños y niñas afectados por el VIH/SIDA, puedan expresar sus vivencias en torno al padecimiento propio y/o de sus padres. Metodol...

  18. Derechos de los niños ... ¿de qué niños?

    Directory of Open Access Journals (Sweden)

    Gloria Teresa Zapata O.

    2000-07-01

    Full Text Available En Colombia, son necesarios cambios a la actual legislación para que más que curativa, remedial o rehabilitativa sea de prevención y protección y se acompañe de programas en esa dirección; por ejemplo garantizando el control de crecimiento y desarrollo saludable de la población infantil, mediante programas que incluyan chequeos de rutina para detectar discapacidades, impedimentos físicos, emocionales, en niños y niñas a temprana edad, con el fin de reducir la incidencia de estos problemas. También se requiere de programas que además de orientar en relación al número de hijos que se desean y pueden tener las parejas también sugieran pautas de crianza, comunicación y convivencia; y que apoyen en los adultos cercanos al niño, la construcción de una nueva cultura sobre la salud, la niñez, el desarrollo infantil y la discapacidad.

  19. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  20. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect

    Directory of Open Access Journals (Sweden)

    Irina V. Deliy

    2017-10-01

    Full Text Available Two sets of silica-supported nickel phosphide catalysts with a nickel content of about 2.5 and 10 wt % and Ni/P molar ratio 2/1, 1/1 and 1/2 in each set, were prepared by way of a temperature-programmed reduction method using (Ni(CH3COO2 and ((NH42HPO4 as a precursor. The NixPy/SiO2 catalysts were characterized using chemical analysis N2 physisorption, XRD, TEM, 31P MAS NMR. Methyl palmitate hydrodeoxygenation (HDO was performed in a trickle-bed reactor at 3 MPa and 290 °C with LHSV ranging from 0.3 to 16 h−1. The Ni/P ratio was found to affect the nickel phosphide phase composition, POx groups content and catalytic properties in methyl palmitate HDO with the TOF increased along with a decline of Ni/P ratio and a growth of POx groups’ content. Taking into account the possible routes of methyl palmitate conversion (metal-catalyzed hydrogenolysis or acid-catalyzed hydrolysis, we proposed that the enhancement of acid POx groups’ content with the Ni/P ratio decrease provides an enhancement of the rate of methyl palmitate conversion through the acceleration of acid-catalyzed hydrolysis.

  1. Magnetic reconstruction induced magnetoelectric coupling and spin-dependent tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min

    2016-01-01

    We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO_3. Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO_3/Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.

  2. Bath temperature effect on magnetoelectric performance of Ni-lead zirconate titanate-Ni laminated composites synthesized by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Y.G., E-mail: yingang.wang@nuaa.edu.c [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Bi, K. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2011-03-15

    Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient {alpha}{sub E,31} was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents. - Research Highlights: Laminated composites without interlayer are prepared by electroless deposition. Bath temperature affects the grain size of the deposited Ni layers. Higher bath temperature is beneficial to obtain stronger ME response.

  3. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  4. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  5. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In

    International Nuclear Information System (INIS)

    Lapolli, Andre Luis

    2006-01-01

    Systematic behavior of magnetic hyperfine field (B hf ) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B hf were carried out at the rare earth atom and in sites using the nuclear probes 140 Ce and 11 '1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from 140 Ce probe as well as at in sites obtained from 111 Cd probe for each series of compounds were extrapolated to zero Kelvin B hf (T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B hf comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B hf (T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with 111 Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the 111 Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  6. Room-temperature ferromagnetism in Dy films doped with Ni

    International Nuclear Information System (INIS)

    Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.

    2008-01-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x) Ni x -Ni and Dy (1-x) (NiFe) x -NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x) Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni

  7. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  8. Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Xiaoru Li

    2015-04-01

    Full Text Available Ni-based catalysts as replacement for noble metal catalysts are of particular interest in the catalytic conversion of biomass due to their cheap and satisfactory catalytic activity. The Ni/SiO2 catalyst has been studied for the hydrogenolysis of glycerol, and doping with phosphorus (P found to improve the catalytic performance significantly because of the formation of Ni2P alloys. However, in the present work we disclose a different catalytic phenomenon for the P-doped Ni/Al2O3 catalyst. We found that doping with P has a significant effect on the state of the active Ni species, and thus improves the selectivity to 1,2-propanediol (1,2-PDO significantly in the hydrogenolysis of glycerol, although Ni-P alloys were not observed in our catalytic system. The structure and selectivity correlations were determined from the experimental data, combining the results of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and ammonia temperature-programmed desorption (NH3-TPD. The presence of NiO species, formed from P-doped Ni/Al2O3 catalyst, was shown to benefit the formation of 1,2-PDO. This was supported by the results of the Ni/Al2O3 catalyst containing NiO species with incomplete reduction. Furthermore, the role the NiO species played in the reaction and the potential reaction mechanism over the P-doped Ni/Al2O3 catalyst is discussed. The new findings in the present work open a new vision for Ni catalysis and will benefit researchers in designing Ni-based catalysts.

  9. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  10. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    Science.gov (United States)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  11. Creep and shrinkage of Mo(Ni)

    International Nuclear Information System (INIS)

    Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.

    1984-01-01

    To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments

  12. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg [School of Chemistry and Chemical Engineering, and Innovation Lab for Clean Energy and Green Catalysis, Anhui University, Hefei 230036 (China); Zhang, Ming-Yi [Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Xue, Can, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg [Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  13. Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems

    Science.gov (United States)

    Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.

    1985-11-01

    Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.

  14. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    Science.gov (United States)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  15. Magnetic ordering of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow, 119992 (Russian Federation); Isnard, O. [CNRS, Insitut. Néel, 25 Rue Des Martyrs BP166 x, F-38042 Grenoble (France); Université Grenoble Alpes, Inst. Néel, F-38042 Grenoble (France); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600 036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-12-01

    Magnetic properties of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si were investigated via neutron diffraction and magnetisation measurements. HoNi{sub 2}Si and ErNi{sub 2}Si show ferromagnetic-like ordering at T{sub C} of 9 K and 7 K, respectively. The paramagnetic Weiss temperatures are 9 K and 11 K and the effective magnetic moments are 10.76 μ{sub B}/fu and 9.79 μ{sub B}/fu for HoNi{sub 2}Si and ErNi{sub 2}Si compounds, respectively. The HoNi{sub 2}Si and ErNi{sub 2}Si are soft ferromagnets with saturation magnetization of 8.1 μ{sub B}/fu and 7.5 μ{sub B}/fu, respectively at 2 K and in field of 140 kOe. The isothermal magnetic entropy change, ΔS{sub m}, has a maximum value of −15.6 J/kg·K at 10 K for HoNi{sub 2}Si and −13.9 J/kg·K at 6 K for ErNi{sub 2}Si for a field change of 50 kOe. Neutron diffraction study in zero applied field shows mixed ferromagnetic-antiferromagnetic ordering of HoNi{sub 2}Si at ~9 K and its magnetic structure is a sum of a-axis ferromagnetic F{sub a}, b-axis antiferromagnetic AF{sub b} and c-axis antiferrromagnetic AF{sub c} components of Pn′a2{sub 1}′={1, m_x′/[1/2, 1/2, 1/2], 2_y′/[0, 1/2, 0], m_z/[1/2, 0, 1/2]} magnetic space group and propagation vector K{sub 0}=[0, 0, 0]. The holmium magnetic moment reaches a value of 9.23(9) μ{sub B} at 1.5 K and the unit cell of HoNi{sub 2}Si undergoes isotropic contraction around the temperature of magnetic transition. - Graphical abstract: HoNi{sub 2}Si: mixed ferro-antiferromagnet (F{sub a}+AF{sub b}+AF{sub c}){sup K0} with Pn′a2{sub 1}′ magnetic space group and K{sub 0}=[0, 0, 0] propagation vector below 10 K. - Highlights: • Ferro-antiferromagnetic ordering is observed in HoNi{sub 2}Si at 9 K and in ErNi{sub 2}Si at 7 K. • HoNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −15.6 J/kg·K at 10 K in field of 0–50 kOe. • ErNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −13.9 J/kg·K at 6 K in field of 0–50 kOe. • HoNi{sub 2}Si shows mixed F

  16. Diffusion studies in amorphous NiZr alloys

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hoshino, K.; Rothman, S.J.

    1987-06-01

    Tracer impurity and self diffusion measurements have been made on amorphous (a-) NiZr alloys using radioactive tracer, Secondary Ion Mass Spectrometry and Rutherford backscattering techniques. The temperature dependence of diffusion in a-NiZr can be represented in the form D = D 0 exp(-Q/kT), with no structural relaxation effects being observed. The mobility of an atom in a-NiZr increased dramatically with decreasing atomic radius of the diffusing atom and also with decreasing Ni content for Ni concentrations below ≅40 at. %. These diffusion characteristics in a-NiZr are remarkably similar to those in α-Zr and α-Ti. These mechanisms assume that Zr and Ti provide a close packed structure, either crystalline or amorphous, through which small atoms diffuse by an interstitial mechanism and large atoms diffuse by a vacancy mechanism. 12 refs., 2 figs., 2 tabs

  17. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on transportation of hydrogen in the form of metallic hydride; 1974-1980 nendo kinzoku suisokabutsu ni yoru suiso no yuso gijutsu no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report concerns the transportation and storage of hydrogen using metallic hydrides that perform absorption and desorption of hydrogen. Alloys useable for this purpose have to be capable of reversibly absorbing and desorbing hydrogen within a certain temperature range. In the absence of guidelines to follow in the quest for such alloys, the efforts at discovering them turned out to be a continual series of trials and errors. Researches were conducted into the hydrogenation reaction of Mg and Mg-based alloys and into hydrides of V-based alloys, and into Zr-based alloy hydrides such as the ZrMn{sub 2} hydride, ZrNiMn hydride, Zr(Fe{sub x}Mn{sub 1-x}){sub 2} hydrides, TiZrFe{sub 2} hydride, Zr{sub x}Ti{sub 1-x}(Fe{sub y}Mn{sub 1-y}) hydrides, etc. Also studied were the electronics of hydrogen in metallic hydrides, rates of reaction between Mg-Ni-based alloys and hydrogen systems, endurance tests for hydrides of Mg-Ni-based alloys, effects exerted by absorbed gas molecules during the storage of hydrogen in Mg-Ni-based alloys, effective thermal conductivity in a layer filled with a metallic hydride, metallic hydride-aided hydrogen transportation systems, chemical boosters, etc. (NEDO)

  18. Justificaciones morales de los niños y niñas acerca de la sexualidad

    Directory of Open Access Journals (Sweden)

    Carlos Bolívar Bonilla

    2010-10-01

    Full Text Available En este artículo sintetizo una investigación sobre las justificaciones morales acerca de la sexualidad, realizada con dos grupos de niños y niñas, pertenecientes a una institución educativa pública y a una privada, de la ciudad de Neiva (Colombia. Acudo para ello a un enfoque epistemológico cualitativo.En las conclusiones propongo la hipótesis de un pluralismo moral infantil sobre la sexualidad y la imposibilidad de encasillar la complejidad del juicio moral en un único sendero teórico. Durante la interpretación de las justificaciones morales ofrezco una comparación de lo hallado entre géneros e instituciones educativas. Finalmente, formulo algunas sugerencias para la educación moral y sexual de los niños y niñas.

  19. Justificaciones morales de los niños y niñas acerca de la sexualidad

    Directory of Open Access Journals (Sweden)

    Carlos Bolívar Bonilla

    2010-01-01

    Full Text Available En este artículo sintetizo una investigación sobre las justificaciones morales acerca de la sexualidad, realizada con dos grupos de niños y niñas, pertenecientes a una institución educativa pública y a una privada, de la ciudad de Neiva (Colombia. Acudo para ello a un enfoque epistemológico cualitativo. En las conclusiones propongo la hipótesis de un pluralismo moral infantil sobre la sexualidad y la imposibilidad de encasillar la complejidad del juicio moral en un único sendero teórico. Durante la interpretación de las justificaciones morales ofrezco una comparación de lo hallado entre géneros e instituciones educativas. Finalmente, formulo algunas sugerencias para la educación moral y sexual de los niños y niñas.

  20. Room-temperature ferromagnetism in Dy films doped with Ni

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, I. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation)], E-mail: ise@iph.krasn.ru; Ovchinnikov, S. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Av. Svobodnyi 71, Krasnoyarsk 660074 (Russian Federation); Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Kesler, V. [Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, Av. Akademika Lavrent' eva 13, Novosibirsk 630090 (Russian Federation)

    2008-09-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy{sub (1-x)}Ni{sub x}-Ni and Dy{sub (1-x)}(NiFe){sub x}-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy{sub (1-x)}Ni{sub x} owing to hybridization with narrow peaks near the Fermi level character for Ni.