WorldWideScience

Sample records for agent degradation products

  1. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    Science.gov (United States)

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  2. Optimization of Biodegradability and Toxicity Testing of Degradation Product from Linear Alkyl BenzeneSulfonate (LAS Surfactant as Cleaning Detergent Agent

    Directory of Open Access Journals (Sweden)

    Neera Khairani

    2009-11-01

    Full Text Available Optimization of Biodegradability and Toxicity Testing of Degradation Product from Linear Alkyl BenzeneSulfonate (LAS Surfactant as Cleaning Detergent Agent. Linear Alkyl Benzene Sulfonate (LAS is a surfactantused in laundry detergent as cleaning agent and toxic to aquatic organisms. Results shows, with the LAS concentrationused (20 ppm in medium, adaptation time and Acinetobacter sp. growth has shown better biodegradation ability thanthree other bacteria used Pseudomonas putida, Pseudomonas fluorescence, Bacillaria spp. Thus, Acinetobacter sp isused further for biodegradation process of LAS. Based on its biodegradation half-life using Acinetobacter sp, and withmixed culture (± 52.32% and ± 46.82% respectively could be achieved in 4 (four days, LAS could be categorized as abiodegradable compound. The toxicity assay is based on tetrazolium dye reduction with Rhizobium meliloti as indicatororganism. LAS is more toxic than its intermediate product from biodegradation, with IC50 = 34.35 ppm, and theintermediate product, Ac and Cm, has IC50 = 446.19 ppm and 111.28 ppm respectively. Identification of intermediateproducts using IR and LC-MS analysis shows that the degradation product contains chemicals compounds withfunctional group as follows: benzene, benzoic acid, hydroxyl, and aliphatic carbons with large molecule weight. Untilits half-time degradation time, LAS biodegradation process only occurs at the aliphatic carbon chain, and have not yetreached the stage of aromatic ring opening.

  3. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples.

    Science.gov (United States)

    Nawała, Jakub; Czupryński, Krzysztof; Popiel, Stanisław; Dziedzic, Daniel; Bełdowski, Jacek

    2016-08-24

    After World War II approximately 50,000 tons of chemical weapons were dumped in the Baltic Sea by the Soviet Union under the provisions of the Potsdam Conference on Disarmament. These dumped chemical warfare agents still possess a major threat to the marine environment and to human life. Therefore, continue monitoring of these munitions is essential. In this work, we present the application of new solid phase microextraction fibers in analysis of chemical warfare agents and their degradation products. It can be concluded that the best fiber for analysis of sulfur mustard and its degradation products is butyl acrylate (BA), whereas for analysis of organoarsenic compounds and chloroacetophenone, the best fiber is a co-polymer of methyl acrylate and methyl methacrylate (MA/MMA). In order to achieve the lowest LOD and LOQ the samples should be divided into two subsamples. One of them should be analyzed using a BA fiber, and the second one using a MA/MMA fiber. When the fast analysis is required, the microextraction should be performed by use of a butyl acrylate fiber because the extraction efficiency of organoarsenic compounds for this fiber is acceptable. Next, we have elaborated of the HS-SPME-GC-MS/MS method for analysis of CWA degradation products in environmental samples using laboratory obtained fibers The analytical method for analysis of organosulfur and organoarsenic compounds was optimized and validated. The LOD's for all target chemicals were between 0.03 and 0.65 ppb. Then, the analytical method developed by us, was used for the analysis of sediment and pore water samples from the Baltic Sea. During these studies, 80 samples were analyzed. It was found that 25 sediments and 5 pore water samples contained CWA degradation products such as 1,4-dithiane, 1,4-oxathiane or triphenylarsine, the latter being a component of arsine oil. The obtained data is evidence that the CWAs present in the Baltic Sea have leaked into the general marine environment. PMID

  4. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples.

    Science.gov (United States)

    Nawała, Jakub; Czupryński, Krzysztof; Popiel, Stanisław; Dziedzic, Daniel; Bełdowski, Jacek

    2016-08-24

    After World War II approximately 50,000 tons of chemical weapons were dumped in the Baltic Sea by the Soviet Union under the provisions of the Potsdam Conference on Disarmament. These dumped chemical warfare agents still possess a major threat to the marine environment and to human life. Therefore, continue monitoring of these munitions is essential. In this work, we present the application of new solid phase microextraction fibers in analysis of chemical warfare agents and their degradation products. It can be concluded that the best fiber for analysis of sulfur mustard and its degradation products is butyl acrylate (BA), whereas for analysis of organoarsenic compounds and chloroacetophenone, the best fiber is a co-polymer of methyl acrylate and methyl methacrylate (MA/MMA). In order to achieve the lowest LOD and LOQ the samples should be divided into two subsamples. One of them should be analyzed using a BA fiber, and the second one using a MA/MMA fiber. When the fast analysis is required, the microextraction should be performed by use of a butyl acrylate fiber because the extraction efficiency of organoarsenic compounds for this fiber is acceptable. Next, we have elaborated of the HS-SPME-GC-MS/MS method for analysis of CWA degradation products in environmental samples using laboratory obtained fibers The analytical method for analysis of organosulfur and organoarsenic compounds was optimized and validated. The LOD's for all target chemicals were between 0.03 and 0.65 ppb. Then, the analytical method developed by us, was used for the analysis of sediment and pore water samples from the Baltic Sea. During these studies, 80 samples were analyzed. It was found that 25 sediments and 5 pore water samples contained CWA degradation products such as 1,4-dithiane, 1,4-oxathiane or triphenylarsine, the latter being a component of arsine oil. The obtained data is evidence that the CWAs present in the Baltic Sea have leaked into the general marine environment.

  5. Microstructure Formation and Degradation Mechanism of Cementitious Plugging Agent Slurries

    Institute of Scientific and Technical Information of China (English)

    YAN Peiyu; ZHOU Yongxiang; YANG Zhenjie; QIN Jian

    2007-01-01

    The hydration products and microstructure of class G oil well cement and a newly developed plugging agent (YLD) slurries cured in the simulated temperature and pressure environment, which was of similar temperature and pressure with those at the bottom of oil well in a normal depth, were investigated using XRD, TG and SEM. Severe leakage is confirmed at the interface between hardened slurries and steel tube during the dynamically curing process, which induces the quick loss of cementing property of slurries. This should be the dominating cause of degradation of class G oil well cement slurry. A secondary hydration process can take place at the eroded interface of hardened YLD plugging agent slurry. Newly formed C-S-H gel has a self-healing effect to repair the damaged interface, which unceasingly maintains the cementing property of the YLD plugging agent slurry. Therefore, the effective using period of YLD plugging agent can be prolonged.

  6. Product and Agent

    DEFF Research Database (Denmark)

    Montecino, Alex; Valero, Paola

    2015-01-01

    In this paper we will explore how the “mathematics teacher” becomes a subject and, at the same time, is subjected as part of diverse dispositive of power. We argue that the mathematics teacher becomes both a product and a social agent, which has been set, within current societies, from the ideas...... of globalization, social progress, and competitive logic. For our approximation, we use the concepts societies of control, dispositive, and discourses from a Foucault–Deleuze toolbox. Our purpose is to cast light on the social and cultural constitution of the ways of thinking about the mathematics teacher. Hence......, our critical examination offers understandings about how mathematics teachers are part of the larger cultural politics of schooling and education....

  7. Structural elucidation of gemifloxacin mesylate degradation product.

    Science.gov (United States)

    Paim, Clésio Soldateli; Führ, Fernanda; Martins, Magda Targa; Gnoatto, Simone; Bajerski, Lisiane; Garcia, Cássia Virginia; Steppe, Martin; Schapoval, Elfrides Eva Scherman

    2016-03-01

    Gemifloxacin mesylate (GFM), chemically (R,S)-7-[(4Z)-3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl]-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid methanesulfonate, is a synthetic broad-spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV-A), acid (1 mol L(-1) HCl) and alkaline conditions (0.2 mol L(-1) NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi-preparative LC and structurally elucidated by nuclear magnetic resonance (proton - (1) H; carbon - (13) C; correlate spectroscopy - COSY; heteronuclear single quantum coherence - HSQC; heteronuclear multiple-bond correlation - HMBC; spectroscopy - infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7-amino-1-pyrrolidinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate, which was formed by loss of the 3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug-development process, storage, handling and quality control.

  8. Insights into the failure of the potential, neutral myocardial imaging agent TcN-NOET: physicochemical identification of by-products and degradation species

    International Nuclear Information System (INIS)

    Introduction: The neutral complex [99mTc(N)(NOEt)2], often referred to as TcN-NOET [NOEt=N-ethoxy,N-ethyldithiocarbamate(1−)], was proposed several years ago as a myocardial imaging agent. Despite some favorable clinical properties evidenced during phase I and phase II studies, the overall results of the European and American phase III clinical studies have been judged insufficient for a successful approval process by the regulatory agencies. Methods: Non-carrier-added and carrier-added experiments using short-lived 99mTc and long-lived 99gTc have been utilized to prepare a series of bis-substituted [Tc(N)(DTC)2] complexes [DTC=dithiocarbamate(1−)]. They have been purified by means of chromatographic techniques (high-performance liquid chromatography and thin-layer chromatography) and identified via double detection (UV-vis and radiometry) by comparison with authenticated samples of 99gTc compounds prepared by conventional coordination chemistry procedures. Results: The molecular structure of the lipophilic, neutral complex cis-[Tc(N)(NOEt)2] has been assigned by comparison with similar nitrido-Tc(V) complexes already reported in the literature. Novel bis-substituted nitrido-Tc complexes containing hydrolyzed portions of coordinated NOEt, namely, N-ethyldithiocarbamate [NHEt(1−)] and N-hydroxy, N-ethyldithiocarbamate [NOHEt(1−)], have been prepared and characterized by means of multinuclear nuclear magnetic resonance spectroscopy and mass spectrometry. Conclusions: Despite the identification of these “hydrolyzed” species, it is still unclear whether the failure to reach the clinical goal of the perfusion tracer [99mTc(N)(NOEt)2] is related to the degradation processes evidenced in this study or is the result of the mediocre imaging properties of the tracer.

  9. Natural products as antimitotic agents.

    Science.gov (United States)

    Dall'Acqua, Stefano

    2014-01-01

    Natural products still play an important role in the medicinal chemistry, especially in some therapeutic areas. As example more than 60% of currently-used anticancer agents are derives from natural sources including plants, marine organisms or micro-organism. Thus natural products (NP) are an high-impact source of new "lead compounds" or new potential therapeutic agents despite the large development of biotechnology and combinatorial chemistry in the drug discovery and development. Many examples of anticancer drugs as paclitaxel, combretastatin, bryostatin and discodermolide have shown the importance of NP in the anticancer chemotherapy through many years. Many organisms have been studied as sources of drugs namely plants, micro-organisms and marine organisms and the obtained NP can be considered a group of "privileged chemical structures" evolved in nature to interact with other organisms. For this reason NP are a good starting points for pharmaceutical research and also for library design. Tubulin and microtubules are one of the most studied targets for the search of anticancer compounds. Microtubule targeting agents (MTA) also named antimitotic agents are compounds that are able to perturb mitosis but are also able to arrest cell growing during interphase. The anticancer drugs, taxanes and vinca alkaloids have established tubulin as important target in cancer therapy. More recently the vascular disrupting agents (VDA) combretastatin analogues were studied for their antimitotics properties. This review will consider the anti mitotic NP and their potential impact in the development of new therapeutic agents.

  10. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.

    Science.gov (United States)

    Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu

    2016-10-01

    This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully. PMID:27687230

  11. Atmospheric Degradation Initiated by OH Radicals of the Potential Foam Expansion Agent, CF3(CF2)2CH═CH2 (HFC-1447fz): Kinetics and Formation of Gaseous Products and Secondary Organic Aerosols.

    Science.gov (United States)

    Jiménez, Elena; González, Sergio; Cazaunau, Mathieu; Chen, Hui; Ballesteros, Bernabé; Daële, Véronique; Albaladejo, José; Mellouki, Abdelwahid

    2016-02-01

    The assessment of the atmospheric impact of the potential foam expansion agent, CF3(CF2)2CH═CH2 (HFC-1447fz), requires the knowledge of its degradation routes, oxidation products, and radiative properties. In this paper, the gas-phase reactivity of HFC-1447fz with OH radicals is presented as a function of temperature, obtaining kOH (T = 263-358 K) = (7.4 ± 0.4) × 10(-13)exp{(161 ± 16)/T} (cm(3)·molecule(-1)·s(-1)) (uncertainties: ±2σ). The formation of gaseous oxidation products and secondary organic aerosols (SOAs) from the OH + HFC-1447fz reaction was investigated in the presence of NOx at 298 K. CF3(CF2)2CHO was observed at low- and high-NOx conditions. Evidence of SOA formation (ultrafine particles in the range 10-100 nm) is reported with yields ranging from 0.12 to 1.79%. In addition, the absolute UV (190-368 nm) and IR (500-4000 cm(-1)) absorption cross-sections of HFC-1447fz were determined at room temperature. No appreciable absorption in the solar actinic region (λ > 290 nm) was observed, leaving the removal by OH radicals as the main atmospheric loss process for HFC-1447fz. The major contribution of the atmospheric loss of HFC-1447fz is due to OH reaction (84%), followed by ozone (10%) and chlorine atoms (6%). Correction of the instantaneous radiative efficiency (0.36 W m(-2)·ppbv(-1)) with the relatively short lifetime of HFC-1447fz (ca. 8 days) implies that its global warming potential at a time horizon of 100 year is negligible (0.19) compared to that of HCFC-141b (782) and to that of modern foam-expansion blowing agents (148, 882, and 804 for HFC-152a, HFC-245fa and HFC-365mfc, respectively). PMID:26704369

  12. Gradual surface degradation of restorative materials by acidic agents.

    Science.gov (United States)

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (pValiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss. PMID:21903509

  13. Tetrachloroethene degradation by reducing-agent enhanced Fe(II)/Fe(III) catalyzed percarbonate

    Science.gov (United States)

    Miao, Z.; Brusseau, M. L.; Lu, S.; Gu, X.; Yan, N.; Qiu, Z.; Sui, Q.

    2015-12-01

    This project investigated the effect of reducing agents on the degradation of tetrachloroethene(PCE) by Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC). SPC possesses similar function as liquid H2O2, such that free H2O2 is released into solution when percarbonate is mixed with water. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redoxcycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations.The results of chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO● was the predominant radical in the system and that O2●-played a minor role. This was further confirmed by the results of electron paramagnetic resonance measurements and salicylic acid hydroxylationanalysis by high performance liquid chromatography(HPLC). PCE degradation decreased significantly with the addition of isopropanol, a strong HO● scavenger, supporting the hypothesis that HO● was primarily responsible for PCE degradation. It should be noted that the release of Cl- was slightly delayed in the first 20 mins, indicating that intermediate products were produced. However, gas chromatography mass spectrometry (GC/MS) analysis did not detect any chlorinated organic compound except PCE, indicating these intermediates were quickly degraded, which resulted in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  14. Degradation of the blister agent sulfur mustard, bis(2-chloroethyl) sulfide, on concrete.

    Science.gov (United States)

    Brevett, Carol A S; Sumpter, Kenneth B; Wagner, George W; Rice, Jeffrey S

    2007-02-01

    The products formed from the degradation of the blister agent sulfur mustard [bis(2-chloroethyl) sulfide] on concrete were identified using gas chromatography with mass spectrometry detection (GC/MSD), (1)H NMR, 2D (1)H-(13)C NMR and (13)C solid state magic angle spinning (SSMAS) NMR. In situ and extraction experiments were performed. Sulfur mustard was detected in the in situ (13)C SSMAS samples for 12 weeks, whereas less than 5% of the sulfur mustard was detected in extracts from the concrete monoliths after 8 days. Sulfonium ions and (2-chloroethylthio)ethyl ether (T) were observed on the in situ samples after a period of 12 weeks, whereas vinyl species and bis(2-chloroethyl) sulfoxide were observed in the extracts of the concrete monoliths within 24h. The differences between the extraction and the SSMAS data indicated that the sulfur mustard existed in the concrete in a non-extractable form prior to its degradation. Extraction methods alone were not sufficient to identify the products; methods to identify the presence of non-extractable degradation products were also required.

  15. Bioenergy production on degraded and marginal land

    OpenAIRE

    Wicke, B.

    2011-01-01

    Current global energy supply is primarily based on fossil fuels and is widely considered to be unsustainable. Bioenergy is considered an important option in making future global energy more sustainable. However, increasing global trade and consumption of bioenergy in industrialised countries has been accompanied by a growing concern about the environmental, ecological, and social impacts of (modern) bioenergy production. But producing bioenergy on degraded or marginal land may avoid many of t...

  16. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    Science.gov (United States)

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation.

  17. In vitro kinetics of nerve agent degradation by fresh frozen plasma (FFP).

    Science.gov (United States)

    Wille, Timo; Thiermann, Horst; Worek, Franz

    2014-02-01

    Great efforts have been undertaken in the last decades to develop new oximes to reactivate acetylcholinesterase inhibited by organophosphorus compounds (OP). So far, a broad-spectrum oxime effective against structurally diverse OP is still missing, and alternative approaches, e.g. stoichiometric and catalytic scavengers, are under investigation. Fresh frozen plasma (FFP) has been used in human OP pesticide poisoning which prompted us to investigate the in vitro kinetics of OP nerve agent degradation by FFP. Degradation was rapid and calcium-dependent with the G-type nerve agents tabun, sarin, soman and cyclosarin with half-lives from 5 to 28 min. Substantially longer and calcium-independent degradation half-lives of 23-33 h were determined with the V-type nerve agents CVX, VR and VX. However, at all the tested conditions, the degradation of V-type nerve agents was several-fold faster than spontaneous hydrolysis. Albumin did not accelerate the degradation of nerve agents. In conclusion, the fast degradation of G-type nerve agents by FFP might be a promising tool, but would require transfusion shortly after poisoning. FFP does not seem to be suitable for detoxifying relevant agent concentrations in case of human poisoning by V-type nerve agents.

  18. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  19. Natural product as potential of radioprotective agents

    Directory of Open Access Journals (Sweden)

    S.J. Hosseinimehr, Ph.D.

    2007-01-01

    Full Text Available AbstractSince exposure to irradiation in radiotherapy or unwanted radiation, induces side effects to health, it is important to makear effort to protect humans against side effects induced by irradiation. In these cases, radioprotective drugs could be used to reduce or delay the side effects and the mortality induced by irradiation. Although, thiol compounds were early compounds in these categories, administration of these agents have induced serious side effects and is limited to use clinically. The search for less-toxic radiation protectors has spurred interest in the development of natural products. Natural products have mainly antioxidant and immunostimulant activity. Cytokines and androsetendiol have immunomudulatory effects in the prevention of mortality induced by gamma irradiation in animal model. Many studies have showed herbal medicine has good radioprotective effects. Flavonoids are one of the main chemical compositions in herbal medicine with antioxidant activity. Although, these natural products had low efficacy in comparison to thiol compounds, they have low toxicity. This review focused on recent radioprotective agents with natural origin that have more potential effects.

  20. Fate of products of degradation processes: consequences for climatic change

    NARCIS (Netherlands)

    Slanina, J.; Brink, ten H.M.; Khlystov, A.

    1999-01-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due

  1. Entamoeba histolytica-Secreted Products Degrade Colonic Mucin Oligosaccharides

    OpenAIRE

    Moncada, Darcy; Keller, Kathy; Chadee, Kris

    2005-01-01

    Degradation of the mucus layer by Entamoeba histolytica is a prerequisite for invasion of the colonic mucosa. In this study, we demonstrate that amoeba-secreted products degrade 3H-labeled and native colonic mucin oligosaccharides independently of proteolytic activity. We conclude that E. histolytica degrades mucin oligosaccharides, which may facilitate parasite invasion of the colon.

  2. Advice on Degradation Products in Pharmaceuticals: A Toxicological Evaluation.

    Science.gov (United States)

    Melo, Sâmia Rocha de Oliveira; Homem-de-Mello, Maurício; Silveira, Dâmaris; Simeoni, Luiz Alberto

    Degradation products are unwanted chemicals that can develop during the manufacturing, transportation, and storage of drug products and can affect the efficacy of pharmaceutical products. Moreover, even small amounts of degradation products can affect pharmaceutical safety because of the potential to cause adverse effects in patients. Consequently, it is crucial to focus on mechanistic understanding, formulation, storage conditions, and packaging to prevent the formation of degradation products that can negatively affect the quality and safety of the drug product. In this sense, databases and software that help predict the reactions involving the pharmaceutically active substance in the presence of degradation conditions can be used to obtain information on major degradation routes and the main degradation products formed during pharmaceutical product storage. In some cases, when the presence of a genotoxic degradation product is verified, it is necessary to conduct more thorough assessments. It is important to consider the chemical structure to distinguish between compounds with toxicologically alerting structures with associated toxic/genotoxic risks and compounds without active structures that can be treated as ordinary impurities. Evaluating the levels of degradation products based on a risk/benefit analysis is mandatory. Controlling critical variables during early development of drug products and conducting a follow-up study of these impurities can prevent degradation impurities present at concentrations greater than threshold values to ensure product quality. The definition of the impurity profile has become essential per various regulatory requirements. Therefore, this review includes the international regulatory perspective on impurity documents and the toxicological evaluation of degradation products. Additionally, some techniquesused in the investigation of degradation products and stability-indicating assay methods are highlighted.

  3. Embedded Autonomous Agents in Products Supporting Repair and Recycling

    OpenAIRE

    van Moergestel, Leo; Puik, Erik; Telgen, Daniël; Meyer, John-Jules

    2013-01-01

    This paper describes a concept where products are equipped with agents that will assist in recycling and repairing the product. These so-called product agents represent the product in cyberspace and are capable to negotiate with other products in case of recycling or repair. Some product agents of broken products will offer spare parts, other agents will look for spare parts to repair a broken product. On the average this will enlarge the lifetime of a product and in some cases prevent wastin...

  4. Degradation of biological weapons agents in the environment: implications for terrorism response.

    Science.gov (United States)

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures. PMID:15884371

  5. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan [Nanchang University, College of Chemistry (China); Gu, Zhe-Jia [Nanchang University, Institute for Advanced Study (China); Zhao, Dawen [UT Southwestern Medical Center, Department of Radiology (United States); Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2015-09-15

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF{sub 3} nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration.

  6. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF3 nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration

  7. Ge{sup 4+} doped TiO{sub 2} for stoichiometric degradation of warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We prepared nanodisperse Ge{sup 4+} doped titania by a novel synthesis method. Black-Right-Pointing-Pointer Synthesis does not involve organic solvents, organometallics nor thermal processes. Black-Right-Pointing-Pointer The prepared materials are efficient in removal of chemical warfare agents. Black-Right-Pointing-Pointer Ge{sup 4+} doping improves rate of removal of soman and agent VX by TiO{sub 2}. - Abstract: Germanium doped TiO{sub 2} was prepared by homogeneous hydrolysis of aqueous solutions of GeCl{sub 4} and TiOSO{sub 4} with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge{sup 4+} doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge{sup 4+} doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

  8. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m-2. Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  9. Sinalbin degradation products in mild yellow mustard paste

    Directory of Open Access Journals (Sweden)

    Paunović Dragana

    2012-01-01

    Full Text Available Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenylacetonitrile. The most abundant sinalbin degradation product in yellow mustard paste was 4-(hydroxymethylphenol. Other compounds identified in this sample were: 4-methyl phenol, 4-ethyl phenol, 4-(2-hydroxyethylphenol and 2-(4-hydroxyphenyl ethanoic acid.

  10. Sinalbin degradation products in mild yellow mustard paste

    OpenAIRE

    Paunović Dragana; Šolević-Knudsen Tatjana; Krivokapić Mirjana; Zlatković Branislav; Antić Mališa

    2012-01-01

    Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS) technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenyl)acetonitrile. The most a...

  11. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.

    Science.gov (United States)

    Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji

    2014-02-26

    Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique. PMID:24483598

  12. Thermal degradation of triazine herbicides substituted by Cl. Identification of triazine degradation products

    International Nuclear Information System (INIS)

    The thermal degradation of biologically active triazines, whose Cl substituent is bonded to the heterocyclic ring, is a multi-stage process. The final products are high molecular compounds. Investigations of these compounds were performed using the thermogravimetric method (TG) at the temperature range from ambient temperature to about 850 K using the Q technique and labyrinth crucibles. MALDI TOF spectrometry and elementary analysis were also used to confirm the degradation products' structures. The compounds identified after the measurement were identified as dealkylation products, compounds with removed amino group and high molecular weight products

  13. Degradation of triphenylborane-pyridine antifouling agent in water by copper ions.

    Science.gov (United States)

    Tsuboi, Ai; Okamura, Hideo; Kaewchuay, Netnapit; Fukushi, Keiichi; Zhou, Xiaojian; Nishida, Tomoaki

    2013-01-01

    Triphenylborane-pyridine (TPBP) is an antifouling compound used in Asian countries, including Japan, and its residue has not been detected in aquatic environments to date. There are limited data on its fate for environmental management. The purpose of this study was to evaluate whether TPBP is degraded by metal ions in aquatic environments. TPBP with metal ions in 20 mM sodium acetate buffer at pH 8.0 was placed at 25 degrees C in the dark for 24 h. The concentrations of TPBP and its degradation products, such as diphenylboronic acid, phenylboronic acid (MPB), phenol, benzene, biphenyl, and boron were determined. The presence of copper ions (50 mg/l), but not zinc or manganese ions, resulted in complete degradation of TPBP in 24 h. The TPBP degradation was much faster than the boron production in the initial reaction (0-1 h) with copper salts, depending on the copper salts tested. TPBP was degraded by copper ions (5 mg/l) in 24 h, producing phenol, MPB, biphenyl, and borate. Cu2+ as copper(II) chloride or copper(II) acetate led to complete degradation of TPBP, and thylenediaminetetraacetic acid disodium salt addition suppressed the TPBP degradation. Cu+ as copper(I) acetate also completely degraded TPBP, and bathocuproine addition suppressed the TPBP degradation. This suggests that copper ions existing in natural environments might degrade TPBP released from antifouling paint into water, and this could be one of the important mechanisms to dissipate TPBP residues in aquatic environments. PMID:24527648

  14. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. PMID:27507471

  15. Degradation kinetics and products of triazophos in intertidal sediment

    Institute of Scientific and Technical Information of China (English)

    LIN Kun-de; YUAN Dong-xing

    2005-01-01

    This work presents laboratory studies on the degradation of triazophos in intertidal sediment. The overall degradations were found to follow the first-order decay model. After being incubated for 6 d, the percentage of degradations of triazophos in unsterilized and sterilized sediments were 94.5% and 20.5%, respectively. Between the temperatures of 15℃ and 35℃, the observed degradation rate constant( kobsd ) enhanced as the incubation temperature increased. Triazophos in sediment degraded faster under aerobic condition than under anaerobic one. The water content of sediment had little influence on the degradation when it was in the range of 50%-100%. The values of kobsd decreased with increasing initial concentration of triazophos in sediment, which could result from the microorganism inhibition by triazophos. Four major degradation products, o, o-diethyl phosphorothioic acid, monoethyl phosphorothioic acid, phosphorothioic acid,and 1-phenyl-3-hydroxy-1,2,4-triazole, were tentatively identified as their corresponding trimethylsilyl derivatives with a gas chromatography-mass spectrometer. The possible degradation pathway of triazophos in intertidal sediment was proposed. The results revealed that triazophos in intertidal sediment was relatively unstable and could be easily degraded.

  16. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    NARCIS (Netherlands)

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  17. The identification and degradation of isosaccharinic acid, a cellulose degradation product

    International Nuclear Information System (INIS)

    Nirex is seeking to develop a deep underground repository for the disposal of solid intermediate-level and low-level radioactive wastes (ILW and LLW) in the UK. One possible influence on the behavior of radionuclides is the formation of water-soluble complexants by the degradation of the solid organic polymers that will be present in the wastes. The degradation products of cellulose have been shown to increase the solubility of plutonium and other radionuclides and to reduce sorption onto near-field and far-field materials. Degradation of cellulose under anaerobic alkaline conditions produces a range of organic acids. In this paper 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid, ISA) is identified by High Performance Liquid Chromatography as a significant component of cellulose leachates. A combination of fractionation of cellulose leachates and plutonium solubility determinations shows that ISA is responsible for the majority of the enhancement of plutonium solubility observed in such leachates. Further degradation of ISA by chemical or microbial action may lessen the effect of degraded cellulose leachates. Experiment studies on the chemical degradation of this compound under alkaline conditions suggest that the presence of oxygen is required. Microbial degradation studies show that the plutonium solubility in solutions of ISA is reduced by their exposure to microbial action

  18. Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate.

    Science.gov (United States)

    Purushottamachar, Puranik; Kwegyir-Afful, Andrew K; Martin, Marlena S; Ramamurthy, Vidya P; Ramalingam, Senthilmurugan; Njar, Vincent C O

    2016-07-14

    Degradation of all forms of androgen receptors (ARs) is emerging as an advantageous therapeutic paradigm for the effective treatment of prostate cancer. In continuation of our program to identify and develop improved efficacious novel small-molecule agents designed to disrupt AR signaling through enhanced AR degradation, we have designed, synthesized, and evaluated novel C-3 modified analogues of our phase 3 clinical agent, galeterone (5). Concerns of potential in vivo stability of our recently discovered more efficacious galeterone 3β-imidazole carbamate (6) led to the design and synthesis of new steroidal compounds. Two of the 11 compounds, 3β-pyridyl ether (8) and 3β-imidazole (17) with antiproliferative GI50 values of 3.24 and 2.54 μM against CWR22Rv1 prostate cancer cell, are 2.75- and 3.5-fold superior to 5. In addition, compounds 8 and 17 possess improved (∼4-fold) AR-V7 degrading activities. Importantly, these two compounds are expected to be metabolically stable, making them suitable for further development as new therapeutics against all forms of prostate cancer. PMID:27437082

  19. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  20. Solvent degradation products in nuclear fuel processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  1. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    OpenAIRE

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost production platforms have been developed in our research. These reconfigurable platforms are called equiplets. A grid of these equiplets connected by a fast network is capable of producing a varie...

  2. Gamma Radiolytic Degradation of 4-Chlorophenol Determination of Degraded Products with HPLC and GC-MS

    Directory of Open Access Journals (Sweden)

    S. Bilal Butt

    2007-12-01

    Full Text Available Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G –value for 4-CP of 0.38 and 1.35 was achieved in 20 and 100mg/dm3 solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS.

  3. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  4. Degradation of net primary production in a semiarid rangeland

    Science.gov (United States)

    Jackson, Hasan; Prince, Stephen D.

    2016-08-01

    Anthropogenic land degradation affects many biogeophysical processes, including reductions of net primary production (NPP). Degradation occurs at scales from small fields to continental and global. While measurement and monitoring of NPP in small areas is routine in some studies, for scales larger than 1 km2, and certainly global, there is no regular monitoring and certainly no attempt to measure degradation. Quantitative and repeatable techniques to assess the extent of deleterious effects and monitor changes are needed to evaluate its effects on, for example, economic yields of primary products such as crops, lumber, and forage, and as a measure of land surface properties which are currently missing from dynamic global vegetation models, assessments of carbon sequestration, and land surface models of heat, water, and carbon exchanges. This study employed the local NPP scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland, Australia, from 2000 to 2013. The method starts with land classification based on the environmental factors presumed to control (NPP) to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference in units of mass of carbon and percentage loss were the measure of degradation. The entire BDT (7.45 × 106 km2) was investigated at a spatial resolution of 250 × 250 m. The average annual reduction in NPP due to anthropogenic land degradation in the entire BDT was -2.14 MgC m-2 yr-1, or 17 % of the non-degraded potential, and the total reduction was -214 MgC yr-1. Extreme average annual losses of 524.8 gC m-2 yr-1 were detected. Approximately 20 % of the BDT was classified as "degraded". Varying severities and rates of degradation were found among the river basins, of which the Belyando and Suttor were highest. Interannual, negative trends in reductions of NPP occurred in 7 % of the

  5. Development of a sensor for polypropylene degradation products.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Howell, Stephen Wayne; Hochrein, James Michael; Dirk, Shawn M.; Bernstein, Robert; Washburn, Cody M.; Graf, Darin C.

    2009-04-01

    This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.

  6. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  7. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Directory of Open Access Journals (Sweden)

    Paula González Seligra

    2016-06-01

    Full Text Available Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016 [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  8. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    Science.gov (United States)

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  9. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    Science.gov (United States)

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry. PMID:25460745

  10. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  11. Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent.

    Science.gov (United States)

    Wang, Xiuxiu; Zhang, Jian; Cheng, Ru; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2016-03-14

    Reductively degradable biopolymers have emerged as a unique class of smart biomedical materials. Here, a functional coupling agent, cystamine diisocyanate (CDI), was designed to offer a facile access to reductively degradable biopolymers via polycondensation with various diols. CDI was readily obtained with a decent yield of 46% by reacting cystamine dihydrochloride with triphosgene. The polycondensation of oligo(ethylene glycol) diol (Mn = 0.4 or 1.5 kg/mol) or oligo(ε-caprolactone) diol (Mn = 0.53 kg/mol) with CDI in N,N-dimethylformamide at 60 °C using dibutyltin dilaurate as a catalyst afforded reductively degradable poly(ethylene glycol) (SSPEG, Mn = 6.2-76.8 kg/mol) or poly(ε-caprolactone) (SSPCL, Mn = 6.8-16.3 kg/mol), in which molecular weights were well controlled by diol/CDI molar ratios. Moreover, PEG-SSPCL-PEG triblock copolymers could be readily prepared by reacting dihydroxyl-terminated SSPCL with PEG-isocyanate derivative. PEG-SSPCL-PEG with an Mn of 5.0-16.3-5.0 kg/mol formed small-sized micelles with an average diameter of about 85 nm in PB buffer. The in vitro release studies using doxorubicin (DOX) as a model drug showed that, in sharp contrast to reduction-insensitive PEG-PCL(HDI)-PEG controls, drug release from PEG-SSPCL-PEG micelles was fast and nearly complete in 24 h under a reductive condition containing 10 mM glutathione. The confocal microscopy experiments in drug-resistant MCF-7 cells (MCF-7/ADR) displayed efficient cytoplasmic DOX release from PEG-SSPCL-PEG micelles. MTT assays revealed that DOX-loaded PEG-SSPCL-PEG micelles were much more potent against MCF-7/ADR cells than reduction-insensitive PEG-PCL(HDI)-PEG controls (IC50: 6.3 vs 55.4 μg/mL). It should further be noted that blank PEG-SSPCL-PEG micelles were noncytotoxic up to a tested concentration of 1 mg/mL. Hence, cystamine diisocyanate appears to be an innovative coupling agent that facilitates versatile synthesis of biocompatible and reductively degradable biopolymers.

  12. Production and degradation of polyhydroxyalkanoates in waste environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Choi, J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  13. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  14. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  15. Plasma cross linked fibrin degradation products in pulmonary embolism.

    OpenAIRE

    Rowbotham, B J; Egerton-Vernon, J; Whitaker, A. N.; Elms, M J; Bunce, I H

    1990-01-01

    Plasma concentrations of cross linked fibrin degradation products, a marker of intravascular thrombosis and fibrinolysis, were measured in 495 patients with suspected pulmonary embolism referred for ventilation-perfusion lung scanning to determine whether concentrations are increased in pulmonary embolism and their potential use in diagnosis. Lung scans were described as normal (n = 66) or as showing a low (n = 292), indeterminate (n = 58), or high probability (n = 79) of pulmonary embolism. ...

  16. C3 degradation products (C3d) in normal pregnancy.

    OpenAIRE

    Jenkins, J. S.; Powell, R.J.

    1987-01-01

    Plasma C3 degradation products (C3d) were measured in 65 normal pregnancies and compared with those of non-pregnant women. No significant difference was detected between the two groups, although a difference had been previously reported. Plasma C3d estimations give an indication of complement activation and may be used as an indicator of disease activity in patients with systemic lupus erythematosus (SLE), irrespective of pregnancy.

  17. Fate of products of degradation processes: consequences for climatic change.

    Science.gov (United States)

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions. PMID:10070730

  18. Detection of the spectroscopic signatures of explosives and their degradation products

    Science.gov (United States)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  19. Anticancer agent-based marine natural products and related compounds.

    Science.gov (United States)

    Chen, Jian-Wei; Wu, Qi-Hao; Rowley, David C; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed. PMID:25559315

  20. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.

    Science.gov (United States)

    Gouda, Mona K; Kleeberg, Ilona; van den Heuvel, Joop; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    2002-01-01

    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.

  1. DETERMINATION OF INTERFERING TRIAZINE DEGRADATION PRODUCTS BY GAS CHROMATOGRAPHY-ION TRAP MASS SPECTROMETRY

    Science.gov (United States)

    Deethyl atrazine (DEA), along with other triazine degradation products, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic (GC) analysis, deethyl atrazine, a degradation product of atrazine, can ...

  2. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  3. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    .8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion......Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4...... achievable by intermittent product removal during cellulose hydrolysis....

  4. Using Intelligent Agents to Understand Management Practices and Retail Productivity

    CERN Document Server

    Siebers, Peer-Olaf; Celia, Helen; Clegg, Christopher

    2008-01-01

    Intelligent agents offer a new and exciting way of understanding the world of work. In this paper we apply agent-based modeling and simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents could offer potential for fostering sustainable organizational capabilities in the future. The project is still at an early stage. So far we have conducted a case study in a UK department store to collect data and capture impressions about operations and actors within departments. Furthermore, based on our case study we have built and tested our first version of a retail branch simulator which we will present in this paper.

  5. Photodegradation of sparfloxacin and isolation of its degradation products by preparative HPLC

    Directory of Open Access Journals (Sweden)

    E. E.S. Schapoval

    2009-01-01

    Full Text Available

    Sparfloxacin, a third generation fluoroquinolone derivative, is a potent antibacterial agent active against a wide range of Gram-positive and Gram-negative organisms including Streptococcus pneumoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp., Mycoplasma spp., Chlamydia spp. and Mycobacterium spp. A drawback of fluoroquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, there are few published of analytical methods being applied to sparfloxacin. The aim in this study was to determine the photodegradation products of sparfloxacin, when submitted to UV light, and to characterize two of these products, designated SPAX-PDP1 and SPAX-PDP2. An accelerated study of stability in methanol solution was carried out by exposing a solution of sparfloxacin to UV light (peak wavelength 290 nm for 36 hours at room temperature. The products were analyzed by NMR spectrophotometry, IR spectrometry and mass spectrophotometry. The results suggest that the products isolated here could be used to estimate the degradation of sparfloxacin in a stability study. However, the low activity exhibited by UV-irradiated sparfloxacin is a source of concern that demands further investigation of the mechanism of its photodegradation mechanism. Keywords: Degradation products, fluoroquinolone, photodegradation, quality control, sparfloxacin, stability.

  6. Product Distribution Theory for Control of Multi-Agent Systems

    Science.gov (United States)

    Lee, Chia Fan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.

  7. Ontology-based, multi-agent support of production management

    Science.gov (United States)

    Meridou, Despina T.; Inden, Udo; Rückemann, Claus-Peter; Patrikakis, Charalampos Z.; Kaklamani, Dimitra-Theodora I.; Venieris, Iakovos S.

    2016-06-01

    Over the recent years, the reported incidents on failed aircraft ramp-ups or the delayed production in small-lots have increased substantially. In this paper, we present a production management platform that combines agent-based techniques with the Service Oriented Architecture paradigm. This platform takes advantage of the functionality offered by the semantic web language OWL, which allows the users and services of the platform to speak a common language and, at the same time, facilitates risk management and decision making.

  8. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.;

    1992-01-01

    The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  9. Effects of anti-foaming agents on biohydrogen production.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Bakonyi, Péter; Nemestóthy, Nándor; Bélafi-Bakó, Katalin; Kim, Sang-Hyoun

    2016-08-01

    The effects of antifoaming agents on fermentative hydrogen production using galactose in batch and continuous operations were investigated. Batch hydrogen production assays with LS-303 (dimethylpolysiloxane), LG-109 (polyalkylene), LG-126 (polyoxyethylenealkylene), and LG-299 (polyether) showed that the doses and types of antifoaming agents played a significant role in hydrogen production. During batch tests, LS-303 at 100μL/L resulted in the maximum hydrogen production rate (HPR) and hydrogen yield (HY) of 2.5L/L-d and 1.08mol H2/mol galactoseadded, respectively. The following continuously stirred tank reactor operated at 12h HRT with LS-303 at 100μL/L showed a stable HPR and HY of 4.9L/L-d and 1.17mol H2/mol galactoseadded, respectively, which were higher than those found for the control reactor. Microbial community analysis supported the alterations in H2 generation under different operating conditions and the stimulatory impact of certain antifoaming chemicals on H2 production was demonstrated. PMID:26995320

  10. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.; Avens, L. [Los Alamos National Lab., NM (United States)

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  11. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.A. [Los Alamos National Lab., NM (United States)

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  12. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  13. Identification of forced degradation products of tamsulosin using liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Namdev, Deepak; Borkar, Roshan M; Raju, B; Kalariya, Pradipbhai D; Rahangdale, Vinodkumar T; Gananadhamu, S; Srinivas, R

    2014-01-01

    A rapid and gradient high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of tamsulosin. Tamsulosin, a selective α1-adrenoceptor antagonist, was subjected to forced degradation studies under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per ICH guidelines Q1A (R2). The drug degraded significantly under hydrolytic (base and neutral), thermal, oxidative and photolytic conditions, while it was stable to acid hydrolytic stress conditions. A total of twelve degradation products were formed and the chromatographic separation of the drug and its degradation products were achieved on a GRACE C-18 column (250mm×4.6mm, 5μm). All the degradants have been identified and characterized by LC/ESI-MS/MS and accurate mass measurements. To elucidate the structures of degradation products, fragmentation of the [M+H](+) ions of tamsulosin and its degradation products was studied by using LC-MS/MS experiments combined with accurate mass measurements. The product ions of all the protonated degradation products were compared with the product ions of protonated tamsulosin to assign most probable structures for the observed degradation products. PMID:24083958

  14. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. PMID:26912197

  15. Production of Anti-Cancer Agent Using Microbial Biotransformation

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-10-01

    Full Text Available Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa. It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.

  16. Electroanalytical determination of the sunscreen agent octocrylene in cosmetic products.

    Science.gov (United States)

    Júnior, J B G; Araujo, T A; Trindade, M A G; Ferreira, V S

    2012-02-01

    An electroanalytical method was developed to detect and quantify the sunscreen agent octocrylene (OCR) in cosmetic products. The method was based on electrochemical reduction, using voltammetric techniques. OCR was reduced at -0.97 V vs. Ag/AgCl on a glassy carbon electrode using a mixture of Britton-Robinson buffer (0.04 mol L(-1)) and ethanol (7 : 3, v/v) as the supporting electrolyte solution. Under optimized conditions and square-wave voltammetry, OCR response was linear from 5.0 × 10(-6) to 8.0 × 10(-5) mol L(-1) (r = 0.9995), with a limit of detection of 2.8 × 10(-6) mol L(-1). The proposed electroanalytical method proved simple, fast and suitable for detection and quantification of OCR in samples of cosmetic products, with satisfactory results in the recovery test and analytical determination in real samples.

  17. In vitro degradation and total gas production of byproducts generated in the biodiesel production chain

    Directory of Open Access Journals (Sweden)

    Raissa Kiara oliveira de Morais

    2015-05-01

    Full Text Available This study aimed to evaluate the in vitro degradation and total gas production of different oil seed press cakes from a biodiesel production chain gas through the use of a semi-automatic technique of gas production in vitro. The treatments consisted of substituting elephant grass in increasing levels, 0%, 30, 50 and 70%, with the byproducts of Gossyypium hirsutum, Ricinus communis, Moringa oleifeira, Jatropha curcas and Helianthus annus. The oil seed press cakes of Moringa oleifeira had the highest rate of in vitro degradation of dry matter compared with other foods but did not result in a higher final volume of gases production. Gossyypium hirsutum, Pinhão manso curcas and Ricinus communis showed a higher in vitro degradability of similar dry matter. The highest total gas production was obtained by the oil seed press cakes of Helianthus annus. The oil seed press cakes of Moringa oleifeira can replace elephant grass up to 70% and therefore reduce both greenhouse gas emissions and energy loss for the animal.

  18. Assessing the impact of soil degradation on food production

    NARCIS (Netherlands)

    Bindraban, P.S.; Velde, van der M.; Ye, L.; Berg, van den M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdottir, K.V.; Jongschaap, R.E.E.; Hoogmoed, M.; Hoogmoed, W.B.; Beek, C.L.; Lynden, van G.W.J.

    2012-01-01

    Continuing soil degradation remains a serious threat to future food security. Yet, global soil degradation assessments are based on qualitative expert judgments or remotely sensed quantitative proxy values that suffice to raise awareness but are too coarse to identify appropriate sustainable land ma

  19. Four new degradation products of doxorubicin:An application of forced degradation study and hyphenated chromatographic techniques

    Institute of Scientific and Technical Information of China (English)

    Dheeraj Kaushik; Gulshan Bansal

    2015-01-01

    Forced degradation study on doxorubicin (DOX) was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH) guidelines Q1(R2). It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hy-drolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I-O-IV) in oxidative condition, and to single product (A-I) in acid hydrolytic condition. These products were re-solved on a C8 (150 mm × 4.6 mm, 5μm) column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5), acetonitrile and methanol (65:15:20, / / ). Liquid chromatography-pho-todiode array (LC-PDA) technique was used to ascertain the purity of the products noted in LC-UV chromatogram. For their characterization, a six stage mass fragmentation (MS6) pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI) as well as through accurate mass spectral data of DOX and the products generated through liquid chromato-graphy-time of flight mass spectrometry (LC-MS-TOF) on degraded drug solutions. Based on it, O-I-O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldox-orubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, re-spectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed.

  20. Natural Products as a Source for Antileishmanial and Antitrypanosomal Agents.

    Science.gov (United States)

    Scotti, Marcus Tullius; Scotti, Luciana; Ishiki, Hamilton; Ribeiro, Frederico Fávaro; Cruz, Rayssa Marques Duarte da; Oliveira, Michelle Pedrosa de; Mendonça, Francisco Jaime Bezerra

    2016-01-01

    Natural products are compounds extracted from plants, marine organisms, fungi or bacteria. Many researches for new drugs are based on these natural molecules, mainly by beneficial effects on health, health, efficacy, and therapeutic safety. Leishmaniosis, Chagas disease and African sleeping sickness are neglected diseases caused by the Leishmania and Trypanosoma ssp. parasites. These infections mainly affect population of developing countries; they have different symptoms, and may often lead to death. The therapeutic drugs available to treat these diseases are either obsolete, toxic, or have questionable efficacy, possibly through encountering resistance. Discovery of new, safe, effective, and affordable molecules is urgently needed. Natural organisms, as marine metabolites, alkaloids, flavonoids, steroids, terpene and coumarins provide innumerable molecules with the potential to treat these diseases. This study examines studies of natural bioactive compounds as antileishmanial and antitrypanosomal agents. PMID:27682867

  1. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard;

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  2. Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kunlun; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Fe + SiO{sub 2} shows better performance than CaO in mechanochemical destruction of TBBPA. Black-Right-Pointing-Pointer Nonhazardous inorganic carbon and soluble bromide were the final products. Black-Right-Pointing-Pointer Raman and FTIR imply the generation of inorganic carbon and removal of bromine atom. Black-Right-Pointing-Pointer Tri-BBPA, bi-BBPA, mono-BBPA, BPA were the main intermediates during ball milling. Black-Right-Pointing-Pointer The bromine was balanced and the degradation pathway was proposed. - Abstract: Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), which has received more and more concerns due to its high lipophilicity, persistency and endocrine disrupting property in the environment. Considering the possible need for the safe disposal of TBBPA containing wastes in the future, the potential of mechanochemical (MC) destruction as a promising non-combustion technology was investigated in this study. TBBPA was co-ground with calcium oxide (CaO) or the mixture of iron powder and quartz sand (Fe + SiO{sub 2}) in a planetary ball mill at room temperature. The method of Fe + SiO{sub 2} destructed over 98% of initial TBBPA after 3 h and acquired 95% debromination rate after 5 h, which showed a better performance than the CaO method. Raman spectra and Fourier transform infrared spectroscopy (FTIR) demonstrated the generation of inorganic carbon with the disappearance of benzene ring and C-Br bond, indicating the carbonization and debromination process during mechanochemical reaction. LC-MS-MS screening showed that the intermediates of the treatment with Fe + SiO{sub 2} were tri-, bi-, mono-brominated BPA, BPA and other fragments. Finally all the intermediates were also destroyed after 5 h grinding. The bromine balance was calculated and a possible reaction pathway was proposed.

  3. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  4. Characteristics and kinetics of catalpol degradation and the effect of its degradation products on free radical scavenging

    Directory of Open Access Journals (Sweden)

    Guo-dong Wei

    2014-01-01

    Full Text Available Background: The dried and steamed roots of Rehmannia glutinosa have different pharmacological functions and indications. Catalpol, the main active component of the dried root, was found to be entirely degraded together with amino acids and some oligosaccharides during preparation of the steamed root. Its degradation may contribute to the differences between dried and steamed roots. Objective: To reveal the characteristics and kinetics of catalpol degradation, and evaluate its influence on the antioxidant properties of steamed Rehmannia roots. Materials and Methods: Purified catalpol was heated under different pH and temperature values for different times, alone or with sugars or amino acids. Catalpol concentration was determined by high-performance liquid chromatography. Browning was expressed by the absorbance at 420 nm (A 420 , and antioxidation was displayed by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging ability (SA DPPH . Activation energy was calculated using Arrhenius plotting. Results: Catalpol was stable in neutral conditions and sensitive to acidic pH under high temperatures. Sugars had no influence on catalpol degradation; however, most amino acids, except for proline, could promote the degradation, and were associated with an increase in A 420 and SA DPPH values. These changes were proved to be mainly related with catalpol aglycone and were dependent on the presence of amino acids. Catalpol degradation was found to obey first-order kinetics. The activation energies were 81.7, 88.8 and 98.7 kJ/mol at pH 4.0, 5.0, and 6.0 respectively, and 70.7 kJ/mol at pH 4.0 value and in the presence of glycine. Conclusions: Catalpol degradation, especially, in the presence of amino acids can substantially boost antioxidant properties of the products; therefore, the traditional method for processing Rehmannia root seems rather apt.

  5. Selective determination of ertapenem in the presence of its degradation product

    Science.gov (United States)

    Hassan, Nagiba Y.; Abdel-Moety, Ezzat M.; Elragehy, Nariman A.; Rezk, Mamdouh R.

    2009-06-01

    Stability-indicative determination of ertapenem (ERTM) in the presence of its β-lactam open-ring degradation product, which is also the metabolite, is investigated. The degradation product has been isolated, via acid-degradation, characterized and elucidated. Selective quantification of ERTM, singly in bulk form, pharmaceutical formulations and/or in the presence of its major degradant is demonstrated. The indication of stability has been undertaken under conditions likely to be expected at normal storage conditions. Among the spectrophotometric methods adopted for quantification are first derivative ( 1D), first derivative of ratio spectra ( 1DD) and bivariate analysis.

  6. Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents.

    Science.gov (United States)

    Tsao, Nadia H; Hall, Elizabeth A H

    2016-06-28

    The fabrication of an enzyme-degradable polymer/silica hybrid microbubble is reported that produces an ultrasound contrast image. The polymer, a triethoxysilane end-capped polycaprolactone (SiPCL), is used to incorporate enzyme-degradable components into a silica microbubble synthesis, and to impart increased elasticity for enhanced acoustic responsiveness. Formulations of 75, 85, and 95 wt % SiPCL in the polymer feed produced quite similar ratios of SiPCL and silica in the final bubble but different surface properties. The data suggest that different regions of the microbubbles were SiPCL-rich: the inner layer next to the polystyrene template core and the outer surface layer, thereby creating a sandwiched silica-rich layer of the bubble shell. Overall, the thickness of the microbubble shell was dependent on the starting TEOS concentration and the reaction time. Despite the layered structure, the microbubble could be efficiently degraded by lipase enzyme, but was stable without enzyme. The ultrasound contrast showed a general trend of increase in image intensity with SiPCL feed ratio, although the 95 wt % SiPCL bubbles did not produce a contrast image, probably due to bubble collapse. At higher normalized peak negative acoustic pressure (mechanical index, MI), a nonlinear frequency response also emerges, characterized by the third harmonic at around 3f0, and increases with MI. The threshold MI transition from linear to nonlinear response increased with decrease in SiPCL. PMID:27245495

  7. Research of the degradation products of chitosan's angiogenic function

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Wan Changxiu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)], E-mail: wanchangxiu@163.com

    2008-11-15

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  8. Gamma Radiolytic Degradation of 4-Chlorophenol Determination of Degraded Products with HPLC and GC-MS

    OpenAIRE

    S. Bilal Butt; M. Nasir Masood; Nasir Hayat Hengra; M. Mansha Ch

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process...

  9. INTELLIGENT PRODUCT BASED ON MOBILE AGENT TO ACCELERATE THE NEW PRODUCT DEVELOPMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Abdelhak Boulaalam

    2013-01-01

    Full Text Available To improve the ever-increasing demands products that are customized, all business activities performed along the product life cycle must be coordinated and efficiently managed along the extended enterprise. For this, enterprise had wanted to retain control over the whole product lifecycle especially when the product is in use/repair/recycling (End of Life phase. Although there have been many previous research works about product lifecycle management in the Beginning of Life (BOL and Middle of Life (MOL phases, few addressed the End of Life (EOL phase, in particular. In this study, based on Auto-ID combined with mobile multi-agent system technologies, we will try to improve innovation: (a by minimize the lunch phase, (b and the involvement of the customer in product lifecycle (voice of customer."

  10. Is ascaridole a sensitizing degradation product in tea tree oil?

    NARCIS (Netherlands)

    Christoffers, Wietske Andrea; Blömeke, Brunhilde; Coenraads, Pieter Jan; Schuttelaar, Marielouise

    2014-01-01

    Background: Tea tree oil is a natural oil, which contains a-terpinene. Degradation of a-terpinene results in the endoperoxide ascaridole, which may cause allergic contact dermatitis. Objectives: To study the prevalence of sensitizations to ascaridole, the optimal patch test concentration, concomitan

  11. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  12. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.

    OpenAIRE

    Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; MATSUI, Saburo

    2009-01-01

    This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed...

  13. Development and validation of a stability-indicating LC-UV method for the determination of pantethine and its degradation product based on a forced degradation study.

    Science.gov (United States)

    Canavesi, Rossana; Aprile, Silvio; Varese, Elena; Grosa, Giorgio

    2014-08-01

    Pantethine (d-bis-(N-pantothenyl-β-aminoethyl)-disulfide, PAN), the stable disulfide form of pantetheine, has beneficial effects in vascular diseases being able to decrease the hyperlipidaemia, moderate the platelet function and prevent the lipid peroxidation. Furthermore, recent studies suggested that PAN may be an effective therapeutic agent for cerebral malaria and, possibly, for neurodegenerative processes. Interestingly, in the literature, there were no data dealing with the chemical stability and the analytical aspects of PAN. Hence, in the present work the chemical stability of PAN was for the first time established through a forced degradation study followed by liquid chromatography tandem mass spectrometry investigation showing the formation of three degradation products of PAN (PD1, PD2 and POx) arising from hydrolytic, thermal and oxidative stresses. Based on these data a stability-indicating LC-UV method for simultaneous estimation of PAN, and its most relevant degradation product (PD1) was developed and validated; moreover the method allowed also the separation and the quantification of the preservative system, constituted by a paraben mixture. The method showed linearity for PAN (0.4-1.2mgmL(-1)), MHB, PHB (0.4-1.2μgmL(-1)) and PD1 (2.5-100μgmL(-1)); the precision, determined in terms of intra-day and inter-day precision, expressed as RSDs, were in the ranges 0.4-1.2 and 0.7-1.4, respectively. The method demonstrated to be accurate and robust; indeed the average recoveries were 100.2, 99.9, and 100.0% for PAN, MHB and PHB, respectively, and 99.9% for PD1. By applying small variations of the mobile phase composition, counter-ion concentration and pH the separation of analytes was not affected. Finally, the applicability of this method was evaluated analyzing the available commercial forms at release as well as during stability studies. PMID:24863372

  14. A stability indicating HPLC method for the determination of clobazam and its basic degradation product characterization

    Science.gov (United States)

    2014-01-01

    Background Clobazam is used for the treatment of different types of seizure and epilepsy. The present research is undertaken to study the systematic forced degradation of clobazam and to identify its main degradation product under basic conditions. Methods The degradation of clobazam was studied under different conditions. Clobazam and its degradation products were separated using a Nova-Pak C18 column and a mixture of KH2PO4 50 mM (pH 8.5) and acetonitrile (50:50, v/v) as the mobile phase with UV detection at 230 nm. Results The within-day and between-day precision values in the calibration range of 0.1-20 μg/ml were within 0.5-1.5%. Clobazam was relatively stable in solid from under exposure to visible and UV light and also heat. The clobazam aqueous solution of clobazam was more labile under exposure to visible and UV light. The bulk drug was significantly degraded under exposure to 2 M HCl, 0.1 M NaOH or 3% H2O2. Using the tablet powder, higher degradation rates were observed under different stress conditions. The main degradation product of clobazam under basic condition was subsequently characterized. Conclusion The developed method could be used for the determination of clobazam in the presence of its degradation products with acceptable precision and accuracy. The applicability of the proposed method was evaluated in commercial dosage forms analysis. PMID:24919821

  15. Identification and Determination of Nicorandil and its Degradation Products by HPLC and GC/MS

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhou CHENG; Ze Hui JIA; Yan CHEN; Li Ying CHEN; Hua LI

    2006-01-01

    A rapid and sensitive HPLC-DAD method is developed for simultaneous determination of nicorandil and its degradation products, N-(2-hydroxyethyl) nicotinamide, nitrate ion and nicotinic acid, using nicotinamide (NT) as internal standard, at wavelength 204 nm. Nicotinic acid is identified by HPLC and GC/MS. The method can also be applied to study kinetic of degradation processes of nicorandil in storage.

  16. Strongly increased levels of fibrinogen elastase degradation products in patients with ischemic stroke

    NARCIS (Netherlands)

    Lau, L.M.L. de; Cheung, E.Y.L.; Kluft, C.; Leebeek, F.W.G.; Meijer, P.; Laterveer, R.; Dippel, D.W.J.; Maat, M.P.M.de

    2008-01-01

    Ischemic stroke is associated with leucocyte activation. Activated leucocytes release elastase, an enzyme that can degrade fibrinogen. Fibrinogen elastase degradation products (FgEDP) may serve as a specific marker of elastase proteolytic activity. In a case-control study of 111 ischemic stroke pati

  17. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous s...

  18. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  19. Pricing and Timing Strategies for New Product Using Agent-Based Simulation of Behavioural Consumers

    OpenAIRE

    Keeheon Lee; Hoyeop Lee; Chang Ouk Kim

    2014-01-01

    In this study, we are interested in the problem of determining the pricing and timing strategies of a new product by developing an agent-based product diffusion simulation. In the proposed simulation model, agents imitate behavioural consumers, who are reference dependent and risk averse in the evaluation of new products and whose interactions create word-of-mouth regarding new products. Pricing and timing strategies involve the timing of a new product release, the timing of providing a disco...

  20. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon [Kyonggi Univ., Suwon (Korea, Republic of)

    2013-07-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 {Chi} 100 mm, 3.5 {mu}m), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency.

  1. An Agent-based Manufacturing Management System for Production and Logistics within Cross-Company Regional and National Production Networks

    Directory of Open Access Journals (Sweden)

    T. Hanel

    2008-11-01

    Full Text Available The goal is the development of a simultaneous, dynamic, technological as well as logistical real-time planning and an organizational control of the production by the production units themselves, working in the production network under the use of Multi-Agent-Technology. The design of the multi-agent-based manufacturing management system, the models of the single agents, algorithms for the agent-based, decentralized dispatching of orders, strategies and data management concepts as well as their integration into the SCM, basing on the solution described, will be explained in the following.

  2. Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical Benzophenone-3: Parameters optimization and by-products identification.

    Science.gov (United States)

    Zúñiga-Benítez, Henry; Aristizábal-Ciro, Carolina; Peñuela, Gustavo A

    2016-02-01

    Benzophenone-3 (BP3) is one of the most used UV filters. Its disruptive effect on the endocrine system of different living beings has been demonstrated by several research groups. Present work addresses on a photocatalytic degradation of BP3 using particles of titanium dioxide in aqueous solutions considering the effect of operating parameters such as pH, catalyst and pollutant initial concentrations, and the presence of hydrogen peroxide, acetonitrile and isopropanol in the solution. In this way, a face centered, central composite design was carried out for the identification of significant factors or interactions that allow the determination of the conditions under which the pollutant suffers the highest rates of degradation. A solution initial pH of 9.0, a TiO2 concentration of 1.184 g L(-1) and an H2O2 concentration of 128.069 mg L(-1) were established as the optimal conditions for the substrate removal. In aqueous solutions and low concentrations of the pollutant (photocatalysis with TiO2 is a potential method to remove BP3 from water. Additionally, tests using acetonitrile as solvent and isopropanol as hydroxyl radical (OH(.)) scavenger suggested that, OH(.) was the main agent responsible of substrate degradation. Finally, ten process by-products were identified and a degradation route was proposed. PMID:26686077

  3. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  4. Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates

    OpenAIRE

    George, V; Arora, S; Wadhwa, B. K.; A. K. Singh

    2010-01-01

    A solid phase extraction method using C18 cartridges was standardized for the isolation of multiple sweeteners (aspartame, acesulfame-K and saccharin) and their degradation products (diketopiperazine, Lphenylalanine, acetoacetamide and 2-sulfobenzoic acid) from lassi. Analytical conditions for HPLC were standardized over C18 column using UV detector for the simultaneous separation and estimation of multiple sweeteners and their degradation products in lassi sample isolates. A simple cartridge...

  5. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    Science.gov (United States)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-01

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  6. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    Science.gov (United States)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-01

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP. PMID:27054664

  7. Radiation degradation of molasses pigment. The fading color and product

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko; Sawai, Takeshi [Tokyo Metropolitan Isotope Research Center (Japan)

    1993-02-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water supply sources within the city, Tokyo is dependent on the water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. In this paper, the radiation decomposition methods for fading color of molasses pigment in the effluent from the sewage treatment plant and in the food industry wastwater were reported. The refractory organic substances (molasses pigment) in samples were degraded by gamma irradiation. The COD values decreased and the dark brown color faded with increasing dosage. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. The organic acids, such as formic acid, acetic acid, oxalic acid, citric acid and succinic acid were measured as intermediates of radiolytic decomposition. When we added hydrogen peroxide in samples to the gamma irradiation process, the dark brown color of molasses pigment faded with greater efficiency. (author).

  8. Radiation degradation of molasses pigment. The fading color and product

    International Nuclear Information System (INIS)

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water supply sources within the city, Tokyo is dependent on the water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. In this paper, the radiation decomposition methods for fading color of molasses pigment in the effluent from the sewage treatment plant and in the food industry wastwater were reported. The refractory organic substances (molasses pigment) in samples were degraded by gamma irradiation. The COD values decreased and the dark brown color faded with increasing dosage. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. The organic acids, such as formic acid, acetic acid, oxalic acid, citric acid and succinic acid were measured as intermediates of radiolytic decomposition. When we added hydrogen peroxide in samples to the gamma irradiation process, the dark brown color of molasses pigment faded with greater efficiency. (author)

  9. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  10. Mechanism driven structural elucidation of forced degradation products from hydrocortisone in solution.

    Science.gov (United States)

    Zhang, Fa; Zhou, Jay; Shi, Yiqun; Tavlarakis, Panagiotis; Karaisz, Kenneth

    2016-09-01

    Hydrocortisone degradation products 1, 2, 3, and 4 along with hemiacetal derivatives 5, 6, 7, and 8 were observed through stressed hydrocortisone in solution. Their structures were identified based on HPLC-UV, HPLC-MS, and HPLC-HRMS (high resolution/high accuracy mass spectrometry) analyses as well as reaction mechanistic investigation and synthesis for structural confirmation. 1 and 2 are a pair of E/Z isomers and they were generated through acid catalyzed tautomerization/dehydration of hydrocortisone. Incorporation of water to 1 and 2 resulted in the formation of 3. We also discovered new degradation product 4 which was converted from 3 by oxidation. The degradation products were synthesized by stressing hydrocortisone under the optimized conditions and their structures were characterized by NMR ((1)H/(13)C, COSY, HMBC, HSQC, NOESY) and HRMS analyses. The degradation pathway of hydrocortisone is postulated.

  11. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    Science.gov (United States)

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  12. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, Lubertus; Boix, Clara [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Niessen, Wilfried M.A. [hyphen MassSpec, Leiden (Netherlands); Ibáñez, María; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Hernández, Félix, E-mail: felix.hernandez@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain)

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  13. Comparative aquatic toxicity evaluation of 2-(thiocyanomethylthio)benzothiazole and selected degradation products using Ceriodaphnia dubia.

    Science.gov (United States)

    Nawrocki, S T; Drake, K D; Watson, C F; Foster, G D; Maier, K J

    2005-04-01

    2-(Thiocyanomethylthio)benzothiazole (TCMTB) is a biocide used in the leather, pulp and paper, and water-treatment industries. TCMTB may enter aquatic ecosystems during its manufacture and use. TCMTB is environmentally unstable; therefore, it is important to evaluate the toxicity of the more persistent degradation products. This study compared the toxicity of TCMTB with its degradation products 2-mercaptobenzothiazole (2-MBT), 2-(methylthio)benzothiazole (MTBT), benzothiazole (BT), and 2-hydroxybenzothiazole (HOBT). Toxicity was determined using Ceriodaphnia dubia 48-hour acute and 7-day chronic test protocols. TCMTB was the most toxic compound evaluated in both the acute and chronic tests with EC50s of 15.3 and 9.64 microg/L, respectively. 2-MBT, the first degradation product, was the second most toxic compound with acute and chronic EC50s of 4.19 and 1.25 mg/L, respectively. The toxicity of MTBT and HOBT were similar with acute EC50s of 12.7 and 15.1 mg/L and chronic EC50s of 6.36 and 8.31 mg/L, respectively. The least toxic compound was BT with acute and chronic EC50s of 24.6 and 54.9 mg/L, respectively. TCMTB was orders of magnitude more toxic than its degradation products. Toxicity data on these benzothiazole degradation products is important because of concerns regarding their release, degradation, persistence, and non-target organism effects in aquatic ecosystems. PMID:15750776

  14. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane; Extrapolation dans le temps des cinetiques de production des produits de degradation radiolytique: application a un polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Dannoux, A

    2007-02-15

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  15. FTIR study of degradation products of aliphatic polyesters carbon fibres composites

    Science.gov (United States)

    Pamuła, Elżbieta; Błażewicz, Marta; Paluszkiewicz, Czesława; Dobrzyński, Piotr

    2001-09-01

    Biodegradable polymer composites based on polylactides and polyglycolides constitute a group of materials characterised by good biocompatibility. They are considered in tissue engineering as scaffolds for cells proliferation and controlled tissue regeneration. Two types of biodegradable polymers possessing different chemical structure, molecular weights and crystallinity degrees and two composite materials made up of them and carbon fibres were analysed in this study. The samples were incubated in aqueous media for 8 weeks and analysed by means of Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR). Infrared spectroscopy enabled identification of degradation products and estimation of the influence of carbon fibres on hydrolytic degradation of analysed polymers. Analysis of the infrared spectra showed that hydrolytic degradation process depends on chemical structure, molecular weight and crystallinity of polymers. Catalytic effect of carbon fibres at the initial stage of polymer degradation was observed. Further degradation is dependent on the properties of polymer.

  16. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  17. Forced degradation studies of rapamycin: identification of autoxidation products.

    Science.gov (United States)

    Oyler, Alan R; Segmuller, Brigitte E; Sun, Yanqiu; Polshyna, Ann; Dunphy, Richard; Armstrong, Barbara L; Achord, Patrick; Maryanoff, Cynthia A; Alquier, Lori; Il'ichev, Yuri V

    2012-02-01

    The immunosuppressant drug rapamycin, also known as Sirolimus, underwent autoxidation under mild conditions to give numerous monomeric and oligomeric compounds, which were generally characterized by size-exclusion chromatography and NP-HPLC with UV and MS detection. Some of the more predominant products, epoxides and ketones, were isolated and identified. Two epoxides and 10S-epimer of rapamycin were described for the first time. Observed rapamycin isomers were also addressed. Computational chemistry was used to provide mechanistic insights. Formation of the majority of the rapamycin products could be rationalized with free radical-mediated autoxidation reactions involving alkene and alcohol sites. Methodological aspects of oxidative stress testing are discussed. PMID:22088479

  18. Production and degradation of oxalic acid by brown rot fungi

    International Nuclear Information System (INIS)

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi

  19. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin

    NARCIS (Netherlands)

    Habib, G.; Khan, N.A.; Ali, M.; Bezabih, M.

    2013-01-01

    The aim of this study was to establish a database on in situ ruminal crude protein (CP) degradability characteristics of by-products from cereal grains, oilseeds and animal origin commonly fed to ruminants in Pakistan and South Asian Countries. The oilseed by-products were soybean meal, sunflower me

  20. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  1. The impact of charcoal production on forest degradation: a case study in Tete, Mozambique

    Science.gov (United States)

    Sedano, F.; Silva, J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-09-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multitemporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  2. Selective separation and characterisation of stress degradation products and process impurities of prucalopride succinate by LC-QTOF-MS/MS.

    Science.gov (United States)

    Mahamuni, Baira Shandilya; Jajula, Anupama; Awasthi, Atul; Kalariya, Pradipbhai D; Talluri, M V N Kumar

    2016-06-01

    The present study reports the degradation behaviour of a new prokinetic agent, Prucalopride succinate, under various stress conditions as per International Conference on Harmonization guidelines (ICH, Q1A (R2)). The investigation involved monitoring decomposition of the drug under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions followed by characterization of the degradation products (DPs) and process related impurities (IMPs). A rapid, precise, accurate and robust reverse phase high performance liquid chromatography (RP-HPLC) method has been developed involving mobile phase of 20mM ammonium bicarbonate buffer and acetonitrile: methanol (80:20v/v) on a Waters Xbridge-C8 (150mm×4.6mm i.d., 3.5μm) column using gradient elution. The drug was found to be degraded in hydrolytic (acidic) and oxidative conditions, whereas it was stable under basic and neutral hydrolytic, photolytic and thermal stress conditions. The method was extended to LC-ESI-QTOF-MS/MS for the structural characterization of DPs and process related IMPs. Structural characterization was carried out based on the generated molecular formula of DPs and its fragment ions. It has been observed that two major DPs were formed under each acid hydrolysis and oxidative stress conditions. The most probable mechanisms involved in the formation of DPs were also proposed. Finally, the method was validated in the term of specificity, linearity, accuracy, precision, and robustness as per ICH guidelines, Q2 (R1). PMID:27037978

  3. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2010-10-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The absolute rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1: kOH=(1.13±0.22×10−10 and kNO3=(1.26±0.18×10−11. These rate coefficients have been compared with those available in the literature. The products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NOx species have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones for the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones for the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds for the reaction with NO3 radicals. The results indicate that in all cases the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for both Cl atoms and the NO3 radical in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  4. Multiple joined genes prevent product degradation in Escherichia coli.

    OpenAIRE

    Shen, S H

    1984-01-01

    A method is described that allows the expression of a stable human proinsulin product in Escherichia coli as encoded by either a fused or an unfused gene construction. In the fused system, the human proinsulin coding sequence is joined to the 3' side of a fragment containing the lac promoter and the coding sequence for a small part of the NH2 terminus of beta-galactosidase. In the unfused system, the proinsulin coding sequence is linked directly to a fragment containing the Tac promoter follo...

  5. Simple Spectrophotometric Methods for the Determination of Meloxicam in Presence of Its Degradation Products

    Institute of Scientific and Technical Information of China (English)

    Elham A. Taha

    2004-01-01

    Objective:To develope two simple and accurate spectrophotometric methods for the determination of meloxicam ( Ⅰ ) in presence of its degradation products, 5 - methyl - 2 - aminothiazole ( Ⅱ ) and benzothiazine carboxylic acid ( Ⅲ ). Method:Both methods are based on the formation of chelate complexes of the studied drug with uranyl acetate and ferric chloride at room temperature in a methanolic medium. Results:The resulting complexes are stable for 24 hrs and show absorption maxima at 406 nm and 580 nm for uranyl and ferric complexes respectiverecoveries of (99.44 ± 0. 48 ) % and (99. 42 ± 0. 45 ) %, and molar absorptivity of 4. 67 × 103 and 1. 029 × 103 respectively. Conclusion:Both methods are proved to be stability indicating as no interference was observed with the degradation products. The proposed methods were successfully applied to the determination of the drug in bulk powder, laboratory prepared mixtures containing different percentages of degradation products and pharmaceutical dosage forms.

  6. In vitro degradation and total gas production of byproducts generated in the biodiesel production chain

    OpenAIRE

    Raissa Kiara oliveira de Morais; Aderbal Marcos de Azevedo Silva; Leilson Rocha Bezerra; Heloisa Carneio; Milenna Nunes Moreira; Fabiola Franklin de Medeiros

    2015-01-01

    This study aimed to evaluate the in vitro degradation and total gas production of different oil seed press cakes from a biodiesel production chain gas through the use of a semi-automatic technique of gas production in vitro. The treatments consisted of substituting elephant grass in increasing levels, 0%, 30, 50 and 70%, with the byproducts of Gossyypium hirsutum, Ricinus communis, Moringa oleifeira, Jatropha curcas and Helianthus annus. The oil seed press cakes of Moringa oleifeira had the h...

  7. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    Science.gov (United States)

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. PMID:25109457

  8. Investigation of radiation induced degradation mechanism and radiolysis by products of some opiates

    International Nuclear Information System (INIS)

    Full text: Opiates are constituents or derivatives of constituents found in opium, partially dried latex obtained from opium poppy plant. Opiate and their derivatives are very potent analgesics commonly used as therapeutic agents. Some of these compounds are also frequently abused as illicit drugs. Opium poppy, is grown mainly in west and central Anatolia, where the climate and ecological conditions are conducive to high alkaloid content, is cultivated as a source of opium alkaloids (morphine, codeine, thebaine, noscapine and papaverine) used for legitimate medical purposes and it continues to be one of the most significant economic and industrial elements in Turkey. The production of opium alkaloids in Turkey involves extraction and concentration of dried poppy capsules (poppy straw). The Afyon-Bolvadin Alkaloids Factory has the capacity to process 20,000 tons of poppy straw per year. This industrial application generates a wide range of opiate wastes released to water. Therefore, a treatment process is required to solve this problem. Radiation technology is an option for treatment of opiate rich wastewater. During this process some chemical and physicochemical changes occurs when high-energy (ionizing) radiation is absorbed by matter. Then, these changes are determined to identify the degradation mechanism and byproducts. In our study, morphine, codeine, noscapine, tebain, and papaverine rich wastewater exposed to radiation with 60Co-γ-irradiation source for different doses, and after irradiation opiates and byproducts were determined by using LC-MS and GC-MS techniques. After the analysis optimization of the chromatographic systems following fragmentations with the highest density were monitored: m/z 286→201,185,181 and 153 for morphine; m/z 312→251, 221 and 58 for thebaine; m/z 414→353, 323, 221, 220, 206 and 205 for noscapine; m/z 300→241, 225, 215, 199, 183, 181, 165 and 58 for codeine; m/z 340→325, 324, 296, 203, 202, 187 and 171 (author)

  9. Targeting and timing promotional activities : An agent-based model for the takeoff of new products

    NARCIS (Netherlands)

    Delre, S. A.; Jager, W.; Bijmolt, T. H. A.; Janssen, M. A.

    2007-01-01

    Many marketing efforts focus on promotional activities that support the launch of new products. Promotional strategies may play a crucial role in the early stages of the product life cycle, and determine to a large extent the diffusion of a new product. This paper proposes an agent-based model to si

  10. Natural products as radioprotective agents; past, present and future

    International Nuclear Information System (INIS)

    The use of ionizing radiation, which is the cornerstone of cancer treatment, is compromised by the radiosensitivity of normal tissues. A chemical that can give selective benefit to the normal cells against the deleterious effects of ionizing radiation has been a long sought goal. However, most of the compounds studied have shown inadequate clinical application owing to their inherent toxicity, undesirable side effects, and high cost. Plants commonly used as dietary and or therapeutic agents have recently been the focus of attention since in most cases they are non-toxic and are easily accepted for human use. The proposed talk will mainly deal on the radioprotective potential of some important plant and herbal extracts. (author)

  11. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  12. Evaluation of effectiveness of bacterial product which can degrade pesticide-dimethoate on the scale of true practice test

    International Nuclear Information System (INIS)

    Dimethoate, an organophosphate pesticide has been widely used in Dalat, Lamdong. It is much toxic to birds, human being and other mammals. Its widespread use has caused environmental concern on the basic of frequent detection of dimethoate in soil and water. Microorganisms are key agents in the degradation of waste, oil and a vast array of organic pesticide in terrestrial and aquatic ecosystems. In previous study, bacteria products which can degrade. Dimethoate were produced. The present study was designed to evaluate the effectiveness of bacterial product which can degrade Pesticide-Dimethoate on the scale of true practice test. The results indicated that application bacteria product to soil grown with Cauliflower and Chinese Cabbage sprayed with organic phosphorus pesticides (Dimethoate and Chloropyrifos), the pesticide residues in soil, water and vegetables were as follow: The residues of Dimethoate and Chloropyrifos in soil grown with Cauliflower, Chinese cabbages are different. They concentrated mostly in the surface litter and top soil layers with the depth from 0 to 20 cm. From the depth of 20 cm to 100 cm, the pesticide residues were ignorable. Residue of Chloropyrifos in soil was small as well. Dimethoate residues in soil grown with Cauliflower were higher than that of Chinese cabbages. On the basis of the environmental criteria of Ministry for Science, Technology and Environment (6/95), Dimethoate residues in soil grown with cauliflowers were in excess of the maximum limit. In the case of using bacteria product to soil, pesticide residues in soil were decreased. The results also indicated that Chloropyrifos residues in water (water obtained at the depth of 75 cm and 100 cm by days) were small. Residue of Dimethoate in water small. Residue of Dimethoate in water obtained from the Cauliflower bed were higher than of Chinese cabbages one. Using bacteria product to soil, pesticide residues in water decreased. On the basis of the environmental criteria of

  13. Overview of Skin Whitening Agents: Drugs and Cosmetic Products

    Directory of Open Access Journals (Sweden)

    Céline Couteau

    2016-07-01

    Full Text Available Depigmentation and skin lightening products, which have been in use for ages in Asian countries where skin whiteness is a major esthetic criterion, are now also highly valued by Western populations, who expose themselves excessively to the sun and develop skin spots as a consequence. After discussing the various possible mechanisms of depigmentation, the different molecules that can be used as well as the status of the products containing them will now be presented. Hydroquinone and derivatives thereof, retinoids, alpha- and beta-hydroxy acids, ascorbic acid, divalent ion chelators, kojic acid, azelaic acid, as well as diverse herbal extracts are described in terms of their efficacy and safety. Since a genuine effect (without toxic effects is difficult to obtain, prevention by using sunscreen products is always preferable.

  14. Anti-Enterovirus 71 Agents of Natural Products.

    Science.gov (United States)

    Wang, Liyan; Wang, Junfeng; Wang, Lishu; Ma, Shurong; Liu, Yonghong

    2015-01-01

    This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005-2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded. PMID:26370955

  15. Anti-Enterovirus 71 Agents of Natural Products

    Directory of Open Access Journals (Sweden)

    Liyan Wang

    2015-09-01

    Full Text Available This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005–2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.

  16. Stability-indicating assay method for determination of actarit, its process related impurities and degradation products: Insight into stability profile and degradation pathways☆

    Directory of Open Access Journals (Sweden)

    A. Abiramasundari

    2014-12-01

    Full Text Available The stability of the drug actarit was studied under different stress conditions like hydrolysis (acid, alkaline and neutral, oxidation, photolysis and thermal degradation as recommended by International Conference on Harmonization (ICH guidelines. Drug was found to be unstable in acidic, basic and photolytic conditions and produced a common degradation product while oxidative stress condition produced three additional degradation products. Drug was impassive to neutral hydrolysis, dry thermal and accelerated stability conditions. Degradation products were identified, isolated and characterized by different spectroscopic analyses. Drug and the degradation products were synthesized by a new route using green chemistry. The chromatographic separation of the drug and its impurities was achieved in a phenomenex luna C18 column employing a step gradient elution by high performance liquid chromatography coupled to photodiode array and mass spectrometry detectors (HPLC–PDA–MS. A specific and sensitive stability-indicating assay method for the simultaneous determination of the drug actarit, its process related impurities and degradation products was developed and validated.

  17. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  18. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.;

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...

  19. Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing.

    Science.gov (United States)

    Shahnawaz, Mohd; Sangale, Manisha K; Ade, Avinash B

    2016-06-01

    Polythene degradation leads to the production of various by-products depending upon the type of degradation process. The polythene degradation products (PEDP) in the culture supernatant of the two bacteria (Lysinibacillus fusiformis strain VASB14/WL and Bacillus cereus strain VASB1/TS) were analyzed with GC-MS technique. The major by-products in the PEDP in the culture supernatant of L. fusiformis strain VASB14/WL (1,2,3,4 tetra methyl benzene) and B. cereus strain VASB1/TS (1,2,3 trimethyl benzene, 1 ethyl 3,5-dimethyl benzene, 1,4 di methyl 2 ethyl benzene, and dibutyl phthalate) dissolved in diethyl ether were recorded. To assess the environmental applicability of polythene degradation using L. fusiformis strain VASB14/WL and B. cereus strain VASB1/TS at in vitro level. The effect of PEDP produced after 2 months of regular shaking at room temperature on both plants and animal system was studied. No significant decrease in the percent seed germination was recorded with the PEDP of both the bacteria. PEDP produced by L. fusiformis strain VASB14/WL did not report any significant change in germination index (GI) at 10 and 25 %, but least GI (39.66 ± 13.94) was documented at 50 % concentration of PEDP. Highest elongation inhibition rate (53.83 ± 15.71) of Sorghum was also recorded with L. fusiformis and at the same concentration. PMID:26888528

  20. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  1. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  2. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J. [Argonne National Lab., IL (United States); Besmer, M.; Mohrman, G.B. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  3. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Monteil-Rivera, Fanny [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2 (Canada)], E-mail: fanny.monteil@cnrc-nrc.gc.ca; Halasz, Annamaria; Manno, Dominic [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2 (Canada); Kuperman, Roman G. [Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424 (United States); Thiboutot, Sonia; Ampleman, Guy [Defence Research and Development Canada, Valcartier, Canadian Ministry of National Defense, 2459 Pie IX Boulevard, Val Belair, Quebec, G3J 1X5 (Canada); Hawari, Jalal [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2 (Canada)

    2009-01-15

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH{sub 2}=N-C(=N-NO{sub 2})-CH=N-CHO or its isomer N(NO{sub 2})=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil.

  4. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H2, CO2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O2 is evaluated to 6 molecules/100 eV. For absorbed doses higher

  5. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  6. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.

    Science.gov (United States)

    Farah, Shrouq I; Abdelrahman, Abd Almonem; North, E Jeffrey; Chauhan, Harsh

    2016-01-01

    Current tuberculosis (TB) treatment suffers from complexity of the dosage regimens, length of treatment, and toxicity risks. Many natural products have shown activity against drug-susceptible, drug-resistant, and latent/dormant Mycobacterium tuberculosis, the pathogen responsible for TB infections. Natural sources, including plants, fungi, and bacteria, provide a rich source of chemically diverse compounds equipped with unique pharmacological, pharmacokinetic, and pharmacodynamic properties. This review focuses on natural products as starting points for the discovery and development of novel anti-TB chemotherapy and classifies them based on their chemical nature. The classes discussed are divided into alkaloids, chalcones, flavonoids, peptides, polyketides, steroids, and terpenes. This review also highlights the importance of collaboration between phytochemistry, medicinal chemistry, and physical chemistry, which is very important for the development of these natural compounds. PMID:26565779

  7. The Influence of Asset and Access Poverty on Crop Production and Land Degradation in Uganda

    OpenAIRE

    Nkonya, Ephraim M.; Pender, John L.; Kaizzi, Crammer

    2006-01-01

    This study investigated the linkages between poverty, agricultural productivity and land degradation in Uganda. Results show that farmers in the study region of Uganda deplete about 1.2% of the nutrient stock stored in the topsoil per year, leading to a predicted 0.2% annual reduction in crop productivity. Replacing the depleted nutrients using the cheapest inorganic fertilizers would cost about 20% of farm income on average. Land investments such as soil and water conservation structures and...

  8. Murine Gammaherpesvirus 68 Evades Host Cytokine Production via Replication Transactivator-Induced RelA Degradation

    OpenAIRE

    Dong, Xiaonan; He, Zhiheng; Durakoglugil, Deniz; Arneson, Lisa; Shen, Yan; Feng, Pinghui

    2012-01-01

    Cytokines play crucial roles in curtailing the propagation and spread of pathogens within the host. As obligate pathogens, gammaherpesviruses have evolved a plethora of mechanisms to evade host immune responses. We have previously shown that murine gammaherpesvirus 68 (γHV68) induces the degradation of RelA, an essential subunit of the transcriptionally active NF-κB dimer, to evade cytokine production. Here, we report that the immediately early gene product of γHV68, replication transactivato...

  9. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions.

    Science.gov (United States)

    Poirier-Larabie, S; Segura, P A; Gagnon, C

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4days, while its concentration only decreased by 42% after 57days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11days of exposure to light, while biodegradation decreased its concentration by 33% after 58days of exposure under aerobic conditions and 5% after 70days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental samples

  10. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    Science.gov (United States)

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine.

  11. Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products.

    Science.gov (United States)

    Buskov, S; Hasselstrøm, J; Olsen, C E; Sørensen, H; Sørensen, J C; Sørensen, S

    2000-07-01

    In the present study analytical and preparative supercritical fluid chromatography (SFC) were used for investigation of myrosinase catalysed degradation of 4-hydroxybenzylglucosinolate (sinalbin). Sinalbin occurs as a major glucosinolate in seeds of Sinapis alba L., in various mustards and other food products. The degradation products were identified and quantified by analysis based on a developed SFC method using a bare silica column. Determinations comprised transformation products of sinalbin, produced both during degradation of isolated sinalbin, and during autolysis of meal from S. alba seeds. The conditions in the developed SFC method were used as basis for the preparative SFC procedure applied for isolation of the components prior to their identification by nuclear magnetic resonance (NMR) spectroscopy. Myrosinase catalysed sinalbin hydrolysis resulted in the reactive 4-hydroxybenzyl isothiocyanate as an initial product at pH values from 3.5 to 7.5 whereas 4-hydroxybenzyl cyanide was one of the major products at low pH values. 4-Hydroxybenzyl isothiocyanate was found to disappear from the aqueous reaction mixtures in a few hours, as it reacted easily with available nucleophilic reagents. 4-Hydroxybenzyl alcohol was found as the product from reaction with water, and with ascorbic acid, 4-hydroxybenzylascorbigen was produced. PMID:10869674

  12. Study of the effect of the fibre mass UP2 degradation products on radionuclide mobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Lara; Grive, Mireia; Gaona, Xavier; Bruno, Jordi [Amphos 21 Consulting S.L., Barcelona (Spain); Andersson, Thomas; Boren, Hans; Dario, Maarten [Linkoeping Univ., Linkoeping (Sweden); Allard, Bert; Hagberg, Jessica [Oerebro Univ., Oerebro (Sweden); Kaellstroem, Klas [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2012-09-15

    This report presents a literature review and laboratory work of the degradation of the fibre UP2, as well as an assessment of the effects of its degradation products on Europium sorption onto cement, as an example of their effects on radionuclide migration. All laboratory work was performed by the Swedish groups (Linkoeping and Oerebro Universities), who also performed some of the literature review. The data interpretation was performed by the Spanish team (Amphos 21). SKB has combined the reports of these studies into this common document and has added minor editorial changes. All these changes have been accepted by the authors.

  13. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    Science.gov (United States)

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  14. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  15. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  16. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    Science.gov (United States)

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  17. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    Science.gov (United States)

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.

  18. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    Science.gov (United States)

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer. PMID:22075634

  19. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane

    International Nuclear Information System (INIS)

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  20. Profiling the Buzz Agent: Product Referral and the Study of Social Community and Brand Attachment

    OpenAIRE

    Danny Pimentel Claro; Adriana Bruscato Bortoluzzo

    2015-01-01

    The buzz agent is any consumer perceived by others as a source of product referral. Previous literature in word of mouth (WOM) has looked into characteristics of individuals who successfully persuade others to choose a brand. While there have been studies in this field, the literature is still scattered and little has been done to profile the consumer playing the buzz-agent role. We aim to deepen our understanding about the consumer who must be recruited as a buzz agent by a firm ...

  1. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  2. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  3. Suberin Regulates the Production of Cellulolytic Enzymes in Streptomyces scabiei, the Causal Agent of Potato Common Scab.

    Science.gov (United States)

    Padilla-Reynaud, Rebeca; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Bernards, Mark A; Beaulieu, Carole

    2015-01-01

    Suberin, a major constituent of the potato periderm, is known to promote the production of thaxtomins, the key virulence factors of the common scab-causing agent Streptomyces scabiei. In the present study, we speculated that suberin affected the production of glycosyl hydrolases, such as cellulases, by S. scabiei, and demonstrated that suberin promoted glycosyl hydrolase activity when added to cellulose-, xylan-, or lichenin-containing media. Furthermore, secretome analyses revealed that the addition of suberin to a cellulose-containing medium increased the production of glycosyl hydrolases. For example, the production of 13 out of the 14 cellulases produced by S. scabiei in cellulose-containing medium was stimulated by the presence of suberin. In most cases, the transcription of the corresponding cellulase-encoding genes was also markedly increased when the bacterium was grown in the presence of suberin and cellulose. The level of a subtilase-like protease inhibitor was markedly decreased by the presence of suberin. We proposed a model for the onset of S. scabiei virulence mechanisms by both cellulose and suberin, the main degradation product of cellulose that acts as an inducer of thaxtomin biosynthetic genes, and suberin promoting the biosynthesis of secondary metabolites including thaxtomins. PMID:26330095

  4. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater

    Institute of Scientific and Technical Information of China (English)

    LI XiaoNian; ZHANG QunFeng; KONG LingNiao; XIANG YiZhi; JU YaoMing; WU XiaoQiong; FENG Feng; YUAN JunFeng; MA Lei; LU ChunShan

    2008-01-01

    A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has been proposed. It is worthy of noting that this technique may be a potential way for the purification of refractory and highly toxic organics in water for hydrogen production. Hazardous organics (such as phenol, aniline, nitrobenzene, tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF) and cyclohexanol) in water could be completely de-graded into H2 and CO2 with high selectivity over Raney Ni, and Sn-modified Raney Ni (Sn-Raney-Ni) or Pd/C catalyst under mild conditions. The experimental results operated in tubular and autoclave reactors, indicated that the degradation degree of organics and H2 selectivity could reach 100% under the optimal reaction conditions. The Sn-Raney-Ni (Sn/Ni=0.06) and Pd/C catalysts show better catalytic performances than the Raney Ni catalyst for the degradation of organics in water into H2 and CO2 by the aqueous phase reforming process.

  5. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.

    Science.gov (United States)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH(2)=N-C(=N-NO(2))-CH=N-CHO or its isomer N(NO(2))=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. PMID:18801604

  6. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana;

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  7. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. PMID:26615815

  8. SCENARIO ANALYSIS OF TECHNOLOGY PRODUCTS WITH AN AGENT-BASED SIMULATION AND DATA MINING FRAMEWORK

    OpenAIRE

    AMIT SHINDE; MOEED HAGHNEVIS; Janssen, Marco A.; GEORGE C. RUNGER; MANI JANAKIRAM

    2013-01-01

    A framework is presented to simulate and analyze the effect of multiple business scenarios on the adoption behavior of a group of technology products. Diffusion is viewed as an emergent phenomenon that results from the interaction of consumers. An agent-based model is used in which potential adopters of technology product are allowed to be influenced by their local interactions within the social network. Along with social influence, the effect of product features is important and we ascribe f...

  9. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study.

    Science.gov (United States)

    Liao, Jiahn-Haur; Huang, Yi-Shiang; Lin, Yu-Ching; Huang, Fu-Yung; Wu, Shih-Hsiung; Wu, Tzu-Hua

    2016-03-16

    Curcumin (Cur) exhibits anticataractogenesis activity. This study aimed to compare the activities of Cur with those of its degradation products in a series of in vitro lens protein turbidity assays. The results show that Cur (200 μM) ameliorates selenite-induced crystallin aggregation, and the mean OD value was 0.10 ± 0.02 (p vanillin, and vanillic acid) indicates significantly protective activities on lens γ-crystallins after UVC exposure for 3 h. Among the compounds examined, only ferulic acid exhibited a significant inhibitory effect against UVB-induced turbidity with a mean OD of 0.32 ± 0.01 (p < 0.05), which was significantly different from controls (0.49 ± 0.02). The previously reported anticataract effects of Cur may stem not only from Cur but also from its degradation products through various cataractogenesis mechanisms in vitro. PMID:26905955

  10. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    Science.gov (United States)

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  11. Profiling the Buzz Agent: Product Referral and the Study of Social Community and Brand Attachment

    Directory of Open Access Journals (Sweden)

    Danny Pimentel Claro

    2015-04-01

    Full Text Available The buzz agent is any consumer perceived by others as a source of product referral. Previous literature in word of mouth (WOM has looked into characteristics of individuals who successfully persuade others to choose a brand. While there have been studies in this field, the literature is still scattered and little has been done to profile the consumer playing the buzz-agent role. We aim to deepen our understanding about the consumer who must be recruited as a buzz agent by a firm in a WOM marketing (WOMM initiative. The proposed profile is comprised of three key characteristics: the consumer’s position in the social community, nature of ties in the community and brand attachment. We tested our hypotheses with a survey of 542 consumers from a controlled population. Rather than relying on self-reported questions about referral behavior, we asked respondents in the population to name the individuals to whom the respondents go to obtain information to help pick a brand. This accurately pinpoints which individuals fit the profile of a buzz agent. Results show that buzz agents are popular in their social community (friends and tech experts, carry dissimilar brands as target consumers and are product experts. Our study identifies a profile of consumers that helps firms select buzz agents for WOMM initiatives.

  12. PRODUCTION AND RECOVERY OF POLY-Β-HYDROXYBUTYRATE FROM WHEY DEGRADATION BY AZOTOBACTER

    Directory of Open Access Journals (Sweden)

    A. Khanafari , A. Akhavan Sepahei, M. Mogharab

    2006-07-01

    Full Text Available Three strains of Azotobacter chroococcum were studied to produce poly-β hydroxybutyrate as a inclusion body by whey degradation. Optimum degradation whey results were obtained when using whey broth as a fermentation medium without extra salt, temperature at 35 °C and pH 7 (P<0.05. Lambda max for whey broth medium was determined probably about 400 nm. The effect of different nitrogenous rich compounds (NH4NO3, Bactopeptone, Casein, Yeast extract, Meat extract, Protease peptone and Tryptone on whey degradation showed that incorporation of nitrogenous compounds into the medium did not increase whey degradation by Azotobacter chroococcum 1723 (P<0.05. But poly-β hydroxyl-butyrate production was increased in presence Meat extract up to 75% of the cell dry weight after 48h. The addition of nitrogenous sourced (except ammonium nitrate had a positive effect on poly-β hydroxyl-butyrate production as it peaked in the presence of Meat extract and 4.43 g/L was accumulated in comparison to 0.5g at diazotrophically growing cells. Increasing the O2 values resulted by shaking at 122 rpm in decreased poly-β hydroxyl-butyrate yield form 4.43 to 0.04 g/L. The results show that this medium supports the growth of strain 1735 and also that this waste could be utilized as a carbon and nitrogen source. Production of poly-β hydroxyl-butyrate by using whey as a medium looks promising, since the use of inexpensive feed-stocks for poly-β hydroxyl-butyrate is essential if bioplastics are to become competitive products.

  13. Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms.

    Science.gov (United States)

    Onduka, Toshimitsu; Ojima, Daisuke; Ito, Mana; Ito, Katsutoshi; Mochida, Kazuhiko; Fujii, Kazunori

    2013-11-01

    We evaluated the acute toxicities of the main degradation products of pyridine triphenylborane (PTPB), namely, diphenylborane hydroxide (DPB), phenylborane dihydroxide (MPB), phenol, and biphenyl, to the alga Skeletonema costatum, the crustacean Tigriopus japonicus, and two teleosts, the red sea bream Pagrus major and the mummichog Fundulus heteroclitus. DPB was the most toxic of the degradation products to all four organisms. The acute toxicity values of DPB for S. costatum, T. japonicus, red sea bream, and mummichog were 55, 70, 100, and 200-310 μg/L, respectively. The degradation products were less toxic than PTPB to S. costatum and T. japonicus; however, the toxicities of DPB and PTPB to the fish species were similar. We also examined changes in the inhibition of growth rate of S. costatum as well as the percentage of immobilization of T. japonicus as end points of toxicity of PTPB after irradiation of PTPB with 432 ± 45 W/m(2) of 290-700 nm wavelength light. After 7 days of irradiation with this light, the concentration of PTPB in the test solutions decreased markedly. A decrease in toxic effects closely coincided with the decrease in the concentration of PTPB caused by the irradiation. PTPB probably accounted for most of the toxicity in the irradiation test solutions. Because the concentrations of PTPB that were acutely toxic to S. costatum and T. japonicus were <10 % of the corresponding concentrations of its degradation products, PTPB probably accounted for most of the toxicity in the irradiation test solutions. PMID:23929384

  14. Radiolytic degradation of methoxychlor in methanol and monitoring of radiolytic products by HPLC and GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Butt, S.B. [Central Analytical Facility Div., Pakistan Inst. of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Riaz, M. [Chemistry Div., Pakistan Inst. of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2010-07-01

    Degradation of priority organic pollutant methoxychlor in methanol solution by gamma irradiation under varied experimental conditions has been optimized. The solution of methoxychlor was air saturated before irradiation. The extent of radiolytic degradation efficiency was monitored by reversed phase HPLC-UV; two major and two minor degradation products were detected. For 5 kGy gamma radiation dose at a rate of 200 kGy h{sup -1} {>=} 95% methoxychlor was degraded. The degradation was also monitored by GC-ECD and the degradation products were identified using GC-MS after comparing their mass spectra with the NIST 98m mass spectral library. It is proposed that major degradation occurs through dechlorination, dehydrochlorination, by the detachment of methoxyphenyl from methoxychlor and by interaction of other radicals generated by the methanol radiolysis. The probable reaction schemes for the formation of products have been proposed. Most of the generated products were methoxy substituted, probably due to the availability of the methoxy radical from methanol radiolysis. The identified radiolytic products of methoxychlor and the removal efficiency have been compared with those of UV photolysis. It is observed that although the source of degradation is somewhat different, the end products or radical generated species are of similar nature. (orig.)

  15. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  16. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method using the solid phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) to analyse atrazine and its degradation products at levels of low nanograms per liter in water has been developed. The environmental water samples were filtered and then extracted by SPE with a new sulfonation of poly(divinylbenzene-co-N- vinylpyrrolidone) sorbents MCX. HPLC/APCIMS was used for the analysis of atrazine and its degradation products, desethylatrazine (DEA), deisopropylatrazine (DIA), didealkylatrazine (DEDIA), and hydroxyatrazine (HYA). The detection limits ranged from 10-50 ng/L in water samples. Samples were collected from deep wells and a reservoir near a plant that produced atrazine. Atrazine concentration levels in most surface samples were above the limit of the China Surface Water Regulation (3 mg/L). In ground water, the levels of degradation product were more than 0.1 mg/L and 5-10 times greater than those of atrazine. The highest DEA concentration in the groundwater sample taken at the 130 m depth was 7.2 ug/L.

  17. LC, MSn and LC-MS/MS studies for the characterization of degradation products of amlodipine

    Institute of Scientific and Technical Information of China (English)

    Ravi N. Tiwari; Nishit Shah; Vikas Bhalani; Anand Mahajan

    2015-01-01

    In the present study, comprehensive stress testing of amlodipine (AM) was carried out according to International Conference on Harmonization (ICH) Q1A(R2) guideline. AM was subjected to acidic, neutral and alkaline hydrolysis, oxidation, photolysis and thermal stress conditions. The drug showed instability in acidic and alkaline conditions, while it remained stable to neutral, oxidative, light and thermal stress. A total of nine degradation products (DPs) were formed from AM, which could be separated by the developed gradient LC method on a C18 column. The products formed under various stress conditions were investigated by LC–MS/MS analysis. The previously developed LC method was suitably modified for LC–MS/MS studies by replacing phosphate buffer with ammonium acetate buffer of the same concentration (pH 5.0). A complete fragmentation pathway of the drug was first established to characterize all the degradation products using LC–MS/MS and multi-stage mass (MSn) fragmentation studies. The obtained mass values were used to study elemental compositions, and the total information helped with the identification of DPs, along with its degradation pathway.

  18. LC, MSn and LC–MS/MS studies for the characterization of degradation products of amlodipine

    Directory of Open Access Journals (Sweden)

    Ravi N. Tiwari

    2015-02-01

    Full Text Available In the present study, comprehensive stress testing of amlodipine (AM was carried out according to International Conference on Harmonization (ICH Q1A(R2 guideline. AM was subjected to acidic, neutral and alkaline hydrolysis, oxidation, photolysis and thermal stress conditions. The drug showed instability in acidic and alkaline conditions, while it remained stable to neutral, oxidative, light and thermal stress. A total of nine degradation products (DPs were formed from AM, which could be separated by the developed gradient LC method on a C18 column. The products formed under various stress conditions were investigated by LC–MS/MS analysis. The previously developed LC method was suitably modified for LC–MS/MS studies by replacing phosphate buffer with ammonium acetate buffer of the same concentration (pH 5.0. A complete fragmentation pathway of the drug was first established to characterize all the degradation products using LC–MS/MS and multi-stage mass (MSn fragmentation studies. The obtained mass values were used to study elemental compositions, and the total information helped with the identification of DPs, along with its degradation pathway.

  19. Degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; ZHANG Peng; WEN Fu-yu; ZHANG Zhao-hong; ZHANG Xiang-dong; PAN Zhi-jun; ZHANG Lei; WANG Lei; XU Liang; KANG Ping-li

    2005-01-01

    A new upconversion luminescence agent, 40CdF2·60BaF2·0.8Er2O3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.

  20. A task-oriented modular and agent-based collaborative design mechanism for distributed product development

    Science.gov (United States)

    Liu, Jinfei; Chen, Ming; Wang, Lei; Wu, Qidi

    2014-05-01

    The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and

  1. Photo-assisted electrochemical detection (PAED) following HPLC-UV for the determination of nitro explosives and degradation products

    Science.gov (United States)

    Fedorowski, J.; LaCourse, William R.; Lorah, Michelle M.

    2012-06-01

    Continuous efforts implemented by government agencies such as the United States Geological Survey (USGS) aim to manage and protect the integrity of the environment's natural resources. RDX is one of the most frequently utilized nitramine explosives for mining, demolition and munitions purposes in the United States (US). The degradation of RDX in natural environments is of particular importance as a result of the accumulation of consequential degradation products in nature. Specifically, RDX has the potential to be degraded by microorganisms resulting in hazardous levels of harmful degradation products in soil and groundwater. The necessity for the detection of these particular degradation products is emphasized as a consequence of their toxicity as these products are recognized as potential mutagens. Photo-assisted electrochemical detection (PAED) following HPLC-UV is used to develop an analytical method qualified for the assessment of RDX and degradation products. The technique offers unique selectivity possessed by the photochemical reactor coupled to EC detection serving to eliminate the need for repetitive analysis using different column technologies. Furthermore, on-line sample pretreatment is developed and optimized specifically for the preparation of samples consisting of RDX and degradation products. Analytical figures of merit determined for all target analytes using on-line SPE-HPLC-UV-PAED revealed detection limits in the sub part per billion range for RDX and degradation product MEDINA. The effectiveness of the method is exemplified in collaborative studies with the USGS in monitoring the degradation of RDX and formation of degradation products once the nitro explosive is subject to anaerobic microorganisms WBC-2.

  2. Stability of barakol under hydrolytic stress conditions and its major degradation product.

    Science.gov (United States)

    Chantong, Boonrat; Wongtongtair, Supim; Nusuetrong, Punnee; Sotanaphun, Uthai; Chaichantipyuth, Chaiyo; Meksuriyen, Duangdeun

    2009-03-01

    The aim of the present study was to investigate the stability of barakol, an anxiolytic constituent extracted from leaves of Senna siamea (Lam.) Irwin & Barneby (syn. Cassia siamea Lam.), under the International Conference on Harmonisation suggested conditions using HPLC with photodiode array detection. Extensive degradation of barakol was found to occur under alkaline conditions through base-catalyzed hydrolysis. Mild degradation of barakol was observed under thermal and oxidative stress while it was stable under acidic conditions. The reaction rate constants (Kobs) of barakol degradation under alkaline conditions at pHs 12 and 13 were 3.0x10(-5) and 9.6x10(-3) min(-1), respectively. The activation energy according to the Arrhenius plot was calculated to be 26.9+/-3.3 kcal/mol at pH 13 and temperatures between 12 and 51 degrees C. The major degradation product of barakol under both alkaline and thermal stress conditions was characterized by LC-MS and NMR as cassiachromone.

  3. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    Science.gov (United States)

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products. PMID:26832394

  4. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    OpenAIRE

    Min Li; Xianyan Liao; Dongxu Zhang; Guocheng Du; Jian Chen

    2011-01-01

    Polyvinyl alcohol-degrading enzymes (PVAases) have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and...

  5. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    OpenAIRE

    Mehreen Haq; Nelson Gonzalez; Keenan Mintz; Asha Jaja-Chimedza; Christopher Lawrence De Jesus; Christina Lydon; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a...

  6. Agent Behavior-Based Simulation Study on Mass Collaborative Product Development Process

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2015-01-01

    Full Text Available Mass collaborative product development (MCPD benefits people by high innovation products with lower cost and shorter lead time due to quick development of group innovation, Internet-based customization, and prototype manufacturing. Simulation is an effective way to study the evolution process and therefore to guarantee the success of MCPD. In this paper, an agent behavior-based simulation approach of MCPD is developed, which models the MCPD process as the interactive process of design agents and the environment objects based on Complex Adaptive System (CAS theory. Next, the structure model of design agent is proposed, and the modification and collaboration behaviors are described. Third, the agent behavior-based simulation flow of MCPD is designed. At last, simulation experiments are carried out based on an engineering case of mobile phone design. The experiment results show the following: (1 the community scale has significant influence on MCPD process; (2 the simulation process can explicitly represent the modification and collaboration behaviors of design agents; (3 the community evolution process can be observed and analyzed dynamically based on simulation data.

  7. Purex diluent degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  8. Purex diluent degradation

    International Nuclear Information System (INIS)

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO2) molecule, not HNO3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO3 concentration and the temperature. The rate was decreased by argon sparging to remove NO2 and by the addition of butanol, which probably acts as a NO2 scavenger. 13 references, 11 figures

  9. Manipulating Protein Degradability in the Rumen to Support Higher Ruminant Production

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-09-01

    Full Text Available Dietary protein is digested to a certain extent in the rumen causing decreases its potency as source of amino acids for the animal. Dietary protein should mostly reach the intestines where the protein digestion takes place and absorption occurs in the form of intact amino acids and subsequently becomes nutrient deposition in muscles or milk. The higher muscle or milk protein synthesis, the higher the protein in the products of animal, as long as energy for the metabolism is available. Strategies of feeding rumen degradable versus undegradable protein in ruminant have become a research interest for decades. Technologies of dietary protein protection to reduce its degradability in the rumen by heating, chelating or coating have been developed.

  10. Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

    Science.gov (United States)

    Patel, Prinesh N; Kalariya, Pradipbhai D; Gananadhamu, S; Srinivas, R

    2015-11-10

    Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines. PMID:26279369

  11. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    Science.gov (United States)

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture. PMID:25855613

  12. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit;

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  13. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    Science.gov (United States)

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy.

  14. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    Science.gov (United States)

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy. PMID:27421102

  15. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China.

    Science.gov (United States)

    Yu, Yang; Zhang, Wen; Chen, Guanhong; Gao, Yongchao; Wang, Jianing

    2014-01-01

    Two petroleum-degrading strains were screened from oil fields and denoted as SWH-1 (Bacillus subtilis) and SWH-2 (Sphingobacterium multivorum), which were used to ferment and prepare bacterial agent to remediate petroleum-contaminated sites in Shengli Oil Field in China. The optimal liquid fermentation medium and conditions were MgSO₄·7H₂O (0.5%), NaCl (0.5%), soybean dregs (3%), pH 7.0, culturing at 30 °C, and 220 r/min for 16 h. Peat was chosen as the bacterial carrier due to its ability of keeping microbial activity. Mixed fermented liquid was added into peat (1:2) and air-dried, and the bacterial agent was obtained. It was applied to the petroleum-contaminated soil, which was irrigated, tilled, and fertilized. The removal rate reached 67.7% after 2 months of remediation. During remediation, the quantity of indigenous bacteria varied a lot, while the inoculated bacteria remained stable; the dehydrogenase activity was at high levels and then decreased. Indigenous microorganisms, inoculated bacterial agent, nutrients, water, and soil permeability all played important roles. The study prepared an environment-friendly bacterial agent and established a set of bioremediation technique, which provided further insights into integration of fermentation engineering and soil remediation engineering.

  16. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    Science.gov (United States)

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. PMID:26588432

  17. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  18. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  19. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  20. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    International Nuclear Information System (INIS)

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10−4 min−1 under low intensity UVA irradiation of 1.5 mW cm−2 in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10−4 min−1 by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture

  1. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    Science.gov (United States)

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  2. An Agent-based approach to modelling integrated product teams undertaking a design activity.

    OpenAIRE

    Sim, Yee Wai; Crowder, Richard; Robinson, Mark; Hughes, Helen

    2009-01-01

    The interactions between individual designers, within integrated product teams, and the nature of design tasks, all have a significant impact upon how well a design task can be performed, and hence the quality of the resultant product and the time in which it can be delivered. In this paper we describe an ongoing research project which aims to model integrated product teams through the use of multi-agent systems. We first describe the background and rationale for our work, and then present ou...

  3. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie;

    2013-01-01

    waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...... photoproducts formed by UV-treatment until 90% of the original pesticide was converted was compared to the toxicity of chloroacetamides using the green alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the marine bacteria Vibrio fischeri as test organisms. UV-treatment of alachlor...... and metolachlor increased the toxicity compared to the parent compounds while an equal toxicity was found for photolysis products of acetochlor. This suggests that toxic photodegradation products are generated from chloroacetamides under UV-treatment. An important perspective of this finding...

  4. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: Efficiency, product and mechanism

    International Nuclear Information System (INIS)

    N-Nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O3 were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O3. Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O3 process. Though the ozone introduction in the UV/O3 process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O3 process.

  5. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism.

    Science.gov (United States)

    Xu, Bingbing; Chen, Zhonglin; Qi, Fei; Ma, Jun; Wu, Fengchang

    2010-07-15

    N-nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O(3) were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O(3). Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O(3) process. Though the ozone introduction in the UV/O(3) process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O(3) process.

  6. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    Science.gov (United States)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  7. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    Science.gov (United States)

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  8. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    Science.gov (United States)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  9. Analysis of l-DOPA-derived melanin and a novel degradation product formed under alkaline conditions.

    Science.gov (United States)

    Omotani, Hidetoshi; Yasuda, Makoto; Ishii, Ritsuko; Ikarashi, Tsukasa; Fukuuchi, Tomoko; Yamaoka, Noriko; Mawatari, Ken-Ichi; Kaneko, Kiyoko; Nakagomi, Kazuya

    2016-06-01

    When the therapeutic drug l-DOPA, which is used to treat Parkinson's disease, is combined with magnesium oxide (MgO), a formulation change produces a dark substance. Infrared spectroscopy reveals that this substance is melanin. After allowing the l-DOPA and MgO mixture to stand, the l-DOPA content decreases significantly, and a new degradation product (the final degradation product of l-DOPA, FDP-D) is generated. Formation of this product requires a solution with a pH of >10, and the presence of MgO is not necessary. FDP-D is not produced by tyrosinase decomposition of l-DOPA and is therefore not a melanin-related compound. Pure FDP-D is isolated by adjusting the l-DOPA solution to pH 10 with ammonium hydroxide, allowing it to stand for 3 days at room temperature, adding trifluoroacetic acid (TFA), filtering the precipitate, and separating the supernatant with high-performance liquid chromatography (HPLC). Mass spectrometry indicates that the isolated FDP-D has a molecular formula of C9H9NO7. On the basis of NMR analysis ((1)H NMR, (13)C NMR, DEPT, H-H COSY, HMQC, and HMBC), FDP-D appears to be a substance with the novel structure 7a-hydroxy-5-oxo-1,2,3,5,7,7a-hexahydropyrano [3,4-b]pyrrole-2,7-dicarboxylic acid. PMID:26999318

  10. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment.

    Science.gov (United States)

    Wu, Yanlin; Shi, Jin; Chen, Hongche; Zhao, Jianfu; Dong, Wenbo

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation. PMID:27213674

  11. EDS and μ-XRF mapping of amalgam degradation products in ancient mirrors.

    Science.gov (United States)

    Arizio, E; Orsega, E F; Falcone, R; Vallotto, M

    2014-12-01

    An amalgam mirror is a mirror type, used from the fifteenth century until the end of the nineteenth century, where the reflective layer is constituted by a tin amalgam layer adhered to a glass sheet. In this work, two amalgam mirrors samples were studied by scanning electron microscopy with an energy dispersive spectrometer and by micro-X-ray fluorescence elemental mapping to go deeply into the understanding of the degradation mechanism of the amalgam layer of ancient mirrors. The investigation has been focused for the first time on the reflective surface of the amalgam layer adherent to the glass sheet to better understand the processes of amalgam corrosion. The two amalgam degradation compounds, romarchite and cassiterite, has been spatially differentiated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) maps. SEM images and micro-X-ray fluorescence and EDS maps showed that the amalgam degradation products grow up to form hemispherical stratified calottes. This structure is probably due to a mechanism involves cyclic phases and oxygen radial diffusion from a superficial oxidation nucleus. PMID:24420559

  12. Modeling of thermal hydraulic behavior and fission product releases in degraded cores

    International Nuclear Information System (INIS)

    When core material reaches melting conditions severe degradation of the core geometry occurs. Data available on the core behavior in a severely degraded state suggest that extensive blockage of the flow channels would occur. If a sufficient bypass is available for the gas flow, such as in the LOFT LP-FP-2 test, severe retardation of the hydrogen and fission product sources from the degraded channel is suggested from the available data. This phenomena is expected to occur in an LWR core and should be considered by core models that are used for severe accident analysis. In the MAAP code it is done by preventing gas flow through molten core regions. Good agreement is obtained with all relevant data that are directly applicable to LWR accident conditions. A more mechanistic model for the freezing of core material and its effect on the coolant channel geometry is currently being investigated by the US Department of Energy Advanced Reactor Severe Accident Program (ARSAP). 8 refs., 2 figs

  13. Method for the production of modified steroid degrading microorganisms and there use

    NARCIS (Netherlands)

    van der Geize, Robert; Hessels, Gerda I.; Dijkhuizen, Lubbert

    2009-01-01

    A method is described to construct genetically modified strains of steroid degrading micro-organisms wherein the method comprises inactivation of at least one gene involved in methylhexahydroindanedione propionate degradation. Strains with (multiple) inactivated steroid degrading enzyme genes accord

  14. A Software Product Line Process to Develop Agents for the IoT

    Directory of Open Access Journals (Sweden)

    Inmaculada Ayala

    2015-07-01

    Full Text Available One of the most important challenges of this decade is the Internet of Things (IoT, which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL. Specifically, we propose to use Self-StarMASMAS, multi-agent system agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes.

  15. A Software Product Line Process to Develop Agents for the IoT.

    Science.gov (United States)

    Ayala, Inmaculada; Amor, Mercedes; Fuentes, Lidia; Troya, José M

    2015-07-01

    One of the most important challenges of this decade is the Internet of Things (IoT), which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL). Specifically, we propose to use Self-StarMASMAS, multi-agent system) agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes.

  16. Gaseous products generated by radiation degradation of N,N-diethylhydroxylamine aqueous solution

    Institute of Scientific and Technical Information of China (English)

    WANG Jinhua; WANG Shengxiu; BAO Borong; LI Zhen; LI Chun; ZHENG Weifang; ZHANG Shengdong

    2008-01-01

    In this paper, gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA)in aqueous solution are studied. The results show that by 10~1000 kGy irradiation of the solution in DEHA volume fraction of hydrogen did not change much with different concentrations of DEHA. The volume fraction of methane and ethane decreased, but that of ethene increased, with increasing DEHA concentration. The volume fraction of hydrogen, methane and ethane increased with the dose. The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration.

  17. Photocatalytic degradation of methyl blue by silver ion-doped titania: Identification of degradation products by GC-MS and IC analysis.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    An anionic triphenyl methane dye, methyl blue ((disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate) was degraded photocatalytically with undoped micro-TiO2- and Ag(+)-doped micro TiO2 in a slurry-type batch reactor under UV irradiation and the efficiency was compared with that obtained using nano-TiO2- and Ag(+)-doped nano-TiO2. The influence of different parameters, i.e., photocatalyst loading, dye concentration, initial pH, temperature, depth of solution, interfering ions and electron acceptors on the dye degradation was investigated. The decolorization and mineralization efficiency was better for Ag(+)-doped micro-TiO2 than undoped micro-TiO2. Nano-TiO2 was more efficient than micro-TiO2, while Ag(+)-doped nano-TiO2 was the most efficient of all. Cost analysis showed degradation using micro-TiO2- and Ag(+)-doped micro-TiO2 are much cheaper than that using nano-TiO2 and Ag(+)-doped nano-TiO2. Therefore Ag(+)-doped micro-TiO2 was used for the detailed study. The degradation products formed were identified using GC-MS analysis after photocatalytic degradation for 180 min with Ag(+) -doped micro TiO2. Ion chromatography analysis was carried out for anions to identify the end products of degradation.

  18. Stress Degradation Behavior of Abacavir Sulfate and Development of a Suitable Stability-Indicating UHPLC Method for the Determination of Abacavir, its Related Substances, and Degradation Products.

    Science.gov (United States)

    Vukkum, Pallavi; Deshpande, Girish R; Babu, J Moses; Muralikrishna, R; Jagu, Pavani

    2012-12-01

    A novel, stability-indicating UHPLC method was developed for the quantitative determination of Abacavir sulfate, its related substances, and forced degradation impurities in bulk drugs. The chromatographic separation was achieved on a Waters Acquity BEH C(8), 50 mm × 2.1 mm, 1.7 μm particle size column with a mobile containing a gradient mixture of solution A (0.10 % v/v o-phosphoric acid in water) and solution B (0.10% v/v o-phosphoric acid in methanol). The flow rate was set at 0.40 mL/min and the run time was 6.0 min. The drug substance was subjected to the stress studies of hydrolysis, oxidation, photolysis, and thermal degradation. Abacavir sulfate was found to degrade significantly under acidic hydrolysis and oxidative stress conditions. The formed degradation products were reported and were well-resolved from Abacavir and its related substances. The mass balance was found to be satisfactory in all of the stress conditions, thus proving the stability-indicating capability of the method. The developed UHPLC method was validated to be in agreement with ICH requirements and found to be rapid, accurate, precise, linear, specific, and suitable for the quantitative determination of related substances and degradants in the bulk drug samples of Abacavir sulfate. PMID:23264939

  19. In-store consumer behavior: How mobile recommendation agents influence usage intentions, product purchases, and store preferences

    OpenAIRE

    Kowatsch T.; Maass W.

    2010-01-01

    Product information given in purchase situations influences purchase behavior. In online purchase situations, the use of recommendation agents increases the value of product information as information becomes adaptive and thus more relevant to consumers' information needs. Correspondingly, mobile recommendation agents (MRAs) may also increase the value of product information in bricks-and-mortar stores. In this sense, product information is not only adaptive but can also be requested at any p...

  20. Detection of methylglyoxal as a degradation product of DNA and nucleic acid components treated with strong acid.

    Science.gov (United States)

    Chaplen, F W; Fahl, W E; Cameron, D C

    1996-05-01

    The 1,2-diaminobenzene derivation assay for methylglyoxal in biological systems involves the use of perchloric acid, both as a deproteinizing agent and to prevent the spontaneous formation of methylglyoxal from glycolytic pathway intermediates. However, while using a modification of the standard literature assay to measure methylglyoxal in Chinese hamster ovary cells, we found that oxidation of nucleic acids and related compounds by perchloric or trichloroacetic acid results in the formation of methylglyoxal. Compounds containing 2-deoxyribose gave higher levels of methylglyoxal than those containing ribose; purine nucleotides and deoxynucleotides gave more methylglyoxal than did the pyrimidines. Nucleic acids were the most susceptible to degradation, with 12-fold more methylglyoxal being formed from DNA than RNA. Oxidation of nucleic acids increased with higher temperatures and with decreasing nucleic acid fragment size. Another product of nucleic acid oxidation was 2,3-butanedione, the 1,2-diaminobenzene derivative of which is sometimes used as an internal standard during methylglyoxal measurement. Unless accounted for during the assay procedure, the generation of methylglyoxal and 2,3-butanedione due to the oxidation of nucleic acids may lead to substantial errors in the determination of methylglyoxal concentrations in biological systems.

  1. Current Status of Natural Products from Plants as Anti-herpes Simplex Virus 1 Agents

    Institute of Scientific and Technical Information of China (English)

    Yang-fei XIANG; Ying PEI; Yi-fei WANG

    2008-01-01

    Nucleoside analogues have been the mainstay of clinical treatment of herpes simplex virus 1 (HSV-1) infections since their development. However, the emergence of drug resistant strains has underlined the urgency of the discovery of novel anti-HSV-1 drugs. Natural products, which provided many novel drug leads, are known to be an important source of anti-HSV-1 agents. Herein, we present an overview of natural products with anti-HSV-1 activities isolated from a variety of plants reported in recent years. Several different compounds, mainly belonging to the three groups of polysaccharides, polyphenols and terpenes, showed antiviral effects against HSV-1, indicating their potential to be promising anti-HSV-1 agents.

  2. "Effects of agitation rate on the growth of Mycena SP and production of antifungal agents "

    Directory of Open Access Journals (Sweden)

    Vahidi H

    2002-07-01

    Full Text Available Impeller speed or agitation rate plays a significant role in the growth of microorganism especially basidiomycetes and production of bioactive compounds via transfer of oxygen and mass. In this investigation the efferent impeller speeds on morphology, biomass concentration and production of bioactive compounds with antifungal activity were studied using a 5-liter fermenter. It was found that use of different impeller speeds (300 , 450 and 600 rpm resulted in various growth pattern and productivity. Impeller speed of 600 rpm gave a tow biomass concentration and low production of antifungal agent and the best result was obtained when impeller speed was adjusted to 450 rpm. Biomass concentration and productivity in the case of 300 rpm was less than that of 450 but higher than of 600 rpm.

  3. Isolation and identification of oil sludge degrading bacteria from production tank Number 9 Masjed Soleiman

    Directory of Open Access Journals (Sweden)

    Yalda Sheyni

    2014-07-01

    Full Text Available   Introduction: “Bioremediation” is one of the most effective methods to remove petroleum contaminants. The aim of the present study is to isolate the indigenous bacteria from the waste petroleum in the Masjed Soleiman No. 9 production tank and to examine the effect of their application on the elimination of petroleum heavy chain hydrocarbons and converting them into light compounds .   Materials and methods: Two percent of petroleum sludge was inoculated to the mineral basal medium and after proliferation of its indigenous bacteria, they were inoculated into the mixture of oil sludge and sand at level of 5%, and the amount of total hydrocarbons and residual oil were measured and compared. The isolates were identified based on biochemical tests and 16S rRNA gene sequencing. Optimization of nitrogen and phosphate sources was done based on growth curves of selected isolates. Gas chromatography was used to determine degradation of sludge hydrocarbons.   Results: In this study, 10 bacterial isolates were isolated from petroleum sludge . Measurement of petroleum total hydrocarbons, using Soxhlet-extraction method, showed that two isolates named MIS1 and MIS2 are able to decompose oil sludge hydrocarbons within 7 days, with the yields of 62% and 72%, respectively. Furthermore, the two isolates reach the end of the logarithmic phase at 48 and 120 hrs, respectively. The best source of nitrogen and phosphate for both isolates was ammonium nitrate and potassium di ­hydrogen phosphate, respectively. The isolates were identified as Arthrobacter aurescens and Pseudomonas aeruginosa , respectively. In gas chromatography analysis it was revealed that Pseudomonas aeruginosa was more potent in degradation of heavy chain hydrocarbons and their conversion to light chain compounds.   Discussion and conclusion: Resident bacteria are present in the oil sludge and are able to degrade the heavy petroleum compounds and convert them into light compounds. These

  4. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    Science.gov (United States)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  5. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Cheng-gang CAI; Bing-gan LOU; Xiao-dong ZHENG

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 ℃. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2,therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production.

  6. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    Science.gov (United States)

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  7. Maize production and land degradation: a Portuguese agriculture field case study

    Science.gov (United States)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  8. The degradation products of aniline in the solutions with ozone and kinetic investigations.

    Science.gov (United States)

    Turhan, Kadir; Uzman, Suheyla

    2007-10-01

    Aromatic compounds are extensively used in several industries and can cause pollution in water sources. This work aims at examining the degradability of aniline in aqueous solutions by ozone-induced cleavage, and at determining the kinetics of the cited cleavage reactions. Aniline was prepared in four different concentrations and the flow rate of ozone supplied to each solution was selected. Aniline solutions were ozonated at low and high pH, so as to compare both molecular and hydroxyl free radical mechanisms, respectively. The main identified aromatic by-products were nitrobenzene and azobenzene when the experiment was carried out at acidic pH. Formation of nitrobenzene, azobenzene, azoxybenzene and 2-pyridine carboxylic acid (picolinic acid) was observed when the ozonization was carried out at basic pH. All the aromatic by-products found were less toxic than the raw materials. The pseudo-first-order constants in aniline concentrations were calculated.

  9. Research on Product Data Management Based on Multi-agent System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi-agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.

  10. The degradation of oxytetracycline during thermal treatments of chicken and pig meat and the toxic effects of degradation products of oxytetracycline on rats

    OpenAIRE

    Nguyen, VanHue; Nguyen, VanToan; Li, Chunbao; Zhou, Guanghong

    2014-01-01

    The formation oxytetracycline (OTC) degradation products in chicken and pork under two different methods of cooking were studied. Samples of chicken and pig muscles previously dosed with OTC residues were subjected to boiling or microwave treatment, and the residues were extracted in a mixture of citrate buffer-MeOH (75:25 v/v), and then analyzed by high performance liquid chromatography with photodiode array detection using a XBridgeTM C18 reverse-phase chromatographic column. Thermal treatm...

  11. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53.

    Science.gov (United States)

    Bai, Jingxiang; Cederbaum, Arthur I

    2003-02-14

    Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53. PMID:12468545

  12. Productivity, fertilizer responses and nutrient balances of farming systems in central Tigray, Ethiopia: a multi-perspective view in relation to degradation.

    Science.gov (United States)

    Kraaijvanger, Richard; Veldkamp, Tom; Nyssen, Jan

    2014-05-01

    In many rural livelihoods in sub-Saharan Africa, crop productivity plays an important role since it links with food insecurity, which again is a major constraining factor in livelihood development. Sustainable livelihood development and land degradation are closely connected: lacking sustainability often results in land degradation, whereas the incidence of land degradation frequently frustrates sustainable development. Important forms of land degradation are soil erosion and nutrient depletion, both often being attributed to exhaustive land use practices and both having a direct and major impact on crop productivity. Application of nutrients is an important way to increase productivity. In our study area, central Tigray, development agents recommend the application of fertilizers at high rates in order to boost productivity and to deal with nutrient depletion. In the discussion about the use of fertilizers different perspectives can be taken, in which especially responses and nutrient balances are important issues, linking respectively with socio-economic and agro-ecological livelihood aspects. Ethiopian soils for example are, based on large scale nutrient balances, considered to be depleted, at field scale fertilizer responses are frequently disappointing and achieving sustainable nutrient balances at farm level seems difficult. At a temporal scale however, agricultural systems remained almost unchanged for over 2500 years, suggesting at least some degree of sustainability. With respect to productivity data resulting from on-farm experimentation with natural and artificial fertilizers in 26 sites, we took four perspectives, different in ownership and scale, on nutrient related land degradation and its assumed impact on crop productivity. Taking a farmer perspective we found no significant difference between responses to recommended and current farmer based practices. Taking a more scientific perspective highlighted that, based on the positive correlation between

  13. Lactobacilli and tartrazine as causative agents of red-color spoilage in cucumber pickle products.

    Science.gov (United States)

    Pérez-Díaz, I M; Kelling, R E; Hale, S; Breidt, F; McFeeters, R F

    2007-09-01

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in pickled cucumber products characterized by development of red color on the surface of the fruits. Lactobacillus casei and Lactobacillus paracasei were isolated from 2 outbreaks of this spoilage that occurred about 15 y apart during the last 3 decades. Both organisms were shown to produce this spoilage when inoculated into pickled cucumbers while concomitantly degrading the azo dye tartrazine (FD&C yellow nr 5). This food dye is used as a yellow coloring in the brine cover solutions of commercial pickled cucumber products. The red color does not occur in the absence of tartrazine, nor when turmeric is used as a yellow coloring in the pickles. Addition of sodium benzoate to the brine cover solutions of a pickled cucumber product, more specifically hamburger dill pickles, prevented growth of these lactic acid bacteria and the development of the red spoilage. PMID:17995647

  14. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine

    Institute of Scientific and Technical Information of China (English)

    Meiquan Cai; Liqiu Zhang; Fei Qi; Li Feng

    2013-01-01

    Owing to its low cost,free chlorine is one of the most common disinfectants for wastewater and drinking water treatment.However,the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades.Antipyrine (ANT),an anti-inflammatory analgesic,has been frequently detected in the aquatic environment.In this work.the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments.The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L,free chlorine dosage from 0.30 to 1.31 mg/L,and pH from 1.5 to 9.0.The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry.The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L,ANT 0.5 mg/L,pH 7.0).Higher oxidant dosage,lower ANT initial concentration and low pH favor the ANT removal.The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro1,5-dimethyl-2-phenyl-3H-pyrazol-3-one),which can be further chlorinated by free chlorine.In addition,the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  15. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    Science.gov (United States)

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  16. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia.

    Science.gov (United States)

    Jantzie, Lauren L; Winer, Jesse L; Corbett, Christopher J; Robinson, Shenandoah

    2016-01-01

    Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies. PMID:26551007

  17. Role of Nitrite in Processed Meat Products and its Degradation during their Storage

    Directory of Open Access Journals (Sweden)

    ILIRJANA BOCI

    2014-06-01

    Full Text Available This paper represents the analytical data of nitrite level obtained from the experimental work done on meat processed samples taken from a meat processing plant in Tirana. There has been a long debate and health concern about the nitrite content in meat products. Nitrite is added to e.g. sausages, and hams and other meat products to preserve these products and keep them free from dangerous bacteria. Among the aims are preventing botulism, a dangerous food poison. But also it’s important to use the smallest possible amount of nitrite as a preservative because nitrite in meat can also form nitrosamines, which can damage the health. That’s why the role of nitrite in processed meat and its recommended level conform to new EC Regulations are given in the introduction part of this paper. It is important that the nitrite level be monitored during all the processing steps up to the end consumers. This makes the objective of this paper. It gives the analytical data on nitrite level on meat processed samples taken and tested during their storage and ripening period of time. Different kinds of meat products are taken and tested to evaluate the influence of various parameters (storage time, time until to the end consumers, various kinds of packing in the degradation rate of ingoing nitrite.

  18. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation.

    Directory of Open Access Journals (Sweden)

    Philipp R Esser

    Full Text Available BACKGROUND: Allergic contact dermatitis (ACD represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS and a concomitant breakdown of the extracellular matrix (ECM component hyaluronic acid (HA to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. CONCLUSIONS/SIGNIFICANCE: These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD.

  19. Degradation of organic compounds and production of activated species in Dielectric Barrier Discharges and Glidarc reactors

    CERN Document Server

    Cormier, Jean Marie; Khacef, Ahmed

    2008-01-01

    Major sterilization mechanisms are related to atoms and radicals, charged parti-cles, excited molecules, ozone, and UV radiation. The ROS (Reactive Oxygen Species) are well known as evildoers. These species are easily created in ambient air and water and they live long enough to reach the cell and attack the organic matter. Test molecules conversion in dry and wet air is studied using Dielectric Barrier Discharge (DBD) and Gliding Arc Reactors (GAR). The effects of tem-perature and energy deposition into the media on the active species production and then on the organic compounds degradation are presented for two non thermal plasma reactors: DBD and GAR. Main production species investigated are OH, O3, NOx, CO and CxHyOz by-products. It is shown from experiment analysis that the reactive species production is quite different from one reactor to another. GAR and pulsed DBD are two chemical processing ways in which the temperature of heavy species in ionized gas is determinant. By reviewing the species producti...

  20. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    Science.gov (United States)

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  1. Stability indicating methods for the analysis of cefprozil in the presence of its alkaline induced degradation product

    Science.gov (United States)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-04-01

    Three simple, specific, accurate and precise spectrophotometric methods were developed for the determination of cefprozil (CZ) in the presence of its alkaline induced degradation product (DCZ). The first method was the bivariate method, while the two other multivariate methods were partial least squares (PLS) and spectral residual augmented classical least squares (SRACLS). The multivariate methods were applied with and without variable selection procedure (genetic algorithm GA). These methods were tested by analyzing laboratory prepared mixtures of the above drug with its alkaline induced degradation product and they were applied to its commercial pharmaceutical products.

  2. Assessing Forest Plantation Productivity of Exotic and Indigenous Species on Degraded Secondary Forests

    Directory of Open Access Journals (Sweden)

    Yetti Heryati

    2011-01-01

    Full Text Available Problem statement: There is general agreement that human activities such as deforestation and land use change to other land use types have contributed to degraded secondary forests or forestland and increases the emission of greenhouse gases which ultimately led to global climate change. An establishment of forest plantation in particular is regarded as an important approach for sequestering carbon. However, limited information exists on productivity and potential of fast growth exotic and indigenous tree plantations for sequestering CO2 from the atmosphere through photosynthesis. This study aimed at assessing the productivity and biomass accumulation along with the potential for sequestering CO2 of planted exotic and indigenous species on degraded forestland. Approach: This study was conducted at Khaya ivorensis and Hopea odorata plantations, which was planted at the Forest Research Institute Malaysia (FRIM Research Station in Segamat Johor, Malaysia five years ago. In order, to evaluate the forest productivity and biomass accumulation of both species, we established plots with a size of 40 × 30 m in three replications in each stand, followed by measuring all trees in the plots in terms of height and Diameter at Breast Height (DBH. To develop allometric equation, five representative trees at each stand were chosen for destructive sampling. Results: The growth performance in terms of mean height, DBH, annual increment of height and diameter and basal area of exotic species (K. ivorensis was significantly higher than that of the indigenous species (H. odorata. We used the diameter alone as independent variable to estimate stem volume and biomass production of both species. The stem volume of K. ivorensis stand was 43.13 m3ha-1 and was significantly higher than H. odorata stands (33.66 m3 ha-1. The results also showed that the K. ivorensis and H. odorata stands have the potential to absorb CO2 from the atmosphere which was stored in aboveground

  3. Role of bacteria in the production and degradation of Microcystis cyanopeptides.

    Science.gov (United States)

    Briand, Enora; Humbert, Jean-François; Tambosco, Kevin; Bormans, Myriam; Gerwick, William H

    2016-06-01

    The freshwater cyanobacteria, Microcystis sp., commonly form large colonies with bacteria embedded in their mucilage. Positive and negative interactions between Microcystis species and their associated bacteria have been reported. However, the potential role of bacteria in the production and degradation of cyanobacterial secondary metabolites has not been investigated. In this study, a Microcystis-associated bacterial community was isolated and added to the axenic M. aeruginosaPCC7806 liquid culture. After 3 years of cocultivation, we studied the bacterial genetic diversity adapted to the PCC7806 strain and compared the intra- and extracellular concentration of major cyanopeptides produced by the cyanobacterial strain under xenic and axenic conditions. Mass spectrometric analyses showed that the intracellular concentration of peptides was not affected by the presence of bacteria. Interestingly, the produced peptides were detected in the axenic media but could not be found in the xenic media. This investigation revealed that a natural bacterial community, dominated by Alpha-proteobacteria, was able to degrade a wide panel of structurally varying cyclic cyanopeptides. PMID:26918405

  4. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  5. Discovery and development of natural product oridonin-inspired anticancer agents.

    Science.gov (United States)

    Ding, Ye; Ding, Chunyong; Ye, Na; Liu, Zhiqing; Wold, Eric A; Chen, Haiying; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2016-10-21

    Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic. PMID:27344488

  6. Development of tools for genetic analysis of phenanthrene degradation and nanopod production by Delftia sp. Cs1-4

    OpenAIRE

    William James Hickey

    2011-01-01

    The bacterium Delftia sp. Cs1-4 produces novel extracellular structures (nanopods) in conjunction with its growth on phenanthrene. While a full genome sequence is available for Strain Cs1-4, genetic tools that could be applied to study phenanthrene degradation/nanopod production have not been reported. Thus, the objectives of this study were to establish such tools, and apply them for molecular analysis of nanopod formation and/or phenanthrene degradation. Three types of tools were developed ...

  7. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio Embryo Model of Vertebrate Development

    Directory of Open Access Journals (Sweden)

    Mehreen Haq

    2016-02-01

    Full Text Available Ochratoxins, and particularly ochratoxin A (OTA, are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA, and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification.

  8. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    Science.gov (United States)

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  9. Forced degradation study of racecadotril: Effect of co-solvent, characterization of degradation products by UHPLC-Q-TOF-MS/MS, NMR and cytotoxicity assay.

    Science.gov (United States)

    Chiguru, Vishnuvardhan; Lingesh, Allakonda; R, Srinivas; N, Satheeshkumar

    2016-09-01

    Racecadotril, an enkephalinase inhibitor, was subjected to hydrolysis (acidic and alkaline), oxidation, photolysis and thermal stress, as per ICH specified conditions. The drug showed extensive degradation under acidic, basic hydrolysis and oxidative stress conditions whereas, it was stable under other stress conditions. A total of seven degradation products (DPs) were observed. The chromatographic separation was optimized on Acquity HSS Cyano (100×2.1mm, 1.8μ) column using 0.1% formic acid and acetonitrile as mobile phase in gradient mode. Six DPs were characterised by LC-MS/MS and DP1 by GC-MS. The major DPs (DP 2 and DP 5) were isolated and characterised by NMR. This is a typical case of degradation where co solvent methanol reacts with racecadotril leading to the formation of pseudo DPs, DP 6 and DP 5. Interestingly the MS/MS spectra of protonated drug, DP 4 and DP 7 showed product ions which were formed due to intramolecular benzyl migrations. In vitro cytotoxic activity studies on isolated DP 2 and DP 5 revealed that the former has no cytotoxic nature, whereas the latter has potential pulmonary and hepatic toxicity. PMID:27209450

  10. A bioanalytical HPLC method for coumestrol quantification in skin permeation tests followed by UPLC-QTOF/HDMS stability-indicating method for identification of degradation products.

    Science.gov (United States)

    Bianchi, Sara E; Teixeira, Helder F; Kaiser, Samuel; Ortega, George G; Schneider, Paulo Henrique; Bassani, Valquiria L

    2016-05-01

    Coumestrol is present in several species of the Fabaceae family widely distributed in plants. The estrogenic and antioxidant activities of this molecule show its potential as skin anti-aging agent. These characteristics reveal the interest in developing analytical methodology for permeation studies, as well as to know the stability of coumestrol identifying the major degradation products. Thus, the present study was designed, first, to develop and validate a versatile liquid chromatography (HPLC) method to quantify coumestrol in a hydrogel formulation in different porcine skin layers (stratum corneum, epidermis, and dermis) in permeation tests. In the stability-indicating test coumestrol samples were exposed to stress conditions: temperature, UVC light, oxidative, acid and alkaline media. The degradation products, as well as the constituents extracted from the hydrogel, adhesive tape or skin were not eluted in the retention time of the coumestrol. Hence, the HPLC method showed to be versatile, specific, accurate, precise and robust showing excellent performance for quantifying coumestrol in complex matrices involving skin permeation studies. Coumestrol recovery from porcine ear skin was found to be in the range of 97.07-107.28 μg/mL; the intra-day precision (repeatability) and intermediate precision (inter-day precision), respectively lower than 4.71% and 2.09%. The analysis using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight high definition mass spectrometry detector (UPLC-QTOF/HDMS) suggest the MS fragmentation patterns and the chemical structure of the main degradation products. These results represent new and relevant findings for the development of coumestrol pharmaceutical and cosmetic products. PMID:27010353

  11. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  12. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  13. Peritoneal dialysis solutions low in glucose degradation products: clinical experience and outcomes.

    Science.gov (United States)

    Diaz-Buxo, Jose A

    2007-01-01

    The latest literature describing clinical experiences with peritoneal dialysis solutions low in glucose degradation products (GDPs) is mostly consistent with previous reports suggesting less inflammation, better peritoneal mesothelial mass preservation, a lower rate of decline of residual renal function, and improved patient survival. The data suggest stable peritoneal transport rates, but no definite evidence has yet emerged of superior membrane preservation. Most studies have reported very low peritonitis rates, but without significant differences as compared with rates in patients exposed to conventional solutions. New, appropriately powered randomized clinical trials are needed to confirm the potential benefits of low-GDP solutions and to establish the role of renal function preservation with regard to those benefits.

  14. Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes

    Science.gov (United States)

    Saleh, H. M.; Eskander, S. B.

    2012-11-01

    Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.

  15. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region

    Science.gov (United States)

    Herrero-Hernández, E.; Andrades, M. S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J.

    2013-04-01

    SummaryA multi-residual analytical method based on solid phase extraction (SPE) followed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS) was developed to monitor pesticides in natural waters. Fifty-eight compounds, including herbicides, fungicides, insecticides and some of their degradation products, were surveyed to evaluate the quality of natural waters throughout the wine-growing region of La Rioja (Rioja DOCa). Ninety-two sampling points were selected, including surface and ground waters that could be affected by agricultural activities covering the region's three sub-areas. Different parameters that may affect the efficiency of the SPE procedure were optimised (sorbent type, elution solvent and sample volume), and matrix-matched standards were used to eliminate the variable matrix effect and ensure good quantification. The developed method allows the determination of target compounds below the level established by the European Union for waters for human use with suitable precision (relative standard deviations lower than 18%) and accuracy (with recoveries over 61%). Forty compounds included in this study (six insecticides, 12 herbicides, 16 fungicides and six degradation products) were detected in one or more samples. The herbicides terbuthylazine, its metabolite desethyl terbuthylazine, fluometuron and ethofumesate and the fungicides pyrimethanil and tebuconazole were the compounds most frequently detected in water samples (present in more than 60% of the samples). Concentrations above 0.1 μg L-1 were detected for 37 of the compounds studied, and in several cases recorded values of over 18 μg L-1. The results reveal the presence of pesticides in most of the samples investigated. In 64% of groundwaters and 62% of surface waters, the sum of compounds detected was higher than 0.5 μg L-1 (the limit established by EU legislation for the sum of all pesticides detected in waters for human use).

  16. Indications for a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Directory of Open Access Journals (Sweden)

    R. Röttgers

    2011-10-01

    Full Text Available Measurements of light absorption by chromophoric dissolved organic matter (CDOM from sub-surface waters of the tropical Atlantic and Pacific showed a distinct absorption shoulder at 410–415 nm, indicating an underlying absorption of a pigment. A similar absorption maximum at ~410 nm was also found in the particulate fraction and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. The CDOM absorption shoulder was described earlier in the Indian Ocean at 600 m depth and was related to a "deep red fluorescence" found in the same depth, i.e. in the oxygen minimum zone (Breves et al., 2003; Broenkow et al., 1983. In our study, fluorescence measurements of pre-concentrated DOM samples confirmed that the absorption at ~410 nm was related to a specific fluorescence at 650 nm. The absorption characteristic of this specific fluorophor was examined by fluorescence emission/excitation analysis and this showed a clear excitation maximum at 415 nm (in methanol that can explain the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface but can be explained by the occurrence of respiratory pigments from heterotrophs. Combining the observations of the "deep red fluorescence" and the 410 nm-absorption shoulder suggests that there are high concentrations of a pigment degradation product (cytochrome c in DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turn-over rate, and fate of this molecule is so far unknown.

  17. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product.

    Directory of Open Access Journals (Sweden)

    Zunamys I Carrero

    Full Text Available Coilin is a nuclear phosphoprotein that accumulates in Cajal bodies (CBs. CBs participate in ribonucleoprotein and telomerase biogenesis, and are often found in cells with high transcriptional demands such as neuronal and cancer cells, but can also be observed less frequently in other cell types such as fibroblasts. Many proteins enriched within the CB are phosphorylated, but it is not clear what role this modification has on the activity of these proteins in the CB. Coilin is considered to be the CB marker protein and is essential for proper CB formation and composition in mammalian cells. In order to characterize the role of coilin phosphorylation on CB formation, we evaluated various coilin phosphomutants using transient expression. Additionally, we generated inducible coilin phosphomutant cell lines that, when used in combination with endogenous coilin knockdown, allow for the expression of the phosphomutants at physiological levels. Transient expression of all coilin phosphomutants except the phosphonull mutant (OFF significantly reduces proliferation. Interestingly, a stable cell line induced to express the coilin S489D phosphomutant displays nucleolar accumulation of the mutant and generates a N-terminal degradation product; neither of which is observed upon transient expression. A N-terminal degradation product and nucleolar localization are also observed in a stable cell line induced to express a coilin phosphonull mutant (OFF. The nucleolar localization of the S489D and OFF coilin mutants observed in the stable cell lines is decreased when endogenous coilin is reduced. Furthermore, all the phosphomutant cells lines show a significant reduction in CB formation when compared to wild-type after endogenous coilin knockdown. Cell proliferation studies on these lines reveal that only wild-type coilin and the OFF mutant are sufficient to rescue the reduction in proliferation associated with endogenous coilin depletion. These results emphasize

  18. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Directory of Open Access Journals (Sweden)

    R. Röttgers

    2012-07-01

    Full Text Available Measurements of light absorption by chromophoric dissolved organic matter (CDOM from subsurface waters of the tropical Atlantic and Pacific Oceans showed a distinct absorption shoulder at 410–415 nm. This indicates an underlying absorption of a pigment whose occurrence is partly correlated with the apparent oxygen utilization (AOU but also found in the deep chlorophyll maximum. A similar absorption maximum at ~415 nm was also found in the particulate fraction of samples taken below the surface mixing layer and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. In our study, fluorescence measurements of pre-concentrated dissolved organic matter (DOM samples from 200–6000 m confirmed a previous study suggesting that the absorption at ~415 nm was related to fluorescence at 650 nm in the oxygen minimum zone. The absorption characteristics of this fluorophore was examined by fluorescence emission/excitation analysis and showed a clear excitation maximum at 415 nm that could be linked to the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface but can be explained by the occurrence of porphyrin pigments from either heterotrophs or autotrophs. Combining the observations of the fluorescence and the 415-nm absorption shoulder suggests that there are high concentrations of a pigment degradation product in subsurface DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turnover rate, and fate of this molecule is so far unknown.

  19. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  20. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Science.gov (United States)

    Röttgers, R.; Koch, B. P.

    2012-07-01

    Measurements of light absorption by chromophoric dissolved organic matter (CDOM) from subsurface waters of the tropical Atlantic and Pacific Oceans showed a distinct absorption shoulder at 410-415 nm. This indicates an underlying absorption of a pigment whose occurrence is partly correlated with the apparent oxygen utilization (AOU) but also found in the deep chlorophyll maximum. A similar absorption maximum at ~415 nm was also found in the particulate fraction of samples taken below the surface mixing layer and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. In our study, fluorescence measurements of pre-concentrated dissolved organic matter (DOM) samples from 200-6000 m confirmed a previous study suggesting that the absorption at ~415 nm was related to fluorescence at 650 nm in the oxygen minimum zone. The absorption characteristics of this fluorophore was examined by fluorescence emission/excitation analysis and showed a clear excitation maximum at 415 nm that could be linked to the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface) but can be explained by the occurrence of porphyrin pigments from either heterotrophs or autotrophs. Combining the observations of the fluorescence and the 415-nm absorption shoulder suggests that there are high concentrations of a pigment degradation product in subsurface DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turnover rate, and fate of this molecule is so far unknown.

  1. Indications for a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Science.gov (United States)

    Röttgers, R.; Koch, B. P.

    2011-10-01

    Measurements of light absorption by chromophoric dissolved organic matter (CDOM) from sub-surface waters of the tropical Atlantic and Pacific showed a distinct absorption shoulder at 410-415 nm, indicating an underlying absorption of a pigment. A similar absorption maximum at ~410 nm was also found in the particulate fraction and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. The CDOM absorption shoulder was described earlier in the Indian Ocean at 600 m depth and was related to a "deep red fluorescence" found in the same depth, i.e. in the oxygen minimum zone (Breves et al., 2003; Broenkow et al., 1983). In our study, fluorescence measurements of pre-concentrated DOM samples confirmed that the absorption at ~410 nm was related to a specific fluorescence at 650 nm. The absorption characteristic of this specific fluorophor was examined by fluorescence emission/excitation analysis and this showed a clear excitation maximum at 415 nm (in methanol) that can explain the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface) but can be explained by the occurrence of respiratory pigments from heterotrophs. Combining the observations of the "deep red fluorescence" and the 410 nm-absorption shoulder suggests that there are high concentrations of a pigment degradation product (cytochrome c) in DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turn-over rate, and fate of this molecule is so far unknown.

  2. Characterisation of the non-asphaltene products of mild chemical degradation of asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Ekweozor, C.M.

    1986-01-01

    The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the C{sub 27-29} and C{sub 28-29} regular steranes. The reducing-metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C{sub 27-29} regular steranes with the 14{beta}(H),17{beta}(H);20R+S and 14{alpha}(H),17{alpha}(H);20R+S configurations as well as the corresponding diasteranes having the 13{beta}(H),17{alpha}(H);20R+S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil while the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of original oil trapped within the asphaltene matrix and protected from the effect of in-reservoir biodegradation. Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing-metal reactions for releasing hydrocarbons occluded by asphaltenes. 15 refs., 3 figs., 2 tabs.

  3. Characterization of the non-asphaltene products of mild chemical degradation of asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Ekweozor, C.M.

    1986-01-01

    The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the C/sub 27/-C/sub 29/ diasteranes (13..beta.. (H),17..cap alpha.. (H); 20 R + S) and C/sub 28/-C/sub 29/ regular steranes (14..beta.. (H),17..beta.. (H); 20S). The reducing metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C/sub 27/-C/sub 29/ regular steranes with the 14..beta.. (H),17..beta.. (H); 20R + S and 14..cap alpha.. (H),17..cap alpha.. (H); 20R + S configurations as well as the corresponding diasteranes having the 13..beta.. (H),17..cap alpha.. (H); 20R + S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil whilst the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of original oil trapped within the asphaltene matrix and protected from the effect of in-reservoir biodegradation. Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing metal reactions for releasing hydrocarbons occluded by asphaltenes.

  4. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Directory of Open Access Journals (Sweden)

    Sang-Kyu Jung

    2012-01-01

    Full Text Available A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE, which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies.

  5. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  6. Effects of Drying Condition and Binding Agent on the Quality Characteristics of Ground Dried-Pork Meat Products

    OpenAIRE

    Choi, Yun-Sang; Ku, Su-Kyung; Park, Jong-Dae; Kim, Hee-Ju; Jang, Aera; Kim, Young-Boong

    2015-01-01

    The purpose of this study was to investigate the influence of processing conditions (temperature and time) and binding agent types (glutinous rice flour, potato starch, bean flour, and acorn flour) on the physicochemical and sensory characteristics of ground dried-pork meat product. For this purpose, ground dried-pork meat product was produced by adding several binding agents at different drying temperatures and times. The drying time affected moisture content and water activity in all drying...

  7. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.;

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...

  8. Effect of Cocoa Shell Ash as an Alkalizing Agent on Cocoa Products

    Science.gov (United States)

    Osundahunsi, O. F.; Bolade, M. K.; Akinbinu, A. A.

    Alkalized cocoa nibs were produced using cocoa shell ash as an alkalizing agent. Conventionally, imported alkalizing agents are used to produce alkalized/dutched nibs in cocoa processing industries. Cocoa powder and cocoa butter were produced from nibs treated with cocoa shell=s ash as an alkalizing agent and compared with products from two industries which used imported alkali as the dutching agent. Cocoa products made from cocoa nibs alkalized with ash for the shell were evaluated for physicochemical properties in comparison with product from Oluji and Stanmark Industries located in Southwestern Nigeria. Flame photometry method was used to determine components of the ash. The pH value of cocoa powder were 6.72 and 6.56 for Oluji and Stanmark samples respectively while 6.59 was reported for the Experimental cocoa powder sample. Percent fat content was 11.56 for Stanmark, 12.20 for Oluji and 10.56 for the Experimental sample. Colour reflectance was highest in Stanmark sample with 8.69 while the least was recorded for Experimental sample (7.18). Percent ash was 6.58, 8.16 and 7.13 for Stanmark, Oluji and Experimental samples respectively. Fat parameters for cocoa butter from the three samples were found to be within International standard for cocoa butter. Percent fatty acid ranged from 1.46 to 1.59. Saponification value was 193 mg KOH gG1 sample for Experimental sample, while Stanmark and Oluji cocoa butter had 196 and 198 mg KOH gG1, respectively. Percent unsaponifiable matter content was 0.30 each for Stanmark and Oluji with 0.39 for Experimental sample. Iodine value was between 35.11 and 38.07 Wij=s. Peroxide value ranged from 26-29 ME kgG1. Major components of cocoa shell ash were found to be potassium, 3.1 g/100 g and sodium, 7.2 g/100 g while sodium carbonate was 33.1 g/100 g. The pH of the ash was 10.8. There were no significant differences (p< 0.05) in all the sensory parameter for cocoa powder. Although, chocolate aroma was found to be less pronounced in

  9. An Agent-Based Fuzzy Collaborative Intelligence Approach for Predicting the Price of a Dynamic Random Access Memory (DRAM Product

    Directory of Open Access Journals (Sweden)

    Toly Chen

    2012-05-01

    Full Text Available Predicting the price of a dynamic random access memory (DRAM product is a critical task to the manufacturer. However, it is not easy to contend with the uncertainty of the price. In order to effectively predict the price of a DRAM product, an agent-based fuzzy collaborative intelligence approach is proposed in this study. In the agent-based fuzzy collaborative intelligence approach, each agent uses a fuzzy neural network to predict the DRAM price based on its view. The agent then communicates its view and forecasting results to other agents with the aid of an automatic collaboration mechanism. According to the experimental results, the overall performance was improved through the agents’ collaboration.

  10. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents.

    Science.gov (United States)

    Meiyanto, Edy; Hermawan, Adam; Anindyajati

    2012-01-01

    Targeted therapy has been a very promising strategy of drug development research. Many molecular mechanims of diseases have been known to be regulated by abundance of proteins, such as receptors and hormones. Chemoprevention for treatment and prevention of diseases are continuously developed. Pre-clinical and clinical studies in chemoprevention field yielded many valuable data in preventing the onset of disease and suppressing the progress of their growth, making chemoprevention a challenging and a very rational strategy in future researches. Natural products being rich of flavonoids are those fruits belong to the genus citrus. Ethanolic extract of Citrus reticulata and Citrus aurantiifolia peels showed anticarcinogenic, antiproliferative, co-chemotherapeutic and estrogenic effects. Several examples of citrus flavonoids that are potential as chemotherapeutic agents are tangeretin, nobiletin, hesperetin, hesperidin, naringenin, and naringin. Those flavonoids have been shown to possess inhibition activity on certain cancer cells' growth through various mechanisms. Moreover, citrus flavonoids also perform promising effect in combination with several chemotherapeutic agents against the growth of cancer cells. Some mechanisms involved in those activities are through cell cycle modulation, antiangiogenic effect, and apoptosis induction. Previous studies showed that tangeretin suppressed the growth of T47D breast cancer cells by inhibiting ERK phosphorylation. While in combination with tamoxifen, doxorubicin, and 5-FU, respectively, it was proven to be synergist on several cancer cells. Hesperidin and naringenin increased cytotoxicitity of doxorubicin on MCF-7 cells and HeLa cells. Besides, citrus flavonoids also performed estrogenic effect in vivo. One example is hesperidin having the ability to decrease the concentration of serum and hepatic lipid and reduce osteoporosis of ovariectomized rats. Those studies showed the great potential of citrus fruits as natural product

  11. Cellulase production from treated oil palm empty fruit bunch degradation by locally isolated Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    M. Nazli Naim

    2013-02-01

    Full Text Available The aim of this research was to evaluate the production of cellulases from locally isolated bacteria, Thermobifida fusca, using thermal and chemical treated oil palm empty fruit bunch (OPEFB as substrate in liquid-state fermentation (LSF. T. fusca was successfully isolated and was a dominant cellulase producer in OPEFB composting at the thermophilic stage. Analysis of the surface morphology of OPEFB samples using Scanning Electron Microscopy (SEM showed that the most significant changes after the combination of thermal and chemical pretreatment was the removal of silica bodies, and this observation was supported by X-ray Diffraction analysis (XRD, Fourier Transform Infrared (FTIR, and Thermogravimetric analysis (TG showing changes on the hemicelluloses, cellulose, and lignin structures throughout the pretreatment process. As a result of the pretreatment, higher cellulase production by T. fusca was obtained. The highest activity for CMCase, FPase, and β-glucosidase using optimally treated OPEFB were 0.24 U/mL, 0.34 U/mL, and 0.04 U/mL, respectively. Therefore, it can be suggested that the combination of chemical and thermal pretreatments enhances the degradation of OPEFB for subsequent use as fermentation substrate, contributing to a higher cellulases yield by T. fusca.

  12. Development of enzyme immunoassay for captan and its degradation product tetrahydrophthalimide in foods.

    Science.gov (United States)

    Newsome, W H; Yeung, J M; Collins, P G

    1993-01-01

    A simple, sensitive, and precise enzyme-linked immunosorbent assay (ELISA) is described for the quantitation of captan as its degradation product tetrahydrophthalimide (THPI) in foods using polyclonal antibodies. Three hapten analogues of THPI with different alkyl spacer arm lengths were synthesized. Immunogens and coating proteins were prepared by coupling these haptens to human serum albumin and ovalbumin, respectively. A 5-carbon spacer arm appeared to be optimum for the production of antibodies. Heterologous coating proteins did not improve the sensitivity, but reduction of homologous coating protein concentration did improve the sensitivity, resulting in a concentration of test compound required to inhibit binding by 50% of 15.5 ng/mL. The antiserum is specific for captan, captafol, and THPI, but not other structurally related compounds. The minimum detection limit was 1 ng/mL; the linearity was 1-200 ng/mL. The overall recoveries of captan and THPI from 11 commodities spiked at 4 levels were 92 and 100%, respectively. The intra-assay and interassay coefficients of variation were 9.1 and 16.8% for apple blanks and 5.9 and 4.2% for apple spiked with 3 ppm THPI, respectively. The ELISA described is suitable for measuring captan and THPI at levels comparable to those typically found in fruit.

  13. Agents that increase phosphatidic acid inhibit the LH-induced testosterone production

    DEFF Research Database (Denmark)

    Lauritzen, L.; Nielsen, L.-L.A.; Vinggaard, Anne Marie;

    1994-01-01

    for cytochrome P-450 side chain cleavage enzyme. Thus, the inhibition appears to be exerted at a point distal to cAMP-generation but before the first enzyme in the testosterone synthetic pathway. Treatment with other agents (4ß-phorbol 12-myristate 13-acetate (PMA), A23187, and sphingosine) giving rise......The results of the present study point to phosphatidic acid (PtdOH) as a possible intracellular messenger, which might be involved in local modulation of testicular testosterone production in vivo. Propranolol (27-266 µM) induced an increased level of [H]PtdOH in isolated rat Leydig cells......, prelabeled with [H]myristate, and at the same time a strong dose-dependent inhibition of the acute testosterone production stimulated by luteinizing hormone (LH). The inhibition was not bypassed by the addition of dibutyryl-cAMP but was overcome, when 22(R)-hydroxycholesterol was added as a direct substrate...

  14. Agents Modeling Experience Applied To Control Of Semi-Continuous Production Process

    Directory of Open Access Journals (Sweden)

    Gabriel Rojek

    2014-01-01

    Full Text Available The lack of proper analytical models of some production processes prevents us from obtaining proper values of process parameters by simply computing optimal values. Possible solutions of control problems in such areas of industrial processes can be found using certain methods from the domain of artificial intelligence: neural networks, fuzzy logic, expert systems, or evolutionary algorithms. Presented in this work, a solution to such a control problem is an alternative approach that combines control of the industrial process with learning based on production results. By formulating the main assumptions of the proposed methodology, decision processes of a human operator using his experience are taken into consideration. The researched model of using and gathering experience of human beings is designed with the contribution of agent technology. The presented solution of the control problem coincides with case-based reasoning (CBR methodology.

  15. Assay Development for the Discovery of Semaphorin 3B Inducing Agents from Natural Product Sources

    Science.gov (United States)

    Yong, Yeonjoong; Pan, Li; Ren, Yulin; Fatima, Nighat; Ahmed, Safia; Chang, Leng Chee; Zhang, Xiaoli; Kinghorn, A. Douglas; Swanson, Steven M.; Carcache de Blanco, Esperanza J.

    2014-01-01

    Semaphorins are a class of membrane-bound and secreted proteins. They have been found to regulate basic cell functions such as axonal growth cone guidance and recent studies have focused on their effect on tumor progression. Semaphorin 3B (Sema 3B) particularly is a secreted protein that has been known to modulate proliferation and apoptosis, processes that are critical for tumor progression and development. In spite of its importance, there is yet no high-throughput screening assay available to detect or quantify the expression of Sema 3B for natural product anticancer drug discovery purposes. Therefore, the development of a new high-throughput bioassay for the discovery of Sema 3B inducing agents from natural product sources is described herein. A wide variety of pure compounds and extracts from plants and microorganisms has been found suitable for screening using this Sema 3B assay to detect and quantify the effect of Sema 3B inducing agents and thereby identify new selective bioactive Sema 3B lead compounds for anticancer drug discovery and development. Also, this new bioassay procedure is based on a high-throughput platform using an enzyme-linked immunosorbent assay that involves the optimization of sensitivity and selectivity levels as well as accuracy, reproducibility, robustness, and cost effectiveness. PMID:25016954

  16. RP-HPLC Method for the Determination of Cinitapride in the Presence of its Degradation Products in Bulk Drug

    Directory of Open Access Journals (Sweden)

    S. M. N. Roy

    2010-01-01

    Full Text Available A reverse phase HPLC method is described for the determination of cinitapride hydrogen tartrate in the presence of its degradation products in bulk drug. A drug was subjected to all stress conditions such as reduction, oxidation acidic and alkaline medium. Chromatography was recorded on an Intersil ODS-3 column using mixture of acetonitrile and phosphate buffer, pH adjusted to 6.7 in the ratio (70:30 v/v as the mobile phase at the rate of 1.0 mL/min with detection at 260 nm. Glimepride was used as internal standard. The retention time of drug cinitapride was 3.8 min and glimepride an internal standard was 2.5 minute. The drug was found to degrade extensively in reduction conditions and mild degradation in the presence of in alkaline, acidic and oxidative but the drug was stable in thermal stress. The method was validated by determining its specificity, linearity, precision and accuracy. The developed method with good separation of all degradation products from drug could be successfully applied for the determination of cinitapride in the presence of its degradation products in the bulk drug. The proposed method is simple, fast, accurate and precise and hence applied for routine quality control of cinitapride in bulk drug. It can be used for analysis of samples during stability testing.

  17. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products--A Study Using Aloin and Insulin.

    Directory of Open Access Journals (Sweden)

    Eva S Lobbens

    Full Text Available Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation.

  18. Only low methane production and emission in degraded peat extraction sites after rewetting

    Science.gov (United States)

    Agethen, Svenja; Waldemer, Carolin; Knorr, Klaus-Holger

    2015-04-01

    In Central Europe rewetting of bogs after peat extraction is a wide spread technique to halt secondary aerobic decomposition and to reestablish plant species such as Sphagnum spp. and Eriophorum spp. that initialize accumulation of organic carbon in peat. Before extraction, such sites are often used for agriculture causing the aerobic degradation of peat and mobilization of phosphorus, ammonia, and dissolved organic matter (DOM). In nutrient poor ecosystems such as bogs, additional supply of P and N does not only trigger the establishment of uncharacteristic vegetation but also the formation of more labile plant litter and DOM that is readily degradable. Therefore, after rewetting and the development of anoxic conditions especially in initial stages high methane (CH4) emissions are reported for these systems compared to pristine bogs. Regarding the potential of methane production and emissions we investigated three common practices to prepare extraction fields for restoration (years since rewetting): i) Filling of drainage ditches, passive rewetting (1 site, Altendorfer Moor, Stade, NW-Germany, ca. 20 yr.), ii) Removal of upper 30 cm peat layer, removed peat used for construction of polder dikes (2 sites, Königsmoor, Leer, NW-Germany, 2 and 3 yr.), iii) Removal upper peat layer down to 50 cm grown peat, not extracted peat used as polder walls (2 sites, Benthullener Moor, Wardenburg, NW-Germany, 3 and 7 yr.). In each site two vegetated replicate mesocosms (diam. 30 cm, depth 40 cm) were sampled and placed in a greenhouse from May-October 2014 to maintain the water table at surface level. Pore water concentrations of ions, fermentation products and DOM, DOM electron acceptor capacity (EAC), soil gas concentrations of CO2, CH4 and H2, gas fluxes as well as element composition and organic matter quality of DOM and SOM were analyzed. We found out that practice i) with least efforts of nutrient removal in the peat produced the highest CH4 emissions (3.5 mmol m-2 d-1

  19. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.

    Science.gov (United States)

    van Netten, C; Leung, V

    2000-03-01

    Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft. PMID:10701290

  20. Degradation of DNA by iron-bleomycin: mechanistic implications of product 18O incorporation

    International Nuclear Information System (INIS)

    Interaction of d(CGCGCG) with Bleomycin (BLM), activated either with Fe(III) and H2O2 or Fe(II), O2 and one electron, results in production of cytosine and a modified oligonucleotide strand (1). Reduction of 1 with NaBD4 followed by enzymatic digestion, derivatization, and GC-MS permits the identification of 2-deoxypentitols-1,4-d2 as their tetra-trimethylsilyl (TMS) derivatives. Similar products have also been isolated from calf thymus DNA and poly(dG-dC). These results provide unequivocal evidence for the intermediacy of a 4' ketone, 1' aldehyde modified carbohydrate. An alternate mode of DNA degradation requires additional O2 and leads to formation of 3' phosphoglycolate termini and base propenals. Glycolate (GA), released from calf thymus DNA, poly(dA-dT) or d(CGCGCG) by enzymatic digestion, can be isolated by chromatography on DEAE Sephadex, silylated and analyzed by GC-MS. This analysis, after incubation with Fe(II) x 18O2 x BLM or Fe(III) x H216O2 x BLM plus 18O2, reveals the incorporation of a single atom of 18O at the C-1 position. Pulse-chase experiments demonstrate that it is the excess molecular oxygen and not the O2 required for drug activation that is incorporated into the carboxylate group of 3' phosphoglycolate and provide evidence for the proposed addition of O2 to a C4' carbon radical. Isotopic enrichments of the other products of DNA oxidation, formed in the presence of 18O2 are also being determined

  1. Colonization and degradation of senescent flowers of zucchini squash by Trichoderma harzianum YC459, a biocontrol agent of gray mold, Botrytis cinerea

    Institute of Scientific and Technical Information of China (English)

    Geun Gon Kim; Young Ryun Chung

    2004-01-01

    @@ In commercial greenhouses, senescent flower petals or flowers of vegetables such as tomato,strawberry, hot pepper and zucchini squash were blighted to be removed from fruits within five days after spraying of Trichoderna harzianun YC459 (TORY() , JGreen Inc.), a biocontrol agent with good and consistent efficacy as chemical fungicides for the control of gray mold rot caused by B.cinerea. The mechanism for selective colonization of senescent floral tissues by T. harzianum YCA59was elucidated using fresh and senescent (4 days and 14 days after pollination, respectively) floral tissues of zucchini squash (Cucurbita moschata Duchesne) . The spores of T. harzianum YCA59were produced much more on water agar and liquid culture media supplemented with 5% dry powder of senescent floral tissues than with fresh tissues during 15 days incubation. Mycelial growth was also much better in the media with senescent tissues than with fresh tissues. Enzyme activities of carboxymethyl cellulase, amylase and polygalacturonase in the liquid media, which might be involved in the colonization and degradation of tissues by T. harzianum YCA59 were compared. The activities of three enzymes were significantly higher in the media with senescent floral tissues than with fresh floral tissues reaching to the maximum during 9 to 12 days of incubation. Especially, the activities of carboxymethyl cellulase and polygalacturonase of T. harzianum YC459 were much higher than those of other Trichoderma species, T. asperellum, T. viride and T. koningii in the liquid media with senescent floral tissues. Based on the results, the selective colonization and degradation of senescent floral tissues, an important habitat for B. cinerea, may be another mechanism for the biocontrol of gray mold rot of vegetables by T. harzianurm YC459.

  2. Quantifying the impact of land degradation on crop production: the case of Senegal

    Science.gov (United States)

    Sonneveld, B. G. J. S.; Keyzer, M. A.; Ndiaye, D.

    2016-01-01

    Land degradation has been a persistent problem in Senegal for more than a century and by now has become a serious impediment to long-term development. In this paper, we quantify the impact of land degradation on crop yields using the results of a nationwide land degradation assessment. For this, the study needs to address two issues. First, the land degradation assessment comprises qualitative expert judgements that have to be converted into more objective, quantitative terms. We propose a land degradation index and assess its plausibility. Second, observational data on soils, land use, and rainfall do not provide sufficient information to isolate the impact of land degradation. We, therefore, design a pseudo-experiment that for sites with otherwise similar circumstances compares the yield of a site with and one without land degradation. This pairing exercise is conducted under a gradual refining of the classification of circumstances, until a more or less stable response to land degradation is obtained. In this way, we hope to have controlled sufficiently for confounding variables that will bias the estimation of the impact of land degradation on crop yields. A small number of shared characteristics reveal tendencies of "severe" land degradation levels being associated with declining yields as compared to similar sites with "low" degradation levels. However, as we zoom in at more detail some exceptions come to the fore, in particular in areas without fertilizer application. Yet, our overall conclusion is that yield reduction is associated with higher levels of land degradation, irrespective of whether fertilizer is being applied or not.

  3. Quantifying the impact of land degradation on crop production: the case of Senegal

    Directory of Open Access Journals (Sweden)

    B. G. J. S. Sonneveld

    2015-06-01

    Full Text Available Land degradation has been a persistent problem in Senegal for a long time and by now has become a serious impediment to long term development. In this paper, we quantify the impact of land degradation on crop yields using the results of a nation-wide land degradation assessment. For this, the study needs to address two issues. First, the land degradation assessment comprises qualitative expert judgments that have to be converted into more objective, quantitative terms. We propose a land degradation index and assess its plausibility. Second, observational data on soils, land use and rainfall do not provide sufficient information to isolate the impact of land degradation. We, therefore, design a pseudo-experiment that for sites with otherwise similar circumstances compares the yield of a site with and one without land degradation. This pairing exercise is conducted under a gradual refining of the classification of circumstances, until a more or less stable response to land degradation is obtained, In this way, we hope to have controlled sufficiently for confounding variables that will bias the estimation of the impact of land degradation on crop yields. A small number of shared characteristics reveal tendencies of "severe" land degradation levels being associated with declining yields as compared to similar sites with "low" degradation levels. However, as we zoom in at more detail some exceptions come to the fore, in particular in areas without fertilizer application. Yet, our overall conclusion is that yield reduction is associated to higher levels of land degradation, irrespective of whether fertilizer is being applied or not.

  4. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry

    NARCIS (Netherlands)

    Brust, H.; Asten, A. van; Koeberg, M.; Dalmolen, J.; Heijden, A.E.D.M. van der; Schoenmakers, P.

    2014-01-01

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between

  5. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: intensification vs production efficiency of livestock systems.

    Science.gov (United States)

    Briske, David D; Zhao, Mengli; Han, Guodong; Xiu, Changbai; Kemp, David R; Willms, Walter; Havstad, Kris; Kang, Le; Wang, Zhongwu; Wu, Jianguo; Han, Xingguo; Bai, Yongfei

    2015-04-01

    Semi-nomadic pastoralism was replaced by sedentary pastoralism in Inner Mongolia during the 1960's in response to changes in land use policy and increasing human population. Large increases in numbers of livestock and pastoralist households (11- and 9-fold, respectively) during the past 60 yrs have variously degraded the majority of grasslands in Inner Mongolia (78 M ha) and jeopardize the livelihoods of 24 M human inhabitants. A prevailing strategy for alleviating poverty and grassland degradation emphasizes intensification of livestock production systems to maintain both pastoral livelihoods and large livestock numbers. We consider this strategy unsustainable because maximization of livestock revenue incurs high supplemental feed costs, marginalizes net household income, and promotes larger flock sizes to create a positive feedback loop driving grassland degradation. We offer an alternative strategy that increases both livestock production efficiency and net pastoral income by marketing high quality animal products to an increasing affluent Chinese economy while simultaneously reducing livestock impacts on grasslands. We further caution that this strategy be designed and assessed within a social-ecological framework capable of coordinating market expansion for livestock products, sustainable livestock carrying capacities, modified pastoral perceptions of success, and incentives for ecosystem services to interrupt the positive feedback loop that exists between subsistence pastoralism and grassland degradation in Inner Mongolia.

  6. Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl.

    Science.gov (United States)

    Borrás, Esther; Tortajada-Genaro, Luis Antonio; Ródenas, Milagros; Vera, Teresa; Coscollá, Clara; Yusá, Vicent; Muñoz, Amalia

    2015-11-01

    The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products. PMID:25548033

  7. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    Science.gov (United States)

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species.

  8. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    Science.gov (United States)

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC.

  9. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    Science.gov (United States)

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species. PMID:25900395

  10. New chromatographic method for separating Omeprazole from its degradation components and the quantitatively determining it in its pharmaceutical products

    International Nuclear Information System (INIS)

    New chromatographic method for Quantitative Determination of Omeprazole in its Pharmaceutical Products was produced. Omeprazole and its degradation components were well separated in same chromatogram by using high perfume liquid chromatography (HPLC). The new analytical method has been validated by these characteristic tests (accuracy, precision, range, linearity, specificity/selectivity, limit of detection (LOD) and limit of quantitative (LOQ) ).(author)

  11. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective

    OpenAIRE

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2014-01-01

    PUBLISHED This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed.

  12. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth

    2006-01-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...

  13. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Science.gov (United States)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  14. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    Directory of Open Access Journals (Sweden)

    Lei Cheng

    Full Text Available Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus and Firmicutes (mainly consisting of Desulfotomaculum were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  15. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  16. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip A., E-mail: Smith.Philip.A@dol.gov [Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Bethesda, MD, 20814 (United States); Lepage, Carmela R. Jackson [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada); Savage, Paul B. [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT, 84602 (United States); Bowerbank, Christopher R.; Lee, Edgar D. [Torion Technologies Inc., 796 East Utah Valley Drive, Suite 200, American Fork, UT, 84003 (United States); Lukacs, Michael J. [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2011-04-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]{sup +}) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]{sup +} ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d{sub 15} provided evidence that [M+H]{sup +} production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]{sup +} ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  17. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    Science.gov (United States)

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance. PMID:27039364

  18. The effect of polyethylene glycol and wood ash on the detannification of sorghum evaluated by an in vitro gas production profile and organic matter degradation

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the effect of polyethylene glycol (PEG, MW 4000) and wood ash on the detannification of sorghum grains. In the first experiment, different sorghum genotypes (14) were evaluated using tannin bioassay based on incubation of feeds with and without PEG in a semi-automatic in vitro gas production technique. From this study, genotype 9929030 was selected for detannification because it contained the maximum level of biological active tannins. The results from this experiment indicated the effect of PEG on the reduction of tannin effects; a consequent increase in the volume of gas produced with PEG during the fermentation (Figure 1) indicated reduction of tannin effect by PEG. In addition, the results of the parallelism test demonstrated that the curves were different and not parallel. Organic matter degradability was also higher in presence of PEG (33.4% vs. 24.3%). agent. The wood ash was obtained from the burning of the stems of Eucalyptus sp (T1) and Bauhinia spp (T2), and milled (1 mm). In addition, two methods of adding ash to the substrate (sorghum grain 9929030) were tested. In method one (M1), wood ash was added to milled sorghum grains and placed inside a gas bottle used for the in vitro fermentation. In method two (M2), wood ash was mixed with water and whole grains for 3 h, dried and milled (1 mm). In both methods, three concentrations of wood ash/grain were tested, 0 (C1), 100 (C2) and 200 (C3) mg of wood ash/g of substrate. Fermentation was conducted in a semi-automatic in vitro gas production technique for up to 96 h. The results demonstrated that wood ash increased gas production volume and organic matter degradation and the effect was concentration dependent. Gas production volume and organic matter degradation were also higher when using wood ash obtained from Bauhinia tree. However, these effects were not observed when method 2 was applied. Therefore, the results of this study showed that the use of wood ash

  19. Plasma fibrinogen degradation products in betel nut chewers - with and without oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    G Kiran

    2013-01-01

    Full Text Available Context: Oral submucous fibrosis (OSMF has a multifactorial etiology. Recent studies have shown that there is an increased level of fibrinogen degradation products (FDP in plasma of OSMF patients suggesting its possible role in etiopathogenesis of OSMF. Aims: To detect the presence of FDP in the plasma of betel nut chewers with and without OSMF and in normal subjects without any habits, to correlate these levels with respect to the clinical and histological grading of OSMF and whether it can be used as a nonsurgical diagnostic aid in detection of suspected OSMF cases. Materials and Methods: Study comprised of 35 cases of betel nut chewers with OSMF, 10 patients with betel nut chewing habit but having apparently normal oral mucosa, and 10 normal patients without any habits. The patients were evaluated for plasma FDP levels. Results: All the betel nut chewers with OSMF showed the presence of plasma FDP. However, controls and subjects with habit, but without OSMF did not show FDP in the plasma. Spearman′s rank correlation was used to find the association between the clinical and histological grades and it was not statistically significant (P = 0.910 and the correlation being 0.020. Conclusion: Since only those patients with OSMF have showed the presence of FDP in plasma, we suggest that our test can be utilized as a nonsurgical diagnostic aid in suspected OSMF patients.

  20. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    Science.gov (United States)

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  1. Degradation of organophosphorus pesticides and their transformation products in estuarine waters

    International Nuclear Information System (INIS)

    The degradation of 10 organophosphorus pesticides in natural estuarine waters was studied. Estuarine water samples were spiked with organophosphorus pesticides at 50 μg/L level and were placed into 2-L Pyrexflasks being exposed outdoor to ambient sunlight and temperature. A sample of 10-75 mL of water was collected every week for analysis during a period of 5-6 weeks from January to March. The analytical determinations were performed by solid-phase extraction (SPE) with C18 Emporedisks followed by GC-NPD and GC-MS with EI and by on-line SPE using PLRP-s exchangeable cartridges (Prospekt) followed by LC-DAD and LC-thermospray MS in PI mode. Five organophosphorus pesticides were stable for less than 1 week (disulfoton, fenamiphos, fenthion, malathion, and temephos), others had a half-life of ca. 1 week (chlorpyrifos-methyl, methidathion, and diazinon), and the rest showed a half-life of ca. 10 days (isofenphos and pyridafenthion). The half-life of three pesticidetransformation products: disulfoton sulfoxide, disulfoton sulfone, and fenthion sulfoxide varied from 7 to 12 days

  2. Comparison of cleanup methods for fipronil and its degradation products in sediment extracts.

    Science.gov (United States)

    Brennan, Amanda A; You, Jing; Lydy, Michael J

    2009-06-15

    Gel permeation chromatography (GPC) and solid phase extraction (SPE) were compared for cleaning extracts containing fipronil, fipronil-sulfide, and fipronil-sulfone at sub-ppb concentrations in sediment. With both methods, analytes were extracted using accelerated solvent extraction, and analyzed with gas chromatography equipped with an electron capture detector. The GPC was performed with a Waters Envirogel GPC column with dichloromethane as the mobile phase, while SPE was conducted with dual-layer cartridges containing graphitized carbon black and primary and secondary amines with a mixture of acetone and hexane as the eluting solvent. Method detection limits for fipronil, fipronil-sulfide, and fipronil-sulfone from three sediments with varying organic carbon content ranged from 0.12 to 0.52 microg/kg dry weight, while percent recoveries were 72-119% from sediment aged from 0.24 to 14d. Although both methods were effective at analyzing fipronil and its degradation products, SPE was the less expensive and less labor-intensive method. PMID:19362209

  3. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii).

    Science.gov (United States)

    Stara, Alzbeta; Zuskova, Eliska; Kouba, Antonin; Velisek, Josef

    2016-10-01

    Terbuthylazine is a widely used triazine pesticide. This, together with one of its degradation products, terbuthylazine-desethyl (TD), are frequently found in quantities exceeding the EU limit of 0.1μg/L in aquatic ecosystems where they might constitute a serious risk to non-target organisms. The sub-chronic effects of TD at 2.9μg/L (real environmental concentration) and at 580μg/L were investigated in a non-target aquatic species, the red swamp crayfish (Procambarus clarkii). Gill and hepatopancreas histopathology, alterations in biochemical parameters of haemolymph, oxidative damage to hepatopancreas, and changes in antioxidant biomarkers in muscle and hepatopancreas were recorded at both tested concentrations after 14days exposure. A 14day recovery period in TD-free water was not sufficient for restoration of normal parameters. Chronic terbuthylazine-desethyl exposure affected biochemical profile, and the antioxidant system, caused oxidative stress and histopathological changes in hepatopancreas of red swamp crayfish. PMID:27239716

  4. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis.

    Science.gov (United States)

    Mittelmaier, Stefan; Niwa, Toshimitsu; Pischetsrieder, Monika

    2012-01-01

    Fibrosis and vascular sclerosis are main complications that limit the long-term application of peritoneal dialysis (PD). Low biocompatibility has been largely attributed to the presence of glucose degradation products (GDPs), which are formed during the heat sterilization of PD fluids. GDPs readily modify proteins in the peritoneum, leading to a decline of their biological function. After absorption, GDPs can also promote systemic protein glycation. Additionally, GDPs may augment DNA glycation, a process enhanced in uremia. Apart from their glycating activity, GDPs induce cytotoxicity and interfere with cell signaling in peritoneal mesothelial cells. Targeted screening revealed the nature of the 6 major GDPs with α-dicarbonyl structure as 3-deoxyglucosone, 3-deoxygalactosone, glucosone, glyoxal, methylglyoxal, and 3,4-dideoxyglucosone-3-ene. Valid quantification of these GDPs was achieved by ultrahigh-performance liquid chromatography/diode array detector/tandem mass spectrometry. Identification and quantification of single GDPs allow a structure-dependent risk evaluation. As a consequence, PD fluids and processes can be improved to reduce the GDP burden of patients undergoing PD.

  5. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    OpenAIRE

    Dominik Schmitt; Carolin Regenbrecht; Marius Hartmer; Florian Stecker; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of ...

  6. Impacts of Cash Crop Production on Land Management and Land Degradation: The Case of Coffee and Cotton in Uganda

    OpenAIRE

    Pender, John L.; Nkonya, Ephraim M.; Kato, Edward; Kaizzi, Crammer; Ssali, Henry

    2009-01-01

    We investigate the impacts of coffee and cotton production on land management and land degradation in Uganda, based on a survey of 851 households and soil measurements in six major agro-ecological zones, using matching and multivariate regression methods. The impacts of cash crop production vary by agro-ecological zones and cropping system. In coffee producing zones, use of organic inputs is most common on plots growing coffee with other crops (mainly bananas), and least common on mono-croppe...

  7. Performance analyses of a neutralizing agent combination strategy for the production of succinic acid by Actinobacillus succinogenes ATCC 55618.

    Science.gov (United States)

    Wang, Cheng-Cheng; Zhu, Li-Wen; Li, Hong-Mei; Tang, Ya-Jie

    2012-05-01

    A neutralizing agent combination strategy was developed to enhance the succinic acid production by Actinobacillus succinogenes ATCC 55618. First, a maximal succinic acid production of 48.2 g/L was obtained at a culture pH of 7.5. Second, NaOH and KOH were screened to identify the optimal neutralizing agent for pH control. However, the production of succinic acid did not increase, and severe cell flocculation was observed due to a high concentration of metal ions when only one neutralizing agent was used to control pH. Finally, a neutralizing agent combination strategy was developed with a supply of neutralizing agents with OH(-) and carbonate. The cell flocculation was eliminated, and a maximum succinic acid production of 59.2 g/L was obtained with 5 M NaOH and 40 g/L of MgCO(3); this production was 27.9% higher than that obtained with NaOH alone. The results obtained in this study may be useful for the large-scale industrial production of succinic acid. PMID:22002101

  8. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    Science.gov (United States)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during these photolysis processes were followed continuously and on-line by PTR-ToF-MS. We hope that the obtained results from this study

  9. The role of research efficiency in the evolution of scientific productivity and impact: An agent-based model

    Science.gov (United States)

    You, Zhi-Qiang; Han, Xiao-Pu; Hadzibeganovic, Tarik

    2016-02-01

    We introduce an agent-based model to investigate the effects of production efficiency (PE) and hot field tracing capability (HFTC) on productivity and impact of scientists embedded in a competitive research environment. Agents compete to publish and become cited by occupying the nodes of a citation network calibrated by real-world citation datasets. Our Monte-Carlo simulations reveal that differences in individual performance are strongly related to PE, whereas HFTC alone cannot provide sustainable academic careers under intensely competitive conditions. Remarkably, the negative effect of high competition levels on productivity can be buffered by elevated research efficiency if simultaneously HFTC is sufficiently low.

  10. Hydrolysed ginseng-saponin quaternary: a novel conditioning agent for hair care products.

    Science.gov (United States)

    Young-Dae, K; Chang-Kew, K; Chung-Nam, L; Byung-Jo, H

    1989-10-01

    Synopsis A new quaternary ammonium compound, hydrolysed ginseng-saponin quaternary (HGSQ), from Korean ginseng saponin and 2,3-epoxypropyltrimethyl ammonium chloride, has been developed as a conditioning agent for hair care products. This structure has a hydrophobic group from the aglycone of ginseng saponin which is biologically active and considered as the most important component of Korean ginseng. Its properties of surface tension, conductivity, critical micelle concentration (CMC), eye irritation, sorption onto hair, tensile strength for 20% extension and moisture retention effect were studied. Its cationic character allows the molecule to be more substantive than ginseng saponin. HGSQ had good physical properties and was safe enough as a cosmetic raw material. Also half-head tests of HGSQ-containing shampoo were carried out to evaluate the conditioning effects in shampoos. HGSQ showed good conditioning properties in a shampoo.

  11. Stability-Indicating RP-HPLC Method for Simultaneous Estimation of Enrofloxacin and Its Degradation Products in Tablet Dosage Forms

    Directory of Open Access Journals (Sweden)

    V. Ashok Chakravarthy

    2015-01-01

    Full Text Available The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC method for simultaneous determination enrofloxacin (EFX and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18 (250×4.6 mm, 5 μm column using 0.1% (v/v TEA in 10 mM KH2PO4 (pH 2.5 buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1 with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis.

  12. Characterization of forced degradation products and in silico toxicity prediction of Sofosbuvir: A novel HCV NS5B polymerase inhibitor.

    Science.gov (United States)

    Swain, Debasish; Samanthula, Gananadhamu; Bhagat, Shweta; Bharatam, P V; Akula, Venkatakrishna; Sinha, Barij N

    2016-02-20

    Sofosbuvir is a direct acting antiviral medication used to treat Hepatitis C viral infection. The present study focuses on the degradation behavior of the drug under various stress conditions (hydrolysis, oxidative, thermal and photolytic) as per International Conference on Harmonization (ICH Q1A (R2)) guidelines. A high performance liquid chromatographic system (HPLC) was used to develop a selective, precise and accurate method for separating all the degradation products. The separation was achieved on a Sunfire™ C18 (150mm×4.6mm×5μm) stationary phase with a mobile phase of 10mM ammonium acetate (pH 5.0) buffer and acetonitrile in gradient elution mode. A quadrupole-time of flight mass analyzer equipped with an electrospray ionization technique was used to propose the structural information based on the MS/MS and accurate mass measurements. Seven degradation products were identified and characterised by LC-ESI-QTOF-MS/MS. In silico toxicity of the drug and its degradation products was determined using TOPKAT and DEREK toxicity prediction softwares. The proposed method was validated as per the ICH Q2 guidelines. PMID:26771133

  13. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Berry, J.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Bond, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Boult, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Linklater, C.M. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom)

    1994-12-31

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10{sup -4} M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R{sub D} values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R{sub D} values increased by up to a factor of four). (orig.)

  14. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    International Nuclear Information System (INIS)

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10-4 M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (RD values reduced by less than a factor of two), and in some cases the results suggested a slight increase (RD values increased by up to a factor of four). (orig.)

  15. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552.

    Science.gov (United States)

    Obruca, Stanislav; Marova, Ivana; Matouskova, Petra; Haronikova, Andrea; Lichnova, Andrea

    2012-05-01

    In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2'-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H(2)O(2). The concentration of H(2)O(2) and the time of the stress application were optimized; hence, when 10 mmol/L H(2)O(2) was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.

  16. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  17. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  18. High-throughput assay for optimising microbial biological control agent production and delivery

    Science.gov (United States)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  19. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    Science.gov (United States)

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety. PMID:27451209

  20. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    Science.gov (United States)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  1. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study.

    Science.gov (United States)

    Badawi, Nora; Rosenbom, Annette E; Olsen, Preben; Sørensen, Sebastian R

    2015-08-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape, and sugar beet. Limited information is available in scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined with laboratory studies to determine leaching and the underlying degradation and sorption processes. Water samples from drains, suction cups, and groundwater wells showed leaching of the degradation products fluazifop-P (FP) and 2-hydroxy-5-trifluoromethyl-pyridin (TFMP) following FPB treatment. Laboratory experiments with soil from each field revealed a rapid degradation of FPB to FP. The degradation was almost exclusively microbial, and further biodegradation to TFMP occurred at a slower rate. Both degradation products were sorbed to the two soils to a small extent and were fairly persistent to degradation during the two-month incubation period. Together, the field and laboratory results from this study showed that the biodegradation of FPB in loamy soils gave rise to the production of two major degradation products that sorbed to a small extent. In this study, both degradation products leached to drainage and groundwater during precipitation. It is therefore recommended that these degradation products be included in programs monitoring water quality in areas with FPB use.

  2. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation.

    Science.gov (United States)

    Jokela, J P Y; Vavilin, V A; Rintala, J A

    2005-03-01

    Municipal grey waste (i.e. the remaining fraction in municipal waste management systems in which putrescibles (biowaste) and other recyclables (paper, metals, glass) are source-segregated) was manually sorted into six main fractions on the basis of composition and also separated by sieving (100 mm mesh size) into two fractions, oversized and undersized, respectively. In practice, in waste management plant the oversized fraction is (or will be) used to produce refuse-derived fuel and the undersized landfilled after biological stabilisation. The methane yields and nitrogen solubilisation of the grey waste and the different fractions (all studied samples were first milled to 5 mm particle samples) were determined in a 237-day methane production batch assay and in a water elution test, respectively. The grey waste was found to contained remnants of putrescibles and also a high amount of other biodegradable waste, including packaging, cartons and cardboard, newsprint, textiles and diapers. These waste fractions comprised 41%-w/w of the grey waste and produced 40-210 m3 methane (total solids (TS))(-1) and less than 0.01 g NH4-N kg TS(added)(-1) except diapers which produced 9.8 g NH4-N kg TS(added)(-1) in the batch assays. In the case of the two sieved fractions and on mass bases, most of the methane originated from the oversized fraction, whereas most of the NH4-N was solublised from the undersized fraction. The first-order kinetic model described rather well the degradation of each grey waste fraction and component, showing the different components to be in the range 0.021-0.058 d(-1), which was around one-sixth of the values reported for the source-segregated putrescible fraction of MSW. PMID:15491833

  3. Screening and Optimization of Bio surfactant Production by the Hydrocarbon-Degrading Bacteria

    International Nuclear Information System (INIS)

    Bio surfactants are amphiphilic compounds produced by microorganisms as secondary metabolite. The unique properties of bio surfactants make them possible to replace or to be added to synthetic surfactants which are mainly used in food, cosmetics and pharmaceutical industries and in environmental applications. In this study twenty hydrocarbon-degrading bacteria were screened for bio surfactant production. All of the bacterial isolates were grown in mineral salt medium (MSM) with addition of 1 % (v/v) Tapis crude oil as carbon source. The presence of bio surfactant was determined by the drop-collapse test, microplate analysis, oil spreading technique, emulsification index (%EI24) and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive for all the qualitative tests and reducing the surface tension of the medium to 49.5 dynes/ with emulsification index of 25.29 %. This isolate produced bio surfactant optimally at pH 9.0 and incubation temperature of 37 degree Celsius. Furthermore, P. aeruginosa UKMP14T when grown in MSM with addition of 1 % (v/v) glycerol and 1.3 g/ L ammonium sulphate with C/N ratio 14:1 produced bio surfactant with percentage of surface tension reduction at 55 % or 30.6 dynes/ cm with %EI24 of 43 %. This percentage of surface tension reduction represents an increasing reduction in surface tension of medium by 39 % over the value before optimization. This study showed that P. aeruginosa UKMP14T has the ability to biodegrade hydrocarbon and concurrently produce bio surfactant. (author)

  4. Toxicity of fipronil and its degradation products to Procambarus sp.: field and laboratory studies.

    Science.gov (United States)

    Schlenk, D; Huggett, D B; Allgood, J; Bennett, E; Rimoldi, J; Beeler, A B; Block, D; Holder, A W; Hovinga, R; Bedient, P

    2001-10-01

    Fipronil is a phenylpyrazole insecticide that is the active ingredient in the pesticide Icon 6.2 FS which is applied to rice seeds targeting the rice water weevil. An arthropod-selective insecticide, fipronil blocks the GABA-gated chloride channel and is unique in that several of its degradation products have been indicated to be equal or more potent than fipronil. After application of rice seeds (2-3 days postplant) to flooded rice fields, water is typically pumped from the rice fields and can be used for the culture of crayfish (Procambarus sp.). Because fipronil is selective for arthropods, is transported via organic sediment, and crayfish consume organic sediment, 96-h LC(50) experiments were conducted with fipronil and three of its environmental derivatives in crayfish under conditions without carrier solvents in water of similar pH, alkalinity, and hardness as observed in south Louisiana crayfish culture ponds. Measured LC(50)s for fipronil to red swamp (Procambarus clarkii) and white river (Procambarus zonangulus) crayfish were 14.3 (95% CI; 5.1-23.4) and 19.5 (95% CI; 11.1-27.9) microg/L, respectively. LC(50)s of fipronil sulfone (11.2; 9.2-13.2 microg/L), fipronil sulfide (15.5; 13-18 microg/L); and the photoproduct, desulfinyl fipronil (68.6; 46-95.2 microg/L) displayed very high toxicity in crayfish. In situ toxicity studies using caged crayfish in culturing ponds receiving effluent from drained rice fields indicated that effluent from rice fields planted with Icon-treated seed was significantly more toxic compared to untreated surface water (40% survival compared to 83% survival). Hazard quotient comparisons using measured water concentrations in the field and laboratory-based LC(50)s indicated that fipronil and its metabolites in water resulting from Icon-treated rice seed planting poses a significant risk to crayfish survival. PMID:11503069

  5. Determination of degradation products of squalamine lactate using LC/MS.

    Science.gov (United States)

    Li, Cong-Jun; Kari, U Prasad; Noecker, Lincoln A; Jones, Stephen R; Sabo, Andrew M; McCormick, Timothy J; Johnston, Sean M

    2003-04-24

    Heat, acid and base stress methods were applied to study the stability of squalamine lactate. Liquid chromatography coupled with mass spectrometry was used to analyze the degraded samples and tentative structural identifications were assigned based on their molecular weight measurements, reactivity and MS/MS fragmentation. Solid squalamine lactate generated a new amide, namely lactyl squalamide, when heated to 80 degrees C. Chemical structure for this new compound has been established by NMR and MS data interpretation and confirmed by direct comparison between the degradant and the synthesized compound. Squalamine lactate in pH 4 acetate buffer solution produced more degradants under stressed conditions. These degradants are formed due to the loss of the sulfate functionality. Squalamine lactate is stable in refrigerated conditions as well as in basic solution. PMID:12852451

  6. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    Science.gov (United States)

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  7. Candida Parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    Directory of Open Access Journals (Sweden)

    F Niknejad

    2012-10-01

    Full Text Available Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated.Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in thepresence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation.Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5.Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05. In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage ofreductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively.Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species.

  8. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    Science.gov (United States)

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed. PMID:26359264

  9. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, Mazen, E-mail: mazen.rizk@tuhh.de [Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg (Germany); Antranikian, Garabed, E-mail: antranikian@tuhh.de [Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg (Germany); Elleuche, Skander, E-mail: skander.elleuche@tuhh.de [Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg (Germany)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Multifunctional enzymes offer an interesting approach for biomass degradation. Black-Right-Pointing-Pointer Size and conformation of separate constructs play a role in the effectiveness of chimeras. Black-Right-Pointing-Pointer A connecting linker allows for maximal flexibility and increased thermostability. Black-Right-Pointing-Pointer Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  10. New microbiological assay for determination of caspofungin in the presence of its degradation products and its measurement uncertainty.

    Science.gov (United States)

    Ghisleni, Daniela Dal Molim; Okamoto, Rogério Takao; De Oliveira, Amaral Cleide Maria; Lourenço, Felipe Rebello; De Jesus, Andreoli Pinto Terezinha

    2014-01-01

    Caspofungin is an echinocandin antifungal used in the treatment of invasive fungal infections. Several methods have been reported for the quantitative analysis of echinocandins; however, there is no microbiological assay for determination of caspofungin potency in the presence of its degradation products. This study aimed to develop and validate a microbiological method for quantitative analysis of caspofungin in lyophilized powder, evaluate the stability, and determinate the degradation kinetics of the drug when the finished product is submitted to heat stress. A procedure was established to estimate measurement uncertainty for routine analysis. The validation was performed as recommended in the current official guidelines. The agar diffusion method is based on the inhibitory effect of caspofungin on Candida albicans. Results showed selectivity, linearity, precision, and accuracy of the method. Statistical analysis demonstrated that method is linear (in the range 2.5 to 16 microg/mL, y= 15.73 + 6.4x, r2 = 0.9965), precise (intermediate precision: 2.54%), and accurate (recovery range: 95.01-102.46%). The proposed method allowed evaluation of the thermal stability of the drug at 80 degreesC for 120 min and determination of first order degradation kinetics. The variability of inhibition zone sizes was the most important source of uncertainty at about 87% of the overall uncertainty (103.0+/-1.7%). These results show that the proposed method is applicable to routine laboratory testing, and is sensitive to thermal degradation of caspofungin.

  11. Influence of organic degradation products on the solubilisation of radionuclides in intermediate and low level radioactive wastes

    International Nuclear Information System (INIS)

    In highly alkaline cement pore waters, the degradation of cellulose and similar organic substances generates a large range of compounds. Some of them have strong complexing properties and might thus affect the confinement of radionuclides. We have identified and quantified the production of these degradation products with temperature and time. We have used conventional potentiometric titrations, HPLC, GC-MS and Capillary Electrophoresis. Among these products, we confirm the importance of isosaccharinic acid (ISA), but many other hydroxyacids, and possibly diketones could also play a role in the complexation of metals. We have experimentally studied the complexation properties of a chemical analogue of ISA, the tetrahydroxypentanoic acid (THPA) towards transition elements (Cu, Co) and rare Earth elements (Sm and Eu), in order to have a basis to derive the behaviour of some long-lived fission products and actinides. We determined the stoichiometries of the complexes and the stability constants at zero-ionic strength. In parallel, we have conducted solubility experiments on real cellulose degradation solutions. The solubility of transition metal cations increases by a factor of 104 to 105, and 106 to 107 for rare Earth elements. These results impose a thorough evaluation of possible failure of the confinement in cement-based waste forms. (orig.)

  12. Identification and characterization of stressed degradation products of metoprolol using LC/Q-TOF-ESI-MS/MS and MS(n) experiments.

    Science.gov (United States)

    Borkar, Roshan M; Raju, B; Srinivas, R; Patel, Prashant; Shetty, Satheesh Kumar

    2012-06-01

    A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 µm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision. PMID:21989963

  13. Study of the behaviour of tetracycline as fission products extracting agent

    International Nuclear Information System (INIS)

    Both spectrophotometric and potentiometric titration techniques were used to show the formation of complexes between tetracycline and the elements: zirconium, uranium, molybdenum, strontium, barium and ruthenium. It has been verified that tetracycline does not form complexes with cesium, tellurium and iodine. Those techniques have also been used to determine the sites on the tetracycline molecule at which ions may be bound. The behaviour of tetracycline as an extracting agent for those elements, as well as for niobium and technetium has been studied and the influence of the acidity of the aqueous phase upon extraction of the elements mentioned has been considered. Extraction experiments were carried out in the presence of chloride, perchlorate, nitrate and sulfate ions. Studies have been made to determine whether or not the complex extracted into organic phase is really the complex formed between tetracycline and the elements considered as well as to determine the time of shaking necessary so that the equilibrium between the phases is attained. Based on all information obtained from extraction experiments made for uranium and the fission products Zr-95, Nb-95, Ce-141, La-140, Ru-103, Ba-140 and Cs-137, the possibility of using tetracycline for separating those fission products from each other and from uranium has been studies and a scheme for simultaneous separation of those elements has been proposed. The same study has been made for I-131, Tc-99m, Mo-99, Te-132, Np-239 and uranium. The method described is applicable to the separation of some fission products existing in solutions at tracer levels, and not to be used in nuclear fuel reprocessing or any other industrial application. (Author)

  14. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    Science.gov (United States)

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  15. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    Science.gov (United States)

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  16. Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29

    Directory of Open Access Journals (Sweden)

    Zainab Bibi

    2014-10-01

    Full Text Available Xylan degrading bacterial strain was isolated from soil and identified as Geobacillus stearothermophilus KIBGE-IB29 on the basis of morphological, biochemical and 16S rDNA sequence analysis. Optimization of medium and culture conditions in submerged fermentation was investigated for maximum endo-1, 4-β-xylanase production. High yield of xylan degrading endo-1, 4-β-xylanase was achieved at 60 °C and pH-6.0 with 24 h of fermentation. Maximum enzyme was produced using 0.5% xylan as a carbon source, 0.5% peptone, 0.2% yeast extract and 0.1% meat extract as nitrogen sources. Di-potassium hydrogen phosphate (0.25%, calcium chloride (0.01%, potassium hydrogen phosphate (0.05% and ammonium sulfate (0.05% were also incorporated in the fermentation medium to enhance the enzyme production.

  17. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy.

    Science.gov (United States)

    Pérez-Alonso, M; Castro, K; Martinez-Arkarazo, I; Angulo, M; Olazabal, M A; Madariaga, J M

    2004-05-01

    This work reports the use of a portable Raman microprobe spectrometer for the analysis of bulk and decaying compounds in carbonaceous materials such as stones, mortars and wall paintings. The analysed stones include limestone, dolomite and carbonaceous sandstone, gypsum and calcium oxalate, both mono- and dihydrated, being the main inorganic degradation products detected. Mortars include bulk phases with pure gypsum, calcite and mixtures of both or with sand, soluble salts being the most important degradation products. The pigments detected in several wall paintings include Prussian blue, iron oxide red, iron oxide yellow, vermilion, carbon black and lead white. Three different decaying processes have been characterised in the mortars of the wall paintings: (a) a massive absorption of nitrates that reacted with calcium carbonate and promoted the unbinding of pigment grains, (b) the formation of black crusts in the vault of the presbytery and (c) the thermodecomposition of pigments due to a fire.

  18. The effect of partial replacement of corn silage on rumen degradability, milk production and composition in lactating primiparous dairy cows

    Directory of Open Access Journals (Sweden)

    Hakan Biricik

    2010-01-01

    Full Text Available The objective of this experiment was to evaluate the effects of partial replacement of corn silage with long alfalfa hay and/or coarse chopped wheat straw on neutral detergent fibre (NDF rumen degradability, milk yield and composition in late lactating dairy cows fed diets with 50% forage on dry matter basis. Twelve late lactating Holstein primiparous cows including four cows equipped with a rumen cannula, averaging 210 ± 20 d in milk and weighing 575 ± 50 kg were randomly assigned in a 4x4 Latin square design. During each of four 21-d periods, cows were fed 4 total mixed diets that were varied in the forage sources: 1 50% corn silage (CS, 2 35% corn silage + 15% wheat straw (CSW, 3 35% corn silage + 15% alfalfa hay (CSA, 4 25% corn silage + 10% wheat straw + 15% alfalfa hay (CSWA. The production of milk averaged 18.55, 20.41 and 20.06 kg/d for unadjusted milk production, 4% fat corrected milk and solid corrected milk, respectively, and was not affected by treatments. Likewise, milk composition or production of milk components was not affected by diets and averaged 4.69% fat, 3.66% protein, 4.51% lactose, 866 g/d fat, 665 g/d protein, 824 g/d lactose. Treatments had no effect on in situ NDF soluble, degradable and potential degradability of all diets, whereas the effective degradability (ED of NDF was greater for cows fed CS diet than for cows fed CSW, CSA and CSWA diets (P<0.05. These values suggested that the partial replacement of corn silage with alfalfa hay and/or wheat straw has no unfavourable effect on the productive parameters.

  19. The carbon isotope composition of herbicides in groundwater : the example of Glyphosate and its degradation by product AMPA

    OpenAIRE

    Widory, David; Kujawinski, Dorothea; Baran, Nicole; Amalric, Laurence; Jochmann, Maik; Schmidt, Torsten

    2011-01-01

    1. Introduction Glyphosate is the principal active substance of a weed-killer used worldwide. Its use and migration towards groundwater is of real concern. Both glyphosate and the aminomethyl phosphonic acid (AMPA), one of its degradation product, are among the 10-most observed pesticides or metabolites in France (SOeS, 2009), usually leading to the classification of the corresponding groundwater as having a bad quality status (in regard to the Water Framework Directive). Moreover, the glypho...

  20. Stability-indicating methods for the determination of pipazethate HCl in the presence of its alkaline degradation product

    Directory of Open Access Journals (Sweden)

    Yasser S. El-Saharty

    2010-01-01

    Full Text Available Three different accurate, sensitive and reproducible stability-indicating methods for the determination of pipazethate HCl in the presence of its alkaline degradation product are presented. The first method is based on ratio-spectra 1st derivative (RSD1 spectrophotometry of the drug at 305 nm, over a concentration range of 10–70 μg mL−1 with mean percentage recovery of 99.69 ± 1.10. The second method utilises quantitative densitometric evaluation of thin-layer chromatography of pipazethate HCl in the presence of its alkaline degradation product, using methanol: ethyl acetate: ammonia (8:2:0.2, v/v/v as a mobile phase. Chromatograms are scanned at 251 nm. This method analyses pipazethate HCl in a concentration range of 4–14 μg/spot with mean percentage recovery of 100.19 ± 0.77. The third method is an HPLC method for the simultaneous determination of pipazethate HCl in the presence of its alkaline degradation product. The mobile phase consists of methanol: ammonium sulphate (1%, pH = 5.7, (80:20, v/v. The standard curve of pipazethate HCl shows a good linearity over a concentration range of 5–200 μg mL−1 with mean percentage recovery of 100.67 ± 0.91. These methods were successfully applied to the determination of pipazethate HCl in bulk powder, laboratory-prepared mixtures containing different percentages of the degradation product and pharmaceutical dosage forms. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

  1. Study of the forced degradation behavior of prasugrel hydrochloride by liquid chromatography with mass spectrometry and liquid chromatography with NMR detection and prediction of the toxicity of the characterized degradation products.

    Science.gov (United States)

    Singh, Dilip Kumar; Sahu, Archana; Handa, Tarun; Narayanam, Mallikarjun; Singh, Saranjit

    2015-09-01

    Prasugrel was subjected to forced degradation studies under conditions of hydrolysis (acid, base, and neutral), photolysis, oxidation, and thermal stress. The drug showed liability in hydrolytic as well as oxidative conditions, resulting in a total of four degradation products. In order to characterize the latter, initially mass fragmentation pathway of the drug was established with the help of mass spectrometry/time-of-flight, multiple stage mass spectrometry and hydrogen/deuterium exchange data. The degradation products were then separated on a C18 column using a stability-indicating volatile buffer method, which was later extended to liquid chromatography-mass spectrometry studies. The latter highlighted that three degradation products had the same molecular mass, while one was different. To characterize all, their mass fragmentation pathways were established in the same manner as the drug. Subsequently, liquid chromatography-nuclear magnetic resonance (NMR) spectroscopy data were collected. Proton and correlation liquid chromatography with NMR spectroscopy studies highlighted existence of diastereomeric behavior in one pair of degradation products. Lastly, toxicity prediction by computer-assisted technology (TOPKAT) and deductive estimation of risk from existing knowledge (DEREK) software were employed to assess in silico toxicity of the characterized degradation products.

  2. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    Science.gov (United States)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  3. Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products

    International Nuclear Information System (INIS)

    Concern for the potential global change consequences of increasing atmospheric CO2 has prompted interest in the development of mechanisms to reduce or stabilize atmospheric CO2. During the next several decades, a program focused on terrestrial sequestration processes could make a significant contribution to abating CO2 increases. The reclamation of degraded lands, such as mine-spoil sites, highway rights-of-way, and poorly managed lands, represents an opportunity to couple C sequestration with the use of fossil-fuel and energy by-products and other waste material, such as biosolids and organic wastes from human and animal sewage treatment facilities, to improve soil quality. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity. Much is known about the methods to improve these soils, but the cost of implementation is often a limiting factor. However, the additional financial and environmental benefits of C sequestration may change the economics of land reclamation activities. The addition of energy-related by-products can address the adverse conditions of these degraded lands through a variety of mechanisms, such as enhancing plant growth and capturing of organic C in long-lived soil C pools. This review examines the use of fossil-fuel combustion by-products and organic amendments to enhance C sequestration and identifies the key gaps in information that still must be addressed before these methods can be implemented on an environmentally meaningful scale. (author)

  4. Production of xylan-degrading enzymes by a Trichoderma harzianum strain

    Directory of Open Access Journals (Sweden)

    Cacais André O.Guerreiro

    2001-01-01

    Full Text Available Trichoderma harzianum strain 4 produced extracellular xylan-degrading enzymes, namely beta-xylanase, beta-xylosidase and alpha-arabinofuranosidase, when grown in liquid medium cultures containing oat spelt xylan as inducer. Cellulase activity was not detected. The pattern of xylan-degrading enzymes induction was influenced by the form of xylan present in the medium. They were detected in different incubation periods. Electrophoretic separation of the proteins from liquid culture filtrates by SDS-PAGE showed a variety of bands with high and low molecular weights.

  5. Production and evaluation of Lutetium-177 maltolate as a possible therapeutic agent

    International Nuclear Information System (INIS)

    Development of oral therapeutic radiopharmaceuticals is a new concept in radiopharmacy. Due to the interesting therapeutic properties of 177Lu and oral bioavailability of maltolate (MAL) metal complexes, 177Lu-maltolate (177Lu-MAL) was developed as a possible therapeutic compound for ultimate oral administration. The specific activity of 2.6-3 GBq/mg was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4x1013 n.cm-2.s-1 for Lu-177. The product was converted into chloride form which was further used for labeling maltol (MAL). At optimized conditions a radiochemical purity of about >99% was obtained for 177Lu-MAL shown by ITLC (specific activity, 970-1000 Mbq/mmole). The stability of the labeled compound as well as the partition coefficient was determined in the final solution up to 24h. Biodistribution studies of Lu-177 chloride and 177Lu-MAL were carried out in wild-type rats for post-oral distribution phase data. Lu-MAL is a possible therapeutic agent in human malignancies for the bone palliation therapy so the efficacy of the compound should be tested in various animal models.

  6. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    Science.gov (United States)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural

  7. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    Science.gov (United States)

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. PMID:21429613

  8. Stability-indicating HPLC method development and structural elucidation of novel degradation products in posaconazole injection by LC-TOF/MS, LC-MS/MS and NMR.

    Science.gov (United States)

    Yang, Yidi; Zhu, Xi; Zhang, Fei; Li, Wei; Wu, Ying; Ding, Li

    2016-06-01

    Stress testing was carried out under acidic, alkaline, oxidative, thermal and photolytic conditions to evaluate the intrinsic stability of posaconazole injection. A total of four degradation products were detected and the drug was found to be susceptible to oxidative and thermal degradations. Three unknown degradants formed under oxidative stress condition were isolated by preparative HPLC and unambiguously elucidated by LC-TOF/MS, LC-MS/MS, (1)H NMR, (13)C NMR and 2D NMR techniques. Based on the spectrometric and spectroscopic information, these novel degradation products were unequivocally assigned as the N-oxides of posaconazole. Probable mechanisms for the formation of the degradants were proposed. A new and selective HPLC method was developed and validated to separate, detect and quantify all the degradants in posaconazole injection. PMID:27023129

  9. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study

    DEFF Research Database (Denmark)

    Badawi, Nora; Rosenbom, Anette E.; Olsen, Preben;

    2015-01-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape and sugar beet. Limited information is available in Scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined...... with laboratory studies to determine leaching and the underlying degradation and sorption processes. Water samples from drains, suction cups, and groundwater wells showed leaching of the degradation products fluazifop-P (FP) and 2- hydroxy-5-trifluoromethyl-pyridin (TFMP) following FPB treatment. Laboratory...... experiments with soil from each field revealed a rapid degradation of FPB to FP. The degradation was almost exclusively microbial, and further biodegradation to TFMP occurred at a slower rate. Both degradation products were sorbed to the two soils to a small extent and were fairly persistent to degradation...

  10. Biodegradation of the Organophosphate Trichlorfon and Its Major Degradation Products by a Novel Aspergillus sydowii PA F-2.

    Science.gov (United States)

    Tian, Jiang; Dong, Qiaofeng; Yu, Chenlei; Zhao, Ruixue; Wang, Jing; Chen, Lanzhou

    2016-06-01

    Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon-phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography-mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P-C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments. PMID:27161040

  11. Multi-Agent Based Beam Search for Real-Time Production Scheduling and Control Method, Software and Industrial Application

    CERN Document Server

    Kang, Shu Gang

    2013-01-01

    The Multi-Agent Based Beam Search (MABBS) method systematically integrates four major requirements of manufacturing production - representation capability, solution quality, computation efficiency, and implementation difficulty - within a unified framework to deal with the many challenges of complex real-world production planning and scheduling problems. Multi-agent Based Beam Search for Real-time Production Scheduling and Control introduces this method, together with its software implementation and industrial applications.  This book connects academic research with industrial practice, and develops a practical solution to production planning and scheduling problems. To simplify implementation, a reusable software platform is developed to build the MABBS method into a generic computation engine.  This engine is integrated with a script language, called the Embedded Extensible Application Script Language (EXASL), to provide a flexible and straightforward approach to representing complex real-world problems. ...

  12. Stress degradation study and structure characterization of oxidation degradation product of dexlansoprazole using liquid chromatography-mass spectrometry/time of flight, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Lakkireddy PRAKASH; M HIMAJA

    2016-01-01

    The present study deals with the forced degradation behavior of dexlansoprazole under International Conference on Harmonisation( ICH)prescribed stress conditions. The drug was found to be more labile under acid,base,neutral,oxidative hydrolysis and thermal stress,while it was moderately stable under photolytic conditions. The known and unknown degradation products were separated on a C-18 column using a stability-indicating method. Liquid chromatography-mass spectrometry( LC-MS)analysis was performed for all the deg-radation studies. Isolation and structure characterization of oxidation degradation products were executed using sophisticated tools,viz. preparative high performance liquid chromatography( HPLC),liquid chromatography-mass spectrometry/time of flight( LC-MS/TOF),liquid chromatography-tandem mass spectrometry( LC-MS/MS),and nuclear magnetic resonance( NMR). This study demonstrates an ample methodology of degradation studies and structure elucidation of unknown degradation products of dexlansoprazole,which helps in the development and stability study of active pharmaceutical ingredients and formulated products.

  13. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    International Nuclear Information System (INIS)

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H2O2 system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of neutrophils in

  14. Differential Contribution of the Mitochondrial Respiratory Chain Complexes to Reactive Oxygen Species Production by Redox Cycling Agents Implicated in Parkinsonism

    OpenAIRE

    Drechsel, Derek A.; Patel, Manisha

    2009-01-01

    Exposure to environmental pesticides can cause significant brain damage and has been linked with an increased risk of developing neurodegenerative disorders, including Parkinson's disease. Bipyridyl herbicides, such as paraquat (PQ), diquat (DQ), and benzyl viologen (BV), are redox cycling agents known to exert cellular damage through the production of reactive oxygen species (ROS). We examined the involvement of the mitochondrial respiratory chain in ROS production by bipyridyl herbicides. I...

  15. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  16. In vitro degradability and total gas production of biodiesel chain byproducts used as a replacement for cane sugar feed

    Directory of Open Access Journals (Sweden)

    Milenna Nunes Moreira

    2014-09-01

    Full Text Available This study aimed to determine the in vitro degradability of dry matter and the total gas production of oil seed press cake from biodiesel production (Gossypium hirsutum L., Helianthus annuus L., Ricinus communis, Moringa oleífera L. and Pinhão manso curcas L. at four different levels of replacement (0, 30, 50, and 70% for cane sugar (Saccharum officinarum RB. in ruminant feed. Inocula were prepared using the ruminal fluid of three Holstein cows, and data were collected after 48 hours of incubation. The byproducts of Moringa had the highest degradability, and castor presented the lowest values at all evaluated levels of replacement. Castor bean byproduct showed the highest total gas production, cotton showed the lowest production, and the byproduct of Moringa at the 70% level showed the best ruminal fermentation results. These results demonstrate that the use of oil seed press cake from biodiesel production (Helianthus annuus L. and Ricinus communis can replace cane sugar in ruminant feed.

  17. Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat

    Science.gov (United States)

    Tolpeshta, I. I.; Trofimov, S. Ya.; Erkenova, M. I.; Sokolova, T. A.; Stepanov, A. L.; Lysak, L. V.; Lobanenkov, A. M.

    2015-03-01

    A model experiment has been performed on the successive aerobic and anaerobic degradation of oil products in samples of oil-contaminated peat sampled from a pine-subshrub-sphagnum bog near the Sutormin oilfield pipeline in the Yamal-Nenets autonomous district. During the incubation of oil-contaminated peat with lime and mineral fertilizers under complete flooding, favorable conditions are created for the aerobic oxidation of oil products at the beginning of the experiment and, as the redox potential decreases, for the anaerobic degradation of oil products conjugated with the reduction of N5+ and S+6 and methanogenesis. From the experimental data on the dynamics of the pH; Eh; and the NO{3/-}, NO{2/-}, and SO{4/2-} concentrations in the liquid phase of the samples, it has been found that denitrifiers significantly contributed to the biodegradation of oil products under the experimental conditions. After the end of the experiment, the content of oil products in the contaminated samples decreased by 21-26%.

  18. Fate of three anti-influenza drugs during ozonation of wastewater effluents - degradation and formation of transformation products.

    Science.gov (United States)

    Fedorova, Ganna; Grabic, Roman; Nyhlen, Jonas; Järhult, Josef D; Söderström, Hanna

    2016-05-01

    Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms. PMID:26746418

  19. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles.

    Science.gov (United States)

    Dixit, Nitin; Salamat-Miller, Nazila; Salinas, Paul A; Taylor, Katherine D; Basu, Sujit K

    2016-05-01

    This study investigated the root cause behind an observed free fatty acid particle formation and resulting Polysorbate 20 (PS20) loss for a sulfatase drug product upon long-term storage at 5 ± 3°C. Reversed- phase chromatography with mass spectrometric analysis as well as charged aerosol detection was used to characterize the peaks associated with the intact and degraded PS20. Additionally, a proteomics study was undertaken to identify the residual host cell proteins in the sulfatase drug substance. PS20 stability studies were conducted in the presence of sulfatase, a sulfatase inhibitor, putative phospholipase B-like 2, and mock drug substance produced using a null cell line vector under experimental conditions optimized for PS20 degradation. This study provides the first published evidence where the residual host cell protein present in the drug substance was identified and experimentally shown to catalyze the breakdown of PS20 in a protein formulation over time, resulting in free fatty acid particles and PS20 loss. This study demonstrates the importance of early detection of potential impurities in the protein drug substance that may contribute to polysorbate degradation to make a judicious selection of the surfactant and its optimized concentration for the final drug product. PMID:27032893

  20. Characterization of forced degradation products of pazopanib hydrochloride by UHPLC-Q-TOF/MS and in silico toxicity prediction.

    Science.gov (United States)

    Patel, Prinesh N; Kalariya, Pradipbhai D; Sharma, Mahesh; Garg, Prabha; Talluri, M V N Kumar; Gananadhamu, S; Srinivas, R

    2015-07-01

    Pazopanib (PZ), an anti-cancer drug, was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per International Conference on Harmonization guidelines. A selective stability indicating validated method was developed using a Waters Acquity UPLC HSS T3 (100 × 2.1 mm, 1.7 µm) column in gradient mode with ammonium acetate buffer (10 mM, pH 5.0) and acetonitrile. PZ was found to degrade only in photolytic conditions to produce six transformation products (TPs). All the TPs were identified and characterized by liquid chromatography/atmospheric pressure chemical ionization-quadrupole-time of flight mass spectrometry experiments in combination with accurate mass measurements. Plausible mechanisms have been proposed for the formation of TPs. In silico toxicity was predicted using TOPKAT and DEREK softwares for all the TPs. The TP, N4-(2,3-dimethyl-2H-indazol-6-yl)-N4-methylpyrimidine-2,4-diamine, was found to be genotoxic, whereas all other TPs with sulfonamide moiety were hepatotoxic. The data reported here are expected to be of significance as this study foresees the formation of one potential genotoxic and five hepatotoxic degradation/transformation products. PMID:26349647

  1. Simultaneous separation and determination of process-related substances and degradation products of venlafaxine by reversed-phase HPLC.

    Science.gov (United States)

    Nageswara Rao, R; Narasa Raju, A

    2006-12-01

    A simple and rapid gradient RP HPLC method for simultaneous separation and determination of venlafaxine and its related substances in bulk drugs and pharmaceutical formulations has been developed. As many as four process impurities and one degradation product of venlafaxine have been separated on a Kromasil KR100-5C18 (4.6 mm x 250 mm; particle size 5 microm) column with gradient elution using 0.3% diethylamine buffer (pH 3.0) and ACN/methanol (90:10 v/v) as a mobile phase. The column was maintained at 40 degrees C and the eluents were monitored with photo diode array detection at 225 nm. The chromatographic behaviour of all the compounds was examined under variable compositions of different solvents, temperatures, buffer concentrations and pH. The method was validated in terms of accuracy, precision and linearity as per ICH guidelines. The inter- and intraday assay precision was method was successfully applied to the analysis of commercial formulations and the recoveries of venlafaxine were in the range of 99.32-100.67 with %RSD method could be of use not only for rapid and routine evaluation of the quality of venlafaxine in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Forced degradation of venlafaxine was carried out under thermal, photo, acidic, basic and peroxide conditions and the acid degradation products were characterized by ESI-MS/MS, 1H NMR and FT-IR spectral data.

  2. Chemical Potency and Degradation Products of Medications Stored Over 550 Earth Days at the International Space Station.

    Science.gov (United States)

    Wotring, Virginia E

    2016-01-01

    Medications degrade over time, and degradation is hastened by extreme storage conditions. Current procedures ensure that medications aboard the International Space Station (ISS) are restocked before their expiration dates, but resupply may not be possible on future long-duration exploration missions. For this reason, medications stored on the ISS were returned to Earth for analysis. This was an opportunistic, observational pilot-scale investigation to test the hypothesis that ISS-aging does not cause unusual degradation. Nine medications were analyzed for active pharmaceutical ingredient (API) content and degradant amounts; results were compared to 2012 United States Pharmacopeia (USP) requirements. The medications were two sleep aids, two antihistamines/decongestants, three pain relievers, an antidiarrheal, and an alertness medication. Because the samples were obtained opportunistically from unused medical supplies, each medication was available at only 1 time point and no control samples (samples aged for a similar period on Earth) were available. One medication met USP requirements 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements 8 months post expiration. Another three medications (33%) met USP guidelines 2-3 months before expiration. One compound, a dietary supplement used as a sleep aid, failed to meet USP requirements at 11 months post expiration. No unusual degradation products were identified. Limited, evidence-based extension of medication shelf-lives may be possible and would be useful in preparation for lengthy exploration missions. Only analysis of flight-aged samples compared to appropriately matched ground controls will permit determination of the spaceflight environment on medication stability.

  3. Chemical Potency and Degradation Products of Medications Stored Over 550 Earth Days at the International Space Station.

    Science.gov (United States)

    Wotring, Virginia E

    2016-01-01

    Medications degrade over time, and degradation is hastened by extreme storage conditions. Current procedures ensure that medications aboard the International Space Station (ISS) are restocked before their expiration dates, but resupply may not be possible on future long-duration exploration missions. For this reason, medications stored on the ISS were returned to Earth for analysis. This was an opportunistic, observational pilot-scale investigation to test the hypothesis that ISS-aging does not cause unusual degradation. Nine medications were analyzed for active pharmaceutical ingredient (API) content and degradant amounts; results were compared to 2012 United States Pharmacopeia (USP) requirements. The medications were two sleep aids, two antihistamines/decongestants, three pain relievers, an antidiarrheal, and an alertness medication. Because the samples were obtained opportunistically from unused medical supplies, each medication was available at only 1 time point and no control samples (samples aged for a similar period on Earth) were available. One medication met USP requirements 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements 8 months post expiration. Another three medications (33%) met USP guidelines 2-3 months before expiration. One compound, a dietary supplement used as a sleep aid, failed to meet USP requirements at 11 months post expiration. No unusual degradation products were identified. Limited, evidence-based extension of medication shelf-lives may be possible and would be useful in preparation for lengthy exploration missions. Only analysis of flight-aged samples compared to appropriately matched ground controls will permit determination of the spaceflight environment on medication stability. PMID:26546565

  4. Occurrence of isoxaflutole, acetamide, and triazine herbicides and their degradation products in 10 Iowa rivers draining to the Mississippi and Missouri Rivers, 2004

    Science.gov (United States)

    Scribner, Elisabeth A.; Meyer, Michael T.; Kalkhoff, Stephen J.

    2006-01-01

    During 2004, a study to document the occurrence of herbicides and herbicide degradation products was conducted for 10 major Iowa rivers draining to the Missouri and Mississippi Rivers. Seventy-five water-quality samples were collected to measure isoxaflutole, acetamide, and triazine herbicides and their herbicide degradation products. An analytical method to measure isoxaflutole and its degradation products, diketonitrile and benzoic acid, was developed by the U.S. Geological Survey Organic Geochemistry Research Laboratory in Lawrence, Kansas, using vacuum manifold solid-phase extraction and liquid chromatography/mass spectrometry/mass spectrometry and is described in this report.

  5. Isolation and characterization of a degradation product in leflunomide and a validated selective stability-indicating HPLC-UV method for their quantification

    Institute of Scientific and Technical Information of China (English)

    Balraj Saini; Gulshan Bansal

    2015-01-01

    Leflunomide (LLM) is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, and photolysis as recommended by International Conference on Harmonization guideline Q1A(R2). In total, four degradation products (I–IV) were formed under different conditions. Products I, II and IV were formed in alkaline hydrolytic, acidic hydrolytic and alkaline photolytic conditions. LLM and all degradation products were optimally resolved by gradient elution over a C18 column. The major degradation product (IV) formed in hydrolytic alkaline conditions was isolated through column chromatography. Based on its 1H NMR, IR and mass spectral data, it was characterized as a British Pharmacopoeial impurity B. The HPLC method was found to be linear, accurate, precise, sensitive, specific, rugged and robust for quantification of LLM as well as product IV. Finally, the method was applied to stability testing of the commercially available LLM tablets.

  6. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass.

    Science.gov (United States)

    Klinke, H B; Thomsen, A B; Ahring, B K

    2004-11-01

    An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q(EtOH)) but not the ethanol yields (Y(EtOH)) in Saccharomyces cerevisiae. Within the same phenol functional group (aldehyde, ketone, and acid) the inhibition of volumetric ethanol productivity was found to depend on the amount of methoxyl substituents and hence hydrophobicity (log P). Many pentose-utilizing strains Escherichia coli, Pichia stipititis, and Zymomonas mobilis produce ethanol in concentrated hemicellulose liquors but detoxification by overliming is needed. Thermoanaerobacter mathranii A3M3 can grow on pentoses and produce ethanol in hydrolysate without any need for detoxification. PMID:15300416

  7. Philosophical aspects of the use of autonomous agents in music production

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer; Moore, Tim

    2008-01-01

    Music interaction through software agents is bound to become the goal of researchers in the near future. Some of the situations to be found in mu- sic interaction using autonomous agents are analyzed here. The seclusion sce- nario, in which a single person is isolated with her own musical ideas......, is dis- armed if an autonomous agent is recognized as a (quasi-) person. This enables the interaction that produces the meaning of the music. The unilateral scenario, in which music tends to contain either novelty, or understanding, is avoided if enough interaction and encounters are taking place....

  8. Simultaneous Determination of Ethidimuron, Methabenzthiazuron, and Their Two Major Degradation Products in Soil

    OpenAIRE

    Lagarde, F.; Pütz, T.; Dressel, J.; Führ, F.

    2006-01-01

    An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes. (14)C-labeled compounds were used for the optimization of extraction and purification ...

  9. Chill unit accumulation and necessity of rest breaking agents in South African table grape production regions

    Directory of Open Access Journals (Sweden)

    Avenant Eunice

    2014-01-01

    Full Text Available Cultivation of table grapes in warm regions of South Africa is complicated by problems associated with delayed and uneven bud break. Rest breaking agents, mainly hydrogen cyanamide, are applied to overcome these problems. The chill unit accumulation of the five major table grape production regions in South Africa was compared with the minimum chilling required to obtain a high bud break percentage (>80% and even bud break, defined as 200 hours between 0 and 10 ∘C, or 400 hours at 3 ∘C. The effect of chilling accumulation (0, 50, 100, 200, 400 and 800 hours at 3 ∘C on bud break of dormant cuttings of three table grape cultivars was investigated in controlled studies in a glass house over a three year period. Cuttings used in the study were collected from commercial vineyards in Saron in the Berg River Valley (representing a warm region and the Hex River Valley (representing a cool region. Sultanina and Sugraone cuttings from Saron required at least 200 hours at 3 ∘C to obtain a final bud break % of 80%+. A final bud break % of 80%+ was obtained with all Sultanina cuttings from Hex River Valley. Treatments receiving 400 and 800 hours at 3 ∘C, showed the most rapid rate of bud break. Prime cuttings collected from Saron, receiving 0, 50, 100 and 400 hours at 3 ∘C, showed a more rapid bud break process, as well as a higher final bud break % compared to Sugraone and Sultanina. It seems as if Prime has a lower chilling requirement than the other two cultivars. The model of Dokoozlian for quantifying chilling status is applicable to Saron and the Hex River Valley. The necessity of using rest breaking chemicals in the Saron area, for obtaining a high bud break % and even bud break, was confirmed. The Hex River Valley receives sufficient chilling temperatures to obtain a high bud break %, but rest breaking chemicals can be used to obtain more even bud break. The use of hydrogen cyanamide for improved and even bud break is a general

  10. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency.

    Science.gov (United States)

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wen, Jia-Long; Sun, Run-Cang

    2016-07-01

    Bio-oil derived from fast pyrolysis of rice husk was gasified for producing gas. The effectiveness of equivalence ratio and gasifying agents on the gas composition, ratio of H2/CO, tar amount, low heating value, degree of oxidation and cold gas efficiency of the gas were comprehensively investigated. Under different equivalence ratios and gasifying agents, the gases can be used as synthesis gas for Fischer-Tropsch synthesis, fuel gas for gas turbines in a power plant and reducing gas for ore reduction, respectively. The H2 concentration, CO level and cold gas efficiency of the resulted gas derived from gasification of bio-oil were significantly higher, while tar content was remarkably lower than those derived from gasification of solid biomass using the same equivalent ratio value and gasifying agent. In short, bio-oil gasification is economically feasible for large scale production of fuels and chemicals. PMID:27017126

  11. A Multifaceted Medical Data Information System and One Product: The Index-Handbook of Ototoxic Agents

    Science.gov (United States)

    Heath, Miriam T.; Lunin, Lois F.

    1976-01-01

    Describes the creation and development of a biomedical information system that includes a machine-readable data base containing clinical and research data and a publication entitled the Index-Handbook of Ototoxic Agents. (Author)

  12. Stripping of TBP degraded product along with actinides from organic phase generated during the remediation of the aqueous phase of spent organic waste storage tank

    International Nuclear Information System (INIS)

    Degraded products of Tri butyl phosphate (TBP) are generated during extraction of U and Pu by PUREX due to high radiation field. Sodium carbonate wash is given to clean up the TBP solvent and the wash liquid is in a separate tank along with the spent organic waste. Though the aqueous phase from this tank comes intermediate level liquid waste category, presence of the degrade products of TBP are creating problem during its treatment by ion exchange process. To remediate this waste for ion exchange treatment, the degraded products of TBP are removed by solvent extraction using spent TBP stored in the same tank as solvent. Present paper details the stripping of the TBP degraded product along with alpha activity from the organic phase

  13. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    Science.gov (United States)

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  14. Degradation products of dabigatran etexilate salts%达比加群酯盐的降解产物研究

    Institute of Scientific and Technical Information of China (English)

    宗新杰; 李川; 付晓丽; 张海枝; 刘长鹰; 刘鹏; 徐为人

    2016-01-01

    Objective To study the degradation products of six different dabigatran etexilate salts under various condition and find the correlation between selected acids and the stability of salts.Methods Six different dabigatran etexilate salts were placed under high temperature, high humidity or illumination for 10 d. Then, the degradation products were detailedly analyzed by HPLC and LC-MS methods.Results Three important degradation products were analyzed, and the close relation between its generation and the structure of selected acid was deduced.Conclusion The acid with weak reducing property, fewer oxygen-contained groups and lower pKa could be applied to form more stable dabigatran etexilate salts.%目的 研究6种达比加群酯盐在不同条件下的降解产物,寻找不同酸根与达比加群酯盐稳定性之间的相互关系.方法 将6种盐在高温、高湿和光照条件下分别放置10 d后,利用HPLC和LC-MS法对不同盐的降解产物进行深入分析.结果 通过LC-MS法解析得到达比加群酯盐的3种关键降解产物,初步推断出不同杂质的产生与所选用的酸根结构密切相关.结论 为了寻找更加稳定的达比加群酯盐,需要选用氧化还原性弱,结构中含氧基团少及pKa值较低的酸根.

  15. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  16. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  17. Production of Biomass-Degrading Multienzyme Complexes under Solid-State Fermentation of Soybean Meal Using a Bioreactor.

    Science.gov (United States)

    Vitcosque, Gabriela L; Fonseca, Rafael F; Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Farinas, Cristiane S

    2012-01-01

    Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55 IU/g), endoglucanase (35.1 IU/g), and xylanase (47.7 IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24 mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4 g/L of glucose after 36 hours of saccharification of 50 g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source.

  18. Enhancement of Biodegradable Plastic-degrading Enzyme Production from Paraphoma-like Fungus, Strain B47-9.

    Science.gov (United States)

    Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Shinozaki, Yukiko; Yamamoto-Tamura, Kimiko; Yamazaki, Toshimasa; Kitamoto, Hiroko

    2016-01-01

    To improve the productivity of Paraphoma-like fungal strain B47-9 for biodegradable plastic (BP)-degrading enzyme (PCLE), the optimal concentration of emulsified poly(butylene succinate-co-adipate) (PBSA) in the medium was determined. Emulsified PBSA was consumed as a sole carbon source and an inducer of PCLE production by strain B47-9. Among the various concentrations of emulsified PBSA [0.09-0.9% (w/v)] used in flask cultivation, 0.27% yielded the maximum enzyme activity within a short cultivation period. To evaluate the residual concentration of emulsified PBSA in culture, emulsified PBSA in aliquots of culture supernatant was digested in vitro, and the concentration of released monomerised succinic acid was determined. Regardless of the initial concentration of emulsified PBSA in medium, PCLE activity was detected after residual succinic acid decreased below 0.04 mg/mL in culture broth. Jarfermentation was performed at a 0.27% PBSA concentration. Among the various airflow rates tested, 1 LPM resulted in a PCLE production rate of 1.0 U/mL/day. The enzyme activity in the resulting culture filtrate (4.2 U/2 mL) was shown to degrade commercial BP films (1 × 1 cm, 20 µm thickness) within 8 hours. PMID:26876678

  19. Structural characterization of alkaline and oxidative stressed degradation products of lurasidone using LC/ESI/QTOF/MS/MS.

    Science.gov (United States)

    Talluri, M V N Kumar; Dharavath, Shireesha; Kalariya, Pradipbhai D; Prasanth, B; Srinivas, R

    2015-02-01

    A selective, accurate, precise and robust stability indicating liquid chromatography assay method was developed for the monitoring of a novel antipsychotic drug, lurasidone, in the presence of its degradation products (DPs). Also, we investigated degradation behavior of the drug under various stressed conditions such as hydrolytic (acidic, basic and neutral), oxidation, photolytic and thermal. The drug was found to be degraded under base hydrolytic and oxidative conditions, while it was stable in acid and neutral hydrolytic, photolytic and thermal conditions. The method showed adequate separation of lurasidone and its DPs on Xterra C18 (150 mm × 4.6 mm i.d., 3.5 μm) column using 20 mM ammonium formate (pH 3.0): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. This method was extended to liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI/QTOF/MS/MS) for structural characterization of DPs. A total of five DPs were characterized by LC/ESI/QTOF/MS/MS studies. Most probable mechanisms for the formation of DPs were proposed. The developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization Guideline Q2 (R1). PMID:25527975

  20. RP-HPLC Method for the Determination of Cinitapride in the Presence of its Degradation Products in Bulk Drug

    OpenAIRE

    Roy, S. M. N.; Mangaonkar, Kiran V.; Desai, A. Y.; Yetal, Santosh M.

    2010-01-01

    A reverse phase HPLC method is described for the determination of cinitapride hydrogen tartrate in the presence of its degradation products in bulk drug. A drug was subjected to all stress conditions such as reduction, oxidation acidic and alkaline medium. Chromatography was recorded on an Intersil ODS-3 column using mixture of acetonitrile and phosphate buffer, pH adjusted to 6.7 in the ratio (70:30 v/v) as the mobile phase at the rate of 1.0 mL/min with detection at 260 nm. Glimepride was u...

  1. HS-SPME-GC-MS analysis of antioxidant degradation products migrating to drinking water from PE materials and PEX pipes

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Waul, Christopher Kevin; Andersen, Henrik Rasmus;

    2013-01-01

    Polyethylene (PE) and cross-linked polyethylene (PEX) pipes are frequently used in water supply systems. Such pipes contain added antioxidants with phenolic structures, e.g. Irgafos 168, Irganox 1010 and 1076, in order to improve durability. However, phenol, ketone and quinone antioxidant...... with a mass spectrometer, a method was established revealing limits of detection and quantification less than 0.4 and 1 µg L−1 respectively. The method was applied to migration experiments for two PEX pipes and one PE material, quantifying the release of two degradation products. Highest concentrations were...

  2. Stability-indicating methods for the determination of pipazethate HCl in the presence of its alkaline degradation product

    OpenAIRE

    Yasser S. El-Saharty; Nariman A. El-Ragehy; Heba M. Abdel-Monem; Mohammed I. Abdel-Kawy

    2010-01-01

    Three different accurate, sensitive and reproducible stability-indicating methods for the determination of pipazethate HCl in the presence of its alkaline degradation product are presented. The first method is based on ratio-spectra 1st derivative (RSD1) spectrophotometry of the drug at 305 nm, over a concentration range of 10–70 μg mL−1 with mean percentage recovery of 99.69 ± 1.10. The second method utilises quantitative densitometric evaluation of thin-layer chromatography of pipazethate H...

  3. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Gao; Dai-di Fan; Pei Ma; Yan-e Luo; Xiao-xuan Ma; Chen-hui Zhu; Jun-feng Hui

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

  4. Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage

    OpenAIRE

    Kim, Y. I.; Oh, Y K; Park, K. K.; Kwak, W. S.

    2014-01-01

    This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral det...

  5. Photocatalytic degradation of methamphetamine by UV/TiO2 - kinetics, intermediates, and products.

    Science.gov (United States)

    Kuo, Chin-Sheng; Lin, Cheng-Fang; Hong, Pui-Kwan Andy

    2015-05-01

    Methamphetamine (MAT) is a prescription drug and often a substance of abuse. It is found in WWTP influents and effluents as well as surface waters in many regions, elevating concerns about their potential impact. MAT is not effectively removed by conventional processes of domestic wastewater treatment plants (WWTPs). To contemplate advanced treatment, this study evaluates the feasibility of eliminating MAT by UV-illuminated TiO2, a potential retrofit to existing UV disinfection units. The degradation kinetics and mechanism of MAT by TiO2 under low-wattage UV illumination (9 W with maximum output at 365 nm) were investigated. Experimental parameters were varied including the TiO2 loading, MAT concentration, and pH. During treatment, MAT and its intermediates were tracked by HPLC-MS/MS, along with TOC and IC measurements to determine the mineralization extent. In contact with 0.1 g/L of TiO2 under illumination at pH 7, an entire spike amount of 100 μg/L of MAT was removed from deionized water after 3 min and 76 μg/L of MAT was removed from the secondary wastewater effluent after 30 min. The degradation of MAT followed an apparent first-order kinetics. Near complete mineralization of MAT from 10 mg/L was achieved in 180 min with 0.1 g/L of TiO2 at pH 5, by which the organic nitrogen was converted to NH4(+) and NO3(-). Based on identified intermediates, two degradation pathways were deduced that involved cleavage of the side chain as well as hydroxylation of the MAT compound. The photocatalytic UV/TiO2 process shows promise in arresting the release of MAT and its intermediate derivatives into the water environment.

  6. Variability in oxidative degradation of charcoal: Influence of production conditions and environmental exposure

    Science.gov (United States)

    Ascough, P. L.; Bird, M. I.; Francis, S. M.; Thornton, B.; Midwood, A. J.; Scott, A. C.; Apperley, D.

    2011-05-01

    Charcoal is a key component of the Black Carbon (BC) continuum, where BC is characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an important source of palaeoenvironmental data, and of great interest as a potential carbon sink, due to its high apparent environmental stability. However, at least some forms of charcoal are clearly susceptible to environmental alteration and degradation over relatively short timescales. Although these processes have importance for the role of charcoal in global biogeochemistry, they remain poorly understood. Here we present results of an investigation into the susceptibility of a range of charcoal samples to oxidative degradation in acidified potassium dichromate. The study examines both freshly-produced charcoal, and charcoal exposed to environmental conditions for up to 50,000 years. We compare the proportion of carbon present in different forms between the samples, specifically with respect to the relative chemical resistance of these forms. This was undertaken in order to improve understanding of the post-depositional diagenetic changes affecting charcoal within environmental deposits. A wide range in chemical compositions are apparent both within and between the sample groups. In freshly-produced charcoal, material produced at 300 °C contains carbon with more labile forms than charcoal produced at ⩾400 °C, signifying a key chemical change over the 300-400 °C temperature range. Charcoal exposed to environmental depositional conditions is frequently composed of a highly carboxylated aromatic structure and contains a range of carbon fractions of varying oxidative resistance. These findings suggest that a significant number of the environmental charcoals have undergone post-depositional diagenetic alteration. Further, the data highlight the potential for the use of controlled progressive oxidative degradation as a method to characterize chemical differences between individual charcoal samples.

  7. Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage

    Science.gov (United States)

    Kim, Y. I.; Oh, Y. K.; Park, K. K.; Kwak, W. S.

    2014-01-01

    This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective NDF1.18 on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and NH3-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from 109 to 108 cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw. PMID:25049944

  8. UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment.

    Science.gov (United States)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R; Silva, Adrián M T; Ksibi, Mohamed

    2016-03-01

    Direct photolysis and TiO2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pHinitial 6.5) was 83% after 3h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (kapp) for NPX degradation by photolysis ranged from 0.0050 min(-1) at pH 3.5 to 0.0095 min(-1) at pH 6.5, while it was estimated to be 0.0063 min(-1) under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions. PMID:26571001

  9. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  10. RESEARCH ON THE INFLUENCE OF BLOWING AGENT ON SELECTED PROPERTIES OF EXTRUDED CELLULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2015-11-01

    Full Text Available As a part of a more comprehensive research project, the present study was undertaken to investigate the effect of the type and content of blowing agents in the polymeric materials being processed on the structure and selected physical and mechanical properties of the obtained extrusion parts. In the experiment, the content of the blowing agent (0–2.0% by mass, fed into the processed polymer were adopted as a variable factor. In the studies presented in the article, the blowing agents of endothermic decomposition characteristics (Hydrocerol BIH 70, Hydrocerol BM 70 and the exothermic decomposition characteristics (PLC 751 occurring in the granulated form with a diameter of 1.2 to 1.8 mm were used. Based on the results of investigating porosity, porous structure image analysis as well as microscopic examination of the structure, it has been found that the favorable content of the blowing agent in the polymeric material should be of up to 0.8% by mass. With such a content of the blowing agent in the polymeric material, favorable strength properties are retained in porous parts, the pore distribution is uniform and the pores have similar sizes.

  11. Production of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium

    International Nuclear Information System (INIS)

    Chelating agents produced by microorganisms enhance the dissolution of iron increasing the mobility and bioavailability of the metal. Since some similarities exist in the biological behavior of ferric, thorium and uranyl ions, microorganisms resistant to these metals and which grow in their presence may produce sequestering agents of Th and U, and other metals in a manner similar to the complexation of iron by siderophores. The ability of P. aeruginosa to elaborate sequestering agents in medium containing thorium or uranium salts was tested. Uranium has a stronger inhibitory effect on growth of the organism than thorium at similar concentrations. Analyses of the culture media have shown, that relative to the control, and under the experimental conditions used, the microorganisms have produced several new chelating agents for thorium and uranium. Extracts containing these chelating agents have been tested for their decorporation potential. In vitro mouse liver bioassay and in vivo mouse toxicity tests indicate that their efficiency is comparable to DTPA and DFOA and that they are virtually non-toxic to mice. The bacterially produced compounds resemble, but are not identical to the known iron chelating siderophores isolated from microorganisms. Some of their chemical properties are also discussed. (author)

  12. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    Science.gov (United States)

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained.

  13. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    Science.gov (United States)

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained. PMID:25285760

  14. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  15. An Agent-based Extensible Climate Control System for Sustainable Greenhouse Production

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard; Klein, Mark;

    2011-01-01

    The slow adoption pace of new control strategies for sustainable greenhouse climate control by industrial growers is mainly due to the complexity of identifying and resolving potentially conflicting climate control requirements. In this paper, we present a multi-agent-based climate control system....... Negotiation is done using a novel multi-issue negotiation protocol that uses a generic algorithm to find an optimized solution within the search space. The Multi-Agent control system has been empirically evaluated in an ornamental floriculture research facility in Denmark. The evaluation showed...... that it is realistic to implement the climate control requirements as individual agents, thereby opening greenhouse climate control systems for integration of independently produced control strategies....

  16. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation

    Institute of Scientific and Technical Information of China (English)

    BAI Zhihui; JIN Bo; LI Yuejie; CHEN Jian; LI Zuming

    2008-01-01

    Biocontrol agents are safe and environmental friendly alternatives for pesticides in agriculture application.Trichoderma v/ride WEBL0703 performed a high level of antagonistic activity toward a broad spectrum of phytopathogens and was determined as a biocontrol agent,which was produced by solid state fermentation using grape marc and wine lees.The maximum yield of T.viride conidia was up to 6.65×109 CFU/g initial dry substrate (IDS) after 10 d fermentation.As important enzymes for protecting plants from disease,ehitinase,β-glucanase,and pectinase yields were 47.8 U/g IDS,8.32 U/g IDS and 9.83 U/g IDS,respectively.These results show that it is feasible to convert winery wastes to a value-added and environmental friendly biocontrol agent.

  17. Ohmic heating of strawberry products : electrical conductivity measurements and ascorbic acid degradation kinetics

    OpenAIRE

    Castro, Inês; J. A. Teixeira; Salengke, S.; Sastry, S.K.; Vicente, A.A.

    2004-01-01

    The effects of field strength and multiple thermal treatments on electrical conductivity of strawberry products were investigated. Electrical conductivity increased with temperature for all the products and conditions tested following linear relations. Electrical conductivity was found to depend on the strawberry-based product. An increase of electrical conductivity with field strength was obvious for two strawberry pulps and strawberry filling but not for strawberry topping or straw...

  18. Analysis of annatto (Bixa orellana) food coloring formulations. 2. Determination of aromatic hydrocarbon thermal degradation products by gas chromatography.

    Science.gov (United States)

    Scotter, M J; Wilson, L A; Appleton, G P; Castle, L

    2000-02-01

    Twenty samples of commercial annatto formulations have been analyzed for m-xylene and toluene using ambient alkaline hydrolysis, followed by solvent extraction and capillary gas chromatography. Fifteen of the samples contained <5 mg/kg toluene, four samples contained between 5 and 10 mg/kg toluene, and one sample contained 12 mg/kg toluene. The amounts found of m-xylene were 200 mg/kg (one sample), 160 mg/kg (one sample), between 30 and 88 mg/kg (four samples), between 7 and 25 mg/kg (seven samples), and <5 mg/kg (seven samples). Bixin-in-oil formulations contained the highest m-xylene concentrations and also gave the largest increase in headspace m-xylene concentration when heated in closed systems. The results are evidence for the thermal degradation of annatto during source extraction and processing, resulting in contamination by internal generation of both bixin and norbixin types with aromatic hydrocarbons. Two samples of norbixin of known production history (i. e., thermal versus nonthermal processes) were analyzed specifically to identify possible differences in their degradation component profiles. They were found to differ significantly in m-xylene content, which is consistent with their respective production histories. PMID:10691661

  19. The estimation of ruminal protein degradation parameters of various feeds using in vitro modified gas production technique.

    Science.gov (United States)

    Falahatizow, J; Danesh Mesgaran, M; Vakili, A R; Tahmasbi, A M; Nazari, M R

    2015-01-01

    This study was conducted to determine in vitro crude protein degradation (IVDP) parameters and effective crude protein degradability (EPD) of various feeds using the modified in vitro gas production (GP) technique. Feed samples were alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal. Rumen fluid was collected before the morning feeding from four rumen fistulated lambs (49.4 ± 3.5 kg, body weight). Approximately 90 ml of buffered rumen fluid (BRF), 400 mg of feed samples and carbohydrates (maltose, xylose and starch) at four concentrations (100, 200, 300, and 400 mg) were added to screw-cap bottles. Gas production (ml) and ammonia nitrogen concentration (mg) in each bottle were measured at 4, 8, 12, 16, 24, and 30 h post incubation and IVDP was calculated via estimated intercept of linear regression between GP (as main variable, X) and ammonia nitrogen (as dependent variable, Y) using the linear regression procedure. Feed, time and feed × time interaction had significant effect on IVDP (P<0.001). Estimated EPD values at the outflow rate of 0.06/h for alfalfa hay, soybean meal, soybean, rapeseed meal, sunflower meal and fish meal were 0.56, 0.77, 0.59, 0.45, 0.50 and 0.38, respectively. PMID:27175150

  20. New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice.

    Science.gov (United States)

    Ye, S D; Ying, S H; Chen, C; Feng, M G

    2006-06-01

    A novel solid-state fermentation apparatus, namely an upright multi-tray conidiation chamber, was developed to facilitate the production of aerial conidia of fungal biocontrol agents, such as Beauveria bassiana. The chamber with 25 bottom-meshed metal trays had a capacity of > or =50 kg rice with each tray holding > or =2 kg. In repeated trials, a mean yield of 2.4 (1.8-2.7) x 10(12) conidia kg(-1) rice was harvested from the 7-day cultures of B. bassiana in a fully loaded chamber. The new apparatus has a high potential for bulk production of fungal conidia. PMID:16786244

  1. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  2. Electron degradation and yields of initial products. I. Excited species generated by electrons in binary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M.; Inokuti, M.

    1987-10-01

    Initial yields of excited species resulting from electron degradation in Ar+H/sub 2/ mixtures have been calculated using the Fowler equation. Following up the previous study of yields of ions by Eggarter (J. Chem. Physl 84, 6123 (1986)) and by Inokuti and Eggarter (J. Chem. Phys. 86, 3870 (1987)), the present work treats initial yields of excited species over the entire range of the composition of Ar+H/sub 2/ mixtures. The variation of the yield with the composition depends on the kind of excited species. The most noteworthy of the results obtained concerns the Ar metastable-state yield, which shows peculiar behavior when a small amount of H/sub 2/ is introduced in the media.

  3. Selected Issues Concerning Degradation of Material in the Production of Injection Molded Plastic Components

    Directory of Open Access Journals (Sweden)

    Jałbrzykowski Marek

    2016-09-01

    Full Text Available This paper presents the problem of thermal degradation of thermoplastic materials processed using the injection method. Attention was paid to the issue of the optimal selection of a dye for modifying the base materials. For the selected materials and dyes, derivatograph tests were performed in order to assess their thermal characteristics and breakdown kinetics. Additionally, tribological tests and microscope observations of selected samples were performed. The obtained test results suggest a diverse level of thermal processes in the analyzed materials. This is crucial for the appropriate selection of dyes for plastic materials. As it turned out, the tribological properties of materials can also influence the technological quality of the injected alloy.

  4. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    Science.gov (United States)

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account. PMID:27108173

  5. Canola meals from different production plants differ in ruminal protein degradability

    Science.gov (United States)

    Lactation trials have shown that production and N efficiency were improved when dietary soybean meal was replaced with equal crude protein (CP) from canola meal. Three or four canola meal samples were collected from each of 12 Canadian production plants (total = 37), and analyzed for differences in ...

  6. Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent.

    Science.gov (United States)

    Wang, Xiaoxiao; Cao, Dongwei; Tang, Xuejiao; Yang, Jingjing; Jiang, Daoyong; Liu, Mei; He, Nongyue; Wang, Zhifei

    2016-08-01

    Gold- or carbon-based photothermal therapy (PTT) agents have shown encouraging therapeutic effects of PTT in the near-infrared region (NIR) in many preclinical animal experiments. It is expected that gold/carbon hybrid nanomaterial will possess combinational NIR light absorption and can achieve further improvement in photothermal conversion efficiency. In this work, we design and construct a novel PTT agent by coating a carbon nanosphere with patchy gold. To synthesize this composite particle with Janus structure, a new versatile approach based on a facile adsorption-reduction method was presented. Different from the conventional fabrication procedures, the formation of patchy gold in this approach is mainly a thermodynamics-driven spontaneous process. The results show that when compared with the conventional PTT agent gold nanorod the obtained nanocomposites not only have higher photothermal conversion efficiency but also perform more thermally stable. On the basis of these outstanding photothermal effects, the in vitro and in vivo photothermal performances in a MCF-7 cells (human breast adenocarcinoma cell line) and mice were investigated separately. Additionally, to further illustrate the advantage of this asymmetric structure, their potential was explored by selective surface functionalization, taking advantage of the affinity of both patchy gold and carbon domain to different functional molecules. These results suggest that this new hybrid nanomaterial can be used as an effective PTT agent for cancer treatment in the future. PMID:27351062

  7. Ozone-initiated terpene reaction products in five European offices: Replacement of a floor cleaning agent

    NARCIS (Netherlands)

    Nørgaard, A.W.; Kofoed-Sørensen, V.; Mandin, C.; Ventura, G.; Mabilia, R.; Perreca, E.; Cattaneo, A.; Spinazzè, A.; Mihucz, V.G.; Szigeti, T.; De Kluizenaar, Y.; Cornelissen, H.J.M.; Trantallidi, M.; Carrer, P.; Sakellaris, I.; Bartzis, J.; Wolkoff, P.

    2014-01-01

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU

  8. Characterization of forced degradation products of ketorolac tromethamine using LC/ESI/Q/TOF/MS/MS and in silico toxicity prediction.

    Science.gov (United States)

    Kalariya, Pradipbhai D; Raju, B; Borkar, Roshan M; Namdev, Deepak; Gananadhamu, S; Nandekar, Prajwal P; Sangamwar, Abhay T; Srinivas, R

    2014-05-01

    Ketorolac, a nonsteroidal anti-inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C-18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. PMID:24809899

  9. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea.

    Science.gov (United States)

    Trautwein, Christoph; Kümmerer, Klaus

    2011-10-01

    Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high. To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study. In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative. A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations

  10. Effect of supplementation of concentrates or selenium on production and reproduction in cows grazing pastures of high protein degradability

    International Nuclear Information System (INIS)

    Two experiments were carried out to determine whether the deleterious effects of high amounts of degradable protein on reproduction and production of dairy cows could be minimized by a supplemental source of undergradable protein, or grain supplementation while grazing; and to study the effect of selenium supplementation before calving on the incidence of stillbirths, mastitis, puerperal and metabolic disorders. In a first experiment, 24 Holstein cows fed on red and white clover pasture, paired by previous milk production, calving data and body condition, were supplemented with corn silage and one of two concentrates differing only in the proportion of degradable protein (Group H: 71.5% and Group L: 51.5%). The degradable protein intake from pasture supplied 93% of the requirements in both groups. The addition of undergradable protein in the concentrate of Group L did not improve reproductive performance nor milk, butterfat or solids non-fat production. In a second experiment, 132 Holstein cows and heifers were paired likewise. Both animals in each pair were fed similar forage resources, but each one was supplemented with 2 kg/cow corn grain four times a day (Herd 1) or 4 kg/cow tow times a day (Herd 2). One animal in each pair was randomly assigned to receive a barium selenate injection before calving. In this experiment, rumen ammonia was higher in Herd 1 in both sampling dates (17 vs 4.2 mg/100 ml and 12 vs 9 mg/100 ml), as well as serum urea up to 50 days post-partum (26 vs 19 mg/100 ml, P<0.02). Body condition scores were similar at calving but significantly lower in Herd 1 during the lactation period (P<0.05). Total milk and butterfat production were higher in Herd 2 (6406.2 vs 6893.8 kg and 190.4 vs 203.5 kg, respectively). Selenium improved pregnancy rate to first artificial insemination in Herd 2 (71 vs 50%), and decreased the frequency of downer cows in both herds (5 vs 0%), but had not effect regarding the Wisconsin Mastitis Test results. (author). 36

  11. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  12. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  13. Degradation of insulin and insulin-like growth factors by enzyme purified from human erythrocytes. Comparison of degradation products observed with A14- and B26-[125I]monoiodoinsulin

    International Nuclear Information System (INIS)

    An insulin-degrading enzyme has been purified from human erythrocytes. This enzyme degraded 125I-labeled insulin-like growth factor I (IGF-I) more slowly than 125I-IGF-II and degraded IGF-II more slowly than 125I-insulin. The time course of 125I-insulin degradation suggested the presence of intermediates, each of which was itself shown to be a substrate for the enzyme. One of these intermediates appeared to be made up entirely of B-chain residues and had HisB10 as its NH2-terminal. The final major radiolabeled degradation product of A14-[125I]monoiodoinsulin was a peptide with TyrA14 at the A-chain NH2 terminal. This peptide could be reduced with dithiothreitol, suggesting that it contained amino acid residues from both A- and B-chains. It was partially precipitated by trichloroacetic acid and anti-insulin antibody but bound poorly to IM-9 lymphocytes. The final major degradation product of B26-[125I]monoiodoinsulin was a peptide whose NH2-terminal was TyrB26 and could not be reduced by dithiothreitol. It was partially precipitated by anti-insulin antibody but was precipitated poorly, if at all, by trichloroacetic acid and bound poorly to IM-9 lymphocytes. The results show that this enzyme degraded insulin by sequential cleavage of peptide bonds on both A- and B-chains. We identified LeuA13-TyrA14, SerB9-HisB10, and PheB25-TyrB26 as three of the bonds that are cleaved

  14. Electron degradation and yields of initial products: V. Degradation spectra, the ionization yield, and the Fano factor for argon under electron irradiation

    International Nuclear Information System (INIS)

    The electron-degradation spectrum is fundamental for describing a variety of quantities bearing on electron slowing-down processes in matter. We calculate the electron-degradation spectrum in Ar gas by solving the Spencer-Fano equation, using a realistic set of cross sections. The influence of Auger electrons on the degradation spectrum is studied in detail. As an application, we study the statistical fluctuations in the ionization yield, which are expressed in terms of the Fano factor F(T) for an electron incident at fixed energy T. The energy dependence of F(T) is greatly influenced by L-shell ionization. The Fano factor approaches an asymptotic value of 0.16 at T=2 keV. Our results are consistent with experimental results

  15. Overview on Technology of Degrading and Eliminating Mycotoxins in Agro-products and its Application

    Institute of Scientific and Technical Information of China (English)

    Yun; LI; Xiulan; SUN

    2013-01-01

    Based on the perspective of risk control,this article introduces related technology of eliminating mycotoxins in agricultural products and the current situation of application,including traditional physical,chemical and biological methods as well as the contemporary situation of relatively advanced technology at home and abroad,which provides reference for the policy-making and technology application of mycotoxin control in agro-products in China.

  16. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  17. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1). PMID:25727389

  18. Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods

    Directory of Open Access Journals (Sweden)

    Kang Zhao

    2016-08-01

    Full Text Available Lipase from Candida sp. 99–125 is widely employed to catalyzed transesterification and can be used for biodiesel production. In this study, the lipase was immobilized by combined adsorption and entrapment to catalyze biodiesel production from waste cooking oil (WCO via transesterification, and investigating co-immobilizing agents as additives according to the enzyme activity. The addition of the mixed co-immobilizing agents has positive effects on the activities of the immobilized lipase. Three different immobilizing methods were compared by the conversion ratio of biodiesel and structured by Atom Force Microscopy (AFM and Scanning Electron Microscopy (SEM, respectively. It was found that entrapment followed by adsorption was the best method. The effect of the co-immobilizing agent amount, lipase dosage, water content, and reuse ability of the immobilized lipase was investigated. By comparison with previous research, this immobilized lipase showed good reuse ability: the conversion ratio excesses 70% after 10 subsequent reactions, in particular, was better than Novozym435 and TLIM on waste cooking oil for one unit of lipase.

  19. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Giulia

    2016-01-08

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  20. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  1. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    Science.gov (United States)

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.

  2. Effects of rainwater harvesting on herbage diversity and productivity in degraded Aravalli hills in western India

    Institute of Scientific and Technical Information of China (English)

    G. Singh; G.R. Choadhary; B.Ram; N.K. Limba

    2011-01-01

    Over-exploitation and rural growth have severely damagednative vegetations of Aravalli hills in Rajasthan, India. This study wasconducted to evaluate the effects of different restoration practices (I.e.,rainwater harvesting (RWH) and planting of tree seedlings) on improve-ment in soil water and nutrients and growth and biomass of herbaceousvegetation. Contour trench (CT), Gradonie (G), Box trench (BT), V-ditch(VD) and a control were imposed on 75 plots (each of 700 m) in naturalslope gradient defined as 20% slopes in 2005.Each plot had three micro-sites of 1-m at up (USP), middle (MSP) andlower (LSP) part of the plot for observation in 2008. The existed gradient(due to soil texture and topographic features) of soil Ph, EC, SOC, NH-N, NO-N and PO-P in June 2005 between >20% to 20% slopes, comparedwith -P. Further, CT treatment was found to be the best treat-ment in minimizing biomass variance in different slopes. Conclusively,soil texture and topographic features controlled soil water and nutrientsavailability. Rainwater harvesting techniques increased soil water storageand nutrient retention and also enhanced vegetation status and biomassby minimizing the effects of hillslopes. Thus depending upon the siteconditions, suitable RWH technique could be adopted to increase herb-age biomass while rehabilitating the degraded hills.

  3. Stimulatory Agents Simultaneously Improving the Production and Antioxidant Activity of Polyphenols from Inonotus obliquus by Submerged Fermentation.

    Science.gov (United States)

    Xu, Xiangqun; Shen, Mengwei; Quan, Lili

    2015-07-01

    Polyphenols are important secondary metabolites from the edible and medicinal mushroom Inonotus obliquus. Both the rarity of I. obliquus fruit body and the low efficiency of current method of submerged fermentation lead to a low yield of polyphenols. This study was aimed to determine the effect of applying stimulatory agents to liquid cultured I. obliquus on the simultaneous accumulation of exo-polyphenols (EPC) and endo-polyphenols (IPC). Linoleic acid was the most effective out of the 17 tested stimulatory agents, the majority of which increased the EPC and IPC production. The result was totally different from the stimulatory effect of Tween 80 for polysaccharide production in previous studies. The addition of 1.0 g/L linoleic acid on day 0 resulted in 7-, 14-, and 10-fold of increase (p < 0.05) in the production of EPC extracted by ethyl acetate (EA-EPC), EPC extracted by n-butyl alcohol (NB-EPC), and IPC, and significantly increased the production of ferulic acid, gallic acid, epicatechin-3-gallate (ECG), epigallocatechin-3-gallate (EGCG), phelligridin G, inoscavin B, and davallialactone. The EA-EPC, BA-EPC, and IPC from the linoleic acid-containing medium had significantly (p < 0.05) stronger scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH), which was attributed to the higher content of these bioactive polyphenols. PMID:25951778

  4. Hotspots of human-induced biomass productivity decline and their social-ecological types toward supporting national policy and local studies on combating land degradation

    Science.gov (United States)

    Vu, Quyet Manh; Le, Quang Bao; Vlek, Paul L. G.

    2014-10-01

    Identification and social-ecological characterization of areas that experience high levels of persistent productivity decline are essential for planning appropriate management measures. Although land degradation is mainly induced by human actions, the phenomenon is concurrently influenced by global climate changes that need to be taken into account in land degradation assessments. This study aims to delineate the geographic hotspots of human-induced land degradation in the country and classify the social-ecological characterizations of each specific degradation hotspot type. The research entailed a long-term time-series (1982-2006) of Normalized Difference Vegetation Index to specify the extents of areas with significant biomass decline or increase in Vietnam. Annual rainfall and temperature time-series were then used to separate areas of human-induced biomass productivity decline from those driven by climate dynamics. Next, spatial cluster analyses identified social-ecological types of degradation for guiding further investigations at regional and local scales. The results show that about 19% of the national land mass experienced persistent declines in biomass productivity over the last 25 years. Most of the degraded areas are found in the Southeast and Mekong River Delta (17,984 km2), Northwest Mountains (14,336 km2), and Central Highlands (13,504 km2). We identified six and five social-ecological types of degradation hotspots in agricultural and forested zones, respectively. Constraints in soil nutrient availability and nutrient retention capability are widely spreading in all degradation hotspot types. These hotspot types are different from each other in social and ecological conditions, suggesting that region-specific strategies are needed for the formulation of land degradation combating policy.

  5. Knowledge-based Bundling of Smart Products on a Mobile Recommendation Agent

    OpenAIRE

    Kowatsch, Tobias; Maass, Wolfgang; Filler, Andreas; Janzen, Sabine

    2008-01-01

    Mobile technologies have the potential to change not only brick-and-mortar stores but also the way, how customers interact with physical products. They enable operational agility by means of improved availability and quality of information required by customers for in-store purchase decisions. In this paper, we show how an in-store bundling scenario can be supported by semantically enriched products (denoted as smart products) that provide dynamic product information through the use of mobile...

  6. Multi-Agents in the North Sea – The Case of Oil and Gas Production

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Lindegaard; Demazeau, Yves; Jørgensen, Bo Nørregaard

    2011-01-01

    Developing control systems for offshore oil and gas production is a challenging task, due to the complex inherent issues of the domain, i.e. changing properties of the oil and gas reservoirs, and variations in production configuration, due to new wells and production technologies. In this paper, we...

  7. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.

    Science.gov (United States)

    Mahdy, Ahmed; Mendez, Lara; Blanco, Saul; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-11-01

    In order to optimize the enzymatic dosage and microalgae biomass loads subjected to enzymatic hydrolysis prior anaerobic digestion of Chlorella vulgaris, organic matter solubilisation and methane production were investigated. Experimental data using protease dosage of 0.585 AU g DW(-1) showed that increasing biomass loads up to 65 g L(-1) did not affect markedly the hydrolysis efficiency (51%). Enzymatically pretreated biomasses subjected to anaerobic digestion enhanced methane production by 50-70%. The attempt of decreasing the enzymatic dosages revealed diminished hydrolysis efficiency concomitantly with a decreased methane production enhancement. In agreement with the good results observed for organic matter conversion into biogas, total nitrogen mineralization was attained for enzymatically pretreated biomass. Despite the high protein content of the biomass and the biocatalyst used in the present study no ammonia inhibition was detected.

  8. Detoxification of azinophos methyl using gamma radiation mediated advance oxidation process and investigation of degradation products by HPLC and GC-MS

    International Nuclear Information System (INIS)

    Gamma radiolytic degradation of azinophos-methyl was studied in water and methanol separately, using 60Co as a radiation source under varied experimental conditions. Solution of azinophos-methyl was prepared in pure methanol at concentration of 50 μg ml-1, irradiated at gamma dose of 1 to 7 kGy and high performance liquid chromatography (HPLC) coupled with diode array detector was used to monitor the extent of degradation along with numbers of degradation products. At dose of 7 kGy ≥ 99% of azinophos-methyl was degraded. The degradation occurred by interaction of CH3O x and H x radicals generated by the radiolysis of high purity methanol while in water by x OH radical. The degradation in water was increased by 30% than in methanol due the high oxidation potential of x OH while keeping the gamma ray dose constant at 3 kGy. The generated degradation products were identified using GC-MS and their possible transformation pathways are proposed. It is suggested that use of ionization radiations can be an effective and efficient tool for the removal of organophosphate pesticides in waste water.

  9. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    Full Text Available BACKGROUND: Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD. CONCLUSIONS/SIGNIFICANCE: The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an

  10. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – A critical review

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, Neal D.; Hansen, Maria Heisterberg;

    2011-01-01

    demonstrating the utility of bioaugmentation with Dhb cultures for remediation of TCA in the field. In this paper we review the state-of-the-science of TCA degradation in aquifers, examining results from both laboratory experiments and twenty-two field case studies, focusing on the capabilities and limits...

  11. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  12. Effect of Land Use on Soil Degradation and Soil Productivity Decline on Alfisols and Ultisols in Ogun State in South Western, Nigeria

    OpenAIRE

    Bolarinwa Ayoola Senjobi; Olayiwola Ayoade Ogunkunle

    2010-01-01

    One of the critical factors influencing land degradation is land use. However, the extent to which land use influences land degradation has not been fully ascertained in the southwestern part of Nigeria (i.e. particularly in Ogun State). Thus, this study was designed to assess the extent to which land use influences crop productivity in Ogun State. Two major soil types identified at the site were Alfisols and Ultisols. Within these, three land use types (LUT) were identified: arable crop - La...

  13. Simultaneous determination of ethidimuron, methabenzthiazuron, and their two major degradation products in soil.

    Science.gov (United States)

    Lagarde, Florence; Puetz, Thomas; Dressel, Joachim; Fuehr, Fritz

    2006-10-01

    An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes. (14)C-labeled compounds were used for the optimization of extraction and purification steps and for the determination of related efficiencies. Extraction was optimal using a fexIKA extractor operating at 110 degrees C for three cycles (total time = 95 min) with 75 g of soil and 150 mL of a 60:40 v/v acetone/water mixture. Extracts were further purified on a 500 mg silica SPE cartridge. Separation was performed on a C18 Purosphere column (250 mm x 4 mm i.d.), at 0.8 mL min(-1) and 30 degrees C with an elution gradient made up of phosphoric acid aqueous solution (pH 2.2) and acetonitrile. Calibration curves were found to be linear in the 0.5-50 mg L(-1) concentration range. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. Recovery values, determined from spiked samples, were close to 100%. Limits of detection ranged between 2 and 3 microg kg(-1) of dry soil and limits of quantification between 8 and 10 microg kg(-1) of dry soil. An attempt to improve these performances by using fluorescence detection following postcolumn derivatization by orthophthalaldehyde-mercaptoethanol reagent was unsuccessful. PMID:17002407

  14. Diversity in production of xyaln-degrading enzymes among species belonging to the Trichoderma section Longibrachiatum

    Science.gov (United States)

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzy...

  15. Diversity in Production of Xylan-Degrading Enzymes Among Species Belonging to the Trichoderma Section Longibrachiatum

    NARCIS (Netherlands)

    Toth, K.; Gool, van M.P.; Schols, H.A.; Samuels, G.J.; Gruppen, H.; Szakacs, G.

    2013-01-01

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzy

  16. Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis

    Directory of Open Access Journals (Sweden)

    Bicca Flávio Correa

    1999-01-01

    Full Text Available There is world wide concern about the liberation of hydrocarbons in the environment, both from industrial activities and from accidental spills of oil and oilrelated compounds. Biosurfactants, which are natural emulsifiers of hydrocarbons, are produced by some bacteria, fungi and yeast. They are polymers, totally or partially extracellular, with an amphipathyc structure, which allows them to form micelles that accumulate at the interface between liquids of different polarities such as water and oil. This process is based upon the ability of biosurfactants to reduce surface tension, blocking the formation of hydrogen bridges and certain hydrophilic and hydrophobic interactions. The ability of biosurfactant production by five strains of Rhodococcus isolated from oil prospecting sites was evaluated. Surface tension measurement and emulsifying index were used to quantify biosurfactant production. The influence of environmental conditions was also investigated - pH, temperature, medium composition, and type of carbon source - on cell growth and biosurfactant production. Strain AC 239 was shown to be a potential producer, attaining 63% of emulsifying index for a Diesel-water binary system. It could be used, either directly on oil spills in contained environments, or for the biotechnological production of biosurfactant.

  17. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer.

  18. Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage.

    Science.gov (United States)

    Kim, Y I; Oh, Y K; Park, K K; Kwak, W S

    2014-02-01

    This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective NDF1.18 on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (price or ryegrass straws, the BF-based silage had a higher (price bran, and a minimal amount of straw. PMID:25049944

  19. Screening Psychrophilic Fungi of Cellulose Degradation and Characteristic of Enzyme Production

    Institute of Scientific and Technical Information of China (English)

    Wang Da-qing; Jin Wen-ran; Sun Tai-peng; Meng Yu-tian; Zhao Wei; Wang Hong-yan

    2016-01-01

    A fungus (WR-C1) decomposed cellulose was isolated from a hypothermal litter layer using Congo red medium as the preliminary screening culture medium and then using a filter as the secondary screening medium at low temperature. The experiment showed that the weight loss rate of filter paper on the 15th days could reach 30.69%. A morphologic and ITS gene sequence analysis suggested that CF-C1 wasCladosporium. We mainly studied the effects of culture time, inoculation amount, initial pH and different sources of carbon, nitrogen and inorganic salt on the cellulase production of strain WR-C1. Under optimum cultural condition, the highest value of WR-C1 enzyme production and filter paper enzyme were 3.27 U• mL-1 and 0.51 U• mL-1.

  20. Isolation and identification of oil sludge degrading bacteria from production tank Number 9 Masjed Soleiman

    OpenAIRE

    Yalda Sheyni; Hossein Motamedi; Ahmadali Pourbabaei

    2014-01-01

      Introduction: “Bioremediation” is one of the most effective methods to remove petroleum contaminants. The aim of the present study is to isolate the indigenous bacteria from the waste petroleum in the Masjed Soleiman No. 9 production tank and to examine the effect of their application on the elimination of petroleum heavy chain hydrocarbons and converting them into light compounds .   Materials and methods: Two percent of petroleum sludge was inoculated to the mineral basal medium and after...

  1. Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

    OpenAIRE

    Stettler, Michaela; Eicke, Simona; Mettler, Tabea; Messerli, Gaëlle; Hörtensteiner, Stefan; Zeeman, Samuel C.

    2009-01-01

    In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels...

  2. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    OpenAIRE

    Naeem, M.; Tariq Aftab; Abid A. Ansari; Mohd Idrees; Akbar Ali; Khan, M. Masroor A.; Moin Uddin; Lalit Varshney

    2015-01-01

    Catharanthus roseus (L.) G. Don (Family Apocynaceae) is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA) has proved as a plant growth promoting substance for various medicinal and agricultural crops...

  3. Effort of Increasing Production of Livestock Feed out of Cassava Waste by Identifying the more Suitable Cellulotic Degrading Fungi

    Directory of Open Access Journals (Sweden)

    Yani Suryani

    2012-09-01

    Full Text Available In the bioethanol production process, as much as 90% of waste was produced. The availability of waste production is very important since waste can be processed to become livestock feed. The solid bioethanol waste contains cyanide (HCN 5.8177 mg/kg, water 95,21%, ash 0,39%, protein 8,16%, crude fiber 5,45%, crude fat 2.06%, and carbohydrates 83,94%. Processing bioethanol solid waste into livestock feed can be done by utilizing the existing fungi on bioethanol solid waste. Crude fiber (cellulose and carbohydrates are a source of cellulolytic fungi. Cellulolytic fungi can degrade the role of organic materials contained in bioethanol solid waste, so that it can be made as a source of highly nutritious livestock feed. This study aims to determine the types of cellulolytic fungal isolates contained in bioethanol solid waste which is potentially processed to become livestock woof. Descriptive analysis was employed as a method of the study. Furthermore, Potato Dextrose Agar (PDA was used as a medium for culturing and isolating the fungus. Dilution series and pour plate method were employed to isolate the fungus. And, Moist Chamber method was employed to identify it. In addition, Carboxy Methyl Cellulose (CMC was used as medium to identify cellulolytic fungi. The process was carried out up to the level of genus based on macroscopic and microscopic characterization. 10 fungal isolates from the genus of Aspergillus sp 1, Aspergillus sp 2, Aspergillus sp 3, Aspergillus niger, Cladosporium sp, Mucor sp, Penicillium sp 1, Penicillium sp 2, Rhizopus sp and Trichoderma viride were yielded in this study. The results of examining cellulose enzyme activity revealed that 9 of 10 isolates of the fungus were capable of degrading cellulose. Isolates yielding the largest cellulose enzyme were Trichoderma viride, Penicillium sp 1, Cladosporium sp and Aspergillus niger.

  4. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    Science.gov (United States)

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase).

  5. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products.

    Science.gov (United States)

    Washington, John W; Jenkins, Thomas M; Weber, Eric J

    2015-11-17

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double bond between the α-β carbons for the unsaturated PFCAs (2uPFCAs). Obtaining an authentic sample containing 2uPFOA and 2HPFOA, we optimized a mass-spectrometric multiple-reaction-monitoring (MS/MS) technique and then identified uPFCA and HPFCA homologous series in sludge-applied agricultural soils and fodder grasses for cattle grazing. Analysis of samples from a degradation experiment of commercial fluorotelomer-based polymers (FTPs), the dominant product of the fluorotelomer industry, confirmed that commercial FTPs are a potential source of uPFCAs and HPFCAs to the environment. We further confirmed the identity of the uPFCAs by imposing high-energy ionization to decarboxylate the uPFCAs then focused on the fluorinated chains in the first MS quadrupole. We also employed this high-energy ionization to decarboxylate and analyze PFCAs by MS/MS (for the first time, to our knowledge). In exploratory efforts, we report the possible detection of unsaturated perfluorooctanesulfonate in environmental samples, having a conceptual double-bond structure analogous to uPFOA. Using microcosms spiked with fluorotelomer compounds, we found 2uPFOA and 2HPFOA to be generated from unsaturated 8:2 fluorotelomer acid (8:2 FTUCA) and propose β- and α-oxidation mechanisms for generation of these compounds from 8:2 FTUCA. In light of these experimental results, we also reexamined the proposed biodegradation pathways of 8:2 fluorotelomer alcohol.

  6. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation.

    Science.gov (United States)

    Bajaj, Mini; Winter, Josef

    2013-10-15

    High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions.

  7. Production and regulation of lignocellulose-degrading enzymes of Poria-like wood-inhabiting basidiomycetes.

    Science.gov (United States)

    Tomsovský, M; Popelárová, P; Baldrian, P

    2009-01-01

    The wood-decomposing fungal species Antrodia macra, A. pulvinascens, Ceriporiopsis aneirina, C. resinascens and Dichomitus albidofuscus were determined for production of laccase (LAC), Mn peroxidase (MnP), lignin peroxidase (LiP), endo-l,4-P-beta-glucanase, endo-l,4-beta-xylanase, cellobiohydrolase, 1,4-beta-glucosidase and 1,4-beta-xylosidase. The results confirmed the brown-rot mode of Antrodia spp. which did not produce the activity of LAC and MnP. The remaining species performed detectable activity of both enzymes while no strain produced LiP. Significant inhibition of LAC production by high nitrogen was found in all white-rot species while only MnP of D. albidofuscus was regulated in the same way. The endoglucanase and endoxylanase activities of white-rotting species were inhibited by glucose in the medium while those of Antrodia spp. were not influenced by glucose concentration. The regulation of enzyme activity and bio-mass production can vary even within a single fungal genus. PMID:19330548

  8. Productivity assessment of three leguminous species under high-density plantations on degraded soil sites

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.L.; Behl, H.M. [National Botanical Research Institute, Lucknow (India). Biomass Biology Div.

    2004-11-01

    Performance of three leguminous species, (Acacia farnesiana, A. nilotica subspecies cupressiformis and Cassia siamea), was investigated at three planting densities (10,000, 20,000 and 30,000 plants ha{sup -1}) on a highly alkaline soil site (pH 8.6-10.5) in order to identify promising species and suitable plant spacing for optimum biomass harvest per unit area under shorter rotation harvests (3 year). The study revealed the differential behaviour of various species with respect to plant growth, survival and stand productivity in different population densities. Performance of A. farnesiana and C. siamea in terms of plant height, stem diameter and plant establishment was marginally affected by population density. Stand basal area (2.4-6.4 m{sup 2} ha{sup -1}) and biomass (4.45-13.5 t ha{sup -1}) in A. farnesiana increased markedly with increasing population density. Similar gains in biomass were observed in C. siamea when planted at higher densities. Individual tree biomass also was not affected by increasing plant densities, suggesting that these two species respond well to high-density plantation. A. nilotica subspecies cupressiformis, on the other hand, showed a negative response when planted in high density. Its biomass and basal area decreased beyond 20,000 plants ha{sup -1} planting density, suggesting that planting density of 20,000 plants ha{sup -1} and above were supra-optimal. Plants spaced at 10,000 plants ha{sup -1} showed faster growth rate and higher productivity as compared to the same at 20,000 and 30,000 planting density. Competition for space also effected individual tree growth in higher densities. The concept of high-density plantation is not applicable in A. nilotica subspecies cupressiformis. However, this species has significantly greater potential since it has relatively high biomass production even at a low population density of 10,000 plants ha{sup -1}. The study is useful in identifying productive species and optimum plantation density per

  9. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    Science.gov (United States)

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable. PMID:26956574

  10. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    Directory of Open Access Journals (Sweden)

    Dominik Schmitt

    2015-04-01

    Full Text Available The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1 was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  11. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption.

    Science.gov (United States)

    Schmitt, Dominik; Regenbrecht, Carolin; Hartmer, Marius; Stecker, Florian; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions. PMID:25977721

  12. Molecular Identification of Lactic Acid Bacteria Producing Antimicrobial Agents from Bakasang, An Indonesian Traditional Fermented Fish Product

    Directory of Open Access Journals (Sweden)

    Helen Joan Lawalata

    2015-11-01

    Full Text Available AbstractTwenty seven strains of lactic acid bacteria (LAB were isolated from bakasang, Indonesian traditional fermented fish product. In general, LAB have inhibitory activity againts pathogenic bacteria and spoilage bacteria. Screening for antimicrobia activity of isolates were performed with well-diffusion method. One isolate that was designed as Pediococcus BksC24 was the strongest against bacteria pathogenic and spoilage bacteria. This strain was further identified by 16S rRNA gen sequence comparison. Isolates LAB producing antimicrobial agents from bakasang were identified as Pediococcus acidilactici.Keywords : Bakasang, LAB, antimicrobial, phenotypic characteristics, 16S rRNA gene

  13. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    Science.gov (United States)

    Vismeh, Ramin

    Lignocellulosic biomass represents a rather unused resource for production of biofuels, and it offers an alternative to food sources including corn starch. However, structural and compositional impediments limit the digestibility of sugar polymers in biomass cell walls. Thermochemical pretreatments improve accessibility of cellulose and hemicellulose to hydrolytic enzymes. However, most pretreatment methods generate compounds that either inhibit enzymatic hydrolysis or exhibit toxicity to fermentive microorganisms. Characterization and quantification of these products are essential for understanding chemistry of the pretreatment and optimizing the process efficiency to achieve higher ethanol yields. Identification of oligosaccharides released during pretreatment is also critical for choosing hydrolases necessary for cost-effective hydrolysis of cellulose and hemicellulose to fermentable monomeric sugars. Two chapters in this dissertation describe new mass spectrometry-based strategies for characterization and quantification of products that are formed during ammonia fiber expansion (AFEX) pretreatment of corn stover. Comparison of Liquid Chromatography Mass Spectrometry (LC/MS) profiles of AFEX-treated corn stover (AFEXTCS) and untreated corn stover (UTCS) extract shows that ammonolysis of lignin carbohydrate ester linkages generates a suite of nitrogenous compounds that are present only in the AFEXTCS extract and represent a loss of ammonia during processing. Several of these products including acetamide, feruloyl, coumaroyl and diferuloyl amides were characterized and quantified in the AFEXTCS extracts. The total amount of characterized and uncharacterized phenolic amides measured 17.4 mg/g AFEXTCS. Maillard reaction products including pyrazines and imidazoles were also identified and measured in the AFEXTCS extract totaling almost 1 mg/g AFEXTCS. The total of quantified nitrogenous products that are formed during AFEX was 43.4 mg/g AFEXTCS which was equivalent

  14. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  15. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products.

    Science.gov (United States)

    Abramović, Biljana F; Despotović, Vesna N; Šojić, Daniela V; Orčić, Dejan Z; Csanádi, János J; Četojević-Simin, Dragana D

    2013-09-01

    The photocatalytic degradation of the herbicide clomazone (0.05mM) in aqueous suspensions of TiO2 Degussa P25 was examined as a function of the different operational parameters. The optimum concentration of the catalyst was found to be 0.50mgmL(-1) under UV light at the pH 10.3. In the first stage of the reaction, the photocatalytic degradation of clomazone followed the pseudo-first order kinetics, with and the heterogeneous catalysis proceeding via OH radicals. The results also showed that the disappearance of clomazone led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred after about 55min. Tentative photodegradation pathways were proposed and discussed. A comparison of the evolution of toxicity that was evaluated in vitro in rat hepatoma (H-4-II-E) and human fetal lung (MRC-5) cell lines with the degradation kinetics indicates that the irradiation contributed to the decrease of the toxicity of the mixture that is no longer dominated by the parent compound. The study also encompassed the effect of the quality of natural water on the rate of removal of clomazone.

  16. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    Science.gov (United States)

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PMID:26687131

  17. Structural Elucidation and Toxicity Assessment of Degraded Products of Aflatoxin B1 and B2 by Aqueous Extracts of Trachyspermum ammi.

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen

    2016-01-01

    In this study aqueous extract of seeds and leaves of Trachyspermum ammi were evaluated for their ability to detoxify aflatoxin B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by in vitro and in vivo assays. Results indicated that T. ammi seeds extract was found to be significant (P < 0.05) in degrading AFB1 and AFB2 i.e., 92.8 and 91.9% respectively. However, T. ammi leaves extract proved to be less efficient in degrading these aflatoxins, under optimized conditions i.e., pH 8, temperature 30°C and incubation period of 72 h. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that eight degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that T. ammi seeds extract can be used as an effective tool for the detoxification of aflatoxins.

  18. Structural elucidation and toxicity assessment of degraded products of aflatoxin B1 and B2 by aqueous extracts of Trachyspermum ammi

    Directory of Open Access Journals (Sweden)

    Wajiha eIram

    2016-03-01

    Full Text Available In this study aqueous extract of seeds and leaves of Trachyspermum ammi were evaluated for their ability to detoxify aflatoxin B1 and B2 (AFB1; 100 µg L-1 and AFB2; 50 µg L-1 by In Vitro and In Vivo assays. Results indicated that T. ammi seeds extract was found to be highly significant (P < 0.05 in degrading AFB1 and AFB2 i.e. 92.8% and 91.9% respectively. However T. ammi leaves extract proved to be less efficient in degrading these aflatoxins, under optimized conditions i.e., pH 8, temperature 30˚C and incubation period of 72h. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that eight degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that T. ammi seeds extract can be used as an effective tool for the detoxification of aflatoxins.

  19. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Science.gov (United States)

    Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano

    2011-01-01

    A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293

  20. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Fernanda Cortez Lopes

    2011-01-01

    Full Text Available A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism.

  1. A Procedure for Building Product Models in Intelligent Agent-based OperationsManagement

    DEFF Research Database (Denmark)

    Hvam, Lars; Riis, Jesper; Malis, Martin;

    2003-01-01

    This article presents a procedure for building product models to support the specification processes dealing with sales, design of product variants and production preparation. The procedure includes, as the first phase, an analysis and redesign of the business processes that are to be supported...... for the business processes they support, and properly structured and documented in order to facilitate the maintenance and further development of the systems. The research has been carried out at the Centre for Industrialisation of Engineering, Department of Manufacturing Engineering, Technical University...

  2. Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent

    Directory of Open Access Journals (Sweden)

    Ramin Rezaee

    2013-01-01

    Full Text Available Safranal, the main component of Crocus sativus essential oil, is thought to be the main cause of saffron unique odor. It is now about eighty years that this compound has been discovered and since then different scientific experiments have been done investigating its biological-pharmacological activities. Safranal effects in CNS have been more attractive to scientists and an escalating number of papers have been published regarding its neuropsychological effects. These promising properties of safranal propose its presence as a therapeutic agent in future, although there is a great need for further clinical trials and toxicological studies. In this review article, according to Scopus ®, Thomson Reuters Web of Knowledge®, Scientific Information Database (SID ® and Pubmed ® all papers published until July 2012 were thoroughly discussed and a brief note of each study was prepared.

  3. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Zhang, Jianyun; Li, Wenying; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    A phyllosphere bacterial strain EBL-06 was isolated from wheat leaves. The morphology, cultural characteristics, phospholipid fatty acids, physiological and antagonistic fungus activities of this strain were investigated. A phylogenetic tree was constructed by comparing with the published 16S rDNA sequences of the relevant bacteria. The results showed that the isolate EBL-06 was a strain of Paenibacillus polymyxa; this strain performed a high level of antagonistic fungus activity toward a broad spectrum of phytopathogens, such as Botrytis cinerea, Cladosporium cucumerinum, Fusarium spp. The isolate EBL-06 can grow well using monosodium glutamate wastewater (MGW) and potato wastewater (PW) as culture medium. The maximum yield of 6.5 x 10(9) CFU/mL of the isolate EBL-06 anti-fungus biocontrol agent was reached in 15 hr cultivation at 28 degrees C, pH 6.0-7.5 using the mixture of MGW and PW (1:9). PMID:21174972

  4. Photosensitive dyes and self-detoxifying textiles: Degradation products and dye durability

    Science.gov (United States)

    Brewer, S. A.; Artiles, C. Perdomo; Taylor, J. A.; Dennis, M.

    2010-01-01

    The photochemical destruction of 2-(phenylthio)ethanol, a benign model for the toxic chemical, sulphur mustard, was investigated in both aqueous solution, and on a textile substrate. In both cases the first formed product was the sulphoxide, 2-(phenylsulphinyl)ethanol. Increasing the concentration of sensitiser did not necessarily lead to an increase in the rate of destruction of sulphide; which is attributed to the self-quenching of the reaction in the presence of higher concentrations of Rose Bengal. The oxidation of sulphide was more efficient on nylon fabric that had been dyed with Rose Bengal, than in aqueous solution; however, a significant quantity of sulphone was also formed on the fabric. The dyed fabric could be used repeatedly to destroy the model sulphide, although the Rose Bengal itself was gradually destroyed, but at a much slower rate than the model sulphide. The ability for the fabric dyed with Rose Bengal to destroy a biological organism was also demonstrated.

  5. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  6. Bio-surfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain

    International Nuclear Information System (INIS)

    The ability of a Rhodococcus strain to produce surface-active agents from residual sunflower frying oil (RSFO) has been screened in batch cultures. During cultivation with RSFO at the concentration 3% (vol/vol), the strain has synthesized extra-cellular compounds which increase the E24 emulsion index of the culture medium up to 63%. In their crude form, these substances lower the surface tension of water until 31.9 mN m-1. The exponential growth with RSFO as the sole carbon source has developed at a specific growth rate μ = 0.55 d-1. The critical micelle concentration of the crude product reached the value 287 mg L-1 (γCMC = 31.9 mN m-1). After methyl-esterification, the lipid fraction of bio-surfactants has been analyzed by GC-MS in EI, which reveals the presence of fatty acid methyl esters. The microorganism was also cultivated with the diesel oil as the sole carbon source at the concentration 1% (vol/vol): the active growth phase has developed at rate = 0.02 d-1, without production of emulsifying substance: the microorganism seems to develop different modes of substrate uptake, according to the nature of the carbon source. The potential use of surface-active agents synthesized on RSFO by Rhodococcus erythropolis 16 LM.USTHB is in the oil industry with minimum purity specification, so that crude preparation could be used, at low cost, in clean-up of hydrocarbons contaminated sites and for enhanced oil recovery. (authors)

  7. The search for novel anticancer agents: a differentiation-based assay and analysis of a folklore product.

    Science.gov (United States)

    Dinnen, R D; Ebisuzaki, K

    1997-01-01

    One alternative approach to the current use of cytotoxic anticancer drugs involves the use of differentiation-inducing agents. However, a wider application of this strategy would require the development of assays to search for new differentiation-inducing agents. In this report we describe an in vitro assay using the murine erythroleukemia (clone 3-1) cells. Tests for the efficacy of this assay for the analysis of antineoplastic activity in natural products led to studies on pau d'arco, a South American folklore product used in the treatment of cancer. Purification of the activity in aqueous extracts by solvent partition and thin layer chromatography (TLC) indicated the presence of two activities, one of which was identified as lapachol. The activity in the pau d'arco extracts and of lapachol was inhibited by vitamin K1. As a vitamin K antagonist, lapachol might target such vitamin K-dependent reactions as the activation of a ligand for the Axl receptor tyrosine kinase.

  8. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  9. Degradation products of different water content sevoflurane in carbon dioxide absorbents by gas chromatogpy-mass spectromerty analysis

    Institute of Scientific and Technical Information of China (English)

    LI Yue; LI Yi-cong; ZHANG Yi-nan; LIU Shu-jie; ZHOU Yan-mei; WANG Chang-song; GONG Yu-lei; LI En-you

    2011-01-01

    Background Sevoflurane is currently used as a volatile inhalation anesthetic with many clinical advantages. A representative degradation product,compound A,was quantitatively measured to investigate whether there are different reactions between two kinds of water content sevoflurane formulations with different carbon dioxide (CO2) absorbents.Methods A closed-circle breathe bag with the Dr(a)ger Fabius GS anesthesia apparatus was used as an artificial rubber lung. The experiments were grouped according to different sevoflurane formulations:group A:higher-water sevoflurane (Ultane);group B:lower-water sevoflurane (Sevoness). During the experiment,CO2 (200 ml/min) was continually perfused to keep the end-tidal pressure of CO2 (PETCO2)at 35-45 mmHg. The artificial ventilation was set to 6 L/min,and the breathing rate at 12 breaths/min. The circuit was operated with constant fresh gas flow rate (1 L/min) and the sevoflurane concentration was kept at 1.0 minimum alveolar concentration (MAC) for 240 minutes. At 0,10,20,30,60,90,120,180 and 240 minutes,gas was collected from the Y-piece. Gas chromatography/mass spectrometry (GC/MS)was used to quantify the major degradation product,compound A,with different water content sevoflurane. PETCO2 and sevoflurane concentration,and the temperature of the canister were continuously monitored during the experiment.Results There were no significant differences in PETCO2 and sevoflurane concentrations between the two groups.Dr(a)gersorb 800 plus produced the highest concentrations of compound A compared with other sodalimes,and Sevoness in Dr(a)gersorb 800 plus generated more compound A than Ultane (P <0.05). There were significant differences in the peak and average compound A concentrations between Ultane and Sevoness with Dr(a)gersorb 800 plus (P <0.05),while the compound A concentration produced by Sodasorb grase and sofonolime in the two groups showed no significant difference (P >0.05). In the same group,the peak and

  10. Optimizing rainwater partitioning and millet production on degraded land in Niger using Water and Soil Conservation practices

    Science.gov (United States)

    Wildemeersch, Jasmien C. J.; Garba, Maman; Al-Barri, Bashar; Sabiou, Mahamane; Cornelis, Wim M.

    2015-04-01

    As a result of growing population pressure and severe soil erosion, farmers in the Sahel increasingly rely on degraded lands for millet production. The adverse Sahelian rainfall distribution and imbalanced rainfall partitioning over the rootzone of these degraded lands therefore calls for sustainable land management strategies that are water resource efficient. This study evaluates the soil-water balance of promising Nigerien Water and Soil Conservation (WSC) techniques (i.e., zaï pits, demi-lune microcatchments and scarification with standing crop residue) and their impact on millet yield by means of an in-situ field experiment (2011-2013) on degraded laterite soil classified as Plinthosol with a 1% slope. All WSC practices received the same amount of fertilizer and were compared to two control practices, one with and one without fertilizer. Soil-water content was recorded with a neutron probe till 105 cm depth and runoff by means of a cemented gutter directing runoff water with a multi-pipe divisor into a collector drum. WSC techniques proved to significantly reduce runoff (blue water) with overall runoff coefficients beings reduced from 25% (control practice) to 5-10%. Consequently, significantly more water was stored inside the catchments of the zaï pits and demi-lunes (green water). With the scarification treatment, no considerable differences in soil-water storage were found with the control. On the other hand, WSC practices had little impact on soil evaporation, which was only 12% of rainfall by the self-mulching soil. Crop transpiration increased with WSC and highest millet yields were found with zaï pits (4 to 5 times higher than under the fertilized control). Although rainwater was better partitioned in case of demi-lune microcatchments resulting in highest amounts of water stored in the soil, yield was only 40-60% of that with zaï pits. This was due to a higher plant density within each demi-lune microcatchment in an attempt to attain similar plant

  11. The effect of continuous Zn (II) exposure on the organic degradation capability and soluble microbial products (SMP) of activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-chao [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433 (China); Liu, Yan, E-mail: liuyan@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433 (China); Liu, Xiang, E-mail: liuxiang@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433 (China); Zhang, Yi; Yan, Yang-wei; Dai, Rui-hua; Zha, Xiao-song; Wang, Cheng-shan [Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2013-01-15

    Highlights: ► After acclimation, the activated sludge could endure 400 mg/L Zn (II). ► A close correlation was found between SMP content and effluent COD. ► The change in DNA might reflect the Zn (II) toxicity to the biomass. -- Abstract: This study describes the change of organic degradation capability and soluble microbial products (SMP) generated in activated sludge under continuous exposure to Zn (II) in a sequencing batch reactor (SBR). In 338 days of operation, the added Zn (II) concentrations were gradually increased from 50 to 100, 200, 400 to 600 and 800 mg/L. Results showed that after adaptation, the activated sludge could endure 400 mg/L Zn (II) without showing evident reduction in organic degradation ability (92 ± 1% of chemical oxygen demand (COD) removal in stable state). However, when 600 and 800 mg/L Zn (II) were applied, the effluent water quality significantly deteriorated. Meanwhile, under increasing Zn (II) concentrations, the SMP content in the activated sludge, together with its main biochemical constituents, first increased slightly below 400 mg/L of Zn (II), then rose sharply under 600 and 800 mg/L Zn (II). Furthermore, a close correlation was found between SMP content and effluent soluble COD in both the Experimental Reactor and Control Reactor. In addition, the Zn (II) concentrations in the effluent and SMP extraction liquid were further analyzed and discussed to reveal the role that SMP constituents played in defense and resistance to the toxicity of Zn (II)

  12. Monoclonal antibodies with equal specificity to D-dimer and high-molecular-weight fibrin degradation products

    Science.gov (United States)

    Kogan, Alexander E.; Mukharyamova, Kadriya S.; Bereznikova, Anastasia V.; Filatov, Vladimir L.; Koshkina, Ekaterina V.; Bloshchitsyna, Marina N.; Katrukha, Alexey G.

    2016-01-01

    Fibrin degradation results in the formation of fibrin degradation products (FDPs) of different molecular weights, which include D-dimer. Commercial D-dimer assays recognize multiple forms of FDP with different specificity. As a result, the absence of an international D-dimer standard and the marked discrepancy in the D-dimer values in the same samples measured by assays from different manufacturers have become the primary problems that clinicians face in the D-dimer determination. We consider that an assay with equal specificity to all FDP forms regardless of their molecular weights could help to solve these problems. We aimed to produce mAbs that could equally recognize high-molecular-weight FDP (HMW FDP) and D-dimer. mAbs against D-dimer were produced. The HMW FDP/D-dimer ratios in plasma samples were analyzed following protein separation by gel filtration using the developed fluoroimmunoassay. A sandwich immunoassay with equal specificity to HMW FDP and D-dimer was developed and applied to determine HMW FDP/D-dimer ratios in patients with different diseases. Although the HMW FDP levels prevailed in thrombotic patients, the FDP and D-dimer levels were comparable in septic patients. Meanwhile, the D-dimer levels often exceeded the HMW FDP levels in patients who had undergone surgery. The ‘D-dimer’ levels that were detected by different assays also varied greatly depending on the assay specificities to FDP and D-dimer. Our findings show that the introduction of assays with equal specificities to FDP and D-dimer in clinical practice is a possible way of standardizing D-dimer measurements. PMID:26656897

  13. The hypoglycemic effect of a polysaccharide (GLP) from Gracilaria lemaneiformis and its degradation products in diabetic mice.

    Science.gov (United States)

    Liao, Xubiao; Yang, Lawei; Chen, Meizhen; Yu, Jie; Zhang, Shumeng; Ju, Yaoyao

    2015-08-01

    Gracilaria lemaneiformis is cultivated on a large scale in China for industrial production of agarose, a natural polysaccharide, which has been shown to have many beneficial bioactivities such as antitumor, antiviral antioxidant activities, etc. In the present study, the hypoglycemic and antioxidant effects of a polysaccharide extracted from Gracilaria lemaneiformis (GLP; Mw, 121.89 kDa) and its chemically degraded products (GLP1 and GLP2: Mw, 57.02 and 14.29 kDa, respectively) were investigated in alloxan-induced diabetic mice. The intragastric administration of GLP, GLP1 and GLP2 for 21 days induced an obvious decrease (P < 0.05) in blood glucose levels in comparison with untreated diabetic mice. Furthermore, GLP, GLP1 and GLP2 caused evident increases (P < 0.05) in both ant i-oxidase (SOD and GSH-Px) activities and the total antioxidant capacity (T-AOC) and a significant decrease (P < 0.05) in the level of malondialdehyde (MDA) in the liver, pancreas and kidney of diabetic mice. Even though GLP, GLP1 and GLP2 did not show any significant difference in the structure and sulfation levels, GLP1 demonstrated more potent effects than GLP and GLP2 at the same dose. Histopathological examination of the pancreas and kidney revealed that the damaged tissues induced by alloxan were repaired to a certain degree after the treatments of GLP, GLP1 and GLP2.

  14. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    Science.gov (United States)

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%). PMID:25514397

  15. Optimization of Fermentation Medium for the Production of Atrazine Degrading Strain Acinetobacter sp. DNS32 by Statistical Analysis System

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-01-01

    Full Text Available Statistical experimental designs provided by statistical analysis system (SAS software were applied to optimize the fermentation medium composition for the production of atrazine-degrading Acinetobacter sp. DNS32 in shake-flask cultures. A “Plackett-Burman Design” was employed to evaluate the effects of different components in the medium. The concentrations of corn flour, soybean flour, and K2HPO4 were found to significantly influence Acinetobacter sp. DNS32 production. The steepest ascent method was employed to determine the optimal regions of these three significant factors. Then, these three factors were optimized using central composite design of “response surface methodology.” The optimized fermentation medium composition was composed as follows (g/L: corn flour 39.49, soybean flour 25.64, CaCO3 3, K2HPO4 3.27, MgSO4 ·7H2O 0.2, and NaCl 0.2. The predicted and verifiable values in the medium with optimized concentration of components in shake flasks experiments were 7.079×108 CFU/mL and 7.194×108 CFU/mL, respectively. The validated model can precisely predict the growth of atrazine-degraing bacterium, Acinetobacter sp. DNS32.

  16. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction

    International Nuclear Information System (INIS)

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3-N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs

  17. Suppressing LPS-induced early signal transduction in macrophages by a polyphenol degradation product: a critical role of MKP-1.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Radnai, Balazs; Racz, Boglarka; Debreceni, Balazs; Priber, Janos K; Dolowschiak, Tamas; Palkovics, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Veres, Balazs

    2011-01-01

    Macrophages represent the first defense line against bacterial infection and therefore, play a crucial role in early inflammatory response. In this study, we investigated the role of MAPKs and MKP-1 activation in regulation of an early inflammatory response in RAW 264.7 macrophage cells. We induced the inflammatory response by treating the macrophages with LPS and inhibited an early inflammatory response by using ferulaldehyde, a water-soluble end-product of dietary polyphenol degradation that we found previously to exert its beneficial anti-inflammatory effects during the early phase of in vivo inflammation. We found that LPS-induced ROS and nitrogen species formations were reduced by ferulaldehyde in a concentration-dependent manner, and ferulaldehyde protected mitochondria against LPS-induced rapid and massive membrane depolarization. LPS induced early suppression of MKP-1, which was accompanied by activation of JNK, ERK, and p38 MAPK. By reversing LPS-induced early suppression of MKP-1, ferulaldehyde diminished MAPK activation, thereby inhibiting NF-κB activation, mitochondrial depolarization, and ROS production. Taken together, our data suggest that ferulaldehyde exerts its early anti-inflammatory effect by preserving the mitochondrial membrane integrity and shifting the expression of MKP-1 forward in time in macrophages. PMID:20884647

  18. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1.

    Science.gov (United States)

    Cheng, S W; Hu, H M; Shen, S W; Takagi, H; Asano, M; Tsai, Y C

    1995-12-01

    The keratinase produced by Bacillus licheniformis PWD-1 was induced by feather powder. Maximal enzyme production could be achieved by culturing in a medium containing 1% hammer-milled feather powder (100 mesh) at 45 degrees C for 30 h. Maximal growth of PWD-1 was achieved at 50 degrees C, and maximal enzyme induction was at 45 degrees C. The molecular mass and isoelectric point of this enzyme were 31.4 kDa and 8.5, respectively. This enzyme was stable from pH 5 to 12. The optimal reaction pHs for feather powder and casein were 8.5 and 10.5 to 11.5, respectively. The optimal reaction temperature was 50 degrees C to 55 degrees C. The relative activity of this enzyme toward casein, feather powder, keratin, elastin, and collagen was 100:52:41:18:7, and 100:56:32:3 for Suc-AAPL-pNA, Suc-AAPF-pNA, Suc-AAPM-pNA, and Suc-AAVA-pNA (Suc, succinyl; pNA, p-nitrophenylanilide).

  19. The Energy-Water Nexus: potential groundwater-quality degradation associated with production of shale gas

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.

    2013-01-01

    Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.

  20. Stress Degradation Behavior of Abacavir Sulfate and Development of a Suitable Stability-Indicating UHPLC Method for the Determination of Abacavir, its Related Substances, and Degradation Products

    OpenAIRE

    Vukkum, Pallavi; Deshpande, Girish R.; Babu, J. Moses; Muralikrishna, R.; Jagu, Pavani

    2012-01-01

    A novel, stability-indicating UHPLC method was developed for the quantitative determination of Abacavir sulfate, its related substances, and forced degradation impurities in bulk drugs. The chromatographic separation was achieved on a Waters Acquity BEH C8, 50 mm × 2.1 mm, 1.7 μm particle size column with a mobile containing a gradient mixture of solution A (0.10 % v/v o-phosphoric acid in water) and solution B (0.10% v/v o-phosphoric acid in methanol). The flow rate was set at 0.40 mL/min an...

  1. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil.

    Science.gov (United States)

    Bizkarguenaga, E; Zabaleta, I; Prieto, A; Fernández, L A; Zuloaga, O

    2016-06-01

    The present work studied the uptake of 8:2 perfluoroalkyl phosphate diester (diPAP) by two different crops (lettuce and carrot) and two different amended soils. Firstly, the possible degradation of 8:2 diPAP in the absence of crop was studied and 8:2 monoPAP (monophosphate), 8:2 FTCA (saturated fluorotelomer carboxylate), 8:2 FTUCA (unsaturated fluorotelomer carboxylate), 7:3 FTCA (saturated fluorotelomer carboxylate), PFHpA (perfluoroheptanoic acid), PFHxA (perfluorohexanoic acid) and PFOA (perfluorooctanoic acid) were detected. In the presence of crops, different degradation products were detected in the soil and, while PFNA (perfluorononanoic acid), PFHpA, PFHxA, PFPeA (perfluoropentacoic acid), PFBA (perfluorobutanoic acid), 7:3 FTCA and PFOA were determined in the cultivation media when carrot was grown, PFOA was the only degradation product detected in the case of lettuce experiments. Regarding the uptake in carrot, all the degradation products except 7:3 FTCA were translocated from the soil to the carrot. Carrot core, peel and leaves bioconcentration factors, BCFs, were determined for 8:2 diPAP and its degradation products. Values lower than method detection limits for core and low BCFs in peel (0.025-0.042) and leaves (0.028-0.049) were achieved for 8:2 diPAP. Regarding to the degradation products, the higher their water solubility, the higher the plant translocation. In this sense, the lower the carbon chain length of PFCAs, the higher the BCFs determined (PFBA > PFHxA > PFHpA > PFOA > PFNA). In general, lower total BCFs were achieved when the total organic carbon of the soils increased. For lettuce experiments, 8:2 diPAP (0.04-0.18) and PFOA (0.28-1.57) were only determined in lettuce heart. PMID:26991379

  2. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO{sub 2}: Adsorption, kinetics, product analysis and toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Niyaz A.; Khan, A. [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Muneer, M., E-mail: readermuneer@gmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh-202002, UP (India); Vijayalakhsmi, S. [SAIF, CRNTS, IIT Bombay, Powai, 400076, Mumbai (India)

    2013-08-01

    This paper deals with the study of photocatalyzed degradation of an insecticide, Thiamethoxam in aqueous suspension of TiO{sub 2}. The adsorption of Thiamethoxam on TiO{sub 2} surface under dark conditions was also investigated in order to find out equilibrium adsorption constant. The degradation kinetics was studied using spectrophotometric method under various conditions such as substrate concentration, type of catalyst, catalyst dosage, pH, and in the presence of electron acceptors such as hydrogen peroxide, potassium bromate, and ammonium persulphate under continuous purging of atmospheric oxygen, and the degradation rates were found to be strongly influenced by these parameters. The results manifested that the photocatalysis of Thiamethoxam follows pseudo-first-order kinetics. The toxicity assessments of the irradiated samples were carried out using human erythrocytes as a model system under in vitro conditions. GC–MS study showed the formation of several intermediate products which were characterised based on their molecular mass and mass fragmentation pattern. A probable mechanism for the formation of various products formed during the photocatalytic process of Thiamethoxam was also proposed. Highlights: • TiO{sub 2} P25 is a more efficient photocatalyst than UV100 and PC500 for degradation of Thiamethoxam. • Low H{sub 2}O{sub 2} dosages enhance degradation whereas overdose retards it. • Toxicity of Thiamethoxam decreases with the increase in irradiation time. • Eight intermediate products have been identified using GC–MS analysis technique.

  3. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    Science.gov (United States)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  4. Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture.

    Science.gov (United States)

    Pintos, Beatriz; Manzanera, Jose A; Bueno, Maria A

    2007-12-01

    The objective of this study is to induce the nuclear DNA duplication of anther-derived embryos of cork oak (Quercus suber L.) to obtain doubled-haploid plants. Anther culture of this species produces a low percentage (7.78%) of spontaneous diploids, as assessed by flow cytometry. Therefore, three antimitotic agents, colchicine, oryzalin and amiprophos-methyl (APM), were applied in vitro to anther-derived cork oak haploid embryos from six genotypes at different concentrations and for different treatment durations. Antimitotic toxicity was determined by embryo survival. Efficiency in inducing chromosome doubling of haploid embryos was evaluated by flow cytometry measurements and differences were observed between treatments. Nuclear DNA duplication and embryo survival of cork oak haploid embryos was most efficiently induced with oryzalin 0.01 mM for 48 h. Around 50% diploid embryos were obtained. The rate of chromosome duplication induced by APM 0.01 mM was also acceptable but lower than that induced by oryzalin, regardless of the duration of the treatment. Colchicine 1.3 or 8.8 mM was the least efficient, with the induction of necrosis and only a small rate of nuclear DNA duplication.

  5. Lactobacilli and tartrazine as causative agents of a red colored spoilage in cucumber pickle products

    Science.gov (United States)

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in fermented cucumber products characterized by development of red color on the surface of the cucumbers. Lactobacillus casei and Lactobacillus paracasei were isolated from two outbreaks of this spoilage which occurred a...

  6. Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition.

    Science.gov (United States)

    Wu, Wenyang; Chen, Yong; Faisal, Shah; Khan, Aman; Chen, Zhengjun; Ling, Zhenmin; Liu, Pu; Li, Xiangkai

    2016-09-19

    The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production.

  7. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  8. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  9. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.

    Science.gov (United States)

    Tohidi, Fatemeh; Cai, Zongwei

    2015-08-01

    A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)-106(±7)%, 82(±3)-87(±4)%, 86(±6)-87(±8)%, and 88(±4)-105(±3)% in wastewater and 88(±5)-96(±8)%, 84(±2)-87(±3)%, 84(±7)-89(±4)%, and 88(±3)-97(±5)% in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw).

  10. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    OpenAIRE

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Hui ZHANG; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP...

  11. Natural product inspired diversity oriented synthesis of tetrahydroquinoline scaffolds as antitubercular agent.

    Science.gov (United States)

    Kumar, Atul; Srivastava, Suman; Gupta, Garima; Chaturvedi, Vinita; Sinha, Sudhir; Srivastava, R

    2011-01-10

    An efficient natural product inspired diversity oriented syn thesis of tetrahydroquinoline analogues has been developed using the natural carbohydrate derived solid acid catalyst via multicomponent aza-Diels-Alder reaction of imine (generated in situ from aromatic amine and aldehyde) with dienophile in acetonitrile in a diastereoselective manner. The use of water as solvent reverses the diastereoselectivity toward the cis isomer. Interestingly, tricyclic pyrano/furano benzopyran with cis diastereoselectivity is obtained when salicylaldehyde is used as an alternative of aromatic aldehyde under the same condition. These synthesized quinolines and benzopyrans analogues have been evaluated for their Antitubercular activity against M. tuberculosis H₃₇Ra, and M. tuberculosis H₃₇Rv, and some of the analogues shows better activity profile than their natural product analogues. The protocol is not only mild, efficient, ecofriendly, but also involves reusable and biodegradable catalyst and provides route for both the diastereoisomer. PMID:21247127

  12. Production of Sterilizing Agents from Calendula officinalis Extracts Optimized by Response Surface Methodology

    OpenAIRE

    Fatih Mehmet Goktas; Bilgesu Sahin; Sibel Yigitarslan

    2015-01-01

    The aim of this study was to produce hand sterilizing liquid and wet wipes with the extracts of Calendula officinalis. Since this plant has well known antimicrobial activity due to its phytochemical constituents, the increase in the extraction yield was chosen as the principle part of the production process. To achieve the maximum yield, parameters of solid-to-liquid ratio, extraction temperature, and time were studied. The optimum conditions were determined by response surface methodology as...

  13. Software Productivity of Field Experiments Using the Mobile Agents Open Architecture with Workflow Interoperability

    Science.gov (United States)

    Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten

    2011-01-01

    We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.

  14. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  15. Osmotic dehydration of mandarins: Influence of reutilized osmotic agent on behaviour and product quality

    Directory of Open Access Journals (Sweden)

    Maria Lobo Sapata

    2009-09-01

    Full Text Available   Background. Osmotic dehydration (OD is a technology that allows the concentration mainly of fruits and vegetables, without change of phase, through partial water removal, when immersed in a hypertonic solution of sugar, salt or others. It can be successfully applied to some products whose production is not fully marketed in fresh form. However, an additional process is necessary to stabilize the product. The process leads to the achievement of high quality alternative products, with an extended shelf-life, economy in storage and transport. The aim of this work was to study, at a pilot scale, the behaviour evaluation of a sucrose dehydration solution, during twelve OD reuses, and the quality of processed mandarins. Material and methods. The process was carried out using mandarins (Citrus reticulata Blanco cv Clementina Nova, from Algarve, Portugal, manually peeled and segments chemically skinned. In assays a 60°Brix sucrose solution was used, conducted in thermo- -stabilized baths, at 45°C, 16 h, 40 oscillations per minute and a fruit:solution ratio of 1:2 (m/m. After each OD cycle, the solution was filtered and reconcentred to 60°Brix by sucrose addition, and adjusted to original volume. The osmodehydrated mandarins were stabilized by pasteurization. The drying solution behaviour and mandarins’ quality were assessed through different physical, chemical and microbiological analysis. Results. The factorial discriminate analysis allowed to distinguish a different behaviour between the original and final dehydration sucrose solution during OD processes, but did not affect its desiccant power, only a high pollutant load development explained by BOD5 values. The results of osmodehydrated mandarins showed that stability was achieved by “combined process” with pasteurization. Conclusions. The resultslead to concludethat osmotic dehydration process is a good option to improve mandarin’s stabilization, after pasteurization

  16. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land manage