WorldWideScience

Sample records for ageless aerospace vehicles

  1. The ageless aerospace vehicle: a complex multi-agent structural health management system

    International Nuclear Information System (INIS)

    Full text: Structural health monitoring and management of complex, safety-critical structures such as aerospace vehicles will ultimately require the development of intelligent systems to process the data from large numbers of sensors, to evaluate and diagnose detected damage, to form a prognosis for the damaged structure, and to make decisions regarding remediation or repair of the damage. A complex multi-agent systems approach to the development of such intelligent systems is being investigated, in order to satisfy the requirements of robustness and scalability. This paper reports the current state of development of a laboratory-scale test-bed built to facilitate the development and demonstration of the sensors, sensing strategies and algorithms that will produce the required functionality. This work involves a wide range of physics-related issues in materials science, sensing and complex systems science. Copyright (2005) Australian Institute of Physics

  2. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 4 - Phase 1 Implementation of the Concept Demonstrator

    Science.gov (United States)

    Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris; Murdoch, Alex; Poulton, Geoff; Price, Don; Prokopenko, Mikhail; Rees, David; Scott, Andrew; Seneviratne, Sarath; Valencia, Philip; Wang, Peter; Whitnall, Denis

    2008-01-01

    This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.

  3. An adaptive guidance algorithm for aerospace vehicles

    Science.gov (United States)

    Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.

    The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.

  4. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  5. Infrared signature studies of aerospace vehicles

    Science.gov (United States)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  6. The ARM unpiloted aerospace vehicle (UAV) program

    Energy Technology Data Exchange (ETDEWEB)

    Sowle, D. [Mission Research Corporation, Santa Barbara, CA (United States)

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  7. Analytical prediction of aerospace vehicle vibration environments

    Science.gov (United States)

    Wilby, J. F.; Piersol, A. G.

    1981-09-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  8. High Spatial Resolution shape Sensing for Adaptive Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is accepted that adaptive aerospace vehicles whose flight avionic systems are reconfigurable are needed to respond to changing flight parameters, vehicle system...

  9. Structural Health Management for Future Aerospace Vehicles

    Science.gov (United States)

    Prosser, W. H.; Allison, S. G.; Woodard, S. E.; Wincheski, R. A.; Cooper, E. G.; Price, D. C.; Hedley, M.; Prokopenko, M.; Scott, D. A.; Tessler, A.

    2004-01-01

    Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.

  10. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 5 - Phase 2 Implementation of the Concept Demonstrator

    Science.gov (United States)

    Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris; Murdoch, Alex; Poulton, Geoff; Price, Don; Prokopenko, Mikhail; Sharp, Ian; Scott, Andrew; Valencia, Philip; Wang, Peter; Whitnall, Denis

    2009-01-01

    This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.

  11. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 3 - Design of the Concept Demonstrator

    Science.gov (United States)

    Abbott, David; Ables, Jon; Batten, Adam; Carpenter, David; Collings, Tony; Doyle, Briony; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Isaacs, Peter; Johnson, Mark; Joshi, Bhautik; Lewis, Chris; Poilton, Geoff; Price, Don; Prokopenko, Mikhail; Reda, Torsten; Rees, David; Scott, Andrew; Seneviratne, Sarath; Valencia, Philip; Wang, Peter; Whitnall, Denis

    2008-01-01

    This report provides an outline of the essential features of a Structural Health Monitoring Concept Demonstrator (CD) that will be constructed during the next eight months. It is emphasized that the design cannot be considered to be complete, and that design work will continue in parallel with construction and testing. A major advantage of the modular design is that small modules of the system can be developed, tested and modified before a commitment is made to full system development. The CD is expected to develop and evolve for a number of years after its initial construction. This first stage will, of necessity, be relatively simple and have limited capabilities. Later developments will improve all aspects of the functionality of the system, including sensing, processing, communications, intelligence and response. The report indicates the directions this later development will take.

  12. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    Science.gov (United States)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  13. Innovation Examples for Ecological Vehicles based on Aerospace Research

    OpenAIRE

    Schier, Michael; Rinderknecht, Frank

    2013-01-01

    In this paper innovative technologies from the aerospace research are presented, which are usable for a successful electric mobility of the future. They represent a selection of the German aerospace center research projects, where synergies between space and aviation applications as well as between rail and road traffic applications are used. The work relates to the fields of vehicle-energy concepts, alternative energy converters and lightweight design. Within the individual development proje...

  14. Geometric requirements for multidisciplinary analysis of aerospace-vehicle design

    Science.gov (United States)

    Smith, Robert E.; Kerr, Patirca A.

    1992-01-01

    The geometric requirements for creating surfaces and grids for multidisciplinary analysis and optimization of aerospace-vehicle designs are described. Geometric surface representations are outlined and compared. Directions for future designs are proposed. High-speed civil transport aircraft configurations are targeted to demonstrate the processes.

  15. Development of Structural Health Management Technology for Aerospace Vehicles

    Science.gov (United States)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  16. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  17. Virginia Tech teams with Wright State, Air Force to design future aerospace vehicles

    OpenAIRE

    Nystrom, Lynn A.

    2009-01-01

    Virginia Tech, Wright State University (WSU), and the Air Force Research Laboratory at Wright Patterson Air Force Base (WPAFB), Ohio, specializing in the design of aerospace vehicles, are teaming to form a collaborative center for the development of future aerospace vehicles (FAVs). The new center will be based at Virginia Tech.

  18. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  19. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  20. Post-optimality analysis in aerospace vehicle design

    Science.gov (United States)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict file effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process. For a hierarchically decomposed problem, this computational efficiency is realizable by estimating the main-problem objective gradient through optimal sensitivity calculations. By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  1. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    Science.gov (United States)

    Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail; Scott, Andrew; Wang, Peter

    2010-01-01

    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.

  2. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    Science.gov (United States)

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…

  3. "Fly-by-Wireless": A Revolution in Aerospace Vehicle Architecture for Instrumentation and Control

    Science.gov (United States)

    Studor, George

    2007-01-01

    Aerospace vehicle programs have always counted on the cables and connectors to provide power, grounding, data and time synchronization throughout a vehicle's life-cycle. Even with numerous improvements, wiring and connector problems and sensors continue to be key failure points, causing many hours of troubleshooting and replacement. Costly flight delays have been precipitated by the need to troubleshoot cables/connections, and/or repair a sensor. Wiring continues to be too expensive to remove once it is installed, even with the weight penalties. Miles of test instrumentation and low flight sensor wires still plague the aerospace industry. New technology options for data connectivity, processing and micro/nano manufacturing are making it possible to retrofit existing vehicles, like the Space Shuttle. New vehicles can now develop architectures that provide for and take advantage of alternatives to wired connectivity. This project motivates the aerospace industry and technology providers to establish: (1) A new emphasis for system engineering approaches to reduce cables and connectors. (2) Provisions for modularity and accessibility in the vehicle architecture. (3) A set of technologies that support alternatives to wired connectivity.

  4. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    Science.gov (United States)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  5. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    Science.gov (United States)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  6. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  7. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  8. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    Science.gov (United States)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  9. Development of Three-dimensional Grid-free Solver and its Applications to Multi-body Aerospace Vehicles

    OpenAIRE

    K. Anandhanarayanan

    2010-01-01

    Grid-free solver has the ability to solve complex multi-body industrial problems with minimal effort. Grid-free Euler solver has been applied to number of multi-body aerospace vehicles using Chimera clouds of points including flight vehicle with fin deflection, nose fairing separation of hypersonic launch vehicle. A preprocessor has been developed to generate connectivity for multi-bodies using overlapped grids. Surface transpiration boundary condition has been implemented to model aerodynami...

  10. Design of Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    Science.gov (United States)

    Fuerstenau, D. W.; Ravikumar, R.

    1997-01-01

    In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.

  11. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    Science.gov (United States)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  12. Autonomous Control Reconfiguration of Aerospace Vehicle Based on Control Effectiveness Estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Future aerospace vehicles (ASV) are designed to fly in both inner and extra atrmospheric fields, which requires autonomous adaptability to the uncertainties emanated from abrupt faults and continuously time-varying environments. An autonomous control reconfiguration scheme is presented for ASV to deal with the uncertainties on the base of control effectiveness estimation. The on-line estimation methods for the time-varying control effectiveness of linear control system are investigated. Some sufficient conditions for the estimable system are given for different cases. There are proposed corresponding on-line estimation algorithms which are proved to be convergent and robust to noise using the least-square-based methods. On the ground of fuzzy logic and linear programming, the control allocation algorithms, which are able to implement the autonomous control reconfiguration through the redundant actuators, are put forward. Finally, an integrated system is developed to verify the scheme and algorithms by way of numerical simulation and analysis.

  13. New techniques for laser beam atmospheric extinction measurements from manned and unmanned aerospace vehicles

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark

    2013-03-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for several air and space platform applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ= 1064 nm and λ= 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  14. "Ageless Heroes" define Blues' commitment to baby boomers. Campaign targets marketing to aging population.

    Science.gov (United States)

    Herreria, J

    1998-01-01

    Blue Cross and Blue Shield Association, with the help of agency Age Wave Health Services Inc., develops a program called Ageless Heroes to convey the insurance company's commitment to the concept of healthy aging through National Awards competition and the television program featuring celebrity seniors. PMID:10179500

  15. Advanced information processing system - Status report. [for fault tolerant and damage tolerant data processing for aerospace vehicles

    Science.gov (United States)

    Brock, L. D.; Lala, J.

    1986-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles. The AIPS architecture also has attributes to enhance system effectiveness such as graceful degradation, growth and change tolerance, integrability, etc. Two key building blocks being developed by the AIPS program are a fault and damage tolerant processor and communication network. A proof-of-concept system is now being built and will be tested to demonstrate the validity and performance of the AIPS concepts.

  16. Experimental results of a Mach 10 conical-flow derived waverider to 14-X hypersonic aerospace vehicle

    Directory of Open Access Journals (Sweden)

    Tiago Cavalcanti Rolim

    2011-05-01

    Full Text Available This paper presents a research in the development of the 14-X hypersonic airspace vehicle at Institute for Advanced Studies (IEAv from Department of Science and Aerospace Technology (DCTA of the Brazilian Air Force (FAB. The 14-X project objective is to develop a higher efficient satellite launch alternative, using a Supersonic Combustion Ramjet (SCRAMJET engine and waverider aerodynamics. For this development, the waverider technology is under investigation in Prof. Henry T. Nagamatsu Aerothermodynamics and Hypersonics Laboratory (LHTN, in IEAv/DCTA. The investigation has been conducted through ground test campaigns in Hypersonic Shock Tunnel T3. The 14-X Waverider Vehicle characteristic was verified in shock tunnel T3 where surface static pressures and pitot pressure for Mach number 10 were measured and, using Schlieren photographs Diagnostic Method, it was possible to identify a leading-edge attached shock wave in 14-X lower surface.

  17. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    Science.gov (United States)

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  18. Development of Three-dimensional Grid-free Solver and its Applications to Multi-body Aerospace Vehicles

    Directory of Open Access Journals (Sweden)

    K. Anandhanarayanan

    2010-10-01

    Full Text Available Grid-free solver has the ability to solve complex multi-body industrial problems with minimal effort. Grid-free Euler solver has been applied to number of multi-body aerospace vehicles using Chimera clouds of points including flight vehicle with fin deflection, nose fairing separation of hypersonic launch vehicle. A preprocessor has been developed to generate connectivity for multi-bodies using overlapped grids. Surface transpiration boundary condition has been implemented to model aerodynamic damping and to impose the relative velocity of moving components. Dynamic derivatives are estimated with reasonable accuracy and less effort using the grid-free Euler solver with the transpiration boundary condition. Further, the grid-free Euler solver has been integrated with six-degrees of freedom (6-DOF equations of motion to form store separation dynamics suite which has been applied to obtain the trajectory of a rail launch air-to-air-missile from a complex fighter aircraft.Defence Science Journal, 2010, 60(6, pp.653-662, DOI:http://dx.doi.org/10.14429/dsj.60.583

  19. Atmospheric/Space Environment Support Lessons Learned Regarding Aerospace Vehicle Design and Operations

    Science.gov (United States)

    Vaughan, William W.; Anderson, B. Jeffrey

    2005-01-01

    In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.

  20. Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles from theory to application

    CERN Document Server

    Zolghadri, Ali; Cieslak, Jerome; Efimov, Denis; Goupil, Philippe

    2014-01-01

    Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as improved flight performance, self-protection and extended life of structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of important electrical flight control system failures: the oscillatory failure case, runaway, and jamming. Advanced fault detection and diagnosis for linear and nonlinear systems are described. Lastly recovery strategies appropriate to remaining acuator/sensor/c...

  1. Design-oriented thermoelastic analysis, sensitivities, and approximations for shape optimization of aerospace vehicles

    Science.gov (United States)

    Bhatia, Manav

    Aerospace structures operate under extreme thermal environments. Hot external aerothermal environment at high Mach number flight leads to high structural temperatures. At the same time, cold internal cryogenic-fuel-tanks and thermal management concepts like Thermal Protection System (TPS) and active cooling result in a high temperature gradient through the structure. Multidisciplinary Design Optimization (MDO) of such structures requires a design-oriented approach to this problem. The broad goal of this research effort is to advance the existing state of the art towards MDO of large scale aerospace structures. The components required for this work are the sensitivity analysis formulation encompassing the scope of the physical phenomena being addressed, a set of efficient approximations to cut-down the required CPU cost, and a general purpose design-oriented numerical analysis tool capable of handling problems of this scope. In this work finite element discretization has been used to solve the conduction partial differential equations and the Poljak method has been used to discretize the integral equations for internal cavity radiation. A methodology has been established to couple the conduction finite element analysis to the internal radiation analysis. This formulation is then extended for sensitivity analysis of heat transfer and coupled thermal-structural problems. The most CPU intensive operations in the overall analysis have been identified, and approximation methods have been proposed to reduce the associated CPU cost. Results establish the effectiveness of these approximation methods, which lead to very high savings in CPU cost without any deterioration in the results. The results presented in this dissertation include two cases: a hexahedral cavity with internal and external radiation with conducting walls, and a wing box which is geometrically similar to the orbiter wing.

  2. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    International Nuclear Information System (INIS)

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ηprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ηprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons

  3. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    International Nuclear Information System (INIS)

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with

  4. Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles

    Science.gov (United States)

    Tessler, Alexander

    2007-01-01

    Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.

  5. Analysis of internal ablation for the thermal control of aerospace vehicles

    Science.gov (United States)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  6. Mass Efficiency Considerations for Thermally Insulated Structural Skin of an Aerospace Vehicle

    Science.gov (United States)

    Blosser, Max L.

    2012-01-01

    An approximate equation was derived to predict the mass of insulation required to limit the maximum temperature reached by an insulated structure subjected to a transient heating pulse. In the course of the derivation two figures of merit were identified. One figure of merit correlates to the effectiveness of the heat capacity of the underlying structural material in reducing the amount of required insulation. The second figure of merit provides an indicator of the mass efficiency of the insulator material. An iterative, one dimensional finite element analysis was used to size the external insulation required to protect the structure at a single location on the Space Shuttle Orbiter and a reusable launch vehicle. Required insulation masses were calculated for a range of different materials for both structure and insulator. The required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10 to 20 percent over the range of parameters studied. Finite element results closely followed the trends indicated by both figures of merit.

  7. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    Science.gov (United States)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  8. Aerospace Medicine

    Science.gov (United States)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  9. Environmentally regulated aerospace coatings

    Science.gov (United States)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  10. On-board energy management for high-speed aerospace vehicles: System and component-level energy-based optimization and analysis

    Science.gov (United States)

    Taylor, Trent Matthew

    This dissertation addresses in detail three main topics for advancing the state-of-the-art in hypersonic aerospace systems: (1) the development of a synergistic method based on entropy generation in order to analyze, evaluate, and optimize vehicle performance, (2) the development and analysis of innovative unconventional flow-control methods for increasing vehicle performance utilizing entropy generation as a fundamental descriptor and predictor of performance, and (3) an investigation of issues arising when evaluating (predicting) actual flight vehicle performance using ground test facilities. Vehicle performance is analyzed beginning from fundamental considerations involving fluid and thermodynamic balance relationships. The results enable the use of entropy generation as the true "common currency" (single loss parameter) for systematic and consistent evaluation of performance losses across the vehicle as an integrated system. Innovative flow control methods are modeled using state of the art CFD codes in which the flow is energized in targeted local zones with emphasis on shock wave modification. Substantial drag reductions are observed such that drag can decrease to 25% of the baseline. Full vehicle studies are then conducted by comparing traditional and flow-controlled designs and very similar axial force is found with an accompanying increase in lift for the flow-control design to account for on-board energy-addition components. Finally, a full engine flowpath configuration is designed for computational studies of ground test performance versus actual flight performance with emphasis on understanding the effect of ground-based vitiate (test contaminant). It is observed that the presence of vitiate in the test medium can also have a significant first-order effect on ignition delay as well as the thermodynamic response to a given heat release in the fuel.

  11. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  12. Henkel Technologies and Products for China Aerospace

    Institute of Scientific and Technical Information of China (English)

    Michael Cichon; Helen Wei Li; Alex Wong; Stan Lehmann; Raymond Wong

    2006-01-01

    Epoxy structural adhesives and composites have been in use for many years for the construction of aerospace vehicles. Henkel provides many epoxy products. Many other resin systems have been evaluated and several, such as imide,phenolic and cyanate ester, have also achieved significant use. Henkel's newly developed "Epsilon" chemistry demonstrates unique features that benefit application in aerospace structure that use adhesives and composites.

  13. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  14. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  15. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    International Nuclear Information System (INIS)

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring

  16. Remotely piloted vehicles; A selective bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Farley, R. [comp.

    1975-12-01

    This report is a bibliography from the International Aerospace Abstracts and the Scientific and Technical Aerospace Abstracts on remotely piloted vehicles. Most of the applications of these RPV`s are military in nature.

  17. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  18. Aerospace Avionics and Allied Technologies

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2011-07-01

    Full Text Available Avionics is a very crucial and important technology, not only for civil/military aircraft but also for missiles, spacecraft, micro air vehicles (MAVs and unmanned aerial vehicles (UAVs. Even for ground-based vehicles and underwater vehicles (UWVs, avionics is a very important segment of their successful operation and mission accomplishment. The advances in many related and supporting technologies, especially digital electronics, embedded systems, embedded algorithms/software, mobile technology, sensors and instrumentation, computer (network-communication, and realtime operations and simulation, have given a great impetus to the field of avionics. Here, for the sake of encompassing many other applications as mentioned above, the term is used in an expanded sense: Aerospace Avionics (AA, although it is popularly known as Aviation Electronics (or Avionics. However, use of this technology is not limited to aircraft, and hence, we  can incorporate all the three types-ground, land, and underwater vehicles-under the term avionics.Defence Science Journal, 2011, 61(4, pp.287-288, DOI:http://dx.doi.org/10.14429/dsj.61.1122

  19. Machine intelligence and autonomy for aerospace systems

    Science.gov (United States)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  20. National Aerospace Plane Thermal Development. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1997-01-01

    The bibliography contains citations concerning thermal properties of the National Aerospace Plane (NASP). Analysis of thermal stress, and methods for determining thermal effects on the plane's supersonic structure are discussed. The citations also review temperature extremes that the vehicle is likely to encounter.

  1. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will demonstrate the Aerospace System Monitor (ASM). This technology transforms the power distribution network in a spacecraft or aircraft...

  2. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    OpenAIRE

    Ju Min Kyung; Lee Ho-Sung

    2015-01-01

    Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to ...

  3. Frequency Response Function Based Damage Identification for Aerospace Structures

    OpenAIRE

    Oliver, Joseph Acton

    2015-01-01

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identificati...

  4. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  5. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  6. Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  7. Frontier Aerospace Opportunities

    Science.gov (United States)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  8. Aerospace Education. NSTA Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  9. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  10. Developing IVHM Requirements for Aerospace Systems

    Science.gov (United States)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  11. Titanium production for aerospace applications

    OpenAIRE

    Vinicius A. R. Henriques

    2009-01-01

    Titanium parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. The objective of this work is to present a review of titanium metallurgy focused on aerospace applications, including developments in the Brazilian production of titanium aimed at aerospace applications. The article includes an account of the evolution ...

  12. Aerospace engineering training: universities experience

    OpenAIRE

    Mertins Kseniya; Ivanova Veronica; Natalinova Natalya; Alexandrova Maria

    2016-01-01

    Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used ...

  13. Development and integration of modern laboratories in aerospace education

    Science.gov (United States)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  14. Optical Characterization of Window Materials for Aerospace Applications

    Science.gov (United States)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  15. Research Opportunities in Advanced Aerospace Concepts

    Science.gov (United States)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  16. Smart antennas in aerospace applications

    OpenAIRE

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, Chris G.H.; Marpaung, David A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with electronic compensation techniques.

  17. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  18. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  19. Reliability-based framework for fatigue damage prognosis of bonded structural elements in aerospace composite structures

    OpenAIRE

    Gobbato, Maurizio

    2011-01-01

    Fatigue-induced damage is one of the most uncertain and extremely unpredictable failure mechanisms for a large variety of structural systems (e.g., aerospace, automotive, offshore, and civil structures) subjected to stochastic and cyclic loading during service life. Among these systems, composite lightweight aerospace structures -- such as fighter aircrafts and unmanned aerial vehicles (UAVs) -- are particularly sensitive to both fatigue- induced and impact-induced damage. Within this scenari...

  20. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  1. Nanocellulose: a new ageless bionanomaterial

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2013-06-01

    Full Text Available Owing to the hierarchical structure of cellulose, nanoparticles can be extracted from this naturally occurring polymer. Multiple mechanical shearing actions allow the release of more or fewer individual microfibrils. Longitudinal cutting of these microfibrils can be achieved by a strong acid hydrolysis treatment, allowing dissolution of amorphous domains. The impressive mechanical properties, reinforcing capabilities, abundance, low density, and biodegradability of these nanoparticles make them ideal candidates for the processing of polymer nanocomposites. With a Young's modulus in the range 100–130 GPa and a surface area of several hundred m2 g−1, new promising properties can be considered for cellulose.

  2. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  3. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  4. Spectroscopic Measurement Techniques for Aerospace Flows

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  5. Second Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  6. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  7. Aerospace Training. Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  8. 41st Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  9. Aerospace for the Very Young.

    Science.gov (United States)

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  10. Third Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  11. 39th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  12. Damage growth in aerospace composites

    CERN Document Server

    2015-01-01

    This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches describ...

  13. Magnetic Gearboxes for Aerospace Applications

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  14. Soft impacts on aerospace structures

    Science.gov (United States)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  15. Carbon nanotechnology for future aerospace

    OpenAIRE

    Inam, Fawad

    2014-01-01

    Carbon nanotubes (CNTs) and graphene are being widely investigated for their addition in polymer, ceramic and metal matrices to prepare nanocomposites owing to the combination of the superlative mechanical, thermal, and electronic properties attributed to them. These materials are subject of significant research interest for their utilisation in an increasing number of applications including energy, transportation, defence, automotive, aerospace, sporting goods, and infrastructure sectors. Pa...

  16. Finite Element Multidisciplinary Optimization Simulation of Flight Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort is concerned with the development of a novel optimization scheme and computer software for the effective design of advanced aerospace vehicles....

  17. KIBO Industry, innovates in aerospace

    Science.gov (United States)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  18. Hypersonic Wind Tunnels: Latest Citations from the Aerospace Database

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of hypersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Intrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of hypersonic aerospace vehicles. Comprehensive coverage of supersonic and blowdown wind tunnels, and force balance systems for wind tunnels are covered in separate bibliographies.

  19. A Survey of Power Electronics Applications in Aerospace Technologies

    Science.gov (United States)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  20. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  1. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    Science.gov (United States)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2008-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.

  2. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  3. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  4. Aerospace Medical Support in Russia

    Science.gov (United States)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  5. Active wireless temperature sensors for aerospace thermal protection systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K. S. G.

    2003-07-01

    Vehicle system health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint effort by NASA Ames and Korteks to develop active "wireless" sensors that can be embedded in the thermal protection system to monitor subsurface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuits to enable non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 25-mm square integrated circuit and can communicate through 7 to 10 cm thickness of thermal protection materials.

  6. Computational Fluid Dynamics in Aerospace Industry in India

    Directory of Open Access Journals (Sweden)

    K. P. Singh

    2010-10-01

    Full Text Available The role of computational fluid dynamics (CFD in the design of fighter aircraft, transport aircraft, launch vehicle and missiles in India is explained. Indigenous developments of grid generators, 3-D Euler and Navier-Stokes solvers using state-of-the-art numerical techniques and physical models have been described. Applications of these indigenous softwares for the prediction of various complex aerodynamic flows over a wide range of Mach number, angle of attacks, are presented. Emergence of CFD methods as an efficient tool for aerospace vehicle design is highlighted.Defence Science Journal, 2010, 60(6, pp.639-652, DOI:http://dx.doi.org/10.14429/dsj.60.582

  7. An overview of Ball Aerospace cryogen storage and delivery systems

    Science.gov (United States)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  8. Nanotechnology research for aerospace applications

    Science.gov (United States)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  9. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  10. The 42nd Aerospace Mechanism Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  11. Aerospace Power Technology for Potential Terrestrial Applications

    Science.gov (United States)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  12. iSTEM: The Aerospace Engineering Challenge

    Science.gov (United States)

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  13. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  14. Self-Aware Aerospace Vehicle Contingency Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, with Agent Oriented Software, proposes to develop a contingency management system that dynamically performs decision-making based on both...

  15. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  16. Energy Storage for Aerospace Applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  17. Prediction of three sigma maximum dispersed density for aerospace applications

    Science.gov (United States)

    Charles, Terri L.; Nitschke, Michael D.

    1993-01-01

    Free molecular heating (FMH) is caused by the transfer of energy during collisions between the upper atmosphere molecules and a space vehicle. The dispersed free molecular heating on a surface is an important constraint for space vehicle thermal analyses since it can be a significant source of heating. To reduce FMH to a spacecraft, the parking orbit is often designed to a higher altitude at the expense of payload capability. Dispersed FMH is a function of both space vehicle velocity and atmospheric density, however, the space vehicle velocity variations are insignificant when compared to the atmospheric density variations. The density of the upper atmosphere molecules is a function of altitude, but also varies with other environmental factors, such as solar activity, geomagnetic activity, location, and time. A method has been developed to predict three sigma maximum dispersed density for up to 15 years into the future. This method uses a state-of-the-art atmospheric density code, MSIS 86, along with 50 years of solar data, NASA and NOAA solar activity predictions for the next 15 years, and an Aerospace Corporation correlation to account for density code inaccuracies to generate dispersed maximum density ratios denoted as 'K-factors'. The calculated K-factors can be used on a mission unique basis to calculate dispersed density, and hence dispersed free molecular heating rates. These more accurate K-factors can allow lower parking orbit altitudes, resulting in increased payload capability.

  18. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  19. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  20. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  1. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  2. Aerospace Grade Carbon Felt Preform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Materials, Inc. (FMI) will develop an aerospace-grade carbon felt preform by employing application specific materials with effective processes and fabrication...

  3. Use of airborne vehicles as research platforms

    OpenAIRE

    Gratton, GB

    2012-01-01

    This is the accepted version of the following chapter: Gratton, G. 2012. Use of Airborne Vehicles as Research Platforms. Encyclopedia of Aerospace Engineering, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae604/full. Copyright @ John Wiley & Sons 2012.

  4. Probability and Statistics in Aerospace Engineering

    Science.gov (United States)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  5. The aerospace technology serving to the environment

    OpenAIRE

    Roman-Gonzalez, Avid

    2012-01-01

    Biodiversity is an issue that is now the focus of many social debates linked to the man-environment interaction and its direct impact on environmental management. In that sense, aerospace technology plays an important role. This article presents a general review of environmental factors to be taken into account and should be monitored for take the better decision in the interest of preserving our ecosystem. We also discuss how the aerospace technology through different satellites, help effect...

  6. Rhythm Disturbances in the Aerospace Medicine

    OpenAIRE

    Yıldız, Mustafa

    2013-01-01

    A number of rhythm disorders such as sinus arrhythmia, premature ventricular contractions, premature atrial contractions and sinus bradycardia and heart rate alterations may be seen under +Gz. The shift in autonomic balance may lead to alterations in cardiac rhythm and heart rate. The significance of these rhythm disturbances is not yet fully understood. In this manuscript the rhythm disturbances in the aerospace medicine were reviewed.Key Words: Aerospace medicine; rhythm disturbances; gravity

  7. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  8. Optimal control with aerospace applications

    CERN Document Server

    Longuski, James M; Prussing, John E

    2014-01-01

    Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...

  9. Aerospace Technology Innovation. Volume 10

    Science.gov (United States)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  10. Studies in automatic speech recognition and its application in aerospace

    Science.gov (United States)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  11. Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications

    Science.gov (United States)

    Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.

    2014-03-01

    The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  12. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  13. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  14. The National Aero-Space Plane, the guidance and control engineer's dream or nightmare?

    Science.gov (United States)

    Sanchez, Felix

    Major technical challenges associated with the National Aerospace Plane (NASP) Program are discussed, including the ones viewed from a controls perspective. Design and engineering challenges encountered in the propulsion system, the structural material selection, and the computational fluid dynamic mechanisms to predict Mach 8+ regimes, are briefly discussed. Emphasis is put on those significant challenges in the guidance and control fields relating to vehicle management systems, integrated propulsion/flight control, optimal vehicle trajectory control, and challenges in the associated fields on instrumentation and information systems. An insight into the complexity of the problem is provided, and the importance of guidance and control in future NASP achievements is highlighted.

  15. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  16. Mobile Computing for Aerospace Applications

    Science.gov (United States)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  17. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    Science.gov (United States)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  18. Performance and technological feasibility of rocket powered HTHL-SSTO with take-off assist (aerospace plane/ekranoplane)

    Science.gov (United States)

    Tomita, Nobuyuki; Nebylov, Alexander V.; Sokolov, Victor V.; Ohkami, Yoshiaki

    It might be said that it is common understanding that rocket-powered single stage to orbit (SSTO) aerospace planes will become feasible with near-term technology as described in [1] (Koelle, D. E. Survey and comparison of winged launch vehicle options, ISTS 94-g-11 V 1994) and [2] (Bekey, I. Why SSTO rocket launch vehicles are now feasible and practical, IAF-94-V.1.524 1994). Among two methods of launching aerospace planes into orbit, vertical take-off (VT) and horizontal take-off (HT), it seems that VT takes the lead from HT [1, 2]. The decision for the X-33 program by NASA, also, seems to favor VT. In retrospect, almost all of the launch vehicles in the past have been VT, mainly because VT solved the problem of exit from atmosphere to space. However, broadening the range of requirements for space transportation systems from military to commercial and unmanned to manned seems to favor the need for HT. In this paper, the authors are going to prove that aerospace plane/ekranoplane system, which is a reusable launch vehicle system based on the HT concept, with ekranoplane as a take-off and possibly, landing assist, could be competitive with the VT concept from both technological and economical view points. Ekranoplane is a wing-in-ground-effect craft (WIG), which moves at a speed of approximately 0.5 M, carrying heavy loads above the sea surface. Combination of high initial velocity and high performance tri-propellant engine for aerospace plane makes it possible to configure an aerospace plane which is competitive with VT. Other specific features of HT in comparison with VT are discussed.

  19. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    Science.gov (United States)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  20. Flight-vehicle structures education in the US: Assessment and recommendations

    Science.gov (United States)

    Noor, Ahmed K.

    1987-01-01

    An assessment is made of the technical contents of flight-vehicle structures curricula at 41 U.S. universities with accredited aerospace engineering programs. The assessment is based on the technical needs for new and projected aeronautical and space systems as well as on the likely characteristics of the aerospace engineering work environment. A number of deficiencies and areas of concern are identified and recommendations are presented for enhancing the effectiveness of flight-vehicle structures education. A number of government supported programs that can help aerospace engineering education are listed in the appendix.

  1. Flight-vehicle structures education in the United States Assessment and recommendations

    Science.gov (United States)

    Noor, Ahmed K.; Dixon, S. C.

    1987-01-01

    An assessment is made of the technical contents of flight-vehicle structures curricula at 41 U.S. universities with accredited aerospace engineering programs. The assessment is based on the technical needs for the new and projected aeronautical and space systems as well as on the likely characteristics of the aerospace engineering work environment. A number of deficiencies and areas of concern are identified and recommendations are presented for enhancing the effectiveness of flight-vehicle structures education. A number of government supported programs that can help aerospace engineering education are listed in the appendix.

  2. Aerospace Environmental Technology Conference: Exectutive summary

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  3. Former Virginia Tech Aerospace and Ocean Engineering Department Head Dies

    OpenAIRE

    Gilbert, Karen

    2003-01-01

    James B. Eades, Jr., retired aerospace research scientist from Bluefield, W. Wa., and former professor and department head of aerospace and ocean engineering at Virginia Tech, died Dec. 14 at Veteran's Hospital in Washington, D.C. He was 80.

  4. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  5. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  6. Computational Design of Ageless Structural Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crack initiation and propagation is a dominant failure mode for many materials and applications – usually managed via damage tolerance approaches." ...

  7. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-06-19

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel (ASAP). DATES: Friday, July 12, 2013, 09:00-10:00 a.m.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and...

  8. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-10-04

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 22, 2010, 12:30 p.m. to 2 p.m... 77058. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel...

  9. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2012-06-26

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 20, 2012, 11:30 a.m. to 12:30 p.m. EDT... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  10. 76 FR 2923 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-01-18

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, February 4, 2011, 11:30 a.m. to 1:30 p.m... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  11. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-09-20

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 12, 2012, 12:00 p.m. to 1:00 p.m.... FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  12. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and... Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of the Federal Advisory... of the NASA Aerospace Safety Advisory Panel is in the public interest in connection with...

  13. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-06-28

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 16, 2010, 1 p.m. to 3 p.m. ADDRESSES... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  14. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-01-12

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, January 27, 2012, Time 11 a.m.-12:30 p.m... CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics...

  15. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-10-07

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 21, 2011, 12:30 to 2 p.m. Central.... FOR FURTHER INFORMATION CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel...

  16. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-06-23

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 15, 2011, 10 a.m. to 12 p.m. ADDRESSES... INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National...

  17. 75 FR 19662 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-04-15

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, April 30, 2010, 12:30 p.m. to 2:30 p.m... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  18. 78 FR 57903 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2013-09-20

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the Aerospace... the Aerospace Safety Advisory Panel is in the public interest in connection with the performance...

  19. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2011-04-06

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, April 29, 2011, from 11 p.m. to 1 p.m..., FL 32899. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel...

  20. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2013-03-13

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Wednesday April 3, 2013, 11:00 a.m. to 12:00 p.m..., Greenbelt, MD 20771-0001. FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety...

  1. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-01-08

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. ] DATES: Friday, January 25, 2013, 10:00 a.m. to 11:00 a.m... CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  2. Aerospace Competitiveness: UK, US and Europe

    OpenAIRE

    Derek Braddon; Keith Hartley

    2005-01-01

    This paper assesses the UK aerospace industry’s competitiveness. Various statistical indicators are used to measure competitiveness, based on published data at the industry and firm level. The indicators include productivity, output, firm size, development time-scales, labour hoarding, exports and profitability.

  3. The mechanochemical processing of aerospace metals

    OpenAIRE

    Froes, F. H.; Trindade, B

    2004-01-01

    The status of mechanochemical processing of aerospace metals (aluminum and titanium) is reviewed. It is demonstrated that the activation of chemical reactions by mechanical energy can lead to many interesting applications including production of advanced materials with novel constitutional and microstructural effects leading to enhanced mechanical properties.

  4. Spacecraft and their Boosters. Aerospace Education I.

    Science.gov (United States)

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  5. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  6. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... connectivity, mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology...... and governing the flow of data among them. In pervasive computing, composing services is, however, not the whole story. To fully realize their potential, applications must also deal with challenges such as device heterogeneity, context awareness, openendedness, and resilience to dynamism in network...

  7. Automation technology for aerospace power management

    Science.gov (United States)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  8. IT Data Mining Tool Uses in Aerospace

    Science.gov (United States)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  9. CORPORATE MULTICULTURALISM IN THE GLOBAL AEROSPACE INDUSTRY

    OpenAIRE

    Kaskel, Danielle

    2010-01-01

    International aerospace corporations have recently witnessed a rapid growth in the pace of globalization. Increasing global sales, international acquisitions, and production outsourcing to other countries are activities that highlight the critical necessity of effectively conducting business between culturally diverse stakeholders. An awareness of the ways in which culture defines who we are and how that affects interaction with others is crucial to international business success. Geert Hofs...

  10. Towards open innovation practices in aerospace industry

    OpenAIRE

    Parida, Vinit; Larsson, Tobias; Isaksson, Ola; Oghazi, Pejvak

    2011-01-01

    Across industrial settings and environmental conditions, innovation is viewed as a source of advancing firms’ competitive position. Recently, a shift has been witnessed from the traditional innovation model, which mainly focused on internal research and development (R&D) towards open innovation. In this study, we have attempted to study if this approach is suitable for the regular, more mature industry by focusing the context of aerospace industry. The study involves a single case company...

  11. Integrated aerospace technologies in precision agriculture support

    International Nuclear Information System (INIS)

    In a scenery where agriculture plays a more and more 'decisive and strategic role, the spread, in that sector, of aerospace and advanced robotic technology, more and more' accessible, meets the needs of basing decisions on integrated information, not only for increase production, but also to ensure food quality 'to the world population, minimizing the environmental impacts and climatic problems, and enhancing biodiversity'.

  12. Integration of pyrotechnics into aerospace systems

    Science.gov (United States)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  13. Virginia Tech's "Liberty" Wins NASA's Revolutionary Vehicles Competition

    OpenAIRE

    Crumbley, Liz

    2003-01-01

    "The Liberty"--an electrically powered, hydrogen-fueled, twin-prop, corporate air taxi aircraft designed by undergraduate aerospace and industrial engineering students from Virginia Tech and Loughborough University in the United Kingdom--has won first place in the NASA Revolutionary Vehicles Concepts and Systems Competition.

  14. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  15. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; Hall, G.

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  16. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    Science.gov (United States)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  17. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    Science.gov (United States)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  18. Puncture Self-Healing Polymers for Aerospace Applications

    Science.gov (United States)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  19. Open Access Publishing in Aerospace – Opportunities and Pitfalls

    OpenAIRE

    Scholz, Dieter

    2013-01-01

    The first Open Access (OA) peer reviewed online journals in aerospace were all established after 2007. Still today more and more OA aerospace journals get started. Many publishers are located in less developed countries. The benefits of OA publishing are undisputed in the academic community, but there is disagreement if the new publishers can work to required standards. The current situation is evaluated based on an Internet review. OA journals in aerospace are listed with their major charact...

  20. "Fly-by-Wireless" Vehicles and Evaluations of ISA 100 Applications to Space-Flight

    Science.gov (United States)

    Studor, George F.

    2009-01-01

    "Fly-by-Wireless" (What is it?) Vision: To minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus Areas: 1. System Engineering and Integration to reduce cables and connectors. 2. Provisions for modularity and accessibility in the vehicle architecture. 3. Develop Alternatives to wired connectivity (the "tool box").NASA and Aerospace depend more and more on cost-effective solutions that can meet our requirements. ISA-100.11 a is a promising new standard and NASA wants to evaluate it. NASA should be involved in understanding and contributing to other ISA-100 efforts that contribute to "Fly-by-Wireless" and it's objectives. ISA can engage other aerospace groups that are working on similar goals and obtain more aerospace industry perspective.

  1. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  2. High Performing, Low Temperature Operating, Long Lifetime, Aerospace Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to synthesize, characterize, and test new ionic liquids and formulations as lubricants for aerospace applications. The...

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  4. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    Science.gov (United States)

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  5. Computational composite mechanics for aerospace propulsion structures

    Science.gov (United States)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  6. Aerospace technology and commercial nuclear power

    International Nuclear Information System (INIS)

    The objective of the workshop conference upon which this report is based was to compare the technologies, institutions, and procedures of the aerospace and commercial nuclear power industries, to seek commonalities and contrasts, and to identify the most promising avenues for beneficial transfer of information, technology, and procedures between the two industries. Seven working groups convened at the conference to meet this objective. Their general conclusions are presented. The working group topics included: powerplant deseign; plant safety and operations; powerplant control technology and integration; plant facility construction and standardization; economic and financial analyses; public awareness and understanding; and management of nuclear waste and spent fuel

  7. Fiber optic smart structures for aerospace applications

    Science.gov (United States)

    Udd, Eric

    Fiber optic smart structures as applied to aerospace platforms are reviewed. Emphasis is placed on advantages of these structures which include weight saving for equivalent performance, immunity to electromagnetic interference, the ability to multiplex a number of fiber optic sensors along a single line, the inherent high bandwidth of fiber optic sensors and the data links supporting them, the ability to perform in extremely hostile environments at high temperatures, vibration, and shock loadings. It is concluded that fiber optic smart structures have a considerable potential to enhance the value of future aircraft and spacecraft through improved reliability, maintainability, and flight performance augmentation.

  8. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  9. Chemical Microsensor Development for Aerospace Applications

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  10. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  11. Pathways and Challenges to Innovation in Aerospace

    Science.gov (United States)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  12. State of the Art and Trends in Vehicle Concept Development with Focus on Battery Technology

    OpenAIRE

    Klötzke, Matthias; Frieske, Benjamin

    2013-01-01

    The German Aerospace Center’s (DLR) Institute of Vehicle Concepts (Stuttgart, Germany) is carrying out an in-depth monitoring of key technologies in the field of electric mobility. Besides the state-of-the-art, also international trends in vehicle concept as well as key technology development are part of the analysis. Thus, an extensive vehicle concept database is being designed to investigate all electrified passenger cars and technologies used over the last 10 years. Besides serie...

  13. Electromagnetic Wave Propagation In The Plasma Layer of A Reentry Vehicle

    CERN Document Server

    Kundrapu, Madhusudhan; Beckwith, Kris; Stoltz, Peter; Shashurin, Alexey; Keidar, Michael

    2014-01-01

    The ability to simulate a reentry vehicle plasma layer and the radio wave interaction with that layer, is crucial to the design of aerospace vehicles when the analysis of radio communication blackout is required. Results of aerothermal heating, plasma generation and electromagnetic wave propagation over a reentry vehicle are presented in this paper. Simulation of a magnetic window radio communication blackout mitigation method is successfully demonstrated.

  14. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Science.gov (United States)

    2011-09-22

    ... Canadian aerospace OEMs for U.S. Companies. 16:00-16:30 Mission Debriefing at Hotel. Program End... applicants will be evaluated on their ability to satisfy the selection criteria as outlined below. This... U.S. suppliers of aerospace products the opportunity to meet with key potential customers such...

  15. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  16. 32 CFR 705.30 - Aerospace Education Workshop.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... institutions sponsoring the workshop program: Provided, That such support does not interfere with the...

  17. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-04-26

    ...: 76 FR 19147, Notice Number 11-030, April 6, 2011. SUMMARY: The National Aeronautics and Space... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... Aerospace Safety Advisory Panel (ASAP) to take place on April 29, 2011, at the Kennedy Space Center, FL....

  18. Current Trends in Aerospace Engineering Education on Taiwan.

    Science.gov (United States)

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,…

  19. 77 FR 75908 - Airworthiness Directives; Gulfstream Aerospace Corporation

    Science.gov (United States)

    2012-12-26

    ... Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska... Aerospace Corporation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aerospace Corporation Model GV and GV-SP airplanes. This proposed AD was prompted by reports of two...

  20. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-02-09

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Wednesday, February 24, 2010, 12:30 p.m. to 2:30 p... Center Visitor's Center to gain access.) ] FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon,...

  1. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-04-30

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, May 25, 2012, 10:00-11:00 a.m. CST... Visitor Control Center to gain access.) FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers,...

  2. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  3. 76 FR 26316 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-05-06

    ...: 76 FR 23339, Notice Number 11-043, dated April 26, 2011; and 76 FR 19147, Notice Number 11-030, dated... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... Federal Register of April 26, 2011, announcing a meeting of the Aerospace Safety Advisory Panel (ASAP)...

  4. Developing IVHM Requirements for Aerospace Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within...

  5. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  7. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  9. Weakly ionized plasmas in aerospace applications

    International Nuclear Information System (INIS)

    This paper is an overview of the activity and state-of-the-art in the field of plasma aerospace applications. Both experimental results and theoretical ideas are analysed. Principal attention is focused on understanding the physical mechanisms of the plasma effect on hypersonic aerodynamics. In particular, it is shown that drag reduction can be achieved using a proper distribution of heat sources around a flying body. Estimates of the energetic efficiency of the thermal mechanism of aerodynamic drag reduction are presented. The non-thermal effect caused by the interaction of a plasma flow with a magnetic field is also analysed. Specifically, it is shown that appropriate spatial distribution of volumetric forces around a hypersonic body allows for complete elimination of shock wave generation. It should be noted that in an ideal case, shock waves could be eliminated without energy consumption

  10. Artificial Immune System Approaches for Aerospace Applications

    Science.gov (United States)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  11. Study on the evaluation of aerospace microelectronic industry

    Institute of Scientific and Technical Information of China (English)

    江帆; 陈荣秋

    2004-01-01

    Aerospace microelectronic technology has become the core competence of aerospace technology. For evaluating the aerospace microelectronic industry, it is necessary to change descriptive language of goal to quantitative index that can be measured. Knowing quantified goals or tree structure and array of general goal system, with certain algorithm and processing each corresponding list or array, we can bring out a quantified general goal value. The multi-objective (multi-attribute) evaluation method and the relevant weight sum algorithm have been adopted to quantitatively evaluate and forecast the developing state of the industry. A practical example illustrates that the applied decision technique and the algorithm are feasible and effective.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    Science.gov (United States)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  14. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  15. Robotic vehicle

    Science.gov (United States)

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  16. Risk communication strategy development using the aerospace systems engineering process

    Science.gov (United States)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  17. The electronic transfer of information and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  18. Applications of aerospace technology to petroleum extraction and reservoir engineering

    Science.gov (United States)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; Owen, W. A.

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  19. Displaced Capital: A Study of Aerospace Plant Closings

    OpenAIRE

    Valerie A. Ramey; Shapiro, Matthew D.

    2001-01-01

    Using equipment-level data from aerospace plants that closed during the 1990s, this paper studies the process of moving installed physical capital to a new use. The analysis yields three results that suggest significant sectoral specificity of physical capital and substantial costs of redeploying the capital. First, other aerospace companies are overrepresented among buyers of the used capital relative to their representation in the market for new investment goods. Second, even after age-rela...

  20. Maintenance applications of augmented reality for the Chinese aerospace industry

    OpenAIRE

    Ou, Peng

    2011-01-01

    Since augmented reality has not reached full maturity in use, it is not widely adopted within the aerospace industry. According to the literature review, minimal research efforts have been conducted to assess the cost-benefit or cost- effectiveness of augmented reality so far. Moreover, to the best of researcher’s knowledge, no research has been carried out to develop a systematic process for selecting and implementing augmented reality within the Chinese aerospace industry....

  1. A review of multifunctional structure technology for aerospace applications

    Science.gov (United States)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  2. The European aerospace R&D collaboration network

    OpenAIRE

    Guffarth, Daniel; Barber, Michael J.

    2013-01-01

    We describe the development of the European aerospace R&D collaboration network from 1987 to 2013 with the help of the publicly available raw data of the European Framework Programmes and the German Förderkatalog. In line with the sectoral innovation system approach, we describe the evolution of the aerospace R&D network on three levels. First, based on their thematic categories, all projects are inspected and the development of technology used over time is described. Second, the composition ...

  3. Human performance in aerospace environments: The search for psychological determinants

    Science.gov (United States)

    Helmreich, Robert L.; Wilhelm, John A.

    1987-01-01

    A program of research into the psychological determinants of individual and crew performance in aerospace environments is described. Constellations of personality factors influencing behavior in demanding environments are discussed. Relationships between attitudes and performance and attitudes and personality are also reported. The efficacy of training in interpersonal relations as a means of changing attitudes and behavior is explored along with the influence of personality on attitude change processes. Finally, approaches to measuring group behavior in aerospace settings are described.

  4. Lessons learned from modal testing of aerospace structures

    Science.gov (United States)

    Hunt, David L.; Brillhart, Ralph D.

    1993-02-01

    The primary factors affecting the accuracy and the time required to perform modal tests on aerospace structures are discussed, and the lessons learned from modal tests performed over the past 15 yrs are examined. Case histories of modal testing on aerospace structures are reviewed, including the Galileo satellite and the Space Shuttle solid rocket motor and test stand. Currently recommended approaches to the modal testing are addressed.

  5. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  6. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  7. Smart electronics and MEMS for aerospace structures

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-09-01

    In this paper, smart electronics and MEMS are employed to sense and control the drag in aircraft structures. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer. They in turn are mounted onto an ultra thin Penn State's novel RF antenna (Patent field). The sensor are designed to measure both pressure and shear of the fluid flow on aerospace structures. The wave form measurements may be monitored at a remote location either at the cockpit or elsewhere via the antennas in the sensors and an outside antenna. The integrated MEMS actuators which comprise of cantilever-, diaphram- and microbridge-based MEMS with suitable smart electronics etched onto the structure are controlled by the built-in antennas through feedback and feedforward control architecture. The integration of such materials and smart electronics into the skin of airfoil is ideal for sensing and controlling drag. The basic idea of this concept involves detection of the point of transition from laminar to turbulent flow and transmitting acoustical energy into the boundary layer so that the low energy fluid particles accelerate in the transverse direction and mix with the high energy flow outside of the boundary layer. 3D microriblets can be fabricated using stereo lithography and UV curable conducting polymers. The control of drag using these active microriblets are outlined.

  8. An integrated analytic tool and knowledge-based system approach to aerospace electric power system control

    Science.gov (United States)

    Owens, William R.; Henderson, Eric; Gandikota, Kapal

    1986-10-01

    Future aerospace electric power systems require new control methods because of increasing power system complexity, demands for power system management, greater system size and heightened reliability requirements. To meet these requirements, a combination of electric power system analytic tools and knowledge-based systems is proposed. The continual improvement in microelectronic performance has made it possible to envision the application of sophisticated electric power system analysis tools to aerospace vehicles. These tools have been successfully used in the measurement and control of large terrestrial electric power systems. Among these tools is state estimation which has three main benefits. The estimator builds a reliable database for the system structure and states. Security assessment and contingency evaluation also require a state estimator. Finally, the estimator will, combined with modern control theory, improve power system control and stability. Bad data detection as an adjunct to state estimation identifies defective sensors and communications channels. Validated data from the analytic tools is supplied to a number of knowledge-based systems. These systems will be responsible for the control, protection, and optimization of the electric power system.

  9. Additive Manufacturing Enabled Ubiquitous Sensing in Aerospace and Integrated Building Systems

    Science.gov (United States)

    Mantese, Joseph

    2015-03-01

    Ubiquitous sensing is rapidly emerging as a means for globally optimizing systems of systems by providing both real time PHM (prognostics, diagnostics, and health monitoring), as well as expanded in-the-loop control. In closed or proprietary systems, such as in aerospace vehicles and life safety or security building systems; wireless signals and power must be supplied to a sensor network via single or multiple data concentrators in an architecture that ensures reliable/secure interconnectivity. In addition, such networks must be robust to environmental factors, including: corrosion, EMI/RFI, and thermal/mechanical variations. In this talk, we describe the use of additive manufacturing processes guided by physics based models for seamlessly embedding a sensor suite into aerospace and building system components; while maintaining their structural integrity and providing wireless power, sensor interrogation, and real-time diagnostics. We detail this approach as it specifically applies to industrial gas turbines for stationary land power. This work is supported through a grant from the National Energy Technology Laboratory (NETL), a division of the Department of Energy.

  10. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  11. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    Science.gov (United States)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  12. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  13. Association of Demographic Variables versus Frequency of Use of Aerospace Gateways: A Survey of Aerospace Scientists and Engineers of Bangalore

    OpenAIRE

    R Guruprasad; Marimuthu, P.

    2013-01-01

    Gateway is a network point that acts as an entrance to another network. They are broadly classified into (a) Library Gateways or (b) Subject Specific Gateways (vortals). These Gateways contain enormous web resources that have been thoroughly evaluated and its quality of information checked by respective subject experts. A research survey was undertaken to ascertain the „Association of Demographic Variables versus the Frequency of Usage of Aerospace Gateways‟ amongst the aerospace scientists a...

  14. Medical guidelines for space passengers. Aerospace Medical Association Task Force on Space Travel.

    Science.gov (United States)

    2001-10-01

    In the foreseeable future, private companies will manufacture space vehicles with a capacity of transporting tourists into low Earth orbit. Because of the stresses of spaceflight, the effects of microgravity, and limited medical care capability, a system of medical clearance is highly recommended for these space tourists. It is our purpose to establish guidelines for use by private businesses, medical providers, and those planning on being a space tourist. Consequently, a Task Force was organized by the Aerospace Medical Association (AsMA) for the purpose of facilitating safety of passengers, fellow passengers, crew, and flight operations. The guidelines are meant to serve only as a template with the full expectation that exceptions might be made with appropriate rationale. PMID:11601561

  15. Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications

    Science.gov (United States)

    Hardy, Terry L.

    1994-01-01

    Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  17. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  18. Integrated Vehicle Health Management in the Automotive Industry

    OpenAIRE

    Holland, Steven

    2010-01-01

    The time has come to port integrated vehicle health management concepts originally pioneered in aerospace and other domains into the automotive industry. ï‚· The successful automotive manufacturer must remain highly customer-focused to ensure delivery of high value at an affordable price. ï‚· IVHM success will require partnering between the automotive manufacturer, its suppliers, as well as external technology providers located in private industry, academia and governmental labs ...on a globa...

  19. Note on Modern Trends in Heavy Vehicle Electrical Electronic systems

    Directory of Open Access Journals (Sweden)

    B. S. Sastry

    1982-04-01

    Full Text Available The paper presents an overview of some of the aerospace control systems that are being successfully adopted in the field of Armoured Fighting Vehicles. An automatic electronic transmission controller for an epicyclic gear box with a torque converter to select the forward and reverse speeds in a sequential logic has been developed. Transducers developed for monitoring various engine and transmission parameters are being used for Electronic Fuel Injection (EFI, variable valve timings and electronic governing.

  20. Radiation curing of composites for vehicle component and vehicle manufacture

    International Nuclear Information System (INIS)

    Some traditional uses of metals in vehicle component and vehicle manufacture, such as steel (specific gravity 7.8) or aluminum (specific gravity 2.7), can be replaced by carbon-fiber composites (specific gravity 1.6) to provide significant weight savings while maintaining structural integrity. The aerospace and aircraft industries have adopted this approach. The auto or motor vehicle industries have explored the use of composites, but have been reluctant to widely adopt this technology because of concerns over manufacturing processes. A typical steel auto body weighing ∼ 750 kilos would weigh only ∼ 155 kilos if replaced with carbon-fiber composites. Structural members, as the vehicle chassis, could also be fabricated out of carbon-fiber composites. With only 20% of the body weight, smaller, lower horse-power and more fuel efficient engines could be used to power such vehicles. Commercial aircraft manufacturers that have adopted carbon-fiber structures in lieu of aluminum (a 40% weight savings) estimate a 20% savings in fuel costs for large planes. These are still made with conventional materials being used for motors, tires, interiors, and the like. A fuel efficient auto now running at ∼ 10 kilometers/liter would more than double its fuel efficiency given the nearly 80% weight savings attainable by use of carbon-fiber composites just for the vehicle body. As with aircraft, conventional systems for propulsion (motors), braking, tires and interiors could still be used. Radiation curing can simplify the manufacture of carbon-fiber composite vehicle components. Highly penetrating X-rays derived from high current, high energy electron beam (EB) accelerators can be used to cure structural composites while they are constrained within inexpensive molds; thus reducing cure cycles, eliminating heat transfer concerns and concerns over potentially hazardous emissions during the curing process. Since X-rays can penetrate mold walls, the curing process is quite versatile

  1. A standardized diode cryogenic temperature sensor for aerospace applications

    Science.gov (United States)

    Courts, Samuel Scott

    2016-03-01

    The model DT-670-SD cryogenic diode temperature sensor, manufactured by Lake Shore Cryotronics, Inc. has been used on numerous aerospace space missions since its introduction nearly 15 years ago. While the sensing element is a diode, it is operated in a non-standard manner when used as a temperature sensor over the 1.4-500 K temperature range. For this reason, the NASA and MIL-type test and performance standards designed to ensure high reliability of diode aerospace parts don't properly define the inspection and test protocol for the DT-670-SD temperature sensor as written. This requires each aerospace application to develop unique test and inspection protocols for the project, typically for a small number of sensors, resulting in expensive sensors with a long lead time. With over 30 years of experience in supplying cryogenic temperature sensors for aerospace applications, Lake Shore has developed screening and qualification inspection and test protocols to provide "commercial off-the-shelf (COTS)" DT-670-SD temperature sensors that should meet the requirements of most high-reliability applications including aerospace. Parts from acceptance and qualified lots will be available at a base sensor level with the ability to specify an interchangeability tolerance, calibration range, mounting adaptor, and/or lead extension for final configuration. This work presents details of this acceptance and qualification inspection and test protocol as well as performance characteristics of the DT-670-SD cryogenic temperature sensors when inspected and tested to this protocol.

  2. Green Aerospace Fuels from Nonpetroleum Sources

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; DeLaRee, Ana B.; Zubrin, Robert; Berggren, Mark; Hensel, Joseph D.; Kimble, Michael C.

    2011-01-01

    Efforts to produce green aerospace propellants from nonpetroleum sources are outlined. The paper begins with an overview of feedstock processing and relevant small molecule or C1 chemistry. Gas-to-liquid technologies, notably Fischer-Tropsch (FT) processing of synthesis gas (CO and H2), are being optimized to enhance the fraction of product stream relevant to aviation (and other transportation) fuels at the NASA Glenn Research Center (GRC). Efforts to produce optimized catalysts are described. Given the high cost of space launch, the recycling of human metabolic and plastic wastes to reduce the need to transport consumables to orbit to support the crew of a space station has long been recognized as a high priority. If the much larger costs of transporting consumables to the Moon or beyond are taken into account, the importance of developing waste recycling systems becomes still more imperative. One promising way to transform organic waste products into useful gases is steam reformation; this well-known technology is currently being optimized by a Colorado company for exploration and planetary surface operations. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs. A technology that has successfully demonstrated production of fuels and related chemicals from waste plastics developed in Northeast Ohio is described. Technologies being developed by a Massachusetts company to remove sulfur impurities are highlighted. Common issues and concerns for nonpetroleum fuel production are emphasized. Energy utilization is a concern for production of fuels whether a terrestrial operation or on the lunar (or Martian) surface; the term green relates to not only mitigating excess carbon release but also to the efficiency of grid-energy usage. For space exploration, energy efficiency can be an essential concern. Other issues of great concern include minimizing

  3. Aerospace Applications Of High Temperature Superconductivity

    Science.gov (United States)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  4. Non-traditional Machining Techniques for Fabricating Metal Aerospace Filters

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Zhu Di; D.M.Allen; H.J.A.Almondb

    2008-01-01

    Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods such as stamping, drilling and milling,many new approaches have been widely used in filter-manufacturing practices on account of their increased processing abilities. However, the restrictions on costs, the need for studying under stricter conditions such as in aggressive fluids, the complicity in design, the workability of materials, and others have made it difficult to choose a satisfactory method from the newly developed processes, such as,photochemical machining (PCM), photo electroforming (PEF) and laser beam machining (LBM) to produce small, inexpensive, lightweight aerospace filters. This article appraises the technical and economical viability of PCM, PEF, and LBM to help engineers choose the fittest approach to turn out aerospace filters.

  5. Seal Technology for Hypersonic Vehicle and Propulsion: An Overview

    Science.gov (United States)

    Steinetz, Bruce M.

    2008-01-01

    Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.

  6. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  7. Value-leverage by Aerospace Original Equipment Manufacturers

    OpenAIRE

    Beelaerts van Blokland, W.W.A.

    2010-01-01

    With the creation of new aircraft products; Embraer E-170/190, Dassault 7X, Airbus A380 and Boeing B787, aerospace original equipment manufacturers (OEMs) involve suppliers not only with the co-production of aircraft sub systems, but also with the entire development of sub systems, like fuselage and wings. Hence, the value to create and produce aircraft tends to shift for a major part from the OEM towards the suppliers. In fact, the aerospace OEM levers value on suppliers for the creation of ...

  8. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    Science.gov (United States)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  9. Study on the control mechanism of China aerospace enterprises' binary multinational operation

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Li Hanling; Wu Weiwei

    2008-01-01

    China's aerospace enterprises carry on the multinational operation and participate in the international competition and the international division of labor and cooperation positively.This article first analyzs China aerospace enterprises' binary multinational business control objective and constructes its model.Then the article analyzes the tangible and intangible control mechanism of China aerospace enterprises' binary multinational operation respectively.Finally,the article constructs the model of China aerospace enterprises' binary multinational operation mechanisms.

  10. Radiation curing of composites for vehicle component and vehicle manufacture

    International Nuclear Information System (INIS)

    Some ordinary uses of metals in vehicle components and vehicle manufacture, such as steel (specific gravity 7.8) or aluminum (specific gravity 2.7), can be replaced by carbon fiber composites (specific gravity 1.6) to provide significant weight savings while still maintaining structural integrity. The aircraft and aerospace industries have adopted this concept. The motor vehicle industry is using composite materials for some nonstructural components in automobiles, but have been reluctant to widely adopt this technology because of concerns about thermal curing times and other issues in high-volume manufacturing processes. A typical steel auto body weighing ∼750 kilograms would weigh only ∼155 kilograms if replaced with carbon fiber composites. Structural members, such as the vehicle chassis and body frame, could also be made out of carbon fiber composites. With only 20% of the typical body weight, smaller, lighter, less powerful and more fuel efficient engines could be used in such vehicles. Commercial aircraft manufacturers have adopted large carbon fiber structures in lieu of aluminum for a 40% weight reduction and estimate a 20% savings in fuel costs for large planes. These aircraft still use conventional materials for motors, tires and interior components. The fuel efficiency of an automobile could be doubled with an 80% weight reduction. As with aircraft, conventional motors, tires and interior components could be used in automobiles. Radiation curing can simplify the manufacture of carbon fiber composites. Penetrating X-rays generated with high-energy, high-power electron beam (EB) accelerators can cure structural composites while they are constrained within inexpensive molds; thus reducing cure times, eliminating heat transfer concerns and potentially hazardous volatile emissions during the curing process. Since X-rays can penetrate mold walls, the curing process is quite versatile, enabling diverse components with varying designs to be cured using a

  11. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    Science.gov (United States)

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key points,…

  12. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-12-23

    ..., Houston, TX 77058. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Aerospace Safety Advisory Panel... full name and company affiliation (if applicable) to Ms. Marian Norris at mnorris@nasa.gov by January... 5-minutes in length. To do so, members of the public must contact Ms. Marian Norris at...

  13. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities a

  14. Research and Development of Rapid Design Systems for Aerospace Structure

    Science.gov (United States)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  15. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Science.gov (United States)

    2011-01-11

    ... for high returns given these factors and the ongoing support of USCS Canada. Commercial Setting Canada..., May 2 8:00-8:30 Mission welcoming remarks by Consul General/SCO & Mission Logistics Briefing. 8:30-9..., engage in networking activities and visit key Canadian aerospace OEM plants such as Bombardier....

  16. Personality and organizational influences on aerospace human performance

    Science.gov (United States)

    Helmreich, Robert L.

    1989-01-01

    Individual and organizational influences on performance in aerospace environments are discussed. A model of personality with demonstrated validity is described along with reasons why personality's effects on performance have been underestimated. Organizational forces including intergroup conflict and coercive pressures are also described. It is suggested that basic and applied research in analog situations is needed to provide necessary guidance for planning future space missions.

  17. Value-leverage by Aerospace Original Equipment Manufacturers

    NARCIS (Netherlands)

    Beelaerts van Blokland, W.W.A.

    2010-01-01

    With the creation of new aircraft products; Embraer E-170/190, Dassault 7X, Airbus A380 and Boeing B787, aerospace original equipment manufacturers (OEMs) involve suppliers not only with the co-production of aircraft sub systems, but also with the entire development of sub systems, like fuselage and

  18. Guidelines for the Procurement of Aerospace Nickel Cadmium Cells

    Science.gov (United States)

    Thierfelder, Helmut

    1997-01-01

    NASA has been using a Modular Power System containing "standard" nickel cadmium (NiCd) batteries, composed of "standard" NiCd cells. For many years the only manufacturer of the NASA "standard" NiCd cells was General Electric Co. (subsequently Gates Aerospace and now SAFT). This standard cell was successfully used in numerous missions. However, uncontrolled technical changes, and changes in industrial restructuring require a new approach. General Electric (now SAFT Aerospace Batteries) had management changes, new manufacturers entered the market (Eagle-Picher Industries, ACME Electric Corporation, Aerospace Division, Sanyo Electric Co.) and battery technology advanced. New NASA procurements for aerospace NiCd cells will have specifications unique to the spacecraft and mission requirements. This document provides the user/customer guidelines for the new approach to procuring of and specifying performance requirements for highly reliable NiCd cells and batteries. It includes details of key parameters and their importance. The appendices contain a checklist, detailed calculations, and backup information.

  19. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 474

    Science.gov (United States)

    1998-01-01

    This bibliography lists reports, articles and other documents recently introduced into the NASA scientific and technical information database. Subject coverage includes: Aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life and flightcrew behavior and performance.

  20. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  1. 75 FR 28547 - Aerospace Supplier Mission to Russia

    Science.gov (United States)

    2010-05-21

    ... with prospective agents, distributors and end-users in Russia's aerospace market. Participating U.S...,798 3,841 Imports from the U.S 513 597 694 The Russian aviation industry remains an important... corporation established in 2006, spearheads the development of the national aviation industry. In 2009,...

  2. Aerospace medicine and biology. A continuing bibliography with indexes

    International Nuclear Information System (INIS)

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

  3. Computer Architecture. (Latest Citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning research and development in the field of computer architecture. Design of computer systems, microcomputer components, and digital networks are among the topics discussed. Multimicroprocessor system performance, software development, and aerospace avionics applications are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  4. Human Requirements of Flight. Aviation and Spaceflight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, one in the series on Aerospace Education III, deals with the general nature of human physiology during space flights. Chapter 1 begins with a brief discussion of the nature of the atmosphere. Other topics examined in this chapter include respiration and circulation, principles and problems of vision, noise and vibration, and…

  5. Cosmeceutical vehicles.

    Science.gov (United States)

    Epstein, Howard

    2009-01-01

    Consumers will pay a premium for high-performance skin and hair care products. The demand exists, and in return for the high cost, consumers expect the product to perform as claimed and to meet aesthetic standards beyond many products found in the mass market. To be successful in this highly competitive market, products must function as claimed or consumers will not repurchase. Effective contemporary high-end products must be properly formulated in nonirritating vehicles that consumers will perceive as elegant. PMID:19695476

  6. Development of a conceptual flight vehicle design weight estimation method library and documentation

    Science.gov (United States)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    Science.gov (United States)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  9. Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    Science.gov (United States)

    Fuerstenau, D. W.; Huang, P.; Ravikumar, R.

    1997-01-01

    The objective of this research was two-fold: first, to identify and test inorganic water-repellent materials that would be hydrophobic even after thermal cycling to temperatures above 600 C and, second, to develop a model that would link hydrophobicity of a material to the chemical properties of its constituent atoms. Four different materials were selected for detailed experimental study, namely, boron nitride, talc, molybdenite, and pyrophyllite, all of which have a layered structure made up of ionic/covalent bonds within the layers but with van der Waals bonds between the layers. The materials tested could be considered hydrophobic for a nonporous surface but none of the observed contact angles exceeded the necessary 90 degrees required for water repellency of porous materials. Boron nitride and talc were observed to retain their water-repellency when heated in air to temperatures that did not exceed 800 C, and molybdenite was found to be retain its hydrophobicity when heated to temperatures up to 600 C. For these three materials, oxidation and decomposition were identified to be the main cause for the breakdown of water repellency after repeated thermal cycling. Pyrophyllite shows the maximum promise as a potential water-repellent inorganic material, which, when treated initially at 900 C, retained its shape and remained hydrophobic for two thermal cycles where the maximum retreatment temperature is 900 C. A model was developed for predicting materials that might exhibit hydrophobicity by linking two chemical properties, namely, that the constituent ions of the compound belong to the soft acid-base category and that the fractional ionic character of the bonds be less than about 20 percent.

  10. A Cooperative Program of Research and Education in Aerospace Vehicle Mechanics

    Science.gov (United States)

    Whitesides, John L.

    2005-01-01

    Since its inception in January 2003, the program has provided support for 1 faculty, 1 research scientist. 1 research assistant, and a total of 7 Graduate Research Scholar Assistants, of these all 7 have gram. The program has generated 4 MS thesis. Attachment: Appendix A, B, C, and D.

  11. Aeroelastic/Aeroservoelastic Uncertainty and Reliability of Advanced Aerospace Vehicles in Flight and Ground Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ASSURE - Aeroelastic / Aeroservoelastic (AE/ASE) Uncertainty and Reliability Engineering capability - is a set of probabilistic computer programs for isolating...

  12. Model predictions of latitude-dependent ozone depletion due to aerospace vehicle operations

    Science.gov (United States)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Riegel, C. A.; Maples, A. L.; Capone, L. A.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  13. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  14. U.S. Aerospace and Aviation Industry: A State-By-State Analysis

    Science.gov (United States)

    2002-01-01

    President George W. Bush and the Congress created the Commission on the Future of the United States Aerospace Industry to evaluate the current and future health of the industry as well as the challenges that lie ahead for the U.S. workforce and the economy. To accomplish our mission, we commissioned a study on the economic impact of the aerospace industry nationally and on a state-by-state basis, using the best available U.S. government data. This study sought to define the core of the aerospace industry. The resulting data represents that very core those jobs specifically tied to commercial and civilian aerospace. U.S. Aerospace and Aviation: A State-by-State Analysis examines the civilian and commercial aerospace and aviation industry by employment, wages, payroll, and establishments. The report found that the U.S. civilian and commercial aerospace and aviation industry employed over 2 million workers in 2001.

  15. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al2CuMg (S-phase) and the CuAl2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  16. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 476

    Science.gov (United States)

    1998-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1998-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  17. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 475

    Science.gov (United States)

    1998-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  18. Wear Characteristics of Oleophobic Coatings in Aerospace Applications

    Science.gov (United States)

    Shams, Hamza; Basit, Kanza

    2016-05-01

    This paper investigates the wear characteristics of oleophobic coatings when applied over Inconel 718, which has widespread applications in the aerospace industry. Coatings once applied were selectively exposed to controlled uni-and then multi-directional stand storm conditions. Size and speed of sand particles colliding with the work surface were carefully moderated to simulate sand storm conditions. Study of friction was performed using Lateral Force Microscopy (LFM) coupled with standard optical microscopy. The analysis has been used to devise a coefficient of friction value and in turn suggest wear behavior of the coated surface including the time associated with exposure of the base substrate. The analysis after validation aims to suggest methods for safe usage of these coatings for aerospace applications.

  19. Complex monitoring of aerospace and mountain environment at Beo Mussala

    International Nuclear Information System (INIS)

    The mission of BEO Moussala is the observing, complex monitoring and studies of global change processes, aerospace and mountain environment, natural hazards and technological risks. BEO Moussala is the focal point of the BEO Centre of Excellence established and promoted in the framework of FP5 project HIMONTONET essentially improving its research capacities in frame of the FP6 project BEOBAL. The basic fields of current and future activities and studies at BEO Moussala are: global change, aerospace and mountain environment, natural hazards and technological risks and not at least development, design and enhancement of measurement devices and systems. The basic parameters and characteristics of the new measuring facilities are given and discussed from the point of view of the requirements of Global Atmospheric Watch (GAW) and Global Change Programs

  20. 7th International symposium on NDT in aerospace 2015

    International Nuclear Information System (INIS)

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  1. Applications of aerospace technology in the public interest: Pollution measurement

    Science.gov (United States)

    Heins, C. F.; Johnson, F. D.

    1974-01-01

    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included.

  2. High performance sealing - meeting nuclear and aerospace requirements

    International Nuclear Information System (INIS)

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  3. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems. DESCRIPTION: The Vehicle Development Laboratory is...

  4. Ultrahigh temperature ceramics for aerospace and solar energy applications

    OpenAIRE

    Sciti, Diletta; Silvestroni, Laura; Guicciardi, Stefano; Bellosi, Alida

    2011-01-01

    Borides and carbides of early transition metals are considered a class of promising materials for several applications, the most appealing ones being in the aerospace and energy sectors. Beside the well known characteristics that make UHTCs attractive as TPS, there is a strong interest in their applications as sunlight absorbers for solar concentrating systems that can operate in the high temperature regime. The first part of this work is focused on toughening of UHTCs, which is a crucial iss...

  5. Hydrogen Re-Embrittlement of Aerospace grade High Strength Steels

    OpenAIRE

    Valentini, R.; Colombo, C.; De Sanctis, M.; G. Lovicu

    2012-01-01

    Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tes...

  6. Measurement of Baseline and Orientation between Distributed Aerospace Platforms

    OpenAIRE

    Wen-Qin Wang

    2013-01-01

    Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging app...

  7. Local and national impact of aerospace research and technology

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1981-01-01

    An overview of work at the NASA Lewis Research Center in the areas of aeronautics space, and energy is presented. Local and national impact of the work is discussed. Some aspects of the U.S. research and technology base, the aerospace industry, and foreign competition are discussed. In conclusion, U.S. research and technology programs are cited as vital to U.S. economic health.

  8. New lidar systems at the German Aerospace Center

    OpenAIRE

    Kaifler, Bernd; Kaifler, Natalie; Büdenbender, Christian; Witschas, Benjamin; Gomez Kabelka, Pau; Rapp, Markus; Mahnke, Peter; Sauder, Daniel; Geyer, Gerhard; Speiser, Jochen

    2015-01-01

    This work gives an overview of the lower-, middle and upper atmosphere lidar projects at the German Aerospace Center (DLR). The Temperature Lidar for Middle Atmosphere research (TELMA) is a combined sodium/Rayleigh/Brillouin-lidar integrated into an 8-foot container. It will provide temperature profiles with high temporal and spatial resolution from near ground level up to approximately 110 km altitude. The lidar system is designed for remote/autonomous operation. First observations with the...

  9. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    OpenAIRE

    Laura Fortunato; Serena Lettera; Mariangela Lazoi; Angelo Corallo; Giovanni Pietro Guidone

    2011-01-01

    The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and ...

  10. Hydrogen Re-Embrittlement of Aerospace grade High Strength Steels

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2012-07-01

    Full Text Available Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tested steels.

  11. Output Feedback M-MRAC Backstepping With Aerospace Applications

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  12. Blowdown Wind Tunnels: Latest Citations from the Aerospace Database

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, and performance of blowdown wind tunnels. The use of compressed gas, mechanical piston, or combustion exhaust to provide continuous or short-duration operation from transonic to hypersonic approach velocities is discussed. Also covered are invasive and non-invasive aerothermodynamic instrumentation, data acquisition and reduction techniques, and test reports on aerospace components. Comprehensive coverage of wind tunnel force balancing systems and supersonic wind tunnels are covered in separate bibliographies.

  13. First international conference on nonlinear problems in aviation and aerospace

    International Nuclear Information System (INIS)

    The International Conference on Nonlinear Problems in Aviation and Aerospace was held at Embry-Riddle Aeronautical University, Daytona Beach, Florida on May 9-11, 1996. This conference was sponsored by the International Federation of Nonlinear Analysts, International Federation of Information Processing, and Embry-Riddle Aeronautical University. Over one hundred engineers, scientists, and mathematicians from seventeen countries attended. These proceedings include keynote addresses, invited lectures, and contributed papers presented during the conference

  14. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  15. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    Science.gov (United States)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  16. Multiple regression analyses in the prediction of aerospace instrument costs

    Science.gov (United States)

    Tran, Linh

    The aerospace industry has been investing for decades in ways to improve its efficiency in estimating the project life cycle cost (LCC). One of the major focuses in the LCC is the cost/prediction of aerospace instruments done during the early conceptual design phase of the project. The accuracy of early cost predictions affects the project scheduling and funding, and it is often the major cause for project cost overruns. The prediction of instruments' cost is based on the statistical analysis of these independent variables: Mass (kg), Power (watts), Instrument Type, Technology Readiness Level (TRL), Destination: earth orbiting or planetary, Data rates (kbps), Number of bands, Number of channels, Design life (months), and Development duration (months). This author is proposing a cost prediction approach of aerospace instruments based on these statistical analyses: Clustering Analysis, Principle Components Analysis (PCA), Bootstrap, and multiple regressions (both linear and non-linear). In the proposed approach, the Cost Estimating Relationship (CER) will be developed for the dependent variable Instrument Cost by using a combination of multiple independent variables. "The Full Model" will be developed and executed to estimate the full set of nine variables. The SAS program, Excel, Automatic Cost Estimating Integrate Tool (ACEIT) and Minitab are the tools to aid the analysis. Through the analysis, the cost drivers will be identified which will help develop an ultimate cost estimating software tool for the Instrument Cost prediction and optimization of future missions.

  17. Resource Management and Contingencies in Aerospace Concurrent Engineering

    Science.gov (United States)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  19. Selected aspects of the supply chain management in the aerospace industry

    Directory of Open Access Journals (Sweden)

    Ivan KOBLEN

    2013-03-01

    Full Text Available The paper in the introductory part underlines some factors concerning the aerospace supply chain management (SCM issue. Authors inform on selected definitions in this topic, levels of supply chain and its maturity. The authors are focusing on introducing of the explanation of main specifics of SCM in aerospace industry (original equipment manufacturer, processes and requirements for the suppliers selection and subsequently inform on the role and mission of selected international organizations involved in aerospace SCM and quality issues, namely The Aerospace and Defence Industries Association of Europe (ASD, International Aerospace Quality Group (IAQG and European Aerospace Quality Group (EAQG. The information on Quality Management System in the framework of aerospace industry and SCM are also introduced. The part of paper is dealing with information systems useful in the SCM (the Digital Product Chain and Enterprise Resource Planning. The last part of paper is focused on issue concerning the success factors for SCM in the aerospace industry. In the conclusion part the authors emphasize some aspects and factors regarding the aerospace SCM and summarize the key challenges in the area of SCM in the aerospace industry.

  20. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  3. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  5. Prioritization of R&D projects in the aerospace sector: AHP method with ratings

    OpenAIRE

    Mischel Carmen N. Belderrain; Francisco Carlos M. Pantoja; Amanda C. Simões da Silva

    2010-01-01

    The prioritization of R&D projects in the Aerospace Sector is considered a complex problem because it involves qualitative and quantitative issues that are frequently conflicting. This paper aimed to apply the AHP (Analytic Hierarchy Process) method with ratings to select projects of R&D in a Brazilian aerospace institution, Department of Science and Aerospace Technology (DCTA). The results showed that using ratings is appropriate when there is a great quantity of projects, since it reduces t...

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  7. Capacitance-based damage detection sensing for aerospace structural composites

    Science.gov (United States)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  8. Graphite fiber reinforced glass matrix composites for aerospace applications

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  9. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 483

    Science.gov (United States)

    1999-01-01

    Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  10. Domestic applications for aerospace waste and water management technologies

    Science.gov (United States)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  11. Calculation of hybrid joints used in modern aerospace structures

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2011-12-01

    Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.

  12. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    Science.gov (United States)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  13. Standard Practice for Liquid Sampling of Noncryogenic Aerospace Propellants

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice covers procedures for obtaining a sample of noncryogenic aerospace propellant. Two procedures are covered as follows: Procedure 1Closed System (Section 6), and Procedure 2Open-End Procedure (Section 7). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For hazard statements see Sections 4 and 5.

  14. Review of NASA programs in applying aerospace technology to energy

    Science.gov (United States)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  15. A generic operational simulation for early design civil unmanned aerial vehicles

    OpenAIRE

    Schumann, Benjamin; Scanlan, James; Takeda, Kenji

    2011-01-01

    Contemporary aerospace programmes often suffer from large cost overruns, delivery delays and inferior product quality. This is caused in part by poor predictive quality of the early design phase processes with regards to the operational environment of a product. This paper develops the idea of a generic operational simulation that can help designers to rigorously analyse and test their early product concepts. The simulation focusses on civil Unmanned Air Vehicle products and missions to keep ...

  16. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    OpenAIRE

    Osorio-G??mez, Gilberto; Mej??a-Guti??rrez, Ricardo; Su??rez-Casta??eda, Nicol??s; Gil-Herrera, Ana; Barrera-Vel??squez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel -- Solar competition vehicles are some of these challenging PV applications -- The design of such solar arrays needs to consider efficiency eval...

  17. Modeling, Simulation and Control System Design for Civil Unmanned Aerial Vehicle (UAV)

    OpenAIRE

    Bagheri, Shahriar

    2014-01-01

    Unmanned aerial systems have been widely used for variety of civilian applications over the past few years. Some of these applications require accurate guidance and control. Consequently, Unmanned Aerial Vehicle (UAV) guidance and control attracted many researchers in both control theory and aerospace engineering. Flying wings, as a particular type of UAV, are considered to have one of the most efficient aerodynamic structures. It is however difficult to design robust controller for such syst...

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  19. Proceedings of the 40th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Littlefield, Alan C.; Mueller, Robert P.; Boesiger, Edward A. (Editor)

    2010-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration

  20. L-C Measurement Acquisition Method for Aerospace Systems

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  1. The use of aerospace methods for forest state assessment.

    Science.gov (United States)

    Isaev, A S

    1988-01-01

    Siberian forests occupy a significant part of the Asian continent. Their role as an essential component of the Earth's surface, biomass and oxygen producer is increasing annually. Expanded reproduction of taiga forests necessitated by the intensive development of Siberian productive forces, results in an evergrowing need of forest productivity constancy and increase. Proper forest exploitation is a crucial part of the solution of such important problems as the rational use of land and water resources, stable crop yields, and the creation of favourable conditions for human life.To solve these important economic problems, the Siberian branch of the USSR Academy of Sciences has devised a long-term programme of ecological monitoring of Siberian forest resources using aerospace techniques. The programme provides for the establishment and improvement of ecogeographical and physicotechnological principles of the remote sensing of forests and the development of fundamental forest-biological research based on new methodologies, the results of which are used to solve urgent forestry and nature protection problems. The research is carried out in the following major directions: studying spectral characteristics of forest vegetation for forest-state indication; thematic mapping of taiga territories; assessing biological productivity of natural complexes; environmental state monitoring; fire protection of forests; pest and disease control; developin instruments and methods for automatized aerospace data processing for real-time use.We consider forest-state monitoring to be one of the crucial tools in providing the optimum use of forest ecosystems for resource and ecological functions. PMID:24248966

  2. Life assessment of aerospace structure using damage tolerance

    International Nuclear Information System (INIS)

    Damage Tolerant Design plays a major role in the Aerospace Industry not only in the design of new structures and components but also their ongoing maintenance and support. Damage Tolerance Analysis (DT A) is a procedure that defines whether a crack can be sustained safely during the projected service life of the structure. Using this methodology, service life of an aerospace structure can be determined and may be extended by applying proper tooling and machining for repair. In this research the effect of damage increment on the convergence of the residual strength is investigated for a wing component of an aircraft. The stresses redistribution with damage growth is discussed. Simulation using Linear Elastic Fracture Mechanics (LEFM) laws are performed, those results the damage scenarios to be assessed in the real structural geometry and loading environment, using Stress Intensity Factors, Critical Crack Sizes and the Residual Strength of that component. Fatigue crack growth behaviour of the component is also investigated experimentally. The fatigue experiments were performed under constant stress amplitude loadings and constant amplitude loading with single overload. It has been observed that the computed fatigue curves fit well with the experimental results. (author)

  3. Virtual Testbed Aerospace Operations Center (VT-AOC)

    Science.gov (United States)

    Dunaway, Bradley; Broadstock, Tom

    2003-09-01

    The Air Force is conducting research in new technologies for next-generation Aerospace Operations Centers (AOCs). The Virtual Testbed Aerospace Operations Center (VT-AOC) will support advanced research in information technologies that operate in or are closely tied to AOCs. The VT-AOC will provide a context for developing, demonstrating, and testing new processes and tools in a realistic environment. To generate the environment, the VT-AOC will incorporate multiple mixed-resolution simulations that are capable of driving existing and future AOC command and control (C2) systems. The VT-AOC will provide the capability to capture existing or proposed C2 processes and then evaluate them operating in conjunction with new technologies. The VT-AOC will also be capable of connecting with other facilities to support increasingly more complex experiments and demonstrations. Together, these capabilities support key initiatives such as Agile Research and Development/Science and Technology (R&D/S&T), Predictive Battlespace Awareness, and Effects-Based Operations.

  4. The use of β titanium alloys in the aerospace industry

    Science.gov (United States)

    Boyer, R. R.; Briggs, R. D.

    2005-12-01

    Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications.

  5. Green Vehicle Guide

    Science.gov (United States)

    ... Alternative fuels Advanced gas and diesel vehicles Explaining EVs and PHEVs Hydrogen fuel cell vehicles GHG emissions ... gas emissions Routes to a lower GHG transportation future What if: Ideas for reducing transportation GHG We' ...

  6. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    NARCIS (Netherlands)

    Zhu, G.

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upp

  7. Dominant supply chain co-ordination strategies in the Dutch aerospace industry

    NARCIS (Netherlands)

    Voordijk, Hans; Meijboom, Bert

    2005-01-01

    Purpose – Firms in the aerospace industry face considerable pressure to improve co-ordination in their supply chains. The major question of the present study is what supply chain co-ordination strategies are dominant in the Dutch aerospace industry given the market environment of this industry? De

  8. 77 FR 3739 - Executive-led Aerospace and Defense Industry Trade Mission to Turkey-Notification

    Science.gov (United States)

    2012-01-25

    ... International Trade Administration Executive-led Aerospace and Defense Industry Trade Mission to Turkey... and Istanbul December 3-7, 2012. This mission will be led by a Senior Commerce Department official... All parties interested in participating in the Executive-led U.S.- Turkey Aerospace/Defense...

  9. Rakesh K. Kapania named Norris and Laura Mitchell Professor of Aerospace Engineering

    OpenAIRE

    Crumbley, Liz

    2008-01-01

    Rakesh K. Kapania, a professor in the Department of Aerospace and Ocean Engineering in the College of Engineering at Virginia Tech, was appointed the Norris and Laura Mitchell Professor of Aerospace Engineering by the Virginia Tech Board of Visitors during the board's quarterly meeting March 31.

  10. The Effect of Online Systems Analysis Training on Aerospace Industry Business Performance: A Qualitative Study

    Science.gov (United States)

    Burk, Erlan

    2012-01-01

    Aerospace companies needed additional research on technology-based training to verify expectations when enhancing human capital through online systems analysis training. The research for online systems analysis training provided aerospace companies a means to verify expectations for systems analysis technology-based training on business…

  11. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Science.gov (United States)

    2011-07-13

    ... interaction of control systems and structures. The usual deterministic approach to defining the loads envelope... Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction... special conditions are issued for the Gulfstream Aerospace LP (GALP) Model G250 airplane. This...

  12. 76 FR 55347 - Aerospace Executive Service Trade Mission at Singapore Air Show

    Science.gov (United States)

    2011-09-07

    ... AESTM hotel and Singapore Air Show; Pre-scheduled meetings with potential partners, distributors, and... International Trade Administration Aerospace Executive Service Trade Mission at Singapore Air Show AGENCY... organizing an Aerospace Executive Service Trade Mission (AESTM) to Singapore in conjunction with...

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 21: US aerospace industry librarians and technical information specialists as information intermediaries: Results of the phase 2 survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  2. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  3. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  4. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  5. An Overview of Performance Characteristics, Experiences and Trends of Aerospace Engine Bearings Technologies

    Institute of Scientific and Technical Information of China (English)

    Ebert Franz-Josef

    2007-01-01

    In this paper, the operating conditions, technical requirements, performance characteristics, design ideas, application experiences and development trends of aerospace engine bearings, including material technology, integration design and reliability, are reviewed. The development history of aerospace engine bearing is recalled briefly at first. Then today's material technologies and the high bearing performances of the bearings obtained through the new materials are introduced, which play important rolls in the aeroengine bearing developments. The integration design ideas and practices are explained to indicate its significant advantages and importance to the aerospace engine bearings. And the reliability of the shaft-bearing system is pointed out and treated as the key requirement with goals for both engine and bearing. Finally, as it is believed that the correct design comes from practice, the pre-qualification rig testing conducted by FAG Aerospace GmbH & Co. KG is briefly illustrated as an example. All these lead to the development trends of aerospace engine bearings from different aspects.

  6. Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    Science.gov (United States)

    Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola

    2005-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.

  7. Identification of Vehicle Health Assurance Related Trends

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Evans, Joni K.; Barr, Lawrence C.; Leone, Karen M.; Reveley, Mary S.

    2014-01-01

    Trend analysis in aviation as related to vehicle health management (VHM) was performed by reviewing the most current statistical and prognostics data available from the National Transportation Safety Board (NTSB) accident, the Federal Aviation Administration (FAA) incident, and the NASA Aviation Safety Reporting System (ASRS) incident datasets. In addition, future directions in aviation technology related to VHM research areas were assessed through the Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementations (SERFIs), the National Transportation Safety Board (NTSB) Most-Wanted List and recent open safety recommendations, the National Research Council (NRC) Decadal Survey of Civil Aeronautics, and the Future Aviation Safety Team (FAST) areas of change. Future research direction in the VHM research areas is evidently strong as seen from recent research solicitations from the Naval Air Systems Command (NAVAIR), and VHM-related technologies actively being developed by aviation industry leaders, including GE, Boeing, Airbus, and UTC Aerospace Systems. Given the highly complex VHM systems, modifications can be made in the future so that the Vehicle Systems Safety Technology Project (VSST) technical challenges address inadequate maintenance crew's trainings and skills, and the certification methods of such systems as recommended by the NTSB, NRC, and FAST areas of change.

  8. Hypersonic drone vehicle design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  9. Cooperative robotic sentry vehicles

    Science.gov (United States)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul; Eisler, G. R.; Caprihan, Rahul

    1999-08-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing and testing the feasibility of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform a surround task. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rovers' (RATLER), a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. For the surround task, both potential field and A* search path planners have been added to the base-station and vehicles. At the base-station, the operator specifies goal and exclusion regions on a GIS map. The path planner generates vehicles paths that are previewed by the operator. Once the operator has validated the path, the appropriate information is downloaded t the vehicles. For the potential field path planner, the polygons and line segments that represent the obstacles and goals are downloaded to the vehicles, instead of the simulated paths. On board the vehicles, the same potential field path planner generates the path except that it uses the true location of itself and the nearest neighboring vehicle. For the A* path planner, the actual path is downloaded to the vehicles because of limited on-board computational power.

  10. Implementation of magnetohydrodynamic energy bypass process for hypersonic vehicles

    Science.gov (United States)

    Lee, Ying Ming; Czysz, Paul A.; Bruno, Claudio

    2004-08-01

    The global political structure has changed dramatically since the breakup of the former Soviet Union, and world changes have caused the United States to reprioritize its national hypersonic needs. The US Government has looked at the needs of the future, and the hypersonic aerospace plane is one of the systems included in alternative force structures. One hypersonic aerospace plane concept would involve magnetohydrodynamic (MHD) technology (i.e., the AJAX hypersonic flight vehicle concept) originally proposed by Russian scientist Vladimir Fraishtadt. This paper reports on the current progress and findings of an air-breathing horizontal takeoff and landing design concept using an MHD energy bypass injector ramjet engine being studied at MSE Technology Applications, Inc., HyperTech Concepts, and several universities for the National Aeronautics and Space Administration Langley Research Center under a Phase II Small Business Innovation Research project. The areas that are addressed in this paper include: (1) ionization required to achieve the required energy bypass, (2) utilization of a nonequilibrium model to calculate nonequilibrium engine ionization conditions, (3) hydrocarbon fuel reforming, and (4) vehicle performance and sizing. A quasi-onedimensional electromagnetic code combined with a new scramjet model, as well as other tools, were used to examine total system performance.

  11. VEHICLE FOR SLAVE ROBOT

    Science.gov (United States)

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  12. A Knowledge-Based System Developer for aerospace applications

    Science.gov (United States)

    Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.

    1993-01-01

    A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.

  13. Standard Test Method for Environmental Resistance of Aerospace Transparencies

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers determination of the effects of exposure to thermal shock, condensing humidity, and simulated weather on aerospace transparent enclosures. 1.2 This test method is not recommended for quality control nor is it intended to provide a correlation to actual service life. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3.1 Exceptions—Certain inch-pound units are furnished in parentheses (not mandatory) and certain temperatures in Fahrenheit associated with other standards are also furnished. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Mishap risk control for advanced aerospace/composite materials

    Science.gov (United States)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  15. Production Strategies for Production-Quality Parts for Aerospace Applications

    Science.gov (United States)

    Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.

  16. Finite element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  17. Finite-element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  18. Development and Processing Improvement of Aerospace Aluminum Alloys

    Science.gov (United States)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  19. Standard Practice for Preparation of Aerospace Contamination Control Plans

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to assist in the preparation of formal plans for contamination control, especially of aerospace critical surfaces. Requirements may be established at the systems level, either by the customer or the systems integrator, or at the subsystem level. Subsystem requirements may be imposed by the responsible subsystem supplier or they may be flowed down from the systems organization (4.7). The extent of detail and level of cleanliness required can vary with the particular application and type of hardware being built, but all aspects of contamination control must be included in a final plan. Therefore, each of the following elements must be considered for inclusion in a contamination control plan (CCP): 1.1.1 Cleanliness requirements for deliverable hardware addressing particulate, molecular, or biological contaminants or combination thereof. Specify contamination limits and any budget allocations. 1.1.2 Implementation plans to achieve, verify, and maintain the specified cleanliness re...

  20. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  1. Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Andersen, Bernhard H.; Benson, Thomas J.

    1987-01-01

    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.

  2. Intercalated graphite fiber composites as EMI shields in aerospace structures

    Science.gov (United States)

    Gaier, James R.

    1992-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are more complicated than those for ground structures because of their weight limitations. As a result, the best EMI shielding materials must combine low density, high strength, and high elastic modulus with high shielding ability. EMI shielding characteristics were calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compare to preliminary experimental results for these materials and to the characteristics of shields made from aluminum. Calculations indicate that effective EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding characteristics alone.

  3. Artificial intelligence - New tools for aerospace project managers

    Science.gov (United States)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  4. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  5. Progress in patch repair of aerospace composite structures

    Science.gov (United States)

    Hou, Weiguo; Zhang, Weifang; Tang, Qingyun

    2012-04-01

    With the rapid application of the composite structure in the aerospace industry, more load-bearing structures and components are used with composites instead of conventional engineering materials. However, the composite structures are inevitably suffered damages in the complex environment, the composites structures repair become more important in the airplane maintenance. This paper describes the composites patch repair progress. Firstly, the flaws and damages concerned to composite structures are concluded, and also the repair principles are presented. Secondly, the advantages and disadvantages for different repair methods are analyzed, as well as the different bonded repair and their applicability to different structures is discussed. According the recent research in theory and experiment, the scarf repair effects under different parameters are analyzed. Finally, the failure mechanisms of repair structure are discussed, and some prospects are put forward.

  6. Posture metrology for aerospace camera in the assembly of spacecraft

    Science.gov (United States)

    Yang, ZaiHua; Yang, Song; Wan, Bile; Pan, Tingyao; Long, Changyu

    2016-01-01

    During the spacecraft assembly process, the posture of the aerospace camera to the spacecraft coordinate system needs to be measured precisely, because the posture data are very important for the earth observing. In order to measure the angles between the camera optical axis and the spacecraft coordinate system's three axes x, y, z, a measurement scheme was designed. The scheme was based on the principle of space intersection measurement with theodolites. Three thodolites were used to respectively collimate the camera axis and two faces of a base cube. Then, through aiming at each other, a measurement network was built. Finally, the posture of the camera was measured. The error analysis and measurement experiments showed that the precision can reach 6″. This method has been used in the assembly of satellite GF-2 with satisfactory results.

  7. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  8. Total quality management - It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  9. Development of lightweight structural health monitoring systems for aerospace applications

    Science.gov (United States)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  10. Reliability-based design optimization of multiphysics, aerospace systems

    Science.gov (United States)

    Allen, Matthew R.

    Aerospace systems are inherently plagued by uncertainties in their design, fabrication, and operation. Safety factors and expensive testing at the prototype level traditionally account for these uncertainties. Reliability-based design optimization (RBDO) can drastically decrease life-cycle development costs by accounting for the stochastic nature of the system response in the design process. The reduction in cost is amplified for conceptually new designs, for which no accepted safety factors currently exist. Aerospace systems often operate in environments dominated by multiphysics phenomena, such as the fluid-structure interaction of aeroelastic wings or the electrostatic-mechanical interaction of sensors and actuators. The analysis of such phenomena is generally complex and computationally expensive, and therefore is usually simplified or approximated in the design process. However, this leads to significant epistemic uncertainties in modeling, which may dominate the uncertainties for which the reliability analysis was intended. Therefore, the goal of this thesis is to present a RBDO framework that utilizes high-fidelity simulation techniques to minimize the modeling error for multiphysics phenomena. A key component of the framework is an extended reduced order modeling (EROM) technique that can analyze various states in the design or uncertainty parameter space at a reduced computational cost, while retaining characteristics of high-fidelity methods. The computational framework is verified and applied to the RBDO of aeroelastic systems and electrostatically driven sensors and actuators, utilizing steady-state analysis and design criteria. The framework is also applied to the design of electrostatic devices with transient criteria, which requires the use of the EROM technique to overcome the computational burden of multiple transient analyses.

  11. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  12. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  13. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    Science.gov (United States)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  14. The Vehicle Ecosystem

    Science.gov (United States)

    Kuschel, Jonas

    Ubiquitous computing in the vehicle industry has primarily focused on sensor data serving different ubiquitous on-board services (e.g., crash detection, antilock brake systems, or air conditioning). These services mainly address vehicle drivers while driving. However, in view of the role of vehicles in today's society, it goes without saying that vehicles relate to more than just the driver or occupants; they are part of a larger ecosystem, including traffic participants, authorities, customers and the like. To serve the ecosystem with ubiquitous services based on vehicle sensor data, there is a need for an open information infrastructure that enables service development close to the customer. This paper presents results from a research project on designing such an infrastructure at a major European vehicle manufacturer. Our empirical data shows how the vehicle manufacturer's conceptualization of services disagrees with the needs of vehicle stakeholders in a more comprehensive vehicle ecosystem. In light of this, we discuss the effect on information infrastructure design and introduce the distinction between information infrastructure as product feature and service facilitator. In a more general way, we highlight the importance of information infrastructure to contextualize the vehicle as part of a larger ecosystem and thus support open innovation.

  15. Friction Stir Welding of Metal Matrix Composites for use in aerospace structures

    Science.gov (United States)

    Prater, Tracie

    2014-01-01

    Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and

  16. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  18. Autonomous Underwater Vehicle control

    OpenAIRE

    Vidal Morató, Jordi; Gomáriz Castro, Spartacus; Manuel Lázaro, Antonio

    2005-01-01

    In this paper the system control design stages for an autonomous underwater vehicle are presented. The vehicle must be able to sail on sea surface, following a path without losing its route and once a position is reached, a dive following a perpendicular path to the surface is carried out. A two level system control are proposed. The primary level will control the navigation of the vehicle where a linear controllers are proposed. Whereas in secondary level guidance system, collision system, s...

  19. Semisolid ophthalmic vehicles.

    Science.gov (United States)

    Giannaccini, B; Alderigi, C

    1989-09-01

    The present review is concerned with some essential formulative and therapeutic aspects of semisolid ophthalmic vehicles. The history and the most recent developments of the traditional lipophilic vehicles (ointments) are first outlined. The hydrophilic vehicles (hydrogels) based on synthetic polymers (polyacrylates, PEG, PVA, Pluronics, etc.), semisynthetic polymers (cellulose derivatives) and natural polymers (hyaluronic and polygalacturonic acid, alginates, etc.) are then examined. Some recent formulations of particular type are finally described. PMID:2699716

  20. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  1. Electric Vehicle Propulsion System

    OpenAIRE

    Keshri, Ritesh Kumar

    2014-01-01

    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  2. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  3. Continuous acoustic sensing with an unmanned aerial vehicle system for anti-submarine warfare in a high-threat area

    OpenAIRE

    Cason, Loney R., III

    2015-01-01

    Approved for public release; distribution is unlimited An unmanned aerial vehicle system called the Aqua-Quad, an ultra-long-endurance hybrid design, developed by researchers in the NPS Department of Mechanical and Aerospace Engineering, is utilized in this thesis. The Aqua-Quad has the capability of landing on the ocean surface and deploying passive acoustic sensors at depth. We investigated the employment of the Aqua-Quad in a general environment, determined sea-state survivability, and ...

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 43: The role of information resource training in aerospace education. Expanded version

    Science.gov (United States)

    Lawrence, Barbara; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Holloway, Karen

    1994-01-01

    Information resource instruction for undergraduate aerospace engineering students has traditionally been limited to an occasional part of the education process--a written paper required in the capstone design course or a library tour. Efforts to encourage the use of aerospace literature and information resources have been made in the past decade, with a recent push from information and, especially, networking technology. This paper presents data from a survey of U.S. aerospace engineering students regarding their instruction in the use of information resources. We find that more than 25 percent of the students surveyed had no instruction in technical communications skills or the use of information resources. We consider the need for instruction in the use of information resources and technical communications skills and the opportunities presented for improvement.

  5. Novel Adaptive Fixturing for Thin Walled Aerospace Parts

    International Nuclear Information System (INIS)

    In the aerospace industry the monolithic structures have been introduced to reduce the costs of assembling large numbers of components. The expected benefit of using thin walled monolithic parts is given by a large reduction in the overall manufacturing costs, nevertheless this kind of component encounters a critical phase in fixturing. Fixtures are used to locate and hold workpieces during manufacturing. Because workpiece surface errors and fixture set-up errors (called source errors) always exist, the fixtured workpiece will consequently have position and/or orientation errors (called resultant errors) that will definitely affect the final machining accuracy. Most often the current clamping procedure is not straightforward, it implies several steps and the success of the operation hardly depends by the skill of the human operator. It is estimated that fixturing could constitute 10-20% of the total manufacturing costs, assuming that the fixtures are amortized over relatively small batches. Fixturing devices must satisfy two requisites, which, in some terms, are opposite: - to provide relatively high forces in order to guarantee that the workpiece will be maintained in position under the maximum cutting forces; - to reduce as much as possible strains induced in the workpiece. Limiting the strains induced in the workpiece is crucial because of elastic strain recovery: releasing the clamped workpiece would result in an unwanted final deformation. In this paper a novel adaptive fixturing based on active clamping forces (supplied by piezoelectric actuators) is presented: a real aerospace part case study, - a Nozzle Guide Vane (NGV) -, is introduced, the related problems are identified, and the adopted solutions shown. The proposed adaptive fixturing device can lead to the following advantages: - to perform an automatic errors-free workpiece clamping and then drastically reduce the overall fixturing set up time; - to recover unwanted strains induced to the workpiece, in

  6. Novel Adaptive Fixturing for Thin Walled Aerospace Parts

    Science.gov (United States)

    Merlo, Angelo; Ricciardi, Donato; Salvi, Edoardo; Fantinati, Dario; Iorio, Ernesto

    2011-12-01

    In the aerospace industry the monolithic structures have been introduced to reduce the costs of assembling large numbers of components. The expected benefit of using thin walled monolithic parts is given by a large reduction in the overall manufacturing costs, nevertheless this kind of component encounters a critical phase in fixturing. Fixtures are used to locate and hold workpieces during manufacturing. Because workpiece surface errors and fixture set-up errors (called source errors) always exist, the fixtured workpiece will consequently have position and/or orientation errors (called resultant errors) that will definitely affect the final machining accuracy. Most often the current clamping procedure is not straightforward, it implies several steps and the success of the operation hardly depends by the skill of the human operator. It is estimated that fixturing could constitute 10-20% of the total manufacturing costs, assuming that the fixtures are amortized over relatively small batches. Fixturing devices must satisfy two requisites, which, in some terms, are opposite: to provide relatively high forces in order to guarantee that the workpiece will be maintained in position under the maximum cutting forces to reduce as much as possible strains induced in the workpiece. Limiting the strains induced in the workpiece is crucial because of elastic strain recovery: releasing the clamped workpiece would result in an unwanted final deformation. In this paper a novel adaptive fixturing based on active clamping forces (supplied by piezoelectric actuators) is presented: a real aerospace part case study, - a Nozzle Guide Vane (NGV) -, is introduced, the related problems are identified, and the adopted solutions shown. The proposed adaptive fixturing device can lead to the following advantages: to perform an automatic errors-free workpiece clamping and then drastically reduce the overall fixturing set up time; to recover unwanted strains induced to the workpiece, in order to

  7. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. SUPPL-507

    Science.gov (United States)

    2000-01-01

    This report lists: reports, articles and other documents recently announced in the NASA STI Database. Contents include the following: Life sciences (general), aerospace medicine, behavioral sciences, man/system technology and life support, and exobioligy.

  8. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-11-10

    ... Borfitz, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind...) Air Transport Association (ATA) of America Code 27: Flight controls. Reason (e) The mandatory... method approved by the Manager, International Branch, ANM 116, Transport Airplane Directorate, FAA,...

  9. 75 FR 60721 - Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications

    Science.gov (United States)

    2010-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications AGENCY: International Trade Administration, Department of Commerce. ACTION:...

  10. Appraisal of New Product Development Success Indicators in the Aerospace Industry

    DEFF Research Database (Denmark)

    Kazerouni, Afrooz Moatari; Achiche, Sofiane; Hisarciklilar, Onur;

    2011-01-01

    Assessing performance in developing new aerospace products is essential. However, choosing an accurate set of success indicators to measure the performance of complex products is a non-trivial task. Moreover, the most useful success indicators can change over the life of the product; therefore......, different metrics need to be used at different phases of the product lifecycle (PLC). This paper describes the research undertaken to determine success measurement metrics for new product development (NPD) processes. The goal of this research was to ascertain an appropriate set of metrics used by aerospace...... studies were carried out for 16 Canadian and Danish companies. Seven companies belong to the aerospace sector, while nine are non-aerospace companies that are in the B2B market. The data was gathered from relevant product managers at participating companies. The outcomes of this research indicate that 1...

  11. Current Trends on the Applicability of Ground Aerospace Materials Test Data to Space System Environments

    Science.gov (United States)

    Hirsch, David B.

    2010-01-01

    This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.

  12. Annual activities report of Brazilian Aerospace Technical Center -CTA/IEAv - 1989

    International Nuclear Information System (INIS)

    This document reports the research activities on nuclear physics and reactors physics and engineering in the Brazilian Aerospace Technical Center/Advanced Studies Institute, Sao Paulo State, in the year of 1989

  13. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft...

  14. Hydrophobic Polymers with Adherend Complexing Sidechains as Durable Aerospace Adhesives Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In support of NASA's Aeronautics Research Mission Directorate, NanoSonic would optimize our moisture-resistant aerospace adhesives with in-situ corrosion mitigating...

  15. Three Dimensional Volumetric Terahertz Scanning for Aerospace Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and the aerospace industry are beginning to utilize terahertz (THz) reflection imaging (for example, examining the space shuttle external tank sprayed on foam...

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  17. An introduction to the European Aerospace Industry. Case company: Forza Global Solutions

    OpenAIRE

    Purhonen, Tapio

    2014-01-01

    Forza Global Solutions is a small, growing business that operates in a niche market and constantly looks for new opportunities. This has lead to a commission for a market analysis on European aerospace industry to find out if the commissioner should consider entering the given market and the topics that require a more detailed attention. The objective was to find characteristics and situation of the aerospace manufacturing industry in Europe. The commissioner is based in Mexico and has it...

  18. Selected aspects of the supply chain management in the aerospace industry

    OpenAIRE

    Ivan KOBLEN; Lucia NIŽNÍKOVÁ

    2013-01-01

    The paper in the introductory part underlines some factors concerning the aerospace supply chain management (SCM) issue. Authors inform on selected definitions in this topic, levels of supply chain and its maturity. The authors are focusing on introducing of the explanation of main specifics of SCM in aerospace industry (original equipment manufacturer, processes and requirements for the suppliers selection) and subsequently inform on the role and mission of selected international organizatio...

  19. Network evolution, success, and regional development in the European aerospace industry

    OpenAIRE

    Guffarth, Daniel; Barber, Michael J.

    2014-01-01

    The success breeds success hypothesis has been mainly applied to theoretical network approaches. We investigate the European aerospace industry using data on the European Framework Programmes and on Airbus suppliers, focusing on the success breeds success hypothesis at four levels of analysis: the spatial structure of the European aerospace R&D collaboration network, its topological architecture, the individual actors that make up the network, and through a comparison of the Airbus invention ...

  20. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  1. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Yingqi, Liu; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development of elect...

  2. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  3. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  4. High efficiency pulse tube cryocoolers for aerospace applications

    Science.gov (United States)

    Dang, Haizheng

    2014-01-01

    This paper reviews the recent advances in Stirling-type pulse tube cryocoolers for aerospace applications in the author's group. Due to the special environment featuring the limited power supply and adverse rejection condition, high cooler efficiencies are emphasized and thus the approaches to realize them are stressed. The cold fingers involve three geometries, and designs and optimizations on key dimensional parameters of coaxial and in-line ones for given compressors are discussed and compared. The high performance moving-coil linear compressors are studied, and the optimizations on linear motor and flexure springs are briefly reviewed as examples of studies on the key compressor technologies. The mature single-stage coolers cover 25-200 K with the capacities varying from milliwatt levels to over 30 W, and the high efficiencies at typical temperatures such as 40 K, 60 K, 80 K and 95 K are presented. The two-stage arrangement is becoming another trend to achieve cooling below 25 K and also to simultaneously provide cooling powers at both stages. Some typical development programs are introduced and a brief overview of the data package is updated.

  5. Methods for integrating optical fibers with advanced aerospace materials

    Science.gov (United States)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  6. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  7. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  8. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G. (University of Rhode Island, Kingston, RI); Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter (University of Rhode Island, Kingston, RI)

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  9. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  10. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  11. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  12. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    Laura Fortunato

    2011-10-01

    Full Text Available The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and backgrounds and in this collaborative working environment are called to work together in projects, programs and process. To improve collaboration and support the knowledge sharing, a competencies definition methodology and the related dictionary result useful tools among actors within an extended supply chain. They can use the same terminology and be informed on the competencies available. It becomes easy to specify who knows to do required activities stimulating collaboration and improving communication. Based on an action research developed in the context of the iDesign Foundation project, the paper outlines a competency definition methodology and it presents examples from the implementation in Alenia Aeronautica company. A new definition of competency is suggested supporting by a new method to specify the structural relationship between competencies and activities of aeronautical processes.

  13. Fractographic analysis of tensile failures of aerospace grade composites

    Directory of Open Access Journals (Sweden)

    Masa Suresh Kumar

    2012-12-01

    Full Text Available This paper describes fractographic features observed in aerospace composites failed under tensile loads. Unidirectional Carbon Fibre Reinforced Plastic (UD CFRP and Unidirectional Glass Fibre Reinforced Plastic (UD GFRP composite specimens were fabricated and tested in tension. The morphology of fractured surfaces was studied at various locations to identify failure mechanism and characteristic fractographic features. CFRP composites displayed transverse crack propagation and the fracture surface showed three distinct regions, viz., crack origin, propagation and final failure. Significant variations in the fractographic features were noticed in crack propagation and final failure regions. Crack propagation region exhibited brittle fracture with chevron lines emanating from the crack origin. The entire crack propagation region exhibited radial marks on the individual fibre broken ends. On the other hand, the final fracture region revealed longitudinal matrix splitting and radial marks in majority of locations, and chop marks at some locations. The change in fracture mode in the final fracture was attributed to superimposition of bending loads. GFRP composites exhibited broom like fracture with extensive longitudinal splitting with radial marks present on individual fibre broken ends. Transverse fracture was observed at a few locations. These fracture features were analyzed and correlated with the loading conditions.

  14. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  15. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  16. Review of aerospace engineering cost modelling: The genetic causal approach

    Science.gov (United States)

    Curran, R.; Raghunathan, S.; Price, M.

    2004-11-01

    The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.

  17. Finite element analysis of composites materials for aerospace applications

    Science.gov (United States)

    Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.

    2010-05-01

    Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.

  18. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    Science.gov (United States)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  19. Total quality management: It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  20. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  1. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  2. Smart Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    K.P.Kamble

    2012-08-01

    Full Text Available It is amazing to know how simple ideas can give a whole new dimension to the tracking and navigation industry and smart vehicle tracking system is used for tracking the vehicles. You can optimize driver routes, save petrol or gas and time, reduce theft and control the vehicle functions. Many a times it is not required to track your vehicle or target globally. In majority of cases tracking is more restricted to local purposes only, such as tracking movement of vehicle within city, tracking the raw materials within industrial estate or to know the present position of your daughter or son within city. But unfortunately in the pursuit of making things complex this simple idea is forgotten. This simple yet powerful idea forms the basis of this revolutionary project. All this coupled with a very low cost, a robust design and tremendous market potential makes this model even more attractive.

  3. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  4. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  5. Avionics System Architecture for the NASA Orion Vehicle

    Science.gov (United States)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of

  6. NAVSTAR Global Positioning System. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1998-01-01

    The bibliography contains citations concerning the global system of navigation satellites developed to provide immediate and accurate worldwide three-dimensional positioning by air, land, and sea vehicles equipped with appropriate receiving equipment. Technological forecasting, reliability, performance tests, and evaluations are discussed. Developments and applications of the NAVSTAR system are included.(Contains 50-250 citations and includes a subject term index and title list.)

  7. Methane emissions from vehicles.

    Science.gov (United States)

    Nam, E K; Jensen, T E; Wallington, T J

    2004-04-01

    Methane (CH4) is an important greenhouse gas emitted by vehicles. We report results of a laboratory study of methane emissions using a standard driving cycle for 30 different cars and trucks (1995-1999 model years) from four different manufacturers. We recommend the use of an average emission factor for the U.S. on-road vehicle fleet of (g of CH/g of CO2) = (15 +/- 4) x 10(-5) and estimate that the global vehicle fleet emits 0.45 +/- 0.12 Tg of CH4 yr(-1) (0.34 +/- 0.09 Tg of C yr(-1)), which represents effects of vehicle aging, cold start, and hot running emissions. The contribution of CH4 emissions from vehicles to radiative forcing of climate change is 0.3-0.4% of that of CO2 emissions from vehicles. The environmental impact of CH4 emissions from vehicles is negligible and is likely to remain so for the foreseeable future. PMID:15112800

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    Science.gov (United States)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 66: Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli,Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge; specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and government and innovation are used to place knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DoD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  12. Culture, social networks, and information sharing: An exploratory study of Japanese aerospace engineers' information-seeking processes and habits in light of cultural factors

    Science.gov (United States)

    Sato, Yuko

    The purpose of this study was to investigate the effects of culture and language on Japanese aerospace engineers' information-seeking processes by both quantitative and qualitative approaches. The Japanese sample consisted of 162 members of the Japan Society for Aeronautical and Space Sciences (JSASS). U.S. aerospace engineers served as a reference point, consisting of 213 members of the American Institute of Aeronautics and Astronautics (AIAA). The survey method was utilized in gathering data using self-administered mail questionnaires in order to explore the following eight areas: (1) the content and use of information resources; (2) production and use of information products; (3) methods of accessing information service providers; (4) foreign language skills; (5) studying/researching/collaborating abroad as a tool in expanding information resources; (6) scientific and technical societies as networking tools; (7) alumni associations (school/class reunions) as networking tools; and (8) social, corporate, civic and health/fitness clubs as networking tools. Nine Japanese cultural factors expressed as statements about Japanese society are as follows: (1) information is neither autonomous, objective, nor independent of the subject of cognition; (2) information and knowledge are not readily accessible to the public; (3) emphasis on groups is reinforced in a hierarchical society; (4) social networks thrive as information-sharing vehicles; (5) high context is a predominant form of communication in which most of the information is already in the person, while very little is in the coded, transmitted part of the message; (6) obligations based on mutual trust dictate social behaviors instead of contractual agreements; (7) a surface message is what is presented while a bottom-line message is true feeling privately held; (8) various religious beliefs uphold a work ethic based on harmony; (9) ideas from outside are readily assimilated into its own society. The result of the

  13. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  14. The Thermodynamic Continuum of Jet Engine Performance: The Principle of Lost Work due to Irreversibility in Aerospace Systems

    Directory of Open Access Journals (Sweden)

    David Riggins

    2003-09-01

    Full Text Available The performance continuum for air-breathing engines is formally developed and illustrated in terms of fundamental thermodynamic quantities including heat and work interactions and the irreversibility occurring in the flow-path of the engine. The thermodynamically consistent base-line from which performance losses due to irreversibility must be measured is clearly defined based on this analysis. Issues and problems with conventional flow availability (flow exergy in terms of the assessment (design and optimization of jet engines are discussed. The formal analytical relationship between lost thrust work and the irreversible generation of entropy in a jet engine is then reviewed in terms of underlying principle and methodology used to quantify this lost thrust work. This relationship is then extended based on the same underlying principle to the more general concept of lost thermodynamic work across a jet engine. It is then proposed that this concept of lost thermodynamic work as measured between the actual and the reversible device (rather than as referenced to a thermodynamic dead state can, in fact, be extended to encompass other sub-systems and ultimately can be applied across the overall aerospace vehicle.

  15. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    OpenAIRE

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Van der Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic information system may comprise a plurality of these traffic information units. The invention further comprises a vehicle management system (C) for a target vehicle (70B, 70E) that is capable of receiv...

  16. Aircraft Conceptual Design Using Vehicle Sketch Pad

    Science.gov (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  17. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    Science.gov (United States)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  18. Electronic Components for use in Extreme Temperature Aerospace Applications

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  19. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    International Nuclear Information System (INIS)

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  20. Aerospace Power Systems Design and Analysis (APSDA) Tool

    Science.gov (United States)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  2. The U.S. Government Technical Report and Aerospace Knowledge Diffusion : Results of an On-Going Investigation

    OpenAIRE

    Pinelli, Thomas E. (NASA Langley Research Center); Khan, A R; Barclay, R.O. (Rensselaer Polytechnic Institute); Kennedy, J.M. (Indiana University); GreyNet, Grey Literature Network Service

    1994-01-01

    This paper contains descriptive and analytical data concerning the U.S. government technical report. These data were collected as part of an on-going investigation directed toward understanding the transfer of federally funded aerospace research and development (R&D). The paper summarizes current literature and research, discusses U.S. government technical report use, and presents data obtained from the Aerospace Knowledge Diffusion Research Project. U.A. aerospace engineers and scientists us...

  3. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized mechanical parts for an extended period of two uninterrupted hours. However, human subjects self-reported that blue LEDs provided the most white light and the favored light source over the white LED and the ISS fluorescent as a sole

  4. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  5. Abandoned vehicles REMINDER

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  6. Abandonned vehicles - REMINDER

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  7. Abandoned vehicles - Reminder

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  8. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  9. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; Loch, John L.; Slack, Marc G.

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  10. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  11. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  12. Electric drive, motor vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, A.

    1981-01-01

    Due to the diverse mineral oil crises and the always increasing gasoline prices, more and more attention is paid to the electric car. The development of power economy necessitates more and more using mineral oil more economically and to replace it by other vehicles of energy wherever possible. This is especially true of highway traffic where the Federal Republic is 100% dependent on mineral oil imports. Prototypes of test vehicles of the different firms are presented.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDRP). The design and objectives of NAKDRP are reviewed; the NAKDRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

  15. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  16. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  17. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    Science.gov (United States)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  18. Development of new inertial technology and its application in aerospace field%新型惯性技术发展及在宇航领域的应用

    Institute of Scientific and Technical Information of China (English)

    王巍

    2016-01-01

    Dynamic precise measurement of movement information constructs the foundation of guidance, navigation and control of various vehicles. The inertial technology is the only independent means to establish the position and attitude reference of a vehicle in all kinds of environments, so it is the basis of dynamic precise measurement of movement information. The development of inertial technology, including optical gyroscope and its inertial navigation system, MEMS gyroscope and accelerometer, atom gyroscope and accelerometer, other kinds of gyroscope and accelerometer, micro-technology for positioning, navigation and timing, and inertial executer, was reviewed in this paper, and the main technology problems of these gyroscopes, accelerometers and inertial navigation systems which are needed to be resolved in aerospace field were proposed. The main application of these inertial technologies in domain aerospace field was described, including application in satellites, launch vehicles, manned aerospace and moon explore. Finally, three development trends of the inertial technology in aerospace field were given.%载体运动信息动态精确测量技术是现代各类运载体导航、制导与控制的前提,惯性技术是在各种复杂环境条件下自主地建立运动载体的方位、姿态基准的唯一有效手段,因而是载体运动信息精确测量的基础。文中详细介绍了光学惯性仪表及系统、MEMS惯性仪表、原子惯性仪表、其他惯性仪表、微型定位导航授时技术和惯性执行结构等新型惯性技术的发展历程,在宇航应用中需要解决的主要技术问题,阐述了惯性技术在宇航领域的应用情况和未来的发展需求和趋势。

  19. Integration of Machining and Inspection in Aerospace Manufacturing

    International Nuclear Information System (INIS)

    The main challenge for aerospace manufacturers today is to develop the ability to produce high-quality products on a consistent basis as quickly as possible and at the lowest-possible cost. At the same time, rising material prices are making the cost of scrap higher than ever so making it more important to minimise waste. Proper inspection and quality control methods are no longer a luxury; they are an essential part of every manufacturing operation that wants to grow and be successful. However, simply bolting on some quality control procedures to the existing manufacturing processes is not enough. Inspection must be fully-integrated with manufacturing for the investment to really produce significant improvements. The traditional relationship between manufacturing and inspection is that machining is completed first on the company's machine tools and the components are then transferred to dedicated inspection equipment to be approved or rejected. However, as machining techniques become more sophisticated, and as components become larger and more complex, there are a growing number of cases where closer integration is required to give the highest productivity and the biggest reductions in wastage. Instead of a simple linear progression from CAD to CAM to machining to inspection, a more complicated series of steps is needed, with extra data needed to fill any gaps in the information available at the various stages. These new processes can be grouped under the heading of adaptive machining. The programming of most machining operations is based around knowing three things: the position of the workpiece on the machine, the starting shape of the material to be machined, and the final shape that needs to be achieved at the end of the operation. Adaptive machining techniques allow successful machining when at least one of those elements is unknown, by using in-process measurement to close the information gaps in the process chain. It also allows any errors to be spotted

  20. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  1. Multilevel optimisation of aerospace and lightweight structures incorporating postbuckling effects

    Science.gov (United States)

    Qu, Shuang

    The optimisation of aerospace structures is a very complex problem, due to the hundreds of design variables a multidisciplinary optimisation may contain, so that multilevel optimisation is required. This thesis presents the recent developments to the multilevel optimisation software VICONOPT MLO, which is a multilevel optimisation interface between the well established analysis and design software packages VICONOPT and MSC/NASTRAN. The software developed is called VICONOPT MLOP (Multilevel Optimisation with Postbuckling), and allows for postbuckling behaviour, using analysis based on the Wittrick-Williams algorithm. The objective of this research is to enable a more detailed insight into the multilevel optimisation and postbuckling behaviour of a complex structure. In VICONOPT MLOP optimisation problems, individual panels of the structural model are allowed to buckle before the design load is reached. These panels continue to carry load with differing levels of reduced stiffness. VICONOPT MLOP creates new MSC/NASTRAN data files based on this reduced stiffness data and iterates through analysis cycles to converge on an appropriate load re-distribution. Once load convergence has been obtained with an appropriate criterion, the converged load distribution is used as a starting point in the optimisation of the constituent panels, i.e. a new design cycle is started, in which the updated ply thicknesses for each panel are calculated by VICONOPT and returned to MSC/NASTRAN through VICONOPT MLOP. Further finite element analysis of the whole structure is then carried out to determine the new stress distributions in each panel. The whole process is repeated until a mass convergence criterion is met. A detailed overview of the functionality of VICONOPT MLOP is presented in the thesis. A case study is conducted into the multilevel optimisation of a composite aircraft wing, to demonstrate the capabilities of VICONOPT MLOP and identify areas for future studies. The results of

  2. Structural health management of aerospace hotspots under fatigue loading

    Science.gov (United States)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a

  3. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  4. Manufacturing Challenges Associated with the Use of Metal Matrix Composites in Aerospace Structures

    Science.gov (United States)

    Prater, Tracie

    2014-01-01

    Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramic particles or fibers. These materials possess a very high strength to weight ratio, good resistance to impact and wear, and a number of other properties which make them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as NASA's Orion Crew Exploration Vehicle and Space Launch System. A current focus of FSW research is to extend the process to new materials, such as MMCs, which are difficult to weld using conventional fusion techniques. Since Friction Stir Welding occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This chapter summarizes the challenges encountered when joining MMCs to themselves or to other materials in structures. Specific attention is paid to the influence of process variables in Friction Stir Welding on the wear process characterizes the effect of process parameters (spindle speed, traverse rate, and length

  5. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  6. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  7. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES)

    OpenAIRE

    S. Selivanov; V. Filenko; А. Bazhynov; E. Budianskaya

    2009-01-01

    The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  8. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe

    2012-11-01

    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  9. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  10. Research on Auto-detection for Remainder Particles of Aerospace Relay Based on Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-liang; ZHANG Hui; WANG Shu-juan

    2007-01-01

    Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.

  11. Concepts used in the preparation of the document - Space and planetary environment criteria guidelines for use in space vehicle development 1982 revision

    Science.gov (United States)

    Davis, M. H.; Smith, R. E.; West, G. S.

    1984-01-01

    The NASA/Marshall Space Flight Center has developed a series of documents concerning space and planetary environments for use in the formulation of aerospace vehicle and spacecraft design criteria. For the earth above 90km altitude, and for the moon, planets, and other bodies in the Solar System; information is provided in disciplinary area of importance to the spacecraft designer such as planetary geology and morphology, atmospheric and ionospheric structures, radiation, particles, geomagnetic fields, astrodynamic constants, and meteoroids. This paper presents the philosophy used in the preparation of the current (1982) version of the document. Specific topics will be discussed in relation to their significance for aerospace vehicle and spacecraft development and mission analysis.

  12. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  13. VEHICLES LICENSED IN SWITZERLAND

    CERN Multimedia

    Service des Relations avec les Pays-Hôtes

    2000-01-01

    1.\tVehicle licensinga)\tTime limitsVehicles must have a Swiss registration document and Swiss number plates: -\tif the owner has been residing in Switzerland for more than one year without a break of more than three consecutive months and has been using it for more than one month on Swiss territory, or -\tif the vehicle itself has been on Swiss territory for more than one year without a break of more than three consecutive months. b)\tTechnical details Vehicles belonging to non-Swiss members of the personnel who hold a carte de légitimation issued by the Swiss Federal Department of Foreign Affairs (hereinafter referred to as 'DFAE') and who were not permanently resident in Switzerland before taking up their appointment may be licensed in Switzerland with virtually no restrictions provided that their owner produces: -\tthe vehicle registration document and number plates of the country in which the car was previously registered, or -\ta manufacturer's certi...

  14. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  15. Organizational structure and operation of defense/aerospace information centers in the United States of America

    Science.gov (United States)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  16. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    OpenAIRE

    Zhu, G

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upper fuselage in Airbus A380, but the solution for GLARE recycling is not available. Thermal recycling which uses high temperature to decompose the resin and separate the reinforcement fibres and fil...

  17. PHOTOGRAMMETRIC TRACKING OF AERODYNAMIC SURFACES AND AEROSPACE MODELS AT NASA LANGLEY RESEARCH CENTER

    OpenAIRE

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-01-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with cus...

  18. Quantified simulation research on harmonious factors in the leadership teams of aerospace enterprise group

    Institute of Scientific and Technical Information of China (English)

    Yin Xingliang; Hu Yunquan; Yang Fuping; Zhao Hanping; Tang Ning

    2007-01-01

    A brief account of basic connotation and evaluation indexes system of harmonious leadership teams is given. On this basis, a simulation model is built by using the ARENA simulation software and the quantified simulation is carried out for the factors of harmonization of aerospace enterprise leadership teams. Moreover, by taking the characteristics of aerospace enterprise leadership teams into consideration, the comparison of harmonization quantified results of several typical leadership teams, especially on the comparative analysis of influencing degrees of moral characters and capabilities on the leadership teams overall harmonization is emphatically discussed. Finally,a conclusion is drawn.

  19. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 497

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention.

  20. Cost Reduction Key Drivers Within a Small Batch Aerospace Manufacturing Line

    OpenAIRE

    Delamare, Adrien

    2016-01-01

    This report details my work at the endpoint of the internship I spent within the Composite Manufacturing Unit of Airbus Defence & Space in Les Mureaux, France. It is as well the conclusion of the master’s program in aerospace engineering that I attended at KTH Royal Institute of Technology, Sweden.This document gives an overview of the cost reduction key drivers within a small batch aerospace manufacturing line. Some of the suggested leads developed in the paper have been set up in the pa...

  1. Evaluation of verifiability in HAL/S. [programming language for aerospace computers

    Science.gov (United States)

    Young, W. D.; Tripathi, A. R.; Good, D. I.; Browne, J. C.

    1979-01-01

    The ability of HAL/S to write verifiable programs, a characteristic which is highly desirable in aerospace applications, is lacking since many of the features of HAL/S do not lend themselves to existing verification techniques. The methods of language evaluation are described along with the means in which language features are evaluated for verifiability. These methods are applied in this study to various features of HAL/S to identify specific areas in which the language fails with respect to verifiability. Some conclusions are drawn for the design of programming languages for aerospace applications and ongoing work to identify a verifiable subset of HAL/S is described.

  2. Mechanical performances of lead-free solder joint connections with applications in the aerospace domain

    Directory of Open Access Journals (Sweden)

    Georgiana PADURARU

    2016-03-01

    Full Text Available The paper presents some theoretical and experimental aspects regarding the tribological performances of lead-free solder joint connections, with application in the aerospace domain. In order to highlight the mechanical and tribological properties of solder joint in correlation with different pad finishes, there were made some mechanical determinations using a dedicated Share Test System. The theoretical model highlights the link between the experimental results and the influence of gravitational acceleration on the mechanical and functional integrity of the electronic assemblies that works in vibration environment. The paper novelty is provided by the interdisciplinary experiment that offers results that can be used in the mechanical, tribological, electronical and aerospace domains.

  3. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  4. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  5. Advancing Malaysia’s Aerospace Industry: A Review of Governing Behaviors Required in Overcoming the Barriers in Global Aerospace Supply Chain Integration

    OpenAIRE

    Jones, David A.

    2006-01-01

    The global aerospace manufacturing industry is defined by original equipment manufacturers (OEM’s) consisting of major manufacturers of aircraft or aircraft systems as well as their principal and sub-tier suppliers. It is dominated by large manufacturers known as primes supported by system integrators and numerous component, parts and material suppliers. These are focused on meeting the diverse and differing capital equipment needs of these sectors. These supply products and services in direc...

  6. 75 FR 12713 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Science.gov (United States)

    2010-03-17

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3.../E Aerospace Oxygen Cylinders as Installed on Various 14 CFR Part 23 and CAR 3 Airplanes AGENCY... and B/E Aerospace oxygen cylinders, as installed on various 14 CFR part 23 or CAR 3 airplanes....

  7. Affordable Vehicle Avionics Overview

    Science.gov (United States)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  8. Algorithms for vehicle navigation

    OpenAIRE

    Storandt, Sabine

    2012-01-01

    Nowadays, navigation systems are integral parts of most cars. They allow the user to drive to a preselected destination on the shortest or quickest path by giving turn-by-turn directions. To fulfil this task the navigation system must be aware of the current position of the vehicle at any time, and has to compute the optimal route to the destination on that basis. Both of these subproblems have to be solved frequently, because the navigation system must react immediately if the vehicle leaves...

  9. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  10. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  11. Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion

    Science.gov (United States)

    Huang, Cheng

    Integrated multi-fidelity modeling has been performed for combustion instability in aerospace propulsion, which includes two levels of analysis: first, computational fluid dynamics (CFD) using hybrid RANS/LES simulations for underlying physics investigations (high-fidelity modeling); second, modal decomposition techniques for diagnostics (analysis & validation); third, development of flame response model using model reduction techniques for practical design applications (low-order model). For the high-fidelity modeling, the relevant CFD code development work is moving towards combustion instability prediction for liquid propulsion system. A laboratory-scale single-element lean direct injection (LDI) gas turbine combustor is used for configuration that produces self-excited combustion instability. The model gas turbine combustor is featured with an air inlet section, air plenum, swirler-venturi-injector assembly, combustion chamber, and exit nozzle. The combustor uses liquid fuel (Jet-A/FT-SPK) and heated air up to 800K. Combustion dynamics investigations are performed with the same geometry and operating conditions concurrently between the experiment and computation at both high (φ=0.6) and low (φ=0.36) equivalence ratios. The simulation is able to reach reasonable agreement with experiment measurements in terms of the pressure signal. Computational analyses are also performed using an acoustically-open geometry to investigate the characteristic hydrodynamics in the combustor with both constant and perturbed inlet mass flow rates. Two hydrodynamic modes are identified by using Dynamic Mode Decomposition (DMD) analysis: Vortex Breakdown Bubble (VBB) and swirling modes. Following that, the closed geometry simulation results are analyzed in three steps. In step one, a detailed cycle analysis shows two physically important couplings in the combustor: first, the acoustic compression enhances the spray drop breakup and vaporization, and generates more gaseous fuel for

  12. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  13. The Acquisition Process as a Vehicle for Enabling Knowledge Management in the Lifecycle of Complex Federal Systems

    Science.gov (United States)

    Stewart, Helen; Spence, Matt Chew; Holm, Jeanne; Koga, Dennis (Technical Monitor)

    2001-01-01

    This white paper explores how to increase the success and operation of critical, complex, national systems by effectively capturing knowledge management requirements within the federal acquisition process. Although we focus on aerospace flight systems, the principles outlined within may have a general applicability to other critical federal systems as well. Fundamental design deficiencies in federal, mission-critical systems have contributed to recent, highly visible system failures, such as the V-22 Osprey and the Delta rocket family. These failures indicate that the current mechanisms for knowledge management and risk management are inadequate to meet the challenges imposed by the rising complexity of critical systems. Failures of aerospace system operations and vehicles may have been prevented or lessened through utilization of better knowledge management and information management techniques.

  14. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  15. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  16. Green vehicle : slippery turn

    International Nuclear Information System (INIS)

    This presentation describes the many challenges facing the development and commercialization of environmentally friendly vehicles in Canada from scooters, to bicycles to motorcycles, as experienced by Zapworld, a leader in the design, manufacture and marketing of electric bicycles and power-assist kits. There are many environmental advantages to small electric vehicles, however, the distribution network for this new product is virtually non-existent. Zap-Quebec, a subsidiary of Zapworld, has made efforts to bring notoriety to the product by targeting aging cycle enthusiasts and promoting the electric bicycle as viable transportation means for short commutes, for camping, to get around factories, and for security guards. Since September 2000 independent dealers in Montreal have participated in a pilot project in which more than 15,000 electric bikes have been made available for rent as a pleasure vehicle for tourists. No accidents have ever been reported and the feedback has been positive. It was emphasized that legislators must understand the value behind small electric vehicles and draft legislation accordingly. tabs., figs

  17. ITS / Commercial Vehicle Operations

    OpenAIRE

    Bhatia, Pratyush

    2003-01-01

    Intelligent Transportation Systems (ITS) utilize information, communication, sensor, and control technologies to achieve improved levels of performance. The U.S. DOT has developed a National ITS Program Plan that includes seven major elements. One of them addresses the ITS technologies which uniquely support Commercial Vehicle Operations (CVO).

  18. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple. The...

  19. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  20. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...