WorldWideScience

Sample records for aged shrsp rats

  1. Blood pressure, renal biochemical parameters and histopathology in an original rat model of essential hypertension (SHRSP/Kpo strain).

    Science.gov (United States)

    Kato, Takashi; Mizuguchi, Nobuyuki; Ito, Akihiko

    2015-01-01

    Hypertensive nephropathy, a consequence of chronic high blood pressure, is increasingly a cause of end-stage renal diseases and its correct management is very important for clinical outcome. Spontaneously hypertensive rat (SHR/Kpo) and stroke-prone SHR (SHRSP/Kpo) strains represent models of human essential hypertension. However, the kidney injuries in SHR/Kpo and SHRSP/Kpo are not well defined. We therefore characterized the renal pathophysiology of SHR/Kpo and SHRSP/Kpo compared with normotensive control (WKY/Kpo) rats. The SHRSP/Kpo exhibited increased systolic blood pressure at 10 weeks of age, and proteinuria and increased blood urea nitrogen (BUN) and serum creatinine levels at 20 weeks. We simultaneously detected mononuclear cell infiltration, tubular injuries, accumulation of extracellular matrix and marked expression of α-SMA in the tubulointerstitium. Additionally, TGF-β1 and CTGF were up-regulated in the kidney of SHRSP/Kpo. We lastly focused on changes in glomerular cells of SHRSP/Kpo. Nestin, a podocyte marker, was detected but decreased slightly in 20-week-old SHRSP/Kpo. PECAM-1 expression was increased in SHRSP/Kpo glomeruli, indicating the thickening of glomerular endothelial cells. Moreover, we found that α-SMA, a myofibroblast marker, was also upregulated in the glomeruli of SHRSP/Kpo at 20 weeks. These findings suggest that SHRSP/Kpo could be a valuable animal model for human hypertensive nephropathy.

  2. Effectiveness of B vitamins on the control of hypertension and stroke events of SHRSP rats.

    Science.gov (United States)

    França, Camille Feitoza; Vianna, Lucia Marques

    2010-03-01

    The spontaneously hypertensive stroke-prone rat (SHRSP) is a recognized animal model for the study of severe hypertension and stroke, being characterized by presenting an elevated tissue levels of free radicals. Therefore, this study has the main goal to identify the effect of B vitamins, closely associated to the control of oxidative stress, on SHRSP rats. After 10 days (baseline period), the animals, 18 SHRSP rats at 18 weeks of age, were divided into three groups with six rats treated with riboflavin (B2), six treated with pyridoxine (B6) plus folic acid (B9), and control. Body weight, water and food intake, diuresis, sensory-motor responses, and systolic blood pressure of all the rats were determined daily. Physical aspects of whole body (i.e., distribution and coloring of hair, skin and mucosa, and an eventual presence of bleeding, stains, cracks, or opacification) and behavior were equally monitored. The data were evaluated by ANOVA two-way and p thought as one of the alternative therapies to prevent the occurrence of stroke.

  3. Threshold Core Temperatures for Tail Vasodilation During General Warming in Spontaneously Hypertensive Rats (SHR) and Stroke-prone SHR (SHRSP)

    OpenAIRE

    Tsuchiya, Katsuhiko; Ohta, Hisashi; Ozaki, Masayori; Kosaka, Mitsuo

    1988-01-01

    In order to study heat dissipation ability of spontaneously hypertensive rats, threshold core temperatures for occurrence of the tail vasodilation were compared among adult male spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and Wistar-Kyoto rats (WKY). Mean age of month (M.) and mean systolic blood pressure were 8.4±0.5 M; 205±5 mmHg for SHR, 7.2±0.6 M; 240±8 mmHg for SHRSP and 7.6±1.1 M; 140±6 mmHg for WKY. For the measurement, each rat was placed into a small wire-mesh cag...

  4. Rapid bioassay-guided screening of toxic substances in vegetable oils that shorten the life of SHRSP rats

    Directory of Open Access Journals (Sweden)

    Lewandowski Paul

    2010-02-01

    Full Text Available Abstract It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.

  5. Pentosan reduces osteonecrosis of femoral head in SHRSP.

    Science.gov (United States)

    Miyata, Noriaki; Kumagai, Kenji; Osaki, Makoto; Murata, Masakazu; Tomita, Masato; Hozumi, Akira; Nozaki, Yoshihiro; Niwa, Masami

    2010-01-01

    Increased oxidative stress is considered one of the main causes of steroid-induced osteonecrosis of the femoral head (ONFH). The aim of this study was to evaluate the effects of a steroid hormone and pentosan polysulfate sodium (pentosan), a heparin analog, in stroke-prone spontaneously hypertensive rats (SHRSP) as a model of ONFH. One hundred twenty-three 13-week-old male SHRSP/Izm rats were divided into four groups: a control group (group C), pentosan-administered group (group P), steroid-administered group (group S), and group administered pentosan plus steroid (group PS). Methylprednisolone acetate, as the steroid hormone, at a dose of 4 mg (15 mg/kg) was administered at 15 weeks of age. Pentosan at a dose of 3 mg/day/kg was continuously administered intraperitoneally from 13 weeks of age for 4 weeks. Rats were sacrificed at 17 weeks of age, and heart blood and both femora were collected. Triglyceride levels were significantly lower in group PS than in group S, indicating that pentosan improves lipid metabolism. The incidence of histologic ONFH was significantly lower in group P, at 14.8% (10/71 femoral heads), than in group C, at 30.4% (17/56 femoral heads), and significantly lower in group PS, at 40.8% (29/71 femoral heads), than in group S, at 91.3% (42/46 femoral heads), indicating that pentosan markedly inhibits ONFH. Immunohistochemical staining for oxidative stress showed that the stainability was significantly lower in group PS than in group S. Pentosan seems to reduce the incidence of ONFH in SHRSP by improving lipid metabolism and decreasing oxidative stress.

  6. Effects of Vitamin K1 Supplementation on the Risk Factors to the Stroke and on Memory in Spontaneously Hypertensive Rats Stroke Prone (SHR-sp

    Directory of Open Access Journals (Sweden)

    Victor Agati Cavargere

    2016-01-01

    Full Text Available A number of risk factors have been associated to the stroke and many strategies have been proposed in order to control them as well. Vitamin K has been largely found in brain, which suggests a possible function at that tissue. This study aimed to evaluate the potential of this vitamin on the prevention of risk factors to stroke and on cognitive function on SHRSP rats. Twelve SHRSP males, 15 weeks old, were divided into two groups (n= 6 each, receiving the vehicle-coconut oil (control group or 40 μg of phylloquinone (treated group during 28 days. Biological parameters, systolic blood pressure and lipid profile were evaluated. Both groups were submitted to the neurological tasks. The data was treated by Student's t test and ANOVA one-way test being P<0.05 considered significant. The phylloquinone supplementation showed a statistically significant reduction in the treated group of all parameters of lipid profile and systolic blood pressure when compared to the control group. Neurological evaluation indicated a statistically significant improvement in the performance of long term memory tests in the treated group, without similar findings in the evaluation of short memory. In sum, phylloquinone supplementation was shown to modulated lipid profile and protect neuronal suffering in this model.

  7. Long-term food restriction, deprenyl, and nimodipine treatment on life expectancy and blood pressure of stroke-prone rats

    NARCIS (Netherlands)

    Stevens, H; Knollema, S; De Jong, G; Korf, J; Luiten, PGM

    1998-01-01

    We determined whether food restriction or the drugs nimodipine (Ca2+ antagonist) and deprenyl (a MAO-B inhibitor) prevent the development of stroke in the spontaneously hypertensive stroke-prone rat (SHR-SP). Forty male SHR-SP rats, in the age of 34 weeks, were exposed to various treatments. During

  8. Effects of exercise training on cognitive function,ChAT and AchE activity in SHR/SP rat vascular dementia model%运动训练对SHR/SP大鼠VD模型认知功能及海马ChAT、AchE活性的影响

    Institute of Scientific and Technical Information of China (English)

    曾贵刚; 张申; 顾坚忠; 陈国强; 魏品康

    2014-01-01

    目的:观察运动训练对自发性高血压脑卒中倾向大鼠(SHR/SP)血管性痴呆(VD)模型认知能力及ChAT、AchE活性的影响。方法将雄性SHR/SP大鼠30只,分为假手术组、模型组、运动组,每组各10只,采用分次结扎2-VO法制作 VD模型,假手术组、模型组术后正常饲养不做干预;运动组术后采用跑台训练(DSPT-1)8周,训练完成后采用Morris水迷宫检测各组大鼠认知功能,最后处死大鼠取材检测海马胆碱乙酰转移酶(ChAT)及乙酰胆碱酯酶(AchE)活性。结果在定位航行训练中,假手术组大鼠潜伏期明显少于运动组和模型组大鼠,但运动组大鼠潜伏期明显短于模型组大鼠(P<0.05);在空间探索实验中,假手术组大鼠跨越原平台次数明显多于其他两组大鼠,运动组大鼠跨越原平台次数明显多于模型组(P<0.05);运动训练可增加海马ChAT活性及降低AchE活性。结论运动训练可改善SHR/SP大鼠VD模型海马胆碱能系统的功能,进而提高认知能力。%Objective To investigate the effects of the exercise training on the cognitive function ,choline acetyltransferase (ChAT) activity and acetylcholinesterase (AchE) activity in stroke prone spontaneously hypertensive rat (SHR/SP) vascular de-mentia model .Methods 30 male SHR/SP rats were randomly divided into sham operation group ,model group and exercise group (n=10) .The VD model was established by the fractional ligation of bilateral carotid artery (2-VO) .The sham operation group and the model group were given the normal feeding without intervention after operation ;the exercise group adopted the treadmill exer-cise(DSPT-1) for 8 weeks .After the exercise ,the Morris maze test was conducted for evaluating the cognitive function in each group .The rats were finally killed for detecting the ChAT activity and AchE activity of hippocampus .Results In the positioning navigation training ,the

  9. Blood pressure variability and baroreflex sensitivity are not different in spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Lin-shu ZHAN; Yun-feng GUAN; Ding-feng SU; Chao-yu MIAO

    2005-01-01

    Aim: To demonstrate and compare hemodynamic phenotypes of blood pressure (BP), blood pressure variability (BPV) and baroreflex sensitivity (BRS) in genetic hypertensive rats. Methods: BP was recorded continuously in conscious, freely moving rats using a computerized technique. BPV was expressed as the standard deviation of beat-to-beat BP values during a 1-h period. BRS was determined by measuring the heart period prolongation in response to the elevation in BP produced by an intravenous injection of phenylephrine. Results: Body weight and heart period were not different between spontaneously hypertensive rats (SHR)and stroke-prone spontaneously hypertensive rats (SHR-SP) at the age of 15weeks. The BP level was markedly higher in SHR-SP than SHR, whereas there were no significant differences in BPV and BRS. Quantitatively, systolic, diastolic and mean BP were significantly elevated by 36.9%, 42.9% and 39.5%, respectively,in SHR-SP compared with SHR (P<0.01). However, their variabilities were elevated only by 14.0%, 0.4% and 10.1%, respectively, without statistical significance (P>0.05). Conclusion: BPV and BRS were not changed in parallel with the BP alterations in SHR and SHR-SP.

  10. Arterial baroreflex function does not influence telomere length in kidney of rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei ZHANG; Rui-fang YANG; Jin WANG; Lei ZHAO; Ling LI; Fu-ming SHEN; Ding-feng SU

    2006-01-01

    Aim:To investigate the relationship between arterial baroreflex (ABR) function and telomere length in kidney of rats.Methods:Stroke-prone spontaneously hypertensive rats (SHR-SP) and sinoaortic denervated rats (SAD) were used as models with depressed arterial baroreflex.In the first experiments,SHR-SP rats were examined at the age of 24 weeks for both sexes and 40 weeks for female rats. In the second experiments,SAD rats were studied 4 and 35 weeks after SAD operation.Blood pressure was continuously recorded for 4 h in a conscious state. After the determination of baroreflex sensitivity (BRS),the terminal restriction fragment (TRF) of rat kidney was analyzed using Southern blot.Results:The TRF length was found shorter in:a) male SHR-SP compared with age-matched female SHR-SP;b) female SHR-SP 40 weeks of age compared with 24 weeks of age; c) in rats 35 weeks after operation compared with rats 4 weeks post operation in both sham-operated and SAD rats.Conclusion:In SHR-SP,the TRF length did not correlate with BRS.In addition.SAD did not affect TRF length at either 4 or 35 weeks post-surgery.It may be concluded that baroreflex function does not influence the terminal restriction fragment (TRF) length in rats.

  11. REVERSED ALTERATIONS OF HIPPOCAMPAL PARVALBUMIN AND PROTEIN-KINASE C-GAMMA IMMUNOREACTIVITY AFTER STROKE IN SPONTANEOUSLY HYPERTENSIVE STROKE-PRONE RATS

    NARCIS (Netherlands)

    DEJONG, GI; VANDERZEE, EA; BOHUS, B; LUITEN, PGM

    1993-01-01

    Background and Purpose: Aging spontaneously hypertensive stroke-prone rats (SHR-SP) were previously shown to develop neocortical strokes. Because the hippocampal CA1 is selectively vulnerable to abnormal brain perfusion, the neuropathological effects of spontaneous strokes were investigated on speci

  12. Reversed Alterations of Hippocampal Parvalbumin and Protein Kinase C-γ Immunoreactivity After Stroke in Spontaneously Hypertensive Stroke-Prone Rats

    NARCIS (Netherlands)

    Jong, G.I. de; Zee, E.A. van der; Bohus, B.; Luiten, P.G.M.

    1993-01-01

    Background and Purpose: Aging spontaneously hypertensive stroke-prone rats (SHR-SP) were previously shown to develop neocortical strokes. Because the hippocampal CA1 is selectively vulnerable to abnormal brain perfusion, the neuropathological effects of spontaneous strokes were investigated on speci

  13. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP

    Science.gov (United States)

    Jalal, Fakhreya Y; Yang, Yi; Thompson, Jeffrey F; Roitbak, Tamara; Rosenberg, Gary A

    2015-01-01

    Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood–brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoeally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life. PMID:25712499

  14. Effect of Hypertension on Hearing Function, LDH and ChE of the Cochlea in Older Rats

    Institute of Scientific and Technical Information of China (English)

    李穗; 龚树生; 杨燕珍; 余青松

    2003-01-01

    The relationship between the hypertension and the aging process of hearing organ was in-vestigated. Twenty Wistar 3-month old rats and 20 Wistar 12-month old rats, 20 spontaneously hy-pertensive rat stroke-prone (SHRSP) 3-month old rats and 20 SHRSP 12-month old rats free ofmiddle ear infections as observed under otomicroscopy, with normal tympanic membrane and auriclereflex, were selected to be divided into two experimental groups and two control groups respective-ly. The tail artery blood pressure was measured non-invasively. The threshold of auditory brain-stem response (ABR) was measured by SpiritTM evoked potential meter. The LDH and ChE stai-ning in the inner ear was performed and the optical density was analyzed by the HPIAS analysis sys-tem. The results showed that there was no difference in the ABR thresholds, the activities of LDHand ChE between Wistar 3-month old group and SHRSP 3-month old group (P>0. 05). The meanvalue of ABR threshold and the activities of LDH and ChE in the Wistar 12-month old group at rel-evant sections were significantly greater than those in the two 3-month old groups (P<0.05),whereas the mean value of ABR threshold and the activities of LDH and ChE in the SHRSP 12-month old group at relevant sections were significantly higher than those in the 3-month old controlgroup (P<0. 01). It was concluded that presbycusis existed in the Wistar 12-month old group rats.The glycogenosis and the abnormal secretion of neural transmitter were discerned after hyperten-sion. All the above factors may worsen the aging of the hearing system.

  15. Comparison Between the Effects of 2-Selenium Bridged β-Cyclodextrin and Ebselen on Treating SHRsp Stroke

    Institute of Scientific and Technical Information of China (English)

    JIA Zhi-dan; LIN Feng; LIU Lei; MU Ying; YAN Gang-lin; LUO Gui-min

    2008-01-01

    A glutathione peroxidase(GPX) mimic, 2-selenium bridged β-cyclodextrin(2-SeCD), was synthesized.In order to examine its role and mechanism in treating stroke we chose stroke-prone spontaneously hypertensive rats(SHRsp) as animal model. 56 SHRsps of 8-week olds were randomly divided into several groups: test groups (low, moderate, high dose of 2-SeCD) and control groups(positive and negative). After onset of the stroke, the rats in test groups were orally administrated with different amounts of 2-SeCD, the positive control group with ebselen, and the negative control group with drinking water. The treatment lasted two weeks, followed by observation of the rats for 10 days, meanwhile blood pressure, biochemical parameters of plasma, and the contents of nitric oxide(NO) and malondialdehyde(MDA) in plasma and brain were determined. The results show that there were significant differences in contents of NO and MDA in plasma and brain between the test groups(high, moderate dose of 2-SeCD) and negative control group. The NO contents of the test groups were obviously higher than that of the negative control group (P<0.01). The MDA contents of the test groups(high, moderate dose of 2-SeCD) were obviously lower than that of the negative control group(P<0.01). The mechanism of 2-SeCD in treating stroke was discussed, which maybe related to the increase of NO and the decrease of MDA in plasma and brain tissue, but the exact mechanism should be further studied. Moreover, the tendencies of changes in systolic blood pressure, contents of NO and MDA, and other physiological parameters for the test groups were shown to be much better than the corresponding parameters for the positive group(the group with ebselen)(P<0.05), indicating that the treatment effect of 2-SeCD is better than that of ebselen.

  16. Moxibustion on Telomerase Activity in Aging Rat

    Institute of Scientific and Technical Information of China (English)

    WU Huan-gan; GUO Lan-qin; CHEN Han-ping; SUN Guo-jie; ZHANG Wei; SHI Yin; ZHANG Qiu-juan; LIU Hui-rong

    2007-01-01

    Objective: To investigate the effect of moxibustion on telomerase activity and genes expression in tissues of senescent rats. Methods: Subacute aging rats model were established by injection with D-gal solution. Points Shenshu (BL 23) were treated with moxibustion in treatment group, contrasting with a model group and a normal group. Enzyme-Linked Immunosorbent Assays(ELISA) was used for the level oftelomerase activity in liver tissues, and In Situ Hybridization(ISH) was used for the condition of expression of telomerase genes in liver tissues. Results: The level of telomerase activity in the aging model group was obviously lower than that in normal control group (P<0.01), the level in moxibustion group was obviously higher than that in model group(P<0.05). In comparison with normal rats, the positive-expressed areas and photodensity of telomerase genes in aging model group were all significantly lower (P<0.01,P<0.01), and the positive-expressed areas in moxibustion group was significantly higher than that in model group (P<0.01). Conclusions: Moxibustion could regulate telomerase activity of senile rats, hence delaying aging.

  17. The pituitary - Aging and spaceflown rats

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.

    1991-01-01

    Decrements in growth hormone (GH) release we observed in two spaceflight experiments and four tail-suspended rat studies mimic age-associated changes in the mammalian pituitary GH system seen by Meites and others. The spaceflight data suggest that formation of high molecular weight bioactive disulfide-linked aggregates of the 20 and 22K monomeric GH forms may be reduced in microgravity, thereby, reducing target tissue activity. Correlative studies to confirm spaceflight as a model for pituitary GH system aging should include: (1) investigation of mechanisms of intracellular hormone packaging, (2) consequences to biological activity of the hormone molecule, and (3) study of intracellular microtubule dynamics.

  18. Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mohammed Zubaerul Ferdaus

    Full Text Available The stroke-prone spontaneously hypertensive rat (SHRSP is known to have exaggerated sympathetic nerve activity to various types of stress, which might contribute to the pathogenesis of severe hypertension and stroke observed in this strain. Previously, by using a congenic strain (called SPwch1.72 constructed between SHRSP and the normotensive Wistar-Kyoto rat (WKY, we showed that a 1.8-Mbp fragment on chromosome 1 (Chr1 of SHRSP harbored the responsible gene(s for the exaggerated sympathetic response to stress. To further narrow down the candidate region, in this study, another congenic strain (SPwch1.71 harboring a smaller fragment on Chr1 including two functional candidate genes, Phox2a and Ship2, was generated. Sympathetic response to cold and restraint stress was compared among SHRSP, SPwch1.71, SPwch1.72 and WKY by three different methods (urinary norepinephrine excretion, blood pressure measurement by the telemetry system and the power spectral analysis on heart rate variability. The results indicated that the response in SPwch1.71 did not significantly differ from that in SHRSP, excluding Phox2a and Ship2 from the candidate genes. As the stress response in SPwch1.72 was significantly less than that in SHRSP, it was concluded that the 1.2-Mbp congenic region covered by SPwch1.72 (and not by SPwch1.71 was responsible for the sympathetic stress response. The sequence analysis of 12 potential candidate genes in this region in WKY/Izm and SHRSP/Izm identified a nonsense mutation in the stromal interaction molecule 1 (Stim1 gene of SHRSP/Izm which was shared among 4 substrains of SHRSP. A western blot analysis confirmed a truncated form of STIM1 in SHRSP/Izm. In addition, the analysis revealed that the protein level of STIM1 in the brainstem of SHRSP/Izm was significantly lower when compared with WKY/Izm. Our results suggested that Stim1 is a strong candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP.

  19. Changes in intracellular calcium in brain cells of aged rats

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yunpeng Cao

    2008-01-01

    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  20. Enhanced post-ischemic neurogenesis in aging rats

    Directory of Open Access Journals (Sweden)

    Yao-Fang Tan

    2010-08-01

    Full Text Available Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g. by irradiation in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10-13 months old rats, cell production can be restored towards the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35 and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age.

  1. Features of intervertebral disc degeneration in rat's aging process

    Institute of Scientific and Technical Information of China (English)

    Yin-gang ZHANG; Zheng-ming SUN; Jiang-tao LIU; Shi-jie WANG; Feng-ling REN; Xiong GUO

    2009-01-01

    Objective: The age-related change is important part of degenerative disc disease. However, no appropriate animal model or objective evaluation index is available. This study aimed to investigate the features of intervertebral disc degeneration in aging process of rats. Methods: 22-month-old Sprague-Dawley (SD) rats were used as spontaneously occurring intervertebral disc degeneration models and 6-month-old rats as young controls. Expression of collagen types Ⅱ and Ⅹ was measured by immunohistochemistry. Degenerations of intervertebral discs were scored according to Miyamoto's method. Numbers and areas of afferent vascular buds were measured. The thicknesses of non-calcified and calcified layers were measured and statistically analyzed.Results: There were less collagen type Ⅱ expression and more collagen type Ⅹ expression in the calcified layer of the cartilage endplates and nucleus pulposus in the rats of the aged group than in the young control. There were fewer and smaller afferent vascular buds in the rats of the aged group than in the young control group. The ratio of the non-calcified to the calcified layers in the rats of the aged group significantly decreased, compared with that of the young control group (P<0.01). Conclusion: Rats can spontaneously establish intervertebral disc age-related degeneration. The expression of collagen types Ⅱ and Ⅹ, numbers and areas of afferent vascular buds, the ratio of the non-calcified to the calcified layers, and water and glycosaminoglycan contents in the nucleus pulposus are sensitive indexes of intervertebral disc degeneration.

  2. Efficacy of Female Rat Models in Translational Cardiovascular Aging Research

    Directory of Open Access Journals (Sweden)

    K. M. Rice

    2014-01-01

    Full Text Available Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.

  3. Maternal age, reproduction and chromosomal aberrations in Wistar derived rats.

    Science.gov (United States)

    Niggeschulze, A; Kast, A

    1994-01-01

    The fertility of rats ranges from one to 18 months. In standard teratogenicity testing young, mature females are used which may not reflect the situation in women above 35 years old. Reproduction among different age groups of Wistar ats (strain Chbb: THOM) was compared at 3, 6, 9, 12, 15 and 18 months. At least 20 virgin females were inseminated per age group. The copulation rate did not differ between the groups. From the maternal age of 12 months, the pregnancy rate was significantly decreased, from the age of 9 months, the litter values were significantly lowered and the resorption rates were increased. Maternal age did not influence the incidence of fetal variations and malformations. Additionally, the chromosomal aberration rate in the bone marrow was evaluated in male and female rats. Twelve animals of each sex were scheduled per group, and studied at the age of 1, 3, 6, 12, 15, 18, 21 or 24 months. In males, the aberration rate increased continuously from 0.18 through 3%, while in females the increase continued from 0.33 to 2.29% at 15 months old when a plateau was reached. When testing new compounds for embryotoxicity or genotoxicity in female rats, the animals should be of comparable age to man in order to avoid a misinterpretation of spontaneous abnormalities. From these studies, however, it was concluded that the use of higher age groups of female rats in teratogenicity studies would not improve the risk assessment.

  4. Differential Proteomics in the Aging Noble Rat Ventral Prostate

    OpenAIRE

    Lam, Ying Wai; Tam, Neville N. C.; Evans, James E.; Green, Karin M.; Zhang, Xiang; Ho, Shuk-Mei

    2008-01-01

    Incidence of prostatic diseases increases dramatically with age which may be related to a decline in androgen support. However, the key mechanisms underlying prostate aging remain unclear. In the present study, we investigated the aging process in the ventral prostate of Noble rats by identifying differentially expressed prostate proteins between 3- and 16-month-old animals using ICAT and MS. In total, 472 proteins were identified with less than a 1% false positive rate, among which 34 were d...

  5. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  6. Altered fatty acid profile in the liver and serum of stroke-prone spontaneously hypertensive rats: reduced proportion of cis-vaccenic acid.

    Science.gov (United States)

    Tanaka, Shizuyo; Kojiguchi, Chiho; Yamazaki, Tohru; Mitsumoto, Atsushi; Kobayashi, Daisuke; Kudo, Naomi; Kawashima, Yoichi

    2013-01-01

    Stroke-prone spontaneously hypertensive rats (SHRSP) are utilized as models for study of the pathogenesis of not only stroke and cardiovascular disorders but also atherosclerosis and metabolic syndrome. Basic information on the profiles of fatty acids and lipid classes in the liver is indispensable to use SHRSP as a model of disorder of lipid metabolism; nevertheless, detailed information on the metabolism of triacylglycerols (TAGs) and fatty acids in the liver of SHRSP is lacking. This study aimed to characterize profiles of lipid classes and fatty acids and to explore the mechanism underlying the characteristic alterations in metabolism of TAGs and fatty acids in the liver of SHRSP, in comparison with spontaneously hypertensive rats (SHR). The characteristic changes observed in SHRSP were (1) markedly lower hepatic TAG contents; (2) altered expressions of genes encoding three enzymes responsible for the control of TAG level, namely, adipose triglyceride lipase (for TAG degradation; up-regulated), carnitine palmitoyltransferase 1a (for fatty acid β-oxidation; up-regulated) and long-chain acyl-CoA synthetase 3 (for glycerolipid synthesis; down-regulated); (3) evidently lower contents and proportions of monounsaturated fatty acids, in particular cis-vaccenic acid (18:1n-7), in the liver and serum; and (4) down-regulation of palmitoleoyl-CoA chain elongase, which is necessary for the biosynthesis of 18:1n-7, in the liver. From the above observations, we concluded that there are significant differences in profiles of lipid classes and fatty acids between SHRSP and SHR, and that altered characteristics in SHRSP are likely responsible for increases in TAG hydrolysis and β-oxidation, and decreases in TAG synthesis and 18:1n-7 synthesis.

  7. Prehypertensive treatment with losartan, however not amlodipine, leads to long-term effects on blood pressure and reduces the risk of stroke in spontaneously hypertensive stroke-prone rats.

    Science.gov (United States)

    Zhang, Liangmin; He, Dehua; Lin, Jinxiu

    2016-02-01

    The current study investigated the efficacy of losartan and amlodipine in protecting spontaneously hypertensive stroke-prone (SHRSP) rats against the risk of stroke. SHRSP rats were administered losartan, amlodipine or the vehicle for 6 weeks. There were no significant differences in systolic blood pressure (SBP) in rats treated with losartan or amlodipine, however, following drug withdrawal, rats treated with losartan maintained reduced SBP for a longer time compared with rats treated with amlodipine. In addition, rats treated with losartan exhibited thinner vascular walls and improved systolic and diastolic function. Clinical stroke scores in the losartan group were significantly reduced compared with those in the amlodipine and vehicle groups. However, rats treated with losartan exhibited higher levels of angiotensin II and lower levels of aldosterone in the serum and brain cortex compared with the vehicle and amlodipine-treated rats. Furthermore, losartan significantly reduced the abnormal expression of angiotensin II receptors type 1 and 2 in SHRSP rats, whilst amlodipine did not. These results suggest that losartan may be more efficacious than amlodipine in ameliorating blood pressure deterioration and reducing stroke risk in SHRSP rats via regulation of the renin angiotensin system.

  8. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    Science.gov (United States)

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  9. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    2014-02-01

    Full Text Available Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation, and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 mo. and aged (21 mo. male F344 rats into control and acute restraint (an animal model of psychosocial stress groups (n = 9-12/ group. We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the three hour restraint, as well as highly significant increases in blood glucocorticoid levels 21 hours after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  10. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging.

    Science.gov (United States)

    Buechel, Heather M; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L; Thibault, Olivier; Blalock, Eric M

    2014-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9-12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  11. Benzonidazole levels in blood vary with age in rats.

    Science.gov (United States)

    Bulffer, Romina Fernanda; Castro, José Alberto; Fanelli, Silvia Laura

    2011-05-01

    Benznidazole (Bz) exhibits toxic side effects in animal studies and clinical use. Reductive metabolism of Bz in liver microsomes modulates the duration of its chemotherapeutic effect and its toxicity. The rate of this metabolism depends on age and is less intense in newborns and youngsters than in adults. In the present study, we determined Bz blood levels in rats of different ages that received Bz intragastrically (100 mg/kg). We developed and validated a high-pressure liquid chromatography with UV detector method for determination of Bz levels in whole blood. Bz levels were significantly higher and persisted for longer periods of time in the blood of young rats when compared to that of adult animals. PMID:21655830

  12. Benznidazole levels in blood vary with age in rats

    Directory of Open Access Journals (Sweden)

    Romina Fernanda Bulffer

    2011-05-01

    Full Text Available Benznidazole (Bz exhibits toxic side effects in animal studies and clinical use. Reductive metabolism of Bz in liver microsomes modulates the duration of its chemotherapeutic effect and its toxicity. The rate of this metabolism depends on age and is less intense in newborns and youngsters than in adults. In the present study, we determined Bz blood levels in rats of different ages that received Bz intragastrically (100 mg/kg. We developed and validated a high-pressure liquid chromatography with UV detector method for determination of Bz levels in whole blood. Bz levels were significantly higher and persisted for longer periods of time in the blood of young rats when compared to that of adult animals.

  13. Pulpal responses to cavity preparation in aged rat molars.

    Science.gov (United States)

    Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato

    2006-10-01

    The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300-360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.

  14. Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction.

    Science.gov (United States)

    Jin, Liming; Liu, Tongyun; Lagoda, Gwen A; Champion, Hunter C; Bivalacqua, Trinity J; Burnett, Arthur L

    2006-03-01

    Epidemiologic studies have shown that aging accounts significantly for the prevalence of erectile dysfunction (ED). The pathophysiology of ED during aging and its underlying molecular mechanisms are largely unknown. We hypothesized that increased RhoA/Rho-kinase signaling is a major factor in the pathogenesis of age-associated ED and the mechanism involves increased penile smooth muscle contractility through inhibition of myosin light chain phosphatase. Male Fischer 344 young (4 month old) and aged (20-22 month old) rats underwent erectile function testing in vivo by measuring intracavernosal pressure (ICP) and mean arterial blood pressure (MAP) upon electrical stimulation of the cavernous nerve. The data demonstrated that erectile function was significantly lower in aged rats than that in young rats at all voltages tested (Ppenes by 95 +/- 15 and 56 +/- 8% (Ppenes of aged and young rats for 7 days markedly improved erectile function in aged rats when compared with that in young rats (Ppenes receiving AAV vehicle treatment was twofold greater than that in young rat penes receiving AAV vehicle treatment, while it was reduced to a level similar to that in young rat penes after gene therapy of T19NRhoA (P<0.05). Taken together, these data suggest that impaired erectile function during the aging process involves increased RhoA/Rho-kinase signaling, and this pathway may be exploited for the treatment of age-associated ED. PMID:16396994

  15. Effects of dietary lipids on renal function of aged rats

    Directory of Open Access Journals (Sweden)

    Valente Gamba C.

    2001-01-01

    Full Text Available Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05. Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.

  16. Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing.

    Directory of Open Access Journals (Sweden)

    Dennis H Lau

    Full Text Available BACKGROUND: Both ageing and hypertension are known risk factors for atrial fibrillation (AF although the pathophysiological contribution or interaction of the individual factors remains poorly understood. Here we aim to delineate the arrhythmogenic atrial substrate in mature spontaneously hypertensive rats (SHR. METHODS: SHR were studied at 12 and 15 months of age (n = 8 per group together with equal numbers of age-matched normotensive Wistar-Kyoto control rats (WKY. Electrophysiologic study was performed on superfused isolated right and left atrial preparations using a custom built high-density multiple-electrode array to determine effective refractory periods (ERP, atrial conduction and atrial arrhythmia inducibility. Tissue specimens were harvested for structural analysis. RESULTS: COMPARED TO WKY CONTROLS, THE SHR DEMONSTRATED: Higher systolic blood pressure (p<0.0001, bi-atrial enlargement (p<0.05, bi-ventricular hypertrophy (p<0.05, lower atrial ERP (p = 0.008, increased atrial conduction heterogeneity (p = 0.001 and increased atrial interstitial fibrosis (p = 0.006 & CD68-positive macrophages infiltration (p<0.0001. These changes resulted in higher atrial arrhythmia inducibility (p = 0.01 and longer induced AF episodes (p = 0.02 in 15-month old SHR. Ageing contributed to incremental bi-atrial hypertrophy (p<0.01 and atrial conduction heterogeneity (p<0.01 without affecting atrial ERP, fibrosis and arrhythmia inducibility. The limited effect of ageing on the atrial substrate may be secondary to the reduction in CD68-positive macrophages. CONCLUSIONS: Significant atrial electrical and structural remodeling is evident in the ageing spontaneously hypertensive rat atria. Concomitant hypertension appears to play a greater pathophysiological role than ageing despite their compounding effect on the atrial substrate. Inflammation is pathophysiologically linked to the pro-fibrotic changes in the hypertensive atria.

  17. Potential urinary aging markers of 20-month-old rats.

    Science.gov (United States)

    Li, Xundou; Gao, Youhe

    2016-01-01

    Urine is a very good source for biomarker discovery because it accumulates changes in the body. However, a major challenge in urinary biomarker discovery is the fact that the urinary proteome is influenced by various elements. To circumvent these problems, simpler systems, such as animal models, can be used to establish associations between physiological or pathological conditions and alterations in the urinary proteome. In this study, the urinary proteomes of young (two months old) and old rats (20 months old; nine in each group) were analyzed using LC-MS/MS and quantified using the Progenesis LC-MS software. A total of 371 proteins were identified, 194 of which were shared between the young and old rats. Based on criteria of a fold change ≥2, P humans. However, no shared proteins between our results and the previous aging plasma proteome were identified. Twenty of the 33 (60%) altered proteins have been reported to be disease biomarkers, suggesting that aging may share similar urinary changes with some diseases. The 33 proteins corresponded to 28 human orthologs which, according to the Human Protein Atlas, are strongly expressed in the kidney, intestine, cerebellum and lung. Therefore, the urinary proteome may reflect aging conditions in these organs. PMID:27330854

  18. STIM1/Orai1 contributes to sex differences in vascular responses to calcium in spontaneously hypertensive rats.

    Science.gov (United States)

    Giachini, Fernanda R C; Lima, Victor V; Filgueira, Fernando P; Dorrance, Anne M; Carvalho, Maria Helena C; Fortes, Zuleica B; Webb, R Clinton; Tostes, Rita C

    2012-03-01

    Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai1/STIM1 (stromal interaction molecule 1). In addition, we investigated whether ovariectomy in females affects the activation of the Orai1/STIM1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar-Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM1 and Orai1, as shown by the blockade of STIM1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM1 and Orai1. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM1 expression. These findings suggest that augmented activation of STIM1/Orai1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai1 pathway, contributing to vascular protection observed in female rats.

  19. METABOLIC RATE AS A FUNCTION OF AGE IN BROWN NORWAY AND LONG-EVANS RATS.

    Science.gov (United States)

    Brown Norway (BN) rats are commonly used in aging studies but relatively little is known on their metabolism as it varies with age. In fact, there is considerable disagreement on the wholebody metabolism of aging rats with some studies indicating a decrease and others showing an...

  20. The food-conditioned place preference task in adolescent, adult and aged rats of both sexes

    OpenAIRE

    Rubinow, Marisa J.; Hagerbaumer, Diana A.; Juraska, Janice M.

    2008-01-01

    The rat basolateral amygdala shows neuroanatomical sex differences, continuing development after puberty and aging-related alterations. Implications for amygdala-dependent memory processes were explored here by testing male and female hooded rats in adolescence, adulthood and old age on the food-conditioned place preference task. While aged rats were unimpaired, adolescents failed to learn the task. This finding may be related to ongoing development of the basolateral amygdala and related mem...

  1. Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells.

    Science.gov (United States)

    Bickford, Paula C; Kaneko, Yuji; Grimmig, Bethany; Pappas, Colleen; Small, Brent; Sanberg, Cyndy D; Sanberg, Paul R; Tan, Jun; Douglas Shytle, R

    2015-10-01

    Aging is associated with a decline in function in many of the stem cell niches of the body. An emerging body of literature suggests that one of the reasons for this decline in function is due to cell non-autonomous influences on the niche from the body. For example, studies using the technique of parabiosis have demonstrated a negative influence of blood from aged mice on muscle satellite cells and neurogenesis in young mice. We examined if we could reverse this effect of aged serum on stem cell proliferation by treating aged rats with NT-020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine that has been shown to increase neurogenesis in aged rats. Young and aged rats were administered either control NIH-31 diet or one supplemented with NT-020 for 28 days, and serum was collected upon euthanasia. The serum was used in cultures of both rat hippocampal neural progenitor cells (NPCs) and rat bone marrow-derived mesenchymal stem cells (MSCs). Serum from aged rats significantly reduced cell proliferation as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays in both NPCs and MSCs. Serum from aged rats treated with NT-020 was not different from serum from young rats. Therefore, NT-020 rescued the effect of serum from aged rats to reduce stem cell proliferation. PMID:26410618

  2. Green tea polyphenols supplementation improves bone microstructure in orchidectomized middle-Aged rats

    Science.gov (United States)

    Our recent study shows that green tea polyphenols (GTP) attenuate trabecular bone loss in ovariectomized middle-aged female rats. To investigate whether GTP prevents bone loss in male rats, 40 rats with and without oriectomy (ORX) were assigned to 4 groups in a 2 (sham vs. ORX)× 2 (no GTP and 0.5% G...

  3. Vascular wall dysfunction in JCR:LA-cp rats: effects of age and insulin resistance.

    Science.gov (United States)

    O'brien, S F; Russell, J C; Davidge, S T

    1999-11-01

    We tested the hypothesis that aging and insulin resistance interact to increase vascular dysfunction by comparing the function of isolated mesenteric resistance arteries in obese, insulin-resistant JCR:LA-cp rats and lean, insulin-sensitive rats of the same strain at 3, 6, 9, and 12 mo of age. The peak constrictor responses to norepinephrine, phenylephrine, and high potassium were elevated in arteries from obese rats. Responses to these agents increased with age in both obese and lean rats. An eicosanoid constrictor contributed substantially to vasoconstriction in the arteries from both lean and obese animals. Inhibition of nitric oxide synthase increased the vasoconstrictor response to norepinephrine in both obese and lean rats. This effect increased with age in lean rats only. Vascular relaxation in response to acetylcholine and sodium nitroprusside was impaired in the obese rats and did not alter with age. The results suggest that obese JCR:LA-cp rats have enhanced maximal constriction, which originates in the arterial smooth muscle and increases with age. There is evidence that the ability of the arteries to compensate for the enhanced contractility is impaired in obese rats, particularly with advanced age.

  4. Effects of aging on abdominal wall healing in rats

    Directory of Open Access Journals (Sweden)

    Biondo-Simões Maria de Lourdes Pessole

    2005-01-01

    Full Text Available PURPOSE: The aim of this study was to assess abdominal wall healing in old and young adult rats. METHODS: On average, young animals were 110 days old and old animals were 762 days old. A 4.0 cm median laparotomy was performed under anesthesia, followed by laparorrhaphy on two synthesis planes, i.e. peritoneum-muscle-aponeurosis and skin, using continuous 5.0 nylon sutures. The animals were evaluated on the 3rd, 7th, 14th and 21st postoperative days. The resistance of the two planes was studied separately and a histopathologic analysis was performed on sections stained with hematoxylin-eosin and Sirius Red. Immunohistochemical analysis was also carried out using PCNA, LCA and CD34. RESULTS: The skin scars gained resistance in a similar manner at the initial time points, but those of young rats were more resistant on the 21st day (p=0.0029. Total and type III collagen content was similar in the two groups and type I collagen content was higher in young animals on the 14th day. Inflammatory cell infiltration was more marked in the skin wounds of young animals on the 3rd day (p=0.0190. Reepithelialization was similar and angiogenesis was more intense in the skin wounds of young animals on the 14th day (p=0.0062. The peritoneum-muscle-aponeurosis wounds gained similar resistance during the early phases, but were more resistant on the 14th day (p=0.0005 and on the 21st day (p=0.0023 in old rats Collagen concentration was higher in the wounds of old animals on the 3rd day (p=0.0112 and in the wounds of young animals on the 21st day (p=0.0348. The inflammatory reaction was more intense in the wounds of old animals on the 3rd day (p=0.0060 and angiogenesis was more intense on the 14th day (0.0432. CONCLUSION: Although there are some differences in the healing course between young and old animals, age, of itself, does not impair the healing of abdominal wall wounds in rats.

  5. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    Science.gov (United States)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  6. Age-related increase in prostacyclin production in the rat aorta.

    Science.gov (United States)

    Panganamala, R V; Hanumaiah, B; Merola, A J

    1981-02-01

    Normal Sprague-Dawley rats convert a substantial percentage of exogenous arachidonic acid to prostacyclin. This conversion can be quantitated by an aqueous sampling technique utilizing thin layer chromatography and liquid scintillation counting. There is a clear age-related increase in this conversion that can be demonstrated in aortas from rats of 3 weeks to 20 weeks of age. PMID:7017783

  7. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats

    Science.gov (United States)

    Recent studies show that green tea polyphenols (GTP) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. However, it is not known if such an osteo-protective role of GTP is demonstrable in androgen-deficient aged rats, a mo...

  8. Effect of monoamine nervous transmitter and neuropeptide Y in the aged rats with myocardial injury after brain ischemia-reperfusion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the mechanism of myocardial injury after brain ischemia-reperfusion in aged rats from the changes in Dopamine (DA), Noradrenalin (NE), Epinephrine(E) and Neuropeptide Y(NPY).METHODS: Young (5 months) and aged (20 months or more) rats were divided into model groups and normal control groups, respectively. We observed the following items in rats with 60 minute reperfusion after 30 minute brain ischemia: the pathological changed of myocardium, the activities of lactic dehydrrogenase(LDH), creatine phosphokinase(CPK), the contents of NE, DA, E, NPY. RESULTS:The CPK and LDH activities in the young model rats were higher than those in the young control rats was higher than that in the young control rats (P<0.05). The serum CPK activity in the aged control rats was higher than that in the young control rats (P<0.05). The myocardial CPK activity was higher in the aged model rats compared with the young molel rats (P<0.05) and was higher in aged control rats compared with the young control rats (P<0.01). The myocardial LDH activity was lower in the aged control rats than that in the young control rats (P<0.05) and aged model rats (P<0.01). The serum NE level, the level of NE and DA in the hypothalamus were higher obviously than those in the young control rats. The serum NE contents in the two model groups (young and aged) were higher respectively than the two control rats (young and aged). The following items’ contents were higher in the aged model rats than in the young model rats: serum NE, serum E, hypothalamus NE. The hypothalamus NE and E content was lower in the aged model rats than in te aged control rats. NPY level in the brain tissue was lower in the aged control rats than that in the young control rats and aged model rats (P<0.05).CONCLUSION: The myocardial injury after brain ischemia-reperfusion was concerned with the enhanced excitability of sympathetic-adrenal system, espectially in the aged rats. However, the change in myocardial

  9. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Institute of Scientific and Technical Information of China (English)

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  10. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  11. Dopamine transporter imaging in the aged rat: a [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Introduction: Rodent models are extensively used to assess the biochemical and physiological changes associated with aging. They play a major role in the development of therapies for age-related pathologies such as Parkinson's disease. To validate the usefulness of these animal models in aging or age-related disease research, the consistency of cerebral aging processes across species must be evaluated. The dopaminergic system seems particularly susceptible to the aging process. One of the results of this susceptibility is a decline in striatal dopamine transporter (DAT) availability. Methods: We sought to ascertain whether similar age changes could be detected in-vivo in rats, using molecular imaging techniques such as single photon emission computed tomography (SPECT) with [123I]FP-CIT. Results: A significant decrease of 17.21% in the striatal specific uptake ratio was observed in the aged rats with respect to the young control group. Conclusions: Our findings suggest that age-related degeneration in the nigrostriatal track is similar in humans and rats, which supports the use of this animal in models to evaluate the effect of aging on the dopaminergic system. Advances in Knowledge and Implications for patient Care: Our findings indicate that age-related degeneration in the nigrostriatal track is similar in humans and rats and that these changes can be monitored in vivo using small animal SPECT with [123I]FP-CIT, which could facilitate the translational research in rat models of age related disorders of dopaminergic system

  12. Histomorphometry of regenerated tibial bone tissue in rats of different age under violation of saltwater balance

    OpenAIRE

    Pogorelov M.V.

    2010-01-01

    Formation of regenerated bone tissue in rats of different age at normal conditions and at hyperhydration has beenstudied. It was revealed the features in composition of regenerated tissue at a different stages of bone repair process that dependson rat's age. The hypoosmolar hyperhydration cause disorders of regenerated tissue development and inhibit lamellarbone tissue formation. With the help of statistical methods it was shown the dependence of the age and hyperhydration degreeon regenerate...

  13. Histomorphometry of regenerated tibial bone tissue in rats of different age under violation of saltwater balance

    Directory of Open Access Journals (Sweden)

    Pogorelov M.V.

    2010-01-01

    Full Text Available Formation of regenerated bone tissue in rats of different age at normal conditions and at hyperhydration has beenstudied. It was revealed the features in composition of regenerated tissue at a different stages of bone repair process that dependson rat's age. The hypoosmolar hyperhydration cause disorders of regenerated tissue development and inhibit lamellarbone tissue formation. With the help of statistical methods it was shown the dependence of the age and hyperhydration degreeon regenerated tissue composition.

  14. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats

    OpenAIRE

    2009-01-01

    Abstract Rosemary leaves, ?Rosmarinus officinalis?, possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats. This work evaluates whether supplementing their diet with supercritical fluid (SFE) rosemary extract containing 20% antioxidant carnosic acid (CA) reduces oxidative stress in aged rats. Aged Wistar rats (20 mon...

  15. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: Comparison of aged and adult rats

    Directory of Open Access Journals (Sweden)

    Emin Ozbek

    2013-09-01

    Full Text Available Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR on endothelial and neuronal nitric oxide synthase (eNOS, nNOS expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7 and aged (24 mo, n = 7 male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14 fed ad libitum had free access to food and water at all times. On day 90, rats were sacrified and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  16. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    Directory of Open Access Journals (Sweden)

    Qiong eWang

    2015-09-01

    Full Text Available Early postnatal maternal separation (MS can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4 h per day from postnatal day [PND] 1–21 on the brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (mPFC, the nucleus accumbens (NAc and the hippocampus of male and female juvenile (PND 21, adolescent (PND 35 and young adult (PND 56 Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and socially reared rats. However, in the mPFC, the BDNF expression was increased with age in the socially reared rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male NMS rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The

  17. Age-related differences in susceptibility to toxic effects of valproic acid in rats.

    Science.gov (United States)

    Espandiari, Parvaneh; Zhang, Jun; Schnackenberg, Laura K; Miller, Terry J; Knapton, Alan; Herman, Eugene H; Beger, Richard D; Hanig, Joseph P

    2008-07-01

    A multi-age rat model was evaluated as a means to identify a potential age-related difference in liver injury following exposure to valproic acid (VPA), a known pediatric hepatotoxic agent. Different age groups of Sprague-Dawley (SD) rats (10-, 25-, 40-, 80-day-old) were administered VPA at doses of 160, 320, 500 or 650 mg kg(-1) (i.p.) for 4 days. Animals from all age groups developed toxicity after treatment with VPA; however, the patterns of toxicity were dissimilar within each age group. The high dose of VPA caused significant lethality in 10- and 25-day-old rats. All doses of VPA caused decrease in the platelet counts (10-, 25-day-old rats) and the rate of growth (40-day-old rats) and increases in the urine creatine concentration (high dose, 80-day-old rats). VPA induced hepatic and splenic alterations in all age groups. The most severe lesions were found mostly in 10- and 80-day-old rats. Significant changes in blood urea nitrogen, alanine aminotransferase and alkaline phosphatase were observed in 10-day-old pups after treatment with low doses of VPA. The highest VPA dose caused significant decreases in the levels of serum total protein (40- and 80-day-old rats). Principal component analysis of spectra derived from terminal urine samples of all age groups showed that each age group clusters separately. In conclusion, this study showed that the vulnerability profile of each age group was different indicating that a multi-age pediatric animal model is appropriate to assess more completely age-dependent changes in drug toxicity.

  18. Effects of metabolic syndrome on the ultrastructure of the femoral nerve in aging rats.

    Science.gov (United States)

    Rodrigues de Souza, Romeu; Gama, Eliane F; El-Razi Neto, Semaan; Maldonado, Diogo

    2015-10-01

    The aim of the present study was to characterize the morphometry of the femoral nerve in aging rats with metabolic syndrome compared to controls. Systolic blood pressure and fasting plasma glucose were measured, and myelinated and unmyelinated fibers in the femoral nerves were quantitatively assessed under electron microscopy. Aging rats exposed to a regimen of metabolic syndrome developed elevation of plasma glucose concentration, mild hypertension and polyneuropathy characterized by a decrease in myelin fiber area, axon diameter, myelin sheath thickness and myelin fiber loss in the femoral nerve. The histogram of size distribution for myelinated fibers and axons from the aging rats of the control group was bimodal. For aging MS animals, the histogram turned out to be unimodal. The ultrastructure of unmyelinated fibers and of Schwann cells in 18-month-old rats was well preserved. Granules of lipofuscin were seen in unmyelinated fiber axons of 18-month-old rats with MS. The damage percentage of the large myelinated fibers has increased significantly in 18-month-old and 18-month-old (MS) rats in relation to the controls. No significant difference was observed among the groups for the g-ratio. Comparing the three groups, the number of neurotubules and neurofilaments in myelinated fibers of 18-month-old rats with MS was significantly smaller than for the groups of 18-month-old and 14-month-old rats. The overall changes seen in the femoral nerve from aging rats seem minor compared to the changes in the aging rats with MS, suggesting that long-term MS accelerates the progressive modifications in peripheral nerves that develop in old age. PMID:25866014

  19. Reduced Hippocampal Dentate Cell Proliferation and Impaired Spatial Memory Performance in Aged-Epileptic Rats

    OpenAIRE

    LucieneCovolan; ClaudioM TQueiroz; JairGuilhermeSantos; GilbertoFXavier

    2013-01-01

    Increased adult neurogenesis is observed after training in hippocampal-dependent tasks and also after acutely induced status epilepticus (SE) although the specific roles of these cells are still a matter of debate. In this study, we investigated hippocampal cell proliferation and differentiation and the spatial learning performance in young or aged chronically epileptic rats. Status was induced by pilocarpine in 3 or 20-month old rats. Either two or twenty months later, rats were treated with...

  20. Age-dependent effects of conditioning on cholinergic and vasopressin systems in the rat suprachiasmatic nucleus

    OpenAIRE

    Biemans, BAM; Van der Zee, EA; Daan, S.

    2003-01-01

    Active shock avoidance was used to explore the impact of behavioural stimulation on the neurochemistry of the suprachiasmatic nucleus. We have found previously that the expression of muscarinic acetylcholine receptors in the suprachiasmatic nucleus of young rats was significantly enhanced 24 hours after fear conditioning. Here, we investigated whether this observation is age-dependent. We used 26 month-old Wistar rats with a deteriorated circadian system, and compared them with young rats (4 ...

  1. Age-related differences in the toxicity of ochratoxin A in female rats.

    Science.gov (United States)

    Dortant, P M; Peters-Volleberg, G W; Van Loveren, H; Marquardt, R R; Speijers, G J

    2001-01-01

    Ochratoxin A (OTA) is a mycotoxin found in food and feedstuffs of plant and animal origin. OTA exposure is related to nephropathy in humans. Age-related differences, especially in nephro- and immunotoxicity of OTA, were investigated in young adult (aged 12 weeks) and old (aged 27-30 months) female SPF Wag rats, treated by gavage with 0, 0.07, 0.34 or 1.68 mg OTA/kg body weight for 4 weeks. In both age groups, survival was significantly decreased in the highest dose group. Clinical condition, body weight, clinical chemistry parameters (ALAT, ASAT, creatinin and urea) and target organs (as identified by weight and pathology - kidney, liver, adrenals, forestomach and brain) were affected by age and dose, but often more severely in old than in young rats. OTA induced primarily nephropathy. Old rats were more sensitive to induction of tubular karyomegaly and vacuolation/necrosis. In young rats, OTA induced a dose-related thickening of the basement membrane and reduction in splenic T-cell fraction. Decreased IgG levels were seen at 0.34 mg/kg OTA (young and old rats) and 1.68 mg/kg OTA (young rats). Vacuolation of the white brain matter (cerebellar medulla and ventral parts of the brain stem) was significantly increased in young rats at 0.34 and 1.68 mg/kg OTA and in old rats at 0.07 and 0.34 mg/kg OTA. It was concluded that: (1) the profiles of OTA toxicity for both age groups are similar, with the kidney and possibly the brain being primary target organs; (2) based on clinical and pathological data old rats are more sensitive to OTA than young rats; and (3) the immune system is probably not the primary target of OTA toxicity.

  2. Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study

    OpenAIRE

    Elsner, Viviane Rostirola; Lovatel, Gisele Agustini; Moysés, Felipe; Bertoldi, Karine; Spindler, Christiano; Cechinel, Laura Reck; Muotri, Alysson; Siqueira, Ionara Rodrigues

    2012-01-01

    Regular exercise improves learning and memory, including during aging process. Interestingly, the imbalance of epigenetic mechanisms has been linked to age-related cognitive deficits. However, studies about epigenetic alterations after exercise during the aging process are rare. In this preliminary study we investigated the effect of aging and exercise on DNA methyltransferases (DNMT1 and DNMT3b) and H3-K9 methylation levels in hippocampus from 3 and 20-months aged Wistar rats. The animals we...

  3. Renoprotective effects of the AGE-inhibitor pyridoxamine in experimental chronic allograft nephropathy in rats

    NARCIS (Netherlands)

    Waanders, Femke; van den Berg, Else; Nagai, Ryoji; van Veen, Ingrid; Navis, Gerjan; van Goor, Harry

    2008-01-01

    Background. Advanced glycation end products (AGEs) are involved in diabetic nephropathy (DN). The AGE formation inhibitor pyridoxamine (PM) is renoprotective in DN and in normoglycaemic obese Zucker rats. In chronic allograft nephropathy (CAN), renal AGE accumulation occurs as well. Methods. To inve

  4. Ozone Induces Glucose Intolerance and Systemic Metabolic Effects in Young and Aged Brown Norway Rats

    Science.gov (United States)

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone could impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in very young and aged rats. Brown Norway (BN) rats, 1,4, 12, and 24 months ol...

  5. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    Science.gov (United States)

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  6. Effect of Low Amphetamine Doses on Cardiac Responses to Emotional Stress in Aged Rats

    NARCIS (Netherlands)

    Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.; Bohus, Bela

    1992-01-01

    In young Wistar rats conditioned emotional stress can be characterized by a learned bradycardiac response to an inescapable footshock. In aged rats this bradycardiac response is attenuated and accompanied by suppressed behavioral arousal in response to novelty. In the present study, cardiac response

  7. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Directory of Open Access Journals (Sweden)

    Susan J Abbondanzo

    Full Text Available Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  8. Comparison of Morphometric Aspects of Light and Electron Microscopy of the Hypoglossal Nerve between Young and Aged Male Wistar Rats

    OpenAIRE

    Mohsen Pourghasem; Yasser Asghari Vostacolaee; Nabiollah Soltanpour

    2012-01-01

    Objective: Age-related changes occur in many different systems of the body. Many elderly people show dysphagia and dysphonia. This research was conducted to evaluate quantitatively the morphometrical changes of the hypoglossal nerve resulting from the aging process in young and aged rats. Materials and Methods: Through an experimental study ten male wistar rats (4 months: 5 rats, 24 months: 5 rats) were selected randomly from a colony of wistars in the UWC. After a fixation process and prepar...

  9. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    Science.gov (United States)

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  10. Protective effect of supercritical fluid rosemary extract, , on antioxidants of major organs of aged rats

    OpenAIRE

    Posadas, S.J.; Caz, V.; Largo, C. (Cristina); De La Gándara, B.; Matallanas, B.; G. Reglero; Miguel, E.

    2009-01-01

    International audience Rosemary leaves, “”, possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats.

  11. The Effect of Aging on Erectile Function Induced by Apomorphine and Electric Field Stimulation to Rat

    Institute of Scientific and Technical Information of China (English)

    李铮; 郑松; 向祖琼; 刘勇; 王益鑫

    2002-01-01

    Objective To explore the effect and mechanism of aging on erection by using ratmodel.Materials & Methods Forty male SD rats of 3, 9, 18 and 24 months old were divid-ed into 4 groups equally according to their age. Apomorphine given subcutaneously andcavernous nerve electric field stimulation was used to induce erection of rats.Results The successful erection rate, number of erection times, and intracavernouspressure (ICP) in the rats of 18 and 24 month old was significantly lower than that of3 and 9 month old.Conclusion The erectile function in aging rats is deteriorated. The damage mecha-nism with aging might be related to dopaminergic system in central nerves.

  12. Chronic ethanol consumption depresses hypothalamic-pituitary-adrenal function in aged rats

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, C.J.; Bestervelt, L.L.; Mousigian, C.A.; Maimansomsuk, P.; Yong Cai; Piper, W.N. (Univ of Michigan, Ann Arbor (United States))

    1991-01-01

    In separate experiments, nine (n=20) and fifteen (n=12) month old rats were treated with either 6% ethanol or 12% sucrose in the drinking water to examine the effect of chronic ethanol consumption on the hypothalamic-pituitary-adrenal axis of aged rats. Blood was collected and plasma concentrations of adrenocorticotropin (ACTH) and corticosterone were determined by radioimmunoassay. Adrenal glands were cleaned, quartered and used to test in vitro responsiveness to ACTH. Anterior pituitary glands from all 15 month old rats and one half of the nine month old rats were collected, frozen and extracted for measurement of tissue ACTH concentration. The remaining anterior pituitary glands from the nine month old rats were challenged with corticotropin releasing hormone (CRH) to test in vitro responsiveness. In nine month old rats, chronic ethanol consumption decreased plasma ACTH and corticosterone. Pituitary ACTH concentrations were unchanged in treated nine month old rats, but the amount of pituitary ACTH released in response to CRH was decreased in rats consuming ethanol. In vitro responsiveness of the adrenal gland to ACTH in nine month old rats consuming ethanol was unchanged. Plasma ACTH and corticosterone concentrations were also decreased in 15 month old rats chronically consuming ethanol. No differences were noted in responsiveness of the adrenal gland or in the amount of pituitary ACTH due to ethanol consumptions in 15 month old rats.

  13. Oestradiol and IGF1 reduce cell loss after global ischemia in middle-aged female rats

    OpenAIRE

    Traub, Michael L.; De Butte-Smith, Maxine; Zukin, R. Suzanne; Etgen, Anne M.

    2009-01-01

    Whereas the ability of oestradiol and insulin-like growth factor-1 (IGF1) to afford neuroprotection against ischemia-induced neuronal death in young female and male rodents is well established, the impact of IGF1 in middle-aged animals is largely unknown. This study assessed the efficacy of oestradiol and IGF1 in reducing neuronal death after transient global ischemia in middle-aged female rats following an 8-week hormone withdrawal. Rats were ovariohysterectomized (OVX) and implanted 8 weeks...

  14. Secondhand Smoke Exposure Enhances Cardiac Fibrosis Effects on the Aging Rat Hearts

    Science.gov (United States)

    Wu, Jia-Ping; Chang-Lee, Shu Nu; Day, Cecilia Hsuan; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Chung, Li-Chin; Hwang, Jin-Ming; Jong, Gwo-Ping; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-01-01

    Background Examining aging rats exposed to secondhand smoke (SHS) engenders changes in left ventricular remodeling due to age- or disease-dependent alterations. Methods Rats were placed in whole-body exposure chambers and exposed to 10 cigarettes. Filtered air was introduced into the chamber at a low rate. Rats were exposed to SHS for 30 min, twice a day, 5 days per week for 1 month. After 4 weeks SHS exposure, rats were sacrificed for morphological study with trichome staining and left ventricular remodeling related protein analysis using western blot. Results Characteristic fibrotic morphology in the left ventricle increased significantly with aging and exposure to SHS. Exposure to SHS elevated TGFβ1/p-Smad2/3/CTGF and MMP2/MMP9 protein expression levels (p < 0.05). No significant differences in FGF-2 and UPA protein expression were noted as a result of SHS exposure. However, TIMP-1, TIMP-2, TIMP-3 and TIMP-4 protein expression were suppressed by SHS exposure. We also observed increased TGFβ1/p-Smad2/3/CTGF (p < 0.01), FGF-2/UPA (p < 0.05) and decreased TIMPs protein expression levels. Corresponding MMP2 and MMP9 upregulation occurred with aging and exposure to SHS. TGFβ1/p-Smad2/3/CTGF and FGF-2/UPA protein expression from SHS exposure were higher than that from aging. In contrast, MMP2 and MMP9 were increased in aging rats compared with SHS exposed rats (p < 0.05); however, TIMP-1 (p < 0.01), TIMP-2 (p < 0.01) and TIMP-3 (p < 0.05) were decreased. TIMP-4 protein expression levels were decreased compared with SHS exposed rats (p < 0.01). Conclusions Aging and SHS exposure in rats will produce elevated fibrosis. Exposure to SHS will accelerate aging and left ventricular fibrosis. PMID:27713609

  15. Effect of aging on treadmill exercise induced theta power in the rat

    OpenAIRE

    Kuo, Terry B. J.; Li, Jia-Yi; Shen-Yu Hsieh, Sandy; Chen, Jin-Jong; Tsai, Ching-Yao; Yang, Cheryl C H

    2010-01-01

    The effects of aging on the electroencephalogram (EEG) power spectra of 8- and 60-week-old Wistar–Kyoto rats were examined during the waking baseline and treadmill exercise. Using continuous and simultaneous recordings of EEG and electromyogram signals, this study demonstrated that the alpha (10–13 Hz), theta (6–10 Hz), and delta (0.5–4 Hz) powers of the EEG were significantly lower in older rats as compared with young rats during the waking baseline. In the young rats, treadmill exercise res...

  16. Intravital imaging in spontaneously hypertensive stroke-prone rats-a pilot study

    OpenAIRE

    Niklass, Solveig; Stoyanov, Stoyan; Garz, Cornelia; Bueche, Celine Z.; Mencl, Stine; Reymann, Klaus; Heinze, Hans-Jochen; Carare, Roxana O.; Kleinschnitz, Christoph; Schreiber, Stefanie

    2015-01-01

    Background There is growing evidence that endothelial failure and subsequent blood brain barrier (BBB) breakdown initiate cerebral small vessel disease (CSVD) pathology. In spontaneously hypertensive stroke-prone rats (SHRSP) endothelial damage is indicated by intraluminal accumulations of erythrocytes (erythrocyte thrombi) that are not observed with current magnetic resonance imaging techniques. Two-photon microscopy (2 PM) offers the potential for real-time direct detection of the small ...

  17. Aging-Dependent Regulation of Antioxidant Enzymes and Redox Status in Chronically Loaded Rat Dorsiflexor Muscles

    OpenAIRE

    Ryan, Michael J.; Dudash, Holly J.; Docherty, Megan; Geronilla, Kenneth B.; Baker, Brent A.; Haff, G. Gregory; Cutlip, Robert G; Alway, Stephen E.

    2008-01-01

    This study compares changes in the pro-oxidant production and buffering capacity in young and aged skeletal muscle after exposure to chronic repetitive loading (RL). The dorsiflexors from one limb of young and aged rats were loaded 3 times/week for 4.5 weeks using 80 maximal stretch-shortening contractions per session. RL increased H2O2 in tibialis anterior muscles of young and aged rats and decreased the ratio of reduced/oxidized glutathione and lipid peroxidation in aged but not young adult...

  18. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  19. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    OpenAIRE

    Khairunnuur Fairuz Azman; Rahimah Zakaria; Che Badariah Abdul Aziz; Zahiruddin Othman

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected...

  20. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging

    Directory of Open Access Journals (Sweden)

    Caroline eMenard

    2014-05-01

    Full Text Available The LOU/C/Jall (LOU rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6-42 months were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn, an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non obese aging

  1. Effects of age on behavioral and physiological responses to carbaryl in rats.

    Science.gov (United States)

    Takahashi, R N; Poli, A; Morato, G S; Lima, T C; Zanin, M

    1991-01-01

    Motor, sensory and thermoregulatory functions were examined in young (3 months) and mature (12 months) rats following PO administration of single low doses (10 and 50 mg/kg) of carbaryl, a carbamate insecticide, and these effects were related to blood cholinesterase activity. Carbaryl 50 mg/kg decreased the frequency of ambulation in the open-field arena within 30 min while it enhanced the duration of haloperidol-induced catalepsy in both young and mature rats. Administration of carbaryl also resulted in an increased nociceptive threshold to thermic stimuli mainly in mature rats. An age-related reduction in body temperature was observed at 30, 60 and 90 min after injection. Activity of blood cholinesterase was reduced in young and mature rats at 30 and 60 min following carbaryl exposure. These results indicate that carbaryl can induce an age-related impairment on some behavioral and autonomic functions in rats correlated to the inhibition of cholinesterase activity. PMID:1904531

  2. Changes of microvascular architecture, ultrastructure and permeability of rat jejunal villi at different ages

    Institute of Scientific and Technical Information of China (English)

    Yan-Min Chen; Jin-Sheng Zhang; Xiang-Lin Duan

    2003-01-01

    AIM: To investigate the changes of microvascular architecture, ultrastructure and permeability of rat jejunal villi at different ages.METHODS: Microvascular corrosion casting, scanning electron microscopy, transmission electron microscopy and Evans blue infiltration technique were used in this study.RESULTS: The intestinal villous plexus of adult rats consisted of arterioles, capillary network and venules. The marginal capillary extended to the base part of the villi and connected to the capillary networks of adjacent villi. In newborn rats,the villous plexus was rather simple, and capillary network was not formed. The villous plexus became cone-shaped and was closely arrayed in ablactation rats. In adult rats,the villous plexus became tongue-shaped and was enlarged both in height and width. In aged rats, the villous plexus shrank in volume and became shorter and narrower. The diametral ratio of villous arteriole to villous venule increased as animals became older. The number of endothelial holes,the thickness of basal membrane and the permeability of microvasculature were increased over the entire course of development from newborn period to aged period.CONCLUSION: The digestive and absorptive functions of the rat jejunum at different ages are highly dependent upon the state of villous microvascular architecture and permeability, and blood circulation is enhanced by collateral branches such as marginal capillary, through which blood is drained to the capillary networks of adjacent villi.

  3. Downregulation of caveolin-1 contributes to the synaptic plasticity deficit in the hippocampus of aged rats*******

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Zhanhua Liang; Jing Liu; Wei Zou; Xiaoyan Li; Yachen Wang; Lijia An

    2013-01-01

    Caveolin-1 is involved in the regulation of synaptic plasticity, but the relationship between its pression and cognitive function during aging remains controversial. To explore the relationship be-tween synaptic plasticity in the aging process and changes in learning and memory, we examined caveolin-1 expression in the hippocampus, cortex and cerebel um of rats at different ages. We also examined the relationship between the expression of caveolin-1 and synaptophysin, a marker of synaptic plasticity. Hippocampal caveolin-1 and synaptophysin expression in aged (22-24 month old) rats was significantly lower than that in young (1 month old) and adult (4 months old) rats. pression levels of both proteins were significantly greater in the cortex of aged rats than in that of young or adult rats, and levels were similar between the three age groups in the cerebel um. Linear regression analysis revealed that hippocampal expression of synaptophysin was associated with memory and learning abilities. Moreover, synaptophysin expression correlated positively with caveolin-1 expression in the hippocampus, cortex and cerebel um. These results confirm that caveolin-1 has a regulatory effect on synaptic plasticity, and suggest that the downregulation of hippocampal caveolin-1 expression causes a decrease in synaptic plasticity during physiological aging.

  4. Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment.

    Science.gov (United States)

    Stemple, Joseph C; Andreatta, Richard D; Seward, Tanya S; Angadi, Vrushali; Dietrich, Maria; McMullen, Colleen A

    2016-05-01

    Clinical evidence suggests that laryngeal muscle dysfunction is associated with human aging. Studies in animal models have reported morphological changes consistent with denervation in laryngeal muscles with age. Life-long laryngeal muscle activity relies on cytoskeletal integrity and nerve-muscle communication at the neuromuscular junction (NMJ). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. We hypothesized that treatment with neurotrophin 4 (NTF4) would modify the morphology and functional innervation of aging rat laryngeal muscles. Fifty-six Fischer 344xBrown Norway rats (6- and 30-mo age groups) were used to evaluate to determine if NTF4, given systemically (n = 32) or directly (n = 24), would improve the morphology and functional innervation of aging rat thyroarytenoid muscles. Results demonstrate the ability of rat laryngeal muscles to remodel in response to neurotrophin application. Changes were demonstrated in fiber size, glycolytic capacity, mitochondrial, tyrosine kinase receptors (Trk), NMJ content, and denervation in aging rat thyroarytenoid muscles. This study suggests that growth factors may have therapeutic potential to ameliorate aging-related laryngeal muscle dysfunction.

  5. Effects of short-term administration of estradiol on reperfusion arrhythmias in rats of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Savergnini, S.Q.; Reis, A.M. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Santos, R.A.S. [1Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Santos, P.E.B. [Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ferreira, A.J. [Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Almeida, A.P. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-11-01

    Little is known about age-related differences in short-term effects of estradiol on ischemia-reperfusion (I/R) insults. The present study was designed to evaluate the effects of short-term treatment with estradiol on reperfusion arrhythmias in isolated hearts of 6-7-week-old and 12-14-month-old female rats. Wistar rats were sham-operated, ovariectomized and treated with vehicle or ovariectomized and treated with 17β-estradiol (E{sub 2}; 5 µg·100 g{sup −1}·day{sup −1}) for 4 days. Hearts were perfused by the Langendorff technique. Reperfusion arrhythmias, i.e., ventricular tachycardia and/or ventricular fibrillation, were induced by 15 min of left coronary artery ligation and 30 min of reperfusion. The duration and incidence of I/R arrhythmias were significantly higher in young rats compared to middle-aged rats (arrhythmia severity index: 9.4 ± 1.0 vs 3.0 ± 0.3 arbitrary units, respectively, P < 0.05). In addition, middle-aged rats showed lower heart rate, systolic tension and coronary flow. Four-day E{sub 2} treatment caused an increase in uterine weight. Although E{sub 2} administration had no significant effect on the duration of I/R arrhythmias in middle-aged rats, it induced a marked reduction in the rhythm disturbances of young rats accompanied by a decrease in heart rate of isolated hearts. Also, this reduction was associated with an increase in QT interval. No significant changes were observed in the QT interval of middle-aged E{sub 2}-treated rats. These data demonstrate that short-term estradiol treatment protects against I/R arrhythmias in hearts of young female rats. The anti-arrhythmogenic effect of estradiol might be related to a lengthening of the QT interval.

  6. Alteration of CNS dopamine transporter and D2 receptor in aged and scopolamine induced amnestic rats

    International Nuclear Information System (INIS)

    Objective: To evaluate the effect of aging and scopolamine (Sco) induced amnesia on central dopamine transporter (DAT), D2 receptor in rats. Methods: The 3 month old amnestic rat models were made by peritoneal injection of the muscarinic receptor antagonist Sco (5 mg/kg) for 10 d. Passive avoidance task was carried out to evaluate the recent learning and memory of rats. The biodistribution of 125I-2-β-carbomethoxy-3-β(4-iodophenyl)-tropan (125I-β-CIT) and 125I-s-3-iodo-N-(1-ethyl-2-pyrolidinyl) methyl-2-hydroxy-6-methoxybenzamide (IBZM) in the brain was used to evaluate the DAT and D2 receptor. Results: During 10 d passive avoidance task testing, no difference was found for the first day among 3 month control, 26 month old and Sco group rats, on the 10th day the entry number of aged and Sco group rats was (1.33 +- 0.82)/10 min, (3.00 +- 0.63)/10 min, respectively, higher than that of the control rats (t was 5.682 and 6.372, respectively, P125I-β-CIT binding were found in the striatum (ST), hippocampus (HIP) and frontal cortex (FC) of the aged and Sco group rats (t was 4.151, 5.416, 4.871, 6.922, 7.331 and 3.990, respectively, P125I-IBZM binding in ST was found in both Sco and old rats (t was 6.021 and 3.227, respectively, P 2 receptor, was found in ST, HIP and cortex of the aged and Sco group suggesting a gradual degeneration of dopaminergic neurons in aged rats. The decreased levels of 125I-β-CIT and 125I-IBZM binding in cortex area might be responsible for the amnesia in he Sco group through the dopaminergic pathway of midbrain-frontal cortex

  7. Effects of short-term administration of estradiol on reperfusion arrhythmias in rats of different ages

    International Nuclear Information System (INIS)

    Little is known about age-related differences in short-term effects of estradiol on ischemia-reperfusion (I/R) insults. The present study was designed to evaluate the effects of short-term treatment with estradiol on reperfusion arrhythmias in isolated hearts of 6-7-week-old and 12-14-month-old female rats. Wistar rats were sham-operated, ovariectomized and treated with vehicle or ovariectomized and treated with 17β-estradiol (E2; 5 µg·100 g−1·day−1) for 4 days. Hearts were perfused by the Langendorff technique. Reperfusion arrhythmias, i.e., ventricular tachycardia and/or ventricular fibrillation, were induced by 15 min of left coronary artery ligation and 30 min of reperfusion. The duration and incidence of I/R arrhythmias were significantly higher in young rats compared to middle-aged rats (arrhythmia severity index: 9.4 ± 1.0 vs 3.0 ± 0.3 arbitrary units, respectively, P < 0.05). In addition, middle-aged rats showed lower heart rate, systolic tension and coronary flow. Four-day E2 treatment caused an increase in uterine weight. Although E2 administration had no significant effect on the duration of I/R arrhythmias in middle-aged rats, it induced a marked reduction in the rhythm disturbances of young rats accompanied by a decrease in heart rate of isolated hearts. Also, this reduction was associated with an increase in QT interval. No significant changes were observed in the QT interval of middle-aged E2-treated rats. These data demonstrate that short-term estradiol treatment protects against I/R arrhythmias in hearts of young female rats. The anti-arrhythmogenic effect of estradiol might be related to a lengthening of the QT interval

  8. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala

    OpenAIRE

    Rubinow, Marisa J.; Drogos, Lauren L.; Juraska, Janice M.

    2007-01-01

    Little research has examined the influence of aging or sex on anatomical measures in the basolateral amygdala. We quantified spine density and dendritic material in Golgi-Cox stained tissue of the basolateral nucleus in young adult (3–5 months) and aged (20–24 months) male and female Long-Evans rats. Dendritic branching and spine density were measured in principal neurons. Age, but not sex, influenced the dendritic tree, with aged animals displaying significantly more dendritic material. Prev...

  9. Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Mizutani, K; Ikeda, K; Kawai, Y; Yamori, Y

    2000-04-01

    We examined the effect of resveratrol (3,4',5-trihydroxy stilbene), a phenolic compound found in the skins of most grapes, on blood pressure and bone loss in ovariectomized (OVX), stroke-prone spontaneously hypertensive rats (SHRSP). Nineteen-week-old female SHRSP were divided into a sham-ovariectomized (sham) group fed a control diet and two OVX groups fed either a control diet (OVX-Cont) or a diet supplemented with resveratrol (5 mg/kg per d; OVX-Resv). Ovariectomy induced significant increases in systolic blood pressure (SBP). Resveratrol lowered the SBP by 15%) by the third week of administration, and this effect was maintained throughout the study. Resveratrol treatment also significantly enhanced endothelium-dependent vascular relaxation in response to acetylcholine (ACh) in OVX rats. Finally, femur breaking energies measured for the resveratrol-treated (OVX-Resv) group were significantly higher than those of the resveratrol-untreated (OVX-Cont) group. While no significant differences in calcium, magnesium and phosphorus content were found between the femurs of OVX-Cont and OVX-Resv rats, the femur hydroxyproline content in the OVX-Resv group was significantly higher than of the OVX-Cont group. We conclude that, in OVX-SHRSP, resveratrol acts by a similar mechanism to mammalian estrogens, lowering blood pressure by increasing dilatory responses to ACh. The present study also demonstrated that resveratrol was able to prevent ovariectomy-induced decreases in femoral bone strength.

  10. The effect of age on digoxin pharmacokinetics in Fischer-344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.L.; Owens, S.M.; Ruch, S.; Kennedy, R.H.; Seifen, E. (Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1990-01-01

    Digoxin protein binding and pharmacokinetics were studied in 4-, 14-, and 25-month-old male Fischer-344 rats to determine if there were age-dependent changes in digoxin disposition. Serum protein binding did not differ among age groups. The average percentage unbound digoxin for all animals was 61.3 {plus minus} 5.3% (means {plus minus} SD, n = 15). For pharmacokinetic studies, ({sup 3}H)digoxin and 1 mg/kg unlabeled digoxin were administered as an intravenous bolus dose to animals from each age group. The ({sup 3}H)digoxin terminal elimination half-life was 2.0, 2.3, and 2.5 hr, respectively. The steady-state volume of distribution in the three age groups was 1.51, 1.49, and 1.27 liters/kg, respectively. Total body clearance for the three age groups was 14.2, 12.1, and 7.5 ml/min/kg, respectively. Analysis of variance of these data followed by Duncan's multiple range test indicated a significant decrease in clearance in the aged rats (25-month-old, p less than 0.05). This age-dependent decrease in clearance suggested that digoxin pharmacokinetics could be a significant factor in age-related alterations in digoxin cardiotoxicity in the rat, as it is in humans, and that the Fischer-344 rat could be a useful model for studies of digoxin pharmacokinetic changes with age.

  11. Studies on prolactin-secreting cells in aging rats of different strains. I. Alterations in pituitary histology and serum prolactin levels as related to ageing.

    NARCIS (Netherlands)

    Putten, van L.J.A.; Zwieten, van M.J.; Mattheij, J.A.M.; Kemenade, J.A.M.

    1988-01-01

    Serum PRL levels and histologically tumor-free pituitary glands of 91 aging rats of the BN/BiRij strain, the WAG/Rij strain and their F1 hybrid were studied. In rats with pituitary glands without signs of hyperplasia, serum PRL levels were, in comparison to rats of 15-24 months, increased 25-29-mont

  12. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    Science.gov (United States)

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  13. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia.

    Science.gov (United States)

    Nara, Akina; Nagai, Hisashi; Shintani-Ishida, Kaori; Ogura, Sayoko; Shimosawa, Tatsuo; Kuwahira, Ichiro; Shirai, Mikiyasu; Yoshida, Ken-ichi

    2015-08-01

    Pulmonary arterial hypertension (PAH) is prevalent in patients with obstructive sleep apnea syndrome (OSAS). Aging induces arginase activation and reduces nitric oxide (NO) production in the arteries. Intermittent hypoxia (IH), conferred by cycles of brief hypoxia and normoxia, contributes to OSAS pathogenesis. Here, we studied the role of arginase and aging in the pathogenesis of PAH in adult (9-mo-old) and young (2-mo-old) male Sprague-Dawley rats subjected to IH or normoxia for 4 weeks and analyzed them with a pressure-volume catheter inserted into the right ventricle (RV) and by pulsed Doppler echocardiography. Western blot analysis was conducted on arginase, NO synthase isoforms, and nitrotyrosine. IH induced PAH, as shown by increased RV systolic pressure and RV hypertrophy, in adult rats but not in young rats. IH increased expression levels of arginase I and II proteins in the adult rats. IH also increased arginase I expression in the pulmonary artery endothelium and arginase II in the pulmonary artery adventitia. Furthermore, IH reduced pulmonary levels of nitrate and nitrite but increased nitrotyrosine levels in adult rats. An arginase inhibitor (N(ω)-hydroxy-nor-1-arginine) prevented IH-induced PAH and normalized nitrite and nitrate levels in adult rats. IH induced arginase up-regulation and PAH in adult rats, but not in young rats, through reduced NO production. Our findings suggest that arginase inhibition prevents or reverses PAH. PMID:25490411

  14. Effects of aging on peripheral and central auditory processing in rats.

    Science.gov (United States)

    Costa, Margarida; Lepore, Franco; Prévost, François; Guillemot, Jean-Paul

    2016-08-01

    Hearing loss is a hallmark sign in the elderly population. Decline in auditory perception provokes deficits in the ability to localize sound sources and reduces speech perception, particularly in noise. In addition to a loss of peripheral hearing sensitivity, changes in more complex central structures have also been demonstrated. Related to these, this study examines the auditory directional maps in the deep layers of the superior colliculus of the rat. Hence, anesthetized Sprague-Dawley adult (10 months) and aged (22 months) rats underwent distortion product of otoacoustic emissions (DPOAEs) to assess cochlear function. Then, auditory brainstem responses (ABRs) were assessed, followed by extracellular single-unit recordings to determine age-related effects on central auditory functions. DPOAE amplitude levels were decreased in aged rats although they were still present between 3.0 and 24.0 kHz. ABR level thresholds in aged rats were significantly elevated at an early (cochlear nucleus - wave II) stage in the auditory brainstem. In the superior colliculus, thresholds were increased and the tuning widths of the directional receptive fields were significantly wider. Moreover, no systematic directional spatial arrangement was present among the neurons of the aged rats, implying that the topographical organization of the auditory directional map was abolished. These results suggest that the deterioration of the auditory directional spatial map can, to some extent, be attributable to age-related dysfunction at more central, perceptual stages of auditory processing.

  15. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  16. Effects of Early Onset of Nimodipine Treatment on Microvascular Integrity in the Aging Rat Brain

    NARCIS (Netherlands)

    de Jong, Giena; Horváth, E.; Luiten, P.G.M.

    1990-01-01

    We studied the effects of long-term treatment with 1,4-dihydropyridine nimodipine on age-related changes of the cerebral microvasculature in layers I, III, and V of the frontoparietal motor cortex of aged (30 months) male Wistar rats. Ultrastructural alterations of microvessels can either be attribu

  17. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    Science.gov (United States)

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  18. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  19. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  20. The Gene Expression Profile of D-galactose Induced Aging Model Rat Using cDNA Microarray

    Institute of Scientific and Technical Information of China (English)

    Li Min(李珉); Wang Gang; Zhang Wei; Wang Miqu; Zhang Yizheng

    2004-01-01

    In order to study the molecular mechanism of D-galactose induced aging model, cDNA microarray is used to analyze gene expression profiles of both normal and D-galactose induced aging model rats. D-galactose induced aging model rats are injected with D-galactose, while normal rats are injected with physiological saline as control. After 7 weeks, the two groups of rats are killed simultaneously. Their livers are harvested for genome-wide expression analysis. D-galactose treated rats showed changes in gene expression associated with increase or decrease in xenobiotic metabolism, protein metabolism and energy metabolism.

  1. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats.

    Science.gov (United States)

    Nevitt, Chris; McKenzie, Grant; Christian, Katelyn; Austin, Jeff; Hencke, Sarah; Hoying, James; LeBlanc, Amanda

    2016-06-01

    Aging and cardiovascular disease are associated with the loss of nitric oxide (NO) signaling and a decline in the ability to increase coronary blood flow reserve (CFR). Thrombospondin-1 (Thbs-1), through binding of CD47, has been shown to limit NO-dependent vasodilation in peripheral vascular beds via formation of superoxide (O2 (-)). The present study tests the hypothesis that, similar to the peripheral vasculature, blocking CD47 will improve NO-mediated vasoreactivity in coronary arterioles from aged individuals, resulting in improved CFR. Isolated coronary arterioles from young (4 mo) or old (24 mo) female Fischer 344 rats were challenged with the NO donor, DEA-NONO-ate (1 × 10(-7) to 1 × 10(-4) M), and vessel relaxation and O2 (-) production was measured before and after Thbs-1, αCD47, and/or Tempol and catalase exposure. In vivo CFR was determined in anesthetized rats (1-3% isoflurane-balance O2) via injected microspheres following control IgG or αCD47 treatment (45 min). Isolated coronary arterioles from young and old rats relax similarly to exogenous NO, but addition of 2.2 nM Thbs-1 inhibited NO-mediated vasodilation by 24% in old rats, whereas young vessels were unaffected. Thbs-1 increased O2 (-) production in coronary arterioles from rats of both ages, but this was exaggerated in old rats. The addition of CD47 blocking antibody completely restored NO-dependent vasodilation in isolated arterioles from aged rats and attenuated O2 (-) production. Furthermore, αCD47 treatment increased CFR from 9.6 ± 9.3 (IgG) to 84.0 ± 23% in the left ventricle in intact, aged animals. These findings suggest that the influence of Thbs-1 and CD47 on coronary perfusion increases with aging and may be therapeutically targeted to reverse coronary microvascular dysfunction. PMID:27199114

  2. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Farkhondeh, Tahereh

    2016-08-01

    This study evaluated whether crocin, a bioactive component of saffron, has a protective effect on kidney through reducing the oxidative stress and inflammatory response in aged rats. In this study the changes in activities of antioxidant enzymes, lipid peroxidation, glutathione (GSH) levels and the expression of pro-inflammatory cytokines in the serum and renal tissue were evaluated by ELISA and RT-PCR, respectively. The middle and aged rats were given intraperitoneal injections of crocin (10, 20, 30 mg/kg/day) for 4 weeks. After 4 weeks, animals were anesthetized with diethyl ether. The kidney samples were taken for biochemical analysis. The results revealed the aging was associated with a significant decrease in the activities of antioxidant enzymes, and GSH content with increase in lipid peroxidation level in kidney of the aged rats (p < 0.001). The increased levels of serum renal functional parameter, oxidative parameters (p < 0.01) and also pro-inflammatory cytokine levels were significantly reduced by crocin administration (p < 0.05). The aged rats exhibited a dysregulation of the oxidative stress, and inflammation in the kidneys, but crocin treatment significantly reduced the expression of the inflammatory genes. These results provide pivotal documentation that crocin has a renoprotective effects against the development of oxidative stress and inflammation in the kidney of old rats. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27279282

  3. Age-related audiovisual interactions in the superior colliculus of the rat.

    Science.gov (United States)

    Costa, M; Piché, M; Lepore, F; Guillemot, J-P

    2016-04-21

    It is well established that multisensory integration is a functional characteristic of the superior colliculus that disambiguates external stimuli and therefore reduces the reaction times toward simple audiovisual targets in space. However, in a condition where a complex audiovisual stimulus is used, such as the optical flow in the presence of modulated audio signals, little is known about the processing of the multisensory integration in the superior colliculus. Furthermore, since visual and auditory deficits constitute hallmark signs during aging, we sought to gain some insight on whether audiovisual processes in the superior colliculus are altered with age. Extracellular single-unit recordings were conducted in the superior colliculus of anesthetized Sprague-Dawley adult (10-12 months) and aged (21-22 months) rats. Looming circular concentric sinusoidal (CCS) gratings were presented alone and in the presence of sinusoidally amplitude modulated white noise. In both groups of rats, two different audiovisual response interactions were encountered in the spatial domain: superadditive, and suppressive. In contrast, additive audiovisual interactions were found only in adult rats. Hence, superior colliculus audiovisual interactions were more numerous in adult rats (38%) than in aged rats (8%). These results suggest that intersensory interactions in the superior colliculus play an essential role in space processing toward audiovisual moving objects during self-motion. Moreover, aging has a deleterious effect on complex audiovisual interactions.

  4. Brain nitric oxides synthase in major pelvic ganglia of aged (LETO) and diabetic (OLETF) rats.

    Science.gov (United States)

    Salama, N; Tamura, M; Tsuruo, Y; Ishimura, K; Kagawa, S

    2002-01-01

    This study was conducted to evaluate the effects of aging and diabetes mellitus (DM) on brain nitric oxide synthase (bNOS) expression in major pelvic ganglia (MPG) of rats. Otsuka Long Evans Tokushima Fatty rats (12, 30, and 70 weeks old), which are genetic models with non-insulin-dependent DM (NIDDM), and age-matched nondiabetic Long Evans Tokushima Otsuka controls were used. The MPG of all rats in this study were subjected to cryo-sectioning and staining with bNOS polyclonal AB and rhodamine-conjugated rabbit IgG. Fluorescence intensities of the stained neurons were assessed in randomly selected fields per each specimen. Animals of both groups revealed significant decline in the staining intensity of their neurons with aging and the progress of DM, but diabetic rats showed more decline than controls. In conclusion, both aging and NIDDM could decrease bNOS expression in rat MPG. However, NIDDM has a more evident effect than aging on that expression. The decrease in bNOS may cause a disturbance in functions of the target pelvic structures of these ganglia under both conditions. PMID:12230824

  5. The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats.

    Science.gov (United States)

    Mach, John; Huizer-Pajkos, Aniko; Cogger, Victoria C; McKenzie, Catriona; Le Couteur, David G; Jones, Brett E; de Cabo, Rafael; Hilmer, Sarah N

    2014-04-01

    We investigated the effect of aging on hepatic pharmacokinetics and the degree of hepatotoxicity following a toxic dose of acetaminophen. Young and old male Fischer 344 rats were treated with 800 mg/kg acetaminophen (young n = 8, old n = 5) or saline (young n = 9, old n = 9). Serum measurements showed old rats treated with acetaminophen had significantly lower serum alanine aminotransferase and higher acetaminophen and acetaminophen glucuronide levels and creatinine, compared with acetaminophen treated young rats (p acetaminophen had lower survival than those from old rats (52.4% ± 5.8%, young; 83.6% ± 1.7%, old, p acetaminophen-induced hepatotoxicity but may increase risk of nephrotoxicity in old age.

  6. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats

    Science.gov (United States)

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2009-01-01

    We evaluated the effect of various light/dark regimens on the survival, life span and tumorigenesis in rats. Two hundred eight male and 203 females LIO rats were subdivided into 4 groups and kept at various light/dark regimens: standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until natural death. We found that exposure to NL and LL regimens accelerated development of metabolic syndrome and spontaneous tumorigenesis, shortened life span both in male and females rats as compared to the standard LD regimen. We conclude that circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. This observation supports the conclusion of the International Agency Research on Cancer that shift-work that involves circadian disruption is probably carcinogenic to humans. PMID:20157558

  7. Aging-related changes in calcium binding proteins in rat perirhinal cortex

    OpenAIRE

    Moyer, James R.; Furtak, Sharon C.; McGann, John P.; Brown, Thomas H.

    2009-01-01

    Dysregulation of intracellular calcium homeostasis has been linked to neuropathological symptoms observed in aging and age-related disease. Alterations in the distribution and relative frequency of calcium-binding proteins (CaBPs), which are important in regulating intracellular calcium levels, may contribute to disruption of calcium homeostasis. Here we examined the laminar distribution of three CaBPs in rat perirhinal cortex (PR) as a function of aging. Calbindin-D28k (CB), parvalbumin (PV)...

  8. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability

    OpenAIRE

    Mehan, Neal D.; Strauss, Kenneth I

    2011-01-01

    This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12–16 weeks) and juveniles (5– 6 weeks). Motor coordination and certain cognitive...

  9. Aging affects the responsiveness of rat peritoneal macrophages to GM-CSF and IL-4.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Blagojević, Veljko; Ćuruvija, Ivana; Vujnović, Ivana; Petrović, Raisa; Arsenović-Ranin, Nevena; Vujić, Vesna; Leposavić, Gordana

    2016-04-01

    Macrophages undergo significant functional alterations during aging. The aim of the present study was to investigate changes of rat macrophage functions and response to M1/M2 polarization signals with age. Therefore, resident and thioglycollate-elicited peritoneal macrophages from young (3-month-old) and aged (18-19-month-old) rats were tested for phagocytic capacity and ability to secrete inflammatory mediators following in vitro stimulation with LPS and GM-CSF, and IL-4, prototypic stimulators for classically (M1) and alternatively activated (M2) macrophages, respectively. Aging increased the frequency of monocyte-derived (CCR7+ CD68+) and the most mature (CD163+ CD68+) macrophages within resident and thioglycollate-elicited peritoneal macrophages, respectively. The ability to phagocyte zymosan of none of these two cell subsets was affected by either LPS and GM-CSF or IL-4. The upregulated production of IL-1β, IL-6 and IL-10 and downregulated that of TGF-β was observed in response to LPS in resident and thioglycollate-elicited macrophages from rats of both ages. GM-CSF elevated production of IL-1β and IL-6 in resident macrophages from aged rats and in thioglycollate-elicited macrophages from young rats. Unexpectedly, IL-4 augmented production of proinflammatory mediators, IL-1β and IL-6, in resident macrophages from aged rats. In both resident and thioglycollate-elicited macrophages aging decreased NO/urea ratio, whereas LPS but not GM-SCF, shifted this ratio toward NO in the macrophages from animals of both ages. Conversely, IL-4 reduced NO/urea ratio in resident and thioglycollate-elicited macrophages from young rats only. In conclusion, our study showed that aging diminished GM-CSF-triggered polarization of elicited macrophages and caused paradoxical IL-4-driven polarization of resident macrophages toward proinflammatory M1 phenotype. This age-related deregulation of macrophage inflammatory mediator secretion and phagocytosis in response to M1/M2

  10. Influence of age and immunization on development of gingivitis in rats

    DEFF Research Database (Denmark)

    Lekic, P; Klausen, B; Friis-Hasché, E;

    1989-01-01

    To study the effect of age and antigenic priming on the development of gingivitis, 33 healthy rats were placed in contact with Streptococcus mutans, Actinomyces viscosus, Fusobacterium nucleatum, and Bacteroides gingivalis. On days 0, 3, 7, and 14 after inoculation, the gingival condition...... was judged clinically and histologically, and serum antibody titers against the bacteria were measured. The rats were divided into three groups: 1 month old, 3 months old, and 3 months old immunized. None of the young rats developed gingivitis during the experiment, whereas half of the adult and all...

  11. Blood pressure regulation and 45Ca flux in aging Zucker rats

    International Nuclear Information System (INIS)

    The authors have previously reported that Zucker obese rats exhibit significant hypertension associated with an impairment in vascular smooth muscle Ca2+ efflux compared to their lean controls. To further investigate this phenomenon, the authors measured direct intra-arterial blood pressure in previously cannulated, unrestrained, conscious Zucker lean and obese rats at 10 weeks of age and 60 weeks of age. The animals were sacrificed and replicate aortic strips from each were loaded with 45Ca and 45Ca efflux was evaluated. Results show that both young and old obese rats exhibit systolic and diastolic hypertension and impaired Ca2+ efflux, and these defects were exaggerated in the old animals. Further, the old lean animals exhibited diastolic hypertension and impaired Ca2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca2+ metabolism previously observed in young Zucker obese rats, possibly due to latent gene expression of the Fa gene in heterozygous lean rats

  12. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats.

    Science.gov (United States)

    Thangthaeng, Nopporn; Miller, Marshall G; Gomes, Stacey M; Shukitt-Hale, Barbara

    2015-12-01

    Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function. PMID:26475179

  13. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Francesca Cerbai

    Full Text Available Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1 increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.

  14. Effects of exposure to heavy particles and aging on object recognition memory in rats

    Science.gov (United States)

    Rabin, Bernard; Joseph, James; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Shannahan, Ryan; Hering, Kathleen

    Exposure to HZE particles produces changes in neurocognitive performance. These changes, including deficits in spatial learning and memory, object recognition memory and operant responding, are also observed in the aged organism. As such, it has been proposed that exposure to heavy particles produces "accelerated aging". Because aging is an ongoing process, it is possible that there would be an interaction between the effects of exposure and the effects of aging, such that doses of HZE particles that do not affect the performance of younger organisms will affect the performance of organisms as they age. The present experiments were designed to test the hypothesis that young rats that had been exposed to HZE particles would show a progressive deterioration in object recognition memory as a function of the age of testing. Rats were exposed to 12 C, 28 S or 48 Ti particles at the N.A.S.A. Space Radiation Laboratory at Brookhaven National Laboratory. Following irradiation the rats were shipped to UMBC for behavioral testing. HZE particle-induced changes in object recognition memory were tested using a standard procedure: rats were placed in an open field and allowed to interact with two identical objects for up to 30 sec; twenty-four hrs later the rats were again placed in the open field, this time containing one familiar and one novel object. Non-irradiated control animals spent significantly more time with the novel object than with the familiar object. In contrast, the rats that been exposed to heavy particles spent equal amounts of time with both the novel and familiar object. The lowest dose of HZE particles which produced a disruption of object recognition memory was determined three months and eleven months following exposure. The threshold dose needed to disrupt object recognition memory three months following irradiation varied as a function of the specific particle and energy. When tested eleven months following irradiation, doses of HZE particles that did

  15. Age dependency of vasopressin pulmonary vasodilatory effect in rats

    OpenAIRE

    Enomoto, Masahiro; Pan, Jingyi; Shifrin, Yulia; Belik, Jaques

    2013-01-01

    Background Vasopressin is a systemic vasoconstrictor. Its pulmonary vasodilatory effect is controversial and limited data are available on its use in neonates with pulmonary hypertension. Hypothesizing that the vasopressin-induced pulmonary vasodilation is developmentally regulated, we evaluated its pulmonary and systemic arterial response in newborn and adult rats. Methods Vessels were mounted on a wire myograph and the vasopressin-induced changes in vasomotor tone measured. The vessel- and ...

  16. Brief Novelty Exposure Facilitates Dentate Gyrus LTP in Aged Rats

    OpenAIRE

    Sierra-Mercado, Demetrio; Dieguez, Dario; Barea-Rodriguez, Edwin J.

    2008-01-01

    Aging is associated with a decreased capacity for dentate gyrus (DG) granule cell depolarization as well as reduced perforant path activation. Although it is well established that the maintenance of DG long-term potentiation (LTP) over days is impaired in aged, as compared to young animals, the threshold for inducing this LTP has never been investigated in aged, awake animals. In addition, although exposure to novelty prior to θ-burst stimulation (TBS) increases both the induction and longevi...

  17. The effects of stress on plasma ACTH and corticosterone in young and aging pregnant rats and their fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, S. (William S. Middleton Memorial Veterans Hospital, Madison, WI (USA)); Carnes, M. (William S. Middleton Memorial Veterans Hospital, Madison, WI (USA) Univ. of Wisconsin, Madison (USA)); Takahashi, L.K.; Lent, S.J. (Univ. of Wisconsin, Madison (USA))

    1990-01-01

    Compared to younger rats, old rats exhibit prolonged elevations of plasma ACTH and corticosterone (CORT) in response to stress. In addition, CORT crosses the placenta. To investigate whether fetuses of older rats may be exposed to higher concentrations of CORT during development than fetuses of young rats, we compared the effects of stress on hypothalamic-pituitary-adrenal (HPA) axis function in young and aging pregnant rats and their 19-day-old fetuses. The plasma of the mothers and fetuses was assayed for ACTH and CORT by radioimmunoassay. Both young and aging pregnant rats showed a significant increase in plasma ACTH and CORT immediately after exposure to stress. However, aging rats had more prolonged elevation of ACTH and CORT than young rats. This suggests that, like old male rats, aging pregnant rats have an alteration in feedback inhibition of the HPA axis. Prolonged elevation of CORT was also seen in fetuses of aging mothers. These results have important implications concerning the effects of stress during pregnancy at different maternal ages, and for the potential deleterious consequences of prolonged prenatal elevation in stress hormones on the offspring of aging females.

  18. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    Science.gov (United States)

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  19. Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats

    Directory of Open Access Journals (Sweden)

    Evgenia Sitnikova

    2014-01-01

    Full Text Available The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage, their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.

  20. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats.

    Science.gov (United States)

    Beuk, Jonathan; Beninger, Richard J; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  1. Impaired up-regulation of type II corticosteroid receptors in hippocampus of aged rats.

    Science.gov (United States)

    Eldridge, J C; Fleenor, D G; Kerr, D S; Landfield, P W

    1989-01-30

    Several recent investigations have reported a decline of rat hippocampal corticosteroid-binding receptors (CSRs) with aging. This decline has been proposed to be an initial cause (through disinhibition) of the elevated adrenal steroid secretion that apparently occurs with aging; however, it could instead be an effect of corticoid elevation (through down-regulation). In order to assess the effects of age on CSR biosynthetic capacity in the absence of down-regulatory influences of endogenous corticoids, as well as to study aging changes in CSR plasticity, we examined the up-regulation of hippocampal CSR that follows adrenalectomy (ADX). The rat hippocampus contains at least two types of CSR binding and differential analysis of types I and II CSR was accomplished by selective displacement of [3H]corticosterone with RU-28362, a specific type II agonist. In young (3 months old) Fischer-344 rat hippocampus, up-regulation of type II binding above 2-day ADX baseline was present by 3-7 days and increased still further by 8-10 days post-ADX; type I CSR density did not change significantly between 1 and 10 days post-ADX. However, in aged (24-26 months old) rats, type II CSR up-regulation did not occur over the 10 day post-ADX period. Thus, the age-related impairment of type II up-regulation may reflect an intrinsic deficit in CSR biosynthesis or lability that is independent of the acute endogenous adrenal steroid environment.

  2. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats

    Science.gov (United States)

    Beuk, Jonathan; Beninger, Richard J.; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  3. Age effects on the social interaction test in early adulthood male rats.

    Science.gov (United States)

    Garau, A; Martí, M A; Sala, J; Balada, F

    2000-01-01

    The effects of age on active and passive social interaction were studied in Wistar rats using the social interaction test (S.I.T.). Individual behaviors such as ambulation, rearing, and defecation were also studied. Despite the widespread use of the S.I.T. in anxiety research, the effects of age on the S.I.T. have not been studied thoroughly. Male Wistar rats of 75, 135, and 180 days old were used. Our results showed age effects on active social contact, passive social contact, ambulation, rearing, and defecation. At 135 days old, animals presented the lowest scores on active social behavior and the highest scores on defecation. Moreover, exploratory behavior measured by ambulation and rearing decreased with age. These results suggest that age could be a relevant variable in the social interaction test.

  4. Fertility, aging and the brain neuroendocrinological studies in female rats

    NARCIS (Netherlands)

    Franke, A.N.

    2003-01-01

    It is well known that fertility decreases in female mammals with advancing age. In women this decrease already starts around the age of 30 and shows a large variation between individuals. The aim of this thesis was to elucidate changes in the reproductive system, especially in the brain, that may un

  5. SERUM BIOMARKERS OF AGING IN THE BROWN NORWAY RAT

    Science.gov (United States)

    Serum biomarkers to identify susceptibility to disease in aged humans are well researched. On the other hand, our understanding of biomarkers in animal models of aging is limited. Hence, we applied a commercially available panel of 58 serum analytes to screen for possible biomark...

  6. Age-dependent decrease in the hepatic uptake and biliary excretion of ouabain in rats.

    Science.gov (United States)

    Ohta, M; Kanai, S; Sato, Y; Kitani, K

    1988-03-01

    The biliary excretion of i.v. injected ouabain was examined in male and female Wistar-derived rats in relation to age. The hepatic uptake velocity for ouabain was also determined in isolated hepatocyte preparations obtained from male rats of various ages. Biliary recovery values of ouabain (percent of the dose) were fairly comparable for young male and female rats (3-4 month old). Recovery progressively decreased with age, the first 10-min recoveries at 24 months being about one-third those of respective young values in both sexes. A significant linear relation was demonstrated between the first 10-min recovery (Y, percent of the dose) and rat age (X, month), yielding the relations of Y = 17.75-0.43X for males and Y = 18.99-0.43X for females respectively. Similarly, the initial uptake velocity (Y, nmol/mg/min) for ouabain decreased in a linear fashion with age (X, month), yielding a significant negative correlation (Y = 0.704-0.0021X, r = -0.839, P less than 0.005, N = 21) at an ouabain concentration of 8 microM. Kinetic studies using non-linear regression analysis revealed a significantly lower Vmax value (0.533 +/- 0.041 nmol/mg/min) in old (24-29 months) rats compared to the young (4-4.5 months) value (1.193 +/- 0.105 nmol per mg/min, P less than 0.05), while the affinity constant (Km, microM) did not differ significantly between young and old animals (203.12 +/- 25.42 microM in young rats vs 283.68 +/- 28.90 microM in old rats, mean +/- SE, 0.05 less than P less than 0.1). The results of the present study suggest that the age-dependent decrease in the biliary recovery of i.v. injected ouabain in rats can be largely explained by the decrease with age in the hepatic uptake of ouabain. Furthermore, the results provide further support for our previous thesis that the decrease in the lateral mobility of hepatocyte plasma membrane proteins, as revealed by the fluorescence recovery after photobleaching technique, may play a significant role in the age

  7. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats.

    Science.gov (United States)

    Arnold, Amy C; Diz, Debra I

    2014-12-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  8. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  9. Spontaneous renal neoplasms in aged Crl:CDBR rats.

    Science.gov (United States)

    Zwicker, G M; Eyster, R C; Sells, D M; Gass, J H

    1992-01-01

    Primary neoplasms of the kidneys occurred in 11/682 male (1.6%) and 2/694 female (0.3%) Crl:CDBr strain Sprague-Dawley rats. Eight of 13 neoplasms were of mesenchymal origin and 5 of 13 were epithelial. Five neoplasms were lipoma (3) or liposarcoma (2). Three of 13 were either hemangioma (1) or mesenchymal tumors (2). The epithelial neoplasms were carcinomas. There was no microscopic evidence of metastasis among those neoplasms judged malignant on morphologic criteria. The overall natural incidence in males was nearly double that compiled for this strain while in females the incidence was similar to that reported for other females.

  10. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    OpenAIRE

    Eric Blalock

    2014-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/ stress hormone/ allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans ar...

  11. Interactions of aging, overload, and creatine supplementation in rat plantaris muscle.

    Science.gov (United States)

    Schuenke, Mark D; Brooks, Naomi E; Hikida, Robert S

    2011-01-01

    Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m) and aging (A; 24m) Fisher 344 rats underwent four weeks of either control (C), creatine supplementation (Cr), surgical overload (O), or overload plus creatine (OCr). Creatine alone had no effect on muscle fiber cross-sectional area (CSA) or heat shock protein (HSP70) and increased myonuclear domain (MND) only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression. PMID:21876808

  12. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  13. Oxidative damage parameters in renal tissues of aged and young rats based on gender

    Directory of Open Access Journals (Sweden)

    Uzun D

    2013-06-01

    Full Text Available Duygu Uzun,1 Gülcan Güntas Korkmaz,2 Mustafa Erinç Sitar,3 Tamer Cebe,4 Karolin Yanar,3 Ufuk Çakatay,3 Seval Aydin3 1Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey; 2Kirklareli University, School of Health, Kirklareli, Turkey; 3Istanbul University, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; 4Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey Purpose: Aging is characterized by a gradual functional decrease of all systems including the kidneys. Growing evidence links altered lipid protein redox-homeostasis with renal dysfunction. The effect of sexual dimorphism on the lipid protein redox-homeostasis mechanisms in the aging kidney is obscure. In the current study, we aimed to investigate redox homeostasis as it related to sexual dimorphism on protein oxidation and lipid peroxidation parameters, as protein carbonyl (PCO, total thiol (T-SH, advanced oxidation protein products (AOPP, malondialdehyde, glutathione (GSH, and superoxide dismutase (SOD activity, as potential aging biomarkers, which may contribute to an analysis of the free radical theory of aging. Materials and methods: The study was carried out with 16 naturally aged rats (24 months old; eight males and eight females and their corresponding young rat groups as controls (6 months old; eight males and eight females. All of the aforementioned parameters (PCO, T-SH, AOPP, MDA, GSH, SOD were measured manually instead of automated devices or ELISA kits. Results: PCO, AOPP, and malondialdehyde levels in aged rats were significantly higher in the older rat group than in the younger rat group, whereas SOD activities were significantly lower in old rats. T-SH levels were not significantly different in male groups; however, T-SH levels were lower in the aged female group than in the young female control group. In addition, GSH levels were significantly different between the aged rat group and the corresponding

  14. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats.

    Science.gov (United States)

    Solis-Gaspar, Carlos; Vazquez-Roque, Ruben A; De Jesús Gómez-Villalobos, Ma; Flores, Gonzalo

    2016-09-01

    The spontaneously hypertensive (SH) rat has been used as an animal model of vascular dementia (VD). Our previous report showed that, SH rats exhibited dendritic atrophy of pyramidal neurons of the CA1 dorsal hippocampus and layers 3 and 5 of the prefrontal cortex (PFC) at 8 months of age. In addition, we showed that cerebrolysin (Cbl), a neurotrophic peptide mixture, reduces the dendritic atrophy in aged animal models. This study aimed to determine whether Cbl was capable of reducing behavioral and neuronal alterations, in old female SH rats. The level of diastolic and systolic pressure was measured every month for the 6 first months and only animals with more than 160 mm Hg of systolic pressure were used. Female SH rats (6 months old) received 6 months of Cbl treatment. Immediately after the Cbl treatment, two behavioral tests were applied, the Morris water maze test for memory and learning and locomotor activity in novel environments. Immediately after the last behavioral test, dendritic morphology was studied with the Golgi-Cox stain procedure followed by a Sholl analysis. Clearly, SH rats with Cbl showed an increase in the dendritic length and dendritic spine density of pyramidal neurons in the CA1 in the dorsal hippocampus and layers 3 and 5 of the PFC. Interestingly, Cbl improved memory of the old SH rats. Our results support the possibility that Cbl may have beneficial effects on the management of brain alterations in an animal model with VD. Synapse 70:378-389, 2016. © 2016 Wiley Periodicals, Inc.

  15. Reduced hippocampal dentate cell proliferation and impaired spatial memory performance in aged epileptic rats

    Directory of Open Access Journals (Sweden)

    Clarissa F Cavarsan

    2013-07-01

    Full Text Available Increased adult neurogenesis is observed after training in hippocampal-dependent tasks and also after acutely induced status epilepticus (SE although the specific roles of these cells are still a matter of debate. In this study, we investigated hippocampal cell proliferation and differentiation and the spatial learning performance in young or aged chronically epileptic rats. Status was induced by pilocarpine in 3 or 20-month old rats. Either two or twenty months later, rats were treated with bromodeoxyuridine (BrdU and subsequently underwent to 8-day schedule of water maze tests. As expected, learning curves were faster in young than in aged animals (P<0.001. Chronically epileptic animals exhibited impaired learning curves compared to age-matched controls. Interestingly, the duration of epilepsy (2 or 20 months did not correlate with the memory impairment of aged epileptic animals. The number of BrdU-positive cells was greater in young epileptic subjects than in age-matched controls. In contrast, cell proliferation was not increased in aged epileptic animals, irrespective of the time of SE induction. Finally, dentate cell proliferation was not related to performance in the water maze. Based on the present results we conclude that even though aging and epilepsy lead to impairments in spatial learning, their effects are not additive.

  16. Aging-related Changes of Microglia and Astrocytes in Hypothalamus after Intraperitoneal Injection of Hypertonic Saline in Rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoli; XU Yun; WANG Fang; TANG Lihua; LIU Zhilong; LI Honglian; LIU Shenghong

    2006-01-01

    To examine the aging-related changes of microglia and astrocytes in hypothalamus of rats after intraperitoneal injection of hypertonic saline in rats, old- and young-aged rats were injected with hypertonic saline solution into peritoneal cavity. Lectin histochemical techniques using Ricinus communis agglutinin-1 (RCA-1) and immunocytochemical method employing antibody against glial fibrillary acidic protein (GFAP) were used to demonstrate microglia and astrocytes in the hypothalamus of the rats, and the positively-stained cells were analyzed by computer-assisted image analysis system. Our results showed that the numbers of microglia and astrocytes were significantly increased in the hypothalamus of old-aged rats. After intraperitoneal injection of hypertonic saline,the number of microglia was significantly decreased in the hypothalamus of both young- and oldaged groups. After introperitoneal injection of hypertonic saline, the number of GFAP positive cells was significantly increased in the hypothalamus of young rats, but the number of GFAP positive cells did not show significant change in the hypothalamus of old rats. It is concluded that in the hypothalamus of old-aged rats, the increase of microglia may be related with the aging or degeneration of neurons, and the increase of astrocytes may provide more nourishment required by the aged neurons. The microglia and astrocytes in the hypothalamus of the two group rats may be affected by hypertonic saline, and the response of these cells to the stimuli is characterized by some aging-related changes.

  17. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    Science.gov (United States)

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  18. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    Directory of Open Access Journals (Sweden)

    Khairunnuur Fairuz Azman

    2016-01-01

    Full Text Available Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A, 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  19. [Age-related changes in the rat lacrimal gland: specific morphology and unknown nature].

    Science.gov (United States)

    Gancharova, O S; Manskikh, V N

    2014-01-01

    The rat lacrimal apparatus includes several glands; among them, the exorbital gland plays the central role. Its parenchyma and stroma undergo prominent morphologic changes with age. The parenchymal transformation includes metaplasia of some of its acini and their turning into Harderian gland-like structures (harderization), accumulation of gland ducts ("ductularization"), and morphologic dysplasia-cytomegaly, karyomegaly, and'cell and nuclearpolymorphism in the other part of acini. All these transformations are hormone-dependent andsex-specific: theyoften appear in males. On the final stages of age-related transformations, the lacrimal gland tissue is morphologically similar to the neoplasm and has neoplastic morphology but no other features of a tumor. Therefore, the rat lacrimal gland is an interesting object to study tissue and cell atypia. In the rat glandular stroma, lymphocytic infiltration and fibrosis appear with age; these changes are similar to processes taking place in human lacrimal apparatus involved in the pathogenesis of senile dry eye syndrome. The spontaneous changes in the rat lacrimal gland, predominantly in male rats, can be used as a model of the human lacrimal apparatus disorders.

  20. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  1. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats

    OpenAIRE

    Verónica Guarner-Lans; Elizabeth Soria-Castro; Rocío Torrico-Lavayen; Araceli Patrón-Soberano; Karla G. Carvajal-Aguilera; Vicente Castrejón-Tellez; María Esther Rubio-Ruiz

    2016-01-01

    The role of the renin-angiotensin system (RAS) in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS) and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron mi...

  2. [The assessment of modulated radiofrequence electromagnetic radiation on cognitive function in rats of different ages].

    Science.gov (United States)

    Priakhin, E A; Triapitsyna, G A; Andreev, S S; Kolomiets, I A; Polevik, N D; Akleev, A V

    2007-01-01

    The modulated radiofrequence electromagnetic radiation influence on cognitive function of male uninbred Wister rat exposed at the age of sexual maturation (2 months) and at the age of morphofunctional maturity (3.5 months) was examined. Animals were subjected to pulse electromagnetic radiation (925 MHz) modulated as a GSM standard with the power density 1.2 mW/cm2 for 10 minutes every day for 12 days. At day 8 of exposure the cognitive function were examined with the Morris water maze. In the result of investigation it was determines that modulated radiofrequence electromagnetic radiation at the sexual maturation age did not affect the spatial learning and improve the visual orientation performance. Modulated radiofrequence electromagnetic exposure of animals at the sex maturity age did not affect the visual performance and improve the spatial performance of male rats.

  3. Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat.

    Directory of Open Access Journals (Sweden)

    Judith R Homberg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI Prozac® (fluoxetine is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg at postnatal day (PND 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7-14 days after the last injection when (norfluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (norfluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT(1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential

  4. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages.

    Directory of Open Access Journals (Sweden)

    Vikrant Vijay

    Full Text Available Cardiovascular disease (CVD is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week, adult (21-week, and old (78-week male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05 sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.

  5. Expression of tissue inhibitor of matrix metalloproteinases-1 during aging in rat liver

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Zhang; Xiang-Mei Chen; Di Wu; Suo-Zhu Shi; Zhong Yin; Rui Ding; Yang Lü

    2005-01-01

    AIM: To investigate the expression and role of tissueinhibitor of matrix metalloproteinases-1 (TIMP-1) during natural aging in rat liver and to detect the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.METHODS: The rats were divided into 3-mo-old group (n = 5), 10-mo-old group (n = 5) and 24-mo-old group(n = 5). Histopathologic changes of liver were observed with HE and Masson stain. The location and protein expressions of TIMP-1 were determined by immunohistochemistry and Westem blot; message RNA (mRNA) levels were measured in livers from rats of various ages by semi-quantitative reverse transcriptional polymerase chain reaction (RT-PCR). In addition, the expression of MMP-2 and MMP-9was assessed by RT-PCR and Western blot.RESULTS: Histologic examination showed that the aging liver had excessive fatty degeneration and collagen deposition. Immunohistochemical staining showed that TIMP-1 related antigen in livers was located in cytoplasm. The proteinexpression of TIMP-1 was significantly higher in the oldestanimals and the mRNA expression was increased significantlyin the 24-mo-old rats (t= 4.61, P= 0.002<0.05, 24-vs 10-mo-old rats; t= 4.31, P= 0.003<0.05, 24- vs 3-mo-oldrats). The expression of MMP-2 and MMP-9 had no change during aging; the ratios TIMP-1/MMP-2 and TIMP-1/MMP-9 in aging liver were significantly higher than those in maturation and young livers.CONCLUSION: TIMP-1 may play an important role in the process of liver aging.

  6. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats

    Institute of Scientific and Technical Information of China (English)

    He LI; Xiao-qing MA; Fan YE; Jing ZHANG; Xin ZHOU; Zhi-hong WANG; Yu-ming LI; Guo-yuan ZHANG

    2009-01-01

    Evidence suggests that the deterioration of communication between the sympathetic nervous system and cardiovas-cular system always accompanies the aging of human and animals. Cardiac sympathetic norepinephrine (NE) transporter (NET) on presynaptic membrane is a predominant component to eliminate released NE in the synaptic cleff and maintains the sensitivity of the β-adrenergic receptor (β-AR). In the present study, we investigated NET and β1-AR mRNA levels and sympathetic nerve density in cardiac sympathetic ganglion and leff ventricular myocardium in 2- and 16-month-old rats with Northern blot analysis and immunohistochemistry. The expression levels of NET mRNA, NET protein and β1-AR mRNA in the ganglia or myocardia of 16-month-old rats were markedly reduced by 67%, 26%, and 43%, respectively, in comparison with those in 2-month-old rats. Our results also show that aging induces a strong decrease of the catecholaminergic nerve fiber density.

  7. Molecular Regulation of Apoptosis in Fast Plantaris Muscles of Aged Rats

    OpenAIRE

    Pistilli, Emidio E.; Siu, Parco M; Alway, Stephen E.

    2006-01-01

    This study tested the hypothesis that aging exacerbates apoptotic signaling in rat fast plantaris muscle during muscle unloading. Plantaris muscle mass was 22% lower in aged animals and the apoptotic index was 600% higher, when compared to those in young adult animals. Following 14 days of hind-limb unloading, absolute plantaris muscle mass was 20% lower in young adult animals with a corresponding 200% higher elevation of the apoptotic index. Unloading had no affect on muscle weight or apopto...

  8. SYNAPTIC PLASTICITY IN THE DENTATE GYRUS OF AGED RATS IS ALTERED AFTER CHRONIC NIMODIPINE APPLICATION

    OpenAIRE

    deJong, GI; Buwalda, B.; Schuurman, T.; Luiten, PGM

    1992-01-01

    We examined ultrastructural correlates of synaptic plasticity in the hippocampus of young (3 months) vs aged (30 months) Wistar rats and established the effects of the calcium antagonist nimodipine in animals chronically treated from 24 to 30 months. The effects of nimodipine was studied since this compound improves hippocampal neuronal physiology and enhances cognitive function during aging. In the supragranular layer of the dentate gyrus we found a 24% decrease in synaptic density (Nv) in a...

  9. Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses

    OpenAIRE

    Bloss, Erik B.; Puri, Rishi; Yuk, Frank; Punsoni, Michael; Hara, Yuko; Janssen, William G; McEwen, Bruce S.; Morrison, John H.

    2012-01-01

    Age-related impairments of executive functions appear to be related to reductions of the number and plasticity of dendritic spine synapses in the prefrontal cortex (PFC). Experimental evidence suggests that synaptic plasticity is mediated by the spine actin cytoskeleton, and a major pathway regulating actin-based plasticity is controlled by phosphorylated LIM kinase (pLIMK). We asked whether aging resulted in altered synaptic density, morphology, and pLIMK expression in the rat prelimbic regi...

  10. Age-Dependent Reductions in Mitochondrial Respiration are Exacerbated by Calcium in the Female Rat Heart

    OpenAIRE

    Hunter, J. Craig; Machikas, Alexandra M.; Korzick, Donna H.

    2012-01-01

    Cardiovascular disease mortality increases rapidly following menopause by poorly defined mechanisms. Since mitochondrial function and Ca2+ sensitivity are important regulators of cell death following myocardial ischemia, we sought to determine if aging and/or estrogen deficiency (ovx) increased mitochondrial Ca2+ sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6mo; n=26) and aged (24mo; n=25), intact or ovariectomized female rats using the ...

  11. Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats

    OpenAIRE

    Liu, Miaobing; Zhang, Ping; Chen, Mulei; Zhang, Wuning; Yu, Liping; Yang, Xin-Chun; Fan, Qian

    2011-01-01

    Previous studies indicated aging results in the significant cardiac function decreasing and myocardial apoptosis increasing in normal humans or rats. Additionally, animal experiments demonstrated aging increased myocardial ischemia / reperfusion (MI/R)-induced apoptosis. However, whether more myocardial apoptosis happen in the old acute myocardial infarction (AMI) patients is unclear. Reperfusion injury-induced apoptosis is an important cause of heart failure. This study determined the effect...

  12. Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle

    OpenAIRE

    Marzetti, Emanuele; Wohlgemuth, Stephanie Eva; Lees, Hazel Anne; Chung, Hae-young; Giovannini, Silvia; Leeuwenburgh, Christiaan

    2008-01-01

    Mitochondria-mediated apoptosis represents a central process driving age-related muscle loss. However, the temporal relation between mitochondrial apoptotic signaling and sarcopenia as well as the regulation of release of pro-apoptotic factors from the mitochondria has not been elucidated. In this study, we investigated mitochondrial apoptotic signaling in skeletal muscle of rats across a wide age range. We also investigated whether mitochondrial-driven apoptosis was accompanied by changes in...

  13. 'When an old rat smells a cat': A decline in defense-related, but not accessory olfactory, Fos expression in aged rats.

    Science.gov (United States)

    Hunt, Glenn E; Van Nieuwenhuijzen, Petra S; Chan-Ling, Tailoi; McGregor, Iain S

    2011-04-01

    Comparisons were made between young (3-6 months) and aged (20-30 months) Wistar rats on locomotor activity, emergence, social interaction and cat odor avoidance. Aged rats were less active and spent less time in the open field during the emergence test than younger rats. Older rats also showed fewer contacts with a novel conspecific in the social interaction test, although total duration of interaction did not differ. There were very few behavioral differences between male and female rats. Older rats were less reactive than younger rats in a test of cat odor avoidance. However, they expressed similar amounts of cat odor-induced Fos in the posterior accessory olfactory bulb, a critical region for processing the predator odor stimulus. Older rats had reduced Fos expression in several defense-related brain regions that are normally activated by predator odors such as the medial amygdala and dorsal premammillary nucleus. These results indicate that aged rats are less reactive than younger rats to predator odors due to decreased responsiveness in defense-related but not necessarily olfactory circuits. PMID:19394115

  14. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    International Nuclear Information System (INIS)

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  15. Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Motoko; Kawakita, Tetsuya; Okada, Naoko; Ogawa, Yoko [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Murat, Dogru [Department of Ocular Surface and Visual Optics, Keio University School of Medicine, Tokyo (Japan); Nakamura, Shigeru; Nakashima, Hideo [Research Center, Ophtecs Corporation, Hyogo (Japan); Shimmura, Shigeto [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan); Shinmura, Ken [Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Tsubota, Kazuo, E-mail: tsubota@sc.itc.keio.ac.jp [Department of Ophthalmology, Keio University School of Medicine, Tokyo (Japan)

    2010-07-09

    A decrease in lacrimal gland secretory function is closely related to aging and leads to an increased prevalence of dry eye syndrome. Since calorie restriction (CR) is considered to prevent functional decline of various organs due to aging, we hypothesized that CR could prevent age-related lacrimal dysfunction. Six-month-old male Fischer 344 rats were randomly divided into ad libitum (AL) and CR (-35%) groups. After 6 months of CR, tear function was examined under conscious state. After euthanasia, lacrimal glands were subjected to histological examination, tear protein secretion stimulation test with Carbachol, and assessment of oxidative stress with 8-hydroxy-2 deoxyguanosine (8-OHdG) and 4-hydroxynonenal (HNE) antibodies. CR significantly improved tear volume and tended to increase tear protein secretion volume after stimulation with Carbachol compared to AL. The acinar unit density was significantly higher in the CR rats compared to AL rats. Lacrimal glands in the CR rats showed a lesser degree of interstitial fibrosis. CR reduced the concentration of 8-OHdG and the extent of staining with HNE in the lacrimal gland, compared to AL. Furthermore, our electron microscopic observations showed that mitochondrial structure of the lacrimal gland obtained from the middle-aged CR rats was preserved in comparison to the AL rats. Collectively, these results demonstrate for the first time that CR may attenuate oxidative stress related damage in the lacrimal gland with preservation of lacrimal gland functions. Although molecular mechanism(s) by which CR maintains lacrimal gland function remains to be resolved, CR might provide a novel therapeutic strategy for treating dry eye syndrome.

  16. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    Science.gov (United States)

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  17. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  18. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  19. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    International Nuclear Information System (INIS)

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the [125I]iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span

  20. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas;

    2011-01-01

    in both the normotensive and hypertensive strains with no decline in efficacy as age increased. In conclusion, SK channel inhibition with NS8593 and UCL1684 possesses antiarrhythmic properties in a rat in vivo model of paroxysmal AF with hypertension-induced atrial remodeling. The present results support...

  1. Age-related changes in body composition in laboratory rats: Strain and gender comparisons

    Science.gov (United States)

    Long Evans (LE), Sprague Dawley (SD), Fischer 344 (F344), and Brown Norway (BN) rats are all commonly used as laboratory research subjects. These strains have been studied under many conditions, but few studies have measured changes in body composition as the animals age. Underst...

  2. LPS alters pattern of sickness behavior but does not affect glutathione level in aged male rats.

    Science.gov (United States)

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Nowakowska, Anna; Kozak, Wiesław

    2016-08-01

    Behavioral symptoms of sickness, such as fever and motor activity are a coordinated set of changes that develop during infection. The aim of study was to compare the sickness behaviour (SB) in healthy old and young rats treated with pyrogenic dose of endotoxin and to check their glutathione level. Before experimentation male Wistar rats were selected according to standard body mass, motor activity, and white blood cells count. Intraperitoneal injection of lipopolysaccharide (LPS) from E. coli was used to provoke SB. The level of liver glutathione, interleukin (IL) -6, deep body temperature (Tb) and motor activity were measured. Glutathione level in old and young rats did not differ significantly. In both young and old rats LPS administration provoked fever (the mean value of Tb was 38.06 ± 0.01 °C in old rats, and 38.19 ± 0.06 °C in young rats). LPS injection affected night-time activity in both groups (12 h averages were 1.56 ± 0.40 counts in old LPS-treated rats vs 2.74 ± 0.53 counts in not-treated old rats and 3.44 ± 0.60 counts for young LPS-treated vs 4.28 ± 0.57 counts for young not-treated rats). The injection of LPS provoked an elevation of plasma IL-6 concentration (from values below the lowest detectable standard in not-treated groups of animals to 6322.82 ± 537.00 pg/mL in old LPS-treated rats and 7415.62 ± 451.88 pg/mL in young LPS-treated rats). Based on these data, we conclude that good health of aged rats prevents decrease in the glutathione level. Old rats are still able to develop SB in response to pyrogenic dose of LPS, although its components have changed pattern compared to young animals. PMID:26829940

  3. Effects of heavy ion particle irradiation on bone metabolism of rats at different ages

    International Nuclear Information System (INIS)

    Age changes in the effects of heavy ion particle irradiation on bone metabolism were determined in rats. Female rats, aged 3-30 months of intervals of 3 months, were divided into four groups at each age. Heavy ion particle (Carbon beam 290 MeV, LET; 40 keV/μm) was irradiated to the whole body with doses of 0, 1.25, 2.5 and 5.0 Gy under no anesthesia. All rats received injection of tetracycline for a histomorphometric bone-dynamic analysis and dissected to collect bones and serum three months after irradiation. The results indicate that the bone mineral density in the cancellous bone in the tibial proximal metaphysis by pQCT and the bone strength of femur by a three point bending method had the tendency to decrease in the age of less than 9 months, and then rather to be higher than the control. In the detailed histomorphometric analysis using undecalcified specimens of the tibial proximal metaphysis at 9 months of age, the decrease in bone volume/bone tissue was observed as well as that in the bone mineral density accompanied with the increases in radiation doses. Also, the eroded depth and surface area decreased compare to the osteoid volume. The results indicate that heavy ion irradiation occurred the decreases in bone mineral loss and bone volume response to the increase in radiation doses, probably due to the changes in bone turnover with aging. (author)

  4. Chronic stress induces ageing-associated degeneration in rat Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Fei-Fei Wang; Qian Wang; Yong Chen; Qiang Lin; Hui-Bao Gao; Ping Zhang

    2012-01-01

    Several studies have suggested that stress and ageing exert inhibitory effects on rat Leydig cells.In a pattern similar to the normal process of Leydig cell ageing,stress-mediated increases in glucocorticoid levels inhibit steroidogenic enzyme expression that then results in decreased testosterone secretion.We hypothesized that chronic stress accelerates the degenerative changes associated with ageing in Leydig cells.To test this hypothesis,we established a model of chronic stress to evaluate stress-induced morphological and functional alterations in Brown Norway rat Leydig cells; additionally,intracellular lipofuscin levels,reactive oxygen species (ROS)levels and DNA damage were assessed.The results showed that chronic stress accelerated ageing-related changes:ultrastructural alterations associated with ageing,cellular lipofuscin accumulation,increased ROS levels and more extensive DNA damage were observed.Additionally,testosterone levels were decreased.This study sheds new light on the idea that chronic stress contributes to the degenerative changes associated with ageing in rat Leydig cells in vivo.

  5. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Verónica Guarner-Lans

    2016-01-01

    Full Text Available The role of the renin-angiotensin system (RAS in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS.

  6. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats

    Science.gov (United States)

    Guarner-Lans, Verónica; Soria-Castro, Elizabeth; Torrico-Lavayen, Rocío; Patrón-Soberano, Araceli; Carvajal-Aguilera, Karla G.; Castrejón-Tellez, Vicente; Rubio-Ruiz, María Esther

    2016-01-01

    The role of the renin-angiotensin system (RAS) in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS) and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS. PMID:27293881

  7. Study of Aging and Hepatoprotective Activity of Vitis vinifera L. Seeds in Albino Rats

    Institute of Scientific and Technical Information of China (English)

    Ghulam Mustafa Khan; SH Ansari; ZABhat; Feroz ahmad

    2012-01-01

    Objective: Present study was conducted to investigate in liver of rats from 8-12 weeks old to 20 weeks old, the age dependent changes, carbon tetrachloride mediated changes, and the hepatoprotective effect shown by the seeds of Vitis vinifera L. Method: The hepatoprotective activity was studied by observing the effect of 100 mg/kg dose of ethanolic extract of grape seeds on carbon tetrachloride induced hepatotoxicity in albino rats and results were compared with those of the aged group results. Results: 100 mg/kg b.w. of ethanolic extract of Vitis vinifera seeds produced highly significant decrease in AST, ALT, ALP, bilirubin, albumin levels and significant decrease in the TSP levels compared to the toxic group levels. The levels of AST, ALT, ALP, bilirubin and albumin in aged control rats were found to be significantly higher than the levels in young control animals. MDA levels were slightly higher while GSH levels were lower in aged control rats as compared to young control rats. MDA levels in the toxic group showed highly significant increase compared to the young control levels. Ethanolic extract of seeds of Vitis vinifera significantly lowered the MDA levels. Histopathology results reveal that 100mg/kg/day dose of ethanolic extract of seeds of Vitis vinifera L. cured the hepatic damage to a great extent which was induced by CCl4. Conclusions: Aging leads to the changes in the hepatic structure which are comparable to the changes induced by low doses of a hepatotoxin and the ethanolic extract of seeds of Vitis vinifera L. was effective in bringing about functional improvement of hepatocytes exposed to free radical attack, which was confirmed by biochemical and histological observations.

  8. The effect of ZMS on brain M receptor in aged rats

    International Nuclear Information System (INIS)

    Objective: The purpose of this work was to study the effect of ZMS, an active component of Yin tonic, Zhimu, on brain M2 receptor density of aged animals and its correlation with the effect on learning/memory ability. Methods: A dual-site competitive binding assay using 3H-quinuclidinyl benzilate (QNB) as non selective radioligand and unlabelled Methoctramine as selective competitive agent was established for measuring M2 receptor density in aged rats. Results: In addition to the change of total density of M receptors, the density of a subtype of M receptors, M2 receptor in brain was significantly decreased in aged rats [(231.8 +- 115.9) fmol·mg-1 (x-bar +- s) in young rats and (97.9 +- 46.3) fmol·mg-1 in aged rats]. When the aged rats were treated with ZMS for two months, in addition to the up-regulation of total M receptors, the M2 receptor was up-regulated significantly [being (213 +- 77) mg at a ZMS dose of 3.6 mg·kg-1·d-'1, and (212 +- 72) mg at a ZMS dose of 18 mg·kg-1·d-1]. When the correlation between M2 or total M receptor densities and the learning/memory ability measured by Y-maze performance was examined with linear regression, the correlation coefficient was remarkable (0.721 and 0.505, respectively). Conclusions: ZMS has the ability of up-regulating M2 receptor and this may be an important factor for the improvement of learning and memory by ZMS

  9. Quantitative analysis of development and aging of genital corpuscles in glans penis of the rat.

    Science.gov (United States)

    Shiino, Mizuho; Hoshi, Hideo; Kawashima, Tomokazu; Ishikawa, Youichi; Takayanagi, Masaaki; Murakami, Kunio; Kishi, Kiyoshi; Sato, Fumi

    2015-02-01

    The aim of the present postnatal developmental study was to determine densities of unique genital corpuscles (GCs) in glans penis of developing and aged rats. GCs were identified as corpuscular endings consisting of highly branched and coiled axons with many varicosities, which were immunoreactive for protein gene product 9.5. In addition, GCs were immunoreactive for calcitonin gene-related peptide and substance P, but not for vasoactive intestinal polypeptide and neuropeptide Y. GCs were not found in the glans penis of 1 week old rats. Densities of GCs were low at 3 weeks, significantly increased at 5 and 10 weeks, reached the peak of density at 40 weeks, and tended to decrease at 70 and 100 weeks. Sizes of GCs were small in 3 weeks old rats, increased at 5 and 10 weeks, reached the peak-size at 40 weeks and reduced in size at 70 and 100 weeks. Considering sexual maturation of the rat, the results reveal that GCs of the rat begins to develop postnatal and reaches to the peak of their development after puberty and continues to exist until old age, in contrast to prenatal and early postnatal development of other sensory receptors of glabrous skin.

  10. Eleutheroside B or E enhances learning and memory in experimentally aged rats

    Institute of Scientific and Technical Information of China (English)

    Debin Huang; Zehua Hu; Zhaofen Yu

    2013-01-01

    Eleutheroside B or E, the main component of Acanthopanax, can relieve fatigue, enhance memory, and improve human cognition. Numerous studies have confirmed that high doses of acetylcholine significantly attenuate clinical symptoms and delay the progression of Alzheimer's disease. The present study replicated a rat model of aging induced by injecting quinolinic acid into the hippocampal CA1 region. These rats were intraperitoneally injected with low, medium and high doses of eleutheroside B or E (50, 100, 200 mg/kg), and rats injected with Huperzine A or PBS were used as controls. At 4 weeks after administration, behavioral tests showed that the escape latencies and errors in searching for the platform in a Morris water maze were dose-dependently reduced in rats treated with medium and high-dose eleutheroside B or E. Hematoxylin-eosin staining showed that the number of surviving hippocampal neurons was greater and pathological injury was milder in three eleutheroside B or E groups compared with model group. Hippocampal homogenates showed enhanced cholinesterase activity, and dose-dependent increases in acetylcholine content and decreases in choline content following eleutheroside B or E treatment, similar to those seen in the Huperzine A group. These findings indicate that eleutheroside B or E improves learning and memory in aged rats. These effects of eleutheroside B or E may be mediated by activation of cholinesterase or enhanced reuse of choline to accelerate the synthesis of acetylcholine in hippocampal neurons.

  11. Spontaneous skin neoplasms in aged Sprague-Dawley rats.

    Science.gov (United States)

    Zwicker, G M; Eyster, R C; Sells, D M; Gass, J H

    1992-01-01

    A total of 93 tumors of the epidermis, its appendages, and dermis were observed in 1,433 (717 males, 716 females) rats employed in oncogenicity studies over a 2-yr period. Mammary gland neoplasms will be reported separately. Fifty-seven (61.3%) were epithelial with 49 in males and 8 in females. Keratoacanthoma was the most frequent epithelial neoplasm in males (22) followed by squamous cell carcinoma (11) and papilloma (5). Sebaceous gland neoplasms seen in males (5) included both adenomas (3) and carcinomas (2). In males, there were also 3 trichoepitheliomas, 1 pilomatricoma, 1 basal cell tumor, and 1 malignant melanoma. Of the 8 epithelial neoplasms in females, there were 3 squamous cell carcinomas, 2 keratoacanthomas, and 1 each basal cell tumor, malignant melanoma, and trichoepithelioma. There were 21 mesenchymal neoplasms in males and 15 in females. The most frequent neoplasm was fibroma (7 males, 8 females) followed by lipoma (7 males, 4 females) and fibrosarcoma (4 males, 3 females). One male had a liposarcoma and 2 males each had hemangioma. The total neoplasm incidence of 70/717 (9.8%) in males and 23/716 (3.2%) in females showed that skin neoplasms were 3 time more common in males than in females. Epithelial neoplasms of the skin were 6 times more common in males than in females. Males were more than twice as likely to have epithelial rather than mesenchymal skin neoplasms whereas the reverse was seen in females.

  12. Differential Mechanisms of Ang (1-7)-Mediated Vasodepressor Effect in Adult and Aged Candesartan-Treated Rats

    OpenAIRE

    Jones, E S; K. M. Denton; Widdop, R. E.; Bosnyak, S.

    2012-01-01

    Angiotensin (1-7) (Ang (1-7)) causes vasodilator effects in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) via angiotensin type 2 receptors (AT2R). However, the role of vascular AT2R in aging is not known. Therefore, we examined the effect of aging on Ang (1-7)-mediated vasodepressor effects and vascular angiotensin receptor localization in aging. Blood pressure was measured in conscious adult (~17 weeks) and aged (~19 months) normotensive rats that received drug combinati...

  13. Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats.

    Science.gov (United States)

    Allagui, M S; Feriani, A; Saoudi, M; Badraoui, R; Bouoni, Z; Nciri, R; Murat, J C; Elfeki, A

    2014-08-01

    This study aimed to investigate the potential protective effects of melatonin (Mel) against aluminium-induced neurodegenerative changes in aging Wistar rats (24-28months old). Herein, aluminium chloride (AlCl3) (50mg/kg BW/day) was administered by gavage, and melatonin (Mel) was co-administered to a group of Al-treated rats by an intra-peritoneal injection at a daily dose of 10mg/kg BW for four months. The findings revealed that aluminium administration induced a significant decrease in body weight associated with marked mortality for the old group of rats, which was more pronounced in old Al-treated rats. Behavioural alterations were assessed by 'open fields', 'elevated plus maze' and 'Radial 8-arms maze' tests. The results demonstrated that Mel co-administration alleviated neurobehavioral changes in both old and old Al-treated rats. Melatonin was noted to play a good neuroprotective role, reducing lipid peroxidation (TBARs), and enhancing enzymatic (SOD, CAT and GPx) activities in the brain organs of old control and old Al-treated rats. Mel treatment also reversed the decrease of AChE activity in the brain tissues, which was confirmed by histological sections. Overall, the results showed that Mel administration can induce beneficial effects for the treatment of Al-induced neurobehavioral and neurochemical changes in the central nervous system (CNS).

  14. Weight/age-dependent glucose turnover (GTO) in fed and 24 hour fasted rats

    International Nuclear Information System (INIS)

    In small animals such as the rat, cardiac output and oxygen consumption are constant with age when normalized to the body surface area but not to body weight (BW). The authors explored this relationship for GTO in pentobarbital-anesthetized fed and 24 hours fasted Sprague-Dawley rats weighing between 200 and 55 g. A bolus of 10 μCi/kg BW of [6-3H]-glucose was injected into the carotid artery followed by a constant infusion equal to 1.5 μCi/minute *kg BW and samples taken from the right atrium every 15 minutes for glucose specific activity (SA) measurements over a 2 period. Steady state measurements of GTO (μmol/minute) plotted as a function of BW (g) revealed GTO to be inversely related in fed rats but independent of BW in fasted rats. Although plasma [glucose] was significantly lower in fasted rats, there were no weight related differences within each group. Fasting decreased GTO across the whole range of body weights; however, the magnitude of the fasting effect was much larger in the smaller animals (50% lower) compared to the larger animals (25% lower). Although the lean body mass is increasing in this range of BW, the decrease in GTO indicates an age/weight-related decrease in glucose utilization which diminishes the effect of fasting as the animal grows. This data explains the inconsistency in the literature regarding the fasting effect on GTO in the rat and emphasizes the importance of weight/age matching of experimental groups to minimize the variability in the data when GTO is of interest

  15. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    Science.gov (United States)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  16. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats.

    Science.gov (United States)

    Leeuwenburgh, C; Hansen, P; Shaish, A; Holloszy, J O; Heinecke, J W

    1998-02-01

    Many lines of evidence implicate oxidative damage in aging. Possible pathways include reactions that modify aromatic amino acid residues on proteins. o-Tyrosine is a stable marker for oxidation of protein-bound phenylalanine by hydroxyl radical, whereas 3-nitrotyrosine is a marker for oxidation of protein-bound tyrosine by reactive nitrogen species. To test the hypothesis that proteins damaged by hydroxyl radical and reactive nitrogen accumulate with aging, we used isotope dilution gas chromatography-mass spectrometry to measure levels of o-tyrosine and 3-nitrotyrosine in heart, skeletal muscle, and liver from young adult (9 mo) and old (24 mo) female Long-Evans/Wistar hybrid rats. We also measured these markers in young adult and old rats that received antioxidant supplements (alpha-tocopherol, beta-carotene, butylated hydroxytoluene, and ascorbic acid) from the age of 5 mo. We found that aging did not significantly increase levels of protein-bound o-tyrosine or 3-nitrotyrosine in any of the tissues. Antioxidant supplementation had no effect on the levels of protein-bound o-tyrosine and 3-nitrotyrosine in either young or old animals. These observations indicate that the o-tyrosine and 3-nitrotyrosine do not increase significantly in heart, skeletal muscle, and liver in old rats, suggesting that proteins damaged by hydroxyl radical and reactive nitrogen species do not accumulate in these tissues with advancing age. PMID:9486304

  17. Clonidine, moxonidine, folic acid, and mecobalamin improve baroreflex function in stroke-prone, spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Xiu-juan MA; Fu-ming SHEN; Ai-jun LIU; Ke-yong SHI; Ying-liang WU; Ding-feng SU

    2007-01-01

    Aim: To investigate the effect of clonidine, moxonidine, folic acid, and mecobalamin on arterial baroreflex (ABR) function in stroke-prone spontaneously hypertensive rats (SHR-SP) and the possible mechanisms involved.Methods: Eighty-one SHR-SP were divided into 7 groups. Four groups weredesignated for the intragastric (ig) administration of clonidine (1.0 and 10.0 μg/kg), moxonidine (0.1 and 1.0 mg/kg), folic acid (1.0 mg/kg), and mecobalamin(1.0 mg/kg). Three groups were for the intracerebroventricular (icv) injection of clonidine (4 μg/4 μL), moxonidine (5 μg/4 μL), and mecobalamin (20 μg/4 μL).Blood pressure (BP) was recorded in the conscious state for 30 min and baroreflex sensitivity (BRS) was determined respectively before and after drug administration. Results: Clonidine and moxonidine significantly decreased BP,prolonged the heart period (HP), and increased BRS when administered as either ig or icv injections. Both BP and HP were unchanged by ig folic acid or mecobalamin injection. However, BRS was significantly increased by both.Conclusion: Clonidine, moxonidine, folic acid, and mecobalamin improved impaired ABR function in SHR-SP. The central mechanism was involved in this effect of either clonidine or moxonidine. Mecobalamin improved ABR function through the peripheral mechanism.

  18. Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Ogawa, Hiroshi; Sasai, Noriko; Kamisako, Toshinori; Baba, Kimiye

    2007-05-30

    Osthol, a coumarin compound, was isolated from the dried fruits of Cnidium monnieri (Umbelliferae) and the effect of dietary osthol on hypertension and lipid metabolism was examined in stroke-prone spontaneously hypertensive rats (SHRSP). Six-week-old male SHRSP were fed the experimental diet containing 0.05% osthol by weight for 4 weeks with free access to the diet and water. Elevation of systolic blood pressure was significantly suppressed on and after 3 weeks. In addition, significant decreases in cholesterol and triglyceride contents in the liver were recognized without any significant changes in serum lipids profiles. A comparative study on hepatic mRNA expression indicated that osthol induced a significant increase in 3-hydroxy-3-methylglutaryl coenzymeA (HMG-CoA) reductase mRNA expression, which may lead to decrease in hepatic cholesterol pool through inhibition of the enzyme activity. Moreover, osthol induced a significant increase in acyl-CoA oxidase mRNA expression associated with an increase in carnitine palmitoyl transferase 1a mRNA expression, which suggests the acceleration of beta-oxidation of hepatic fatty acids. This may be responsible, at least in part, for the reduction of hepatic triglyceride content in SHRSP. These beneficial effects of osthol could be useful for both prevention of atherosclerosis and suppression of hepatic lipid accumulation. PMID:17324541

  19. Effect of aging on the healing of colonic anastomoses in rats

    Directory of Open Access Journals (Sweden)

    Biondo-Simões Maria de Lourdes Pessole

    2004-01-01

    Full Text Available PURPOSE: To evaluate the healing of the colonic anastomoses in old and young adult rats. METHODS: Fifty six Wistar rats were allocated in two groups, the young animals aged on average 110 days and the old animals aged average 762 days. Under anesthesia, the rats underwent a midline laparotomy and the colon was sectioned 2 cm above the peritoneal deflection. An end-to-end interrupted one layer colonic anastomosis was performed and the animals sacrificed on the 3rd, 7th, 14th and 21st postoperative days. A 4 cm segment of colon containing the anastomosis was submitted to bursting pressure tests. The paraffin-embedded tissue blocs were sectioned and stained with haematoxylin and eosin and Sirius Red. Histochemical methods such as PCNA, LCA and CD34 were also used. RESULTS: The colonic anastomosis resistance was greater in the old rats group on the 3rd postoperative day (p=0,0000. Collagen concentration was higher in the anastomosis of the young animals on the 14th and 21st postoperative days (p=0,0475, p=0,0346 respectively, with a significantly greater concentration of collagen type I. The concentration of collagen type III, the epithelial lining rate and the angiogenesis were similar in the study groups. CONCLUSION: Despite some differences between the two groups regarding the healing process and considering that failures in the colonic anastomosis wound healing could not be demonstrated, we can concluded that aging itself does not interfere in the wound healing process.

  20. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats.

    Science.gov (United States)

    Shen, Chwan-Li; Cao, Jay J; Dagda, Raul Y; Tenner, Thomas E; Chyu, Ming-Chien; Yeh, James K

    2011-06-01

    Recent studies show that green tea polyphenols (GTPs) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. This study evaluated the efficacy of GTPs at mitigating bone loss and microstructure deterioration along with related mechanisms in androgen-deficient aged rats, a model of male osteoporosis. A 2 (sham vs. orchidectomy) × 2 (no GTP and 0.5% GTP in drinking water) factorial design was studied for 16 weeks using 40 aged male rats. An additional 10 rats (baseline group) were killed at the beginning of study to provide baseline parameters. There was no difference in femoral mineral density between baseline and the sham only group. Orchidectomy suppressed serum testosterone and tartrate-resistant acid phosphatase concentrations, liver glutathione peroxidase activity, bone mineral density, and bone strength. Orchidectomy also decreased trabecular bone volume, number, and thickness in the distal femur and proximal tibia and bone-formation rate in trabecular bone of proximal tibia but increased serum osteocalcin concentrations and bone-formation rates in the endocortical tibial shaft. GTP supplementation resulted in increased serum osteocalcin concentrations, bone mineral density, and trabecular volume, number, and strength of femur; increased trabecular volume and thickness and bone formation in both the proximal tibia and periosteal tibial shaft; decreased eroded surface in the proximal tibia and endocortical tibial shaft; and increased liver glutathione peroxidase activity. We conclude that GTP supplementation attenuates trabecular and cortical bone loss through increasing bone formation while suppressing bone resorption due to its antioxidant capacity.

  1. Cross-activation and detraining effects of tongue exercise in aged rats.

    Science.gov (United States)

    Schaser, Allison J; Ciucci, Michelle R; Connor, Nadine P

    2016-01-15

    Voice and swallowing deficits can occur with aging. Tongue exercise paired with a swallow may be used to treat swallowing disorders, but may also benefit vocal function due to cross-system activation effects. It is unknown how exercise-based neuroplasticity contributes to behavior and maintenance following treatment. Eighty rats were used to examine behavioral parameters and changes in neurotrophins after tongue exercise paired with a swallow. Tongue forces and ultrasonic vocalizations were recorded before and after training/detraining in young and old rats. Tissue was analyzed for neurotrophin content. Results showed tongue exercise paired with a swallow was associated with increased tongue forces at all ages. Gains diminished after detraining in old rats. Age-related changes in vocalizations, neurotrophin 4 (NT4), and brain derived neurotrophic factor (BDNF) were found. Minimal cross-system activation effects were observed. Neuroplastic benefits were demonstrated with exercise in old rats through behavioral improvements and up-regulation of BDNF in the hypoglossal nucleus. Tongue exercise paired with a swallow should be developed, studied, and optimized in human clinical research to treat swallowing and voice disorders in elderly people.

  2. Cold Stress Offered Modulation on Chlorpyrifos Toxicity in Aging Rat Central Nervous System

    OpenAIRE

    Basha, Mahaboob; Poojary, Annappa

    2012-01-01

    The adverse effects produced by chlorpyrifos (CPF) or cold stress alone in humans and animals are well documented, but there is no information available relating to the consequences of their co- exposure in an age-related manner. In this study, effects of sublethal doses of CPF were carried out in vivo, for 48 h to assess the biochemical perturbations in relation to interactions with cold stress (15°C and 20°C) in different age group rat CNS. A positive interaction of CPF with age of animal a...

  3. Maturation promoting factor destabilization facilitates postovulatory aging-mediated abortive spontaneous egg activation in rat.

    Science.gov (United States)

    Prasad, Shilpa; Koch, Biplob; Chaube, Shail K

    2016-04-01

    The present study was designed to investigate whether destabilization of maturation promoting factor (MPF) leads to postovulatory aging-mediated abortive spontaneous egg activation (SEA). If so, we wished to determine whether changes in Wee-1 as well as Emi2 levels are associated with MPF destabilization during postovulatory aging-mediated abortive SEA in rats eggs aged in vivo. For this purpose, sexually immature female rats were given a single injection (20 IU IM) of pregnant mare serum gonadotropin for 48 h followed by single injection of human chorionic gonadotropin (20 IU). Ovulated eggs were collected after 14, 17, 19 and 21 h post-hCG surge to induce postovulatory aging in vivo. The morphological changes, Wee1, phosphorylation status of cyclin dependent kinase 1(Cdk1), early mitotic inhibitor 2 (Emi2), anaphase promoting complex/cyclosome (APC/C), cyclin B1, mitotic arrest deficient protein (MAD2) levels and Cdk1 activity were analyzed. The increased Wee 1 level triggered phosphorylation of Thr-14/Tyr-15 and dephosphorylation of Thr-161 residues of Cdk1. The decrease of Emi2 level was associated with increased APC/C level and decreased cyclin B1 level. Changes in phosphorylation status of Cdk1 and reduced cyclin B1 level resulted in destabilization of MPF. The destabilized MPF finally led to postovulatory aging-mediated abortive SEA in rat eggs. It was concluded that the increase of Wee 1 but decrease of Emi2 level triggers MPF destabilization and thereby postovulatory aging-mediated abortive SEA in rat eggs. PMID:26991553

  4. Four-vessel occlusion model using aged male Wistar rats: a reliable model to resolve the discrepancy related to age in cerebral ischemia research.

    Science.gov (United States)

    Ancer-Rodríguez, Jesús; Villarreal-Silva, Eliud Enrique; Salazar-Ybarra, Rodolfo Amador; Quiroga-García, Oscar; Rodríguez-Rocha, Humberto; García-García, Aracely; Morales-Avalos, Rodolfo; Morales-Gómez, Jesús Alberto; Quiroga-Garza, Alejandro; Saucedo-Cárdenas, Odila; Xu, Zao Cheng; Elizondo-Omaña, Rodrigo Enrique; Martínez-Ponce-de-León, Angel Raymundo; Guzmán-López, Santos

    2016-06-01

    Animal models of cerebral ischemia have typically been established and performed using young animals, even though cerebral ischemia (CI) affects primarily elderly patients. This situation represents a discrepancy that complicates the translation of novel therapeutic strategies for CI. Models of transient global CI using aged animals have demonstrated an apparent neuroprotective effect on CA1 hippocampal neurons; however, this effect is not completely understood. Our study used a model in which young (3-6 months) and aged (18-21 months) male Wistar rats were subjected to 15 min of transient global CI using the four-vessel occlusion (4 VO) model. We determined that the 4 VO model can be performed on aged rats with a slight increase in mortality rate. In aged rats, the morphological damage was completely established by the 4th day after reperfusion, displaying no difference from their younger counterparts. These results demonstrated the lack of a neuroprotective effect of aging on CA1 hippocampal neurons in aged male Wistar rats. This study determined and characterized the morphological damage to the CA1 area after 15 min of 4 VO in aged male Wistar rats, validating the use of this model in CI and aging research. PMID:25966656

  5. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia.

    Science.gov (United States)

    Barrientos, Ruth M; Thompson, Vanessa M; Kitt, Meagan M; Amat, Jose; Hale, Matthew W; Frank, Matthew G; Crysdale, Nicole Y; Stamper, Christopher E; Hennessey, Patrick A; Watkins, Linda R; Spencer, Robert L; Lowry, Christopher A; Maier, Steven F

    2015-03-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher corticosterone levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal corticosterone levels were associated with increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 protein expression, the enzyme that catalyzes glucocorticoid formation and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia and prevented Escherichia coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia.

  6. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats.

    Science.gov (United States)

    Stein, Liana R; O'Dell, Kazuko A; Funatsu, Michiyo; Zorumski, Charles F; Izumi, Yukitoshi

    2016-08-01

    Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals. PMID:27208617

  7. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Naguib Zakaria

    2015-01-01

    Full Text Available Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE, AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS complications in STZ-induced (50 mg/kg, IP diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze, neuronal degeneration (Fluoro-Jade staining, AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde. These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications.

  8. Involvement of cellular metabolism in age-related LTP modifications in rat hippocampal slices.

    Science.gov (United States)

    Drulis-Fajdasz, Dominika; Wójtowicz, Tomasz; Wawrzyniak, Marcin; Wlodarczyk, Jakub; Mozrzymas, Jerzy W; Rakus, Dariusz

    2015-06-10

    Recent studies emphasized crucial role of astrocytic glycogen metabolism in regulation of synaptic transmission and plasticity in young animals. However, the interplay between age-related synaptic plasticity impairments and changes in energetic metabolism remains obscure. To address this issue, we investigated, in hippocampal slices of young (one month) and aged rats (20-22-months), the impact of glycogen degradation inhibition on LTP, mRNA expression for glycogen metabolism enzymes and morphology of dendritic spines. We show that, whereas in young hippocampi, inhibition of glycogen phosphorolysis disrupts the late phase of LTP in the Schaffer collateral-CA1 pathway, in aged rats, blockade of glycogen phosphorylase tends to enhance it. Gene expression for key energy metabolism enzymes, such as glycogen synthase and phosphorylase and glutamine synthetase showed marked differences between young and aged groups and changes in expression of these enzymes preceded plasticity phenomena. Interestingly, in the aged group, a prominent expression of these enzymes was found also in neurons. Concluding, we show that LTP in the considered pathway is differentially modulated by metabolic processes in young and aging animals, indicating a novel venue of studies aiming at preventing cognitive decline during aging. PMID:26101857

  9. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats.

    Science.gov (United States)

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  10. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    Directory of Open Access Journals (Sweden)

    Rebecca P Haberman

    Full Text Available Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000 exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit

  11. Esophageal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    of experiment. Morphometry data were obtained by measuring the wall thickness and cross-sectional area. The mechanical test was performed as a step-wise distension experiment. The esophageal diameter and length were obtained from digitized images of the segments at pre-selected pressures and at no-load and zero-stress...... states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state geometry. Results The esophageal dimensions increased slightly from 6 to 22 months, e.g. the weight per unit length......, the wall thickness and the wall cross-sectional area increased about 17%, 18% and 35% respectively. The opening angle was gradually decreased from 90 degrees to 67 degrees during aging. The circumferential stress-strain curves shifted to the left after 12 month (p

  12. Intestinal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    . The mechanical test was performed as a step-wise distension experiment. The intestinal diameter and length were obtained from digitized images of the segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were...... computed from the length, diameter and pressure data and from the zero-stress state geometry. Results: The duodenal and ileal dimensions increased slightly from 6 to 22 months, e.g. the weight per unit length, the wall thickness and the wall cross-sectional area increased 20%, 4% ,and 25% for duodenum...... and 12%, 5%, and 8% for ileum, respectively. The opening angle gradually decreased from 154 to 117 degrees for duodenum and from 144 to 87 degrees for ileum as function of aging. The circumferential stress-strain curves shifted to the left after 22 months (pstress...

  13. The effect of sub-lethal doses on the ploidy level in rats hepatocytes with aging

    International Nuclear Information System (INIS)

    It has been shown that the polyploidization levels in rat's hepatocytes increased with aging. The high LET ionizing radiation also induce cell polyploidization by two different means: cells and nuclei fusion, and mitosis restriction after DNA replication. The purpose of the present study was to determine the kinetic of rat's hepatocytes polyploidization with ageing, and the late effects of low doses of gamma irradiation on polyploidization. To this end, three groups of rats were used. Each group composed of 175 four weeks old animals. The first was served as a control, the second and the third groups were irradiated with 4 and 2 Gy respectively, of gamma irradiation at the age of one month. Of each group, 7-8 animals were monthly scarified (for two years), and their liver tissues were used to obtain cell suspensions which were further fixed in gradual series concentrations of ethanol. After staining with Propidum Iodide 'PI' (106 cells per ml of PI used at 10-5 M final concentration), the cells were analyzed on a FACS Vantage Flow Cytometer (Becton Dickinson). In the control, the results showed: 1) A decrease of cell fraction that contained normal diploid until steady level. 2) Biphasic changes of fraction tetraploidy cells (increase until age of 4 month followed by decrease). 3) The fraction of octaploidy cells appeared at age of 3-4 month and increased continuously with the aging. In accompanied to life-span reductions of 4 Gy irradiated animals, the DNA contents were similar to those in control groups in addition to some quantities variation due to a programmed cell death (Apoptosis) induced by irradiation and regenerations. These variations persisted till the age of 7 month, in additional to reduce the spin-life of irradiated animals. The irradiation with 2 Gy induced some quantities variation in comparison with nonirradiated group, appeared in the reduction of rate conversion from one ploidy class to another, and in shift with 2-3 months of the second pike of

  14. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats.

    Science.gov (United States)

    Fu, Yao; Huebner, Janet L; Kraus, Virginia B; Griffin, Timothy M

    2016-09-01

    The infrapatellar fat pad (IFP) secretes inflammatory mediators in osteoarthritic knees, but the effect of aging on IFP inflammation is unknown. We tested the hypothesis that aging increases basal and interleukin-1β (IL-1β)-stimulated IFP inflammation in 10-, 20-, and 30-month-old male F344BN F1-hybrid rats. IFPs were cultured ex vivo for 24 hours and treated ±1ng/mL IL-1β to simulate injury-induced inflammation. IFP inflammation was evaluated by measuring secreted cytokine concentrations and by quantitative expression of immunoregulatory and pro- and anti-adipogenic genes. With age, osteoarthritis pathology increased and IFP mass decreased. Although adipocyte size did not change with age, variation in adipocyte size was positively associated with synovial thickness independent of age whereas associations with cartilage damage were age dependent. In the absence of IL-1β, aging was associated with a significant increase in IFP secretion of tumor necrosis factor α by 67% and IL-13 by 35% and a reduction in the expression of immunoregulatory M2 macrophage genes. However, following an IL-1β challenge, adipogenesis markers decreased and pro- and anti-inflammatory cytokines increased independent of age. The lone exception was leptin, which decreased >70% with age. Thus, although aging promotes osteoarthritis risk by increasing basal inflammation, our findings also revealed a potentially protective effect of aging by decreasing IL-1β-stimulated leptin production. PMID:26450946

  15. Protective effects of estrogens and caloric restriction during aging on various rat testis parameters

    Institute of Scientific and Technical Information of China (English)

    Khaled Hamden; Dorothee Silandre; Christelle Delalande; Abdelfattah ElFek; Serge Carreau

    2008-01-01

    Aim: To investigate the effects of 17β-estradiol (E2), Peganum harmala extract (PHE) and caloric restriction (CR) on various testis parameters during aging. Methods: Twelve-month-old male rats were treated for 6 months with either E2 or PHE, or submitted to CR (40%). Results: Our results show that estrogens and CR are able to protect the male gonad by preventing the decrease of testosterone and E2 levels as well as the decrease of aromatase and estrogen receptor gene expressions. Indeed, E2, PHE and CR treatments induced an increase in the superoxide dismutase activities and decreased the activity of testicular enzymes: gamma-glutamyl transferase, alkaline phosphatase, lactate deshydrogenase as well as the aspartate and lactate transaminases in aged animals. In addition, the testicular catalase and gluthatione peroxidase activities were enhanced in E2, PHE and CR-treated rats compared to untreated animals at 18 months of age. Moreover, the positive effects of estradiol, PHE and CR were further supported by a lower level of lipid peroxidation. Recovery of spermatogenesis was recorded in treated rats. Conclusion: Besides a low caloric diet which is beneficial for spermatogenesis, a protective antioxydant role of estrogens is suggested. Estrogens delay testicular cell damage, which leads to functional senescence and, therefore, estrogens are helpful in protecting the reproductive functions from the adverse effects exerted by reactive oxygen species (ROS) produced in large quanti-ties in the aged testis.

  16. Physical activity ameliorates cartilage degeneration in a rat model of aging: a study on lubricin expression.

    Science.gov (United States)

    Musumeci, G; Castrogiovanni, P; Trovato, F M; Imbesi, R; Giunta, S; Szychlinska, M A; Loreto, C; Castorina, S; Mobasheri, A

    2015-04-01

    Osteoarthritis (OA) is a common musculoskeletal disorder characterized by slow progression and joint tissue degeneration. Aging is one of the most prominent risk factors for the development and progression of OA. OA is not, however, an inevitable consequence of aging and age-related changes in the joint can be distinguished from those that are the result of joint injury or inflammatory disease. The question that remains is whether OA can be prevented by undertaking regular physical activity. Would moderate physical activity in the elderly cartilage (and lubricin expression) comparable to a sedentary healthy adult? In this study we used physical exercise in healthy young, adult, and aged rats to evaluate the expression of lubricin as a novel biomarker of chondrocyte senescence. Immunohistochemistry and western blotting were used to evaluate the expression of lubricin in articular cartilage, while enzyme-linked immunosorbent assay was used to quantify lubricin in synovial fluid. Morphological evaluation was done by histology to monitor possible tissue alterations. Our data suggest that moderate physical activity and normal mechanical joint loading in elderly rats improve tribology and lubricative properties of articular cartilage, promoting lubricin synthesis and its elevation in synovial fluid, thus preventing cartilage degradation compared with unexercised adult rats.

  17. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats.

    Science.gov (United States)

    Solis-Gaspar, Carlos; Vazquez-Roque, Ruben A; De Jesús Gómez-Villalobos, Ma; Flores, Gonzalo

    2016-09-01

    The spontaneously hypertensive (SH) rat has been used as an animal model of vascular dementia (VD). Our previous report showed that, SH rats exhibited dendritic atrophy of pyramidal neurons of the CA1 dorsal hippocampus and layers 3 and 5 of the prefrontal cortex (PFC) at 8 months of age. In addition, we showed that cerebrolysin (Cbl), a neurotrophic peptide mixture, reduces the dendritic atrophy in aged animal models. This study aimed to determine whether Cbl was capable of reducing behavioral and neuronal alterations, in old female SH rats. The level of diastolic and systolic pressure was measured every month for the 6 first months and only animals with more than 160 mm Hg of systolic pressure were used. Female SH rats (6 months old) received 6 months of Cbl treatment. Immediately after the Cbl treatment, two behavioral tests were applied, the Morris water maze test for memory and learning and locomotor activity in novel environments. Immediately after the last behavioral test, dendritic morphology was studied with the Golgi-Cox stain procedure followed by a Sholl analysis. Clearly, SH rats with Cbl showed an increase in the dendritic length and dendritic spine density of pyramidal neurons in the CA1 in the dorsal hippocampus and layers 3 and 5 of the PFC. Interestingly, Cbl improved memory of the old SH rats. Our results support the possibility that Cbl may have beneficial effects on the management of brain alterations in an animal model with VD. Synapse 70:378-389, 2016. © 2016 Wiley Periodicals, Inc. PMID:27164468

  18. A nonsense mutation of Stim1 identified in stroke-prone spontaneously hypertensive rats decreased the store-operated calcium entry in astrocytes.

    Science.gov (United States)

    Ohara, Hiroki; Nabika, Toru

    2016-08-01

    We previously identified a nonsense mutation in the stromal interaction molecule-1 (Stim1) resulting in expression of a truncated STIM1 in the stroke-prone spontaneously hypertensive rat (SHRSP). In this study, we evaluated activity of the store-operated Ca(2+)-entry (SOCE) regulated by STIM1 to clarify putative functional abnormalities of the truncated STIM1. As a result, reduced SOCE activity resulting in suppression of cyclooxygenase-2 expression induced by SOCE was found in cultured astrocytes with the truncated STIM1 when compared with those with the wild-type. Our results indicated that the truncated STIM1 impaired Ca(2+) signaling regulated by SOCE and that the impaired SOCE activity might be responsible for pathological phenotypes in SHRSP. PMID:27237974

  19. Age-dependent expression of forkhead box O proteins in the duodenum of rats

    Institute of Scientific and Technical Information of China (English)

    Pan HUANG; Zhen-qi ZHOU; Rui-hua HUANG; Bo ZHOU; Quan-wei WEI; Fang-xiong SHI

    2011-01-01

    The O subfamily of forkhead box (FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B (IGF-1/PI3K/PKB) signal pathway.The objective of the present study was to examine the expressions of three members of FoxO proteins,FoxO1,FoxO3a,and FoxO4 in the duodenum of Sprague-Dawley rats at different ages.The result demonstrated that the expression of FoxO4 in rat duodenum showed an age-dependent manner.At Day 21,there were no detectable localization and expression of FoxO4 in the duodenum,while,at Months 2 and 6,localization and expression of FoxO4 were distinct.In addition,FoxO4 staining was primarily concentrated in the cell nuclei of the lamina propria around the intestinal gland of the duodenum in 2-month-old rats,but was not detectable in the same area in 6-month-old rats.Our results showed also that although FoxO3a existed in the cytoplasm of the lamina propria at a low level at the 2- and 6-month marks,it was still not detectable at Day 21.Besides,FoxO1 was not detectable in all parts and stages.Taken together,our findings suggested that the cell-specific and age-dependent expressional patterns of FoxO4 and FoxO3a proteins in the duodenum play some roles in the development and growth performance of the rat duodenum.

  20. Inhibition of Sirtuin 2 exerts neuroprotection in aging rats with increased neonatal iron intake

    Institute of Scientific and Technical Information of China (English)

    Xijin Wang; Meihua Wang; Liu Yang; Jie Bai; Zhiqiang Yan; Yuhong Zhang; Zhenguo Liu

    2014-01-01

    Impaired iron homeostasis may cause damage to dopaminergic neurons and is critically involved in the pathogenesis of Parkinson’s disease. At present, very little is understood about the effect of neonatal iron intake on behavior in aging animals. Therefore, we hypothesized that increased neonatal iron intake would result in signiifcant behavior abnormalities and striatal dopamine depletion during aging, and Sirtuin 2 contributes to the age-related neurotoxicity. In the present study, we observed that neonatal iron intake (120 μg/g per day) during postnatal days 10–17 resulted in significant behavior abnormalities and striatal dopamine depletion in aging rats. Furthermore, after AK-7 (a selective Sirtuin 2 inhibitor) was injected into the substantia nigra at postnatal 540 days and 570 days (5 μg/side per day), striatal dopamine depletion was signiifcant-ly diminished and behavior abnormality was improved in aging rats with neonatal iron intake. Experimental ifndings suggest that increased neonatal iron intake may result in Parkinson’s dis-ease-like neurochemical and behavioral deifcits with aging, and inhibition of Sirtuin 2 expression may be a neuroprotective measure in Parkinson’s disease.

  1. A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype.

    Science.gov (United States)

    Quaade, Marlene Louise; Jensen, Charlotte Harken; Andersen, Ditte Caroline; Sheikh, Søren Paludan

    2016-06-01

    The stromal vascular fraction (SVF) is a heterogeneous population obtained from collagenase digestion of adipose tissue. When cultured the population becomes more homogeneous and the cells are then termed adipose stromal/stem cells (ASCs). Both the freshly isolated primary SVF population and the cultured ASC population possess regenerative abilities suggested to be mediated by paracrine mechanisms mainly. The use of ASCs and SVF cells, both in animal studies and human clinical studies, has dramatically increased during recent years. However, more knowledge regarding optimal donor characteristics such as age is demanded. Here we report that even a short age difference has an impact on the phenotype of primary SVF cells. We observed that a 3-month difference in relatively young adult rats affects the expression pattern of several mesenchymal stem cell markers in their primary SVF. The younger animals had significantly more CD90+/CD44+/CD29+/PDGFRα+primary cells, than the aged rats, suggesting an age dependent shift in the relative cell type distribution within the population. Taken together with recent studies of much more pronounced age differences, our data strongly suggest that donor age is a very critical parameter that should be taken into account in future stem cell studies, especially when using primary cells. PMID:27265810

  2. Selective remodeling of cardiolipin fatty acids in the aged rat heart

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I

    2006-01-01

    Full Text Available Abstract Background The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. Results The concentration (nmol/g of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD vs 4 month old rats (5525 ± 656, while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively. Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. Conclusion These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids.

  3. Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Ying-min Cai

    2016-01-01

    Full Text Available Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats (20-22 months were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline (40 mL/kg was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca 2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca 2+ accumulation.

  4. Estrogen and Aging Affect Synaptic Distribution of Phosphorylated LIM Kinase (LIMK) in CA1 Region of Female Rat Hippocampus

    OpenAIRE

    Yildirim, Murat; JANSSEN, WILLIAM G.M.; Tabori, Nora E.; Adams, Michelle M.; Yuen, Genevieve S.; Akama, Keith T.; McEwen, Bruce S.; Milner, Teresa A.; Morrison, John H.

    2008-01-01

    17β-Estradiol (E) increases axospinous synapse density in the hippocampal CA1 region of young female rats, but not in aged rats. This may be linked to age-related alterations in signaling pathways activated by synaptic estrogen receptor α (ER-α) that potentially regulate spine formation, such as LIM-Kinase (LIMK), an actin depolymerizing factor/cofilin kinase. We hypothesized that, as with ER-α, phospho-LIMK (pLIMK) may be less abundant or responsive to E in CA1 synapses of aged female rats. ...

  5. HIV-1 Transgenic Rats Display Alterations in Immunophenotype and Cellular Responses Associated with Aging

    OpenAIRE

    Abbondanzo, Susan J.; Chang, Sulie L.

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, parti...

  6. Effects of taurine on male reproduction in rats of different ages

    OpenAIRE

    Yang Jiancheng; Wu Gaofeng; Feng Ying; Lv Qiufeng; Lin Shumei; Hu Jianmin

    2010-01-01

    Abstract Background It has been demonstrated that taurine is one of the most abundant free amino acids in the male reproductive system, and can be biosynthesized by male reproductive organs. But the effect of taurine on male reproduction is poorly understood. Methods Taurine and β-alanine (taurine transport inhibitor) were offered in water to male rats of different ages. The effects of taurine on reproductive hormones, testis marker enzymes, antioxidative ability and sperm quality were invest...

  7. Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.

    Directory of Open Access Journals (Sweden)

    David M Kietrys

    Full Text Available We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.

  8. Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats.

    Science.gov (United States)

    Cunha, Rafael Rodrigues; Cunha, Verusca Najara de Carvalho; Segundo, Paulo Russo; Moreira, Sérgio Rodrigues; Kokubun, Eduardo; Campbell, Carmen Sílvia Grubert; de Oliveira, Ricardo Jacó; Simões, Herbert Gustavo

    2009-08-01

    The reliability of the lactate threshold (LT) determined in aged rats and its validity to identify an exercise intensity corresponding to the maximal blood lactate steady state (MLSS) were analyzed. Eighteen male aged Wistar rats (approximately 365 days) were submitted to two incremental swimming tests until exhaustion, consisting of an initial load corresponding to 1% of body mass (BM) and increments of 1% BM at each 3-min with blood lactate ([lac]) measurements. The LT was determined by visual inspection (LT(V)) as well by applying a polynomial function on the [lac]/workload ratio (LT(P)) by considering the vertices of the curve. For the MLSS, twelve animals were submitted, on different days, to 3-4 exercise sessions of 30-min with workload corresponding to 4, 5 or 6% BM. The MLSS was considered the highest exercise intensity at which the [lac] variation was not higher than 0.07 mM.min(-1) during the last 20-min. No differences were observed for the test-retest results (4.9 +/- 0.7 and 5.0 +/- 0.8 %BM for LTv; and 6.0 +/- 0.6 and 5.8 +/- 0.6 %BM for LTp) that did not differ from the MLSS (5.4 +/- 0.5 %BM). The LT identified for aged rats in swimming, both by visual inspection and polynomial function, was reliable and did not differ from the MLSS. PMID:19585487

  9. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  10. Mucociliary clearance in the rat lung and the effect of age

    International Nuclear Information System (INIS)

    Mucociliary clearance rate was measured in groups of rats (n = 25) at 2, 5, 8 and 12 months of age. Animals inhaled an aerosol of indium-111 labeled iron oxide particles (median dia. 1.95 u) for a period of 5 min. and thoracic activity was monitored externally during the next 48 hours. Clearance curves, generated as loss of initial activity versus time, were found to be biphasic and represented the sum of 2 exponential curves with separate rate constants (slopes). The first phase lasted 6 +/- 1.5 hours whereas the second was much slower and continued into the second day. Comparison of individual values obtained for the first phase at 2 months showed considerable variation among animals ranging +/- 20% from the mean. These variations were not due to experimental error or sex and persisted in each animal with aging. Absolute clearance rates, however, progressively decreased with age. This phenomenon was at least in part the result of a greater penetration of aerosol within the airways as the animal ages. Percent of initial radioactivity remaining within the lungs 48 hours following aerosol inhalation was 15.1 +/- 0.82% at 2 months and progressively increased to 28.4 + 0.60% at 12 months. The authors conclude that in rats mucociliary clearance is in part genetically determined and regional deposition patterns of particulates within the airways varies with age

  11. Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery.

    Directory of Open Access Journals (Sweden)

    Yuan Le

    Full Text Available It is known that age is an important factor for postoperative cognitive dysfunction (POCD and the patients with POCD suffer from the impairment of multiple brain regions and multiple brain functions. However currently animal studies of POCD mainly focus on hippocampus region, therefore in this study we performed partial hepatectomy in young adult and aged rats to test the questions (1 whether POCD in animals involves other brain areas besides hippocampus; (2 how age influences POCD of young adult and aged animals. We found that (1 in young adult rats, the memory was not significantly affected (P>0.05 1d, 3d and 7d after partial hepatectomy, but was significantly impaired (p0.05, respectively 1d and 3d post-surgery, but the spine densities at CA1 and DG of aged rats were significant reduced 1d and 3d post-surgery (p0.05; (3 In young adult rats, surgery didn't affect the activation of microglia and levels of TNF-α and IL-1β at hippocampus (P>0.05, but significantly activated microglia and increased levels of TNF-α and IL-1β at hippocampus of aged rats (P<0.05. Our data suggest that (1 partial hepatectomy-induced POCD mainly involves hippocampus impairments, and (2 differential loss of neuronal dendritic spines and neuroinflammation at hippocampus are most likely the mechanism for the formation of POCD in aged rats.

  12. Compensation aids skilled reaching in aging and in recovery from forelimb motor cortex stroke in the rat.

    Science.gov (United States)

    Alaverdashvili, M; Whishaw, I Q

    2010-04-28

    Compensatory movements mediate success in skilled reaching for food after stroke to the forelimb region of motor cortex (MtCx) in the rat. The present study asks whether the neural plasticity that enables compensation after motor stroke is preserved in aging. In order to avoid potential confounding effects of age-related negative-learning, rats were trained in a single pellet reaching task during young-adulthood. Subgroups were retested before and after contralateral forelimb MtCx stroke via pial stripping given at 3, 18, or 23 months of age. Over a two-month post-stroke rehabilitation period, end point measures were made of learned nonuse, recovery, retention, and performance ratings were made of reaching movement elements. Prior to stroke, young and aged rats maintained equivalent end point performance but older rats displayed compensatory changes in limb use as measured with ratings of the elements of forelimb movement. Following stroke, the aged groups of rats were more impaired on end point, movement, and anatomical measures. Nevertheless, the aged rats displayed substantial recovery via the use of compensatory movements. Thus, this study demonstrates that the neural plasticity that mediates compensatory movements after stroke in young adults is preserved prior to and following stroke in aging.

  13. Age difference in deposition of plutonium in organs of rats and the estimation of distribution in humans

    International Nuclear Information System (INIS)

    Differences in plutonium distribution in various organs, particularly the bones, of rats injected at different ages were examined in order to aid in estimating plutonium distribution in humans. Comparisons were made between rats and humans based on the bone histomorphometric and mineral density data. Male and female rats of three ages (3, 12, and 24 months old), respectively, received an injection of plutonium nitrate by two dose modalities; a fixed amount of plutonium without regard to age, sex, or body weight; per g of body weight. The rats were killed 2 weeks after the injection of plutonium. The amounts of plutonium deposited in the organs varied without regard to the body or organ weight; those in the skeleton increased from 3 to 12 months, reaching a peak at 12 months, but then decreased, along with the age-related changes in the bone surface, volume, and mineral density. Those in the liver, spleen and kidney decreased despite the body weight gain with age in both sexes. Age-related differences in the deposition of plutonium in humans were estimated based on the bone data characteristics obtained from the histomorphometry and bone mineral density for corresponding of ages between rats and humans. The results indicate that age is the most important factor in estimating the distribution of plutonium deposition in the early period after plutonium exposure, and that body or organ weight is not always a useful indicator, particularly in the aged. (author)

  14. Age-related changes in kynurenic acid production in rat brain

    DEFF Research Database (Denmark)

    Gramsbergen, J B; Schmidt, W; Turski, W A;

    1992-01-01

    -dependent increase of KYNA concentration in brain tissue, suggest an enhanced KYNA tone in the aged brain. Together with the reported decline in cerebral excitatory amino acid receptor densities with age, increased production of KYNA may play a role in cognitive and memory dysfunction in old animals....... investigated in tissue slices and was found to be significantly enhanced in the cortex and hippocampus of old animals. The effect of depolarizing agents or sodium replacement was virtually identical in tissues from young and old rats. These data, which are in excellent agreement with reports on an age...... months of age in all five brain regions examined. No changes were observed in the liver. The changes were particularly pronounced in the cortex and in the striatum where enzyme activity increased three-fold during the period studied. KYNA production from its bioprecursor L-kynurenine was also...

  15. Analysis of Age Dependent Effects of Heat Stress on EEG Frequency Components in Rats

    Institute of Scientific and Technical Information of China (English)

    RAKESH KUMAR SINHA

    2009-01-01

    Objective To demonstrate changes in different frequencies of cerebral electrical activity or electroencephalogram (EEG) following exposure to high environmental heat in three different age groups of freely moving rats. Methods Rats were divided into three groups (i) acute heat stress - subjected to a single exposure for four hours at 38 ℃; (ii) chronic heat stress -exposed for 21 days daily for one hour at 38 ℃, and (iii) handling control groups. The digital polygraphic sleep-EEG recordings were performed just after the heat exposure from acute stressed rats and on 22nd day from chronic stressed rats by simultaneous recording of cortical EEG EOG (electrooculogram), and EMG (electromyogram). Further, power spectrum analyses were performed to analyze the effects of heat stress. Results The frequency analysis of EEG signals following exposure to high environmental heat revealed that in all three age groups of rats, changes in higher frequency components (β2) were significant in all sleep-wake states following both acute and chronic heat stress conditions. After exposure to acute heat, significant changes in EEG frequencies with respect to their control groups were observed, which were reversed partly or fully in four hours of EEG recording. On the other hand, due to repetitive chronic exposure to hot environment, adaptive and long-term changes in EEG frequency patterns were observed. Conclusion The present study has exhibited that the cortical EEG is sensitive to environmental heat and alterations in EEG frequencies in different sleep-wake states due to heat stress can be differentiated efficiently by EEG power spectrum analysis.

  16. Effect of genetic strain and gender on age-related changes in body composition of the laboratory rat.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Body composition data for common laboratory strains of rat as a function of age. This dataset is associated with the following publication: Gordon , C., K. Jarema ,...

  17. Effect of fetal hypothyroidism on tolerance to ischemia-reperfusion injury in aged male rats: Role of nitric oxide.

    Science.gov (United States)

    Jeddi, Sajad; Zaman, Jalal; Ghasemi, Asghar

    2016-05-01

    Aging is associated with increased prevalence of cardiovascular disease. Thyroid hormone deficiency during fetal life decreases myocardial tolerance to ischemia-reperfusion (IR) injury in later life. The long-term effects of fetal hypothyroidism (FH) on response to IR injury in aged rats have not been well documented. The aim of this study was therefore to compare the effect of FH on tolerance to IR injury in young and aged male rats and to determine contribution of iNOS (inducible nitric oxide synthase), Bax, and Bcl-2. Pregnant female rats were divided into two groups: The FH group received water containing 0.025% 6-propyl-2-thiouracil during gestation and the controls consumed tap water. Isolated perfused hearts from young (3 months) and aged (12 months) rats were subjected to IR. Hemodynamic parameters, infarct size, and heart NOx (nitrite+nitrate) levels were measured; in addition, mRNA expression of iNOS, Bax, and Bcl-2 and their protein levels in heart were measured. Recovery of post-ischemic LVDP and ±dp/dt were lower and infarct sizes were higher than controls in aged FH rats (68.38 ± 6.7% vs. 50.5 ± 1.7%; P Bcl-2 was lower in both the young (350 and 240% for iNOS and Bax, respectively and 51% for Bcl-2) and aged rats (504 and 567% for iNOS and Bax, respectively and 67% for Bcl-2). Compared to controls, in FH rats protein levels of iNOS (37% for young and 45% for aged rats) and Bax (94% for young and 118% for aged rats) were higher while for Bcl-2 (36% for young and 62% for aged rats) were lower. After IR, in FH rats, aminoguanidine, a selective iNOS inhibitor, decreased mRNA expression of iNOS and Bax and increased expression of Bcl-2 in both young (65% and 58% for iNOS and Bax, respectively and 152% for Bcl-2) and aged rats (76% and 64% for iNOS and Bax, respectively and 222% for Bcl-2). In addition, in the heart of FH rats, aminoguanidine decreased protein levels of iNOS (47% for young and 60% for aged rats) and Bax (57% for young and 80% for

  18. Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats

    OpenAIRE

    Lang, Charles H; Korzick, Donna H.

    2013-01-01

    The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- v...

  19. No correlation is found for vegetables between antioxidant capacity and potential benefits in improving antioxidant function in aged rats

    OpenAIRE

    Ji, Linlin; Gao, Weina; Wei, Jingyu; Wu, Jianquan; Yang, Jijun; Meng, Bin; Guo, Changjiang

    2014-01-01

    Vegetables vary greatly in antioxidant capacity in vitro. This study was to investigate the actions of three vegetables different remarkably in antioxidant capacity in vitro on antioxidant function in aged rats. Sixty female aged Wistar rats were randomly assigned to the control, lotus root, rape and cucumber (high, moderate and low in antioxidant capacity, respectively) treated groups. After 6 weeks of feeding, there were no significant differences in plasma FRAP value and contents of vitami...

  20. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Directory of Open Access Journals (Sweden)

    Sanberg Paul R

    2008-02-01

    Full Text Available Abstract Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.

  1. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Science.gov (United States)

    Bachstetter, Adam D; Pabon, Mibel M; Cole, Michael J; Hudson, Charles E; Sanberg, Paul R; Willing, Alison E; Bickford, Paula C; Gemma, Carmelina

    2008-01-01

    Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain. PMID:18275610

  2. Age effects on the pharmacokinetics of tityustoxin from Tityus serrulatus scorpion venom in rats

    Directory of Open Access Journals (Sweden)

    Nunan E.A.

    2004-01-01

    Full Text Available The pharmacokinetics of scorpion venom and its toxins has been investigated in experimental models using adult animals, although, severe scorpion accidents are associated more frequently with children. We compared the effect of age on the pharmacokinetics of tityustoxin, one of the most active principles of Tityus serrulatus venom, in young male/female rats (21-22 days old, N = 5-8 and in adult male rats (150-160 days old, N = 5-8. Tityustoxin (6 µg labeled with 99mTechnetium was administered subcutaneously to young and adult rats. The plasma concentration vs time data were subjected to non-compartmental pharmacokinetic analysis to obtain estimates of various pharmacokinetic parameters such as total body clearance (CL/F, distribution volume (Vd/F, area under the curve (AUC, and mean residence time. The data were analyzed with and without considering body weight. The data without correction for body weight showed a higher Cmax (62.30 ± 7.07 vs 12.71 ± 2.11 ng/ml, P < 0.05 and AUC (296.49 ± 21.09 vs 55.96 ± 5.41 ng h-1 ml-1, P < 0.05 and lower Tmax (0.64 ± 0.19 vs 2.44 ± 0.49 h, P < 0.05 in young rats. Furthermore, Vd/F (0.15 vs 0.42 l/kg and CL/F (0.02 ± 0.001 vs 0.11 ± 0.01 l h-1 kg-1, P < 0.05 were lower in young rats. However, when the data were reanalyzed taking body weight into consideration, the Cmax (40.43 ± 3.25 vs 78.21 ± 11.23 ng kg-1 ml-1, P < 0.05 and AUC (182.27 ± 11.74 vs 344.62 ± 32.11 ng h-1 ml-1, P < 0.05 were lower in young rats. The clearance (0.03 ± 0.002 vs 0.02 ± 0.002 l h-1 kg-1, P < 0.05 and Vd/F (0.210 vs 0.067 l/kg were higher in young rats. The raw data (not adjusted for body weight strongly suggest that age plays a pivotal role in the disposition of tityustoxin. Furthermore, our results also indicate that the differences in the severity of symptoms observed in children and adults after scorpion envenomation can be explained in part by differences in the pharmacokinetics of the toxin.

  3. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.;

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat...

  4. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm;

    2016-01-01

    Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes...... orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...

  5. Death mode-dependent reduction in succinate dehydrogenase activity in hair cells of aging rat cochleae

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-ping; HU Bo-hua; SUN Jian-he; ZHAI Suo-qiang; Donald Henderson

    2010-01-01

    Background Our previous studies have shown that both apoptosis and necrosis are involved in hair cell (HC) pathogenesis in aging cochleae. To better understand the biological mechanisms responsible for the regulation of HC death, we examined the activity of succinate dehydrogenase (SDH), a mitochondrial bioenergetic enzyme, in the HCs of aging cochleae.Methods The auditory brainstem response thresholds elicited by tone bursts at 4, 10 and 20 kHz were measured in both young (2-3 months) and aging (22-23 months) Wistar rats. SDH activity was evaluated with a colorimetric assay using nitroblue tetrazolium monosodium salt. The SDH-labeled organs of Corti were double stained with propidium iodide, a DNA intercalating fluorescent probe for illustration of HC nuclei. All the specimens were examined with fluorescence microscopy and confocal microscopy.Results Aging rats exhibited a significant elevation of ABR thresholds with threshold shifts being 34 dB at 20 kHz, 28 dB at 10 kHz, and 25 dB at 4 kHz. Consistent with the reduction in the cochlear function, aging cochleae exhibited the reduction of SDH staining intensity in the apical and the basal ends of the cochleae, where a large number of apoptotic, necrotic, and missing HCs were evident. The reduction in SDH staining appeared in a cell-death-mode dependent fashion. Specifically, SDH labeling remained in apoptotic HCs. In contrast, SDH staining was markedly reduced or absent in necrotic HCs.Conclusions In the aging cochlea, SDH activity is preserved in HCs undergoing apoptosis, but is substantially reduced in necrosis. These results suggest that mitochondrial energetic function is involved in the regulation of cell death pathways in the pathogenesis of aging cochleae.

  6. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain.

    Science.gov (United States)

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2012-07-01

    The GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats. The data were analyzed and region of interest analyses were applied to validate the voxel-wise approach. We observed decreased [(11)C]-flumazenil binding in the aged rat brains in comparison with the young control group. More specifically, clusters of reduced radioligand uptake were detected in the bilateral hippocampus, cerebellum, midbrain, and bilateral frontal and parieto-occipital cortex. Our results support the pertinence of voxel-wise quantification in the analysis of microPET data. Moreover, these findings indicate that the aging process involves declines in neural BDZ recognition site availability, proposed to reflect alterations in GABA(A) receptor subunit polypeptide expression.

  7. Morphometric and biomechanical remodeling of the small intestine during aging in rats.

    Science.gov (United States)

    Zhao, Jingbo; Gregersen, Hans

    2015-12-16

    The present study aimed to study the morphometric and biomechanical remodeling of the small intestine during aging in rats. Twenty-four male Wistar rats, aged from 6 to 22 months, were used in the study. The body weight and the wet weight per length of duodenal and ileal segments were measured at the termination of the experiments. Morphometry data was obtained by measuring the wall thickness and cross-sectional area. The mechanical test was done as a step-wise distension experiment. The intestinal diameter and length were obtained from digitized images of the segments at pre-selected pressure levels and at the no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state geometry. The duodenal and ileal dimensions increased slightly from 6 to 22 months, e.g. the wall thickness and the wall cross-sectional area increased about 4% and 25% for duodenum and 5% and 8% for ileum. The opening angle gradually decreased from 154 to 117 degrees for duodenum and from 144 to 87 degrees for ileum during aging. The circumferential stress-strain curves significantly shifted to the left after 22 months (pstress-strain curves significantly shifted to the left after 18 months (prat intestine during aging. PMID:26596717

  8. Oxidation of Lipids and Proteins in Lens and Blood Plasma of Rats in Ageing

    Directory of Open Access Journals (Sweden)

    Ivanova I.P.

    2011-09-01

    Full Text Available The aim of the study is to assess the intensity of oxidation of lipids and proteins in lens and blood plasma of Wistar rats in ageing. Materials and Methods. The experiments were carried out on 25 Wistar male rats of four age groups: 5, 12, 24 and 36 months. Materials for study were lens and blood plasma. Lipids were extracted using Folch partition. The content of diene and triene conjugates was assessed by means of spectrophotometry. The level of Schiff’s bases was studied according to fluorescence intensity, malon dialdehyde concentration — according to the intensity of interaction with thiobarbituric acid. Potentiality of substrate oxidation in specimen was assessed using the method of induced chemoluminescence, and the degree of protein oxidative modification was assessed according to the level of carbonyl derivatives with 2.4-dinitrophenylhydrasine. The investigation of the content of total lipids and total proteins were carried out using “Bio-Test Total Lipids” and “Total Protein-Vital”. Results. The processes of lipid peroxidation of lens membranes are increasing in animals aged 5—12 months and decreasing in the period of 12—24 months. The level of lipid peroxidation in blood plasma has an expressed tendency for increasing in ageing. Over the years, there is the level decrease of carbonyl derivatives of aminoacids of lens proteins and the tendency for the increase of oxidative modification of proteins in blood plasma.

  9. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    Science.gov (United States)

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  10. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    Science.gov (United States)

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions. PMID:27418438

  11. Osteoprotective effects of Fructus Ligustri Lucidi aqueous extract in aged ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Fung Kwok

    2010-11-01

    Full Text Available Abstract Background Fructus Ligustri Lucidi (FLL is a commonly used herb for treating bone disorders in Chinese medicine. The present study investigates the anti-osteoporotic activity of FLL aqueous extract in the model of postmenopausal bone loss in aged ovariectomized (OVX female rats. Methods After eight weeks of treatment of FLL or water, the lumbar spine was scanned by peripheral quantitative computed tomography (pQCT. Effects of FLL water extract on osteogenic and adipogenic differentiations in rat mesenchymal stem cells (MSCs were assessed by biochemical methods and staining. Results FLL aqueous extract significantly inhibited bone mineral density (BMD loss in total, trabecular and cortical bones without affecting body weight and uterus wet weight. FLL extract significantly promoted osteogenesis and suppressed adipogenesis in MSCs as indicated by the elevated alkaline phosphatase activity, calcium deposition levels and decreased adipocyte number in a dose-dependent manner without cytotoxic effects. Real-time PCR analysis revealed significant increase of osteoprotegerin (OPG-to-receptor activator for nuclear factor-κB ligand (RANKL mRNA, indicating a decrease in osteoclastogenesis. Conclusion The present study demonstrates the osteoprotective effects of FLL aqueous extract on aged OVX rats, stimulation of osteogenesis, inhibition of adipogenesis and osteoclastogenesis in MSCs.

  12. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats.

    Science.gov (United States)

    Ge, Hong-Wei; Hu, Wen-Wen; Ma, Lei-Lei; Kong, Fei-Juan

    2015-11-01

    Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important clinical syndrome. Although it has been documented that volatile anesthetics induce neuronal apoptosis and cognitive deficits in several aged animal models, the underlying mechanisms are not well understood. Endoplasmic reticulum stress (ERS) is considered as an initial or early response of cells under stress and linked to neuronal death in various neurodegenerative diseases. The study was designed to explore the possible role of ERS pathway in isoflurane-induced neuroapoptosis and cognitive impairments. In the present study, twenty-month-old rats were exposed to 1.3% isoflurane for 4h. Two weeks later, the rats were subjected to behavioral study. Protein and mRNA expressions of ERS markers were evaluated. Meanwhile, hippocampal neuronal apoptosis was also detected. We found that isoflurane triggered ERS as evidenced by increased phosphorylation of eukaryotic initiation factor (EIF) 2α, and increased expression of 78-kDa glucose-regulated protein (GRP78), activating transcription factor (ATF) 4 and C/EBP homologous protein (CHOP). Furthermore, the level of apoptosis in the hippocampus was significantly up-regulated after isoflurane exposure, and salubrinal (ERS inhibitor) treatment attenuated the increase. More importantly, cognitive impairments caused by isoflurane were also effectively alleviated by salubrinal pretreatment. These results indicate that ERS-mediated apoptotic pathway is involved in isoflurane neurotoxicity in aged rats. Inhibition of ERS overactivation contributes to the relief of isoflurane-induced neurohistopathologic changes. PMID:26162760

  13. Effects of Chamomilla recutita flavonoids on age-related liver sphingolipid turnover in rats.

    Science.gov (United States)

    Babenko, Nataliya A; Shakhova, Elena G

    2006-01-01

    The increased sphingolipid turnover in the liver is associated with elevation of free radical production and state of chronic inflammation at old age. Plant polyphenols are reported to exhibit antioxidant and anti-inflammatory effects. In the present paper, the lipids contents and ceramide production in the liver and hepatocytes as well as the correction of sphingolipid metabolism at old age using the mixture of Chamomilla recutita flavonoids (chamiloflan) or apigenin-7-glucoside or luteolin-7-glucoside alone have been investigated. To study the sphingolipids turnover, the [14C]serine-pre-labeled hepatocytes and [14C-methyl]- or [14C]palmitate-pre-labeled sphingomyelin (SM) and ceramide were used. The ceramide content was higher in the liver and hepatocytes of 24- and 27-28-month-old animals as compared to adult 3-month-old Wistar rats. An addition of flavonoids to the culture medium did not influence significantly on the lipids contents and metabolism in the isolated hepatocytes. The administration of flavonoids to old rats decreased the elevated neutral and acid SMases activities and ceramide mass and did not affect both the lipid content in the liver of adult animals and ceramide conversion to the sphingosine or SM. These results suggest that the SMases play a key role in the flavonoid-induced decrease of ceramide levels in the liver of old rats. PMID:16183236

  14. Age-related changes in the percentage of oleate in adipose tissue of male and female Fischer rats

    DEFF Research Database (Denmark)

    Thorling, E.B.; Hansen, Harald S.

    1995-01-01

    Fischer 344 rats showed sex difference in the percentage of oleate in lipids of the omental adipose tissue (Thorling, E.B. and Overvad, K. (1994) Nutr. Res. 14, 569-576). The development of this difference was studied with respect to time in rats maintained on laboratory chow, from the age of 3...... in the female than in the male rats, and this difference increased with age. The results of the present study suggest that these changes in percentage of oleate in adipose tissue lipids may partly have been caused by an effect of sex steroids on the delta-9-desaturase....

  15. Aged rat hearts are not more susceptible to ischemia-reperfusion injury in vivo: role of glutathione.

    Science.gov (United States)

    Leichtweis, S; Leeuwenburgh, C; Bejma, J; Ji, L L

    2001-05-15

    The current study tested the hypothesis that ischemia-reperfusion (I-R) can cause more severe myocardial dysfunction and oxidative damage in senescent rats than young adult rats. Male Fischer 344 rats at the age of 6 (adult) and 24 (old) months were subjected to an open-chest heart surgery and randomly assigned to one of the following treatments: ischemia only (I), with the occlusion of the main descending branch of the left coronary artery (LCA) for 30 min; I-R, with the release of LCA occlusion for 20 min; or sham (S) operation. Heart mechanical performance was monitored using a fluid-filled catheter inserted in the right carotid artery and advanced to the left ventricle. Ischemia caused similar reductions of left ventricle systolic pressure (LVSP) and contractility (+/-dP/dt) in adult and aged hearts. After I-R, adult hearts regained 82% (Pischemic LVSP, whereas the aged hearts regained 91% (P>0.05) of LVSP. There was no significant difference in the reduction of +/-dP/dt with I-R between adult and aged hearts. Old rats had lower pre-ischemic heart rate than adult rats, however, I-R caused no reduction of heart rate, and a smaller reduction of pressure-rate double product in the aged rats (10%, P>0.05) than the adult rats (23%, P<0.01). Aged rats demonstrated greater myocardial and plasma glutathione (GSH) concentrations prior to surgery, and maintained higher GSH levels and GSH:glutathione disulfide (GSSG) ratio with I-R. Aged hearts also had higher GSH peroxidase, GSH reductase and GSH sulfur-transferase activities than adult hearts, while I-R induced lipid peroxidation was similar. It is concluded that senescent hearts with intact circulatory and neural inputs are not more susceptible to I-R injury than adult hearts during myocardial I-R, partly because they have a greater GSH antioxidant protection. PMID:11295168

  16. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    Directory of Open Access Journals (Sweden)

    Natalia Andreevna Krivova

    2015-03-01

    Full Text Available The Morris water maze (MWM is a tool for assessment of age-related cognitive deficits. In our work, MWM was used for appraisal of cognitive deficits in 11-month-old rats and investigation of the effect exerted by training in the Morris water maze on the redox mechanisms in rat brain parts. Young adult (3-month-old and aged (11-month-old male rats were trained in the water maze. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method.Cognitive deficits were found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that cognitive deficits in aged rats can be reversed by MWM training. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms responsible for age-related cognitive deficits. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation.

  17. Desensitized morphological and cytokine response after stretch-shortening muscle contractions as a feature of aging in rats.

    Science.gov (United States)

    Rader, Erik P; Layner, Kayla N; Triscuit, Alyssa M; Kashon, Michael L; Gu, Ja K; Ensey, James; Baker, Brent A

    2015-12-01

    Recovery from contraction-induced injury is impaired with aging. At a young age, the secondary response several days following contraction-induced injury consists of edema, inflammatory cell infiltration, and segmental muscle fiber degeneration to aid in the clearance of damaged tissue and repair. This morphological response has not been wholly established at advanced age. Our aim was to characterize muscle fiber morphology 3 and 10 days following stretch-shortening contractions (SSCs) varying in repetition number (i.e. 0, 30, 80, and 150) for young and old rats. For muscles of young rats, muscle fiber degeneration was overt at 3 days exclusively after 80 or 150 SSCs and returned significantly closer to control values by 10 days. For muscles of old rats, no such responses were observed. Transcriptional microarray analysis at 3 days demonstrated that muscles of young rats differentially expressed up to 2144 genes while muscles of old rats differentially expressed 47 genes. Bioinformatic analysis indicated that cellular movement was a major biological process over-represented with genes that were significantly altered by SSCs especially for young rats. Protein levels in muscle for various cytokines and chemokines, key inflammatory factors for cell movement, increased 3- to 50-fold following high-repetition SSCs for young rats with no change for old rats. This age-related differential response was insightful given that for control (i.e. 0 SSCs) conditions, protein levels of circulatory cytokines/chemokines were increased with age. The results demonstrate ongoing systemic low-grade inflammatory signaling and subsequent desensitization of the cytokine/chemokine and morphological response to contraction-induced injury with aging - features which accompany age-related impairment in muscle recovery. PMID:26454037

  18. Age-related changes in metabolism and disposition of salicylic acid (SAL) in male Fischer 344 rats

    International Nuclear Information System (INIS)

    SAL-induced nephrotoxicity has been reported to be greater in older rats. To examine age- and dose-related changes in disposition and metabolism, SAL was administered po at 5, 50 and 500 mg/kg to male Fischer 344 rats aged 3, 12, and 25 mo. At 5 mg 14C-SAL/kg, urinary excretion was complete by 24hr in 3 and 25 mo rats, but not until 48 hours in 12 mo rats. No age-related differences were observed in the percentage of administered 14C-SAL excreted as oxidative metabolites, unmetabolized SAL, or salicyl ester glucuronide. 25 mo rats excreted significantly less of a total dose of 14C-SAL as the ether glucuronide, while a significant age-related increase was noted in the percentage excreted as salicyluric acid (SUA). At 50 mg 14C-SAL/kg, urinary elimination shifted towards zero-order kinetics and excretion was not complete until 48 hr in all age groups. The percentage of an administered dose of 14C-SAL found in urine as oxidative metabolites and SAL ester glucuronide increased significantly in all age groups, while the percentage excreted as SUA decreased. In addition, 12 and 25 month rats excreted a significantly greater percentage of the total dose as 2,3 and 2,5-dihydroxybenzoic acid than 3 mo rats at ≥ 50 mg 14C-SAL/kg. These results indicate that increased production of oxidative metabolites in older rats at higher doses of SAL may be responsible in part for the age-related increase in acute SAL nephrotoxicity

  19. Metabolism and distribution of 14C- and 35S-labeled carbon disulfide in immature rats of different ages

    International Nuclear Information System (INIS)

    The metabolism and distribution of 14C- and 35S-CS2 was examined in 1-, 5-, 10-, 20-, 30-, and 40-day-old rats. During a 3-hr period following an ip dose of 14C-CS2, 58-83% of the dose was expired as CS2 and 4-9% was metabolized to expired CO2 depending on age. Thirty- and forty-day-old rats metabolized significantly more CS2 to CO2 and expired significantly less CS2 than 1- through 20-day-old rats. At the end of the measured expiration period, only biotransformation products of CS2, which were in part covalently bound, remained in tissues from rats of all ages. Tissue levels of 35S-CS2-derived radioactivity exceeded levels of 14C-CS2-derived radioactivity indicating that sulfur metabolites free from the carbon atom of CS2 were formed in rats as young as 1 day of age. The 35S-CS2-derived radioactivity per g of tissue and thus 35S covalently bound to tissue protein was significantly higher in 1- through 20-day-old rats than in 30- and 40-day-old rats. Twenty-four hr after dosing, up to 13 times more 35S-labeled metabolites were covalently bound in organs from 1-day-old rats than in similar organs from 40-day-old rats. The results showed that elimination of the biotransformation products of CS2, in particular the covalently binding sulfur metabolites, was prolonged in newborn rats in comparison to 40-day-old rats

  20. The morphological study of age-dependent effects in rat thyroids after γ-ray irradiation

    International Nuclear Information System (INIS)

    The purpose of this paper is to identify the differences in age-related harmful effects of the thyroid gland to ionizing radiation. The infant (0.5 month) and adult rats (2.5,6 and 15 months, respectively) were exposed to single γ-ray neck irradiation (0 Gy, as control, 0.5 Gy, 2 Gy, 4 Gy, 8 Gy, 16 Gy). The structure of irradiated thyroid gland under light and transmission electron microscope were observed at 6 weeks after partial irradiation. Some morphometric parameters were measured under light microscope. The results showed that the infant rat thyroids changed significantly after 0.5 Gy, but the adult thyroids expressed similar response after more than 2 Gy. Analyses of these data and information on pathology suggested that the infant thyroids were more radiosensitive than the adult ones

  1. Expression of Lymphocyte-derived Growth Hormone (GH) and GH-releasing Hormone Receptors in Aging Rats

    OpenAIRE

    Weigent, Douglas A.

    2013-01-01

    In the present study, we show that higher levels of lymphocyte GH are expressed in spleen cells from aging animals compared to young animals. Further, leukocytes from primary and secondary immune tissues and splenic T and B cells from aging rats all express higher levels of GHRH receptors compared to younger animals. Bone marrow and splenic T cells express the highest levels of GHRH receptor in aging animals. Spleen cells from aging animals showed no significant change in proliferation or GH ...

  2. Effect of high fat diet on metabolic indices, cognition and neuronal physiology in aging F344 rats

    OpenAIRE

    Pancani, Tristano; Anderson, Katie L.; Lawrence D Brewer; Kadish, Inga; DeMoll, Chris; Landfield, Philip W.; Blalock, Eric M.; Porter, Nada M.; Thibault, Olivier

    2013-01-01

    The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether high fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mi...

  3. Age-related changes in rat hippocampal theta rhythms: a difference between type 1 and type 2 theta.

    Science.gov (United States)

    Abe, Y; Toyosawa, K

    1999-05-01

    The age-related changes in two types of theta rhythms recorded from the hippocampus in young (4 months-old), mature (12-13 months-old) and aged (22-25 months-old) rats were investigated. The type 1 theta rhythm was measured from hippocampal EEG recorded from walking rats and the type 2 theta was measured from the EEG induced by reticular pontin oralis nucleus (PON) stimulation in urethane anesthetized rats. The peak frequency and the peak power were detected from power spectra calculated on each theta sample by fast Fourier transformation (FFT). No age-related alteration was observed on the peak frequency of type 1 theta rhythm. However, on type 2 theta rhythm, the peak frequency was decreased in the aged rats compared with the young and the mature rats. The type 2 theta rhythm is cholinergic, and therefore this result suggests that age-related deterioration can be clearly observed in the cholinergic system including the hippocampus in rats.

  4. beta. -adrenergic receptor-mediated hepatic glycogenolysis is increased in aged male rats

    Energy Technology Data Exchange (ETDEWEB)

    Herring, P.A.; Graham, S.M.; Arinze, I.J.

    1986-03-05

    The effect of age on catecholamine-stimulated glycogenolysis was studied in isolated hepatocytes prepared from 3, 12, and 24 month-old rats. Glucose release was stimulated by epinephrine and norepinephrine, this was inhibited by phentolamine and prazosin. Isoproterenol (ISO) stimulated glycogenolysis only in cells from 24 month-old rats, this was blocked by propranolol. In liver plasma membranes, binding of (/sup 3/H)yohimbine (100-130 fmol/mg protein) did not change with age, whereas (/sup 3/H)prazosin binding decreased from 870 fmol/mg at 3 months to 435 fmol/mg at 12 months, but subsequently rose to 656 fmol/mg at 24 months. (/sup 125/I)Cyanopindolol binding increased from 8 fmol/mg at 3 months to 19 fmol/mg at 24 months. The proportion of ..beta..-receptors in the high affinity state increased from 28% at 3 months to 42% at 24 months. ISO stimulated adenylate cyclase at 24 months but not at 3 months. Basal, fluoride-, GTP-, and Gpp(NH)p-stimulated activities were 1.4- to 2.4-fold greater at 24 months than at 3 months. These results suggest an age-related increase in the sensitivity of adenylate cyclase to ..beta..-receptor stimulation.

  5. Effect of Zhuang Jing Decoction on Learning and Memory Ability in Aging Rats.

    Science.gov (United States)

    Cai, Hao-Bin; Wu, Guang-Liang; Huang, Cen-Han; Huang, Zhong-Shi; Chen, Yun-Bo; Wang, Qi

    2016-08-01

    With the average life span of humans on the rise, aging in the world has drawn considerable attentions. The monoamine neurotransmitters and neurotrophic factors in brain areas are involved in learning and memory processes and are an essential part of normal synaptic neurotransmission and plasticity. In the present study, the effect of Zhuang Jing Decoction (ZJD) on the learning and memory ability in aging rats was examined in vivo using Morris water maze. Furthermore, the levels of monoamine neurotransmitters and neurotrophic factors in brain were detected by high-performance liquid chromatography with a fluorescence detector and enzyme-linked immunosorbent assay, respectively. These data showed that oral administration with ZJD at the dose of 30 g·kg(-1) exerted an improved effect on learning and memory ability in aging rats. The results revealed that ZJD could effectively adjust the monoamine neurotransmitters and neurotrophic factors, restore the balance of the level of monoamine neurotransmitters and neurotrophic factors in brain, and finally attenuate the degeneration of learning and memory ability. These findings suggested that ZJD might be a potential agent as cognitive-enhancing drug in improving learning and memory ability. It may exert through regulating the levels of monoamine neurotransmitters and neurotrophic factors in brain, which demonstrated that ZJD had certain antiaging effects. PMID:26649780

  6. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  7. Proteomic identification of age-dependent protein nitration in rat skeletal muscle.

    Science.gov (United States)

    Kanski, Jaroslaw; Alterman, Michail A; Schöneich, Christian

    2003-11-15

    Age-related protein nitration was studied in skeletal muscle of Fisher 344 and Fisher 344/Brown Norway (BN) F1 rats by a proteomic approach. Proteins from young (4 months) and old (24 months) Fisher 344 rats and young (6 months) and old (34 months) Fisher 344/BN F1 animals were separated by 2-D gel electrophoresis. Western blot showed an age-related increase in the nitration of a few specific proteins, which were identified by MALDI-TOF MS and ESI-MS/MS. We identified age-dependent apparent nitration of beta-enolase, alpha-fructose aldolase, and creatine kinase, which perform important functions in muscle energy metabolism, suggesting that the nitration of such key proteins can be, in part, responsible for the decline of muscle motor function of the muscle. Furthermore, we have identified the apparent nitration of succinate dehydrogenase, rab GDP dissociation inhibitor beta (GdI-2), triosephosphate isomerase, troponin I, alpha-crystallin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

  8. Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation.

    Science.gov (United States)

    Matsuu-Matsuyama, Mutsumi; Shichijo, Kazuko; Okaichi, Kumio; Kurashige, Tomomi; Kondo, Hisayoshi; Miura, Shiro; Nakashima, Masahiro

    2015-05-01

    Exposure to ionizing radiation during childhood is a well-known risk factor for thyroid cancer. Our study evaluated the effect of age on the radiosensitivity of rat thyroid glands. Four-week-old (4W), 7 -week-old (7W), and 8-month-old (8M) male Wistar rats were exposed to 8 Gy of whole-body X-ray irradiation. Thyroids were removed 3-72 h after irradiation, and non-irradiated thyroids served as controls. Ki67-positivity and p53 binding protein 1 (53BP1) focus formation (a DNA damage response) were evaluated via immunohistochemistry. Amounts of proteins involved in DNA damage response (p53, p53 phosphorylated at serine 15, p21), apoptosis (cleaved caspase-3), and autophagy (LC3, p62) were determined via western blotting. mRNA levels of 84 key autophagy-related genes were quantified using polymerase chain reaction arrays. Ki67-positive cells in 4W (with high proliferative activity) and 7W thyroids significantly decreased in number post-irradiation. The number of 53BP1 foci and amount of p53 phosphorylated at serine 15 increased 3 h after irradiation, regardless of age. No increase in apoptosis or in the levels of p53, p21 or cleaved caspase-3 was detected for any ages. Levels of LC3-II and p62 increased in irradiated 4W but not 8M thyroids, whereas expression of several autophagy-related genes was higher in 4W than 8M irradiated thyroids. Irradiation increased the expression of genes encoding pro-apoptotic proteins in both 4W and 8M thyroids. In summary, no apoptosis or p53 accumulation was noted, despite the expression of some pro-apoptotic genes in immature and adult thyroids. Irradiation induced autophagy in immature, but not in adult, rat thyroids.

  9. Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation during childhood is a well-known risk factor for thyroid cancer. Our study evaluated the effect of age on the radiosensitivity of rat thyroid glands. Four-week-old (4W), 7-week-old (7W), and 8-month-old (8M) male Wistar rats were exposed to 8 Gy of whole-body X-ray irradiation. Thyroids were removed 3–72 h after irradiation, and non-irradiated thyroids served as controls. Ki67-positivity and p53 binding protein 1 (53BP1) focus formation (a DNA damage response) were evaluated via immunohistochemistry. Amounts of proteins involved in DNA damage response (p53, p53 phosphorylated at serine 15, p21), apoptosis (cleaved caspase-3), and autophagy (LC3, p62) were determined via western blotting. mRNA levels of 84 key autophagy-related genes were quantified using polymerase chain reaction arrays. Ki67-positive cells in 4W (with high proliferative activity) and 7W thyroids significantly decreased in number post-irradiation. The number of 53BP1 foci and amount of p53 phosphorylated at serine 15 increased 3 h after irradiation, regardless of age. No increase in apoptosis or in the levels of p53, p21 or cleaved caspase-3 was detected for any ages. Levels of LC3-II and p62 increased in irradiated 4W but not 8M thyroids, whereas expression of several autophagy-related genes was higher in 4W than 8M irradiated thyroids. Irradiation increased the expression of genes encoding pro-apoptotic proteins in both 4W and 8M thyroids. In summary, no apoptosis or p53 accumulation was noted, despite the expression of some pro-apoptotic genes in immature and adult thyroids. Irradiation induced autophagy in immature, but not in adult, rat thyroids. (author)

  10. Inflammation and Oxidative Stress in Young and Aged Rats after Acute Homocysteine Administration

    Directory of Open Access Journals (Sweden)

    Cristina-Sorina CĂTANĂ

    2011-06-01

    Full Text Available Introduction: Hyperhomocysteinemia plays an etiologic role in homocystinuria, neurodegenerative and cardiovascular diseases. Potential mechanisms involved in the degenerative diseases of aging include: oxidative stress, endothelial dysfunction and inflammation. Aim: In the present study we evaluated the effect of acute administration of homocysteine (Hcy, at a level similar to that found in homocystinuria, on biochemical markers of inflammation (such as IL-6 and of oxidative stress (such as gluthathione peroxidase - GPx. Material and Method: The study was performed on 40 young and older Wistar rats. IL-6 serum level was quantified by a high-sensitivity enzyme-linked immunoabsorbent assay (ELISA method and the activity of whole blood GPx was measured using a commercially available Randox kit. Results: Our results showed that Hcy administration increased the pro-inflammatory cytokine IL-6 in young rats (p<0.3 and decreased IL-6 level in older rats (p<0.008, when compared to the control group. GPx activity was found to increase with age (587.07 U/gHb versus 847.5 U/gHb, p<0.001. Two hours after Hcy administration, GPx activity was found to decrease, but not in a statistically significant manner. The difference between GPx activities in Hcy treated groups remains statistically significant (p<0.01 in the younger group, compared to older group (556.62 U/gHb versus 748.38 U/gHb. Conclusion: Our results indicate the existence of a correlation between hyperhomocysteinemia, proinflammatory state and oxidative stress, illustrated by the direct dependence of whole blood GPx activities on the increasing age.

  11. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Martin

    Full Text Available Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N₂, 5 min on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence. We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.

  12. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  13. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    Science.gov (United States)

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  14. Morphological and functional features of the thymus of rats of different age periods in health and at experimental immunostimulation

    Directory of Open Access Journals (Sweden)

    Bobrysheva I.V.

    2013-12-01

    Full Text Available Background. Data on the structure of the thymus of white rats with experimental immunostimulation in age aspect presented only in a few publications. Objective. Morphofunctional features of the thymus of white male rats of three age periods: pubertal, reproductive and of expressed age-related changes, administered immunomodulator imunofan were studied. Methods. Features of the histological structure of the thymus were studied using an image analyzer based on microscope Olympus CX-41. Areas of subcapsular zone, the cortex and medulla, the total number of cells, lymphocytes and epitelioreticular cells conditional on a standard area (104 μm2 were determined; limphoepitelial index was calculated. Results. The thymus has specific morphological features of the structure in each age group of animals. The thymus of rats of pubertal period has the highest morphometric parameters which somewhat decreased in animals of reproductive period. Animals with expressed age-related changes have signs of age involution of the thymus (replacing of parenchyme of the organ by adipose and connective tissue, a sharp decline in morphometric parameters of morphofunctional zones. Conclusion. Application of imunofan causes unidirectional positive changes of morphometric parameters of the thymus in the rats of all age periods on 7-60 day of observation. In animals of the reproductive period and the period of expressed age-related changes injections of immunomodulator cause a decrease in the intensity of the involutive processes in the thymus.

  15. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats

    Science.gov (United States)

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Ilyukha, Viktor A.; Khizhkin, Evgeniy A.; Lotosh, Tatiana A.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2010-01-01

    We evaluated the effect of exposure to constant light started at the age of 1 month and at the age of 14 months on the survival, life span, tumorigenesis and age-related dynamics of antioxidant enzymes activity in various organs in comparison to the rats maintained at the standard (12:12 light/dark) light/dark regimen. We found that exposure to constant light started at the age of 1 month accelerated spontaneous tumorigenesis and shortened life span both in male and female rats as compared to the standard regimen. At the same time, the exposure to constant light started at the age of 14 months failed to influence survival of male and female rats. While delaying tumors in males, constant light accelerated tumors in females. We conclude that circadian disruption induced by light-at-night started at the age of 1 month accelerates aging and promotes tumorigenesis in rats, however failed affect survival when started at the age of 14 months. PMID:20354269

  16. Stroke-prone renovascular hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    曾进胜; 贷如训; 苏镇培

    2000-01-01

    Purpose To summarized the methods for establishment, characteristics of vascular lesions in brain and heart and thc application of stroke-pronc renovascular hypertensive rats (RHRSP). Background Spontaneously hypcrtensivc rats (STR) and subtypes of SH R, especially stroke-prone spontaneously hypertensive rats (SHRSP) are considered as most important animal models at present for the studies of hypertension and its complications in heart and brain, evcn SHRSP arc considered as thc unique animal model in which prcvention of stroke can be studied cxperimentally Howcver, the applications of SHR and SHRSP are limited because of the effects of genetic deficits and thc difficulties with breeding Theretore, most of the researches on experimental stroke have been performed on the animal models with normotcnsion and normal structure of cerebral vessels. In fact, there are great differences in structure of cerebrovesscls, autoregulation of cerebral blood flow and extent of lesions in brain tissue, even the reaction to the medication after ischemia between the animals with extcnsive arteriosclerosis and with normal cerebral blood vessels. Obviously, thc relevancc of experimental stroke on normal animals to the stroke on cerebral arteriosclerotic patients clinically remains dubious. Data sources and methods Most published original articles about RHRSP in our laboratory were reviewed Results After the renal arteries were constricted bilaterally with ring-shape silver clips, the stroke-prone rcnovascular hypertensive rats were established. Hypertension was produced in all RHRSP(100%).The peak of blood pressure in RHRSP reached 29.1 ±3.0kPa. The lesions of cerebral arteries and arterioles and the damage of cerebral capillary structure by hypertension were observed in the RHRSP. The incidence of spontaneous stroke was 56.4% with in 40 weeks after the renal artery constriction. Left ventricular hypertrophy and small coronary arterial lesions in myocardium were discovered in all

  17. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats

    Science.gov (United States)

    Bachstetter, Adam D.; Morganti, Josh M.; Jernberg, Jennifer; Schlunk, Andrea; Mitchell, Staten H.; Brewster, Kaelin W.; Hudson, Charles E.; Cole, Michael J; Harrison, Jeffrey K.; Bickford, Paula C.; Gemma, Carmelina

    2010-01-01

    Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX3CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/ CX3CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX3CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/ CX3CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/ CX3CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration. PMID:20018408

  18. Effects of Caloric Restriction and Exercise Training on Skeletal Muscle Histochemistry in Aging Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    David T. Lowenthal

    2006-01-01

    Full Text Available The purpose of this study was to determine the effects of calorie restriction and exercise on hindlimb histochemistry and fiber type in Fischer 344 rats as they advanced from adulthood through senescence. At 10 months of age, animals were divided into sedentary fed ad libitum, exercise (18 m/min, 8% grade, 20 min/day, 5 days/week fed ad libitum, and calorie restricted by alternate days of feeding. Succinic dehydrogenase, myosin adenosine triphosphatase (mATPase at pH 9.4, nicotine adenonine dinucleotide reductase, and Periodic Acid Shiff histochemical stains were performed on plantaris and soleus muscles. The results indicated that aging resulted in a progressive decline in plantaris Type I muscle fiber in sedentary animals, while exercise resulted in maintenance of these fibers. The percent of plantaris Type II fibers increased between 10 and 24 months of age. Exercise also resulted in a small, but significant, increase in the percentage of plantaris Type IIa fibers at 24 months of age. The soleus fiber distribution for Type I fibers was unaffected by increasing age in all groups of animals. The implications of these results suggest the implementation of exercise as a lifestyle modification as early as possible.

  19. Angiotensin II and 1-7 during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors in abdominal white adipose tissue.

    Science.gov (United States)

    Rubio-Ruíz, M E; Del Valle-Mondragón, L; Castrejón-Tellez, V; Carreón-Torres, E; Díaz-Díaz, E; Guarner-Lans, V

    2014-07-01

    Renin-Angiotensin System (RAS) plays an important role in the development of Metabolic Syndrome (MS) and in aging. Angiotensin 1-7 (Ang 1-7) has opposite effects to Ang II. All of the components of RAS are expressed locally in adipose tissue and there is over-activation of adipose RAS in obesity and hypertension. We determined serum and abdominal adipose tissue Ang II and Ang 1-7 in control and MS rats during aging and the expression of AT1, AT2 and Mas in white adipose tissue. MS was induced by sucrose ingestion during 6, 12 and 18 months. During aging, an increase in body weight, abdominal fat and dyslipidemia were found but increases in aging MS rats were higher. Control and MS concentrations of serum Ang II from 6-month old rats were similar. Aging did not modify Ang II seric concentration in control rats but decreased it in MS rats. Ang II levels increased in WAT from both groups of rats. Serum and adipose tissue Ang 1-7 increased during aging in MS rats. Western blot analysis revealed that AT1 expression increased in the control group during aging while AT2 and Mas remained unchanged. In MS rats, AT1 and AT2 expression decreased significantly in aged rats. The high concentration of Ang 1-7 and adiponectin in old MS rats might be associated to an increased expression of PPAR-γ. PPAR-γ was increased in adipose tissue from MS rats. It decreased with aging in control rats and showed no changes during aging in MS rats. Ang 1-7/Mas axis was the predominant pathway in WAT from old MS animals and could represent a potential target for therapeutical strategies in the treatment of MS during aging.

  20. Transplanted bone marrow stromal cells improve cognitive dysfunction due to aging hypoperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YIN Shao-jun; CHEN Yu-juan; BIAN Wei-hong; YU Jing; ZHAO Yu-wu; LIU Xue-yuan

    2010-01-01

    Background Aging is an important risk factor for vascular dementia, and D-galactose (D-gal) injection can simulate the pathology of aging. Two-vessel occlusion of common carotid arteries (2VO) is the most popular model for vascular dementia. This study was aimed to investigate the possibility of D-gal injection plus 2VO simulating cognitive impairment of aging vascular dementia; and whether transplanted bone marrow stromal cells (BMSCs) can improve the cognitive function induced by D-gal injection plus 2VO.Methods Totally 30 male Sprague-Dawley rats were divided into 5 groups equivalently: control group, D-gal group,D-gal+2VO group, D-gal+2VO+saline water group, and D-gal+2VO+BMSCs group. Aging hypoperfusion rats were created by subcutaneous injection of D-gal and occlusion of two common carotid arteries. BMSCs or saline water was stereotactically transplanted into the subventricular zone as treatment vehicles at 24 hours post operation. Two-way repeat analysis of variance (ANOVA) was used for significance analysis of 5 groups at 6 weeks post transplantation;moreover, Tamhane's test (equal variance not assumed) and least significant difference (LSD) test (equal variance assumed) were used for pairwise comparison in Morris water maze (MWM).Results Transplanted BMSCs distributed around the lateral ventricles and acquired the phenotypes of neurons and astrocytes. In terms of swimming path distance and escape latency in MWM, D-gal+2VO+BMSC group showed significant improvement than the D-gal+2VO group but was still obviously worse than the control group (both P <0.05).There was no significant difference in swimming speed for all 5 groups.Conclusions D-gal plus 2VO induces cognitive dysfunction. The engrafted BMSCs exhibit the beneficial effect on cognitive function via promotion interactively with host brain.

  1. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Science.gov (United States)

    Miyazaki, Mitsunori; Schroder, Elizabeth; Edelmann, Stephanie E; Hughes, Michael E; Kornacker, Karl; Balke, C William; Esser, Karyn A

    2011-01-01

    It is well known that spontaneously hypertensive rats (SHR) develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007) linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure) compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive) and adult age (22 weeks; hypertensive) to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  2. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  3. Enriched environment induces higher CNPase positive cells in aged rat hippocampus.

    Science.gov (United States)

    Zhao, Yuan-Yu; Shi, Xiao-Yan; Zhang, Lei; Wu, Hong; Chao, Feng-Lei; Huang, Chun-Xia; Gao, Yuan; Qiu, Xuan; Chen, Lin; Lu, Wei; Tang, Yong

    2013-10-25

    It had been reported that enriched environment was beneficial for the brain cognition and for the neurons and synapses in hippocampus. Previous study reported that the oligodendrocyte density in hippocampus was increased when the rats were reared in the enriched environment from weaning to adulthood. However, biological conclusions based on density were difficult to interpret because the changes in density could be due to an alteration of total quantity and/or an alteration in the reference volume. In the present study, we used unbiased stereological methods to investigate the effect of enriched environment on the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) positive cells in CA1 and dentate gyrus (DG) of the hippocampus in aged rats. Our results indicated that there was significant difference in the total numbers of CNPase positive cells in both CA1 and DG between enriched environment group and standard environment group. The present study provided the first evidence for the protective effects of enriched environment on the CNPase positive cells in aged hippocampus.

  4. Systemic Inflammatory Responses and Lung Injury following Hip Fracture Surgery Increases Susceptibility to Infection in Aged Rats

    OpenAIRE

    Hao Zhang; Tiansheng Sun; Zhi Liu; Jianzheng Zhang; Xiaowei Wang; Jia Liu

    2013-01-01

    Pulmonary infections frequently occur following hip fracture surgery in aged patients. However, the underlying reasons are not fully understood. The present study investigates the systemic inflammatory response and pulmonary conditions following hip fracture surgery as a means of identifying risk factors for lung infections using an aged rodent model. Aged, male Sprague-Dawley rats (8 animals per group) underwent a sham procedure or hip fracture plus femoral intramedullary pinning. Animals we...

  5. Effects of fresh, aged and cooked garlic extracts on short- and long-term memory in diabetic rats

    OpenAIRE

    Alireza Sarkaki; Saeed Valipour Chehardacheric; Yaghoub Farbood; Seyed Mohammad Taghi Mansouri; Bahareh Naghizadeh; Effat Basirian

    2013-01-01

    Objective: The present study was hypothesized to investigate the beneficial effects of fresh, aged, and cooked garlic extracts on blood glucose and memory of diabetic rats induced by streptozocine (STZ). Material and Methods: Diabetes was induced by an intraperitoneal injection of STZ (60 mg/kg body weight). An oral dose of 1000 mg/kg of each garlic extract was given daily for 4 weeks after diabetes induction. Five days after STZ injection, five groups were formed: Control (intact) rats (Cont...

  6. THE ROLE OF OXIDATIVE STRESS AND MITOCHONDRIA IN PARTICULATE MATTER (PM)-INDUCED CARDIOPULMONARY INJURY IN STROKE PRONE SPONTANEOUSLY HYPERTENSIVE (SHRSP) AND WISTAR KYOTO (WKY) RATS

    Science.gov (United States)

    Epidemiological studies have associated PM exposure with cardiovascular mortality and morbidity, and this effect seems to be enhanced in populations with pre-existing cardiovascular disease. One hypothesis for this exacerbation is that the higher underlying level of oxidative st...

  7. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats.

    Science.gov (United States)

    Wang, Wen-Juan; Cai, Guang-Yan; Ning, Yi-Chun; Cui, Jing; Hong, Quan; Bai, Xue-Yuan; Xu, Xiao-Meng; Bu, Ru; Sun, Xue-Feng; Chen, Xiang-Mei

    2016-01-01

    Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn't. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term. PMID:27456368

  8. Comparison of cardioprotective effects of mibefradil and ramipril in stroke-prone spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Qin-gui XIA; Thomas UNGER; Alexander REINECKE; Marc DORENKAMP; Christain STORZ; Havvo BITTERLING; Susanne PENZ; Jack CLEUTJENS; Mat JAP DAEMEN; Reichiger SIMON

    2004-01-01

    AIM: To elucidate the cardioprotective effects of T-type calcium channel blocker mibefradil and compare with that of the angiotensin-converting enzyme inhibitor ramipril in a stroke-prone spontaneously hypertensive rats (SHRSP) model of congestive heart failure (CHF) after myocardial infarction (MI). METHODS: SHR-SP rats were subjected to permanent ligation of the left anterior decending coronary artery. Treatment with mibefradil (10after induction of MI. Sham-operated rats served as controls. RESULTS: In placebo-treated MI rats, six weeks after MI, left ventricular circumference, inner diameter, and left ventricular end-diastolic pressure (LVEDP) were increased, whereas mean arterial blood pressure (MAP) and maximum rate of rise of left ventricular pressure (dp/dtmax) were decreased compared with sham-operated controls (P<0.01). In ramipril-treated MI rats, heart weight,heart weight to body weight ratio and interstitial collagen content were reduced (P<0.05, P<0.01), LVEDP was slightly decreased (P>0.05), and dp/dtmax was improved (P<0.01) compared with placebo-treated MI rats. In contrast, in mibefradil-treated MI rats, heart weight, heart weight to body weight ratio were slightly but not significantly reduced, LVEDP was slightly elevated compared with placebo-treated MI rats, and was elevated (P<0.05)compared with ramipril-treated MI rats, although interstitial collagen content were reduced (P<0.01) compared with placebo-treated MI rats. CONCLUSION: Chronic treatment with ramipril diminishes cardiac remodeling of heart failure after MI to a greater extent than mibefradil. Moreover, 6 weeks after MI, mibefradil treatment results in a slight rise in LVEDP compared with placebo-treated rats. Therefore, treatment with mibefradil might be deleterious rather than beneficial compared with ramipril or even placebo treatment in experimental MI.

  9. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    Science.gov (United States)

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  10. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    Science.gov (United States)

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease.

  11. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    Science.gov (United States)

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease. PMID:27343935

  12. Estradiol Modulates Membrane-Linked ATPases, Antioxidant Enzymes, Membrane Fluidity, Lipid Peroxidation, and Lipofuscin in Aged Rat Liver

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2011-01-01

    Full Text Available Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase, antioxidant enzymes (superoxide dismutase, glutathione-S-transferase, lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2. The aged rats (12 and 24 months were given subcutaneous injection of E2 (0.1 μg/g body weight daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses.

  13. Effects of Aging and Anti-Aging Hormones on The Kidney, The Thyroid Functions and The Histology of The Testis of Male Albino Rats

    Directory of Open Access Journals (Sweden)

    Shadia Ali Radwan; Samia Mohamed Sakr; Mohamed Salah Al-Shinnawy and Enas Saleh Abdel-Bakey

    2011-10-01

    Full Text Available The present study was carried out to evaluate the effect of aging and anti-aging hormones on the kidney, the thyroid and the testis of aged male albino rats from the physiological and histological points of view. Material & Methods Thirty five male rats were used in the present study. They were allocated into five groups. The first group (5months old served as control group and the other remaining groups are (18 months old. The second group 1 ml/kg b.w. corn oil intramuscular injection through a period of two weeks .The third group received 2mg/kg b.w. of melatonin hormone orally daily for two weeks. The fourth group received 0.57 mg/kg b.w. of testosterone hormone via intramuscular injection through two weeks. The fifth group received the same dose of both hormones (Melatonin & Testosterone for two weeks. Some biochemical parameters of the kidney, the thyroid and histological structure of the testis were examined. Results The untreated aged group showed insignificant change in urea level with highly significant decrease in creatinine, T3 and T4 hormones levels. The melatonin treated group showed significant decrease in urea level with highly significant decrease in creatinine, T3 and T4 hormones. The testosterone treated group showed highly significant increase in urea, T3 and T4 hormones and highly significant decrease in creatinine level. Whereas, fifth group showed significant decrease in urea accompanied with a highly significant decrease in creatinine and highly significant increase in T3 with a significant increase in T4. The histological changes induced by aging and anti-aging hormones included intertubular haemorrhage, odematous areas present between the seminiferous tubules. The interstitial tissue was degenerated. The degenerated seminiferous tubules revealed maturation arrest in late-stage spermatides. Conclusion In conclusion, aging and anti-aging hormones administration into adult male rats exerts a clear effect on the kidney and

  14. Role of acid sphingomyelinase in the age-dependent dysregulation of sphingolipids turnover in the tissues of rats.

    Science.gov (United States)

    Babenko, Nataliya A; Garkavenko, Vladimir V; Storozhenko, Galina V; Timofiychuk, Olga A

    2016-04-01

    Old age-associated pathologies usually coincide with altered sphingolipid metabolism. In the present article, the role of acid sphingomyelinase (ASMase) in the age-dependent changes of sphingomyelin (SM) and ceramide contents in the tissues has been investigated by means of ASMase inhibitors, imipramine and zoledronic acid. It has been determined that ceramide content and ceramide/SM ratio increased, while SM level decreased in the heart, liver, blood serum and skeletal muscles of 24-month old rats in contrast to 3-month old animals. Injections of imipramine or zoledronic acid to 24-month old rats resulted in significant downregulation of ASMase in the liver and skeletal and heart muscles. The both inhibitors decreased the ceramide content and ceramide/SM ratio and increased the SM content in all tissues studied, except the heart, of old rats to the levels close to those observed in the young animals. Long-term treatment of rats by inhibitors, which have different mechanisms of action on ASMase, exerts the similar, but not equal effects on enzyme activity and SM turnover. In summary, the data above strongly suggest that the age-dependent up-regulation of ASMase plays an important role in the modulation of ceramide and SM contents in rat tissues and that imipramine and zoledronic acid are useful tools for SM turnover manipulation at old age. PMID:26830134

  15. Peripheral Levels of AGEs and Astrocyte Alterations in the Hippocampus of STZ-Diabetic Rats.

    Science.gov (United States)

    Nardin, Patrícia; Zanotto, Caroline; Hansen, Fernanda; Batassini, Cristiane; Gasparin, Manuela Sangalli; Sesterheim, Patrícia; Gonçalves, Carlos-Alberto

    2016-08-01

    Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models. PMID:27084774

  16. Maitake Mushroom Extracts Ameliorate Progressive Hypertension and Other Chronic Metabolic Perturbations in Aging Female Rats

    Directory of Open Access Journals (Sweden)

    Harry G. Preuss, Bobby Echard, Debasis Bagchi, Nicholas V. Perricone

    2010-01-01

    Full Text Available Objective: We assessed the ability of two commercially-available fractions labeled SX and D derived from the edible maitake mushroom to overcome many age-associated metabolic perturbations such as progressive, age-related elevation of blood pressure, over activity of the renin-angiotensin system (RAS, decreased insulin sensitivity, and inflammation in an in vivo laboratory model. Design and Method: We divided forty mature, female Sprague-Dawley rats (SD into five groups of eight. SD ingested regular rat chow containing added sucrose (20% w/w. The groups received baseline diet alone (control or baseline diet containing captopril, niacin-bound chromium, maitake fraction SX, or maitake fraction D. In addition to blood pressure readings, the following procedures were implemented: losartan and insulin challenges, evaluation of serum ACE activity, glucose tolerance testing, blood chemistries, LNAME challenge, and measurement of various circulating cytokines. Results: We found that implementation of all test conditions stopped the gradual elevation of systolic blood pressure (SBP in the SD over the four months of study, even reversing some of the previous elevation that occurred over time. In general, the treatment groups showed decreased activity of the RAS estimated by less lowering of SBP after losartan challenge and decreased serum ACE activity and were more sensitive to exogenous insulin challenge. TNFa levels decreased in all four test groups suggesting a lessening of the inflammatory state. Conclusions: We believe our data suggest that maitake mushroom fractions lessen age-related hypertension, at least in part, via effects on the RAS; enhance insulin sensitivity; and reduce some aspects of inflammation -- actions that should lead to a longer, healthier life span.

  17. Age-related changes in renal AQP3 and AQP4 expression in Sprague Dawley rats.

    Science.gov (United States)

    Jing, X H; Liu, J; Hou, W Y; Gao, Y

    2016-01-01

    Aquaporin (AQP) 3 and AQP4 are important in urine concentrating mechanisms and in other physiological functions such as brain water balance, cell migration, cell proliferation, fat metabolism, and epidermal hydration. The results of studies investigating AQP3 and AQP4 expression in the kidneys are inconsistent, and systematic research is rare. This study aimed to obtain a better understanding of the changes in renal AQP3 and AQP4 mRNA expression that take place with age. The expression of AQP3 and AQP4 mRNA, during prenatal and postnatal development, and during aging, was investigated in kidneys from Sprague-Dawley rats. The pattern of AQP3 expression was similar to that of AQP4 expression during development, and both were detected at gestational day 19 in the rat kidney where they maintained a stable level to postnatal day 14. Subsequently, a significant increase in expression was observed from day 21 to day 35, with peak expression occurring at day 35. No significant change in AQP3 or AQP4 mRNA expression was observed after day 35, apart from AQP4, which increased at day 540. Moreover, the expression of both AQP3 and AQP4 on day 850 was higher than on day -2, and lower than on days 28 and 35. The expression of AQP3 and AQP4 was similar on days 1, 7, 14, and 21. These findings indicate that mRNA expression of AQP3 and AQP4 varies with age, which should be considered when treating kidney disease in pediatric and elderly patients. PMID:27525904

  18. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats.

    Science.gov (United States)

    Alonso, Ana; González-Pardo, Héctor; Garrido, Pablo; Conejo, Nélida M; Llaneza, Plácido; Díaz, Fernando; Del Rey, Carmen González; González, Celestino

    2010-12-01

    Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition. PMID:20467821

  19. Age at developmental cortical injury differentially Alters corpus callosum volume in the rat

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2007-11-01

    Full Text Available Abstract Background Freezing lesions to developing rat cortex induced between postnatal day (P one and three (P1 – 3 lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case 1. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity 1234, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments 567. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90, were further analyzed for changes in corpus callosum volume. Results Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57 = 10.2, P Conclusion Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats 18. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments 1, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased

  20. Aging: ouabain-sensitive /sup 86/Rb+ uptake rate and responsiveness to digoxin in rat left atrial muscle

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.H.; Seifen, E.

    1989-01-01

    Previous work in anesthetized rats has demonstrated that the sensitivity to cardiotoxic actions of cardiotonic steroids is increased in senescence, and studies in crude homogenates and partially purified membrane preparations have suggested that this altered responsiveness is related to an aging-associated reduction in the sarcolemmal content of Na,K-adenosine triphosphatase. This decrease in Na,K-adenosine triphosphatase could enhance the sensitivity to digitalis-like compounds by reducing the reserve capacity of the Na+-pump and thus the extent of digitalis-induced pump inhibition required before the onset of toxicity. Current experiments examined dose-dependent actions of digoxin in atrial muscle isolated from 3-, 12- and 24- to 25-month-old rats and determined if alterations in responsiveness correlated with changes in ouabain-sensitive 86Rb+ uptake rate, an estimate of Na+-pump activity. Atrial preparations from aged rats were more sensitive to the cardiotoxic actions of digoxin; however, the inotropic efficacy before the onset of toxicity was not affected by age. Both 1) the maximum attainable ouabain-sensitive 86Rb+ uptake rate and 2) the difference between maximum uptake rate and that monitored in preparations stimulated at 4.0 Hz decreased progressively with age. These results indicate that atrial muscle from aged rats is more sensitive to direct toxic effects of digoxin and suggest that this lower tolerance is mediated, at least in part, by a reduction in Na+-pump reserve capacity.

  1. Heshouwu decoction, a Chinese herb for tonifying kidney, ameliorates hypothalamic-pituitary- testicular axis secretion in aging rats

    Institute of Scientific and Technical Information of China (English)

    Siyun Niu; Suru Kou; Xiaochun Zhou; Liang Ding

    2012-01-01

    An increasing amount of evidence demonstrates the anti-aging effect of Heshouwu in pill form. In this study, a subacute aging rat model was established by continuous intraperitoneal injection of D-galactose and treated with Heshouwu decoction (a Chinese herb for tonifying the kidney, com-prising Heshouwu pill, Herba Epimedii, Radix Salviae Miltiorrhiae, and Poria). Heshouwu pill treated rats were the positive control group. Radioimmunoassay, immunohistochemical staining, and western blot assay showed hypothalamic gonadotropin-releasing hormone, hypothalamic substance P, and serum gonadotropin levels to be significantly increased in the model rats; the concentrations of hypothalamic β-endorphin, and serum levels of insulin-like growth factor 1 and testosterone were significantly decreased. 17β- and 3β-hydroxysteroid dehydrogenase expression in testicular tissue was also decreased. Intragastric administration of Heshouwu decoction at high (9.6 g/mL/100 g), medium (4.8 g/mL/100 g), and low (2.4 g/mL/100 g) doses, Heshouwu decoction pretreatment at a medium dose (4.8 g/mL/100 g), and Heshouwu pill (2.06 g/mL/100 g) significantly reversed these changes. Heshouwu decoction pretreatment and high-dose Heshouwu decoction had the greatest anti-aging effects. These experimental findings indicate that Heshouwu decoction can improve hypothalamic-pituitary-testicular axis secretion in a subacute aging rat model, and prevent and delay gonadal axis aging, with an effect superior to that of Heshouwu pill.

  2. Age and heat exposure-dependent changes in antioxidant enzymes activities in rat's liver and brain mitochondria: role of alpha-tocopherol.

    Science.gov (United States)

    Stojkovski, V; Hadzi-Petrushev, N; Ilieski, V; Sopi, R; Gjorgoski, I; Mitrov, D; Jankulovski, N; Mladenov, M

    2013-01-01

    To investigate the role of mitochondrial antioxidant capacity during increased susceptibility to heat accompanied by the aging, young and aged Wistar rats were exposed on heat for 60 min. After heat exposure, hepatic and brain mitochondria were isolated. Our results revealed changes in antioxidant enzyme activities in liver and brain mitochondria from young and to a greater extent in aged rats. Our measurements of MnSOD, GPx and GR activity indicate greater reactive oxygen species production from the mitochondria of aged heat exposed in comparison to young heat exposed rats. Also in the aged rats, the effect of alpha-tocopherol treatment in the prevention of oxidative stress occurred as a result of heat exposure, is less pronounced. Taken together, our data suggest that mitochondria in aged rats are more vulnerable and less able to prevent oxidative changes that occur in response to acute heat exposure.

  3. Effect of 2-Selenium Bridged β-Cyclodextrin, Glutathione Peroxidase Mimic on Stroke of Stroke-prone Spontaneously Hypertensive Rats

    Institute of Scientific and Technical Information of China (English)

    JIA Zhi-dan; SUN Ye; MU Ying; MA Ji-sheng; YAN Gang-lin; LUO Gui-min

    2004-01-01

    To investigate the treatment effect of 2-selenium bridged β-cyclodextrin(2-SeCD), a GPX mimic, on the stroke of stroke-prone spontaneously hypertensive rats(SHRSP), fifty-two SHRSP of 8-week old were randomly divided into four groups A, B, C and control group D. The rats of groups A, B, C and D were given 1.0%-1.5% NaCl mass fraction as drinking fluid. After onset of stroke, groups A, B and C were given orally 16.05, 160.5 and 1605 mg*kg-1*day-1 of 2-SeCD, respectively, and group D was given water for 2 weeks. The clinical score of stroke, systolic blood pressure(SBP), survival time of rats were recorded and the histopathologic examinations of their brain and carotid artery were made after decapitation. The clinical scores of stroke after treatment with 160.5 mg*kg-1*day-1(Group B) and 1605 mg*kg-1*day-1(Group C) of 2-SeCD are 2.55±0.98 and 1.98±0.79, respectively, those are obviously lower than that of group D(3.41±0.83, p<0.01). The survival days in group B(10.0±8.6) and group C(14.4±7.9) are longer than that for group D(4.7±2.9, p<0.01). The electron microscope study showed that the endothelium of carotid artery was near to normal in group B and group C, while it was seriously injured in control group D and mildly injured in group A. 2-SeCD may effectively be used to treat the stroke for SHRSP.

  4. Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing.

    Science.gov (United States)

    Yin, Lanxuan; Sun, Yubai; Wu, Jinfeng; Yan, Siyu; Deng, Zhenglu; Wang, Jun; Liao, Shenke; Yin, Dazhong; Li, Guolin

    2015-02-01

    Elucidating the molecular mechanisms of brain aging remains a significant challenge for biogerontologists. The discovery of gene regulation by microRNAs (miRNAs) has added a new dimension for examining this process; however, the full complement of miRNAs involved in brain aging is still not known. In this study, miRNA profiles of young, adult, and old rats were obtained to evaluate molecular changes during aging. High-throughput deep sequencing revealed 547 known and 171 candidate novel miRNAs that were differentially expressed among groups. Unexpectedly, miRNA expression did not decline progressively with advancing age; moreover, genes targeted by age-associated miRNAs were predicted to be involved in biological processes linked to aging and neurodegenerative diseases. These findings provide novel insight into the molecular mechanisms underlying brain aging and a resource for future studies on age-related brain disorders.

  5. Improving effect of chronic resveratrol treatment on central monoamine synthesis and cognition in aged rats.

    Science.gov (United States)

    Sarubbo, F; Ramis, M R; Aparicio, S; Ruiz, L; Esteban, S; Miralles, A; Moranta, D

    2015-06-01

    Resveratrol is a polyphenol exhibiting antioxidant and neuroprotective effects in neurodegenerative diseases. However, neuroprotective properties during normal aging have not been clearly demonstrated. We analyzed the in vivo effects of chronic administration of resveratrol (20 mg/kg/day for 4 weeks) in old male rats (Wistar, 20 months), on tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities which mediate central monoaminergic neurotransmitters synthesis, and besides, on hippocampal-dependent working memory test (radial maze). Our results show an age-related decline in neurochemical parameters that were reversed by resveratrol administration. The resveratrol treatment enhances serotonin (5-HT) levels in pineal gland, in hippocampus, and in striatum, and those of noradrenaline (NA) in hippocampus and also dopamine (DA) in striatum. These changes were largely due to an increased activity of TPH-1 (463 % in pineal gland), TPH-2 (70-51 % in hippocampus and striatum), and TH (150-36 % in hippocampus and striatum). Additionally, the observed hippocampal effects correlate with a resveratrol-induced restorative effect on working memory (radial maze). In conclusion, this study suggests resveratrol treatment as a restoring therapy for the impaired cognitive functions occurring along normal aging process, by preventing 5-HT, DA, and NA neurotransmission decline.

  6. Degenerative and age-related changes in the x-irradiated kidney of the rat

    International Nuclear Information System (INIS)

    Exposure of rat kidney to a single dose of radiation (4000 rad) produced degenerative changes and accumulation of fluorescent granules after a latent period of approximately 8 weeks. The appearance of these fluorescent granules corresponded to the development of structural damage to the kidney. Radiation produced relatively minor changes in the lipid content of the kidney. The level of cholesteryl esters was increased, arachidonic acid content was decreased, and there was a progressive increase in fluorescent substances related to aging, as detected by thin layer chromatography, in chloroform-methanol extracts of the irradiated kidney. However, there was no apparent loss of vitamin E or ubiquinone and no increase in TBA values or diene conjugation as might be expected as effects of lipid oxidation. These changes were evident by the second month following irradiation and corresponded to the development of the morphological changes. The presence of lipofuscin substances, reduced arachidonic acid, and an increase in cholesteryl esters indicated an acceleration of aging in the radiation-exposed kidney. The relationship of lipid oxidation to the acceleration of aging and the production of acute renal lesions was not apparent

  7. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Institute of Scientific and Technical Information of China (English)

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  8. Transplanted Adipose-Derived Stem Cells Ameliorate Testicular Dysfunction In A D-Galactose-Induced Aging Rat Model.

    Science.gov (United States)

    Yang, Chun; Du, Yi-Kuan; Wang, Jun; Luan, Ping; Yang, Qin-Lao; Huang, Wen-Hua; Yuan, Lin

    2015-10-01

    Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis. PMID:25728126

  9. Aged Garlic Extract Attenuates Neuronal Injury in a Rat Model of Spinal Cord Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Cemil, Berker; Gokce, Emre Cemal; Kahveci, Ramazan; Gokce, Aysun; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Erdogan, Bulent; Kosem, Bahadir

    2016-06-01

    Garlic has been used as a food as well as a component of traditional medicine. Aged garlic extract (AGE) is claimed to promote human health through antioxidant/anti-inflammatory activities with neuroprotective effects. We evaluated the possible beneficial effect of AGE neurologically, pathologically, ultrastructurally, and biochemically in a spinal cord ischemia-reperfusion (I/R) model of rats. Twenty-four Sprague-Dawley rats were divided into three groups: sham (no I/R), I/R, and AGE (I/R+AGE); each group consisted of eight animals. Animals were evaluated neurologically with the Basso, Beattie, and Bresnahan (BBB) scoring system. The spinal cord tissue samples were harvested for pathological and ultrastructural examinations. Oxidative products (Malondialdehyde, nitric oxide), antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase), inflammatory cytokines (tissue tumor necrosis factor alpha, interleukin-1), and caspase-3 activity were analyzed. The AGE group had significantly higher BBB scores than the I/R group. Pathologically, AGE group revealed reduced degree of ischemia and spinal cord edema. Ultrastructural results also showed preservation of tissue structure in the AGE group. Oxidative product levels of the I/R group were significantly higher than both the other groups, and antioxidant enzyme levels of AGE group were significantly higher than the I/R group. There was also significant difference between the sham and AGE groups in terms of total antioxidant enzyme levels. Furthermore, AGE treatment significantly reduced the inflammatory cytokines and caspase-3 activity than the I/R group. This study demonstrates the considerable neuroprotective effect of AGE on the neurological, pathological, ultrastructural, and biochemical status of rats with I/R-induced spinal cord injury. PMID:27183321

  10. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    Science.gov (United States)

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  11. [POLYPEPTIDES INFLUENCE ON TISSUE CELL CULTURES REGENERATION OF VARIOUS AGE RATS].

    Science.gov (United States)

    Ryzhak, A P; Chalisova, N I; Lin'kova, N S; Khalimov, R I; Ryzhak, G A; Zhekalov, A N

    2015-01-01

    A comparative study of polypeptides extracted from the tissues of calves: Cortexin (from brain cortex), Epinorm (from pineal gland), Ventvil (from liver), Prostatilen (from prostate), Thymalin (from thymus), Chelohart (from heart), Chondrolux (from cartilage) on the relevant organotypic tissue cultures of young and old rats, in concentration 0,01-100 ng/ml was performed. Polypeptides specifically stimulated "young" and "old" cell cultures growth in concentration 20-50 ng/ml. This effect correlates with increasing of PCNA and decreasing of p53 expression in brain cortex, pineal gland, liver, prostate, heart, cartilage. Moreover, Thymalin activated CD5, CD20 expression--markers of B-cells differentiation. These data show that polypeptides isolated from different tissues have selective molecular activity on the regeneration of suitable tissues in aging.

  12. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  13. Morphological changes of cell proliferation and apoptosis in rat jejunal mucosa at different ages

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Jian Li; Qing Li; Jian Zhang; Xiang-Lin Duan

    2003-01-01

    AIM: To study the changes of cell proliferation and apoptosis in rat jejunal epithelium at different ages.METHODS: Cell proliferation and apoptosis of the jejunal mucosal and glandulous epithelia from birth to postnatal 12th month were observed using immunocytochemistry (ICC), and TUNEL method. The height of villus, the thickness of muscle layer and the number of goblet cells in jejunal mucosal and glandulous epithelia were measured by BeiHang analytic software and analyzed by STAT.RESULTS: (1) Proliferating cell nuclear antigen (PCNA) positive cells of jejunal glandulous recess were found and increased in number from birth to the postnatal 3rd month. The number of PCNA positive cells peaked in the postnatal 3rd month, and decreased from then on. (2) The number of apoptotic cells also peaked in the postnatal 3rd month, showing a similar trend to that of the PCNA positive cells. (3) The height of jejunal villus increased after birth, peaked in the postnatal 3rd month and decreased from then on. The jejunal muscle layer became thicker in the postnatal 3rd week and the postnatal 12th month.The number of goblet cells of the jejunal mucosal and glandulous epithelia had a linear correlation with age.CONCLUSION: (1) PCNA positive cells are distributed in the jejunal glandulous recess. (2) Apoptotic cell number peaks in the postnatal 3rd month, indicating that cell proliferation and apoptosis are developed with the formation of digestive metabolism as rat grows to maturity. (3) The thickness of jejunal muscle layer increases to a maximum in the postnatal 3rd week, which may be related to the change in diet from milk to solid food. (4) The number of goblet cells increases rapidly in the postnatal 3rd week, probably due to ingestion of solid food.

  14. Microarray profiles on age-related genes in the earlier postnatal rat visual cortex

    Institute of Scientific and Technical Information of China (English)

    YANG Liu; NIE Yu-hong; ZHOU Li-hua; LIN Shao-chun; WU Kai-li

    2011-01-01

    Background Accumulating evidence indicates that both innate and adaptive mechanisms are responsible for the postnatal development of the mammalian visual cortex. Most of the studies, including gene expression analysis, were performed on the visual cortex during the critical period; few efforts were made to elucidate the molecular changes in the visual cortex during much earlier postnatal stages. The current study aimed to gain a general insight into the molecular mechanisms in the developmental process of the rat visual cortex using microarray to display the gene expression profiles of the visual cortex on postnatal days.Methods All age-matched Sprague-Dawley rats in various groups including postnatal day 0 (PO, n=20), day 10 (P10,n=15), day 20 (P20, n=15) and day 45 (P45, n=10) were sacrificed respectively. Fresh visual cortex from the binocular area (Area 17) was dissected for extraction of total RNA for microarray analyses. Taking advantage of annotation information from the gene ontology and pathway database, the gene expression profiles were systematically and globally analyzed.Results Of the 31 042 gene sequences represented on the rat expression microarray, more than 4000 of the transcripts significantly altered at days 45,20 or 10 compared to day 0. The most obvious alteration of gene expression occurred in the first ten days of the postnatal period and the genomic activities of the visual cortex maintained a high level from birth to day 45. Compared to the gene expression at birth, there were 2630 changed transcripts that shared in three postnatal periods.The up-regulated genes in most signaling pathways were more than those of the down-regulated genes.Conclusions Analyzing gene expression patterns, we provide a detailed insight into the molecular organization of the developing visual cortex in the earlier postnatal rat. The most obvious alteration of gene expression in visual cortex occurred in the first ten days. Our data were a basis to identify new

  15. Comparison of Morphometric Aspects of Light and Electron Microscopy of the Hypoglossal Nerve between Young and Aged Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Pourghasem

    2012-01-01

    Full Text Available Objective: Age-related changes occur in many different systems of the body. Many elderlypeople show dysphagia and dysphonia. This research was conducted to evaluatequantitatively the morphometrical changes of the hypoglossal nerve resulting from theaging process in young and aged rats.Materials and Methods: Through an experimental study ten male wistar rats (4 months: 5rats, 24 months: 5 rats were selected randomly from a colony of wistars in the UWC. Aftera fixation process and preparation of samples of the cervical portion of the hypoglossalnerve of these rats, light and electron microscopic imaging were performed. These imageswere evaluated according to the numbers and size of myelinated nerve fibers, nucleoli ofSchwann cells, myelin sheath thickness, axon diameter, and g ratio. All data were analyzedby Mann-Whitney, a non-parametric statistical test.Results: In light microscope, numbers of myelinated nerve fibers, the mean entire nerveperimeters, the mean entire nerve areas and the mean entire nerve diameters in youngand aged rats’ were not significantly different between the two groups.In electron microscope, numbers of myelinated axons, numbers of Schwann cell nucleoliand the mean g ratios of myelinated axon to Schwann cell in young and aged rats werenot significantly different. The myelinated fiber diameters, the myelin sheath thicknesses,myelinated axon diameters and the mean g ratio of axon diameter to myelinated fiberdiameter in young and aged fibers were significantly differentConclusion: The mean g ratio of myelinated nerve fibers of peripheral nerves stabilizes atthe level of 0.6 after maturation and persists without major change during adulthood. Thisratio of axon diameter to fiber diameter (0.6 is optimum for normal conduction velocity ofneural impulses. Our study indicated that the g ratio of myelinated nerve fiber of the hypoglossalnerve decreased prominently in aged rats and can be a cause of impairment innerve function in

  16. Age-associated tyrosine nitration of rat skeletal muscle glycogen phosphorylase b: characterization by HPLC-nanoelectrospray-tandem mass spectrometry.

    Science.gov (United States)

    Sharov, Victor S; Galeva, Nadezhda A; Kanski, Jaroslaw; Williams, Todd D; Schöneich, Christian

    2006-04-01

    We identified age-dependent post-translational modifications of skeletal muscle glycogen phosphorylase b (Ph-b), isolated from F1 hybrids of Fisher 344 x Brown Norway rats. Ph-b isolated from 34 months old rats showed a statistically significant decrease in specific activity compared to 6 months old animals: 13.8+/-0.7 vs. 20.6+/-0.8 U mg(-1) protein, respectively. Western blot analysis of the purified Ph-b with anti-3-NT antibodies revealed an age-dependent accumulation of 3-nitrotyrosine (3-NT), quantified by reverse-phase HPLC-UV analysis to increase from 0.05+/-0.03 to 0.34+/-0.11 (mol 3-NT/mol Ph-b) for 6 vs. 34 months old rats, respectively. HPLC-nanoelectrospray ionization-tandem mass spectrometry revealed the accumulation of 3-NT on Tyr113, Tyr161 and Tyr573. While nitration of Tyr113 was detected for both young and old rats, 3-NT at positions 161 and 573 was identified only for Ph-b isolated from 34 months old rats. The sequence of the rat muscle Ph-b was corrected based on our protein sequence mapping and a custom rat PHS2 sequence containing 17 differently located amino acid residues was used instead of the database sequence. The in vitro reaction of peroxynitrite with Ph-b resulted in the nitration of multiple Tyr residues at positions 51, 52, 113, 155, 185, 203, 262, 280, 404, 473, 731, and 732. Thus, the in vitro nitration conditions only mimic the nitration of a single Tyr residue observed in vivo suggesting alternative pathways controlling the accumulation of 3-NT in vivo. Our data show a correlation of age-dependent 3-NT accumulation with Ph-b inactivation.

  17. Influence of Physical Exercise and Food Restriction on the Biomechanical Properties of the Femur of Ageing Male Rats

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Skalicky, Monika; Viidik, Andrus

    2008-01-01

    BACKGROUND: Voluntary running in wheels as well as food reduction increase the life spans of rats. Disparate parameters such as the collagen biomarker of ageing and the development of kidney pathologies are decreased by voluntary exercise. There are few reports on the influence of physical exercise...... and food restriction on the skeleton of male rats. Most investigations initiated rather short-term interventions in 4- to 5-week-old animals and thus studied more the influence of growth than the influence of ageing on the skeleton. OBJECTIVE: To compare the effects of physical exercise and food...... to SE group. This decrease was counteracted by physical exercise (RW and TM groups) as well as by food restriction (PW group). In contrast, the strength of the femoral mid-diaphysis did not differ between BL and SE groups. CONCLUSIONS: The distal metaphysis in the male rat femur is more prone...

  18. Quantitative Proteomic Profiling of Muscle Type-Dependent and Age-Dependent Protein Carbonylation in Rat Skeletal Muscle Mitochondria

    OpenAIRE

    Feng, Juan; Xie, Hongwei; Meany, Danni L.; Thompson, LaDora V.; Arriaga, Edgar A.; Griffin, Timothy J.

    2008-01-01

    Carbonylation is a highly prevalent protein modification in skeletal muscle mitochondria, possibly contributing to its functional decline with age. Using quantitative proteomics, we identified mitochondrial proteins susceptible to carbonylation in a muscle type (slow- vs fast-twitch)-dependent and age-dependent manner from Fischer 344 rat skeletal muscle. Fast-twitch muscle contained twice as many carbonylated mitochondrial proteins than did slow-twitch muscle, with 22 proteins showing signif...

  19. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging.

    Science.gov (United States)

    Kanski, Jaroslaw; Behring, Antje; Pelling, Jill; Schöneich, Christian

    2005-01-01

    Proteomic techniques were used to identify cardiac proteins from whole heart homogenate and heart mitochondria of Fisher 344/Brown Norway F1 rats, which suffer protein nitration as a consequence of biological aging. Soluble proteins from young (5 mo old) and old (26 mo old) animals were separated by one- and two-dimensional gel electrophoresis. One- and two-dimensional Western blots with an anti-nitrotyrosine antibody show an age-related increase in the immunoresponse of a few specific proteins, which were identified by nanoelectrospray ionization-tandem mass spectrometry (NSI-MS/MS). Complementary proteins were immunoprecipitated with an immobilized anti-nitrotyrosine antibody followed by NSI-MS/MS analysis. A total of 48 proteins were putatively identified. Among the identified proteins were alpha-enolase, alpha-aldolase, desmin, aconitate hydratase, methylmalonate semialdehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA acetyltransferase, GAPDH, malate dehydrogenase, creatine kinase, electron-transfer flavoprotein, manganese-superoxide dismutase, F1-ATPase, and the voltage-dependent anion channel. Some contaminating blood proteins including transferrin and fibrinogen beta-chain precursor showed increased levels of nitration as well. MS/MS analysis located nitration at Y105 of the electron-transfer flavoprotein. Among the identified proteins, there are important enzymes responsible for energy production and metabolism as well as proteins involved in the structural integrity of the cells. Our results are consistent with age-dependent increased oxidative stress and with free radical-dependent damage of proteins. Possibly the oxidative modifications of the identified proteins contribute to the age-dependent degeneration and functional decline of heart proteins.

  20. Influence of paradoxical sleep deprivation and sleep recovery on testosterone level in rats of different ages

    Institute of Scientific and Technical Information of China (English)

    Mi Mi Oh; Jin Wook Kim; Myeong Heon Jin; Je Jong Kim; Du Geon Moon

    2012-01-01

    This study was performed to assess serurm testosterone alterations induced by paradoxical sleep deprivation (PSD) and to verify their attenuation during sleep recovery (SR) based on different durations and ages.Wistar male rats aged 12 weeks for the younger group and 20 weeks for the elder group were randomly distributed into one of the following groups:a control group (cage and platform),3-day SD,5-day SD,7-day SD,1-day SR,3-day SR and 5-day SR groups.For PSD,the modified multiple platform method was used to specifically limit rapid eye movement (REM) sleep.Differences in the testosterone and luteinizing hormone levels between the younger group and the elder group according to duration of PSD and SR recovery were analysed.Testosterone continued to fall during the sleep deprivation period in a time-dependent manner in both the younger (P=-0.001,correlation coefficient r=-0.651) and elder groups (P=0.001,correlation coefficient r=-0.840).The elder group showed a significantly lower level of testosterone compared with the younger group after PSD.Upon SR after 3 days of PSD,the testosterone level continued to rise for 5 days after sleep recovery in the younger group (P=0.013),whereas testosterone concentrations failed to recover until day 5 in the elder group.PSD caused a more detrimental effect on serum testosterone in the elder group compared to the younger group with respect to decreases in luteinizing hormone (LH) levels.The replenishment of serum testosterone level was prohibited in the elder group suggesting that the effects of SD/SR may be age-dependent.The mechanism by which SD affects serum testosterone and how age may modify the process are still unclear.

  1. The impact of a diphenyl diselenide-supplemented diet and aerobic exercise on memory of middle-aged rats.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; Gai, Rafaela M; Zeni, Gilson

    2014-08-01

    Selenium is an essential trace element for human health and has received attention for its role as a nutrient. The combination of exercise and nutrients has been proposed to promote health. The aim of this study was to determine the effects of a diet supplemented with diphenyl diselenide (PhSe)2 and swimming exercise on memory of middle-aged rats. Male Wistar rats (12months) received standard diet chow supplemented with 1ppm of (PhSe)2 for 4weeks. Rats were submitted to swimming training (20min per day for 4weeks). After 4weeks, memory was evaluated in the object recognition test (ORT) and in the object location test (OLT). The hippocampal levels of phosphorylated cAMP-response element-binding protein (CREB) were determined. The results of the present study demonstrated that the association of (PhSe)2-supplemented diet and swimming exercise improved short-term memory, long-term memory and spatial learning, and this effect was not related to the increase in hippocampal p-CREB levels in middle-age rats. This study also revealed that middle-aged rats in the swimming exercise group had the best performance in short- and long-term memory. In conclusion, we demonstrated that swimming exercise, (PhSe)2-supplemented diet or the association of these factors improved learning and memory functioning. The hippocampal levels of CREB were not directly related to the benefits of swimming exercise and (PhSe)2-supplemented diet association in memory of middle-aged rats.

  2. Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)

    Science.gov (United States)

    Susceptibility of Diabetic Rats to Pulmonary and Systemic Effects of Inhaled Photochemically-Aged Atmosphere and Ozone (O3)MC Schladweiler1, SJ Snow2, QT Krantz1, C King1, JD Krug2, N Modak2, A Henriquez3, V Bass4, DJ Miller3, JE Richards1, EH Boykin1, R Jaskot1, MI Gilmour1 and ...

  3. The effects of strength training and raloxifene on bone health in aging ovariectomized rats.

    Science.gov (United States)

    Stringhetta-Garcia, Camila Tami; Singulani, Monique Patrício; Santos, Leandro Figueiredo; Louzada, Mário Jefferson Quirino; Nakamune, Ana Cláudia Stevanato; Chaves-Neto, Antonio Hernandes; Rossi, Ana Cláudia; Ervolino, Edilson; Dornelles, Rita Cássia Menegati

    2016-04-01

    The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen

  4. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats.

    Science.gov (United States)

    Campbell, Stuart G; Haynes, Premi; Kelsey Snapp, W; Nava, Kristofer E; Campbell, Kenneth S

    2013-09-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P 75 cells for each of the nine age-region groups). The decay time of the Ca(2+) transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P 50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion.

  5. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Directory of Open Access Journals (Sweden)

    Su Liu

    2014-01-01

    Full Text Available A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE and compound amino acid (AA in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  6. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, Toxicity Assessment Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Royland, Joyce E. [Genetic and Cellular Toxicology Branch, Integrated Systems Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Richards, Judy E. [Research Core Unit, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Besas, Jonathan; MacPhail, Robert C. [Neurotoxicology Branch, Toxicity Assessment Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2011-11-15

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), {gamma}-glutamylcysteine synthetase ({gamma}-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at - 80 Degree-Sign C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure

  7. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    International Nuclear Information System (INIS)

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at − 80 °C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative

  8. Intracranial Pressure Elevation 24 Hours after Ischemic Stroke in Aged Rats is Prevented by Early, Short Hypothermia Treatment

    Directory of Open Access Journals (Sweden)

    Lucy Anne Murtha

    2016-05-01

    Full Text Available Stroke is predominantly a senescent disease, yet most preclinical studies investigate treatment in young animals. We recently demonstrated that short-duration hypothermia-treatment completely prevented the dramatic intracranial pressure (ICP rise seen post-stroke in young rats. Here, our aim was to investigate whether a similar ICP rise occurs in aged rats and to determine whether short-duration hypothermia is an effective treatment in aged animals. Experimental Middle Cerebral Artery occlusion (MCAo - 3 hour occlusion was performed on male Wistar rats aged 19-20 months. At one hour after stroke-onset, rats were randomized to 2.5 hours hypothermia-treatment (32.5 °C or normothermia (37 °C. ICP was monitored at baseline, for 3.5 hours post-occlusion, and at 24 hours post-stroke. Infarct and edema volumes were calculated from histology. Baseline pre-stroke ICP was 11.2 ± 3.3 mmHg across all animals. Twenty-four hours post-stroke, ICP was significantly higher in normothermic animals compared to hypothermia-treated animals (27.4 ± 18.2 mmHg vs. 8.0 ± 5.0 mmHg, p = 0.03. Infarct and edema volumes were not significantly different between groups. These data demonstrate ICP may also increase 24 hours post-stroke in aged rats, and that short-duration hypothermia treatment has a profound and sustained preventative effect. These findings may have important implications for the use of hypothermia in clinical trials of aged stroke patients.

  9. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    Directory of Open Access Journals (Sweden)

    Nina Kølln Wittig

    2016-06-01

    Full Text Available Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte lacunar properties in rat cortical bone. Femora of 14 to 42-week-old female Wistar rats were investigated using multiple complementary techniques including X-ray micro-computed tomography and biomechanical testing. The body weight, femoral length, aBMD, load to fracture, tissue volume, bone volume, and tissue density were found to increase rapidly with age at 14–30 weeks. At the age of 30–42 weeks, the growth rate appeared to decrease. However, no accompanying changes were found in osteocyte lacunar properties such as lacunar volume, ellipsoidal radii, lacunar stretch, lacunar oblateness, or lacunar orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties of the osteocyte lacunar network are main determinants of the properties of the bone on larger length scales.

  10. Protective effects of sodium orthovanadate in diabetic reticulocytes and ageing red blood cells of Wistar rats

    Indian Academy of Sciences (India)

    Bihari L Gupta; Anju Preet; Najma Z Baquer

    2004-03-01

    The reticulocytes and the ageing red blood cells (RBCs) namely young (Y), middle-aged (M) and old RBCs (O) of female Wistar rats from different groups such as control animals (C), controls treated with vanadate (C + V), alloxan-induced diabetic (D), diabetic-treated with insulin (D + I) and vanadate (D + V), were fractionated on a percoll/BSA gradient. The following enzymes were measured – hexokinase (HK), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione-s-transferase (GST), alanine aminotransferase (AlaAT), aspartate aminotransferase (AsAT) and arginase in the hemolysates of all the RBCs fractions. Decreases in the activity of HK and AsAT by about 70%, arginase and GSH-Px by 30% in old RBCs were observed in comparison to reticulocytes of control animals. Increases in the activity of GSSG-R by 86%, AlaAT by more than 400% and GST by 70% were observed in old RBCs in comparison to reticulocytes of control animals. Alloxan diabetic animals showed a further decrease in the activities of HK in Y RBCs by 37%, M RBCs by 39% and O RBCs by 32%, GSH-Px activity in Y RBCs by 13%, M RBCs by 20% and O RBCs by 33% and GST activity in Y RBCs by 14%, M RBCs by 42% and O RBCs by 60% in comparison to their corresponding cells of control animals. An increase in the activity of all the enzymes studied was also observed in reticulocytes of diabetic animals in comparison to reticulocytes of controls. The GSSG-R activity was found to be increased in Y RBCs by 49%, M RBCs by 67% and O RBCs by 64% as compared to the corresponding age-matched cells of control animals. The activity of arginase also decreased in Y RBCs by about10%, M RBCs by 20% and O RBCs by 30% in comparison to the age-matched cells of control animals. A decrease in the activity of AsAT in Y and M RBCs by 30%, and O RBCs by 25% was observed in diabetic animals in comparison to the age-matched cells of control animals. The activity of AlaAT was found to be decreased by more than 10% in Y and M

  11. Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.

    2006-03-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. The pharmacokinetics of CPF, TCP, and the extent of blood (plasma/RBC), and brain ChE inhibition in rats were determined on postnatal days (PND) -5, -12, and -17 following oral gavage administration of 1 and 10 mg CPF/kg of body weight. For all neonatal ages the blood TCP exceeded the CPF concentration, and within each age group there was no evidence of non-linear kinetics over the dose range evaluated. Younger animals demonstrated a greater sensitivity to ChE inhibition as evident by the dose- and age-dependent inhibition of plasma, RBC, and brain ChE. Of particular importance was the observation that even in rats as young as PND-5, the CYP450 metabolic capacity was adequate to metabolize CPF to both TCP and CPF-oxon based on the detection of TCP in blood and extensive ChE inhibition (biomarker of CPF-oxon) at all ages. In addition, the increase in the blood TCP concentration ({approx}3-fold) in PND-17 rats relative to the response in the younger animals, and the higher blood concentrations of CPF in neonatal rats (1.7 to 7.5-fold) relative to adults was consistent with an increase in CYP450 metabolic capacity with age. This is the first reported study that evaluated both the pharmacokinetics of the parent pesticide, the major metabolite and the extent of ChE inhibition dynamics in the same animals as a function of neonatal age. The results suggest that in the neonatal rat, CPF was rapidly absorbed and metabolized, and the extent of metabolism was age-dependent.

  12. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    International Nuclear Information System (INIS)

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels

  13. Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats.

    Science.gov (United States)

    Pasini, Evasio; Le Douairon Lahaye, Solène; Flati, Vincenzo; Assanelli, Deodato; Corsetti, Giovanni; Speca, Silvia; Bernabei, Roberto; Calvani, Riccardo; Marzetti, Emanuele

    2012-01-01

    Physical exercise is the most effective intervention against sarcopenia of aging; however, the cellular and molecular mechanisms mediating training-induced adaptations are not yet completely understood. Furthermore, it is unclear whether exercise training initiated late in life affects myocyte anabolic signaling in a dose-dependent manner. Hence, we sought to investigate the effects of treadmill exercise and training frequency on anabolic pathways, including insulin signaling, in the skeletal muscle of old rats. Aged (14-16-month-old) male Wistar rats were trained on a treadmill for 3 (EX3) or 5 days/week (EX5) during 8 weeks and compared with age-matched sedentary controls (SED). Four-month-old rats were used as young controls (YC). Protein expression levels of insulin receptor (IR), insulin receptor substrate 1 (IRS-1), activated (phosphorylated) mammalian target of rapamycin (p-mTOR) and glucose transporter GLUT4 were determined in quadriceps muscle extracts via immunoblotting. Mitochondrial cytochrome c oxidase (COX) activity was assessed by histochemical staining, while electron microscopy was employed to quantify the sarcomere volume (V(src)). Body weight (BW) increased, whereas muscle weight (MW) and V(src) decreased with age. EX5, but not EX3 increased MW and V(src), without affecting BW. The expression of IR and GLUT4 was higher in SED rats relative to the YC group. Conversely, protein levels of IRS-1 and p-mTOR as well as COX activity were reduced in advanced age. Compared with SED rats, EX3 animals displayed reduced IR expression and increased IRS-1 levels and COX activity. The expression of GLUT 4 and p-mTOR was unaffected by EX3. EX5 up-regulated IRS-1 and p-mTOR expression and COX activity, while decreasing GLUT4 levels, with no effect on IR expression. In summary, substantial impairments in muscle anabolic pathways, including insulin signaling, were detected in aged sedentary rats. These changes were ameliorated by exercise training, concomitant with

  14. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China); Cheng, Xing-Guo [Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439 (United States); Liu, Jie, E-mail: Jieliu@zmc.edu.cn [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China)

    2014-10-15

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.

  15. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome.

    Science.gov (United States)

    Lees, Hannah; Swann, Jonathan; Poucher, Simon M; Nicholson, Jeremy K; Holmes, Elaine; Wilson, Ian D; Marchesi, Julian R

    2014-01-01

    Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture? PMID:25232735

  16. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats.

    Directory of Open Access Journals (Sweden)

    Yuen-Shan Ho

    Full Text Available Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD. To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.

  17. The effect of gestational age on angiogenic gene expression in the rat placenta.

    Directory of Open Access Journals (Sweden)

    Kanchan Vaswani

    Full Text Available The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25-E20 with emphasis on characterizing gestational age associated changes in the expression of genes involved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group and RNA was isolated from one placenta per dam. Changes in placental gene expression were identified using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression. Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1 involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001. The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy.

  18. Aging-dependent changes in rat heart mitochondrial glutaredoxins—Implications for redox regulation

    Directory of Open Access Journals (Sweden)

    Xing-Huang Gao

    2013-01-01

    Full Text Available Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1 and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS. In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50–60% in the IMS, but Grx2 is increased by 1.4–2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM and interfibrillar (IFM mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron–sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron–sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ.

  19. Ambiguous response of lung lamellar bodies to sauna-like heat stress in two age groups of adult male rats.

    Science.gov (United States)

    Heino, M E

    1980-06-01

    Two groups of adult male rats, aged 2.5 and 5 months, were exposed daily for 12 min to 65 degrees C for five successive periods a week for 6 weeks. Both age groups, and in particular the young one, repeatedly suffered from exhausting heat stress. Lung specimens from cardiac lobes were prepared for light- and electron-microscopy. A significnat increase was noted in the lung lamellar body number in the old test rats, on comparison with old ones employed as controls (p < 0.05). The young group was unresponsive. Consequently, stress induced by increased sympathetic activity is not always a direct stimulus, as had been thought earlier. It seems, at least where heat stress is concerned, that it is the age, weight, and systemic reactions which exercise a great influence upon lamellar body production, and may even overrule the role of sympathetic activity. PMID:7417113

  20. Effect of low-level lifetime exposure to cadmium on calciotropic hormones in aged female rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Medical University of Bialystok, Department of Toxicology, Bialystok (Poland)

    2005-11-01

    The effect of low-level lifetime exposure to cadmium (Cd) on calciotropic hormones and the possible association between the Cd-induced disorders in bone metabolism and these hormones were investigated on a female rat model of human environmental exposure in areas unpolluted by this metal. For this purpose, the concentrations of 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH){sub 2}D), calcitonin (CT) and parathormone (PTH) were measured in the serum of control and Cd-exposed (1 mg Cd/l in drinking water for 24 months) female rats. Calcium (Ca) and inorganic phosphorus (P{sub i}) serum concentrations, renal tubular reabsorption of Ca (TRCa) and phosphate (TRP) and the glomerular filtration rate (GFR) were estimated as well. Moreover, 1,25(OH){sub 2}D, metallothionein (MT) and Cd were determined in the kidney. The exposure to Cd led to a decrease in the serum concentrations of 25OHD and 1,25(OH){sub 2}D (by 50 and 31%, respectively) and the concentration of 1,25(OH){sub 2}D in the kidney mitochondrial fraction (by 55%). The serum concentrations of CT and PTH increased (5.2-fold and by 29%, respectively) and those of Ca and P{sub i} were unchanged, whereas the TRCa, TRP and GFR decreased due to the exposure to Cd. The results give evidence that the low lifetime exposure to Cd disturbs the metabolism of calciotropic hormones and damages the reabsorptive and filtrative function of the kidney in aged female rats. Numerous correlations noted between calciotropic hormones and the indices of kidney function, and indices of bone turnover and bone mineral status (bone mineral content and density) of these females indicate a relationship between these hormones and the kidney functional status and bone metabolism. The results of the present study together with our previous findings on the bone status in the experimental model allow for the conclusion that the low lifetime exposure to Cd by affecting the metabolism and proper function of calciotropic hormones may

  1. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats.

    Science.gov (United States)

    Hays, Seth A; Ruiz, Andrea; Bethea, Thelma; Khodaparast, Navid; Carmel, Jason B; Rennaker, Robert L; Kilgard, Michael P

    2016-07-01

    Advanced age is associated with a higher incidence of stroke and worse functional outcomes. Vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a potential method to improve recovery after brain injury but to date has only been evaluated in young rats. Here, we evaluated whether VNS paired with rehabilitative training would improve recovery of forelimb function after ischemic lesion of the motor cortex in rats 18 months of age. Rats were trained to perform the isometric pull task, an automated, quantitative measure of volitional forelimb strength. Once proficient, rats received an ischemic lesion of the motor cortex and underwent rehabilitative training paired with VNS for 6 weeks. VNS paired with rehabilitative training significantly enhances recovery of forelimb function after lesion. Rehabilitative training without VNS results in a 34% ± 19% recovery, whereas VNS paired with rehabilitative training yields a 98% ± 8% recovery of prelesion of forelimb function. VNS does not significantly reduce lesion size. These findings demonstrate that VNS paired with rehabilitative training enhances motor recovery in aged subjects in a model of stroke and may suggest that VNS therapy may effectively translate to elderly stroke patients. PMID:27255820

  2. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  3. Post-Stroke Infections Exacerbate Ischemic Brain Injury in Middle-Aged Rats: Immunomodulation and Neuroprotection by Progesterone

    OpenAIRE

    Yousuf, Seema; Atif, Fahim; Sayeed, Iqbal; Wang, Jun; Stein, Donald G.

    2012-01-01

    We investigated the effect of delayed, prolonged systemic inflammation on stroke outcomes and progesterone (P4) neuroprotection in middle-aged rats. After transient middle cerebral artery occlusion/reperfusion (MCAO) surgery, rats received P4 (8 or 16 mg/kg) or vehicle injections at 2h, 6h and every 24h until day 7 post-occlusion. At 24h post-injury systemic inflammation was induced by giving 3 doses of lipopolysaccharide (LPS; 50 mg/kg, at 4h intervals) to model post-stroke infections. We me...

  4. Postnatal Age Influences Hypoglycemia-induced Poly(ADP-ribose) Polymerase-1 Activation in the Brain Regions of Rats

    OpenAIRE

    Rao, Raghavendra; Sperr, Dustin; Ennis, Kathleen; Tran, Phu

    2009-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) overactivation plays a significant role in hypoglycemia-induced brain injury in adult rats. To determine the influence of postnatal age on PARP-1 activation, developing and adult male rats were subjected to acute hypoglycemia of equivalent severity and duration. The expression of PARP-1 and its downstream effectors, apoptosis inducing factor (Aifm1), caspase 3 (Casp3), NF-κB (Nfkb1) and bcl-2 (Bcl2), and cellular poly(ADP-ribose) (PAR) polymer expression...

  5. Age and region-dependent contraction to α-adrenoceptor agonists in rat and guinea-pig isolated trachea

    OpenAIRE

    Preuss, Janet M H; Rigby, Paul J.; Goldie, Roy G

    1998-01-01

    The influence of age and of region on α-adrenoceptor-mediated contraction to (−)-adrenaline and (−)-noradrenaline was examined in rat (4–136 weeks) and guinea-pig (2–156 weeks) isolated tracheal ring preparations with particular emphasis on the early (up to 12 weeks) maturation phase.In rat tracheal rings, significant regional variation was observed with respect to maximal (−)-adrenaline-induced contraction, such that the greatest activity was seen in ring preparations from the laryngeal end ...

  6. Cardiac and Renal Function are Progressively Impaired with Aging in Zucker Diabetic Fatty Type II Diabetic Rats

    Directory of Open Access Journals (Sweden)

    John Baynes

    2009-01-01

    Full Text Available This study investigated the temporal relationship between cardiomyopathy and renal pathology in the type II diabetic Zucker diabetic fatty (ZDF rat. We hypothesized that changes in renal function will precede the development of cardiac dysfunction in the ZDF rat. Animals (10 weeks old were divided into four experimental groups: Lean Control (fa/? LC (n = 7, untreated ZDF rats (n = 7 sacrificed at 16 weeks of age, and LC (n = 7 untreated ZDF rats (n = 9 sacrificed at 36 weeks of age. LV structural/functional parameters were assessed via Millar conductance catheter. Renal function was evaluated via markers of proteinuria and evidence of hydronephrosis. LV mass was significantly less in the ZDF groups at both time points compared to age-matched LC. End diastolic volume was increased by 16% at 16 weeks and by 37% at 36 weeks of age (p < 0.05 vs. LC. End diastolic pressure and end systolic volume were significantly increased (42% and 27% respectively at 36 weeks of age in the ZDF compared to LC. Kidney weights were significantly increased at both 16 and 36 week in ZDF animals (p < 0.05 vs. LC. Increased urinary albumin and decreased urinary creatinine were paralleled by a marked progression in the severity of hydronephrosis from 16 to 36 weeks of age in the ZDF group. In summary, there is evidence of progressive structural and functional changes in both the heart and kidney, starting as early as 16 weeks, without evidence that one pathology precedes or causes the other in the ZDF model of type II diabetes.

  7. Cardiac and renal function are progressively impaired with aging in Zucker diabetic fatty type II diabetic rats.

    Science.gov (United States)

    Baynes, John; Murray, David B

    2009-01-01

    This study investigated the temporal relationship between cardiomyopathy and renal pathology in the type II diabetic Zucker diabetic fatty (ZDF) rat. We hypothesized that changes in renal function will precede the development of cardiac dysfunction in the ZDF rat. Animals (10 weeks old) were divided into four experimental groups: Lean Control (fa/?) LC(n = 7), untreated ZDF rats (n = 7) sacrificed at 16 weeks of age, and LC (n = 7) untreated ZDF rats (n = 9) sacrificed at 36 weeks of age. LV structural/functional parameters were assessed via Millar conductance catheter. Renal function was evaluated via markers of proteinuria and evidence of hydronephrosis. LV mass was significantly less in the ZDF groups at both time points compared to age-matched LC. End diastolic volume was increased by 16% at 16 weeks and by 37% at 36 weeks of age (p < 0.05 vs. LC). End diastolic pressure and end systolic volume were significantly increased (42% and 27%respectively) at 36 weeks of age in the ZDF compared to LC. Kidney weights were significantly increased at both 16 and 36 week in ZDF animals (p < 0.05 vs. LC). Increased urinary albumin and decreased urinary creatinine were paralleled by a marked progression in the severity of hydronephrosis from 16 to 36 weeks of age in the ZDF group. In summary, there is evidence of progressive structural and functional changes in both the heart and kidney, starting as early as 16 weeks,without evidence that one pathology precedes or causes the other in the ZDF model of type II diabetes.

  8. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometrically scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.

  9. Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin.

    Science.gov (United States)

    Camerino, Giulia Maria; De Bellis, Michela; Conte, Elena; Liantonio, Antonella; Musaraj, Kejla; Cannone, Maria; Fonzino, Adriano; Giustino, Arcangela; De Luca, Annamaria; Romano, Rossella; Camerino, Claudia; Laghezza, Antonio; Loiodice, Fulvio; Desaphy, Jean-Francois; Conte Camerino, Diana; Pierno, Sabata

    2016-09-01

    Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly. PMID:27377005

  10. Effects of combination therapy with atenolol and amlodipine on blood pressure control and stroke prevention in stroke-prone spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Gang LING; Ai-jun LIU; Fu-ming SHEN; Guo-jun CAI; Jian-guo LIU; Ding-feng SU

    2007-01-01

    Aim:To test the effects of atenolol and amlodipine,either alone or in combination,on blood pressure,blood pressure variability (BPV),baroreflex sensitivity (BRS),and the prevalence of stroke in stroke-prone spontaneously hypertensive rats (SHR-SP). Methods:In the first set of the study,24 8-month-old,female SHR-SP rats were randomly divided into 3 groups. Blood pressure,heart period,and BRS were determined before and after the intragastric administration of atenolol (10 mg/kg) and amlodipine (1.0 mg/kg),either alone or in combination. In the second set of the study,40 male and 40 female rats were randomly assigned to 1 of the and both (10 male and 10 female in each group). The stroke incident and survival time were recorded. Results:Atenolol and amlodipine,either alone or in combination,significantly decreased blood pressure,with the exception of the amlodipine-induced effect on diastolic blood pressure. Meanwhile,only the combination treatment significantly decreased the BPV levels for the same period.The q-values calculated by the probability sum analysis were 1.17 and 2.67 for systolic and diastolic blood pressure,respectively,and were 2.48 and 2.10 for systolic and diastolic BPV,respectively,following administration. Neither drug exhibited any significant effect on BRS. Atenolol and amlodipine,either alone or in combination,significantly increased the lifespan of SHR-SP,with the best effeet elicited by the combination therapy. Conclusion:A significant synergism exists between atenolol and amlodipine in lowering and stabilizing blood pressure in SHR-SP. Combination therapy may be an optimal strategy for the prevention of stroke in hypertension.

  11. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats

    Energy Technology Data Exchange (ETDEWEB)

    Šošić-Jurjević, Branka, E-mail: brankasj@ibiss.bg.ac.rs [Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia); Filipović, Branko [Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia); Wirth, Eva Katrin [Institut für Experimentelle Endokrinologie, Charité — Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Živanović, Jasmina [Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia); Radulović, Niko [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Janković, Snežana [Institute for Science Application in Agriculture, University of Belgrade, Despot Stefan Blvd. 68b, 11000 Belgrade (Serbia); Milošević, Verica [Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia); Köhrle, Josef [Institut für Experimentelle Endokrinologie, Charité — Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-07-15

    We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activated genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3}-regulated

  12. Anti-ageing effects of a new Dimethylaminoethanol-based formulation on D-Galactose induced skin ageing model of rat

    Institute of Scientific and Technical Information of China (English)

    YAN Bing-jian; YUAN Feng; ZHAO Cai-ling; LIU Su

    2015-01-01

    Background Dimethylaminoethanol has been widely used to fight against wrinkles, in the field of aesthetic medicine there is an increasing demand for safe and effective Dimethylaminoethanol-based products to counteract the ageing process. Objective To evaluate the anti-ageing effects of a new DMAE-based formulation. Methods 30 male rats were randomly allocated into treatment,D-gal ageing modeland control groups, each of which contained ten rats. Treatment group and D-gal ageing model group were subcutaneously injected with D- galactose prepared in normal saline 125mg·kg-1·d-1 for 42d. Control groups were injected with normal saline for 42 d with same method and dose. From the 18th day,after shaving their hair,the treatment grouprats were injected thisnew DMAE-based formulation at a dose of 1ml per week for 4 weeks in the Dermis of two sides hip skin mark zone.Meanwhile,D-gal ageing model group rats were administrated the same volume of normal saline with same method. Skin specimens were obtained 3days after the last treatment. Dermal collagen density and dermal thickness were evaluated by H&E and Masson-trichrome staining. And mRNA expressions of TGFβ1, Smad3, Type I,Type III Pro-collagen,TIMP-1, MMP-1,were assessed by Real-time quantitative polymerase chain reaction. Results Dermal thickness, dermal collagen density and hydroxyproline content in treatment group increased significantly comparing with D-gal ageing model group. No differences were found in mRNA expression of MMP-1 and Type III Pro-collagen between the treatment group and D-gal ageing model group. In addition, mRNA expression of TGFβ1, Type I Pre-collagen , TIMP1 and smad3 in treatment group were significantly up-regulated in contrast with D-gal ageing model and control group. Conclusion This new DMAE-based formulationcould generate anti-ageing effects by activating collagen synthesisthrough TGF-β1/Smads signaling pathway.

  13. Effect of Aging and Obesity on Insulin Responsiveness and Glut-4 Glucose Transporter Content in Skeletal Muscle of Fischer 344 × Brown Norway Rats

    OpenAIRE

    Larkin, Lisa M.; Reynolds, Thomas H.; Supiano, Mark A.; Kahn, Barbara B.; Halter, Jeffrey B.

    2001-01-01

    This study investigated the metabolic changes with age in the Fischer 344 × Brown Norway rat and its suitability as an animal model of postmaturational insulin resistance. Specifically, we determined whether an age-associated decrease in glucose disposal is associated with diminished whole body insulin responsiveness and/or a decrease in glucose transporter (GLUT-4) protein and mRNA content in medial gastrocnemius muscle of male Fischer 344 × Brown Norway rats of ages 8, 18, and 28 months. Fa...

  14. Intracerebroventricular Infusion of Vasoactive Intestinal Peptide (VIP Rescues the Luteinizing Hormone Surge in Middle-Aged Female Rats

    Directory of Open Access Journals (Sweden)

    Yan eSun

    2012-02-01

    Full Text Available Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP originating from the SCN excites gonadotropin-releasing hormone (GnRH neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600 h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.

  15. Increased protein oxidation and loss of protein-bound sialic acid in hepatic tissues of D-galactose induced aged rats.

    Science.gov (United States)

    Cakatay, Ufuk; Aydın, Seval; Atukeren, Pınar; Yanar, Karolin; Sitar, Mustafa E; Dalo, Enis; Uslu, Ezel

    2013-07-01

    A redox basis of the increased oxidative protein damage and free radical-mediated desialylation have not been fully elucidated in aging. It is well known that the incidence of several liver diseases increase with age. This original research focuses on protein oxidation mechanisms and protein-bound sialic acid levels in liver tissue of the mimetic aging rats. Injection of D-galactose (60 mg/kg/day) for six weeks to male Sprague-Dawley rats (20-week-old) used to establish mimetic aging model. We investigated the tissue levels of various protein oxidation markers such as protein carbonyl groups, suitable advanced oxidation protein products and protein thiol groups. Our study also covered protein-bound sialic acid in liver tissue of D-galactose-induced aging rats. PCO (Protein Carbonyl Groups), P-OOH (Protein Hydroperoxides) and AOPP (Advanced Oxidation Protein Products) levels in aging rats were significantly higher compared to young control groups. On the other hand, P-SH (Protein Thiol Groups) levels were not found to be different between two groups. SA (Sialic Acid) levels in D-galactose-induced aging rats were significantly lower compared to control groups. Our results demonstrated greater susceptibility to hepatic oxidative protein damage and desialylation of hepatocellular proteins in Dgalactose- induced aging rats. These molecular mechanisms may be operative in the many age-related liver diseases, which are pertinent to increased oxidative stress and altered redox homeostasis.

  16. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging.

    Directory of Open Access Journals (Sweden)

    Jiahong Zhu

    Full Text Available Neurogenesis continues throughout the lifetime in the hippocampus, while the rate declines with brain aging. It has been hypothesized that reduced neurogenesis may contribute to age-related cognitive impairment. Ginsenoside Rg1 is an active ingredient of Panax ginseng in traditional Chinese medicine, which exerts anti-oxidative and anti-aging effects. This study explores the neuroprotective effect of ginsenoside Rg1 on the hippocampus of the D-gal (D-galactose induced aging rat model. Sub-acute aging was induced in male SD rats by subcutaneous injection of D-gal (120 mg/kg·d for 42 days, and the rats were treated with ginsenoside Rg1 (20 mg/kg·d, intraperitoneally or normal saline for 28 days after 14 days of D-gal injection. In another group, normal male SD rats were treated with ginsenoside Rg1 alone (20 mg/kg·d, intraperitoneally for 28 days. It showed that administration of ginsenoside Rg1 significantly attenuated all the D-gal-induced changes in the hippocampus, including cognitive capacity, senescence-related markers and hippocampal neurogenesis, compared with the D-gal-treated rats. Further investigation showed that ginsenoside Rg1 protected NSCs/NPCs (neural stem cells/progenitor cells shown by increased level of SOX-2 expression; reduced astrocytes activation shown by decrease level of Aeg-1 expression; increased the hippocampal cell proliferation; enhanced the activity of the antioxidant enzymes GSH-Px (glutathione peroxidase and SOD (Superoxide Dismutase; decreased the levels of IL-1β, IL-6 and TNF-α, which are the proinflammatory cytokines; increased the telomere lengths and telomerase activity; and down-regulated the mRNA expression of cellular senescence associated genes p53, p21Cip1/Waf1 and p19Arf in the hippocampus of aged rats. Our data provides evidence that ginsenoside Rg1 can improve cognitive ability, protect NSCs/NPCs and promote neurogenesis by enhancing the antioxidant and anti-inflammatory capacity in the

  17. Evaluation of the Anxiolytic and Antidepressant Effects of Alcoholic Extract of Kaempferia parviflora in Aged Rats

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2007-01-01

    Full Text Available To date, the search for novel pharmacotherapy from medicinal plants for psychiatric illnesses has significantly progressed. The present study was performed to evaluate the anxiolytic and antidepressant like activities of the K.parviflora rhizome extract. Aged male Wistar rats were orally administered the alcoholic extract of this plant at various doses ranging from 100, 200 and 300 mg kgˉ1 BW once daily for 7 days. The anxiolytic and antidepressant activities were performed after both single and repetitive treatment for 7 days using elevated plus maze and forced swimming tests respectively. The results showed that the extract decreased immobility time with the increase swimming time. However, no changes in number of open arm entries and time spent in open arm were observed. These results suggested the anti-depression activity of the plant extract. Therefore, K.parviflora may be served as a potential resource for natural psychotherapeutic agent against depression. However, further studies were still required.

  18. Magnetic resonance histology of age-related nephropathy in the Sprague Dawley rat.

    Science.gov (United States)

    Xie, Luke; Cianciolo, Rachel E; Hulette, Brian; Lee, Ha Won; Qi, Yi; Cofer, Gary; Johnson, G Allan

    2012-07-01

    Magnetic resonance histology (MRH) has become a valuable tool in evaluating drug-induced toxicity in preclinical models. However, its application in renal injury has been limited. This study tested the hypothesis that MRH could detect image-based biomarkers of chronic disease, inflammation, or age-related degeneration in the kidney, laying the foundation for more extensive use in evaluating drug toxicity. We examined the entire intact kidney in a spontaneous model of chronic progressive nephropathy. Kidneys from male Sprague Dawley rats were imaged at 8 weeks (n = 4) and 52 weeks (n =4) on a 9.4 T system dedicated to MR microscopy. Several potential contrast mechanisms were explored to optimize the scanning protocols. Full coverage of the entire kidney was achieved with isotropic spatial resolution at 31 microns (voxel volume = 30 pL) using a gradient recalled echo sequence. Isotropic spatial resolution of 15 microns (voxel volume kidney volume, pelvis volume, main vessel volume, glomerular size, as well as thickness of the cortex, outer medulla, and inner medulla.

  19. [C-AMP concentration in various organs of female rats and in human ovaries with aging (author's transl)].

    Science.gov (United States)

    Arima, M

    1982-02-01

    The change in 3',5'-cyclic adenosine monophosphate (c-AMP) concentration was observed in various organs of rats in gonadal cycle in adult group and with aging (30, 70, 100, 120 weeks), and in human ovaries with aging. 1) The average c-AMP concentration of ovaries of rats showed a significant change with estrus cycle and was higher in the following sequence: proestrus, diestrus II, diestrus I and estrus phase. This tendency was also seen in hypothalamus and pituitary, but was not statistically significant, 2) The average c-AMP concentration in tissues began to decline significantly from 70 weeks in cerebral cortex and hypothalamus, and from 80 weeks in ovaries. However, on the other hand the concentrations in pituitary, liver and adrenal declined markedly from 100 weeks. 3) The c-AMP in ovaries of 80 weeks rats by pregnant mare serum (PMS) road increased by 0.5-fold in concentration, and by 0.6-fold in whole tissue relative to that of 30 weeks rats. 4) A significant difference in serum LH and FSH level between ovarian artery and vein was not found in cycling mature group, non-cycling climacteric group and post-menopausal group of women. 5) Both average concentrations and total values of c-AMP in ovaries of non-cycling climacteric and post-menopausal women were lower than those of mature cycling women. This fact may imply a different response by ovarian tissues such as corpus luteum, follicle and other tissues to gonadotropin. From these results of c-AMP in tissues, it is concluded that the decline of ovarian function with aging of rats was relatively earlier than pituitary, although being delayed compared with hypothalamus, and were the ovarian function in humans declined in the premenopausal period.

  20. Restoration of post-activation depression of the H-reflex by treadmill exercise in aged rats.

    Science.gov (United States)

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2016-06-01

    The purpose of this study was to evaluate the effects of aging and chronic physical activity on the postactivation depression of the Hoffman reflex (H-reflex). The maximal amplitude H wave/maximal amplitude M wave ratio was measured, and the rate-sensitive depression of the H-reflex was assessed. Measurements were performed on sedentary rats aged of 3, 6, 12, and 20 months and on animals aged of 12 and 20 months performing an incremental treadmill exercise protocol during the last eight weeks preceding the recordings. At the end of the experiment, the muscle mass and/or body mass ratio was calculated. Results indicated that the H-reflex depression of the tibialis anterior and soleus muscles were present until age of 6 and 12 months, respectively. For the tibialis anterior muscle, results also pointed out a decrease in the relative muscle mass with age and that the exercise allowed to restore the rate-sensitive depression of the H-reflex and to increase the relative muscle mass in comparison with sedentary animals. These findings clearly demonstrate that neural alteration of the spinal cord is prevented by activity in aged rats. PMID:27143422

  1. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS.

    Science.gov (United States)

    Xie, Fang; Zhang, Jiu-Cong; Fu, Han; Chen, Jun

    2013-11-01

    It has been shown that aging can greatly influence the integrity and ultrastructure of white matter and the myelin sheath; however, studies regarding the effects of aging on the expression of myelin proteins are still limited. In the present study, immunohistochemical mapping was used to investigate the overall expression of myelin basic protein (Mbp) and myelin oligodendrocyte glycoprotein (Mog) in the central nervous system (CNS) of rats in postnatal months 2, 5, 18 and 26. Astrocyte and microglia activation was also detected by glial fibrillary acidic protein (GFAP) or ionized calcium-binding adaptor molecule 1 (Iba1) staining and western blotting. A significant decline of Mbp and Mog was identified as a universal alteration in the CNS of aged rats. Aging also induced significant astrocyte and microglial activation. Correlation analysis indicated a negative correlation between the reduction of age‑related myelin proteins and glial activation in aging. This correlation of myelin breakdown and glial activation in aging may reveal new evidence in connecting the inflammation and myelin breakdown mechanism of age‑related neurodegenerative diseases.

  2. Role of Na+/Ca2+ exchanger (NCX in modulating postovulatory aging of mouse and rat oocytes.

    Directory of Open Access Journals (Sweden)

    Chuan-Xin Zhang

    Full Text Available We studied the role of the Na+/Ca2+ exchanger (NCX in modulating oocyte postovulatory aging by observing changes in NCX contents and activities in aging mouse and rat oocytes. Whereas the NCX activity was measured by observing oocyte activation following culture with NCX inhibitor or activator, the NCX contents were determined by immunohistochemical quantification. Although NCX was active in freshly-ovulated rat oocytes recovered 13 h post hCG injection and in aged oocytes recovered 19 h post hCG in both species, it was not active in freshly-ovulated mouse oocytes. However, NCX became active when the freshly-ovulated mouse oocytes were activated with ethanol before culture. Measurement of cytoplasmic Ca2+ revealed Ca2+ increases always before NCX activation. Whereas levels of the reactive oxygen species (ROS and the activation susceptibility increased, the density of NCX member 1 (NCX1 decreased significantly with oocyte aging in both species. While culture with H2O2 decreased the density of NCX1 significantly, culture with NaCl supplementation sustained the NCX1 density in mouse oocytes. It was concluded that (a the NCX activity was involved in the modulation of oocyte aging and spontaneous activation; (b ROS and Na+ regulated the NCX activity in aging oocytes by altering its density as well as functioning; and (c cytoplasmic Ca2+ elevation was essential for NCX activation in the oocyte.

  3. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period.

    Science.gov (United States)

    Rossi, Stefano; Fortunati, Ilaria; Carnevali, Luca; Baruffi, Silvana; Mastorci, Francesca; Trombini, Mimosa; Sgoifo, Andrea; Corradi, Domenico; Callegari, Sergio; Miragoli, Michele; Macchi, Emilio

    2014-01-01

    Advanced age alone appears to be a risk factor for increased susceptibility to cardiac arrhythmias. We previously observed in the aged rat heart that sinus rhythm ventricular activation is delayed and characterized by abnormal epicardial patterns although conduction velocity is normal. While these findings relate to an advanced stage of aging, it is not yet known when and how ventricular electrical impairment originates and which is the underlying substrate. To address these points, we performed continuous telemetry ECG recordings in freely moving rats over a six-month period to monitor ECG waveform changes, heart rate variability and the incidence of cardiac arrhythmias. At the end of the study, we performed in-vivo multiple lead epicardial recordings and histopathology of cardiac tissue. We found that the duration of ECG waves and intervals gradually increased and heart rate variability gradually decreased with age. Moreover, the incidence of cardiac arrhythmias gradually increased, with atrial arrhythmias exceeding ventricular arrhythmias. Epicardial multiple lead recordings confirmed abnormalities in ventricular activation patterns, likely attributable to distal conducting system dysfunctions. Microscopic analysis of aged heart specimens revealed multifocal connective tissue deposition and perinuclear myocytolysis in the atria. Our results demonstrate that aging gradually modifies the terminal part of the specialized cardiac conducting system, creating a substrate for increased arrhythmogenesis. These findings may open new therapeutic options in the management of cardiac arrhythmias in the elderly population.

  4. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period.

    Directory of Open Access Journals (Sweden)

    Stefano Rossi

    Full Text Available Advanced age alone appears to be a risk factor for increased susceptibility to cardiac arrhythmias. We previously observed in the aged rat heart that sinus rhythm ventricular activation is delayed and characterized by abnormal epicardial patterns although conduction velocity is normal. While these findings relate to an advanced stage of aging, it is not yet known when and how ventricular electrical impairment originates and which is the underlying substrate. To address these points, we performed continuous telemetry ECG recordings in freely moving rats over a six-month period to monitor ECG waveform changes, heart rate variability and the incidence of cardiac arrhythmias. At the end of the study, we performed in-vivo multiple lead epicardial recordings and histopathology of cardiac tissue. We found that the duration of ECG waves and intervals gradually increased and heart rate variability gradually decreased with age. Moreover, the incidence of cardiac arrhythmias gradually increased, with atrial arrhythmias exceeding ventricular arrhythmias. Epicardial multiple lead recordings confirmed abnormalities in ventricular activation patterns, likely attributable to distal conducting system dysfunctions. Microscopic analysis of aged heart specimens revealed multifocal connective tissue deposition and perinuclear myocytolysis in the atria. Our results demonstrate that aging gradually modifies the terminal part of the specialized cardiac conducting system, creating a substrate for increased arrhythmogenesis. These findings may open new therapeutic options in the management of cardiac arrhythmias in the elderly population.

  5. Neuroprotective effect ofShenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Ying-min Cai; Yong Zhang; Peng-bo Zhang; Lu-ming Zhen; Xiao-ju Sun; Zhi-ling Wang; Ren-yan Xu; Rong-liang Xue

    2016-01-01

    Shenqi Fuzheng injection is extracted from the Chinese herbsRadix Astragali andRadix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats (20–22 months) were divided into three groups: sham, model, and treatment.Shenqi Fuzheng injection or saline (40 mL/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+levels, lower ac-tivities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our ifndings indicate thatShenqi Fuzheng injec-tion exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation.

  6. Effects of Estrogen on ER, NGF, and ChAT Expression in Cerebellum of Aging Female Sprague-Dawley Rat

    Institute of Scientific and Technical Information of China (English)

    CHEN Zheng-li; FAN Guang-li; LUO Qi-hui; ZHU Chun-mei; HUANG Yi-dan

    2007-01-01

    This article discusses the effects of estrogen on the expression of estrogen receptor (ER), nerve growth factor (NGF), and choline acetyltransferase (ChAT) in the cerebellum of rats. The model of aging female rat was established to study the expression and distribution of ER, NGF, and ChAT in the cerebellum following 17β-estradiol treatment using the technique of immunohistochemical ultrasensitive SP in sprague-dawley rat. The immunoreactive productions were distributed in stratum Purkinje cell, nucleus dentatus, nucleus interpositus, and nucleus fastigii of cerebellum, and the ER positive production was mainly located in the plasma, cytoplasmic membrane, and neurite, and also existed in nucleus. The general tendency of the expression of ER, NGF, and ChAT positive production in the cerebellum cortex and nuclei of aging rat significantly decreases, while the intensity and quantity of the immunoreactive production ascends predominantly after 17β-estradiol treatment. Simultaneously, the positive neurite of Purkinje cell shows a similar tendency. The abovementioned results suggest that the estrogen upregulates the expression of NGF and ChAT, and plays a vital role in sustaining and protecting the structure and function of cerebellum neurons. Furthermore, the similarity of their changing tendency implies that they were correlated and cooperated during the course in effect of estrogen on cerebellum. It also showed that the action of estrogen in cerebellum could be via genomic and nongenomic mechanism.

  7. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus;

    2001-01-01

    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... for quantitative bone histomorphometry and the left proximal tibia was subjected to biomechanical testing. Baseline and vehicle-treated OVX rats were severely osteopenic because their tibial cancellous bone volumes were less than 5% compared with mean values of 20.3% and 15.0% in baseline and vehicle......-treated control rats, respectively. Treatment of OVX rats for 2 weeks with bFGF alone did not significantly increase tibial cancellous bone volume but induced marked increases in osteoid volume, osteoblast surface, and osteoid surface. Sequential treatment of aged OVX rats with bFGF and PTH increased tibial...

  8. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    Science.gov (United States)

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS.

  9. Effects of simulated increased gravity on the rate of aging of rats - Implications for the rate of living theory of aging

    Science.gov (United States)

    Economos, A. C.; Ballard, R. C.; Blunden, M.; Miquel, J.; Lindseth, K. A.; Fleming, J.; Philpott, D. E.; Oyama, J.

    1982-01-01

    It was found that the rate of aging of 17 month old rats which had been exposed to 3.14 times normal gravity in an animal centrifuge for 8 months was larger than that of the controls as determined by the apparently elevated lipofuscin content in heart and kidney, reduced numbers and increased size of mitochondria of heart tissue, and inferior liver mitochondria respiration. Steady-state food intake per day per kg body weight, which is presumably proportional to rate of living or specific basal metabolic expenditure, was found to be about 18 percent higher than in the controls after an initial 2 month adaptation period. Although half of the centrifuged animals lived only a little shorter than the controls (average about 343 vs. 364 days on the average, statistically nonsignificant), the remaining half (longest survivors) lived on the centrifuge an average of 520 days (range 483-572) compared to an average of 574 days (range 502-615) for the controls, computed from the onset of centrifugation, or 11 percent shorter. These findings indicate that a moderate increase of the level of basal metabolism of young adult rats adapted to hypergravity compared to controls in normal gravity is accompanied by a roughly similar increase in the rate of organ aging and reduction of survival, in agreement with Pearl's (1928) rate of living theory of aging, previously experimentally demonstrated only in poikilotherms.

  10. Effects of sustained proNGF blockade on attentional capacities in aged rats with compromised cholinergic system.

    Science.gov (United States)

    Yegla, B; Parikh, V

    2014-03-01

    Disruption in nerve growth factor (NGF) signaling via tropomyosin-related kinase A (trkA) receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer's disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals' performance on signal trials in both the sustained attention task (SAT) and the cognitively taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked acetylcholine (ACh) release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder

  11. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  12. Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats.

    Science.gov (United States)

    de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José

    2015-09-01

    During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body

  13. Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis.

    Science.gov (United States)

    Kumar, Vivek; Pandey, Ankita; Jahan, Sadaf; Shukla, Rajendra Kumar; Kumar, Dipak; Srivastava, Akriti; Singh, Shripriya; Rajpurohit, Chetan Singh; Yadav, Sanjay; Khanna, Vinay Kumar; Pant, Aditya Bhushan

    2016-01-01

    The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders. PMID:27334554

  14. Vitamin B12 and Folic Acid Imbalance Modifies NK Cytotoxicity, Lymphocytes B and Lymphoprolipheration in Aged Rats

    Directory of Open Access Journals (Sweden)

    Teresa Partearroyo

    2013-11-01

    Full Text Available Different vitamin B12 and folic acid concentrations could exacerbate the immune response. The aim was to evaluate different dietary folic acid and vitamin B12 levels on the immune response in aged rats. Male Sprague Dawley aged rats were assigned to three folic acid groups (deficient, control, supplemented each in absence of vitamin B12 for 30 days. Several parameters of innate and acquired immune responses were measured. Serum and hepatic folate levels increased according to folic acid dietary level, while vitamin B12 levels decreased. There was a significant decrease in natural killer cell-mediated cytotoxicity in the spleen for the vitamin B12 deficient diet and folic acid control diet groups. Significant changes in CD45 lymphocyte subsets were also observed according to dietary imbalance. Lymphoproliferative response to concanavalin A and phytohemagglutinin did not differ significantly between groups. The spleen response to lipopolysaccharide increased significantly, but was unmodified for the other organs. An imbalance between dietary vitamin B12 and folic acid concentrations alters some immunological parameters in aged rats. Therefore, the ratio between folate and vitamin B12 could be as important as their absolute dietary concentrations.

  15. The effects of buthionine sulfoximine treatment on diaphragm contractility and SERCA pump function in adult and middle aged rats

    OpenAIRE

    Smith, Ian C; Vigna, Chris; Levy, Andrew S; Steven G Denniss; Rush, James W E; Tupling, A. Russell

    2015-01-01

    This study examined the effects of 10 days of buthionine sulfoximine (BSO) treatment on in vitro contractility and sarcoplasmic reticulum calcium pump (SERCA) expression and function in adult (AD; 6–8 months old) and middle aged (MA; 14–17 months old) rat diaphragm in both the basal state and following fatiguing stimulation. BSO treatment reduced the cellular concentrations of free glutathione (GSH) by >95% and oxidized glutathione (GSSG) by >80% in both age cohorts. GSH content in AD Control...

  16. AT WHAT AGE IS THE DEVELOPING CEREBRAL-CORTEX OF THE RAT COMPARABLE TO THAT OF THE FULL-TERM NEWBORN HUMAN BABY

    NARCIS (Netherlands)

    ROMIJN, HJ; HOFMAN, MA; GRAMSBERGEN, A

    1991-01-01

    By means of a comparative study of experimental data from the literature we estimated at what age the rat cerebral cortex corresponds to that of the full-term newborn human infant with regard to the degree of maturation. As a result of this study we suggest that the 12-13-day-old rat pup fulfills th

  17. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Buga

    Full Text Available BACKGROUND: Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. CONCLUSION/SIGNIFICANCE: We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.

  18. Quantification of Age-Related Tissue-Level Failure Strains of Rat Femoral Cortical Bones Using an Approach Combining Macrocompressive Test and Microfinite Element Analysis.

    Science.gov (United States)

    Fan, Ruoxun; Gong, He; Zhang, Rui; Gao, Jiazi; Jia, Zhengbin; Hu, Yanjuan

    2016-04-01

    Bone mechanical properties vary with age; meanwhile, a close relationship exists among bone mechanical properties at different levels. Therefore, conducting multilevel analyses for bone structures with different ages are necessary to elucidate the effects of aging on bone mechanical properties at different levels. In this study, an approach that combined microfinite element (micro-FE) analysis and macrocompressive test was established to simulate the failure of male rat femoral cortical bone. Micro-FE analyses were primarily performed for rat cortical bones with different ages to simulate their failure processes under compressive load. Tissue-level failure strains in tension and compression of these cortical bones were then back-calculated by fitting the experimental stress-strain curves. Thus, tissue-level failure strains of rat femoral cortical bones with different ages were quantified. The tissue-level failure strain exhibited a biphasic behavior with age: in the period of skeletal maturity (1-7 months of age), the failure strain gradually increased; when the rat exceeded 7 months of age, the failure strain sharply decreased. In the period of skeletal maturity, both the macro- and tissue-levels mechanical properties showed a large promotion. In the period of skeletal aging (9-15 months of age), the tissue-level mechanical properties sharply deteriorated; however, the macromechanical properties only slightly deteriorated. The age-related changes in tissue-level failure strain were revealed through the analysis of male rat femoral cortical bones with different ages, which provided a theoretical basis to understand the relationship between rat cortical bone mechanical properties at macro- and tissue-levels and decrease of bone strength with age. PMID:26902102

  19. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats.

    Science.gov (United States)

    Abbas, Abdul-Karim

    2016-01-01

    In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8-10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary.

  20. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats.

    Science.gov (United States)

    Abbas, Abdul-Karim

    2016-01-01

    In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8-10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary. PMID:27517693

  1. Age-related changes in the dynamics of potassium-evoked L-glutamate release in the striatum of Fischer 344 rats.

    Science.gov (United States)

    Nickell, J; Pomerleau, F; Allen, J; Gerhardt, G A

    2005-01-01

    In the present studies we used a multisite ceramic-based microelectrode for rapid (800 ms) and low level measures of L-glutamate in vivo. We measured the amplitude and clearance rate of phasic changes in L-glutamate release produced by local application of potassium by a micropipette placed adjacent to the recording sites in the striatum of young (6 month), late middle aged (18 month) and aged (24 month) Fischer 344 rats. Our results showed that the amplitudes and clearance rates of potassium-evoked release of L-glutamate in the striatum were significantly decreased in aged rats as compared to the other age groups. In addition, the sensitivity of glutamate fibers to depolarization with potassium was significantly decreased in the aged rats as compared to young animals. Taken together, these data are consistent with age-related alterations in glutamate release dynamics, which may involve a compensatory mechanism for maintaining static glutamate concentrations within the striatum.

  2. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats

    Directory of Open Access Journals (Sweden)

    Tetsuro eTamaki

    2014-10-01

    Full Text Available Qualitative changes in the peripheral motor system were examined using Young, Adult, Middle-aged and Old-aged rats in order to assess before and after the appearance of sarcopenia symptoms. Significant loss of muscle mass and strength, and slow-type fiber grouping with a loss of innervated nerve fibers were used as typical markers of sarcopenia. Dynamic twitch and tetanus tension and evoked electromyogram (EEMG were measured via electrical stimulation through the sciatic nerve under anesthesia using our force-distance transducer system before and after sciatectomy. Digital and analogue data sampling was performed and shortening and relaxing velocity of serial twitches was calculated with tension force. Muscle tenderness in passive stretching was also measured as stretch absorption ability, associated with histological quantitation of muscle connective tissues. The results indicated the validity of the present model, in which Old-aged rats clearly showed the typical signs of sarcopenia, specifically in the fast-type plantaris muscles, while the slow-type soleus showed relatively mild syndromes. These observations suggest the following qualitative alterations as the pathophysiological mechanism of sarcopenia: 1 reduction of shortening and relaxing velocity of twitch; 2 decline of muscle tenderness following an increase in the connective tissue component; 3 impaired recruitment of motor units (sudden depression of tetanic force and EEMG in higher stimulation frequencies over 50-60 Hz; and 4 easy fatigability in the neuromuscular junctions. These findings are likely to be closely related to significant losses in fast-type motor units, muscle strength and contraction velocity, which could be a causative factor in falls in the elderly. Importantly, some of these symptoms began in Middle-aged rats that showed no other signs of sarcopenia. Thus, prevention should be started in middle age that could be retained relatively higher movement ability.

  3. Idade dos ratos versus idade humana: qual é a relação? Rat's age versus human's age: what is the relationship?

    Directory of Open Access Journals (Sweden)

    Nelson Adami Andreollo

    2012-03-01

    Full Text Available RACIONAL: Milhões de ratos são empregados anualmente em pesquisas e no ensino. A exata relação entre a idade dos ratos, comparada com a idade dos humanos ainda é assunto de discussão e controvérsias. OBJETIVO: É revisar a literatura, analisando a idade dos ratos em comparação com a idade dos homens. MÉTODOS: Foram revisadas as publicações existentes sobre o assunto contidas nas bases Medline/Pubmed, Scielo, Biblioteca Cochrane e Lilacs cruzando os descritores ratos, cirurgia experimental e fisiologia. RESULTADOS: Ratos desenvolvem rapidamente durante a infância e se tornam sexualmente maduros com cerca de seis semanas de idade, mas atingem a maturidade social cinco a seis meses mais tarde. Na idade adulta, a cada mês do animal é aproximadamente equivalente a 2,5 anos humanos. Vários autores realizaram trabalhos experimentais em ratos e afirmaram existir correspondência de 30 dias de vida do homem para cada dia de vida do rato. CONCLUSÃO: As diferenças na anatomia, fisiologia, desenvolvimento e fenômenos biológicos devem ser levados em consideração quando são analisados os resultados de qualquer pesquisa em ratos em que a idade é um fator crucial. Cuidado especial é necessário ser tomado quando os estudos efetuados pretendem produzir correlação com a vida humana. Para isso, atenção especial é necessária para verificar a fase em dias do animal e sua correlação com os anos em humanos.BACKGROUND: Millions of mice are used annually in research and teaching. The exact relationship between age of the animals compared with the age of humans is still subject to discussion and controversy. OBJECTIVE: Literature review analyzing the age of rats in comparison with men age. METHODS: Were reviewed the existing publications on the subject contained in Medline / Pubmed, Scielo, The Cochrane Database of Systematic Reviews and Lilacs crossing the headings rats, experimental surgery and physiology. RESULTS: Rats rapidly develop

  4. Calcium channel blockers, more than diuretics, enhance vascular protective effects of angiotensin receptor blockers in salt-loaded hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Eiichiro Yamamoto

    Full Text Available The combination therapy of an angiotensin receptor blocker (ARB with a calcium channel blocker (CCB or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP were divided into 6 groups, and they were orally administered (1 vehicle, (2 olmesartan, an ARB, (3 azelnidipine, a CCB, (4 hydrochlorothiazide, a diuretic, (5 olmesartan combined with azelnidipine, or (6 olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB.

  5. Calcium Channel Blockers, More than Diuretics, Enhance Vascular Protective Effects of Angiotensin Receptor Blockers in Salt-Loaded Hypertensive Rats

    Science.gov (United States)

    Yamamoto, Eiichiro; Kataoka, Keiichiro; Dong, Yi-Fei; Koibuchi, Nobutaka; Toyama, Kensuke; Sueta, Daisuke; Katayama, Tetsuji; Yasuda, Osamu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2012-01-01

    The combination therapy of an angiotensin receptor blocker (ARB) with a calcium channel blocker (CCB) or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP) were divided into 6 groups, and they were orally administered (1) vehicle, (2) olmesartan, an ARB, (3) azelnidipine, a CCB, (4) hydrochlorothiazide, a diuretic, (5) olmesartan combined with azelnidipine, or (6) olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS) pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB. PMID:22720058

  6. EFFECTS OF AGE INCREMENT AND 36-WEEK EXERCISE TRAINING ON ANTIOXIDANT ENZYMES AND APOPTOSIS IN RAT HEART TISSUE

    Directory of Open Access Journals (Sweden)

    Nasser Ahmadiasl

    2007-06-01

    Full Text Available This study investigated the onset of age-related changes in the myocardial antioxidant enzymes and apoptosis and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age increment alterations in the myocardial antioxidant enzymes and apoptosis at mid age and to determine whether exercise-induced antioxidant defense system could attenuate lipid peroxidation. Thirty six male Wistar rats were randomly assigned to exercise trained (n = 18 and sedentary (n = 18 groups. The rats in the training group went under 12, 24 and 36 weeks of moderate exercise trainings (25 m·min-1 for 60-min with a 0% slope. Six sedentary controls were killed together with each exercise group at the end of the training programs. Levels of thiobarbituric acid-reactive substances (TBARS and catalase (CAT activity in myocardial homogenates were unchanged by training irrespective of the protocol duration. However, an increased content of the TBARS was detected in hearts from both the 24 and 36-week trained and sedentary control rats when compared with their corresponding 12-week groups (p<0.01. The activity of superoxide dismutase (SOD remained unchanged after the 12-week training period whereas a significant increase was observed in heart homogenates of 24-week trained animals as compared with their sedentary controls (p<0.05. The activity of glutathione peroxidase (GPX remained unchanged. The rates of apoptosis which was detected by ELISA assays, were significantly modified after 24 and 36-week of training (p<0.05. These results demonstrate that a long-term endurance training (24 weeks induced increases in SOD activities in rat myocardium and elicited a marked reduction in apoptosis rate. However, a shorter training program (12 weeks was not effective in increasing heart antioxidant defenses

  7. Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress

    OpenAIRE

    Rodríguez-González, Guadalupe L.; Reyes-Castro, Luis A.; Vega, Claudia C; Boeck, Lourdes; Ibáñez, Carlos; Nathanielsz, Peter W.; Larrea, Fernando; Zambrano, Elena

    2014-01-01

    Maternal protein restriction (MPR) in pregnancy causes life course organ dysfunction, but few studies link the developmental origins of disease hypothesis to early aging. Suboptimal developmental nutrition increases oxidative stress (OS) and male infertility, damaging sperm function. We hypothesized that MPR in pregnancy accelerates age-related changes in testicular and sperm function related to both maternal diet and increased testicular OS in rat offspring. We studied male rats whose pregna...

  8. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    OpenAIRE

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were s...

  9. Effects of aged garlic extract and endurance exercise on skeletal muscle FNDC-5 and circulating irisin in high-fat-diet rat models

    OpenAIRE

    Seo, Dae Yun; Kwak, Hyo Bum; Lee, Sung Ryul; Cho, Yeun Suk; Song, In-Sung; Kim, Nari; Bang, Hyun Seok; Rhee, Byoung Doo; Ko, Kyung Soo; Park, Byung Joo; Han, Jin

    2014-01-01

    BACKGROUND/OBJECTIVES Irisin, a newly identified hormone, is associated with energy homeostasis. We investigated whether aged garlic extract (AGE) and exercise training intervention could improve body weight, insulin sensitivity, skeletal muscle fibronectin domain containing protein 5 (FNDC-5) levels, and plasma irisin in high-fat diet (HFD). MATERIALS/METHODS Male Sprague Dawley rats were fed a ND (normal diet, n = 5) or HFD (n = 28) for 6 weeks. After 6 weeks, all rats were divided into 5 g...

  10. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats

    Institute of Scientific and Technical Information of China (English)

    LI Ying; JI Yong-juan; JIANG Hong; LIU De-xiang; ZHANG Qian; FAN Shu-jian; PAN Fang

    2009-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Methods Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Results Age and stress had different effects on the behavior of different aged animals (age: F=6.173, P <0.05, stress: F=6.056, P <0.05). Stress was the main factor affecting sucrose preference (F=123.608, P <0.05). Decreased sucrose preference and suppressed behavior emerged directly following stress, lasting to at least the eighth day after stress in young animals (P <0.05). The older stress rats showed a lower sucrose preference than young stress rats (P <0.05). Older control rats behaved differently from the younger control animals in the OF test, spending more time in the central square (P <0.05), exhibiting fewer vertical movements (P <0.05) and less grooming (P <0.05). Following exposure to stress, older-aged rats showed no obvious changes in vertical movement and grooming. This indicates that aged rats were in an unexcited state before the stress period, and responded less to stressful stimuli than younger rats. There was significantly lower BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress

  11. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2014-08-01

    Full Text Available Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important nongenetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months, adult (5 and 8 months, and middle-aged (16 months rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p<0.05, and Hpt concentration increased with the age from adolescence to middle-age (p<0.001. ApoE concentration, in hippocampus, was higher (p<0.001 in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids.The age-related changes might affect neuronal function and survival in brain, and have important implications in

  12. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain.

    Science.gov (United States)

    Lee, Ho-Sung; Kang, Dai-In; Yoon, Seung Zhoo; Ryu, Yeon Hee; Lee, Inhyung; Kim, Hoon-Gi; Lee, Byung-Cheon; Lee, Ki Bog

    2015-07-01

    With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix. PMID:26330833

  13. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain

    Directory of Open Access Journals (Sweden)

    Ho-Sung Lee

    2015-01-01

    Full Text Available With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix.

  14. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain

    Institute of Scientific and Technical Information of China (English)

    Ho-Sung Lee; Dai-In Kang; Seung Zhoo Yoon; Yeon Hee Ryu; Inhyung Lee; Hoon-Gi Kim; Byung-Cheon Lee; Ki Bog Lee

    2015-01-01

    With chromium-hematoxylin staining, we found evidence for the existence of novel age-depen-dent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-depen-dent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increas-ing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix.

  15. Soft-shelled turtle eggs inhibit the formation of AGEs in the serum and skin of diabetic rats

    Science.gov (United States)

    Yamanaka, Mikihiro; Shirakawa, Jun-ichi; Ohno, Rei-ichi; Shinagawa, Masatoshi; Hatano, Kota; Sugawa, Hikari; Arakawa, Shoutaro; Furusawa, Chisato; Nagai, Mime; Nagai, Ryoji

    2016-01-01

    Although soft-shelled turtle eggs (STE) have been used as a folk medicine for revitalization and the prevention of lifestyle-related diseases, the scientific evidence to support the use of STE in this manner is scarce. To clarify the physiological evidence, STE was administered to diabetic rats and the inhibitory effects on the formation of advanced glycation end-products (AGEs), which are known to increase with the progression of lifestyle-related diseases, were examined. STE and citric acid were administered to diabetic rats for 3 months, and serum Nε-(carboxymethyl)lysine (CML) contents were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Although the administration of STE did not affect the body weight, glycoalbumin or ketone body levels, it significantly reduced the serum level of CML. The accumulation of AGEs, which was measured by fluorescence intensity in the auricle skin and the lower gums, was also reduced by the administration of STE to a similar extent to that observed with citric acid. This report provides the first evidence that the oral administration of STE reduces the formation of AGEs, suggesting that one of the health effects of STE may be the inhibition of AGEs formation. PMID:27013779

  16. AGE AND SEX CHARACTERISTICS OF MELATONIN-POSITIVE-LABELED CELLS OF THE GASTRIC MUCOSA IN DESYNCHRONOSIS IN RATS.

    Science.gov (United States)

    Hnatiuk, V; Kononenko, N; Kozub, T; Chikitkina, V; Galiy, L

    2016-06-01

    The aim of the research was to study the state of melatonin-positive-labeled cells (MPLC) of GM in desynchronosis in rats of different age and gender. 780 sections of the pyloric part of the gastric mucosa were studied in rats of both genders at the age of 9, 15 and 20 months. Animals were divided into intact control groups and the groups of the animals kept under the conditions of continuous light for 14 days - desynchronosis. The study was performed by the method of immunohistochemical staining with the primary antibodies to melatonin (Biorbyt, UK) and the secondary Alexa Fluor 488-conjugated antibody (Abcam, UK). In the course of the research it was found that MPLC in all experimental groups were mainly located in the basal and middle segments of the tubular glands of gastric mucosa and were represented by three types of cells. In desynchronosis the number of melatonin-positive-labeled cells significantly reduced in almost every age group, with the exception of females at the age of 20 months. Thus in elderly males and females the number of melatonin-positive-labeled cells of type III increases, whereas in young and mature males it decreases, and cells of type I predominate. PMID:27441544

  17. Systemic Inflammatory Responses and Lung Injury following Hip Fracture Surgery Increases Susceptibility to Infection in Aged Rats

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2013-01-01

    Full Text Available Pulmonary infections frequently occur following hip fracture surgery in aged patients. However, the underlying reasons are not fully understood. The present study investigates the systemic inflammatory response and pulmonary conditions following hip fracture surgery as a means of identifying risk factors for lung infections using an aged rodent model. Aged, male Sprague-Dawley rats (8 animals per group underwent a sham procedure or hip fracture plus femoral intramedullary pinning. Animals were sacrificed 1, 3, and 7 days after the injury. Markers of systemic inflammation and pulmonary injury were analyzed. Both sham-operated and injured/surgical group animals underwent intratracheal inoculation with Pseudomonas aeruginosa 1, 3, and 7 days after surgery. P. aeruginosa counts in blood and bronchoalveolar lavage (BAL fluid and survival rates were recorded. Serum TNF-α, IL-6, IL-1β, and IL-10 levels and markers of pulmonary injury were significantly increased at 1 and 3 days following hip fracture and surgery. Animals challenged with P. aeruginosa at 1 and 3 days after injury had a significantly decreased survival rate and more P. aeruginosa recovered from blood and BAL fluid. This study shows that hip fracture and surgery in aged rats induced a systemic inflammatory response and lung injury associated with increased susceptibility to infection during the acute phase after injury and surgery.

  18. Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina.

    Science.gov (United States)

    Chan, Leanne L H; Lee, Eun-Jin; Humayun, Mark S; Weiland, James D

    2011-06-01

    Electrical stimulation threshold and retinal ganglion cell density were measured in a rat model of retinal degeneration. We performed in vivo electrophysiology and morphometric analysis on normal and S334ter line 3 (RD) rats (ages 84-782 days). We stimulated the retina in anesthetized animals and recorded evoked responses in the superior colliculus. Current pulses were delivered with a platinum-iridium (Pt-Ir) electrode of 75-μm diameter positioned on the epiretinal surface. In the same animals used for electrophysiology, SMI-32 immunolabeling of the retina enabled ganglion cell counting. An increase in threshold currents positively correlated with age of RD rats. SMI-32-labeled retinal ganglion cell density negatively correlated with age of RD rats. ANOVA shows that RD postnatal day (P)100 and P300 rats have threshold and density similar to normal rats, but RD P500 and P700 rats have threshold and density statistically different from normal rats (P < 0.05). Threshold charge densities were within the safety limits of Pt for all groups and pulse configurations, except at RD P600 and RD P700, where pulses were only safe up to 1- and 0.2-ms duration, respectively. Preservation of ganglion cells may enhance the efficiency and safety of electronic retinal implants.

  19. Interplay between interictal spikes and behavioral seizures in young, but not aged pilocarpine-treated epileptic rats.

    Science.gov (United States)

    Bajorat, Rika; Goerss, Doreen; Brenndörfer, Linda; Schwabe, Lars; Köhling, Rüdiger; Kirschstein, Timo

    2016-04-01

    Interictal spike activity is commonly observed in the EEG of patients with epilepsy, but the causal interrelationship between interictal spikes and behavioral seizures is poorly understood. We performed long-term video-EEG monitoring of 16 epileptic rats after pilocarpine-induced status epilepticus and five control animals. To quantify the interplay between periods of spikes and seizures, we calculated the time spent with spikes as well as the time spent with seizures for each animal. Within a given subject, we found a significant correlation between these two measures in 7/11 young epileptic rats (aged pilocarpine-treated animals exhibited significant correlation coefficients between spike periods and seizures (>600days, Paged epileptic rats showed a prominent predominance for either spike periods or seizures, which might explain the absence of significant correlation in this population. We found that there is a significant interplay between interictal periods of spikes and behavioral seizures in young epileptic animals, but this association is absent during aging. PMID:26926072

  20. Effect of aging on the healing of colonic anastomoses in rats Efeitos do envelhecimento na cicatrização de anastomoses colônicas em ratos

    OpenAIRE

    Maria de Lourdes Pessole Biondo-Simões; Sergio Ossamu Ioshii; Letícia Kimura; Fábio Martynetz; Michele Lemos

    2004-01-01

    PURPOSE: To evaluate the healing of the colonic anastomoses in old and young adult rats. METHODS: Fifty six Wistar rats were allocated in two groups, the young animals aged on average 110 days and the old animals aged average 762 days. Under anesthesia, the rats underwent a midline laparotomy and the colon was sectioned 2 cm above the peritoneal deflection. An end-to-end interrupted one layer colonic anastomosis was performed and the animals sacrificed on the 3rd, 7th, 14th and 21st postopera...

  1. Age influence on retention, distribution and internal doses of 85Sr in rat

    International Nuclear Information System (INIS)

    After I.V. 85Sr, the whole body 85Sr-retentions in rats were fit to two compartment exponential equations. The equation parameters showed a significantly difference between the young group and both the adult and old groups (p 2) for 85Sr in the slow compartment decreased in regular order from the young to the old groups. In the bone 85Sr-retention equations Tb2 of the slow compartment for 85Sr in the young group was significantly lower than the adult and old groups. The doses of the whole body and red-marrow for young rats were 4.2 times as much as those of adult rats, and 6.2 and 5.9 times as much as those old rats. The dose-cumulative speeds was most quick in the young groups and similar in the adult and the old

  2. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    International Nuclear Information System (INIS)

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with 137Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation

  3. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Tatsuhiko, E-mail: t_imaoka@nirs.go.jp [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Nishimura, Mayumi; Daino, Kazuhiro [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Kokubo, Toshiaki [Department of Technical Support and Development, Research Development and Support Center, National Institute of Radiological Sciences, Chiba (Japan); Doi, Kazutaka [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Iizuka, Daisuke [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Nishimura, Yukiko [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Okutani, Tomomi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Biology, Graduate School of Science, Chiba University, Chiba (Japan); Takabatake, Masaru [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo (Japan); Kakinuma, Shizuko; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  4. Late Enrichment Maintains Accurate Recent and Remote Spatial Memory Only in Aged Rats That Were Unimpaired When Middle Aged

    Science.gov (United States)

    Fuchs, Fanny; Herbeaux, Karine; Aufrere, Noémie; Kelche, Christian; Mathis, Chantal; Barbelivien, Alexandra; Majchrzak, Monique

    2016-01-01

    Exposure of rodents to a stimulating environment has beneficial effects on some cognitive functions that are impaired during physiological aging, and especially spatial reference memory. The present study investigated whether environmental enrichment rescues these functions in already declining subjects and/or protects them from subsequent…

  5. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age

    Science.gov (United States)

    Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng

    2016-01-01

    The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats. PMID:27076782

  6. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  7. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    Science.gov (United States)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.

  8. Treadmill Training Increases SIRT-1 and PGC-1α Protein Levels and AMPK Phosphorylation in Quadriceps of Middle-Aged Rats in an Intensity-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Nara R. C. Oliveira

    2014-01-01

    Full Text Available The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-κB and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation in quadriceps of rats. Male Wistar rats at 3 (young and 18 months (middle-aged rats of age were divided into nonexercised (NE and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.

  9. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  10. Aqueous Extract of Agaricus blazei Murrill Prevents Age-Related Changes in the Myenteric Plexus of the Jejunum in Rats

    Directory of Open Access Journals (Sweden)

    Ana Paula de Santi-Rampazzo

    2015-01-01

    Full Text Available This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7, 12 (C12 and CA12, and 23 months of age (C23 and CA23. The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D+ neuronal and S100+ glial cells, with maintenance of the nNOS+ nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells.

  11. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    Science.gov (United States)

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis. PMID:26318578

  12. Age-related changes in glutathione and glutathione-related enzymes in rat brain

    OpenAIRE

    Zhu, Yuangui; Carvey, Paul M.; Ling, Zaodung

    2006-01-01

    The most reliable and robust risk factor for some neurodegenerative diseases is aging. It has been proposed that processes of aging are associated with the generation of reactive oxygen species and a disturbance of glutathione homeostasis in the brain. Yet, aged animals have rarely been used to model the diseases that are considered to be age-related such as Parkinson's or Alzheimer's disease. This suggests that the results from these studies would be more valuable if aged animals were used. ...

  13. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats.

    Science.gov (United States)

    Lana, Daniele; Iovino, Ludovica; Nosi, Daniele; Wenk, Gary L; Giovannini, Maria Grazia

    2016-10-01

    We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells. PMID:27466072

  14. Obesity augments the age-induced increase in mitochondrial capacity for H(2) O(2) release in Zucker fatty rats

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Jeppesen, Jacob; Madsen, K;

    2012-01-01

    determined and related to citrate synthase activity to determine intrinsic mitochondrial function. Mitochondrial-specific super-oxide dismuthase (MnSOD) protein content was determined in isolated mitochondria and muscle homogenate. Catalase protein content was determined in muscle homogenate. Results: Young...... was associated with increased mitochondrial hydrogenperoxide release. MnSOD tended to be higher in the obese strain in the isolated mitochondria. Regardless of age, catalase protein content was significantly lower in the obese rats. Conclusions: This study shows that the augmented increase in obesity and insulin...

  15. Content of microelements in the rat pineal gland at different ages and the effects of selenium supplementation

    Directory of Open Access Journals (Sweden)

    Demajo M.

    2006-01-01

    Full Text Available The mammalian pineal gland regulates a number of important physiological processes. In this paper we report changes in the content of iron (Fe, zinc (Zn, copper (Cu, and selenium (Se in the male rat pineal glands at 4, 5, 8, and 12 months of age. The effect of Se supplementation in drinking water on the content of pineal gland microelements was also studied. Selenium (Se-dependent changes in pineal gland reported in this study suggest novel physicochemical and biochemical properties of Se, an important element essential in the antioxidative processes, yet known to influence a number of endocrine processes.

  16. Abnormal nitric oxide production in aged rat mesenteric arteries is mediated by NAD(P)H oxidase-derived peroxide

    OpenAIRE

    Zhou, Xiaosun; Bohlen, H. Glenn; Unthank, Joseph L.; Miller, Steven J.

    2009-01-01

    Previous work in our laboratory showed increased basal periarterial nitric oxide (NO) and H2O2 concentrations in the spontaneously hypertensive rat, characterized by oxidant stress, as well as impaired flow-mediated NO production that was corrected by a reduction of periarterial H2O2. Aging is also associated with an increase in vascular reactive oxygen species and results in abnormal vascular function. The current study was designed to assess the role of H2O2 in regulating NO production duri...

  17. Age-dependent decline in learning and memory performances of WAG/Rij rat model of absence epilepsy

    OpenAIRE

    Karson Ayşe; Utkan Tijen; Balcı Fuat; Arıcıoğlu Feyza; Ateş Nurbay

    2012-01-01

    RESEARCH Open Access Age-dependent decline in learning and memory performances of WAG/Rij rat model of absence epilepsy Ayşe Karson1*, Tijen Utkan2, Fuat Balcı3, Feyza Arıcıoğlu4 and Nurbay Ateş1 Abstract Recent clinical studies revealed emotional and cognitive impairments associated with absence epilepsy. Preclinical research with genetic models of absence epilepsy however have primarily focused on dysfunctional emotional processes and paid relatively less attention t...

  18. Age differences in fear retention and extinction in male Sprague-Dawley rats: effects of ethanol challenge during conditioning.

    Science.gov (United States)

    Broadwater, Margaret; Spear, Linda P

    2013-09-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 min prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24h thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp 1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally related.

  19. Characterization of six rat strains (Rattus norvegicus by mitochondrial DNA restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Hilsdorf A.W.

    1999-01-01

    Full Text Available Restriction fragment length polymorphism (RFLP was used to examine the extent of mtDNA polymorphism among six strains of rats (Rattus norvegicus - Wistar, Wistar Munich, Brown Norway, Wistar Kyoto, SHR and SHR-SP. A survey of 26 restriction enzymes has revealed a low level of genetic divergence among strains. The sites of cleavage by EcoRI, NcoI and XmnI were shown to be polymorphic. The use of these three enzymes allows the 6 strains to be classified into 4 haplotypes and identifies specific markers for each one. The percentage of sequence divergence among all pairs of haplotypes ranged from 0.035 to 0.33%, which is the result of a severe population constriction undergone by the strains. These haplotypes are easily demonstrable and therefore RFLP analysis can be employed for genetic monitoring of rats within animal facilities or among different laboratories.

  20. Effects of Subchronic Treatment with Ibuprofen and Nimesulide on Spatial Memory and NMDAR Subunits Expression in Aged Rats.

    Science.gov (United States)

    Ozturk Bilgin, Ozlem; Kumbul Doguc, Duygu; Altuntas, Irfan; Sutcu, Recep; Delibas, Namık

    2013-01-01

    Several studies point to an important function of cyclooxygenase (COX) and prostaglandin signaling in models of synaptic plasticity which is associated with N-methyl-D-aspartate receptors (NMDARs). Cyclooxygenase gene is suggested to be an immediate early gene that is tightly regulated in neurons by NMDA dependent synaptic activity. Nonsteroid Antiinflammatory Drugs (NSAIDs) exert their antiinflammatory effect by the inhibion of COX have controversial effects on learning and memory. We administered ibuprofen as a non-selective COX-2 inhibitor and nimesulide as a selective COX-2 inhibitor for 8 weeks for determining the cognitive impact of subchronic administration of NSAIDs to aged rats. Wistar albino rats (16 mo, n = 30) were separated into control (n = 10), ibuprofen (n = 10) and nimesulide (n = 10) treated groups. First we evaluated hippocampus-dependent spatial memory in the radial arm maze (RAM) and than we evaluated the expression of the NMDAR subunits, NR2A and NR2B by western blotting to see if their expressions are effected by subchronic administration with these drugs. Ibuprofen and nimesulide treated rats completed the task in a statistically significant shorter time when compared with control group (p RAM. Furthermore, no statistically significant difference was detected for the protein expressions of NR2A and NR2B of the subjects. Oral administration of ibuprofen and nimesulide for 8 weeks showed no impairment but partly improved spatial memory. PMID:24523767

  1. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients.

    Science.gov (United States)

    Buga, Ana-Maria; Ciobanu, Ovidiu; Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-04-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  2. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients

    Science.gov (United States)

    Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-01-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  3. Age-dependent effects of conditioning on cholinergic and vasopressin systems in the rat suprachiasmatic nucleus

    NARCIS (Netherlands)

    Biemans, BAM; Van der Zee, EA; Daan, S

    2003-01-01

    Active shock avoidance was used to explore the impact of behavioural stimulation on the neurochemistry of the suprachiasmatic nucleus. We have found previously that the expression of muscarinic acetylcholine receptors in the suprachiasmatic nucleus of young rats was significantly enhanced 24 hours a

  4. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Directory of Open Access Journals (Sweden)

    Jana eBurianová

    2015-03-01

    Full Text Available In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC, medial geniculate body (MGB and auditory cortex (AC in rats (strains Long Evans and Fischer 344 and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive(-ir neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex (VC of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.

  5. Effects of ageing and experimental diabetes on insulin-degrading enzyme expression in male rat tissues.

    Science.gov (United States)

    Kochkina, Ekaterina G; Plesneva, Svetlana A; Vasilev, Dmitrii S; Zhuravin, Igor A; Turner, Anthony J; Nalivaeva, Natalia N

    2015-08-01

    Due to an increasing life expectancy in developing countries, cases of type 2 diabetes and Alzheimer's disease (AD) in the elderly are growing exponentially. Despite a causative link between diabetes and AD, general molecular mechanisms underlying pathogenesis of these disorders are still far from being understood. One of the factors leading to cell death and cognitive impairment characteristic of AD is accumulation in the brain of toxic aggregates of amyloid-β peptide (Aβ). In the normally functioning brain Aβ catabolism is regulated by a cohort of proteolytic enzymes including insulin-degrading enzyme (IDE) and their deficit with ageing can result in Aβ accumulation and increased risk of AD. The aim of this study was a comparative analysis of IDE expression in the brain structures involved in AD, as well as in peripheral organs (the liver and kidney) of rats, during natural ageing and after experimentally-induced diabetes. It was found that ageing is accompanied by a significant decrease of IDE mRNA and protein content in the liver (by 32 and 81%) and brain structures (in the cortex by 58 and 47% and in the striatum by 53 and 68%, respectively). In diabetic animals, IDE protein level was increased in the liver (by 36%) and in the striatum (by 42%) while in the brain cortex and hippocampus it was 20-30% lower than in control animals. No significant IDE protein changes were observed in the kidney of diabetic rats. These data testify that ageing and diabetes are accompanied by a deficit of IDE in the brain structures where accumulation of Aβ was reported in AD patients, which might be one of the factors predisposing to development of the sporadic form of AD in the elderly, and especially in diabetics.

  6. SYSTEMIC INFLAMMATION IMPAIRS ATTENTION AND COGNITIVE FLEXIBILITY BUT NOT ASSOCIATIVE LEARNING IN AGED RATS: Possible Implications for Delirium

    Directory of Open Access Journals (Sweden)

    Deborah J Culley

    2014-06-01

    Full Text Available Delirium is a common and morbid condition in elderly hospitalized patients. Its pathophysiology is poorly understood but inflammation has been implicated based on a clinical association with systemic infection and surgery and preclinical data showing that systemic inflammation adversely affects hippocampus-dependent memory. However, clinical manifestations and imaging studies point to abnormalities not in the hippocampus but in cortical circuits. We therefore tested the hypothesis that systemic inflammation impairs prefrontal cortex function by assessing attention and executive function in aged animals. Aged (24-month-old Fischer-344 rats received a single intraperitoneal injection of lipopolysaccharide (LPS; 50 ug/kg or saline and were tested on the attentional shifting task (AST, an index of integrity of the prefrontal cortex, on days 1-3 post-injection. Plasma and frontal cortex concentrations of the cytokine TNFα and the chemokine CCL2 were measured by ELISA in separate groups of identically treated, age-matched rats. LPS selectively impaired reversal learning and attentional shifts without affecting discrimination learning in the AST, indicating a deficit in attention and cognitive flexibility but not learning globally. LPS increased plasma TNFα and CCL2 acutely but this resolved within 24-48 h. TNFα in the frontal cortex did not change whereas CCL2 increased nearly 3-fold 2 h after LPS but normalized by the time behavioral testing started 24 h later. Together, our data indicate that systemic inflammation selectively impairs attention and executive function in aged rodents and that the cognitive deficit is independent of concurrent changes in frontal cortical TNFα and CCL2. Because inattention is a prominent feature of clinical delirium, our data support a role for inflammation in the pathogenesis of this clinical syndrome and suggest this animal model could be useful for studying that relationship further.

  7. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  8. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol ethanol (EtOH or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult or 15 months (Aged of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.

  9. Environmental enrichment as a therapeutic avenue for anxiety in aged Wistar rats: Effect on cat odor exposition and GABAergic interneurons.

    Science.gov (United States)

    Sampedro-Piquero, P; Castilla-Ortega, E; Zancada-Menendez, C; Santín, L J; Begega, A

    2016-08-25

    The use of more ethological animal models to study the neurobiology of anxiety has increased in recent years. We assessed the effect of an environmental enrichment (EE) protocol (24h/day over a period of two months) on anxiety-related behaviors when aged Wistar rats (21months old) were confronted with cat odor stimuli. Owing to the relationship between GABAergic interneurons and the anxiety-related neuronal network, we examined changes in the expression of Parvalbumin (PV) and 67kDa form of glutamic acid decarboxylase (GAD-67) immunoreactive cells in different brain regions involved in stress response. Behavioral results revealed that enriched rats traveled further and made more grooming behaviors during the habituation session. In the cat odor session, they traveled longer distances and they showed more active interaction with the odor stimuli and less time in freezing behavior. Zone analysis revealed that the enriched group spent more time in the intermediate zone according to the proximity of the predator odor. Regarding the neurobiological data, the EE increased the expression of PV-positive cells in some medial prefrontal regions (cingulate (Cg) and prelimbic (PL) cortices), whereas the GAD-67 expression in the basolateral amygdala was reduced in the enriched group. Our results suggest that EE is able to reduce anxiety-like behaviors in aged animals even when ethologically relevant stimuli are used. Moreover, GABAergic interneurons could be involved in mediating this resilient behavior. PMID:27235742

  10. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats

    OpenAIRE

    Ryan, Michael J.; Dudash, Holly J.; Docherty, Megan; Geronilla, Kenneth B.; Baker, Brent A.; Haff, G. Gregory; Cutlip, Robert G; Alway, Stephen E.

    2010-01-01

    Aging is associated with increased oxidative stress. Muscle levels of oxidative stress are further elevated with exercise. The purpose of this study was to determine if dietary antioxidant supplementation would improve muscle function and cellular markers of oxidative stress in response to chronic repetitive loading in aging. The dorsiflexors of the left limb of aged and young adult Fischer 344 Brown x Norway rats were loaded 3 times weekly for 4.5 weeks using 80 maximal stretch-shortening co...

  11. Caloric Restriction Eliminates the Aging-related Declines of NMDA and AMPA Receptor Subunits in the Rat Hippocampus and Induces Homeostasis

    OpenAIRE

    Shi, Lei; Adams, Michelle M.; Linville, M. Constance; Newton, Isabel G.; Forbes, M. Elizabeth; Long, Ashley; Riddle, David R.; Brunso-Bechtold, Judy K.

    2007-01-01

    Caloric restriction (CR) extends lifespan and ameliorates the aging-related decline in hippocampal-dependent cognitive function. In the present study, we compared subunit levels of NMDA and AMPA types of the glutamate receptor and quantified total synapses and multiple spine bouton (MSB) synapses in hippocampal CA1 from young (10 months), middle-aged (18 months), and old (29 months) Fischer 344 x Brown Norway rats that were ad libitum (AL) fed or caloric restricted (CR) from 4 months of age. ...

  12. Plasminogen activator inhibitor type 1 derived peptide, EEIIMD, diminishes cortical infarct but fails to improve neurological function in aged rats following middle cerebral artery occlusion

    OpenAIRE

    Tan, Zhenjun; Li, Xinlan; Kelly, Kimberly A.; Rosen, Charles L.; Huber, Jason D.

    2009-01-01

    Age is a primary risk factor in stroke that is often overlooked in animal studies. We contend that using aged animals yields insight into aspects of stroke injury and recovery that are masked, or not elicited, in younger animals. In this study, we examined effects of co-administration of a plasminogen activator inhibitor type 1 derived peptide, EEIIMD, with tissue plasminogen activator (tPA) on infarct volume and functional outcome in aged rats following a transient middle cerebral artery occ...

  13. Saponins from Aralia taibaiensis Attenuate D-Galactose-Induced Aging in Rats by Activating FOXO3a and Nrf2 Pathways

    OpenAIRE

    2014-01-01

    Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-gal...

  14. EFFECTS OF ESTROGEN AND AGING ON THE SYNAPTIC DISTRIBUTION OF PHOSPHORYLATED AKT-IMMUNOREACTIVITY IN THE CA1 REGION OF THE FEMALE RAT HIPPOCAMPUS

    OpenAIRE

    Yildirim, Murat; JANSSEN, WILLIAM G.M.; Lou, W.Y. Wendy; Akama, Keith T.; McEwen, Bruce S.; Milner, Teresa A.; Morrison, John H.

    2010-01-01

    The estrogen 17β-estradiol (E) increases the axospinous synaptic density and plasticity in the hippocampal CA1 region of young female rats but fails to do so in aged female rats. This E stimulus on synaptic plasticity is associated with the phosphorylation-dependent activation of Akt kinase. Our previous findings demonstrated that increased estrogen levels subsequently increase phosphorylated Akt (pAkt)-immunoreactivity (-IR) within the dendritic shafts and spines of pyramidal neurons in youn...

  15. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Science.gov (United States)

    Chiang, Wen-Dee; Huang, Chih Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Design Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. Results APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage. PMID:27415158

  16. Diet-Induced and Age-Related Changes in the Quadriceps Muscle: MRI and MRS in a Rat Model of Sarcopenia

    OpenAIRE

    Fellner, Claudia; Schick, Fritz; Kob, Robert; Hechtl, Christine; Vorbuchner, Marianne; Büttner, Roland; Hamer, Okka W.; Sieber, Cornel C.; Stroszczynski, Christian; Bollheimer, L Cornelius

    2014-01-01

    Background: Knowledge about the molecular pathomechanisms of sarcopenia is still sparse, especially with regard to nutritional risk factors and the subtype of sarcopenic obesity. Objective: The aim of this study was to characterize diet-induced and age-related changes on the quality and quantity of the quadriceps muscle in a rat model of sarcopenia by different magnetic resonance (MR) techniques. Methods: A total of 36 6-month-old male Sprague-Dawley rats were randomly subdivid...

  17. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  18. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Science.gov (United States)

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  19. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Directory of Open Access Journals (Sweden)

    Kun Hua

    Full Text Available Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like

  20. Age-related changes in microsome-dependent conversion of T -T ,thyroid function and cadmium toxicity in albino rat

    Directory of Open Access Journals (Sweden)

    Sohair A. Moustafa

    2002-09-01

    Full Text Available The impact of age on microsomal function, manifested by its ability to convert thyroid hormone thyroxine (T to triiodothyronine (T&, was investigated using four age '& (-months. The data show impaired microsomal function with advancing age represented by a significant decrease in serum levels of T& and T&/T ratio. There was a decline in the liver glutathione (GSH, total proteins and serum aspartate aminotransferase (AST, alanine aminotransferase (ALT and gamma-glutamyl transpeptidase (*GT. There was an-age associated increase in liver content of the lipid peroxidation products, thiobarituric acid (TBA-reactants and the serum total protein. + +,-.'( +-/' +-old+0-1-mg/kg CdCl 2their controls were injected with distilled water. A higher susceptibility of senile rats to cadmium toxicity was manifested as a significantly higher decrease in their serum T& level and T&/T ratio than adult compared to control. A reduction in the adaptive response of senile animals was manifested by a less increase in hepatic GSH in senile than adult as compared to control. The level of hepatic TBA-reactants was significantly higher in treated than in control group. The increase was more pronounced in the senile group. A marked hepatic cellular damage indicated by an increase in the serum levels of the AST and ALT was more pronounced in senile compared with adult rats. Treatment resulted in a decrease in the serum *GT and liver triglycerides (TG. The decrease in both parameters was more evident in senile as compared to adult group. Key words: Introduction As nations become progressively associated decline in the above more industrialized, the incidence of variables may be further complicated by overweight, non-insulin dependent disturbance in the normal metabolism diabetes mellitus (NIDDM, and related and action of thyroid hormones, metabolic disorders has been shown to particularly T& (Wallace & Hofmann, increase especially at old age. Along ((%263 4(((with those changes

  1. Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Aβ peptide levels and impaired learning behavior in aged rats.

    Science.gov (United States)

    Takahashi, Hideki; Fukumoto, Hiroaki; Maeda, Ryouta; Terauchi, Jun; Kato, Kaneyoshi; Miyamoto, Masaomi

    2010-11-18

    We examined the effects of TAK-070, a novel non-competitive β-secretase (BACE1) inhibitor, on the levels of Aβ peptides and behavioral deficits in rats. TAK-070 reduced soluble Aβ40 and Aβ42 levels of the cerebral cortex in a time- and dose-dependent manner in young rats. We found that the insoluble Aβ42 content increased significantly with aging from 22 months old without changing Aβ40 content. TAK-070 normalized the Aβ42 levels to those in young rats when they were fed chow containing TAK-070 starting at 19 months old for 6.5 months. Repeated administration of TAK-070 to aged rats for 2 weeks ameliorated the impaired spatial learning in the Morris water maze task and reduced the levels of soluble and insoluble Aβ peptides at doses of 0.3-1mg/kg, (p.o.). Interestingly, TAK-070 significantly recovered the reduced brain synaptophysin levels in aged rats to those in young rats. Our findings support the idea that partial inhibition of BACE1 by TAK-070 exerts symptomatic as well as disease-modifying effects for the treatment of Alzheimer's disease.

  2. Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats: a possible mechanism to prevent high-fat-induced insulin resistance

    Institute of Scientific and Technical Information of China (English)

    SONG Guang-yao; GAO Yu; WANG Chao; HU Shu-guo; WANG Jing; QU Dong-ming; MA Hui-juan

    2010-01-01

    Background As an agonist of peroxisome proliferator-activated receptor-gamma (PPARy), rosiglitazone can prevent acute fatty acid-induced insulin resistance in rats, however, the precise mechanisms by which rosiglitazone alleviates insulin resistance induced by high-fat diet need to be further investigated.Methods Wistar rats aged 23-24 weeks were divided into three groups: (1) aged control group (OC), (2) high-fat diet (HF) group and (3) high-fat diet plus rosiglitazone maleate tablets (HF+Rosi) treatment group (n=20 in each group). Insulin sensitivity was evaluated by conscious hyperinsulinemic-euglycemic clamp technique. mRNA levels of fatty acid translocase (FAT/CD36), AMP-activated protein kinase α1 (AMPKα1), AMPKα2 and acetyl CoA carboxylase (ACC) of rat skeletal muscle were determined using real-time PCR, while muscle camitine palmitoyltransferase-1 (CPT-1β) was determined using semi-quantitative PCR. Protein expression levels of FAT/CD36, AMPK phosphorylation (reflecting AMPK activity), P-ACC (inversely related with ACC activity) and muscle CPT-1M in rat skeletal muscles were measured using Western blotting.Results Aged rats fed by diet rich in fat for more than 8 weeks led to significant increases of plasma lipids, skeletal muscle intramuscular triglyceride and long-chain fatty acyl-CoA (LCACoA) compared to aged rats fed by normal chow diet (OC) (P <0.05), which might correlate with the lower (reduced by 42.4%) whole body insulin sensitivity in HF rats. FAT/CD36 protein concentrations and mRNA levels increased in untreated HF aged rats (P <0.01) and high-fat diet induced a significant decrease in P-AMPK, P-ACC, CPT-1M protein concentrations and AMPKα2 and CPT-1β mRNA levels in rat skeletal muscles (P <0.05). No change in AMPKα1 mRNA levels was observed in the HF group.Conclusion High-fat diet in aged rats results in a lipid accumulation and subsequent insulin resistance, while rosiglitazone can alleviate the insulin resistance by reducing fatty

  3. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Lydia eOuellet

    2014-06-01

    Full Text Available In both humans and rodents, decline in cognitive function is a hallmark of the aging process, the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modelling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1 as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA, parvalbumin (PV, somatostatin (SOM, calretinin (CR, vasoactive intestinal peptide (VIP, choline acetyltransferase (ChAT, neuropeptide Y (NPY and cholecystokinin (CCK to document the changes observed in interneuron populations across the rat’s lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV and somatostatin (SOM expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signalling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.

  4. Long-term cysteine fortification impacts cysteine/glutathione homeostasis and food intake in ageing rats

    OpenAIRE

    Vidal, Karine; Breuille, Denis; Serrant, Patrick; Denis, Philippe; Glomot, Francoise; Bechereau, Fabienne; PAPET, Isabelle

    2014-01-01

    Healthy ageing is associated with higher levels of glutathione. The study aimed to determine whether long-term dietary fortification with cysteine increases cysteine and glutathione pools, thus alleviating age-associated low-grade inflammation and resulting in global physiological benefits. The effect of a 14-week dietary fortification with cysteine was studied in non-inflamed (NI, healthy at baseline) and in spontaneously age-related low-grade inflamed (LGI, prefrail at baseline) 21-month-ol...

  5. Exercise-induced hippocampal anti-inflammatory response in aged rats

    OpenAIRE

    Gomes da Silva, Sérgio; Simões, Priscila Santos Rodrigues; Mortara, Renato Arruda; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; da Graça Naffah-Mazzacoratti, Maria; Arida, Ricardo Mario

    2013-01-01

    Aging is often accompanied by cognitive decline, memory impairment and an increased susceptibility to neurodegenerative disorders. Most of these age-related alterations have been associated with deleterious processes such as changes in the expression of inflammatory cytokines. Indeed, higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines are found in the aged brain. This perturbation in pro- and anti-inflammatory balance can represent one of the mechanism...

  6. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats

    OpenAIRE

    Caitlin S Latimer; Brewer, Lawrence D.; Searcy, James L.; Chen, Kuey-Chu; Popović, Jelena; Kraner, Susan D.; Thibault, Olivier; Blalock, Eric M.; Landfield, Philip W.; Porter, Nada M.

    2014-01-01

    Higher blood levels of vitamin D are associated with better health outcomes. Vitamin D deficiency, however, is common among the elderly. Despite targets in the brain, little is known about how vitamin D affects cognitive function. In aging rodents, we modeled human serum vitamin D levels ranging from deficient to sufficient and tested whether increasing dietary vitamin D could maintain or improve cognitive function. Treatment was initiated at middle age, when markers of aging emerge, and main...

  7. [(11)C]-DASB microPET imaging in the aged rat: frontal and meso-thalamic increases in serotonin transporter binding.

    Science.gov (United States)

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2011-12-01

    Whereas molecular imaging studies in the aging human brain have predominantly demonstrated reductions in serotonin transporter (5-HTT) availability, the majority of the rodent studies, using autoradiographic methods, report increases in neural 5-HTT levels with age. To our knowledge, however, no previous rodent studies have assessed this topic in vivo, and therefore it remains unclear whether this discrepancy arises from methodological or inter-species differences. We performed an [(11)C]-DASB microPET study to evaluate the effects of aging on 5-HTT availability in the rat brain. To generate binding potential estimates, quantitative tracer kinetic modeling was applied using the simplified reference tissue model. A global increase in whole-brain [(11)C]-DASB binding potential was observed in the aged rats in comparison to the control group. More specifically, regional analyses revealed a highly significant increase in 5-HTT binding in the medial frontal cortex, and more modest increments in the midbrain/thalamus. Our results suggest that the frontal cortex represents a site of robust age-related alterations in the rat serotonergic system, and stress the need for further research assessing this topic in the human frontal cortex. Moreover, these findings suggest that the reported discrepancies between rodent and human data may reflect a divergence in the aging processes affecting human and rat serotonergic terminals.

  8. Age-related decrease in aromatase and estrogen receptor(ERαand ERβ) expression in rat testes: protective effect of low caloric diets

    Institute of Scientific and Technical Information of China (English)

    Khaled Hamden; Dorothee Silandre; Christelle Delalande; Abdefattah El Feki; Serge Carreau

    2008-01-01

    Aim: To examine the effects on rat aging of caloric restriction (CR1) and undernutrition (CR2) on the body and on testicular weights, on two enzymatic antioxidants (superoxide dismutase and catalase), on lipid peroxidation and on the expression of testicular aromatase and estrogen receptors (ER). Methods: CR was initiated in 1-month-old rats and carried on until the age of 18 months. Results: In control and CR2 rats an age-related decrease of the aromatase and of ER (α and β) gene expression was observed; in parallel a diminution of testicular weights, and of the total number and motility of epididymal spermatozo was recorded. In addition, aging in control and CR2 rats was accom-panied by a significant decrease in testicular superoxide dismutase, catalase activities, and an increase in lipid peroxidation level (thiobarbituric acid reactive substance), associated with alterations of spermatogenesis. Conversely, caloric restriction-treatment exerted a protective effect and all the parameters were less affected by aging. Conclusion:These results indicate that during aging, a low caloric diet (not undernutrition) is beneficial for spermatogenesis and likely improves the protection of the cells via an increase of the cellular antioxidant defense system in which aromatase/ER could play a role.

  9. EPA/DHA and vitamin A supplementation improves spatial memory and alleviates the age-related decrease in hippocampal RXRγ and kinase expression in rats

    Directory of Open Access Journals (Sweden)

    Anne eLétondor

    2016-05-01

    Full Text Available Studies suggest that eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs and the retinoic acid receptors (RARs. Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging.

  10. EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related Decrease in Hippocampal RXRγ and Kinase Expression in Rats.

    Science.gov (United States)

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Richard, Emmanuel; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2016-01-01

    Studies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2. This suggests that these nutrients may modulate brain function in a similar way. Therefore, we investigated in middle-aged rats the behavioral and molecular effects of supplementations with EPA/DHA and vitamin A alone or combined. 18-month-old rats exhibited reference and working memory deficits in the Morris water maze, associated with a decrease in serum vitamin A and hippocampal EPA/DHA contents. RARα, RXRβ, and RXRγ mRNA expression and CAMKII, AKT, ERK1/2 expression were decreased in the hippocampus of middle-aged rats. A combined EPA/DHA and vitamin A supplementation had a beneficial additive effect on reference memory but not in working memory in middle-aged rats, associated with an alleviation of the age-related decrease in RXRγ, CAMKII, AKT, and ERK1 expression in the hippocampus. This study provides a new combined nutritional strategy to delay brain aging. PMID:27242514

  11. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups. This dataset is associated with the following...

  12. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat.

    Directory of Open Access Journals (Sweden)

    Andrea Ode

    Full Text Available Among other stressors, age and mechanical constraints significantly influence regeneration cascades in bone healing. Here, our aim was to identify genes and, through their functional annotation, related biological processes that are influenced by an interaction between the effects of mechanical fixation stability and age. Therefore, at day three post-osteotomy, chip-based whole-genome gene expression analyses of fracture hematoma tissue were performed for four groups of Sprague-Dawley rats with a 1.5-mm osteotomy gap in the femora with varying age (12 vs. 52 weeks - biologically challenging and external fixator stiffness (mechanically challenging. From 31099 analysed genes, 1103 genes were differentially expressed between the six possible combinations of the four groups and from those 144 genes were identified as statistically significantly influenced by the interaction between age and fixation stability. Functional annotation of these differentially expressed genes revealed an association with extracellular space, cell migration or vasculature development. The chip-based whole-genome gene expression data was validated by q-RT-PCR at days three and seven post-osteotomy for MMP-9 and MMP-13, members of the mechanosensitive matrix metalloproteinase family and key players in cell migration and angiogenesis. Furthermore, we observed an interaction of age and mechanical stimuli in vitro on cell migration of mesenchymal stromal cells. These cells are a subpopulation of the fracture hematoma and are known to be key players in bone regeneration. In summary, these data correspond to and might explain our previously described biomechanical healing outcome after six weeks in response to fixation stiffness variation. In conclusion, our data highlight the importance of analysing the influence of risk factors of fracture healing (e.g. advanced age, suboptimal fixator stability in combination rather than alone.

  13. Androgen-mediated development of irradiation-induced thyroid tumors in rats: dependence on animal age during interval of androgen replacement in castrated males

    International Nuclear Information System (INIS)

    When male Long-Evans rats at age 8 weeks were radiation treated (40 microCi Na131I), thyroid follicular adenomas and carcinomas were observed at age 24 months with a high incidence of 94%. Castration of males prior to irradiation significantly reduced this tumor incidence to 60%. When testosterone (T) was replaced in castrated, irradiated male rats, differentially increased incidences of thyroid tumors occurred. Immediate (age 2-6 mo) or early (age 6-12 mo) T replacement at approximate physiologic levels led to thyroid follicular tumor incidences of 100 and 82%, respectively, whereas intermediate (12-18 mo) or late (18-24 mo) T treatment led to only 70 and 73% incidences, respectively. Continuous T replacement (2-24 mo) in castrated irradiated male rats raised thyroid tumor incidence to 100%. Since elevated thyroid-stimulating hormone (TSH) is a reported requisite for development of radiation-associated thyroid tumors, the effects of T on serum TSH levels were examined. Mean serum TSH values in all irradiated animal groups were significantly elevated above age-matched nonirradiated animals at 6, 12, 18, and 24 months. Serum TSH levels were higher in continuous T-replaced irradiated castrates than in intact, irradiated males, whereas such intact male TSH levels were greater than those for irradiated castrates without T treatment. Interval T replacement in castrated male rats was associated with increased serum TSH levels during the treatment interval and with lowered TSH levels after discontinuation of T treatment, particularly in irradiated rats. However, when irradiated, castrated males received late T replacement (age 18-24 mo), there was no elevation of TSH at the end of the treatment interval. An indirect effect of T via early stimulation of TSH may be partly responsible for the high incidence of irradiation-induced thyroid tumors in rats

  14. Comparison of age-related changes in in vivo and in vitro measures of testicular steroidogenesis after acute cadmium exposure in the sprague-dawley rat

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, P.V.; Laskey, J.W. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-01-01

    Previous reports have demonstrated that cadmium- (Cd-) induced testicular necrosis is an age-dependent process. However, little information exists on age-related intestitial cell (IC) damage in the rat after acute exposure to Cd. In this study in vitro and in vivo measures of testicular damage were utilized to compare the sensitivity of these measures and to further investigate age-related Cd-induced testicular damage. Testes, epididymides, and seminal vesicle weights, serum testosterone (sT), hCG-stimulated sT, and basal and stimulated IC testosterone (T) production were production were compared in rats 21 d following an injection of 2 mg Cd/kg at 9, 37, 67, and 97 d of age. The only Cd-related change noted for immature rats was an 84% reduction in sT. In rats injected when 37 d old, hCG-stimulated sT and epididymides and seminal vesicle weights, although depressed, were not significantly altered. However, all other measurements were significantly depressed. All measures of testicular damage were significantly depressed in rats injected at 67 and 97 d of age. Overall, in vitro measures were more sensitive indicators of Cd-induced testicular damage than in vivo measures. However, sT and hCG-stimulated sT appeared to be useful indicators of Cd effects on the pituitary-gonadal axis. ICs from immature rats (9 d old) were unaffected by Cd exposure, while stimulated T reproduction in ICs from 37-, 67-, and 97-d-old animals was reduced at least 50%. The severity of Cd-induced testicular damage increases with age for all variables measured.

  15. NEUROTOXICITY OF CARBARYL IN THE AGING BROWN NORWAY RAT: EFFECTS ON CORE TEMPERATURE AND MOTOR ACTIVITY.

    Science.gov (United States)

    The US EPA is pursuing a variety of research efforts to assess the susceptibility of the aged to neurotoxicants. The BN strain is a popular animal model for aging studies but there is a need for improved methods of monitoring their physiological responses to neurotoxicants over t...

  16. Advanced aging phenotype is revealed by epigenetic modifications in rat liver after in utero malnutrition.

    Science.gov (United States)

    Heo, Hye J; Tozour, Jessica N; Delahaye, Fabien; Zhao, Yongmei; Cui, Lingguang; Barzilai, Nir; Einstein, Francine Hughes

    2016-10-01

    Adverse environmental exposures of mothers during fetal period predispose offspring to a range of age-related diseases earlier in life. Here, we set to determine whether a deregulated epigenetic pattern is similar in young animals whose mothers' nutrition was modulated during fetal growth to that acquired during normal aging in animals. Using a rodent model of maternal undernutrition (UN) or overnutrition (ON), we examined cytosine methylation profiles of liver from young female offspring and compared them to age-matched young controls and aged (20-month-old) animals. HELP-tagging, a genomewide restriction enzyme and sequencing assay demonstrates that fetal exposure to two different maternal diets is associated with nonrandom dysregulation of methylation levels with profiles similar to those seen in normal aging animals and occur in regions mapped to genes relevant to metabolic diseases and aging. Functional consequences were assessed by gene expression at 9 weeks old with more significant changes at 6 months of age. Early developmental exposures to unfavorable maternal diets result in altered methylation profiles and transcriptional dysregulation in Prkcb, Pc, Ncor2, and Smad3 that is also seen with normal aging. These Notch pathway and lipogenesis genes may be useful for prediction of later susceptibility to chronic disease.

  17. EFFECTS OF TOLUENE ON BRAIN OXIDATIVE STRESS PARAMETERS IN AGING BROWN NORWAY RATS

    Science.gov (United States)

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  18. Age dependent differences in the regulation of hippocampal steroid hormones and receptor genes: relations to motivation and cognition in male rats.

    Science.gov (United States)

    Meyer, K; Korz, V

    2013-02-01

    Estrogen and estrogenic functions are age-dependently involved in the modulation of learning, memory and mood in female humans and animals. However, the investigation of estrogenic effects in males has been largely neglected. Therefore, we investigated the hippocampal gene expression of estrogen receptors α and β (ERα, β) in 8-week-old, 12-week-old and 24-week-old male rats. To control for possible interactions between the expression of the estrogen receptor genes and other learning-related steroid receptors, androgen receptors (AR), corticosterone-binding glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) were also measured. Furthermore, the concentrations of the ligands 17β-estradiol, testosterone and corticosterone were measured. The spatial training was conducted in a hole-board. The 8-week-old rats exhibited higher levels of general activity and exploration during the training and performed best with respect to spatial learning and memory, whereas no difference was found between the 12-week-old and 24-week-old rats. The trained 8-week-old rats exhibited increased gene expression of ERα compared with the untrained rats in this age group as well as the trained 12-week-old and 24-week-old rats. The concentrations of estradiol and testosterone, however, were generally higher in the 24-week-old rats than in the 8-week-old and 12-week-old rats. The ERα mRNA concentrations correlated positively with behavior that indicate general learning motivation. These results suggest a specific role of ERα in the age-related differences in motivation and subsequent success in the task. Thus, estrogen and estrogenic functions may play a more prominent role in young male behavior and development than has been previously assumed.

  19. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats

    OpenAIRE

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    Background: The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. Methods: In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory ...

  20. Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Philipp Ottis

    Full Text Available Disturbed proteostasis as a particular phenotype of the aging organism has been advanced in C. elegans experiments and is also conceived to underlie neurodegenerative diseases in humans. Here, we investigated whether particular changes in non-disease related proteostasis can be identified in the aged mammalian brain, and whether a particular signature of aberrant proteostasis is related to behavioral performance of learning and memory. Young (adult, n = 30 and aged (2 years, n = 50 Wistar rats were tested in the Morris Water Maze (MWM to distinguish superior and inferior performers. For both young and old rats, the best and worst performers in the MWM were selected and the insoluble proteome, termed aggregome, was purified from the hippocampus as evidence for aberrant proteostasis. Quantitative proteomics (iTRAQ was performed. The aged inferior performers were considered as a model for spontaneous, age-associated cognitive impairment. Whereas variability of the insoluble proteome increased with age, absolute changes in the levels of insoluble proteins were small compared to the findings in the whole C. elegans insoluble proteome. However, we identified proteins with aberrant proteostasis in aging. For the cognitively impaired rats, we identified a changed molecular circuitry of proteins selectively involved in F-actin remodeling, synapse building and long-term depression: actin related protein 3 (ARP3, neurabin II (NEB2 and IQ motif and SEC7 domain-containing protein 1 (BRAG2. We demonstrate that aberrant proteostasis is a specific phenotype of brain aging in mammals. We identify a distinct molecular circuitry where changes in proteostasis are characteristic for poor learning and memory performance in the wild type, aged rat. Our findings 1. establish the search for aberrant proteostasis as a successful strategy to identify neuronal dysfunction in deficient cognitive behavior, 2. reveal a previously unknown functional network of proteins (ARP3

  1. 3α-androstanediol, but not testosterone, attenuates age-related decrements in cognitive, anxiety, and depressive behavior of male rats

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2010-04-01

    Full Text Available Some hippocampally-influenced affective and/or cognitive processes decline with aging. The role of androgens in this process is of interest. Testosterone (T is aromatized to estrogen, and reduced to dihydrotestosterone (DHT, which is converted to 5α-androstane, 3α, 17α-diol (3α-diol. To determine the extent to which some age-related decline in hippocampally-influenced behaviors may be due to androgens, we examined the effects of variation in androgen levels due to age, gonadectomy, and androgen replacement on cognitive (inhibitory avoidance, Morris water maze and affective (defensive freezing, forced swim behavior among young (4-months, middle-aged (13-months, and aged (24-months male rats. Plasma and hippocampal levels of androgens were determined. In experiment 1, comparisons were made between 4-, 13-, and 24-month old rats that were intact or gonadectomized (GDX and administered a T-filled or empty silastic capsule. There was age-related decline in performance of the inhibitory avoidance, water maze, defensive freezing, and forced swim tasks, and hippocampal 3α-diol levels. Chronic, long-term (1-4 weeks T-replacement reversed the effects of GDX in 4- and 13-month old, but not 24-month old, rats in the inhibitory avoidance task. Experiments 2 and 3 assessed whether acute subcutaneous T or 3α-diol, respectively, could reverse age-associated decline in performance. 3α-diol, but not T, compared to vehicle, improved performance in the inhibitory avoidance, water maze, forced swim, and defensive freezing tasks, irrespective of age. Thus, age is associated with a decrease in 3α-diol production and 3α-diol administration reinstates cognitive and affective performance of aged male rats.

  2. Aging-related expression of inducible nitric oxide synthase and markers of tissue damage in the rat penis.

    Science.gov (United States)

    Ferrini, M; Magee, T R; Vernet, D; Rajfer, J; González-Cadavid, N F

    2001-03-01

    Erectile dysfunction in the aging male results in part from the loss of compliance of the corpora cavernosal smooth muscle due to the progressive replacement of smooth muscle cells by collagen fibers. We have examined the hypothesis that a spontaneous local induction of inducible nitric oxide synthase (iNOS) expression and the subsequent peroxynitrite formation occurs in the penis during aging and that this process is accompanied by a stimulation of smooth muscle apoptosis and collagen deposition. The penile shaft and crura were excised from young (3-5 mo old) and old (24-30 mo old) rats, with or without perfusion with 4% formalin. Fresh tissue was used for iNOS and proteasome 2C mRNA determinations by reverse transcription polymerase chain reaction assay, ubiquitin mRNA by Northern blot, and iNOS protein by Western blot. Penile sections from perfused animals were embedded in paraffin and immunostained with antibodies against iNOS and nitrotyrosine, submitted to the TUNEL assay for apoptosis, or stained for collagen, followed by image analysis quantitation. A 4.1-fold increase in iNOS mRNA was observed in the old versus young tissues, paralleled by a 4.9-fold increase in iNOS protein. The proteolysis marker, ubiquitin, was increased 1.9-fold, whereas a related gene, proteasome 2c, was not significantly affected. iNOS immunostaining was increased 3.6-fold in the penile smooth muscle of the old rats as compared with the young rats. The peroxynitrite indicator nitrotyrosine was increased by 1.6-fold, accompanied by a 3.6-fold increase in apoptotic cells and a 2.0-fold increase in collagen fibers in the old penis. In conclusion, aging in the penis is accompanied by an induction of iNOS and peroxynitrite formation that may lead to the observed increase in apoptosis and proteolysis and may counteract a higher rate of collagen deposition in the old penis.

  3. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats.

    Science.gov (United States)

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  4. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    2016-06-01

    Full Text Available Estradiol (E2 robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ and G protein-coupled ER. Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc. on the hippocampal transcriptome in ovariectomized, middle-aged (13 month rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC>2 selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf, transcription factors (Otx2, Msx1, potassium channels (Kcne2, neuropeptides (Cck, Pdyn, peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3, neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1 and vesicular neurotransmitter transporters (Slc32a1, Slc17a7. Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  5. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats.

    Science.gov (United States)

    Meadows, K L; Byrnes, E M

    2015-01-22

    Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. RLN3 has been shown to activate both RXFP1 and relaxin-like family peptide receptor 3 (RXFP3) receptor subtypes. Studies suggest wide-ranging neuromodulatory effects of both RXFP1 and RXFP3 activation, although to date the majority of studies have been conducted in young males. In the current study, we examined potential sex- and age-related changes in RLN3 gene expression in the NI as well as RXFP1 and RXFP3 gene expression in the dorsal hippocampus (HI), ventral hippocampus (vHI) and amygdala (AMYG) using young adult (9-12weeks) and middle-aged (9-12months) male and female rats. In addition, regional changes in RXFP1 and RXFP3 protein expression were examined in the CA1, CA2/CA3 and dentate gyrus (DG) as well as within basolateral (BLA), central (CeA), and medial (MeA) amygdaloid nuclei. In the NI, RLN3 showed an age-related decrease in males. In the HI, only the RXFP3 receptor showed an age-related change in gene expression, however, both receptor subtypes showed age-related changes in protein expression that were region specific. Additionally, while gene and protein expression of both receptors increased with age in AMYG, these effects were both region- and sex-specific. Finally, overall males displayed a greater number of cells that express the RXFP3 protein in all of the amygdaloid nuclei examined. Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have

  6. Age Modulates Fe3O4 Nanoparticles Liver Toxicity: Dose-Dependent Decrease in Mitochondrial Respiratory Chain Complexes Activities and Coupling in Middle-Aged as Compared to Young Rats

    Directory of Open Access Journals (Sweden)

    Yosra Baratli

    2014-01-01

    Full Text Available We examined the effects of iron oxide nanoparticles (IONPs on mitochondrial respiratory chain complexes activities and mitochondrial coupling in young (3 months and middle-aged (18 months rat liver, organ largely involved in body iron detoxification. Isolated liver mitochondria were extracted using differential centrifugations. Maximal oxidative capacities (Vmax, complexes I, III, and IV activities, Vsucc (complexes II, III, and IV activities, and Vtmpd, (complex IV activity, together with mitochondrial coupling (Vmax/V0 were determined in controls conditions and after exposure to 250, 300, and 350 μg/ml Fe3O4 in young and middle-aged rats. In young liver mitochondria, exposure to IONPs did not alter mitochondrial function. In contrast, IONPs dose-dependently impaired all complexes of the mitochondrial respiratory chain in middle-aged rat liver: Vmax (from 30 ± 1.6 to 17.9 ± 1.5; P<0.001, Vsucc (from 33.9 ± 1.7 to 24.3 ± 1.0; P<0.01, Vtmpd (from 43.0 ± 1.6 to 26.3 ± 2.2 µmol O2/min/g protein; P<0.001 using Fe3O4 350 µg/ml. Mitochondrial coupling also decreased. Interestingly, 350 μg/ml Fe3O4 in the form of Fe3+ solution did not impair liver mitochondrial function in middle-aged rats. Thus, IONPs showed a specific toxicity in middle-aged rats suggesting caution when using it in old age.

  7. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats

    DEFF Research Database (Denmark)

    Carlström, Mattias; Sällström, Johan; Skøtt, Ole;

    2007-01-01

    renin concentrations during high sodium conditions and hypertrophic kidneys and hearts with various degrees of histopathologic changes. In conclusion, at a young age after completed nephrogenesis, uninephrectomy or chronic salt loading causes renal and cardiovascular injury with salt...

  8. Mitochondrial bioenergetics in young, adult, middle-age and senescent brown Norway rats

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and may play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identi...

  9. Adult-age inflammatory pain experience enhances long-term pain vigilance in rats.

    Directory of Open Access Journals (Sweden)

    Sheng-Guang Li

    Full Text Available BACKGROUND: Previous animal studies have illustrated a modulatory effect of neonatal pain experience on subsequent pain-related behaviors. However, the relationship between chronic pain status in adulthood and future pain perception remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, we investigated the effects of inflammatory pain experience on subsequent formalin-evoked pain behaviors and fear conditioning induced by noxious stimulation in adult rats. Our results demonstrated an increase of the second but not the first phase of formalin-induced pain behaviors in animals with a history of inflammatory pain that have recovered. Similarly, rats with persistent pain experience displayed facilitated acquisition and prolonged retention of pain-related conditioning. These effects of prior pain experience on subsequent behavior were prevented by repeated morphine administration at an early stage of inflammatory pain. CONCLUSIONS/SIGNIFICANCE: These results suggest that chronic pain diseases, if not properly and promptly treated, may have a long-lasting impact on processing and perception of environmental threats. This may increase the susceptibility of patients to subsequent pain-related disorders, even when chronic pain develops in adulthood. These data highlight the importance of treatment of chronic pain at an early stage.

  10. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats

    OpenAIRE

    Adams, Michelle M.; Shah, Ravi A.; Janssen, William G. M.; Morrison, John H.

    2001-01-01

    Estrogen regulates hippocampal dendritic spine density and synapse number in an N-methyl-d-aspartate (NMDA) receptor-dependent manner, and these effects may be of particular importance in the context of age-related changes in endocrine status. We investigated estrogen's effects on axospinous synapse density and the synaptic distribution of the NMDA receptor subunit, NR1, within the context of aging. Although estrogen induced an increase in axospinous synapse density in young animals, it did n...

  11. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    Science.gov (United States)

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p  0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT. PMID:26861983

  12. EPINEPHRINE AND GLUCOSE MODULATE TRAINING-RELATED CREB PHOSPHORYLATION IN OLD RATS: RELATIONSHIPS TO AGE-RELATED MEMORY IMPAIRMENTS

    OpenAIRE

    Morris, Ken A.; Gold, Paul E.

    2012-01-01

    Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanis...

  13. [Transaminase activity of the cortical layer of the kidney of rats of different ages and sex after administration of hydrocortisone and insulin].

    Science.gov (United States)

    Poletaeva, K A

    1971-01-01

    Response of cortical layer of rat kidney to separate and combined administration of hydrocortisone and insulin, as manifested by the activity of aspartate-alpha-ketoglutarate transaminase (Asp-T) and alanine-alpha-ketoglutarate transaminase (Ala-T), varied in males and females of different age. Prolonged administration of insulin to normal preadolescent rats and to adult males and females did not affect the activity of Asp-T and Ala-T in the cortical layer of kidney. During simultaneous prolonged administration of hydrocortisone and insulin to preadolescent male rats, there occurred no increase in the activity of Asp-T induced by administration of hydrocortisone alone. During simultaneous prolonged administration of hydrocortisone and insulin to adult male rats, activity of Asp-T of the cortical layer of kidney remained at the same level at after administration of hydrocortisone alone. PMID:5317624

  14. Impact of low dose prenatal ethanol exposure on glucose homeostasis in Sprague-Dawley rats aged up to eight months.

    Directory of Open Access Journals (Sweden)

    Megan E Probyn

    Full Text Available Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring's health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure.

  15. Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin.

    Directory of Open Access Journals (Sweden)

    Lusine Danielyan

    Full Text Available In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS, an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP. While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component beta-catenin. Inhibition of, glycogen synthase kinase 3beta in cultured keratinocytes and HaCaT cells, however, did not support a direct role of beta-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8-10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia.

  16. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Gang Chen; Qiang Fu; Jiangbei Cao; Weidong Mi

    2012-01-01

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  17. Age-Specific Effects on Rat Lung Glutathione and Antioxidant Enzymes after Inhaling Ultrafine Soot

    Science.gov (United States)

    Chan, Jackie K. W.; Kodani, Sean D.; Charrier, Jessie G.; Morin, Dexter; Edwards, Patricia C.; Anderson, Donald S.; Anastasio, Cort

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7–day-old neonatal and adult rats inhaled 22 μg/m3 PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM. PMID:23065132

  18. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Directory of Open Access Journals (Sweden)

    Pablo eGaleano

    2015-01-01

    Full Text Available Continuous environmental stimulation induced by exposure to enriched environment (EE has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL, by cesarean section (C+, or by C+ following 19 min of asphyxia at birth (PA. At weaning, rats were assigned to standard (SE or enriched environment (EE for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM. Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.

  19. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Science.gov (United States)

    Galeano, Pablo; Blanco, Eduardo; Logica Tornatore, Tamara M. A.; Romero, Juan I.; Holubiec, Mariana I.; Rodríguez de Fonseca, Fernando; Capani, Francisco

    2015-01-01

    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia. PMID:25601829

  20. Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

    Directory of Open Access Journals (Sweden)

    Mohammad Hosseini-Sharifabad

    2016-03-01

    Full Text Available Objective: The hippocampal formation, particularly the dentate gyrus (DG, shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigate the effect of Boswellia treatment on spatial learning performance and the morphology of dentate granule cells in aged rats. Materials and Methods: Sixteen male Wistar rats (24 months old were divided into experimental and control groups. Experimental group was intragastrically administered with the aqueous extract of Bs (100 mg/kg/d for 8 weeks and control group received a similar volume of water. Spatial learning performance of rats was tested using Morris water maze task. At the end of experiment, the brain was removed and the right hippocampus was serially sectioned for morphometric analysis. The Cavalieri principle was employed to estimate the volume of the DG. A quantitative Golgi study was used to analyze the dendritic trees of dentate granule cells. Results: Chronic treatment with Bs improved spatial learning capability during the three acquisition days. Comparisons also revealed that Bs-treated aged rat had greater DG with increased dendritic complexity in the dentate granule cells than control rats. Hippocampal granule cells of Bs-treated aged rats had more dendritic segments, larger arbors, more numerical branching density and more dendritic spines in comparison to control animals. Conclusion: This study provided a neuro-anatomical basis for memory improvement due to chronic treatment with Bs.

  1. Effects of ginsenoside on brain-derived neurotrophic factor and tyrosine kinase B mRNA expression in the hippocampal formation of aged rats

    Institute of Scientific and Technical Information of China (English)

    Hong Lai; Wensu Liu; Zhaosheng Li; Haihua Zhao; Yongli Lü

    2008-01-01

    BACKGROUND:There are a limited number of studies involving the effects of ginsenosides,the active component of ginseng,on expression of hippocampal TrkB mRNA in aged rats.OBJECTIVE:To observe expression of brain-derived neurotrophic factor(BDNF) and tyrosine kinase B (TrkB)mRNA in the hippocampal formation of aged rats,as well as changes after ginsenoside administrated.DESIGN,TIME AND SETTING:A randomized,controlled experiment was performed at the Department of Anatomy,College of Basic Medical Sciences,China Medical University in March 2005.MATERIALS:A total of 39 female,Wistar rats were randomly divided into 3 groups (n=13 each):young (3-5 months old),aged(27 months old),and ginsenoside group(received 25mg/kg/d ginsenoside in the drinking water between 17 and 27 months of age).METHODS:Following anesthesia,the rats were exsanguinated and perfused transcardially with chilled,heparinized,0.9% saline.The brains were removed and post-fixed in 40 g/L paraformaldehyde/phosphate buffer for 20 minutes,and further incubated in 30% sucrose/phosphate buffer overnight.MAIN OUTCOME MEASURES:In situ hybridization,immunohistochemistry,and image analysis were used to investigate expression of BDNF and Trk(B mRNA in the hippocampal formation.RESULTS:The expression levels of BDNF in the hippocampal CA3 and CA1 of aged rats was significantly less than the young group(t=2.879,1.814,1.984,P<0.05).BDNF expression was significantly greater in the dentate gyrus of the ginsenoside group,compared with the aging g