WorldWideScience

Sample records for aged polymeric dielectric

  1. Fullerene thin-film transistors fabricated on polymeric gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Puigdollers, J. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)], E-mail: jpuigd@eel.upc.edu; Voz, C. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO - Mediterranean Technology Park, Avda del Canal Olimpic s/n, 08860-Castelldefels (Spain); Orpella, A.; Vetter, M.; Alcubilla, R. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)

    2007-07-16

    Thin-film transistors with fullerene as n-type organic semiconductor have been fabricated. A polymeric gate dielectric, polymethyl methacrylate, has been used as an alternative to usual inorganic dielectrics. No significant differences in the microstructure of fullerene thin-films grown on polymethyl methacrylate were observed. Devices with either gold or aluminium top electrodes have been fabricated. Although the lower work-function of aluminium compared to gold should favour electron injection, similar field-effect mobilities in the range of 10{sup -2} cm{sup 2} V{sup -1} s{sup -1} were achieved in both cases. Actually, the output characteristics indicate that organic thin-film transistors behave more linearly with gold than with aluminium electrodes. These results confirm that not only energy barriers determine carrier injection at metal/organic interfaces, but also chemical interactions.

  2. Aging of Dielectric Properties below Tg

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    The dielectric loss at 1Hz in TPP is studied during a temperature step from one equilibrium state to another. In the applied cryostate the temperature can be equilibrated on a timescale of 1 second. The aging time dependence of the dielectric loss is studied below Tg applying temperature steps...

  3. Quantitative property-structural relation modeling on polymeric dielectric materials

    Science.gov (United States)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  4. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    Science.gov (United States)

    Marks, Tobin J. (Inventor); Facchetti, Antonio (Inventor); Wang, Zhiming (Inventor); Choi, Hyuk-Jin (Inventor); Suh, legal representative, Nae-Jeong (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  5. Raman microprobe analysis and ageing in dielectrics

    International Nuclear Information System (INIS)

    Subsurface voids in samples of electrically stressed low density polyethylene (LDPE) were analysed using confocal Raman microprobe spectroscopy (CRMS). An optical depth profiling technique was used to probe a void along the optic axis whilst a burst void was analysed at various lateral positions. Spectra from the voided samples showed signatures with similar features to those found in previous studies of electrical trees in polyethylene, including the presence of the D and G bands of disordered sp2 carbon. Results and spectra were then compared to the depth profiles and spectra from block and thin film samples of polyethylene and polystyrene which indicated that the established theory behind CRMS is oversimplified and that the detected signal is largely influenced by the optical properties of the material in question. Overall the study showed that despite some spatial resolution limitations of the technique, depth profiling is a useful tool in the analysis of aged polymers and dielectrics as it can show the variations in chemical composition with respect to position along the lateral and optic axis, a property especially relevant to electrical trees.

  6. Effects of Polymeric Dielectric Morphology on Pentacene Morphology and Organic TFT Characteristics

    Directory of Open Access Journals (Sweden)

    Ye Rongbin

    2016-01-01

    Full Text Available In this paper, we report on the effects of the polymeric dielectric morphology on pentacene morphology and organic thin film transistor (TFT characteristics. The morphology and thickness of cyclo-olefin polymer (COP dielectric could be controlled by selecting a solvent. Higher the solvent’s boiling point is, thinner and smother COP films could be obtained. Using the solvent of trimethylcyclohexane, the spin-coated COP films of ca. 330 nm with the peak-to-valley of 7.35 nm and the roughness of root mean square of 0.58 nm were obtained, and pentacene TFT showed high mobility of 2.0 cm2V-1s-1, which originated from highly ordering of pentacene thin films deposited on the smoother and thinner COP films.

  7. Investigation of Plasma Polymerized Maleic Anhydride Film in a Middle Frequency Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    TANG Wenjie; CHEN Qiang; ZHANG Yuefei; GE Yuanjing

    2008-01-01

    Plasma polymerized maleic anhydride (MA) was carried out by using maleic anhydride supersaturated ethanol solution as a precursor in a dielectric barrier discharge (DBD). The film properties were characterized by water contact angle (WCA), Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) analysis, and a thickness profilometer. The influence of the processing parameters on the film properties such as the power frequency, and polymerization zone was investigated. The results show that anhydride group incorporated into the growing films is favorable at the frequency of 80 kHz and working pressure of 50 Pa. The poly (maleic anhydride) film is uniform and compact at an average deposition rate of 8 nm/min.

  8. Influence of dielectric constant of polymerization medium on processability and ammonia gas sensing properties of polyaniline

    Indian Academy of Sciences (India)

    Partha Pratim Sengupta; Pradip Kar; Basudam Adhikari

    2011-04-01

    Polyaniline (PANI) was synthesized by the oxidation of aniline hydrochloride in the presence of ammonium persulphate and hydrochloric acid. The polymerization reaction was carried out in several batches in different solvent media by changing the volume ratio of ,-dimethyl formamide (DMF) and water as binary solvent mixture. The dielectric constant of the polymerizationmedium for each batch reaction was determined by measuring the capacitance with change in frequency. The UV spectra of the synthesized polyaniline solutions helped us to optimize the ratio of the binary solvent to get sufficient polymer growth and processability. Thin film of processable polyaniline was then deposited on glass slides coated with polyvinyl alcohol (PVA) crosslinked with maleic anhydride (MA). FTIR and XRD studies of the coated film were also done. AFM studies further helped in the morphological study of the film deposited. Finally, conductivity and ammonia gas-sensing property of the polyaniline film were also studied.

  9. Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes

    International Nuclear Information System (INIS)

    The solid polymer electrolytes (SPEs) consisted of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) (PEO20–LiClO4 and PEO8–LiClO4 electrolytes of composition stoichiometric ratios EO:Li+ = 20:1 and 8:1) have been prepared by various blending methods. The simple solution casting, solution–cast hot pressed, dry blended melt pressed, high intensity ultrasonic assisted, microwave irradiated, and both the ultrasonicated and microwave irradiated solution–cast followed by their remelt with hot pressed methods have been used for preparation of the SPEs films. The complex formation between etheric oxygen (EO) of PEO and cation (Li+) of LiClO4 is confirmed by relative changes in amorphous phase of these electrolytes which is investigated by X-ray diffraction measurements. It is found that the amount of amorphous phase of these SPEs is strongly influenced by their preparation methods and the salt concentration. The complex dielectric function, ac electric conductivity, electric modulus and impedance spectra of the electrolytes are studied over the frequency range of 20 Hz to 1 MHz by dielectric relaxation spectroscopy at ambient temperature. The dc ionic conductivity of PEO8–LiClO4 electrolytes is found two to three orders of magnitude higher than that of the PEO20–LiClO4 electrolytes, which is significantly affected by their preparation methods. The cations coupled PEO chain segmental dynamics and its correlation with the ionic conductivity of these electrolytes has been explored by considering the values of relaxation times and dielectric relaxation strength. Results reveal that the ionic conductivity of PEO8–LiClO4 electrolytes can be tuned over two orders of magnitude by adopting different blending methods with a state-of-the-art engineering. - Highlights: • Solid polymeric electrolytes are synthesized with state-of-the-art novel techniques. • High intensity ultrasonication turned-up the electrolytes into an amorphous phase.

  10. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  11. Magnetic and dielectric properties of HoMnO{sub 3} nanoparticles synthesized by the polymerized complex method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of technology, Ma' anshan, Anhui 243002 (China); Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Or, Siu Wing, E-mail: eeswor@polyu.edu.hk [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Sun, Yuping [Center for Engineering practice and Innovation Education, Anhui University of technology, Ma' anshan, Anhui 243002 (China); Jin, Chuangui; Lv, Yaohui [School of Materials Science and Engineering, Anhui University of technology, Ma' anshan, Anhui 243002 (China); Wu, Yuxi [Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2013-06-15

    In this paper, we report on the magnetic and dielectric properties of HoMnO{sub 3} nanoparticles with different size synthesized by a polymerized complex method have been investigated. The HoMnO{sub 3} nanoparticles crystallized in hexagonal perovskite-type structure. The zero-field-cooled magnetic susceptibility curve of HoMnO{sub 3} nanoparticles with averaged size of 30 nm shows that complicated magnetic transitions occurred in a temperature range from 2 to 100 K, which was confirmed by magnetic hysteresis loops. With increasing the particle size, the antiferromagnetic (AFM) transition temperature increases from 56 to 77 K, due to the reduced surface-to-volume ratio. Moreover, with a decrease in particle size, the Mn-spin reorientation temperature (T{sub SR}) is enhanced from 44 to 48 K. - Highlights: • HoMnO{sub 3} nanoparticles have been synthesized by a polymerized complex method. • The magnetic properties of HoMnO{sub 3} nanoparticles have been investigated. • The dielectric properties of HoMnO{sub 3} nanoparticles have been investigated. • The antiferromagnetic transition temperature increases with the particle size.

  12. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination.

    Science.gov (United States)

    Rao, Ying-Li; Chortos, Alex; Pfattner, Raphael; Lissel, Franziska; Chiu, Yu-Cheng; Feig, Vivian; Xu, Jie; Kurosawa, Tadanori; Gu, Xiaodan; Wang, Chao; He, Mingqian; Chung, Jong Won; Bao, Zhenan

    2016-05-11

    A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers. PMID:27099162

  13. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability.

    Science.gov (United States)

    Yang, Ke; Huang, Xingyi; Zhu, Ming; Xie, Liyuan; Tanaka, Toshikatsu; Jiang, Pingkai

    2014-02-12

    Nanodielectric materials with high dielectric constant, low dielectric loss, and high energy storage capability are highly desirable in modern electric and electronics industries. It has been proved that the preparation of core-shell structured dielectric polymer nanocomposites via "grafting from" method is an effective approach to these materials. However, by using this approach, the deep understanding of the structure-dielectric property relationship of the core-shell structured nanodielectrics has been limited because of the lack of detailed information (e.g., molecular weight, grafting density) about the macromolecules grafted onto the nanoparticle surfaces. In this work, by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene click reaction, two types of core-shell structured polymer@BaTiO3 (polymer@BT) nanocomposites with high dielectric constant and low dielectric loss were successfully prepared via a "grafting to" method. Compared with the "grafting from" method, this "grafting to" method has two merits: the molecular weight of the polymer chains in the shell layer can be easily controlled and the grafting density can be tailored by changing the molecular weight of the grafting polymer. Moreover, a clear insight into the relationship among the dielectric properties and energy storage capability of the core-shell structured polymer@BT nanocomposites, the molecular weight of the polymer chains, and the grafting density of the core-shell structured nanoparticles was achieved. The study provides new insights into the design and preparation of nanodielectric materials with desirable dielectric properties.

  14. The detection of the early stages of ageing in an LDPE+graphite composite by comparison of dielectric responses induced by sinusoidal and triangular signals

    Directory of Open Access Journals (Sweden)

    I. Petronijevic

    2014-10-01

    Full Text Available This study describes the possibility of dielectric characterization of the initial stages of ageing in an low-density polyethylene (LDPE + graphite composite, which is not possible using the standard method of dielectric spectroscopy. It is shown that the differences between the delay angles, Δφ = φTRI – φSIN, obtained using triangular and sinusoidal excitations on the composite samples, shows a maximum, and at the same time the position of this maximum shows more sensitivity to changes in the electrical properties of the material caused by ageing than other dielectric parameters. In order to clarify the applied methodology, a comparative analysis of the dielectric properties of other polymers poly(vinyl chloride (PVC and poly(vinyl alcohol (PVA and a conductive polymer composite (LDPE + carbon black with respect to the application of sinusoidal and triangular electrical signals was carried out. Based on the presented results, we believe that the position of the peak in the frequency spectra of the difference between the delay angles obtained by using triangular and sinusoidal signals may be a suitable parameter for the dielectric characterization of polymeric materials.

  15. Chain Dynamics in Solid Polymers and Polymerizing Systems as Revealed by Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Williams, Graham

    2008-08-01

    A number of techniques are used to study the chain-dynamics of solid polymers, including those of dielectric relaxation [1-4], dynamic mechanical thermal analysis (DMTA) [1, 5], multinuclear NMR relaxations [6], quasi-elastic dynamic light scattering [7] and neutron scattering [8] (QELS & QENS) and transient fluorescence depolarization (TFD) [9]. Each technique has its own particular probe of the dynamics in a material. e.g. dielectric relaxation gives information on the angular motions of molecular chain-dipoles (for dipole relaxation) and the translational motions of ions (for f-dependent electrical conduction); NMR relaxations relate to the angular motions of chemical bonds; QELS relates to fluctuations in local refractive index; QENS to the time-dependent van Hove correlation function (suitably-defined) for proton-containing groups; TFD to the angular motions of fluorescent groups in a chain. Due to its relevance to practical applications of materials, DMTA is pre-eminent among the many physical techniques applied to solid polymers, but interpretations of behaviour in terms of molecular properties remain difficult since the direct link between an applied macroscopic stress and the molecular response of polymer chains in a bulk material remains an unsolved problem. Of the above techniques, Broadband Dielectric Spectroscopy (BDS) offers several advantages. (a) Materials may be studied in the frequency range 10-6 to 1010 Hz, over wide ranges of temperature and applied pressure, using commercially-available instrumentation. (b) Since the electrical capacitance of a film is inversely proportional its thickness, free-standing and supported films may be studied down to nm-thicknesses, giving e.g. information on the behaviour of the dynamic Tg as sample thickness approaches molecular dimensions. (c) Theoretical interpretations of dielectric relaxation and a.c. conduction are well-established in terms of Fourier transforms of molecular time correlation functions (TCFs

  16. Correlation between mechanical and dielectric properties of Alfa/Wool/Polymeric hybrid fibres reinforced polyester composites

    International Nuclear Information System (INIS)

    Dielectric measurements and tensile testing of polyester/natural fibres (Alfa/wool) and thermo binder fibres (Pe/Pet) composites were investigated in order to study the adhesion of the fibres in the polyester matrix. Two composites #1 and #2 having 17:1:2 and 17:2:1 as a relative fraction of alfa/wool and thermo binder (Pe/Pet), respectively, have been characterized in this study. The obtained results revealed that the fibres adhesion in the matrix was better in the composite #1 than in the composite #2. Indeed, the analysis of the interfacial or Maxwell-Wagner-Sillars (MWS) polarization intensity, using the Havriliak–Negami model, has shown a lower intensity and the tensile testing exhibited a higher Young modulus in the composite #1. So the thermo binder fibres improve this adhesion

  17. A new methodology for dielectric materials analysis used in polymeric insulators; Uma nova metodologia para analise dos materiais dieletricos usados em isoladores polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Altafim, R.A.C.; Murakami, C.R. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia]. E-mail: altafim@sel.eesc.sc.usp.br; Herrmann, P.S.P.; Naime, J.M.; Cruvinel, P.E. [EMBRAPA, Sao Carlos, SP (Brazil). Instrumentacao Agropecuaria; Cardoso, L.P. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica

    2001-07-01

    Due to many problems regarding insulators installed in electrical energy systems this work intends to develop a new methodology for evaluating dielectric materials employed in the polymeric insulators manufacture processes. As the material to be analyzed it was chosen the originated polyurethane resin from mamona oil due to being genuinely Brazilian and also for having been presenting an excellent performance as a dielectric material. In this new methodology it is going to be employed the microscopy atomic force, the X ray diffraction and the computerized tomography in order to analyse imperfections, composition and homogeneity of dielectric materials. Usually, these factors cause distortions in the electric fields which affect too many insulators performance. The obtained results have been demonstrating that this analysis methodology can be applied on the the known samples as well as on the unknown ones.

  18. Measurements of the temperature dependence of radiation induced conductivity in polymeric dielectrics

    Science.gov (United States)

    Gillespie, Jodie

    This study measures Radiation Induced Conductivity (RIC) in five insulating polymeric materials over temperatures ranging from ~110 K to ~350 K: polyimide (PI or Kapton HN(TM) and Kapton E(TM)), polytetraflouroethylene (PTFE or Teflon(TM)), ethylene-tetraflouroethylene (ETFE or Tefzel(TM)), and Low Density Polyethylene (LDPE). RIC occurs when incident ionizing radiation deposits energy and excites electrons into the conduction band of insulators. Conductivity was measured when a voltage was applied across vacuum-baked, thin film polymer samples in a parallel plate geometry. RIC was calculated as the difference in sample conductivity under no incident radiation and under an incident ~4 MeV electron beam at low incident dose rates of 0.01 rad/sec to 10 rad/sec. The steady-state RIC was found to agree well with the standard power law relation, sigmaRIC(D˙) = kRIC(T) D˙Delta(T) between conductivity, sigmaRIC and adsorbed dose rate, D˙. Both the proportionality constant, kRIC, and the power, Delta, were found to be temperature-dependent above ~250 K, with behavior consistent with photoconductivity models developed for localized trap states in disordered semiconductors. Below ~250 K, kRIC and Delta exhibited little change in any of the materials.

  19. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    reported to increase the breakdown strength of DEs such as compositing and pre-stretching. Some of the techniques, however, affect other parameters related to DEs negatively. For instance, the elastomers with hard filler particles (e.g. metal oxides) used as DEs experience difficulties to maintain......, the lifetime of elastomer materials needs further investigation. Therefore, in the second strategy, several DE parameters such as Young’s moduli, breakdown strengths and dielectric permittivities of PDMS elastomers filled with hard filler particles were investigated after being subjected to pre......-stretching for various timespans. The study showed that electromechanical reliability when pre-stretching was difficult to achieve with PDMS elastomers filled with hard filler particles. Subsequently, the long-term mechanical and electrical reliability was further investigated to the PDMS elastomers filled with the soft...

  20. High Voltage Breakdown, Partial Discharge and Aging in Lapped Tape Insulated Cold Dielectric Model Cables

    Science.gov (United States)

    Sauers, I.; James, D. R.; Pace, M. O.; Ellis, A. R.; Muller, A. C.

    2004-06-01

    High temperature superconducting (HTS) power cables generally follow either of two generic designs, cold dielectric and warm dielectric. In the cold dielectric design, lapped tape insulation and liquid nitrogen are used in combination to provide the electrical insulation between the conductor and the ground shield of an HTS cable. Lapped tape insulated model cables have been tested at high voltage, including AC breakdown, negative impulse breakdown, partial discharge, and long term aging under AC stress. Tapes tested include Cryoflex™ (a proprietary tape developed by Southwire) and PPLP® (a commercial semi synthetic tape). Two high voltage cryostats have been built for short and long term aging studies that permit testing of model cables under the combined conditions of high electric stress, cryogenic temperature and elevated pressures up to 15 bar. For the aging studies, a log-log plot of electric stress versus time-to-breakdown has yielded an estimate of cable lifetime. Since aging at cryogenic temperatures is not expected to have a thermal cause, dielectric wear in HTS cables reduces to partial discharge as the primary aging mechanism. Phase and amplitude resolved partial discharge data of model cables in liquid nitrogen will be presented.

  1. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A.

    2015-10-01

    We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of 1H nuclear magnetic resonance (NMR), 31P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg1 and Tg2. The slower one is attributed to the high-Tg component (α1-process), and the faster one is related to the m-TCP molecules (α2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α1-process. While the α1-relaxation only weakly broadens upon adding m-TCP, the α2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by 31P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D 31P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτα2). At Tg1 a crossover is found for the temperature dependence of (mean) τα2(T) from non-Arrhenius above to Arrhenius below Tg1 which is attributed to intrinsic confinement effects. This "fragile-to-strong" transition also leads to a re-decrease of Tg2(cm-TCP) at low concentration cm-TCP, i.e., a maximum is observed in Tg2(cm-TCP) while Tg1(cm-TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems.

  2. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)

    2015-10-21

    We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCP molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously

  3. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    International Nuclear Information System (INIS)

    We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of 1H nuclear magnetic resonance (NMR), 31P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg1 and Tg2. The slower one is attributed to the high-Tg component (α1-process), and the faster one is related to the m-TCP molecules (α2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α1-process. While the α1-relaxation only weakly broadens upon adding m-TCP, the α2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by 31P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D 31P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτα2). At Tg1 a crossover is found for the temperature dependence of (mean) τα2(T) from non-Arrhenius above to Arrhenius below Tg1 which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of Tg2(cm−TCP) at low concentration cm−TCP, i.e., a maximum is observed in Tg2(cm−TCP) while Tg1(cm−TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems

  4. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Directory of Open Access Journals (Sweden)

    Carlos A. Ferreira

    2011-01-01

    Full Text Available A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE. Power Utility Polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG, Dynamic-Mechanic Analysis (DMA, Fourier Transformed Infrared Spectroscopy (FTIR and Scanning Electronic Microscopy (SEM to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weatherometer, 120 °C, salt spray, immersion in water. After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 kA, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrestor are appropriate for use in electricity distribution networks.

  5. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carlos A.; Coser, E. [Laboratorio de Materiais Polimericos, Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)], e-mail: ferreira.carlos@ufrgs.br; Angelini, Joceli M.G. [Departamento de Materiais Eletricos, CPqD, Campinas, SP (Brazil); Rossi, Jose A.D. [Materiais Alta Tensao, CPqD, Campinas, SP (Brazil); Martinez, Manuel L.B. [Departamento de Engenharia Eletrica, UNIFEI, Itajuba, MG (Brazil)

    2011-07-01

    A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE). Power utility polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG), Dynamic-Mechanic Analysis (DMA), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy (SEM) to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weather meter, 120 deg C, salt spray, immersion in water). After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 k A, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrester are appropriate for use in electricity distribution networks. (author)

  6. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    Science.gov (United States)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  7. Study of polymeric nanocomposites prepared by inserting graphene and / or Ag, Au and ZnO nanoparticles in a TEGDA polymer matrix, by means of the use of dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Valeria Alzari

    2016-03-01

    Full Text Available Polymeric nanocomposites were prepared by inserting graphene and/or Ag, Au and ZnO nanoparticles in a TEGDA (tetraethyleneglycol diacrylate polymer matrix. The polymeric films were characterized in terms of their dielectric properties by electrochemical impedance spectroscopy. The impedance data were fitted by generalized relaxation functions in order to determine conductivity, dielectric response and molecular relaxation time of the nanocomposite films. In particular, a stretched exponential function, Kohlrausch-Williams-Watts function (KWW, was used to investigate polymer/graphene/metal nanocomposites.

  8. Flavonoids as Natural Stabilizers and Color Indicators of Ageing for Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Anna Masek

    2015-06-01

    Full Text Available Few changes have occurred in the use of various stabilizers over recent years. In the current literature, phosphate derivatives are used as anti-ageing additives in polymers, and the most popular of these are sterically hindering cyclic amines. However, most of these compounds are carcinogenic. Synthetic phenols have been increasingly used as antioxidants in food and in polymers. Ecological standards encourage the elimination of harmful additives in polymeric products that come in contact with food or with the human body. This article presents application of flavonoid (silymarin/flavonoligand for polymer stabilization and use of natural phytocompounds such as color indicators of polymers ageing time. In this research, I propose two ways of application: traditional, during processing; and the new one, by using impregnation method. Based on the change of deformation energy (ageing coefficient K, FTIR, oxidative induction time (OIT evaluated by differential scanning calorimetry (OIT, thermogravimetry analysis (TG, spectrophotometric color measurements in terms of CIE-Lab color space values, I confirmed the high antioxidant activity of flavonoids in EPM. They provide coloration of the polymeric materials that changes cyclically as a function of aging time. Additionally, the use of phytocompounds in polymers provides similar stabilizing effect to those of synthetic antioxidants.

  9. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

    Science.gov (United States)

    Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu

    2012-11-23

    A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices.

  10. Effect of titanium oxide-polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Della Pelle, Andrea M. [LGS Innovations, 15 Vreeland Rd., Florham Park, NJ 07932 (United States); Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St. Amherst, MA 01003 (United States); Maliakal, Ashok, E-mail: maliakal@lgsinnovations.com [LGS Innovations, 15 Vreeland Rd., Florham Park, NJ 07932 (United States); Sidorenko, Alexander [Department of Chemistry and Biochemistry, University of the Sciences, 600 South 43rd St., Philadelphia, PA 191034 (United States); Thayumanavan, S. [Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St. Amherst, MA 01003 (United States)

    2012-07-31

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide-polystyrene core-shell nanocomposite (TiO{sub 2}-PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO{sub 2}-PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as {alpha}-sexithiophene ({alpha}-6T) (enhancement factor for field effect mobility ranging from 30-100 Multiplication-Sign higher on TiO{sub 2}-PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for {alpha}-sexithiophene ({alpha}-6T) grown by thermal evaporation on TiO{sub 2}-PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO{sub 2}-PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2 Multiplication-Sign ) increase in mobility with increasing TiO{sub 2}-PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation

  11. Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    International Nuclear Information System (INIS)

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide–polystyrene core–shell nanocomposite (TiO2–PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO2–PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as α-sexithiophene (α-6T) (enhancement factor for field effect mobility ranging from 30-100× higher on TiO2–PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for α-sexithiophene (α-6T) grown by thermal evaporation on TiO2–PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO2–PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2×) increase in mobility with increasing TiO2–PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation rate produces organic polycrystalline films with small grain size which are

  12. Determination of Relationship between Dielectric Properties, Compressive Strength, and Age of Concrete with Rice Husk Ash Using Planar Coaxial Probe

    Directory of Open Access Journals (Sweden)

    Piladaeng Nawarat

    2016-02-01

    Full Text Available This paper deals with an investigation of the dielectric properties of concretes that includes rice husk ash using a planar coaxial probe. The planar coaxial probe has a planar structure with a microstrip and coaxial features. The measurement was performed over the frequency range of 0.5-3.5 GHz, and concrete specimens with different percentages of rice husk ash were tested. The results indicated that the dielectric constant of the concretes was inversely proportional to the frequency, while the conductivity was proportional to the frequency. The dielectric constant decreased with the increasing age of the concrete at the frequency of 1 GHz. The conductivity of the concrete decreased with the increasing age of the concrete at the frequency of 3.2 GHz. In addition, the dielectric constant and the conductivity decreased when the compressive strength increased. It was also shown that the obtained dielectric properties of the concrete could be used to investigate the relationship between the compressive strength and age of the concrete. Moreover, there is an opportunity to apply the proposed probe to determine the dielectric properties of other materials.

  13. Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy.

    Science.gov (United States)

    Kossack, Wilhelm; Adrjanowicz, Karolina; Tarnacka, Magdalena; Kipnusu, Wycliffe Kiprop; Dulski, Mateusz; Mapesa, Emmanuel Urandu; Kaminski, Kamil; Pawlus, Sebastian; Paluch, Marian; Kremer, Friedrich

    2013-12-21

    Fourier Transform Infra Red (FTIR) and Broadband Dielectric Spectroscopy (BDS) are combined to study both the intra- and inter-molecular dynamics of two isomers of glass forming fucose, far below and above the calorimetric glass transition temperature, T(g). It is shown that the various IR-active vibrations exhibit in their spectral position and oscillator strength quite different temperature dependencies, proving their specific signature in the course of densification and glass formation. The coupling between intra- and inter molecular dynamics is exemplified by distinct changes in IR active ring vibrations far above the calorimetric glass transition temperature at about 1.16T(g), where the dynamic glass transition (α relaxation) and the secondary β relaxation merge. For physically annealed samples it is demonstrated that upon aging the different moieties show characteristic features as well, proving the necessity of atomistic descriptions beyond coarse-grained models.

  14. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies.

    Science.gov (United States)

    Peyman, A; Gabriel, C

    2010-08-01

    We have applied the Cole-Cole expression to the dielectric properties of tissues in the frequency range 0.4-10 GHz. The data underpinning the model relate to pig tissue as a function of age. Altogether, we provide the Cole-Cole parameters for 14 tissue types at three developmental stages.

  15. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Kidder, Michelle [ORNL; Polyzos, Georgios [ORNL; Leonard, Keith J [ORNL

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  16. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  17. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    Science.gov (United States)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  18. Dielectric Spectroscopy of Bisphenol A Epoxy Resin Aged in Wet and Dry Conditions

    OpenAIRE

    Vaishampayan, Deep

    2009-01-01

    This thesis presents the laboratory test data on Bisphenol A epoxy insulation.This thesis work deals with electrical, mechanical and thermal analysis of Bisphenol A epoxy resin. The main aim of this thesis work was to examine if dry and wet aging changes the glass transition temperature (Tg) of the epoxies and measure the impact on the complex permittivity under different ageing conditions namely dry and wet. During ageing the samples (epoxy discs and dog bones) were kept in water at 20°C, 45...

  19. Evaluation of the aging of polymeric drilling fluids to oil wells; Avaliacao do envelhecimento de fluidos de perfuracao polimericos para pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Farias, K.V.; Amorim, L.V. [Universidade Federal de Campina Grande, PB (Brazil). Unidade Academica de Engenharia Mecanica, UAEM/CCT - UFCG], e-mail: kassie@dem.ufcg.edu.br; Leite, R.S. [Universidade Federal de Campina Grande, PB (Brazil). Graduacao Engenharia de Materiais; Lira, H.L. [Universidade Federal de Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais, UAEMa/ CCT - UFCG

    2010-07-01

    The aim of this work is to evaluate the aging of polymeric drilling fluids to oil wells, from the rheological, filtration and lubricity properties in the temperatures 100 degree F ({approx} 38 degree C) and 150 degree F ({approx} 66 degree C). The results had been compared with a standard fluid used for the oil industry and had evidenced that the polymeric fluids had presented good thermal stability, presenting a small reduction in the rheological properties and better values of lubricity coefficient that a reference fluid. (author)

  20. Radiation Induced Aging Effects in Polymeric Cable Insulators at CERN. Compilation of the DSC and ATR-FTIR data on irradiated CERN cables.

    CERN Document Server

    Sorin, I

    2009-01-01

    This second part of the Report on Radiation Induced Aging Effects in Polymeric Cable Insulators at CERN [1] summarizes in a tabulated form all the experimental DSC results obtained in this work, concerning the life-time evaluation of the selected CERN cables irradiated in different conditions. Several examples of DSC curves and ATR-FTIR spectra were included to support the future polymeric materials analysis. Information on the experimental conditions, the instruments, the basic concept of life-time evaluation using the DSC data, as well as the examples of data processing and interpretation are presented and discussed in reference [1].

  1. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  2. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun;

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer backb...

  3. RFID system for newborn identity reconfirmation in hospital: exposure assessment of a realistic newborn model and effects of the change of the dielectric properties with age.

    Science.gov (United States)

    Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo

    2011-12-01

    This paper addresses the exposure assessment of RFID devices for newborn identity reconfirmation. To that purpose, a realistic newborn model ("Baby") is used to evaluate by a computational approach the levels of exposure due to these devices. Considering the average technical specifications currently in use, the exposure matrix in Baby shows that the systems comply with the ICNIRP exposure guidelines. As second aim, the effects of the change of the tissue dielectric properties with age on the so called "exposure matrix" (set of induced magnetic and electric field together with the derived values of SAR) is addressed. Specifically, three different approaches proposed in literature for the age variation of the dielectric properties at 13.56 MHz (the working frequency of the RFID systems for these applications) have been implemented using the Baby geometrical model. The related exposure matrices were then compared with the results obtained using the adult properties. No clear trend can be identified on the exposure matrices obtained varying the dielectric properties at 13.56 MHz, although the results could suggest a trend toward the underestimation of the exposure using adult properties.

  4. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi;

    2015-01-01

    of tearing and the formationof mechanical defects, but films with sustained and substantial strain may also experience mechanicaldegradation. In this study a long-term mechanical reliability study of DE is performed. Young’s mod-uli, dielectric breakdown strengths and dielectric permittivities of commercial...... silica-reinforced siliconeelastomers, with and without an additional 35% (35 phr) of titanium dioxide (TiO2), were investigatedafter being subjected to pre-stretching for various timespans at pre-stretches to strains of 60 and 120%,respectively. The study shows that mechanical stability when pre...

  5. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    International Nuclear Information System (INIS)

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomes much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing

  6. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham; Chen, George [School of Electronic and Computer Science, University of Southampton, Southampton (United Kingdom); Fu, Mingli; Li, Ruihai; Hou, Shuai [Electric Power Research Institute of China Southern Power Grid, Guangzhou (China)

    2015-08-14

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomes much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.

  7. 基于介电谱分析聚酰亚胺薄膜的老化特征%Aging Characteristics of Polyimide Film Based on Dielectric Spectra

    Institute of Scientific and Technical Information of China (English)

    高波; 吴广宁; 曹开江; 罗杨; 王鹏; 崔易

    2011-01-01

    The accelerated aging test of common and nano polyimide film was conducted under bipolar impulses voltage. The dielectric frequency spectra and temperature spectra of the film be fore and after aging were analyzed. The relationships between microscopic molecular structure and macroscopic dielectric property were studied by SEM. The results show that the dipole relaxation loss peak in high frequency region moves towards higher frequency and the loss peak originated from interface polarization in low temperature region towards higher temperature after aging. And the aging breaks down the molecular chain of the film and generates polar molecules with small molecular weight, making the orientation polarization be built more easily. The addition of nanometer reduces the destroying effect of aging factor on the internal structure of the film, thus greatly decreasing the relaxation loss originated from dipole orientation polarization. A great deal of interface defects are formed from nano-doping which greatly increase the dielectric loss origi nated from interface polarization.%对纳米和普通聚酰亚胺薄膜进行了双极性脉冲电压下的老化试验,分析了薄膜老化前后的介电频率谱和温度谱,并借助电镜扫描分析,研究了薄膜老化前后的微观结构形态与宏观介电性能之间的关系.结果表明:老化使聚酰亚胺薄膜介电频率谱中的偶极子弛豫损耗峰向高频移动,低温区的界面极化损耗峰向高温移动;且老化使聚酰亚胺薄膜分子链断裂,生成分子量小的极性分子,使取向极化更易建立;纳米粒子的加入,削弱了老化因子对聚酰亚胺薄膜内部结构的破坏作用,使偶极子取向带来的弛豫损耗大大减小;纳米掺杂形成大量的界面缺陷,使界面极化带来的介质损耗大大增加.

  8. Effect of (Ca0.8Sr0.2)0.6La0.267TiO3 on Phase, Microstructure, and Microwave Dielectric Properties of Mg0.95Zn0.05TiO3 Synthesized by Polymeric Precursor Method

    Science.gov (United States)

    Naeem, Abdul; Ullah, Asad; Mahmood, Tahira; Iqbal, Yaseen; Mahmood, Asad; Hamayun, Muhammad

    2016-08-01

    A number of compounds in the (1 - x)Mg0.95Zn0.05TiO3- x(Ca0.8Sr0.2)0.6 La0.267TiO3 ( x = 0 to 0.25) composition series have been obtained via a polymeric precursor route to investigate the effect of increasing (Ca0.8Sr0.2)0.6La0.267TiO3 proportion on the phase, microstructure, and microwave dielectric properties of the sintered ceramics. Composite powders having nanometric particles were obtained by calcining the precursors at 700°C. Refinement results revealed that these samples comprised a mixture of Mg0.95Zn0.05TiO3 and (Ca0.8Sr0.2)0.6La0.267TiO3 ceramics. A combination of optimum microwave dielectric properties, i.e., dielectric constant of 25.17, quality factor of 58,754 GHz, and temperature coefficient of resonant frequency of -5.8 ppm/°C, was achieved for the x = 0.2 composition sintered at 1200°C.

  9. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  10. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    Science.gov (United States)

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  11. Multiphoton polymerization

    Directory of Open Access Journals (Sweden)

    Linjie Li

    2007-06-01

    Full Text Available The inherent optical nonlinearity of multiphoton absorption allows such absorption to be localized in regions of high light intensity. This means that photochemical or photophysical transformations can be restricted to occur within the focal volume of a laser beam that has been focused through a microscope objective. By moving the focal position, intricate three-dimensional microstructures can be created. The most well-developed multiphoton fabrication technique – multiphoton absorption polymerization – enables the creation of large-scale structures with feature sizes as small as 100 nm.

  12. Study of accelerated aging of polymeric surge arresters and insulators used in high voltage lines; Estudo sobre o envelhecimento acelerado de para-raios e isoladores polimericos usados em linhas de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Junior, Joao B. de; Castro Junior, Joao B. de; Silva, Maria Elisa S.R. e; Freitas, Roberto F.S.; Sousa, Ricardo G. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Quimica. Lab. Ciencia e Tecnologia de Polimeros; Souza, Breno P.G. de [CEMIG Distribuicao S.A., Belo Horizonte, MG (Brazil)], e-mail: sousarg@ufmg.br

    2011-07-01

    The use of polymeric materials in the electrical system has dramatically increased in recent years, in quantity as well as in quality. However, the use of these materials has been very empirical, being necessary a more directed and well based study towards their application in energy sector, especially concerning their early deterioration. In this study, the behavior of some surge arresters and insulators, used in power lines, after suffering aging artificial weathering chamber, was investigated. The absorption spectra in the infrared (FTIR) was used as analytical technique for study of aging. Of the five samples tested, only one showed an oxidation process after 1500 hours of artificial weathering. (author)

  13. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  14. Investigation of Dielectric Response Characteristics of Transformer Oil-Paper Insulation Dielectric Spectroscopy of Acceleratedly Thermal Aging%变压器油纸绝缘的介电响应特性研究一加速热老化的介电谱

    Institute of Scientific and Technical Information of China (English)

    魏建林; 王世强; 彭华东; 董明; 张冠军; 冯玉昌; 于峥

    2012-01-01

    为了研究变压器油纸绝缘老化的介电响应特征量,本文对油纸绝缘试品进行了加速热老化,并在老化的不同阶段开展了相同试验温度下的极化、去极化电流(PDC)和频域谱(FDS)试验。在PDC试验数据的基础上,引入时域介电谱理论,提取其峰值和峰值时间常数作为老化特征量,研究了该特征量与绝缘老化的关系。结果表明,绝缘老化使PDC试验的极化及去极化电流曲线均明显上移,FDS试验的复电容实部和虚部曲线在低频段均向右上平移,时域介电谱曲线则向左上方平移,这是由于老化弓I起水分、有机酸等含量的增加以及对纤维素结构的破坏,提高了油纸绝缘间夹层介质界面极化的强度和响应速度而造成的。在本文的试验条件下,油纸绝缘的时域介电谱对其老化反应灵敏,可定量反映油纸绝缘老化程度的变化情况,其峰值和峰值时间常数可考虑用作表征油纸绝缘老化程度的特征量。%For achieving the characteristic parameters ot dielectric response pnenomena o~ transformer oil-paper insulation aging, the oil-impregnated pressboard samples were acceleratedly thermally aged. The dielectric response tests, including polarization and depolarization current (PDC) and frequency domain spectroscopy (FDS), were performed on the samples with different aging degree at the same temperature. The time-domain dielectric spectroscopy theory was introduced to investigate the aging characteristic parameters of dielectric response based on the PDC data. The results reveal that, with sample aging, its polarization and depolarization currents shift upwards to higher value, the real and imaginary capacitance and dissipation factor shift upwards and rightwards at lower frequencies, and the time-domain dielectric spectroscopy shifts upwards and leftwards. It is considered that aging process induces the increment of water and organic

  15. Fabrication of triazinedithiol functional polymeric nanofilm by potentiostatic polymerization on aluminum surface

    International Nuclear Information System (INIS)

    The functional polymeric nanofilm of 6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)amino-1,3,5-triazine-2, 4-dithiol monosodium (AF17N) was prepared on pure aluminum surface by potentiostatic polymerization at different potentials. The thickness and weight of polymeric nanofilm increased proportionally to electro-polymerization potential following linear equation. The chemical structure of nanofilm was characterized by Fourier transform-infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Adsorption peaks in FT-IR and C1s, N1s, S2p, F1s and Al2p peaks in XPS spectra indicated that the polymeric nanofilm was poly(6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)amino-1,3,5-triazine-2, 4-disulfide) (PAF17). The morphologies of polymeric nanofilm were also observed by atomic force microscopy (AFM). All the results showed that the optimal electro-polymerization potential and time were 8 V and 20 s, respectively. Uniform and compact nanofilm of PAF17 could be obtained under these conditions. It is expected that this technique will be applied in the preparation of lubricating, dielectric and hydrophobic surface on aluminum substrate.

  16. Dielectric Actuation of Polymers

    OpenAIRE

    Niu, Xiaofan

    2013-01-01

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy den...

  17. Degradation of High Voltage Polymeric Insulators in Arid Desert's Simulated Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Yasin Khan

    2009-01-01

    Full Text Available Problem statement: High Voltage (HV polymeric insulators are replacing ceramic insulator commonly used for HV outdoor networks due to their ease of handling, reliability and cost. However, their long term performance and reliability are major concerns to power utilities. Approach: To investigate their performance in arid desert's conditions, two types of HV composite insulators were aged as per International Electrochemical Commission (IEC standard-61109. Additional test samples were subjected to accelerated aging conditions simulating the actual Ultraviolet (UV radiation intensity and temperature in the inland desert. Results: This study described the experimental results of the effects of thermo electric stress and UV radiations on the polymeric insulators aged under two conditions i.e., as per IEC standard and modified IEC standard that simulates the inland arid desert. The tests results after the artificial accelerated aging indicated that the dielectric response of thermoplastic insulators under the tested thermo-electric cum UV-irradiations outperforms Silicone rubber insulators.Conclusion: From the obtained results it will be easy to assess the performance and suitability of composite insulators for their applications in arid desert environments.

  18. Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization

    Directory of Open Access Journals (Sweden)

    Juan Xu

    2009-11-01

    Full Text Available 6-(N-Allyl-1,1,2,2-tetrahydroperfluorododecylamino-1,3,5-triazine-2,4-dithiol monosodium (ATP was used to prepare polymeric thin films on pure aluminum plates to achieve a superhydrophobic surface. The electrochemical polymerization process of ATP on aluminum plates in NaNO2 aqueous solution and the formation of poly(6-(N-allyl-1,1,2,2-tetrahydroperfluorododecylamino-1,3,5-triazine-2,4-dithiol (PATP thin film were studied by means of optical ellipsometry and film weight. The chemical structure of the polymeric film is investigated using FT-IR spectra and X-ray photoelectron spectroscopy (XPS. Contact angle goniometry was applied to measure the contact angles with distilled water drops at ambient temperature. The experimental results indicate that the polymeric film formed on pure aluminum plates exhibits superhydrophobic properties with a distilled water contact angle of 153°. The electrochemical polymerization process is time-saving, inexpensive, environmentally friendly and fairly convenient to carry out. It is expected that this technique will advance the production of superhydrophobic materials with new applications on a large scale. Moreover, this kind of polymeric thin film can be used as a dielectric material due to its insulating features.

  19. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  20. Polymerization of organized monomers

    Directory of Open Access Journals (Sweden)

    Stoiljković Dragoslav M.

    2004-01-01

    Full Text Available The current explanations of olefin and vinyl monomer polymerization propose that monomer molecules are successively added one by one to the growing polymer chain. This may be true if the monomer molecules exist as individual species in a polymerizing system, e.g. in dilute solutions of monomer. There are cases, however, in which monomer molecules are organized: bulk liquid monomer, solid monomer, a monomer monolayer adsorbed on a support, etc. Various supra-molecular species and particles of monomer exist in such cases. In the 1960-ties, Semenov, Kargin and Kabanov proposed a theory of organized monomer polymerization. In the last 25 years, our research group has further developed and applied that theory to various polymerizing systems: the radical polymerization of compressed ethene gas, the radical polymerization of liquid methyl methacrylate, olefin polymerization by transition metals and by Al-based catalysts. An outline of the main achievements are presented in this article.

  1. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Dielectric and electrical insulation properties

    Science.gov (United States)

    Tuncer, Enis; Rondinone, Adam J.; Woodward, Jonathan; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.

    2009-03-01

    In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.

  2. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  3. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  4. Resonant dielectric metamaterials

    Science.gov (United States)

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  5. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating.

    Science.gov (United States)

    Rivolo, Paola; Nisticò, Roberto; Barone, Fabrizio; Faga, Maria Giulia; Duraccio, Donatella; Martorana, Selanna; Ricciardi, Serena; Magnacca, Giuliana

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties. PMID:27157754

  6. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons are the ch...... awarded the Nobel Prize in chemistry “for the discovery and development of conductive polymers”....

  7. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G VEENA; N M RENUKAPPA; KUNIGAL N SHIVAKUMAR; S SEETHARAMU

    2016-04-01

    This paper presents the development of epoxy-silica nanocomposites and characterized for dielectric properties. The effect of nanosilica loading (0–20 wt%), frequency, temperature and sea water aging on these properties was studied. Transmission electron microscopy (TEM) analysis of the samples showed an excellent dispersion. However, at higher silica loading TEM showed inter-contactity of the particles. The dielectric constant (υ') increased with silica loading and reached an optimum at about 10 wt%. The υ' of the nanocomposites showed linear decrease with frequency whereas AC conductivity (σac) increases. The σac and υ' increased marginally with temperature and sea water aging.

  8. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  9. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  10. Shock-induced electrical switching in polymeric films

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R. A.

    1979-01-01

    Several of the compressed magnetic field generators described at this conference use polymeric films to insulate explosively driven armatures from coils surrounding the armatures. Optimum device performance is achieved when the films remain electrically insulating prior to impact of the armatures but switch to highly conducting states upon impact on the film. The electrical switching properties of commercially available polymer films with high dielectric strength are reported.

  11. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric mic...

  12. Terahertz Artificial Dielectric Lens

    Science.gov (United States)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  13. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  14. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    Science.gov (United States)

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-01

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing. PMID:26368847

  15. Tunable Liquid Dielectric Antenna

    Directory of Open Access Journals (Sweden)

    Kamal Raj Singh Rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the dielectric properties of liquid with varying salinity that was based on monopole structure. Dielectric resonator antennas (DRAs can be made with a wide range of materials and allow many excitation methods [2]. Pure water does not work at high frequency (> 1 GHz but increase in the salinity of water modifies the dielectric properties of water. Here proposed antenna shows that when the salinity increases in form of molar solution, the antenna was tuned at different frequency with increases return loss.

  16. Mistura PAni.DBSA/SBS Obtida por Polimerização "In Situ": Propriedades Elétrica, Dielétrica e Dinâmico-Mecânica PAni.DBSA/SBS blends prepared from "in situ" polymerization: electric, dielectric and dynamic-mechanical properties

    Directory of Open Access Journals (Sweden)

    María E. Leyva

    2002-01-01

    Full Text Available Misturas elastoméricas condutoras de eletricidade envolvendo copolímero tribloco poli(estireno-b-butadieno-b-estireno (SBS e polianilina dopada com ácido dodecilbenzenosulfônico (Pani.DBSA foram obtidas por polimerização "in situ". Os filmes obtidos por moldagem por compressão mostraram baixo limiar de percolação, apresentando valores de condutividade semelhantes aos encontrados para o polímero condutor puro com cerca de 20 % em massa de Pani.DBSA. A caracterização das misturas por análise termodinâmico-mecânica (DMTA evidenciou uma ligeira interação da Pani.DBSA com ambas fases do copolímero SBS. Na região borrachosa, o módulo da mistura aumenta com o aumento do conteúdo de Pani. No entanto, existe uma progressiva queda no fator de amortecimento ("damping" com o aumento da concentração de Pani. A energia de ativação, Ea, do processo de transição vítreo-borrachoso de ambas fases do SBS foi calculada, utilizando a equação de Arrhenius com os dados obtidos tanto por DMTA como por análise termodielétrica (DETA. A caracterização dielétrica não proporcionou informações a respeito da localização da Pani.DBSA na matriz de SBS. No entanto, observou-se o fenômeno de polarização interfacial entre a Pani e o SBS. Uma morfologia do tipo microtubos foi observada para Pani.DBSA na mistura SBS/Pani.DBSA, utilizando-se a técnica de microscopia eletrônica de varredura.Conducting rubbery blends of styrene-butadiene-styrene (SBS triblock copolymer and polyaniline doped with dodecylbenzenesulfonic acid (Pani.DBSA were produced by "in situ" polymerization. The films obtained by compression-molding display low percolation threshold with conductivity values similar to that found for pure Pani.DBSA with only 20 wt% of Pani.DBSA in the SBS/Pani.DBSA blend. The dynamic-mechanical characterization demonstrated that PAni.DBSA presents a slight interaction with both phases of the SBS copolymer. In the rubbery region, the modulus

  17. Electrical, optical and dielectric properties of HCl doped polyaniline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Chutia, P.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-03-01

    In this report we have investigated the optical, electrical and dielectric properties of HCl doped polyaniline nanorods synthesized by the interfacial polymerization technique. High resolution transmission electron microscope (HRTEM) micrographs confirm the formation of nanorods. X-ray diffraction pattern shows the semicrystalline nature of polyaniline nanorods with a diameter distribution in the range of 10–22 nm. The chemical and electronic structures of the polyaniline nanorods are investigated by micro-Raman and UV–vis spectroscopy. Dielectric relaxation spectroscopy has been applied to study the dielectric permittivity, modulus formalism and ac conductivity as a function of frequency and temperature. The ac conductivity follows a power law with frequency. The variation of frequency exponent with temperature suggests that the correlated barrier hopping is the dominant charge transport mechanism. The existence of both polaron and bipolaron in the transport mechanism has been confirmed from the binding energy calculations.

  18. Noncontact Dielectric Friction

    OpenAIRE

    Kuehn, Seppe; Marohn, John A.; Loring, Roger F.

    2006-01-01

    Dielectric fluctuations are shown to be the dominant source of noncontact friction in high-sensitivity scanning probe microscopy of dielectric materials. Recent measurements have directly determined the friction acting on custom-fabricated single-crystal silicon cantilevers whose capacitively charged tips are located 3–200 nm above thin films of poly(methyl methacrylate), poly(vinyl acetate), and polystyrene. Differences in measured friction among these polymers are explained here by relating...

  19. Effect of Insulation Properties on the Field Grading of Solid Dielectric DC Cable

    DEFF Research Database (Denmark)

    Boggs, S.; Damon, Dwight Hill; Hjerrild, Jesper;

    2001-01-01

    field, however. Based on measured material properties, we demonstrate the effect of such dependencies on the field grading of dc cable for the range of measured material properties and provide an analytical approximation for computing the field of resistively graded dielectrics, including the effect......The development of solid dielectric dc transmission class cable is a priority throughout much of the world, to avoid risks associated with placing hydrocarbon fluids in underwater environments. The conductivity of polymeric solid dielectrics tends to be a strong function of temperature and electric...

  20. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei [Xi' an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an (China); Xi' an Jiaotong University, School of Mechanical Engineering, Xi' an (China)

    2013-02-15

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. (orig.)

  1. Dielectric spectroscopy in agrophysics

    Science.gov (United States)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  2. Induction of Polymerization of the Surface Nanostructures of the Electrodes by Electric Field

    Directory of Open Access Journals (Sweden)

    S.G. Еmelyanov

    2014-07-01

    Full Text Available The results of experimental studies of the interface of "dielectric liquid - nanostructured metal electrode" after electroconvection is presented. It is discovered the patterns of structuring of areas of polymerization showing disruption of the diffusion layer and the processes of charge injection from the tops of structures.

  3. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike;

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  4. Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores.

    Science.gov (United States)

    Zhao, Cuijiao; Wei, Xiaonan; Huang, Yawen; Ma, Jiajun; Cao, Ke; Chang, Guanjun; Yang, Junxiao

    2016-07-28

    Although general porous materials have a low dielectric constant, their uncontrollable opened porous structure results in high dielectric loss and poor barrier properties, thus limiting their application as interconnect dielectrics. In this study, polymeric nanoporous materials with well-controlled closed pores were prepared by incorporating polystyrene (PS) hollow nanoparticles into polyethylene (PE/HoPS). SEM images suggested a closed porous structure for PE/HoPS. In order to show the effect of the porous structure on dielectric properties, nanoporous materials with an opened or uncontrollable porous structure were prepared by etching SiO2/PE or PE/PS@SiO2 composites. PE/HoPSs composites showed an apparently lower dielectric constant and loss compared with the opened porous PE, demonstrating the advantages of a closed porous structure upon enhancing low-dielectric performance. The low dielectric performance of the PE/HoPS composites is linked with high water resistance owing to their closed porous characteristics. When incorporating 15.3 wt% HoPS (porosity: ∼6.9%), the dielectric constant reached 2.08. This value is lower than that calculated from the serial model. Our work revealed that the incorporation of HoPS not only reduces the porosity, but also alters the intrinsic properties of PE, as a result, leading to a greatly reduced dielectric constant. PMID:27363945

  5. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  6. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  7. PREFACE: Dielectrics 2013

    Science.gov (United States)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  8. Synthesis, characterization and dielectric properties of polynorbornadiene–clay nanocomposites by ROMP using intercalated Ruthenium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yalçınkaya, Esra Evrim, E-mail: esra.evrim.saka@ege.edu.tr; Balcan, Mehmet; Güler, Çetin

    2013-12-16

    Polynorbornadiene clay nanocomposites were prepared for the first time by the ring opening metathesis polymerization (ROMP) using modified montmorillonite and polynorbornadiene the latter of which is used commonly in electric–electronic industry. The Na–MMT clay was modified by a quaternary ammonium salt containing Ruthenium complex as a suitable catalyst and intercalant as well. The norbornadiene monomers were polymerized within the modified montmorillonite layers by in-situ polymerization method in different clay loading degrees. Intercalation ability of the Ru catalyst and partially exfoliated nanocomposite structure were proved by powder X-ray Diffraction (XRD) Spectroscopy and Transmission Electron Microscopy (TEM) methods. The nanocomposite materials with high thermal degradation temperature and low dielectric constant compared to the pure polynorbornadiene were obtained. The dielectric constants decreased with the increase of the clay content. - Highlights: • Polynorbornadiene–clay nanocomposites were prepared for the first time. • Ruthenium complex was assigned as both suitable catalyst and intercalant. • The norbornadiene was polymerized by in-situ polymerization method. • Exfoliation/intercalation structures were found to be related with loading degree. • PNBD–MMT nanocomposites had a higher thermal degradation temperature and lower dielectric constant.

  9. Absorption in dielectric models

    CERN Document Server

    Churchill, R J

    2015-01-01

    We develop a classical microscopic model of a dielectric. The model features nonlinear interaction terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found to act as a pseudo-reservoir, giving broadband absorption of electromagnetic radiation without the addition of damping terms in the dynamics. The effective permittivity is calculated using a perturbative iteration method and is found to have the form associated with real dielectrics. Spatial dispersion is naturally included in the model and we also calculate the wavevector dependence of the permittivity.

  10. Dielectric behaviour of polycarbonate

    Science.gov (United States)

    El-Shabasy, M.; Riad, A. S.

    1996-05-01

    The dielectric constant and the dielectric loss of polycarbonate are investigated in the frequency range 30-10 5 Hz and at temperature from 297 to 365 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with a parallel surface resistance-capacitance combination. The Cole-Cole diagrams have been used to determine the molecular relaxation time τ. The temperature dependence of τ is expressed by a thermally activated process. Analysis of the AC conductivity reveals semiconducting features based predominantly on a hopping mechanism.

  11. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  12. Dielectric property of polyimide/barium titanate composites and its influence factors (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Weidong LIU; Baoku ZHU; Shuhui XIE; Zhikang XU

    2008-01-01

    Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/barium titanate composite films were successfully prepared by a direct mixing method and in situ process. The influence of processing factors, such as particle size, distribution mode and polymerization method on dielectric prop-erties was studied. Results revealed that the dielectric constant (ε) of the composite film increased by using bigger fillers or employing in situ polymerization and bimodal distribution. When the composite film contain-ing 50 Vol-% of BaTiO3 with size in 100 nm was pre-pared via in situ process, its dielectric constant reached 45 at 10 kHz.

  13. Dielectric elastomer memory

    Science.gov (United States)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  14. Interfaces: nanometric dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T J [School of Informatics, University of Wales Bangor, Dean Street, Bangor, Gwynedd, LL70 9PX (United Kingdom)

    2005-01-21

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  15. Interfaces: nanometric dielectrics

    Science.gov (United States)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  16. Dielectric behaviour of nano-crystalline spinel Ni0.2Ca0.8Fe2O4 and their nano-composite with polypyrrole

    Indian Academy of Sciences (India)

    Arun S Prasad; S N Dolia; P Predeep

    2011-12-01

    The spinel ferrite nano-particles of chemical composition Ni0.2Ca0.8Fe2O4 have been prepared by sol–gel method. Subsequently, the nanoparticles are encapsulated with the intrinsically conducting polymer shell of polypyrrole. The X-ray diffraction patterns confirm the single phase cubic spinel structure of the materials. To understand the dielectric properties of the materials, frequency-dependent dielectric measurement has been performed at 300 K in the range of 100 mHz to 2 MHz. On polymerization, both the dielectric strength as well the dielectric loss is significantly increased. Also, the dielectric conductivity, which arises from the electron hopping mechanism, is considerably increased on polymerization.

  17. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.;

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers....... Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point....

  18. Polymeric Bicontinuous Microemulsions

    Science.gov (United States)

    Bates, Frank S.; Maurer, Wayne W.; Lipic, Paul M.; Hillmyer, Marc A.; Almdal, Kristoffer; Mortensen, Kell; Fredrickson, Glenn H.; Lodge, Timothy P.

    1997-08-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in mixtures containing a model diblock copolymer and two homopolymers. Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point.

  19. Plasma polymerization of an ethylene-nitrogen gas mixture

    Science.gov (United States)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  20. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict the forma...... dielectric. Results obtained using this model-based framework are compared to measurement results obtained from Laser Induced Pressure Pulse (LIPP) space charge measurements as well as conductivity measurements on selected cable type samples.......The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict the...... formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour of a...

  1. Antenna with Dielectric Having Geometric Patterns

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  2. Electrical and Dielectric Properties of Exfoliated Graphite/Polyimide Composite Films with Low Percolation Threshold

    Science.gov (United States)

    Yu, Li; Zhang, Yi-He; Shang, Jiwu; Ke, Shan-Ming; Tong, Wang-shu; Shen, Bo; Huang, Hai-Tao

    2012-09-01

    Exfoliated graphite/polyimide composite films were synthesized by in situ polymerization. The electrical and dielectric properties of composite films with different volume fraction of exfoliated graphite were investigated over the frequency range from 103 Hz to 3 × 106 Hz. The dielectric behavior of the composite films was investigated by percolation theory and a microcapacitor model. A low percolation threshold f c ≈ 3.1 vol.% was obtained due to the high aspect ratio of the exfoliated graphite. Both the dielectric constant and alternating-current (AC) conductivity showed an abrupt increase in the vicinity of the percolation threshold. The ultralarge enhancement of the dielectric constant near and beyond the percolation threshold was due to Maxwell-Wagner-Sillars (MWS) interfacial polarization between the exfoliated graphite and polyimide and interface polarization between the composite film and electrode.

  3. All-dielectric metamaterials

    Science.gov (United States)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  4. All-dielectric metamaterials.

    Science.gov (United States)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  5. The Major and Minor Relaxations in Polymeric Ni-Zn-Cu-Co Complex Nanocomposite Systems

    Science.gov (United States)

    Akbulut, S.; şentürk, E.; Köseoğlu, Y.

    2015-02-01

    Nanocrystalline polymeric complex (Ni0.5Zn0.4Cu0.1) ferrite substituted cobalt (Co) ferrite system has been synthesized by chemical co precipitation method. The dielectric properties of polymeric spinel ferrite system (Ni0.5Zn0.4Cu0.1Fe2O4)x (CoFe2O4)1-x have been investigated. Some of the dielectric parameters such as dielectric permittivity ɛ' and loss tangent (tan δ) were studied as a function of frequency in the range 1 Hz-1 MHz and of temperature in the range 230-410 K. Excessive dependency of dielectric properties on frequency and temperature with the presence of two relaxation mechanisms, which are called as major and minor, have been observed. From Argand diagram analysis α and Δɛ values for these two kinds of relaxation curves have been determined for all the samples in the measured temperatures. The reported dielectric properties are thought to be meaningful for future applications.

  6. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  7. PLASMA POLYMERIZATION OF HEXAMETHYLCYCLOTRISILOXANE

    Institute of Scientific and Technical Information of China (English)

    YU Zili; YE Mu; LU Lizhen; CHEN Jie

    1989-01-01

    In a capacitively coupled RF discharge system with external electrodes, hexamethylcyclotrisiloxane was polymerized, and the effects of discharge power and plasma gas on polymer deposition rate were studied.The polymer structures and properties were studied by IR spectroscopy, XPS measurement,PGC/MS combined technique, TG analysis and contact angle measuring. The results showed that the polymers prepared in H2 or O2 have higher C/Si ratio in comparison with those prepared in inert gases.PGC/MS results revealed the existence of many short carbon chains in the polymer structure .TG analysis suggested that the polymers prepared in the inert gas would possess better thermal stabilities.

  8. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  9. Sustainable polymerizations in recoverable microemulsions.

    Science.gov (United States)

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  10. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  11. EDITORIAL: Bio-dielectrics: theories, mechanisms and applications

    Science.gov (United States)

    Pethig, Ronald

    2007-01-01

    This special cluster in Journal of Physics D: Applied Physics comprises papers submitted by participants at the 2006 conference of the Institute of Physics Dielectrics Group, held at the University of Leicester during 10-12 April 2006. The conference focused on the interaction of non-ionizing electromagnetic (EM) fields with biological materials at all scales (tissues down to molecules) and at all frequencies. The use of dielectric techniques and theories in biological studies and in the pharmaceutical and biotechnology industries is increasing, and we hope that this conference helped to facilitate this trend and to further an understanding of the value of dielectric studies in biology—both in science and in applications in industry and medicine. An important policy of the Dielectrics Group is to promote the multidisciplinary nature of dielectric studies, and so we welcomed and received papers and posters from biologists, chemists, engineers, industrialists, medical professionals and physicists in the biotechnology and health care fields. The programme comprised 32 oral presentations, including the keynote opening address `Bio-dielectrics and bio-impedance' by Dr Ø G Martinson of the University of Oslo, and 7 papers given by invited speakers. 27 high-quality posters were also exhibited. The Mansel Davies Award, for the best presentation by a young researcher under the age of 30, was bestowed on Mr Sun Tao from the University of Southampton. His work, describing time domain analysis applied to dielectric spectroscopy of single cells, forms the subject matter of the first paper in this cluster. The remaining papers are presented in order of the session themes, namely Dielectric Spectroscopy and Techniques, Theory and Modelling, and Electrokinetics. On behalf of the Dielectrics Group, I thank the authors for their contributions, and the Institute of Physics for excellent administrative and editorial assistance.

  12. Additive manufacturing of graded dielectrics

    International Nuclear Information System (INIS)

    A method for the fabrication of graded dielectrics within a structural composite is presented. This system employs an ultrasonic powder deposition head to print high dielectric powders onto a woven fabric composite substrate. It is shown how this system can integrate 3D variations of dielectric properties at millimeter resolution within a mechanically rugged substrate. To conclude, the system’s practical application is demonstrated with experimental results from a graded index lens. (paper)

  13. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    Science.gov (United States)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  14. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    Directory of Open Access Journals (Sweden)

    V. P. Anju

    2016-01-01

    Full Text Available Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  15. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni

    2002-02-01

    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  16. Efeito do envelhecimento de catalisadores Ziegler-Natta à base de neodímio sobre a polimerização de 2-metil, 1,3-butadieno Effect of aging time of Ziegler-Natta catalysts based on neodimium for 2-methyl, 1,3-butadiene polymerization

    Directory of Open Access Journals (Sweden)

    André Luiz Carneiro Simões

    2013-01-01

    Full Text Available O objetivo deste trabalho foi estudar o efeito do tempo de envelhecimento natural do sistema catalítico versatato de neodímio/hidreto de di-isobutilalumínio/cloreto de t-butila sobre a polimerização de 2-metil, 1,3-butadieno (isopreno. Foram avaliadas a atividade catalítica e conversão, além da massa molar, distribuição de massa molar e microestrutura dos polímeros. Foi objetivo estudar também as características micro e macroestruturais do poli-1,4-cis-isopreno ao longo da polimerização. Os catalisadores envelhecidos apresentaram tempos mais curtos ao longo da polimerização e uma conversão mais alta em relação ao catalisador não envelhecido. Estes resultados em conjunto com a menor atividade catalítica nos catalisadores envelhecidos sugerem a provável desativação de alguns sítios ativos mais sensíveis. Não foi observada influência do envelhecimento do catalisador sobre a microestrutura do polímero. Houve também aumento da massa molar e estreitamento na polidispersão conforme o aumento da conversão.The goal of this work was to study the aging effects of the catalytic system neodymium versatate/diisobutylaluminium hydride/t-butyl chloride on 2-methyl, 1.3-butadiene (isoprene polymerization. The catalytic activity, conversion and polymer characteristics (molar mass, molar mass distribution and microstructure were evaluated. The macro and microstructural characteristics of poly-1.4-cis-isoprene along the polymerization were also studied. The aged catalysts have shorter times along the polymerization and a higher conversion than the non-aged catalyst. Together with the lower catalytic activity for aged catalysts, these results point to possible disabling of the most sensitive active sites. Aging of the catalyst did not affect the polymer microstructure. As the conversion progressed, the molar mass increased with a narrowing in the molecular weight distribution.

  17. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film

    Science.gov (United States)

    Abdel-Baset, T. A.; Hassen, A.

    2016-10-01

    A film of 0.98 polyvinyl alcohol (PVA)/0.02 Polyacrylonitrile (PAN) has been prepared using casting method. The dielectric properties were measured as function of temperature and frequency. The dielectric permittivity of PVA is considerably enhanced by doping with PAN. Different relaxation processes have been recognized within the studied ranges of temperature and frequency. The frequency temperature superposition (FTS) is well verified. Frequency and temperature dependence of Ac conductivity, σac, were studied. The conduction mechanism of pure PVA and PVA doped with PAN are discussed. The activation energy either for relaxation or conduction was calculated. Comparison with similar polymeric materials is discussed.

  18. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  19. Dielectric materials and electrostatics

    CERN Document Server

    Gallot-Lavalle, Olivier

    2013-01-01

    An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties

  20. Influência do envelhecimento de catalisadores Ziegler-Natta à base de neodímio sobre a polimerização de 1,3-butadieno Influence of ageing of neodymium based Ziegler-Natta catalyst on butadiene polymerization

    Directory of Open Access Journals (Sweden)

    Ivana L. Mello

    2007-03-01

    Full Text Available Catalisadores envelhecidos em diferentes tempos (0, 5, 15, 40, 80 e 160 dias e diferentes temperaturas (10, 25 e 40 °C foram testados na polimerização 1,4-cis do 1,3-butadieno. Avaliou-se a atividade catalítica bem como as características do polímero obtido (massa molecular e microestrutura. Os resultados encontrados mostraram que a variação nas condições de envelhecimento dos catalisadores não influenciou a microestrutura do polímero. O teor de unidades 1,4-cis permaneceu em torno de 98%, de unidades 1,4-trans em torno de 1,4% e de unidades vinílicas em 0,6%. Entretanto, reações utilizando os catalisadores envelhecidos por 40 dias forneceram polibutadieno com maior massa molecular do que os demais catalisadores. Verificou-se também, uma tendência de maiores conversões das polimerizações com os catalisadores envelhecidos a 25 °C.Catalysts aged for different time periods (0, 5, 15, 40, 80 and 160 days and different temperatures (10, 25 and 40 °C were tested in the cis-1,4 polymerization of 1,3-butadiene. The catalytic activity and polymer characteristics (molecular weight and microstructure were evaluated. The results showed that the catalyst ageing did not affect the polymer microstructure. The cis-1,4 content remained at 98%, trans-1,4 at 1,4% and vinyl units at 0,6%. However, the catalysts aged for 40 days produced polybutadienes with higher molecular weight. Also observed was a tendency to an increased polymerization conversion by the catalysts aged at 25 °C.

  1. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  2. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  3. Polymerization in emulsion microdroplet reactors

    Science.gov (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  4. Radiation electric ocnductivity of polymeric materials

    International Nuclear Information System (INIS)

    Investigated was the radiation electric conductivity of some polymeric materials (polyethylene terephthalate, polystyrene, polyimeide, fluorolon F-4) under the effect of gamma radiation. Experiments were carried out at room temperature in vacuum on 11-60 μm thick films of two types, differing in the method of silver electrode spraying. It is shown that at radiation dose rate of 100 R/s electric conductivity of films at cathodic electrode spraying is greater than their electric conductivity at the thermal spraying method. A long aging of investigated materials in strong electric fields may change essentially the value of radiation electric conductivity and the character of its dependence on radiation dose rate

  5. Attosecond clocking of scattering dynamics in dielectrics

    Science.gov (United States)

    Kling, Matthias

    2016-05-01

    In the past few years electronic-device scaling has progressed rapidly and miniaturization has reached physical gate lengths below 100 nm, heralding the age of nanoelectronics. Besides the effort in size scaling of integrated circuits, tremendous progress has recently been made in increasing the switching speed where strong-field-based ``dielectric-electronics'' may push it towards the petahertz frontier. In this contest, the investigation of the electronic collisional dynamics occurring in a dielectric material is of primary importance to fully understand the transport properties of such future devices. Here, we demonstrate attosecond chronoscopy of electron collisions in SiO2. In our experiment, a stream of isolated aerodynamically focused SiO2 nanoparticles of 50 nm diameter was delivered into the laser interaction region. Photoemission is initiated by an isolated 250 as pulse at 35 eV and the electron dynamics is traced by attosecond streaking using a delayed few-cycle laser pulse at 700 nm. Electrons were detected by a kilohertz, single-shot velocity-map imaging spectrometer, permitting to separate frames containing nanoparticle signals from frames containing the response of the reference gas only. We find that the nanoparticle photoemission exhibits a positive temporal shift with respect to the reference. In order to understand the physical origin of the shift we performed semi-classical Monte-Carlo trajectory simulations taking into account the near-field distributions in- and outside the nanoparticles as obtained from Mie theory. The simulations indicate a pronounced dependence of the streaking time shift near the highest measured electron energies on the inelastic scattering time, while elastic scattering only shows a small influence on the streaking time shift for typical dielectric materials. We envision our approach to provide direct time-domain access to inelastic scattering for a wide range of dielectrics.

  6. CoCl2 reinforced polymeric nanocomposites of conjugated polymer (polyaniline) and its conductive properties

    Indian Academy of Sciences (India)

    M Majhi; R B Choudhary; P Maji

    2015-09-01

    Polyaniline (PANI) was synthesized by chemical oxidative polymerization of aniline using ammonium persulphate as an oxidant in acidic aqueous medium. Cobalt chloride hexahydrate (CoCl2⋅6H2O)-doped PANI composite was synthesized by in-situ oxidative polymerization process by using various concentrations of CoCl2. Its chemical, structural and morphological properties were examined by X-ray diffraction, energydispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and field-emission scanning electron microscopy techniques. These results confirmed the successful formation of PANI and CoCl2-doped PANI nanocomposites. The morphology of CoCl2-doped PANI nanocomposite was found to be spherical in nature. The dielectric properties were examined using LCR-HITESTER in the frequency range 50 Hz–5 MHz. The optical properties were examined by UV–visible spectroscopic techniques in the wavelength range of 200–800 nm. The high dielectric properties and alternating current conductivity of the composite was studied in the temperature range 313–373 K. It was found that the synthesized polymeric nanocomposite owned fairly suitable dielectric and optical properties for its application in actuators, conductive paints and for many other purposes.

  7. High-Voltage Insulation Organic-Inorganic Nanocomposites by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2014-01-01

    Full Text Available In organic-inorganic nanocomposites, interfacial regions are primarily influenced by the dispersion uniformity of nanoparticles and the strength of interfacial bonds between the nanoparticles and the polymer matrix. The insulating performance of organic-inorganic dielectric nanocomposites is highly influenced by the characteristics of interfacial regions. In this study, we prepare polyethylene oxide (PEO-like functional layers on silica nanoparticles through plasma polymerization. Epoxy resin/silica nanocomposites are subsequently synthesized with these plasma-polymerized nanoparticles. It is found that plasma at a low power (i.e., 10 W can significantly increase the concentration of C–O bonds on the surface of silica nanoparticles. This plasma polymerized thin layer can not only improve the dispersion uniformity by increasing the hydrophilicity of the nanoparticles, but also provide anchoring sites to enable the formation of covalent bonds between the organic and inorganic phases. Furthermore, electrical tests reveal improved electrical treeing resistance and decreased dielectric constant of the synthesized nanocomposites, while the dielectric loss of the nanocomposites remains unchanged as compared to the pure epoxy resin.

  8. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  9. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes

    Indian Academy of Sciences (India)

    Ashok K Ganguli; Tokeer Ahmad; Padam R Arya; Pika Jha

    2005-11-01

    Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides.

  10. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  11. Characterization of a Dielectric Barrier Plasma Gun Discharging at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Qiu; GE Yuan-Jing; ZHANG Yue-Fei; CHEN Guang-Liang

    2004-01-01

    @@ We develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, we find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies.

  12. Metallo-Dielectric Multilayer Structure for Lactose Malabsorption Diagnosis through H2 Breath Test

    CERN Document Server

    Cioffi, N; De Sario, M; D'Orazio, A; Petruzzelli, V; Prudenzano, F; Scalora, M; Trevisi, S; Vincenti, M A

    2007-01-01

    A metallo-dielectric multilayer structure is proposed as a novel approach to the analysis of lactose malabsorption. When lactose intolerance occurs, the bacterial overgrowth in the intestine causes an increased spontaneous emission of H2 in the human breath. By monitoring the changes in the optical properties of a multilayer palladium-polymeric structure, one is able to detect the patient's disease and the level of lactose malabsorption with high sensitivity and rapid response.

  13. Donor Schiff Base Polymeric Complexes

    Directory of Open Access Journals (Sweden)

    Shubhangi N. Kotkar

    2013-01-01

    Full Text Available A series of new polymeric complexes of Mn(II, Co(II, Ni(II, Cu(II, and Zn(II were prepared with a Schiff base ligand derived from condensation of 2,4-dihydroxy acetophenone and p-phenylene diamine and characterized by elemental analysis and IR and NMR spectral data. The antimicrobial activity of the Schiff base and its polymeric complexes have been studied.

  14. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  15. Microwave pyrolisis of polymeric materials

    OpenAIRE

    A.Undri; L.Rosi; M. FREDIANI; P. Frediani

    2011-01-01

    The polymeric materials consumption are growing ceaselessly in the world even in spite of the financial crisis. World rubber demand, for instance, is foreseen to increase up to 4% annually to 26.5 million metric tons in 2011. Therefore the disposal of waste polymers is a serious environmental problem against which public is becoming more aware. The interest of waste polymeric materials disposal is focused on new ways of dealing rather than land filling or incineration. The pyrolysis of polyme...

  16. Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application

    Science.gov (United States)

    Zhao, Xuanhe; Wang, Qiming

    2014-06-01

    Widely used as insulators, capacitors, and transducers in daily life, soft dielectrics based on polymers and polymeric gels play important roles in modern electrified society. Owning to their mechanical compliance, soft dielectrics subject to voltages frequently undergo large deformation and mechanical instabilities. The deformation and instabilities can lead to detrimental failures in some applications of soft dielectrics such as polymer capacitors and insulating gels but can also be rationally harnessed to enable novel functions such as artificial muscle, dynamic surface patterning, and energy harvesting. According to mechanical constraints on soft dielectrics, we classify their deformation and instabilities into three generic modes: (i) thinning and pull-in, (ii) electro-creasing to cratering, and (iii) electro-cavitation. We then provide a systematic understanding of different modes of deformation and instabilities of soft dielectrics by integrating state-of-the-art experimental methods and observations, theoretical models, and applications. Based on the understanding, a systematic set of strategies to prevent or harness the deformation and instabilities of soft dielectrics for diverse applications are discussed. The review is concluded with perspectives on future directions of research in this rapidly evolving field.

  17. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    Directory of Open Access Journals (Sweden)

    K Bi

    Full Text Available A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  18. Dielectrical properties of PANI/TiO2 nanocomposites

    Science.gov (United States)

    Chaturmukha, V. S.; Naveen, C. S.; Rajeeva, M. P.; Avinash, B. S.; Jayanna, H. S.; Lamani, Ashok R.

    2016-05-01

    Conducting polyaniline/titanium dioxide (PANI/TiO2) composites have been succesfully synthesized by insitu polymerization technique. The PANI/TiO2 nanocomposites of different compositions were prepared by varying weight percentage of TiO2 nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/TiO2 composites is lower than that for TiO2. SEM pictures show that the nanocomposite were prepared in the form of long PANi chains decorated with TiO2 nanoparticles. The dielectric properties and AC conductivity were studied in the frequency range1K Hz-10M Hz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of σac is found for a concentration of 20 wt% TiO2 in polyaniline. The interface between polyaniline and TiO2 plays an important role in yielding a large dielectric constant in nanocomposites.

  19. AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges

    2004-01-01

    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  20. Polymeric materials for neovascularization

    Science.gov (United States)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  1. Dielectric Properties of Some Borate Glasses

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dielectric constant, ε', and the dielectric loss, ε", forsome selected lead borate glasses within the frequency band 105 to 107 Hz and the temperature range (20~50)℃ were measured. The dielectric dispersion and the dielectric loss absorption bands were observed, the relaxation time,the activation enthalpy and entropy change of the dielectric relaxation were calculated. The results obtained were discussed and correlated to the internal network structure of the glasses studied.

  2. Towards all-dielectric metamaterials and nanophotonics

    OpenAIRE

    Krasnok, Alexander; Makarov, Sergey; Petrov, Mikhail; Savelev, Roman; Belov, Pavel; Kivshar, Yuri

    2015-01-01

    We review a new, rapidly developing field of all-dielectric nanophotonics which allows to control both magnetic and electric response of structured matter by engineering the Mie resonances in high-index dielectric nanoparticles. We discuss optical properties of such dielectric nanoparticles, methods of their fabrication, and also recent advances in all-dielectric metadevices including couple-resonator dielectric waveguides, nanoantennas, and metasurfaces.

  3. Dielectric elastomer pump for artificial organisms

    Science.gov (United States)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  4. Electromagnetic identification of dielectric materials

    Directory of Open Access Journals (Sweden)

    A. F. Yanenko

    2010-05-01

    Full Text Available The electromagnetic features and parameters of dielectric materials, which are used in light industry and stomatology. The results of measuring are analyzed and the method of authentication is offered.

  5. Dynamic dielectric properties and the γ transition of bromine doped polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Based on monitoring the γ process (the lowest temperature-relaxation in polyacrylonitrile (PAN by dynamic dielectric spectroscopy, new evidence for the formation of a charge transfer complex between bromine dopants and nitrile groups is presented. The experimental work is carried out on PAN and nitrile polymerized PAN with and without bromine doping and the effects of these factors on the γ process are measured. Nitrile polymerization results in diminishing of the γ process and in a 15% increase in its activation energy, whereas bromine doping produces splitting of the original γ process in PAN – coupled with a significant activation energy increase – and its complete disappearance in nitrile polymerized PAN. Both the splitting of the γ process and the higher activation energy reflect bromine-nitrile adduct formation..

  6. Experimental Studies of Antenna Miniaturization Using Magneto-Dielectric and Dielectric Materials

    OpenAIRE

    Karilainen, Antti O.; Ikonen, Pekka M. T.; Simovski, Constantin R.; Tretyakov, Sergei A.; Lagarkov, Andrey N.; Maklakov, Sergei A.; Rozanov, Konstantin N.; Starostenko, Sergey N.

    2009-01-01

    Measurement results for a meandered planar inverted-F antenna (PIFA) loaded with magneto-dielectric and dielectric materials are presented. Figures of merit and ways to compare antennas with different fillings materials are discussed. The used magneto-dielectric material is described, the radiation mechanism of the meandered PIFA is studied, and the proper position for dielectric and magneto-dielectric filling is discussed and identified. Identical-size antennas with dielectric and magneto-di...

  7. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  8. Dielectric optical invisibility cloaks

    Science.gov (United States)

    Blair, J.; Tamma, V. A.; Park, W.; Summers, C. J.

    2010-08-01

    Recently, metamaterial cloaks for the microwave frequency range have been designed using transformative optics design techniques and experimentally demonstrated. The design of these structures requires extreme values of permittivity and permeability within the device, which has been accomplished by the use of resonating metal elements. However, these elements severely limit the operating frequency range of the cloak due to their non-ideal dispersion properties at optical frequencies. In this paper we present designs to implement a simpler demonstration of cloaking, the carpet cloak, in which a curved reflective surface is compressed into a flat reflective surface, effectively shielding objects behind the curve from view with respect to the incoming radiation source. This approach eliminates the need for metallic resonant elements. These structures can now be fabricated using only high index dielectric materials by the use of electron beam lithography and standard cleanroom technologies. The design method, simulation analysis, device fabrication, and near field optical microscopy (NSOM) characterization results are presented for devices designed to operate in the 1400-1600nm wavelength range. Improvements to device performance by the deposition/infiltration of linear, and potentially non-linear optical materials, were investigated.

  9. Dielectric and permeability

    Science.gov (United States)

    Cole, K. D.

    1982-01-01

    Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular+B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in goephysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j*), which includes the well-known polarisation current, given by J*=d/dt (ExM)+(PxB)xB B(-2) where M and P are the magnetization and polarization vectors respectively.

  10. Resveratrol immobilization and release in polymeric hydrogels

    International Nuclear Information System (INIS)

    Resveratrol (3, 4', 5-trihydroxystilbene) is a polyphenolic produced by a wide variety of plants in response to injury and found predominantly in grape skins. This active ingredient has been shown to possess benefits for the health, such as the antioxidant capacity which is related to the prevention of several types of cancer and skin aging. However, the oral bioavailability of resveratrol is poor and makes its topical application interesting. The purpose of this study was to immobilize resveratrol in polymeric hydrogels to obtain a release device for topical use. The polymeric matrices composed of poli(N-vinyl-2-pyrrolidone) (PVP), poly(ethyleneglycol) (PEG) and agar or PVP and glycerol irradiated at 20 kGy dose were physical-chemically characterized by gel fraction and swelling tests and its preliminary biocompatibility by in vitro test of cytotoxicity using the technique of neutral red uptake. Due to low solubility of resveratrol in water, the addition of 2% ethanol to the matrices was verified. All matrices showed a high crosslinking degree, capacity of swelling and the preliminary cytotoxicity test showed nontoxicity effect. The devices were obtained by resveratrol immobilization in polymeric matrices, carried out in a one-or-two-steps process, that is, before or after irradiation, respectively. The one step resveratrol devices were characterized by gel fraction, swelling tests and preliminary biocompatibility, and their properties were maintained even after the resveratrol incorporation. The devices containing 0,05% of resveratrol obtained by one-step process and 0,1% of resveratrol obtained by two-steps process were submitted to the release test during 24 h. Resveratrol quantification was done by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that only the devices obtained by two-step process release the resveratrol, which demonstrate antioxidant capacity after the release. (author)

  11. Plasma polymerized hydrogel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisa, Prabhakar A. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Koskinen, Jere [Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Hess, Dennis W. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)]. E-mail: dennis.hess@chbe.gatech.edu

    2006-12-05

    Plasma polymerization was used to produce thermoresponsive hydrogel films of N-isopropylacrylamide (NIPAAm) in a single deposition step. Solvent free processing to produce laterally confined intelligent hydrogel films offers the potential for high volume production of micro-sensors/actuators. Through variation of reactor conditions such as deposition pressure and substrate temperature, it is possible to tailor and control chemical properties of the films such as crosslink density and thus swelling. Fabrication of hydrogel thin films with adequate crosslinks is critical to ensuring adhesion to substrates and stability in aqueous environments. Chemical bonding structures in plasma polymerized NIPAAm were studied using Fourier transform infrared spectroscopy and the thermoresponsive nature of plasma polymerized NIPAAm was confirmed through contact angle goniometry. A reversible temperature dependent contact angle change was observed.

  12. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomem-branes. It refers to that glycosyl groups are introduced onto the membrane surface by various strate-gies, which combine the separation function of the membrane with the biological function of the sac-charides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the sur-face-glycosylated membranes.

  13. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  14. Aging behavior of Yunnan pine modified by air dielectric barrier discharge cold plasma treatment%DBD冷等离子体处理云南松表面时效性研究

    Institute of Scientific and Technical Information of China (English)

    王洪艳; 杜官本; 韩永国

    2013-01-01

    The surface of Yunnan pine wood was treated by air dielectric barrier discharge (DBD) cold plasma at atmospheric pressure,and the contact angles of the surface with water and diiodomethane for different standing time after treating were tested.The surface free energy and other parameters were calculated according to Young-Good-Girifalco-Fowkes expression.The results showed that after DBD cold plasma treatment the contact angles of treated wood surface decreased prominently and the surface free energy increased,the surface free energy increased by 55% for one hour after treating,however,then it decreased gradually with the time going on.it declined prominently during the period from 9 hours to one day and almost reached the level before treatment after 8 days.%采用空气介质阻挡放电(DBD)冷等离子体改性云南松木材表面,利用水和二碘甲烷测试不同放置时间木材表面接触角,根据Young-Good-Girifalco-Fowkes方程公式计算表面自由能及其色散力和极性力.结果表明,经DBD冷等离子体处理后松木表面接触角明显降低,自由能显著提高,lh后测得表面自由能提高55%;随放置时间的延长表面自由能都逐渐降低,9~24 h内活性降低比较迅速,放置8d后接近于改性前水平.

  15. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  16. The Viscosity of Polymeric Fluids.

    Science.gov (United States)

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  17. Low vibration polymeric composite engine

    Science.gov (United States)

    Guimond, David P.; Muench, Rolf K.

    1994-12-01

    An internal combustion engine is constructed with metallic parts in its regions which are subjected to high stress (temperature, pressure) during combustion and polymeric materials in its regions which are subjected to relatively lower stresses. The integrated construction helps realize increased power densities and reductions on engine noise without compromising engine performance. V-configuration Diesel engines particularly benefit from this construction.

  18. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  19. Buckling of polymerized monomolecular films

    Science.gov (United States)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  20. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Feijen, J.

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  1. High permittivity gate dielectric materials

    CERN Document Server

    2013-01-01

    "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects."

  2. All-dielectric bianisotropic nanoantennas

    CERN Document Server

    Alaee, Rasoul; Rahimzadegan, Aso; Mirmoosa, Mohammad S; Kivshar, Yuri S; Rockstuhl, Carsten

    2015-01-01

    The study of high-index dielectric nanoparticles and nanoantennas currently attracts a lot of attention. They do not suffer from absorption but promise to provide control on the properties of light comparable to plasmonic nanoantennas. To further advance the field, it is important to identify versatile dielectric nanoantennas with unconventional properties. Here, we show that breaking the symmetry of an all-dielectric nanoantenna leads to a geometrically tunable magneto-electric coupling, i.e. a strong bianisotropy. The suggested nanoantenna exhibits different backscatterings and, as an interesting consequence, different optical scattering forces for opposite illumination directions. An array of such nanoantennas provides different reflection phases when illuminated from opposite directions. With a proper geometrical tuning, this bianisotropic nanoantenna is capable of providing a $2\\pi$ phase change in the reflection spectrum while possessing a rather large and constant amplitude. This allows creating reflec...

  3. Dielectric Bow-tie Nanocavity

    CERN Document Server

    Lu, Qijing; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3), consequently an ultrahigh Purcell factor of 1.6*10^7 (1.36*10^5), at 4.5 K (300 K) around the resonance wavelength of 1550 nm. This dielectric bow-tie nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon source, thresholdless nanolaser, and cavity QED strong coupling experiments.

  4. Leaky Modes of Dielectric Cavities

    CERN Document Server

    Mansuripur, Masud; Jakobsen, Per

    2016-01-01

    In the absence of external excitation, light trapped within a dielectric medium generally decays by leaking out (and also by getting absorbed within the medium). We analyze the leaky modes of a parallel-plate slab, a solid glass sphere, and a solid glass cylinder, by examining those solutions of Maxwell's equations (for dispersive as well as non-dispersive media) which admit of a complex-valued oscillation frequency. Under certain circumstances, these leaky modes constitute a complete set into which an arbitrary distribution of the electromagnetic field residing inside a dielectric body can be expanded. We provide completeness proofs, and also present results of numerical calculations that illustrate the relationship between the leaky modes and the resonances of dielectric cavities formed by a simple parallel-plate slab, a glass sphere, and a glass cylinder.

  5. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  6. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  7. THE POLYMERIZATION OF AROMATIC AND HETEROCYCLIC DINITRILES

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhitang

    1988-01-01

    This review is a concise survey about the works in our laboratory on the polymerization of aromatic and heterocyclic dinitriles, including the polymerization kinetics and mechanism, synthesis of heterocyclic dinitriles, the structure of polymers, and the correlation between the structures of dinitriles and polymerization rates and thermal performances of polymers.

  8. Microwave dielectric properties of biopolymers

    Science.gov (United States)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2006-09-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows microwave measurements to be taken easily under an applied DC electric field. The microwave dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin-films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], or amorphous polycarbonate (APC).

  9. Dielectric Bow-tie Nanocavity

    OpenAIRE

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3)...

  10. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide.

    Science.gov (United States)

    Ning, Nanying; Ma, Qin; Liu, Suting; Tian, Ming; Zhang, Liqun; Nishi, Toshio

    2015-05-27

    In this study, we obtained dielectric elastomer composites with controllable dielectric and actuated properties by using a biomimetic method. We used dopamine (DA) to simultaneously coat the graphene oxide (GO) and partially reduce GO by self-polymerization of DA on GO. The poly(dopamine) (PDA) coated GO (GO-PDA) was assembled around rubber latex particles by hydrogen bonding interaction between carboxyl groups of carboxylated nitrile rubber (XNBR) and imino groups or phenolic hydroxyl groups of GO-PDA during latex compounding, forming a segregated GO-PDA network at a low percolation threshold. The results showed that the introduction of PDA on GO prevented the restack of GO in the matrix. The dielectric and actuated properties of the composites depend on the thickness of PDA shell. The dielectric loss and the elastic modulus decrease, and the breakdown strength increases with increasing the thickness of PDA shell. The maximum actuated strain increases from 1.7% for GO/XNBR composite to 4.4% for GO-PDA/XNBR composites with the PDA thickness of about 5.4 nm. The actuated strain at a low electric field (2 kV/mm) obviously increases from 0.2% for pure XNBR to 2.3% for GO-PDA/XNBR composite with the PDA thickness of 1.1 nm, much higher than that of other DEs reported in previous studies. Thus, we successfully obtained dielectric composites with low dielectric loss and improved breakdown strength and actuated strain at a low electric field, facilitating the wide application of dielectric elastomers. PMID:25938262

  11. Dielectric Resonator Metasurface for Dispersion Engineering

    OpenAIRE

    Achouri, Karim; Yahyaoui, Ali; Gupta, Shulabh; Rmili, Hatem; Caloz, Christophe

    2016-01-01

    We introduce a practical dielectric metasurface design for microwave frequencies. The metasurface is made of an array of dielectric resonators held together by dielectric connections thus avoiding the need of a mechanical support in the form of a dielectric slab and the spurious multiple reflections that such a slab would generate. The proposed design can be used either for broadband metasurface applications or monochromatic wave transformations. The capabilities of the concept to manipulate ...

  12. Dielectric response of the human tooth dentine

    Energy Technology Data Exchange (ETDEWEB)

    Leskovec, J. [Dental Clinic, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1104 Ljubljana (Slovenia); Filipic, C. [Jozef Stefan Institute, P.O. Box 3000, 1001 Ljubljana (Slovenia); Levstik, A. [Jozef Stefan Institute, P.O. Box 3000, 1001 Ljubljana (Slovenia)]. E-mail: adrijan.levstik@ijs.si

    2005-07-15

    Dielectric properties of tooth dentine can be well described by the model which was developed for the dielectric response to hydrating porous cement paste. It is shown that the normalized dielectric constant and the normalized specific conductivity are proportional to the model parameters -bar {sub v0} and {sigma}{sub v}, indicating the deposition of AgCl in the dentine tubules during the duration of the precipitation. The fractal dimension of the tooth dentine was determined by dielectric spectroscopy.

  13. Dielectric response of the human tooth dentine

    International Nuclear Information System (INIS)

    Dielectric properties of tooth dentine can be well described by the model which was developed for the dielectric response to hydrating porous cement paste. It is shown that the normalized dielectric constant and the normalized specific conductivity are proportional to the model parameters -bar v0 and σv, indicating the deposition of AgCl in the dentine tubules during the duration of the precipitation. The fractal dimension of the tooth dentine was determined by dielectric spectroscopy

  14. Casimir-Lifshitz interaction between dielectric heterostructures

    International Nuclear Information System (INIS)

    The interaction between arbitrary dielectric heterostructures is studied within the framework of a recently developed dielectric contrast perturbation theory. It is shown that periodically patterned dielectric or metallic structures lead to oscillatory lateral Casimir-Lifshitz forces, as well as modulations in the normal force as they are displaced with respect to one another. The strength of these oscillatory contributions increases with decreasing gap size and increasing contrast in the dielectric properties of the materials used in the heterostructures.

  15. Casimir-Lifshitz interaction between dielectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Azari, Arash; Samanta, Himadri S; Golestanian, Ramin [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)], E-mail: r.golestanian@sheffield.ac.uk

    2009-09-15

    The interaction between arbitrary dielectric heterostructures is studied within the framework of a recently developed dielectric contrast perturbation theory. It is shown that periodically patterned dielectric or metallic structures lead to oscillatory lateral Casimir-Lifshitz forces, as well as modulations in the normal force as they are displaced with respect to one another. The strength of these oscillatory contributions increases with decreasing gap size and increasing contrast in the dielectric properties of the materials used in the heterostructures.

  16. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Hanson, Ronald E.; Houser, Nicole M.; Lavoie, Philippe

    2014-01-01

    It is a known phenomenon that some dielectric materials used to construct plasma actuators degrade during operation. However, the rate at which this process occurs, to what extent, as well as a method to monitor is yet to be established. In this experimental study, it is shown that electrical measurements can be used to monitor changes in the material of the plasma actuators. The procedure we introduce for monitoring the actuators follows from the work of Kriegseis, Grundmann, and Tropea [Kriegseis et al., J. Appl. Phys. 110, 013305 (2011)], who used Lissajous figures to measure actuator power consumption and capacitance. In the present study, we quantify changes in both the power consumption and capacitance of the actuators over long operating durations. It is shown that the increase in the effective capacitance of the actuator is related to degradation (thinning) of the dielectric layer, which is accompanied by an increase in actuator power consumption. For actuators constructed from layers of Kapton® polyimide tape, these changes are self-limiting. Although the polyimide film degrades relatively quickly, the underlying adhesive layer appears to remain intact. Over time, the effective capacitance was found to increase by up to 36%, 25%, and 11% for actuators constructed with 2, 3, and 4 layers of Kapton tape, respectively. A method is presented to prevent erosion of the Kapton dielectric layer using a coating of Polydimethylsiloxane oil. It is shown the application of this treatment can delay the onset of degradation of the Kapton dielectric material.

  17. Dielectric relaxation study of gamma irradiated oriented low-density polyethylene

    CERN Document Server

    Suljovrujic, E; Kostoski, D

    2003-01-01

    The influence of drawing, gamma irradiation and accelerated aging on the dielectric relaxation of low-density polyethylene has been studied using dielectric loss tangent measurements in the temperature range from 25 to 325 K and in the frequency range from 10 sup 3 to 10 sup 6 Hz. The intensity, position and activation energy of the gamma- and beta-dielectric relaxations were found to be strongly dependent upon the changes in the microstructure of the amorphous phase induced by uniaxial orientation, oxidation and crosslinking.

  18. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-07-01

    Full Text Available To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs, a polar polymer layer was inserted between two polymethyl methacrylate (PMMA dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol (PVA or poly(4-vinylphenol (PVP containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one, and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type. The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer.

  19. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permi......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  20. Comparative Research of Oil-paper Aging Characteristics Under Thermal Stress and Combined Thermo-electrical Stresses

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-qiang; WU Feng-jiao; XU Hao; ZHANG Guan-jun

    2011-01-01

    During the operation of power transformer, its oil-paper insulation is continuously subjected to various stresses, e. g. , the thermal, electrical, mechanical, and chemical stresses, which cause insulation aging gradually. It has been considered that the combined thermal and electrical stresses are the most important and unavoidable factors that induce insulation materials aging. In this work, accelerated aging experiments of oil-impregnated pressboards un der combined thermal (130℃) and electrical stresses (4 kV/mm) are performed, while the aging experiments under single thermal stress are also carried out at the corresponding temperature (130 ℃). The electrical and physic-chemical properties of oil, including dielectric losses factor tanδ resistivity, acid value and pH value etc. , are measured during the aging process. Dissolved gasses in oil and polymerization degree of cellulose are also measured. The relationship between these properties of oil-paper insulation and aging time is investigated. The results show that dissolved gases in oil, resistivity, tanδ of oil under combined thermal and electrical stresses are obviously different from that under thermal stress during aging process while some other properties show similar changing :trend. For cellulose, compared with the single thermal aging results, it even shows a slower degradation rate in the presence of elec trical stress.

  1. Impact of dielectric deterioration on the conducted EMI emissions in the DC-DC boost converter

    OpenAIRE

    Musznicki, Piotr; Schanen, Jean-Luc; Granjon, Pierre; Јuszcz, Jarosław

    2011-01-01

    International audience The magnitude of emitted noise generated by DC-DC converters depends on their electrical behavior and parameters. Some of these can change during the converter life time, especially due to some deterioration process. In this paper the impact of the dielectric materials aging is presented using both circuit simulation and a digital signal processing method based on Wiener filtering. The change of the total EMI spectrum as a function of the dielectric property has been...

  2. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, M.

    2014-01-01

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length o

  3. Counteracting Gravitation In Dielectric Liquids

    Science.gov (United States)

    Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.

    1993-01-01

    Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.

  4. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  5. Microemulsion Polymerization of Methyl Methacrylat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microemulsion polymerization of methyl methacrylate was studied. The effects of feeding modes on the structure and the properties of the obtained polymer microlatex were investigated by measuring the conversion, the transmittance and the refractive index of the latex, and by measuring the particle size, the molecular weight and the glass transition temperature (Tg) of the polymers. The results show that compared to the batch feeding mode, the semi-continuous feeding mode is more favorable to form a PMMA microlatex with a higher transmittance, a smaller particle size, a higher molecular weight and a higher Tg. And the obtained PMMA microlatex has a 30 %-40 % (mass fraction) polymer content, a 0.03 emulsifier/water weight ratio, a 0.05emulsifier/monomer weight ratio and a 17 nm average particle diameter, which is very important for the industrialization of the microemulsion polymerization technique.

  6. Effects of high-energy electron radiation on polypropylene dielectric

    International Nuclear Information System (INIS)

    Polypropylene, a polymeric materials widely used as the main dielectric in many high-voltage components such as capacitors and cables, was exposed to electron irradiation in air at room temperature. The 25.4-μm-thick dry polypropylene films were irradiated to different doses up to 108 rads with electron beam having energies of 0.5, 1.0, and 1.5 MeV. Monoisopropyl biphenyl (MIPB)-impregnated polypropylene films were also exposed to 1-MeV electron beam to doses up to 108 rads and the post-irradiation effects on the electrical, mechanical, and morphological and chemical properties of the films were evaluated. The electrical properties included the AC, DC and pulsed breakdown strengths, dielectric constant, dissipation factor, conductivity, and pulsed life-endurance. The mechanical properties comprised the Young's modulus, elongation-at-break, tensile strength, complex modulus, and mechanical loss. Finally, the morphological and chemical diagnoses carried out included surface morphology, elemental analysis, crystallinity changes, and identification of newly formed bonds and degree of oxidation. The results obtained indicate that the dry polypropylene films started to exhibit degradation at doses as low as 106 rads. The properties that were mostly affected included the film's tensile properties, pulsed life, dissipation factor, and electrical conductivity

  7. Polymeric Microspheres for Medical Applications

    Directory of Open Access Journals (Sweden)

    Ketie Saralidze

    2010-06-01

    Full Text Available Synthetic polymeric microspheres find application in a wide range of medical applications. Among other applications, microspheres are being used as bulking agents, embolic- or drug-delivery particles. The exact composition of the spheres varies with the application and therefore a large array of materials has been used to produce microspheres. In this review, the relation between microsphere synthesis and application is discussed for a number of microspheres that are used for different treatment strategies.

  8. Direct synthesis of trans-polyacetylene films: Dependence on polymerization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suruga, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Natsume, N. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Nishioka, T. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Ishikawa, K. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Takezoe, H. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan); Fukuda, A. [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152 (Japan)

    1995-03-01

    We tried to prepare trans-polyacetylene films without thermal treatment to obtain the films with conjugated system of long average length and narrow distribution. Polymerization was carried out at{sub r}oom temperature on various conditions. It has been clearly suggested that the decrease in polymerization rate particularly by decreasing aging temperature is effective for the preparation of trans-polyacetylene films without thermal treatment. (orig.)

  9. Enhanced dielectric performance of three phase percolative composites based on thermoplastic-ceramic composites and surface modified carbon nanotube

    Science.gov (United States)

    Yang, Yang; Sun, Haoliang; Zhu, Benpeng; Wang, Ziyu; Wei, Jianhong; Xiong, Rui; Shi, Jing; Liu, Zhengyou; Lei, Qingquan

    2015-01-01

    Three-phase composites were prepared by embedding CaCu3Ti4O12(CCTO) nanoparticles and Multiwalled Carbon Nanotube (MWNT) into polyimide (PI) matrix via in-situ polymerization. The dependences of electric and dielectric properties of the resultant composites on volume fractions of filler and frequency were investigated. The dielectric permittivity of PI/CCTO-surface modified MWNT (MWNT-S) composite reached as high as 252 at 100 Hz at 0.1 vol. % filler (MWNT-S), which is about 63 times higher than that of pure PI. Also the dielectric loss is only 0.02 at 100 Hz. The results are in good agreement with the percolation theory. It is shown that embedding high aspect ratio MWNT-S in PI/CCTO composites is an effective means to enhance the dielectric permittivity and reduce the percolation threshold. The dielectric properties of the composites will meet the practical requirements for the application in high dielectric constant capacitors and high energy density materials.

  10. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  11. Tailoring dielectric properties of ferroelectric-dielectric multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, M. T.; Zhang, J. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Cole, M. W. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Misirlioglu, I. B. [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı/Tuzla, 34956 Istanbul (Turkey); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-01-13

    We develop a nonlinear thermodynamic model for multilayer ferroelectric heterostructures that takes into account electrostatic and electromechanical interactions between layers. We concentrate on the effect of relative layer fractions and in-plane thermal stresses on dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}-, BaTiO{sub 3}-, and PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT)-SrTiO{sub 3} (STO) multilayers on Si and c-sapphire. We show that dielectric properties of such multilayers can be significantly enhanced by tailoring the growth/processing temperature and the STO layer fraction. Our computations show that large tunabilities (∼90% at 400 kV/cm) are possible in carefully designed barium strontium titanate-STO and PZT-STO even on Si for which there exist substantially large in-plane strains.

  12. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    Science.gov (United States)

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  13. Dielectric breakdown of cell membranes.

    Science.gov (United States)

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  14. Optomechanics of Levitated Dielectric Particles

    CERN Document Server

    Yin, Zhang-qi; Li, Tongcang

    2013-01-01

    We review recent works on optomechanics of optically trapped microspheres and nanoparticles in vacuum, which provide an ideal system for studying macroscopic quantum mechanics and ultrasensitive force detection. An optically trapped particle in vacuum has an ultrahigh mechanical quality factor as it is well-isolated from the thermal environment. Its oscillation frequency can be tuned in real time by changing the power of the trapping laser. Furthermore, an optically trapped particle in vacuum may rotate freely, a unique property that does not exist in clamped mechanical oscillators. In this review, we will introduce the current status of optical trapping of dielectric particles in air and vacuum, Brownian motion of an optically trapped particle at room temperature, Feedback cooling and cavity cooling of the Brownian motion. We will also discuss about using optically trapped dielectric particles for studying macroscopic quantum mechanics and ultrasensitive force detection. Applications range from creating macr...

  15. Applications of dielectric elastomer actuators

    Science.gov (United States)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  16. Dielectric covered microstrip patch antennas

    Science.gov (United States)

    Sharpe, Lisa M.

    1988-11-01

    Microstrip antennas have many properties that make them suitable for airborne and satellite communications systems. These antennas are low in cost and lightweight. For these reasons, Rome Air Development Center is interested in verifying and augmenting existing design models for these antennas. The theory and results are presented for modeling microstrip antennas that are covered with a sheet of dielectric material. There are several reasons for designing a microstrip antenna covered with a dielectric material. This configuration would allow the modeling of antennas with an integrated radome. A cover layer could possibly be used to support a polarizer; to mount additional antenna elements on top of the cover layer to provide bandwidth enhancements; or to be used as a dual frequency antenna.

  17. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  18. An investigation into solid dielectrics

    OpenAIRE

    Kleemann, Tobias

    2012-01-01

    Direct measurement techniques for the investigation of electrical processes in solid dielectrics are reviewed and their respective strengths and weaknesses are discussed, particularly the complementary nature of thermally stimulated current measurements. The successful design and construction of a new Thermally Stimulated Discharge Current (TSDC) Spectrometer at the University of Southampton is presented and its correct function validated with experimental measurements of the well known and o...

  19. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  20. Dielectric decrement effects in electrokinetics

    Science.gov (United States)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen; Moran, Jeffrey

    2015-11-01

    Understanding the nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces is a key issue in electrokinetics. In recent studies, Nakayama and Andelman [J. Chem. Physics 2015] Hatlo et al. [EPL 2012], and Zhao and Zhai [JFM 2013] demonstrated that dielectric decrement significantly influences the ionic concentration in the electric double layer (EDL) at high zeta potential, leading to the formation of a condensed layer near the particle's surface. In this presentation, we apply the dielectric decrement model to study two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles. Our aim is to rely on numerical simulations to incorporate nonlinear effects including crowding effects due to the finite size of ions, dielectric decrement in the EDL, surface conduction, concentration polarization and advection in the bulk solution. In parallel, we derive a simplified composite layer model that enables us to obtain analytical estimates of the physical quantities involved in the physical description of the problem.

  1. Dielectric relaxation of samarium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T.P. [Bose Institute, Department of Physics, Kolkata (India)

    2014-03-15

    A ceramic SmAlO{sub 3} (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole-Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus. (orig.)

  2. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    Science.gov (United States)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-06-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas.

  3. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics.

    Science.gov (United States)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as "degradation inhibitor" for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  4. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    Science.gov (United States)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  5. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    Science.gov (United States)

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  6. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  7. Investigation of the Dielectric Strength of Syntactic Foam at 77 K under DC Stress

    Science.gov (United States)

    Winkel, D.; Puffer, R.; Schnettler, A.

    2014-05-01

    Liquid nitrogen (LN2) based electrical insulation systems for superconducting equipment of electrical power distribution networks are state of the art. Since LN2 is a cryogenic liquid it has some disadvantages when used as insulation. This paper deals with syntactic foam as an alternative insulation system for superconducting apparatus. Syntactic foam is a composite material consisting of a polymeric matrix and embedded hollow microspheres with diameters of several 10 μp?. As hollow microspheres are gas-filled, using those as filling material features significant reductions of the relative permittivity and of the thermal contraction due to cooling the material to liquid nitrogen temperature (LNT, T = 77 K). In this study both an epoxy resin (ER) and an unsaturated polyester resin (UPR) serve as matrix material. The hollow microspheres used in this investigation are made of untreated and silanized glass. The results of measurements of the dielectric DC strength show, that the dielectric strength of all investigated syntactic foam compositions are significantly higher at LNT compared to ambient temperature (AT). Furthermore, the effect of a higher dielectric strength of syntactic foam with silanized glass spheres at ambient temperature vanishes at LNT. Hence, the dielectric strength at LNT is unaffected by silanization of glass microspheres.

  8. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material.

    Science.gov (United States)

    Huang, Yanhui; Huang, Xingyi; Schadler, Linda S; He, Jinliang; Jiang, Pingkai

    2016-09-28

    This work reports the advances of utilizing a core@double-shell nanostructure to enhance the electrical energy storage capability and suppress the dielectric loss of polymer nanocomposites. Two types of core@double-shell barium titanate (BaTiO3) matrix-free nanocomposites were prepared using a surface initiated atom transfer radical polymerization (ATRP) method to graft a poly(2-hydroxylethyle methacrylate)-block-poly(methyl methacrylate) and sodium polyacrylate-block-poly(2-hydroxylethyle methacrylate) block copolymer from BaTiO3 nanoparticles. The inner shell polymer is chosen to have either high dielectric constant or high electrical conductivity to provide large polarization, while the encapsulating outer shell polymer is chosen to be more insulating as to maintain a large resistivity and low loss. Finite element modeling was conducted to investigate the dielectric properties of the fabricated nanocomposites and the relaxation behavior of the grafted polymer. It demonstrates that confinement of the more conductive (lossy) phase in this multishell nanostructure is the key to achieving a high dielectric constant and maintaining a low loss. This promising multishell strategy could be generalized to a variety of polymers to develop novel nanocomposites. PMID:27602603

  9. Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites

    Indian Academy of Sciences (India)

    Shantala D Patil; S C Raghavendra; M Revansiddappa; P Narsimha; M V N Ambika Prasad

    2007-04-01

    Conducting polyaniline/cobaltous oxide composites have been synthesized using in situ deposition technique by placing fine graded/cobaltous oxide in polymerization mixture of aniline. The a.c. conductivity and dielectric properties are studied by sandwiching the pellets of these composites between the silver electrodes. It is observed that the values of conductivities increase up to 30 wt% of cobaltous oxide in polyaniline and decrease thereafter. Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess sufficient energy to hop between favourable sites. Beyond 30 wt% of cobaltous oxide in polyaniline, blocking of charge carriers takes place reducing the conductivity values. It can be noted that the value of dielectric constant increases up to 10 wt% of cobaltous oxide. Thereafter, it decreases up to 30 wt% of cobaltous oxide and again increases up to 40 wt% of cobaltous oxide and decreases thereafter. The observed behaviour is attributed to the variation of a.c. conductivity. And it is observed that the dielectric loss increases up to 10 wt% of cobaltous oxide in polyaniline, decreases to a lower value of 20 wt% of cobaltous oxide and increases to 35 wt% and thereafter decreases. These values go in accordance with the values of dielectric constant. The results obtained for these composites are of greater scientific and technological importance.

  10. PHOTOSENSITIVITY OF CERIC ION INITIATED ACRYLAMIDE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    DONG Jianhua; QIU Kunyuan; FENG Xinde

    1992-01-01

    Polymerization of acrylamide initiated by ceric ammonium nitrate alone has been studied in aqueous medium. The effects of UV light irradiation on the initial rates of polymerization, the activation energy and on the polymer molecular weights have been investigated. Compared with that in the dark, the rate of polymerization under UV light was accelerated to eleven times higher, and the overall activation energy was lowered markedly.

  11. Radiation polymerization of allyl derivatives of glycerin

    International Nuclear Information System (INIS)

    Radiation polymerization of 1 allyloxi-3-(chlorine)-alkoxipropanol-2, 1-cro otoxy-3=ethyloxypropanol-2, 1-allylamino-3-amyloxypropanol-2, 1-butoxy-2-allyloxi-3-chlorpropane has been carried out. Some kinetic character ristics of the polymerization process have been obtained. A dependence of the polymerization rate on exposure doze rate, on the persence of modifier (orthopho osphoric acid) and its ratio to the manometer has been studied

  12. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo

    2007-03-01

    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  13. Studies on Dielectric Properties of Silicon Nitride at High Temperature

    Institute of Scientific and Technical Information of China (English)

    Ting Zhang; Shu-Ren Zhang; Meng-Qiang Wu; Wei-Jun Sang; Zheng-Ping Gao; Zhong-Ping Li

    2007-01-01

    In this paper, the dielectric properties of silicon nitride are studied using the dielectric polarization theories. According to the developed dielectric models, the temperature dependence of dielectric constant and loss of silicon nitride is mainly analyzed. In addition, the impact of Li+, K+, Ca2+, Al3+ and Mg2+ doping on the dielectric properties of silicon nitride are also estimated.

  14. Water induced evolution of dielectric and micro-structural properties of rice starch

    OpenAIRE

    F. Starzyk; Chrzanowska, A.; W. Łużny; M. Śniechowski

    2009-01-01

    Purpose: The purpose of this paper was to record and correlate mass (m) changes of population of rice starch micro-granules and their effective dielectric permittivity(ε′), as well as X-ray diffraction (XRD) changes observed in this system during humidification.Design/methodology/approach: Changes of mass of bio-polymeric-granular sample occurring during its exposition on saturated water vapour at room temperature, was recorded in the time. The ε′ evolution was recorded by means of fringe-fie...

  15. Local Dielectric Spectroscopy of Nanocomposite Materials Interfaces

    OpenAIRE

    Labardi, Massimiliano; Prevosto, Daniele; Nguyen, Kim Hung; Capaccioli, Simone; Lucchesi, Mauro; Rolla, Pierangelo

    2009-01-01

    Local dielectric spectroscopy is performed to study how relaxation dynamics of a poly-vinyl-acetate ultra-thin film is influenced by inorganic nano-inclusions of a layered silicate (montmorillonite). Dielectric loss spectra are measured by electrostatic force microscopy in the frequency-modulation mode in ambient air. Spectral changes in both shape and relaxation time are evidenced across the boundary between pure polymer and montmorillonite sheets. Dielectric loss imaging is also performed, ...

  16. Electrochemical Polymerization of Methylene Green

    Institute of Scientific and Technical Information of China (English)

    ZHU,Hong-Ping; MU,Shao-Lin

    2001-01-01

    The electrochemical polymerization of methylene green has been carried out using cyclic voltammetry. The electrolytic so lution consisted of 4 × 10-3 mol/L methylene green, 0.1 mol/L NaNO3 and 1 × 10-2 mol/L sodium tetraborate with pH 11.0. The temperature for polymerization is controlled at 60℃. The scan potential is set between -0.2 and 1.2 V (vs. Ag/AgCl with saturated KCl solution). There are an anodic peak and a cathodic peak on the cyclic voltammogram of poly(methylene green) at pH≤3.8. Both peak potentials shift towards nega tive potentials with increasing pH value, and their peak cur rents decrease with increasing pH value. Poly(methylene green) has a good electrochemical activity and stability in aqueous solutions with pH ≤ 3.8. The UV-Visible spectrum and FTIR spectrum of poly (methylene green) are different from those of methylene green.

  17. Dielectric Resonator Metasurface for Dispersion Engineering

    CERN Document Server

    Achouri, Karim; Gupta, Shulabh; Rmili, Hatem; Caloz, Christophe

    2016-01-01

    We introduce a practical dielectric metasurface design for microwave frequencies. The metasurface is made of an array of dielectric resonators held together by dielectric connections thus avoiding the need of a mechanical support in the form of a dielectric slab and the spurious multiple reflections that such a slab would generate. The proposed design can be used either for broadband metasurface applications or monochromatic wave transformations. The capabilities of the concept to manipulate the transmission phase and amplitude of the metasurface are supported by numerical and experimental results. Finally, a half-wave plate and a quarter-wave plate have been realized with the proposed concept.

  18. Dielectric particle injector for material processing

    Science.gov (United States)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  19. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  20. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis o...

  1. POLYMERIC NANOPARTICLES FROM SUPERCRITICAL CO2 MICROEMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Wei-jun Ye; Jason S. Keiper; Joseph M. DeSimone

    2006-01-01

    Herein, we reported the microemulsion polymerization in supercritical carbon dioxide. With the aid of an anionic phosphate fluorosurfactant (bis-[2-(F-hexyl)ethyl]phosphate sodium), water-soluble/CO2-insoluble acryloxyethyltrimethyl ammonium chloride monomer and N,N'-methylene-bisacrylamide cross-linker were solubilized into CO2 continuous phase via the formation of water-in-CO2 (w/c) microemulsion water pools. Initiated by a CO2-soluble initiator, 2,2'-azo-bisisobutyronitrile (AIBN), cross-linked poly(acryloxyethyltrimethyl ammonium chloride) particles were produced and stabilized in these w/c internal water pools. Nano-sized particles with sizes less than 20 nm in diameter and narrow particle size distributions were obtained.

  2. Organic thin film transistors with polymer brush gate dielectrics synthesized by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Pinto, J.C.; Whiting, G.L.; Khodabakhsh, S.;

    2008-01-01

    Low operating voltage is an important requirement that must be met for industrial adoption of organic field-effect transistors (OFETs). We report here solution fabricated polymer brush gate insulators with good uniformity, low surface roughness and high capacitance. These ultra thin polymer films...

  3. Experimental investigation of streamer affinity for dielectric surfaces

    NARCIS (Netherlands)

    Trienekens, D.J.M.; Nijdam, S.; Akkermans, G.; Plompen, I.; Christen, T.; Ebert, U.

    2015-01-01

    We have experimentally investigated the affinity of streamers for dielectric surfaces using stroboscopic imaging and stereo photography. Affinity of streamers for dielectric surfaces was found to depend on a wide set of parameters, including pressure, voltage, dielectric material and di

  4. Spring-loaded polymeric gel actuators

    Science.gov (United States)

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  5. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  6. Polymeric Materials Review on Oxidation, Stabilization and Evaluation using CL and DSC Methods

    CERN Document Server

    Ilie, Sorin; CERN. Geneva. TE Department

    2009-01-01

    Within TE - VSC Group, the Chemistry Laboratory actually works on the project entitled “Studies of Radiation Induced Aging Effects in Polymeric Cable Insulators”. The aim of the project is the characterization and the evaluation of the aging effects mainly induced by ionizing radiations on the various polymeric materials in cables structure. It is expected, using the accumulated data, to foresee the life-time of these materials in the specific CERN accelerator systems and, also, to assure an acceptance quality control of the supplied cables in CERN.

  7. Dielectric strength of parylene HT

    International Nuclear Information System (INIS)

    The dielectric strength of parylene HT (PA-HT) films was studied at room temperature in a wide thickness range from 500 nm to 50 μm and was correlated with nano- and microstructure analyses. X-ray diffraction and polarized optical microscopy have revealed an enhancement of crystallization and spherulites development, respectively, with increasing the material thickness (d). Moreover, a critical thickness dC (between 5 and 10 μm) is identified corresponding to the beginning of spherulite developments in the films. Two distinct behaviors of the dielectric strength (FB) appear in the thickness range. For d ≥ dC, PA-HT films exhibit a decrease in the breakdown field following a negative slope (FB ∼ d−0.4), while for d C, it increases with increasing the thickness (FB ∼ d0.3). An optimal thickness doptim ∼ 5 μm corresponding to a maximum dielectric strength (FB ∼ 10 MV/cm) is obtained. A model of spherulite development in PA-HT films with increasing the thickness is proposed. The decrease in FB above dC is explained by the spherulites development, whereas its increase below dC is induced by the crystallites growth. An annealing of the material shows both an enhancement of FB and an increase of the crystallites and spherulites dimensions, whatever the thickness. The breakdown field becomes thickness-independent below dC showing a strong influence of the nano-scale structural parameters. On the contrary, both nano- and micro-scale structural parameters appear as influent on FB for d ≥ dC

  8. Dielectric Properties of Yttria Ceramics at High Temperature

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Zheng-Ping Gao; Jin-Ming Wang; Da-Hai Zhang

    2007-01-01

    Based on Clausius-Mosotti equation and Debye relaxation theory, the dielectric model of yttria ceramics was developed according to the dielectric loss mechanism. The dielectric properties of yttria ceramics were predicted at high temperature. The temperature dependence and frequency dependence of dielectric constant and dielectric loss were discussed, respectively.As the result, the data calculated by theoretical dielectric model are in agreement with experimental data.

  9. Superbackscattering from single dielectric particles

    Science.gov (United States)

    Liberal, Iñigo; Ederra, Iñigo; Gonzalo, Ramón; Ziolkowski, Richard W.

    2015-07-01

    We demonstrate that superbackscattering responses can be excited in subwavelength dielectric particles with simple geometries. The superbackscattering response arises from the simultaneous, coherent excitation of electric dipole and magnetic quadrupole resonances. Its signature is a superdirective scattering pattern simultaneously pointing towards both the forward and backward directions. The practical implementation of this effect with Tellurium particles operating in the thermal infrared is also addressed. The examples presented reveal that spherical resonators outperform array-based superbackscatterers in terms of the backscattering peak, compact size, robustness against losses and isotropic response.

  10. Ferroelectric dielectrics integrated on silicon

    CERN Document Server

    Defay, Emmanuel

    2013-01-01

    This book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterizat

  11. Photoacoustic analysis of dental resin polymerization

    Science.gov (United States)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  12. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw;

    2016-01-01

    Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combinatio...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses....

  13. MESO—STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhongYang; Jian-huaRong; DanLi

    2003-01-01

    Meso-structured(opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods:post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers.A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color,which is important in designing tunable photonic crystals.Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed.The catalytic effect of acid groups in the templates was emphasized for a preferential formation of TiO2 in the region containing acid groups,which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  14. MESO-STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang; Jian-hua Rong; Dan Li

    2003-01-01

    Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods: post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO2 in the region containing acid groups, which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  15. Environment-Responsive Polymeric Hydrogels

    Institute of Scientific and Technical Information of China (English)

    Zhn X. X.; M. Nichifor; Lin H.Y.; D. Avoce

    2004-01-01

    Some polymers may respond by changing their physico-chemical perperties when the environmental conditions such as pH, temperature and ionic strength are varied. For example,thermosensentive polymers can exhibit a sharp change in solubility in a solvent such as water at a certain temperature known as the lower critical solution temperature (LCST). The responsiveness of the polymeric materials has important technological implications since they can be employed for various applications. The responsiveness of such polymers can be varied by means of copolymerization, chemical modification of the polymer, or the addition of reagents into the solutions. It is interesting and important to tune predictably the responsiveness of the polymers for the different applications. The sensitivity towards the external environment can be modulated by the relative hydrophilicity of the copolymers, hence the chemical structure and composition of the comonomers used.

  16. Dead Sea Minerals loaded polymeric nanoparticles.

    Science.gov (United States)

    Dessy, Alberto; Kubowicz, Stephan; Alderighi, Michele; Bartoli, Cristina; Piras, Anna Maria; Schmid, Ruth; Chiellini, Federica

    2011-10-15

    Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained. PMID:21676600

  17. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    Science.gov (United States)

    Madsen, F. B.; Yu, L.; Mazurek, P.; Skov, A. L.

    2016-07-01

    Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young’s modulus or increasing the dielectric permittivity of silicone elastomers, or a combination thereof. A decrease in the Young’s modulus, however, is often accompanied by a loss in mechanical stability, whereas increases in dielectric permittivity are usually followed by a large increase in dielectric loss followed by a decrease in breakdown strength and thereby the lifetime of the DE. A new soft elastomer matrix, with high dielectric permittivity and a low Young’s modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition of chloropropyl-functional silicone oil in concentrations up to 30 phr was found to improve the properties of the silicone elastomer significantly, as dielectric permittivity increased to 4.4, dielectric breakdown increased up to 25% and dielectric losses were reduced. The chloropropyl-functional silicone oil also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.

  18. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  19. Torus-like Dielectric D2-brane

    OpenAIRE

    Hyakutake, Yoshifumi

    2001-01-01

    We find new solutions corresponding to torus-like generalization of dielectric D2-brane from the viewpoint of D2-brane action and N D0-branes one. These are meta-stable and would decay to the spherical dielectric D2-brane.

  20. Dielectric Loss Measurements on Raw Materials.

    Science.gov (United States)

    Mwanje, J.

    1980-01-01

    Describes an experiment used to study dielectric properties of materials. Values of the dielectric loss tangent can be determined at low frequencies from Lissajous figures formed on an oscilloscope. Some mineral rock specimens show Debye-type relaxation peaks at frequencies in the region of 1 to 500 Hz. (Author/DS)

  1. Microwave dielectric method for moisture sensing almonds

    Science.gov (United States)

    A dielectric –based method was developed for rapid and nondestructive determination of moisture content in almond kernels independent of bulk density from measurement of their dielectric properties at a single microwave frequency. Calibration equations for moisture determination with temperature com...

  2. Crystalline Silicon Dielectrics for Superconducting Qubit Circuits

    Science.gov (United States)

    Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert

    2009-03-01

    Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.

  3. Fullerene derivatives with increased dielectric constants

    NARCIS (Netherlands)

    Jahani, Fatemeh; Torabi, Solmaz; Chiechi, Ryan C; Koster, L Jan Anton; Hummelen, Jan C

    2014-01-01

    The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing trie

  4. All-dielectric metasurface for optical focusing

    NARCIS (Netherlands)

    Pisano, E.; Silvestri, F.; Gerini, G.; Lancellotti, V.; Galdi, V.

    2015-01-01

    We propose the design of a dielectric flat lens for visible wavelengths, capable of efficiently focus the incident field at a given distance. Our approach relies on the recently proposed exploitation of high-index dielectric resonators with spectrally overlapping electric and magnetic dipole resonan

  5. Dielectric relaxation of gamma irradiated muscovite mica

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjeet [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Mohan, E-mail: mohansinghphysics@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Lakhwant [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Awasthi, A.M. [Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, Indore 452001 (India); Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  6. Microwave device for liquid dielectrics diagnostics

    OpenAIRE

    Safonov, V. V.

    2010-01-01

    It is developed a method for measuring of dielectric permittivity of liquid dielectrics. High accuracy and reliability of the method is provided by definite hardware realization; it is used resonance-bridge method; to provide high stability of measuring SHF signal frequency there is used self-excited oscillator on a basis of active running wave resonator.

  7. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  8. Dielectric bow-tie nanocavity.

    Science.gov (United States)

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-12-15

    We propose a novel dielectric bow-tie (DBT) nanocavity consisting of two opposing tip-to-tip triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity of the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that at 4.5 K (300 K) around the resonance wavelength of 1550 nm, the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8×10(-4) μm³ and a high quality factor of 4.9×10(4) (401.3), corresponding to an ultrahigh Purcell factor of 1.6×10(7) (1.36×10(5)). This DBT nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon sources, thresholdless nanolasers, and strong coupling in cavity quantum electrodynamics experiments. PMID:24322245

  9. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  10. Photostabilization of polymeric materials by photoset acrylate coatings

    Science.gov (United States)

    Decker, C.; Zahouily, K.

    2002-01-01

    Different types of polymeric materials have been made more resistant to photodegradation by protecting their surface with a UV-cured coating containing a HALS radical scavenger and a phenyltriazine UV absorber. The tridimensional polymer network formed by photopolymerization of an aliphatic polyurethane-acrylate telechelic oligomer proved to be very resistant to accelerated weathering in the presence of these light stabilizers. The chemical modifications occurring upon QUV-ageing were monitored by infrared spectroscopy, a very sensitive technique well suited for quantitative analysis at an early stage of the photodegradation.

  11. Polymeric MST - high precision at low cost

    Science.gov (United States)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  12. Polymerized nanotips via two-photon photopolymerization

    Science.gov (United States)

    Qi, Fengjie; Li, Yan; Tan, Dengfeng; Yang, Hong; Gong, Qihuang

    2007-02-01

    We present new methods to produce polymerized nanotips via two-photon photopolymerization. By gradually changing the laser power, we fabricate a single polymerized tip with the size of 120nm. When two rectangle anchors with protuberances are close enough, lines with the slimmest part of about 20-30nm and tips with the widths of about 35nm are produced between anchors, which are the best resolution obtained with the resin SCR-500 to our knowledge. As the tips are adhered to larger polymerized structures, they can survive post processing in spite of their small sizes.

  13. SYNTHESIS AND POLYMERIZATION OF BISPHENYLENE ORTHOCARBONATE

    Institute of Scientific and Technical Information of China (English)

    PAN Caiyuan; ZHAO Yulong; William J. Bailey

    1988-01-01

    Bisphenylene orthocarbonate (Ⅱ) was synthesized by the reaction of dicopper catecholate with carbon tetrachloride, and underwent cationic ring-opening polymerization with the introduction of phenyl group into the main ehain. The obtained polymer with ester and ether group was verified by IR and 1H NMR spectra.Based on the analysis of the polymer structures, the polymerization mechanism was proposed. Its Tm and Tg are 254℃ and 160℃ respectively. No decomposition of the polymer was observed below 320℃. The volume expansion property of the monomer during polymerization was studied by measuring the density difference between I and its polymer at various temperatures.

  14. Polymeric Coatings for Electrodynamic Tethers

    Science.gov (United States)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  15. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  16. Extending applications of dielectric elastomer artificial muscle

    Science.gov (United States)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2007-04-01

    Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 mm once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.

  17. Microwave dielectric behavior of vegetation material

    Science.gov (United States)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  18. Dielectric investigation of some woven fabrics

    Science.gov (United States)

    Cerovic, Dragana D.; Dojcilovic, Jablan R.; Asanovic, Koviljka A.; Mihajlidi, Tatjana A.

    2009-10-01

    In this paper, we have investigated the temperature dependence of dielectric properties (relative dielectric permeabilities and dielectric tangents of losses) for woven fabrics of hemp, jute, flax, cotton, polyester (PES), cotton-PES mixture, and wool. The measurements have been carried out at a temperature range from -50 to 50 °C in the electric periodic field at a frequency 1 MHz in vacuum. For the same specimens, the values of the dielectric properties have also been measured at an air temperature of 21 °C and at relative humidities of 40%, 60%, and 80%. At different frequencies from 80 kHz to 5 MHz, the dielectric properties have been measured at a relative humidity of 40% and at a temperature of 21 °C. An investigation of the dielectric properties of woven fabrics can provide a better understanding of the relation between the dielectric properties of woven fabrics and the different raw material compositions, temperatures, relative air humidities, and frequencies for specimens. Hence, this investigation helps to improve textile material properties.

  19. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  20. Autonomous dielectric elastomer generator using electret

    Science.gov (United States)

    Vu-Cong, T.; Jean-Mistral, C.; Sylvestre, A.

    2013-04-01

    Dielectric elastomers can work as a variable capacitor to convert mechanical energy such as human motion into electrical energy. Nevertheless, scavengers based on dielectric elastomers require a high voltage source to polarize them, which constitutes the major disadvantage of these transducers. We propose here to combine dielectric elastomer with an electret, providing a quasi-permanent potential, thus replacing the high voltage supply. Our new scavenger is fully autonomous, soft, lightweight and low cost. Our structure is made of a dielectric elastomer (Polypower from Danfoss) and an electret developing a potential of -1000V (Teflon from Dupont). The transducer is designed specifically to scavenge energy from human motion. Thus, it works on pure-shear mode with maximum strain of about 50% and it is textured in 3D form because electret is not deformable. The shape of the hybrid structure is critical to insure huge capacitance variation and thus higher scavenged energy. We present in this paper our process for the optimization of the 3D shape that leads us to the developpment and characterization of our first prototype. From an appropriate electromechanical analytical model, an energy density of about 1.48mJ.g-1 is expected on an optimal electrical load. Our new autonomous dielectric generator can produce about 0.55mJ.g-1 on a resistive load, and can further be improved by enhancing the performance of dielectric elastomer such as dielectric permittivity or by increasing the electret potential.

  1. Virtual gap dielectric wall accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  2. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  3. Highly elastic conductive polymeric MEMS

    Science.gov (United States)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  4. Highly elastic conductive polymeric MEMS

    International Nuclear Information System (INIS)

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations. (paper)

  5. Characterization of Polymeric Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Simoncic, B.

    2007-11-01

    Full Text Available As membrane processes are increasingly used in industrial applications, there is a growing interest in methods of membrane characterization. Traditional membrane characteristics, such as cut-off value and pore size distribution, are being supplemented by membrane surface characteristics, such as charge density or zeta potential and hydrophobicity. This study, therefore, characterizes the three different polymeric membranes used (NFT-50, DL and DK. The molecular mass cut-off (MMCO value was determined using a set of reference solutes within the molecular range 150-600 Da, whereas streaming potential measurements enabled quantification of the surface charge characteristics. Hydrophobicity was studied using contact angle measurements. The results indicated that even though all three membranes had very similar layer compositions which consisted of poly(piperazneamide, as top layers they showed different values of measured quantitive. The NFT-50 membrane had the lowest MMCO value and the most hydrophilic membrane surface, followed by DK and DL. Membrane fouling as measured by flux reduction was determined by streaming potential measurements and accompanied by a positive change in zeta potential.

  6. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  7. PHOTOINITIATED INVERSE EMULSION POLYMERIZATION OF SODIUM ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Lian-ying Liu; Zhi-xing Zhang; Wan-tai Yang

    2005-01-01

    Photoinitiated inverse emulsion polymerization of sodium acrylate (AANa) in kerosene was carried out at room or lower temperature, using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as the initiator. Kinetic investigations indicated that the polymerization could be completed in about 30 min and produce polymer with high molecular weight (106~107). It was found that monomer droplets are the main sites for the polymerization (nucleation). With the increase of DMPA concentration, polymerization rate (Rp) reaches a maximum value while molecular weight of the produced polymer has an adverse result, but the dependence of Rp on incident light intensity is similar. Influences of other parameters such as monomer concentration, emulsifier content and reaction temperature, etc. were also studied. At lower pH values of water phase, Rp depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer. At higher pH, Rp shows a slight dependence on pH.

  8. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  9. Mechanism of Striation in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    FENG Shuo; HE Feng; OUYANG Ji-Ting

    2007-01-01

    @@ The mechanism of striations in dielectric barrier discharge in pure neon is studied by a two-dimensional particlein-cell/Monte Carlo collision (PIC-MCC) model. It is shown that the striations appear in the plasma background,and non-uniform electrical field resulting from ionization and the negative wall charge appear on the dielectric layer above the anode. The sustainment of striations is a non-local kinetic effect of electrons in a stratified field controlled by non-elastic impact with neutral gases. The striations in the transient dielectric barrier discharge are similar to those in dc positive column discharge.

  10. Electron transport model of dielectric charging

    Science.gov (United States)

    Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.

    1979-01-01

    A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.

  11. Development of dielectric-barrier-discharge ionization.

    Science.gov (United States)

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  12. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  13. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    John Jacob; M Abdul Khadar; Anil Lonappan; K T Mathew

    2008-11-01

    Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured nickel ferrite samples of three different average grain sizes and those of two sintered samples were studied. The parameters like dielectric constant, dielectric loss and heating coefficient of the nanoparticles samples are studied in the frequency range from 2.4 to 4 GHz. The values of these parameters are compared with those of sintered pellets of the same samples. All these parameters show size dependent variations.

  14. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    S K Arora; Vipul Patel; Brijesh Amin; Anjana Kothari

    2004-04-01

    Strontium tartrate trihydrate (STT) crystals have been grown in silica hydrogel. Various polarization mechanisms such as atomic polarization of lattice, orientational polarization of dipoles and space charge polarization in the grown crystals have been understood using results of the measurements of dielectric constant (') and dielectric loss (tan ) as functions of frequency and temperature. Ion core type polarization is seen in the temperature range 75–180°C, and above 180°C, there is interfacial polarization for relatively lower frequency range. One observes dielectric dispersion at lower frequency presumably due to domain wall relaxation.

  15. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  16. Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, S.M.A.; Khawaja, E.E. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Center for Applied Physical Sciences; Al Shukri, A.M.; Al Kuhaili, M.F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Physics

    2004-09-01

    Energy-efficient glass windows for warm climates were designed and fabricated using a three-layer system of dielectric/metal/dielectric (D/M/D) on glass. Silver was used as a metal layer. The design parameters for optimum performance of D/M/D on glass-systems for dielectrics, having refractive indices in the range 1.6-2.4, were obtained by numerical calculations. Based on these parameters, D/M/D films on glass substrates were deposited using dielectrics such as TiO{sub 2}, WO{sub 3}, and ZnS. Upon testing these coated glass windows, it was concluded that the window with any of the three dielectrics performed well and the efficiencies of the windows with different dielectrics were nearly the same. [Author].

  17. DNA detection with a polymeric nanochannel device.

    Science.gov (United States)

    Fanzio, Paola; Mussi, Valentina; Manneschi, Chiara; Angeli, Elena; Firpo, Giuseppe; Repetto, Luca; Valbusa, Ugo

    2011-09-01

    We present the development and the electrical characterization of a polymeric nanochannel device. Standard microfabrication coupled to Focused Ion Beam (FIB) nanofabrication is used to fabricate a silicon master, which can be then replicated in a polymeric material by soft lithography. Such an elastomeric nanochannel device is used to study DNA translocation events during electrophoresis experiments. Our results demonstrate that an easy and low cost fabrication technique allows creation of a low noise device for single molecule analysis.

  18. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  19. Polymeric Nanogels Obtained by Radiation Technique

    International Nuclear Information System (INIS)

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials

  20. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  1. The Hausdorff dimension in polymerized quantum gravity

    CERN Document Server

    Harris, M G; Harris, Martin G.; Wheater, John F.

    1999-01-01

    We calculate the Hausdorff dimension, $d_H$, and the correlation function exponent, $\\eta$, for polymerized two dimensional quantum gravity models. If the non-polymerized model has correlation function exponent $\\eta_0 >3$ then $d_H=\\gamma^{-1}$ where $\\gamma$ is the susceptibility exponent. This suggests that these models may be in the same universality class as certain non-generic branched polymer models.

  2. Biaxially oriented film on flexible polymeric substrate

    Science.gov (United States)

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  3. Nanoscale Polymeric Particles via Aerosol-Photopolymerization

    OpenAIRE

    Akgün, Ertan

    2015-01-01

    This PhD thesis focuses on the process of aerosol-photopolymerization for the generation of various polymeric particles. Such structures are most often prepared by liquid-based methods via the well-established thermal initiation step, and aerosol-photopolymerization is presented as an alternative, aerosol-based technique which employs photoinitiated polymerization. Discussed within this thesis are the advantages and broad aspects of the process.

  4. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  5. Polymeric micelles for acyclovir drug delivery.

    Science.gov (United States)

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  6. Mechanical and dielectric response of microcomposites of the type: ferroelastic-dielectric

    OpenAIRE

    Hudak, O.; Schranz, W.

    2006-01-01

    Dynamic dielectric and mechanical responses of the microcomposites of the ferroelastic-dielectric type were studied in this paper. The mechanical inclusions-matrix interactions have influence on the mechanical moduli of the composite. We have studied a mechanical response of the composite which consists of the material M and of the other material I in which dispersion of mechanic moduli of particles is present. The inclusions of the dielectric material in the ferroelastic matrix has the effec...

  7. A modified field model of waveguide reflection dielectric resonator for microwave measurements of dielectric properties

    Science.gov (United States)

    Sheen, Jyh

    2008-02-01

    A modified electromagnetic field model of a waveguide reflection dielectric resonator is suggested for measurements of dielectric properties of the homogeneous and isotropic medium in the microwave frequencies. Reflection signal is measured for the calculations of dielectric properties. A dielectric rod sample is put inside of a rectangular cavity made by a microwave waveguide. The sample's dielectric constant and loss tangent are computed from the unloaded quality factor and the resonant frequency of the TE01δ mode as well as the structure dimensions. For first time, this waveguide reflection dielectric resonator is applied on dielectric constant measurement. A modified field model of the waveguide reflection resonator is developed from the Itoh-Rudokas model [IEEE Trans. Microwave Theory Tech. MTT-25, 52 (1977)] of the parallel-plate dielectric resonator. This modification is justified by the dramatic improvement in the accuracy of dielectric constant measurements. The main merit of this field model is that it provides very simple electromagnetic field expressions of this TE01δ field mode. In addition, accuracies of various methods for calculating the power factor and conducting loss, which have never been given before, will be investigated in this article.

  8. Effects of heavy metal on dielectric properties of E.coli revealed by dielectric spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Bai Wei; Zhao Kongshuang

    2006-01-01

    Dielectric spectroscopy of E.coli cell before and after exposure to heavy metals Cd2+,Cu2+, Zn2+ and Ca2+ was investigated. The results indicate that changes in dielectric spectra reflect effects of heavy metal on the structure and function of E.coli cells. Heavy metal can change membrane capacitance as well as permittivity and conductivity of the cytoplasm. Changes in volume fraction suggested that dielectric measurement could monitor the growth of E.coli cells. These results demonstrated that dielectric spectroscopy was a potential effective technique for studying electric properties of biological cells.

  9. Dielectric behavior of a flexible three-phase polyimide/BaTiO3/multi-walled carbon nanotube composite film

    Science.gov (United States)

    Wang, Junli; Qi, Shengli; Sun, Yiyi; Tian, Guofeng; Wu, Dezhen

    2016-11-01

    A three-phase composite film was produced by inserting multi-walled carbon nanotubes (MWCNTs) and BaTiO3 nanoparticles into polyimide (PI). The combination of in-situ polymerization and water-based preparation involved in the experiment ensured fillers’ homogeneous dispersion in the matrix, which led to flexible shape of the composite films. The dielectric properties of composite films as a function of the frequency and the volume fraction of MWCNTs were studied. Such composite film displayed a high dielectric constant (314.07), low dielectric loss and excellent flexibility at 100Hz in the neighborhood of percolation threshold (9.02 vol%) owing to the special microcapacitor structure. The experimental results were highly consistent with the power law of percolation theory.

  10. Identification of Structural Relaxation in the Dielectric Response of Water

    Science.gov (United States)

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; Gainaru, Catalin

    2016-06-01

    One century ago pioneering dielectric results obtained for water and n -alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  11. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  12. All-dielectric subwavelength metasurface focusing lens.

    Science.gov (United States)

    West, Paul R; Stewart, James L; Kildishev, Alexander V; Shalaev, Vladimir M; Shkunov, Vladimir V; Strohkendl, Friedrich; Zakharenkov, Yuri A; Dodds, Robert K; Byren, Robert

    2014-10-20

    We have proposed, designed, manufactured and tested low loss dielectric micro-lenses for infrared (IR) radiation based on a dielectric metamaterial layer. This metamaterial layer was created by patterning a dielectric surface and etching to sub-micron depths. For a proof-of-concept lens demonstration, we have chosen a fine patterned array of nano-pillars with variable diameters. Gradient index (GRIN) properties were achieved by engineering the nano-pattern characteristics across the lens, so that the effective optical density of the dielectric metamaterial layer peaks around the lens center, and gradually drops at the lens periphery. A set of lens designs with reduced reflection and tailorable phase gradients have been developed and tested, demonstrating focal distances of a few hundred microns, beam area contraction ratio up to three, and insertion losses as low as 11%. PMID:25401653

  13. Casimir Torque in Inhomogeneous Dielectric Plates

    CERN Document Server

    Long, William

    2013-01-01

    In this work, we consider a torque caused by the well known quantum mechanical Casimir effect arising from quantized field fluctuations between plates with inhomogeneous, sharply discontinuous, dielectric properties. While the Casimir effect is a relatively well understood phenomenon, systems resulting in lateral or rotational forces are far less developed; to our knowledge, a theoretical study of discontinuous dielectric variants of such systems has not been attempted. We utilize a Proximity Force Approximation in conjunction with the Lifshitz dielectric formula to perform theoretical analyses of resultant torques in systems with bisected and quadrisected dielectric regions. We also develop a high precision Monte Carlo type numerical integrator to approximate our derived expressions. Our calculations of an energy density linear with the alignment angle result in a constant torque and have implications in NEMS (nano electromechanical systems) and MEMS (micro electromechanical systems), including a postulated ...

  14. Dielectric characterization of gadolinium tartrate trihydrate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Want, Basharat [Department of Physics, University of Kashmir, Srinagar 190006, Jammu and Kashmir (India); Ahmad, Farooq [Department of Physics, University of Kashmir, Srinagar 190006, Jammu and Kashmir (India); Kotru, P.N. [Department of Physics and Electronics, University of Jammu, Jammu 180006, Jammu and Kashmir (India)]. E-mail: pn_kotru@yahoo.com

    2007-01-15

    Single crystals of gadolinium tartrate trihydrate have been grown by gel diffusion technique. Single crystal X-ray diffraction analysis shows that the crystals belong to the tetragonal system with non-centrosymmetric space group. The dielectric constant, dielectric loss and ac conductivity have been measured as a function of frequency in the range 1 kHz-5 MHz and temperature range 20-300 deg. C. The dielectric constant increases with temperature, attains a peak around 240 deg. C and then decreases as the temperature exceeds 240 deg. C. The dielectric anomaly at 240 deg. C is suggested to be due to phase transition brought about in the material, which is further supported by the thermal studies. The variation of ac conductivity with temperature has been measured and the material is suggested to show protonic conductivity.

  15. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  16. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...... such that the material parameters which influence charge accumulation are clearly identified; viz. the conductivity, permittivity and dimensions of the insulating media. The two former parameters, together with the applied voltage, govern both the magnitude and polarity of the accumulated charge....

  17. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed;

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  18. Dielectric breakdown in nano-porous thin films

    Science.gov (United States)

    Borja, Juan Pablo

    Unknown to most computer users and mobile device enthusiasts, we have finally entered into a critical age of chip manufacturing. January of 2014 marks the official start of the quest by the semiconductor industry to successfully integrate sub 14nm process technology nodes in accordance to the International Technology Roadmap for Semiconductors (ITRS). The manufacturing of nano-scale features represents a major bottleneck of its own. However, a bigger challenge lies in reliably isolating the massive chip interconnect network. The present work is aimed at generating a theoretical and experimental framework to predict dielectric breakdown for thin films used in computer chip components. Here, a set of experimental techniques are presented to assess and study dielectric failure in novel thin films. A theory of dielectric breakdown in thin nano-porous films is proposed to describe combined intrinsic and metal ion catalyzed failure. This theory draws on experimental evidence as well as fundamental concepts from mass and electronic charge transport. The drift of metal species was found to accelerate intrinsic dielectric failure. The solubility of metals species such as Cu was found to range from 7.0x1025 ions/m3 to 1.86x1026 ions/m3 in 7% porous SiCOH films. The diffusion coefficient for Cu species was found to span from 4.2x10-19 m2/s to 1.86x10-21 m2/s. Ramped voltage stress experiments were used to identify intrinsic failure from metal catalyzed failure. Intrinsic breakdown is defined when time to failure against applied field ramp rate results in ∂(ln(TTF))/∂(ln(R)) ≈ -1. Intrinsic failure was studied using Au. Here, ∂(ln(TTF))/∂(ln(R)) ≈ -0.95, which is an experimental best case scenario for intrinsic failure. Au is commonly reluctant to ionize which means that failure occurs in the absence of ionic species. Metal catalyzed failure was investigated using reactive electrodes such as Cu, and Ag. Here, trends for ∂(ln(TTF))/∂(ln(R)) significantly

  19. Genotoxic evaluation of polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Iglesias Alonso

    2015-06-01

    Full Text Available An important strategy for optimizing the therapeutic efficacy of many conventional drugs is the development of polymeric nanoparticles (NPs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. The main objective of this study was to evaluate the genotoxicity of 8 different poly (anhydride NPs designed for the oral administration of therapeutic compounds by using the comet assay in combination with the enzyme formamidopypiridine DNA-glycosylase (FPG. Furthermore, the mitogen capacity of the NPs was evaluated by the proliferation assay. All NPs were tested at four concentrations (0, 0.5, 1 and 2 mg/mL in Caco-2 cells after 3 hours of treatment while selected NPs were also tested after 24 h. The comet assay was performed immediately after the treatment and cell proliferation was assessed by counting the treated cells after their incubation at 37 °C for 48h. Cells treated with 1 µM of the photosensitizer Ro 19-8022 plus 5 min of light, as well as cells treated with 100 µM H2O2 were included as positive controls in all the experiments. All NPs studied did not result in any increase in the frequency of strand breaks or alkali-labile sites in Caco-2 cells but they induced a slight concentration-dependent increase in net FPG sensitive sites (oxidized and/or alkylated bases. Furthermore, treated cells did not show changes in levels of proliferation in comparison with the negative control.

  20. Polariton spectrum in nonlinear dielectric medium

    OpenAIRE

    Dzedolik, Igor V.; Karakchieva, O.

    2012-01-01

    We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the influence of dispersion of the third order dielectric susceptibility at intensity field in the medium. The modulation instability of new branch...

  1. Polariton waves in nonlinear dielectric medium

    OpenAIRE

    Dzedolik, I. V.; Karakchieva, O. S.

    2012-01-01

    The phonon-polariton spectrum in dielectric medium with the third order nonlinearity was theoretically obtained. Dependence of number of polariton spectrum branches on intensity of electromagnetic field was investigated. The appearance of new branches located in the polariton spectrum gap was caused by the influence of dispersion of the third order dielectric susceptibility at increment of the field intensity in the medium. The soliton and cnoidal wave solutions for the polariton excitations ...

  2. Composite Dielectric Materials for Electrical Switching

    Energy Technology Data Exchange (ETDEWEB)

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  3. Dielectric properties of Jordanian oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Al-Harahsheh, Mohammad; Alnawafleh, Hani [Department of Mining Engineering, College of Mining and Environmental Engineering, Al-Hussein Bin Talal University, Ma' an 20 (Jordan); Kingman, Sam; Saeid, Abdurrahman; Robinson, John; Dimitrakis, Georgios [Process and Environmental Research Division Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2009-10-15

    Microwave heating has been suggested by various authors as a suitable technology for extraction of organic material from oil shales. However, one of the limiting factors in the development of this technology is a lack of accurate dielectric property data for design purposes. In this study the dielectric behaviour of El-lajun oil shale is quantified. The dielectric constant and loss factor of El-lajun oil shale were measured at 2470 and 912 MHz using the cavity perturbation technique. The effects of organic content, temperature, and moisture content on the microwave heating efficiency were quantified. Coaxial probe technique was also employed to study the effect of frequency on dielectric properties of oil shale. Generally, it was found that all samples were of low dielectric loss at room temperature with the imaginary part of permittivity falling significantly after the moisture was removed. This suggests that the major contribution in the dielectric loss is due to the presence of free and/or interlayer water. It was found that both the real and imaginary part of complex permittivity increased with a rise in temperature from 20 up to 80 C, then dropped significantly at about 100 C before staying approximately constant up to a temperature of about 480 C. From this temperature both the real and imaginary parts of complex permittivity increased sharply with further increase in temperature. An attempt was also made to correlate the dielectric properties of the bulk shale sample with the organic content. However, no correlation between dielectric properties and organic matter content was found. (author)

  4. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue...... elastomers were prepared by mixing different mass ratios between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, thermal stability, as well...

  5. Dielectric Behavior of Middle Phase Microemulsion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dielectric measurements were performed on middle phase microemulsions composed of sodium dodecylsulfate(SDS), cetyltrimethylammonium bromide(CTAB), n-butanol, n-heptane and brine. Distinct and unique dielectric behavior, with characteristic frequency dependence regularity on the salinity of the microemulsions, was observed in the low-frequency range from 10-103Hz. It can be considered to be an interfacial polarization mechanism.

  6. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  7. Physical Aging of Miscible Polymer Blends

    OpenAIRE

    Robertson, Christopher

    1999-01-01

    Physical aging measurements were performed on various polymeric glasses with the overriding goal of developing a better molecular picture of the nonequilibrium glassy state. To this end, aging-induced changes in mechanical properties and in the thermodynamic state (volume and enthalpy) were assessed for two different miscible polymer blends as a function of both composition and aging temperature. This investigation considered the physical aging behavior of blends containing atactic polystyr...

  8. Investigation Of Dielectric Behaviors Of Nanoclay Filled Epoxy And PP/NYLON66 Nanocomposites For Cable Insulation Application

    Science.gov (United States)

    Rashmi, Renukappa, N. M.; Siddaramaiah

    2010-10-01

    High performance polymer nanocomposites are emerging as a new class of materials for its demanding applications as insulating material. The outstanding properties of nanoclay make them an attractive candidate for preparing advanced composite materials with multi functional features for electrical and electronics applications. A series of nanoclay incorporated epoxy and polypropylene/nylon66 (50/50 blend) nanocomposites have been prepared via chemical and melt mixing methods respectively. The fabricated nanocomposites have been characterized for dielectric behaviors such as dielectric constant (ɛ r ) and dissipation factor (tan δ). The effect of filler content, frequency, temperature and sea water ageing on dielectric behavior of nanocomposites has been investigated. The variation in the diffusion coefficient (D) of the material aged in water at different temperature with different percentage of nanoclay loaded epoxy and PP/nylon66 nanocomposites were calculated. It is observed that at increase in ageing temperature relatively increases the diffusion coefficient of the material. The measured dielectric results of the nanocomposites reveals that a significant influence of frequency and sea water ageing and marginal change with temperature. Higher dielectric constant was noticed for epoxy nanocomposites as compared to PP/nylon66 composites

  9. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  10. Effects of Gamma-Ray Irradiation on Dielectric Surface Breakdown of Polybutylene Naphthalate and Polybutylene Terephthalate Under Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becomes necessary to investigate the effects of the radiation and air pressure on insulation materials. This paper describes the effects of gamma-ray irradiation and reduced pressure on dielectric breakdown of polybutylene naphthalate (PBN) and polybutylene terephthalate (PBT) by applying a DC pulse voltage. Both PBN and PBT were irradiated in air up to 100 kGy and then up to 1 000 kGy with a dose rate of 10 kGy/h by using a 60Co gamma-source. The effects of total dose and reduced pressure on the time to dielectric breakdown and discharge quantity were discussed. Obtained results show that, while increasing the total dose, the discharge quantity decreased with PBN, but increased with PBT. With decreasing the air pressure, the discharge quantity increased with PBN, but decreased with PBT. With increasing the total dose, the time to dielectric breakdown increased with PBN, but decreased with PBT. With decreasing the air pressure, the time to dielectric breakdown increased with both PBN and PBT. The experimental results suggest that the chemical structure of polybutylene polymers plays a main role in the result of radiation reaction,which is related to cross-linking and degradation reaction.

  11. Growth and characterization of MMA/SiO2 hybrid low- thin films for interlayer dielectric applications

    Indian Academy of Sciences (India)

    Bhavana N Joshi; M A More; A M Mahajan

    2010-06-01

    The methylmethacrylate (MMA) incorporated SiO2 thin films having low dielectric constant ( = 2.97) were deposited successfully to realize new interlayer material for the enhancement of electrical performance of on-chip wiring in very large scale integrated (VLSI) circuits. We have successfully incorporated MMA monomer and eliminated the polymerization step to lower the dielectric constant of deposited thin film. The presence of peak of C=C bond in Fourier transform infrared (FTIR) spectra and carbon peak in energy dispersive (EDAX) spectra confirms the incorporation of carbon in the film due to MMA. The concentration of MMA has great impact on the peak area and full width at half maxima (FWHM) of the Si–O–Si bond, which decreases the density by low atomic weight elements and consequently decreases the dielectric constant. The surface morphology analysed by scanning electron microscopic (SEM) image shows excellent uniformity of the film. The refractive index of 1.31 was measured by ellipsometer for 0.5 ml MMA concentration film. These deposited thin films having low refractive index and dielectric constant are widely applicable for the optical interconnects and interlayer applications in integrated optical circuits and VLSI circuits.

  12. Dielectric and Ferroelectric Properties of Complex Perovskite Ceramics Under Compressive Stress

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dielectric and ferroelectric properties of complex perovskite PZT-PZN ceramic system were investigated under the influence of the compressive stress. The results showed that the dielectric properties, i.e. dielectric constant ( εr ) and dielectric loss ( tan δ), and the ferroelectric characteristics, i.e. the area of the ferroelectric hysteresis loops, the saturation polarization ( P(sat) ), and the remnant polarization (Pr) changed significantly with increasing compressive stress. These changes depended strongly on the ceramic compositions. The experimental results on the dielectric properties could be explained by both intrinsic and extrinsic domain-related mechanisms involving domain wall motions, as well as the de-aging phenomenon. The stress-induced domain wall motion suppression and non-180° ferroelectric domain switching processes were responsible for the changes observed in the ferroelectric parameters. In addition,a significant decrease in those parameters after a cycle of stress was observed and attributed to the stress induced decrease in switchable part of spontaneous polarization. This study clearly show that the applied stress had significant influence on the electrical properties of complex perovskite ceramics.

  13. Fire-Retardant Polymeric Additives

    Science.gov (United States)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    component forms polybenzoxazole (PBO) in a reaction that absorbs heat from its surroundings. PBO under thermal stress cross-links, forming a protective char layer, which thermally insulates the polymer. Thus, the formation of the char layer further assists to extinguish the fire by preventing vaporization of the polymeric fuel.

  14. Microwave absorption of a TiO2@PPy hybrid and its nonlinear dielectric resonant attenuation mechanism

    Science.gov (United States)

    Jiang, Wanchun; Wang, Yu; Xie, Aming; Wu, Fan

    2016-09-01

    We report on a high-performance electromagnetic absorption material (TiO2@PPy) developed via a facile in situ polymerization process, where lower than  -60 dB maximum absorption and 6.56 dB effective absorption bandwidth (lower than  -10 dB) can be obtained under low thickness. The excellent electromagnetic wave absorption ability is attributed to the synthetic effect of improved impedance matching and the dual loss mechanism, which originates from the polarization relaxations of dipoles induced by vacancy defects and a conductive network constructed by aerogels. An equivalent circuit model is established to explicate the nonlinear dielectric resonant attenuation mechanism.

  15. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NARCIS (Netherlands)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-01-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study we

  16. Influence of bulk dielectric polarization upon partial discharge transients effect of heterogeneous dielectric geometry

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C.

    2000-01-01

    A physically valid theory of partial discharge (PD) transients is based upon the concept of the charge induced upon the detecting electrode by the PD. This induced charge consists of two components. One is associated with the actual space charge in the void, while the other is related to changes...... in the polarization of the bulk dielectric. These changes are brought about by the field produced by the space charge. The magnitude of the induced charge and its components are examined for several heterogeneous dielectric systems. It is demonstrated that, in relation to a homogeneous dielectric system......, the magnitude of the induced charge either increases or decreases depending on the ratio of the dielectric permittivities and within which dielectric the void is located. It is shown that this behavior is directly related to the magnitude and polarity of the polarization component of the induced charge...

  17. Gestational age

    Science.gov (United States)

    Fetal age - gestational age; Gestation; Neonatal gestational age; Newborn gestational age ... Gestational age can be determined before or after birth. Before birth, your health care provider will use ...

  18. Synthesis and photostabilizing performance of a polymeric HALS based on 1,2,2,6,6-pentamethylpiperidine and vinyl acetate

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2015-01-01

    Full Text Available Abstract Polymeric hindered amine light stabilizers (polymeric HALS have been extensively studied because they combine a high ability to protect the polymers against harmful effects of weathering with minimum physical loss. In this study a new polymeric N-methylated HALS was synthesized by the radical copolymerization of a cyclic tertiary amine with vinyl acetate (VAc. 4-Acryloyloxy-1,2,2,6,6-pentamethylpiperidine (APP, the cyclic tertiary amine, was prepared by the initial conversion of 2,2,6,6-tetramethyl-4-piperidinol derivatives via two different routes. The APP/VAc copolymer synthesized was characterized by size exclusion chromatography (SEC, Fourier transform infrared spectroscopy (FTIR and carbon-13 nuclear magnetic resonance (13C NMR. The photostabilizing performance, particularly the induction period of polypropylene (PP films containing different concentrations of APP/VAc copolymer, when exposed to accelerated aging, was comparable to that of PP films compounded with commercial polymeric HALS.

  19. Self-Healing of biocompatible polymeric nanocomposities

    Science.gov (United States)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  20. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-12-01

    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  1. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    Science.gov (United States)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  2. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)

    2000-04-01

    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  3. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    Science.gov (United States)

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  4. The Theory of SERS on Dielectrics and Semiconductors

    CERN Document Server

    Polubotko, V P Chelibanov A M

    2016-01-01

    It is demonstrated that the reason of SERS on dielectric and semiconductor substrates is the enhancement of the electric field in the regions of the tops of the surface roughness with very small radius, or a very large curvature. The enhancement depends on the dielectric constant of the substrate and is stronger for a larger dielectric constant. It is indicated that the enhancement on dielectrics and semiconductors is stronger than on metals with the same modulus of the dielectric constant. The result obtained is confirmed by experimental data on the enhancement coefficients obtained for various semiconductor and dielectric substrates.

  5. Influence of Cyclodextrin on the Styrene Polymerization

    Institute of Scientific and Technical Information of China (English)

    HU Jie; LIU Bai-ling

    2004-01-01

    Cyclodextrin (CD) are oligosaccharides consisting of 6( α ), 7( β ), 8( γ ) units of1,4-linked glucose. Due to their polar hydrophilic outer shell and relatively hydrophobic cavity, theyare able to build up host-guest complexes by inclusion of suitable hydrophobic molecules. Theformation of these complexes leads to significant changes of the solubility and reactivity of the guestmolecules, but without any chemical modification. Thus, water insoluble molecules may becomecompletely water soluble simply by mixing with an aqueous solution of native CD or CD-derivatives.Hydrogen bonds or hydrophobic interactions are responsible for the stability of the complexes and itturned out that the complexed monomers could be successfully polymerized by free radicalpolymerization in water.In our present work, using styrene as monomer, potassium peroxodisulfate as radical initiator thatreacted in water in the presence ofβ-CD but without any additional surfactant, the effect ofcyclodextrin on the polymerization was described. Additionally, the acceleration mechanism ofcyclodextrin in the polymerization was also explained based on dynamic study.Table 1 Effect of CD on the monomer reactivityIt is found that β -CD could greatly accelerate the polymerization, enhance the final conversion ofmonomer. And the more the amount of β-CD was introduced, the faster the polymerization wasobtained. From Figure 1, after 5 hours reaction at 80℃, the monomer conversion in the presence of1.0g cyclodextrin reached to 95%. However, that in absence of cyclodextrin was only 60%. And themonomer conversion was not to exceed 75% even reacted for 8 hours when no CD in reactionsystem.In order to describe the acceleration of CD in the polymerization quantitatively, based onCD and without CD. As shown in Table 1, CD produced significant effect on the monomer reactivity.The relative relativities of monomer were greatly increased with the increase of the amount of CD.

  6. Thrombin interaction with fibrin polymerization sites.

    Science.gov (United States)

    Hsieh, K

    1997-05-15

    Thrombin is central to hemostasis, and postclotting fibrinolysis and wound healing. During clotting, thrombin transforms plasma fibrinogen into polymerizing fibrin, which selectively adsorbs the enzyme into the clot. This protects thrombin from heparin-antithrombin inactivation, thus preserving the enzyme for postclotting events. To determine how the fibrin N-terminal polymerization sites of A alpha 17-23 (GPRVVER) and B beta 15-25 (GHRPLDKKREE) and their analogs may interact with thrombin, amidolysis vs. plasma- and fibrinogen-clotting assays were used to differentiate blockade of catalytic site vs. other thrombin domains. Amidolysis studies suggest GPRVVER inhibition of thrombin catalytic site through hydrophobic interaction, and GPRVVER inhibited clotting. Neither GPRP nor VVER nor the B beta 15-25 homologs inhibited amidolysis. Contrary to heparin, acyl-DKKREE promoted plasma-clotting, but inhibited fibrinogen-clotting. In addition, acyl-DKKREE reversed the anticoagulant effect of heparin (0.1 U/ml) in plasma. The results suggest fibrin B beta 15-25 interaction with thrombin, possibly by blocking the heparin-binding site. Together with the reported fibrin A alpha 27-50 binding to thrombin, polymerizing fibrin appears to initially bind to thrombin catalytic site and exosite-1 through A alpha 17-50, and to another thrombin site through B beta 15-25. As these fibrin sites are also involved in polymerization, competition of the polymerization process with thrombin-binding could subsequently dislodge thrombin from fibrin alpha-chain. This may re-expose the catalytic site and exosite-1, thus explaining the thrombogenicity of clot-bound thrombin. The implications of these findings in polymerization mechanism and anticoagulant design are discussed.

  7. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald;

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well......This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...

  8. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M

    1991-01-01

    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  9. The flat phase of quantum polymerized membranes

    CERN Document Server

    Coquand, O

    2016-01-01

    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features : quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free standing graphene physics.

  10. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  11. Microwave dielectric properties of plant materials

    Science.gov (United States)

    Ulaby, F. T.; Jedlicka, R. P.

    1984-01-01

    Three waveguide transmission systems covering the 1-2, 3.5-6.5, and 7.5-8.5 GHZ bands were used to measure the dielectric properties of vegetation material as a function of moisture content and microwave frequency. The materials measured included, primarily, the leaves and stalks of corn and wheat. Dielectric measurements also were made of the liquid included in the vegetation material after it was extracted from the vegetation by mechanical means. The extracted liquids were found to have an equivalent NaCl salinity of about 10 per mil, which can have a significant effect on the dielectric loss at frequencies below 5 GHz. The results of attempts to model the dielectric constant of the vegetatioon-water mixture in terms of the dielectric constants and volume fractions of its constituent parts (i.e., bulk vegetation, air, bound water, and free water) are discussed. Additionally, measurements of the temporal variations in the total attenuation at 10.2 GHz are presented for a corn canopy and a soybean canopy.

  12. Techniques for laser welding polymeric devices.

    Science.gov (United States)

    Jones, I A

    2003-04-01

    Recent advances in laser techniques mean that lasers are now being considered as an alternative to vibration, ultrasonic, dielectric, hot plate or hot bar welding, and adhesive bonding of plastics. The techniques required to put laser welding methods into practice are described for medical devices, tubular systems, films and synthetic fabrics. PMID:12789697

  13. Use of high and low frequency dielectric measurements in the NDE of adhesively bonded composite joints

    Science.gov (United States)

    Pethrick, R. A.; Hayward, D.; McConnell, B. K.; Crane, R. L.

    2005-05-01

    Dielectric spectroscopy has been developed as a non-destructive technique for assessment of moisture content and structural integrity of adhesively bonded joints. Knowledge of these parameters is particularly crucial for the aerospace industry, since environmental degradation of adhesive joints presents a major limit on their utilization. High and low frequency measurements have been carried out on joints assembled from CFRP adherend, and a commercially available adhesive (AF 163-2K). The samples have been aged in deionised water at 75oC to chart the effect water ingress has on bond durability. In addition, some joints have been exposed to cryogenic temperatures to mimic the conditions joints experience whilst an aircraft is in flight. In this way it has been possible to determine the extent of degradation caused by freezing of water within the joint structure. Dielectric behaviour of the joints was studied in both the frequency and in the time domain. Frequency domain analysis allows the amount and effects of moisture ingress in the bondline to be assessed, whereas the time domain highlights the onset of joint defects with increasing exposure time. Mechanical testing of the joints has been carried out to enable correlation between changes in strength and failure mechanism due to moisture ingress, with changes in the dielectric data. In addition, dielectric studies of the neat adhesive have been undertaken, as have gravimetric and dynamic mechanical thermal analysis. These have helped reveal the effects of ageing upon the adhesive layer itself.

  14. Novel Low Temperature Co-Fired Ceramic Material System Composed of Dielectrics with Different Dielectric Constants

    Science.gov (United States)

    Sakamoto, Sadaaki; Adachi, Hiroshige; Kaneko, Kazuhiro; Sugimoto, Yasutaka; Takada, Takahiro

    2013-09-01

    We found that the co-firing low temperature co-fired ceramic (LTCC) materials of different dielectric constants (ɛr) with Cu wiring is achievable using a novel, original design. It was confirmed that the dielectric characteristics of the dielectrics designed in this study are very suitable for the use of the dielectrics in electronic components such as filters mounted in high-speed radio communication equipment. The dielectric constants of the lower- and higher-dielectric-coefficient materials were 8.1 and 44.5, respectively, which are sufficiently effective for downsizing LTCC components. Observing the co-fired interface, it was confirmed that excellent co-firing conditions resulted in no mechanical defects such as delamination or cracks. On the basis of the results of wavelength dispersive X-ray spectrometry (WDX) and X-ray diffractometry (XRD), it was confirmed that co-firing with minimal interdiffusion was realized using the same glass for both dielectrics. It is concluded that the materials developed are good for co-firing in terms of the mechanical defects and interdiffusion that appear in them.

  15. Broadband Dielectric Spectroscopy on Human Blood

    CERN Document Server

    Wolf, M; Lunkenheimer, P; Loidl, A

    2011-01-01

    Dielectric spectra of human blood reveal a rich variety of dynamic processes. Achieving a better characterization and understanding of these processes not only is of academic interest but also of high relevance for medical applications as, e.g., the determination of absorption rates of electromagnetic radiation by the human body. The dielectric properties of human blood are studied using broadband dielectric spectroscopy, systematically investigating the dependence on temperature and hematocrit value. By covering a frequency range from 1 Hz to 40 GHz, information on all the typical dispersion regions of biological matter is obtained. We find no evidence for a low-frequency relaxation (alpha-relaxation) caused, e.g., by counterion diffusion effects as reported for some types of biological matter. The analysis of a strong Maxwell-Wagner relaxation arising from the polarization of the cell membranes in the 1-100 MHz region (beta-relaxation) allows for the test of model predictions and the determination of variou...

  16. Tailorable Dielectric Material with Complex Permittivity Characteristics

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Delozier, Donavon Mark (Inventor)

    2014-01-01

    A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.

  17. Dielectric and phase behavior of dipolar spheroids.

    Science.gov (United States)

    Johnson, Lewis E; Benight, Stephanie J; Barnes, Robin; Robinson, Bruce H

    2015-04-23

    The Stockmayer fluid, composed of dipolar spheres, has a well-known isotropic-ferroelectric phase transition at high dipole densities. However, there has been little investigation of the ferroelectric transition in nearly spherical fluids at dipole densities corresponding to those found in many polar solvents and in guest-host organic electro-optic materials. In this work, we examine the transition to ordered phases of low-aspect-ratio spheroids under both unperturbed and poled conditions, characterizing both the static dielectric response and thermodynamic properties of spheroidal systems. Spontaneous ferroelectric ordering was confined to a small region of aspect ratios about unity, indicating that subtle changes in sterics can have substantial influence on the behavior of coarse-grained liquid models. Our results demonstrate the importance of molecular shape in obtaining even qualitatively correct dielectric responses and provide an explanation for the success of the Onsager model as a phenomenological representation for the dielectric behavior of polar organic liquids. PMID:25821921

  18. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  19. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  20. High efficiency dielectric metasurfaces at visible wavelengths

    CERN Document Server

    Devlin, Robert C; Chen, Wei-Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics1-3. Dielectric metasurfaces demonstrated thus far4-10 are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. It is critical that new materials and fabrication techniques be developed for dielectric metasurfaces at visible wavelengths to enable applications such as three-dimensional displays, wearable optics and planar optical systems11. Here, we demonstrate high performance titanium dioxide dielectric metasurfaces in the form of holograms for red, green and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide that exhibits low surface roughness of 0.738 nm and ideal optical properties. To fabricate the metasurfaces we use a lift-off-like process that allows us to produce highly anisotropic nanofins with shape birefringence. This ...

  1. Single-photon propagation through dielectric bandgaps.

    Science.gov (United States)

    Borjemscaia, Natalia; Polyakov, Sergey V; Lett, Paul D; Migdall, Alan

    2010-02-01

    Theoretical models of photon traversal through quarter-wave dielectric stack barriers that arise due to Bragg reflection predict the saturation of the propagation time with the barrier length, known as the Hartman effect. This saturation is sensitive to the addition of single dielectric layers, varying significantly from sub-luminal to apparently super-luminal and vice versa. Our research tests the suitability of photonic bandgaps as an optical model for the tunneling process. Of particular importance is our observation of subtle structural changes in dielectric stacks drastically affecting photon traversal times, allowing for apparent sub- and super-luminal effects. We also introduce a simple model to link HOM visibility to wavepacket distortion that allows us to exclude this as a possible cause of the loss of contrast in the barrier penetration process. PMID:20174056

  2. Dielectric elastomer actuators for facial expression

    Science.gov (United States)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  3. Radiation pressure on a dielectric wedge

    CERN Document Server

    Mansuripur, Masud; Moloney, Jerome V

    2014-01-01

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  4. Multimode directionality in all-dielectric metasurfaces

    CERN Document Server

    Yang, Yuanqing; Kostinski, Sarah V; Odit, Mikhail; Kapitanova, Polina; Qiu, Min; Kivshar, Yuri

    2016-01-01

    All-dielectric resonant nanophotonics has emerged recently as a new direction of research aiming at the manipulation of strong optically-induced electric and magnetic Mie resonances in dielectric nanoparticles with high refractive index, for a design of metadevices with reduced dissipative losses and large resonant enhancement of both electric and magnetic fields. Usually, the geometry of dielectric nanoparticles is considered to be close to either sphere or rod, so the exact Mie solutions of the scattering problem are applied. Here we study nanoparticles with a large aspect ratio (such as nanobars) and describe a novel type of hybrid Mie-Fabry-Perot modes responsible for the existence of multiple magnetic dipole resonances. The multiple magnetic dipoles originate from a combination of a magnetic dipolar mode and a number of standing waves of an elongated anisotropic nanobar. We reveal that these novel hybrid modes can interfere constructively with the induced electric dipoles and thereby lead to multimode un...

  5. TE resonances in graphene-dielectric structures

    CERN Document Server

    Werra, Julia F M; Busch, Kurt

    2015-01-01

    An investigation of the dispersion relations of TE resonances in different graphene-dielectric structures is presented. When a graphene layer is brought into contact with a dielectric material, a gap can appear in its electric band structure. This allows for the formation of TE-plasmons with unusual dispersion relations. In addition, if the dielectric has a finite thickness, graphene acts as a mode filter and strongly modifies the behavior of the waveguiding modes by introducing a frequency cutoff. This cutoff and the properties of TE-plasmons are closely related to the pair-creation threshold of graphene thus representing quantum mechanical effects that manifest themselves in the electromagnetic response. Our findings are of particular relevance to all forms of light-matter interaction in graphene-based systems, notably for the decay rates of emitters that are in close proximity to graphene.

  6. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  7. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真

    2003-01-01

    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  8. Immobilization of biocatalysts for enzymatic polymerizations : Possibilities, advantages, applications

    NARCIS (Netherlands)

    Miletic, Nemanja; Nastasovic, Aleksandra; Loos, Katja; Miletić, Nemanja; Nastasović, Aleksandra

    2012-01-01

    Biotechnology also holds tremendous opportunities for realizing functional polymeric materials. Biocatalytic pathways to polymeric materials are an emerging research area with not only enormous scientific and technological promise, but also a tremendous impact on environmental issues. Many of the en

  9. Method for fabrication of crack-free ceramic dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2016-05-31

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  10. Polymeric components for telecom and datacom

    NARCIS (Netherlands)

    Diemeer, Mart; Dekker, Ronald; Hilderink, Lucie; Leinse, Arne; Balakrishnan, Muralidharan; Faccini, Mirko; Driessen, Alfred; Lambeck, Paul V.; Gorecki, Christophe; Pustelny, Tadeusz

    2005-01-01

    Polymeric optical waveguide components offer attractive properties for applications in optical telecom and datacom systems. These are high speed for electro-optic modulators, low power dissipation for thermo-optic (digital) switches and low-cost for all active and passive components. We report on ac

  11. Structure-properties relationships in polymeric fibres

    NARCIS (Netherlands)

    Penning, Jan Paul

    1994-01-01

    Dit proefschrift beschrijft een onderzoek naar de samenhang tussen de struktuur en de mechanische eigenschappen van polymere vezels, met als centrale vraag hoe men deze eigenschappen het best kan beschrijven op grond van de vezelstruktuur en hoe deze struktuur onstaat tijdens de diverse stappen van

  12. Nylon 6 polymerization in the solid state

    NARCIS (Netherlands)

    Gaymans, Reinoud J.; Amirtharaj, John; Kamp, Henk

    1982-01-01

    The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found

  13. Olefin polymerization over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    Cr/SiO2 or Phillips-type catalysts are nowadays responsible for a large fraction of all polyethylene (HDPE and LLDPE) worldwide produced. In this review, several key-properties of Cr/SiO2 catalysts will be discussed in relation to their polymerization characteristics. It will be shown how the polyol

  14. Biodegradable Polymeric Microcapsules: Preparation and Properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    Biodegradable polymeric microcapsules can be produced through different methods of which emulsion solvent-evaporation/extraction is frequently used. In this technique, the polymer (often polylactide) is dissolved in a good solvent and is emulsified together with a poor solvent into a nonsolvent phas

  15. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  16. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings

    International Nuclear Information System (INIS)

    Novel superparamagnetic iron oxide nanoparticles coated with polymerized PEGylated bilayers were prepared. Bilayers composed of 10-undecenoic acid (UD) inner and UDPEG (PEG ester of UD) outer layers are resistant to aggregation after γ-irradiation. Various methods of coating were developed to prepare small (60-100nm) and ultrasmall (20-35nm) particles without size separation processes

  17. Charge injection across a polymeric heterojunction

    NARCIS (Netherlands)

    van Woudenbergh, T; Wildeman, J; Blom, PWM

    2005-01-01

    The charge injection across a polymeric heterojunction of a poly-p-phenylene vinylene derivative (injecting layer) and poly (9,9-dioctylfluorene) (accepting layer) is investigated. The electric field in the accepting layer is obtained after correcting the applied voltage for the voltage drop across

  18. The Morphology of Emulsion Polymerized Latex Particles

    Science.gov (United States)

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  19. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva

    2012-05-01

    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  20. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by usin...

  1. Dispersion analysis with inverse dielectric function modelling.

    Science.gov (United States)

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals. PMID:27294550

  2. Polariton spectrum in nonlinear dielectric medium

    CERN Document Server

    Dzedolik, Igor V

    2012-01-01

    We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the influence of dispersion of the third order dielectric susceptibility at intensity field in the medium. The modulation instability of new branch waves leading to appearance of cnoidal waves and solitons.

  3. Polariton waves in nonlinear dielectric medium

    CERN Document Server

    Dzedolik, I V

    2012-01-01

    The phonon-polariton spectrum in dielectric medium with the third order nonlinearity was theoretically obtained. Dependence of number of polariton spectrum branches on intensity of electromagnetic field was investigated. The appearance of new branches located in the polariton spectrum gap was caused by the influence of dispersion of the third order dielectric susceptibility at increment of the field intensity in the medium. The soliton and cnoidal wave solutions for the polariton excitations for these new spectrum branches were obtained. The all-optical logic gates OR and NOT are proposed as an example of the theory application.

  4. Polariton spectrum in nonlinear dielectric medium.

    Science.gov (United States)

    Dzedolik, Igor V; Karakchieva, Olga

    2013-05-01

    We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third-order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the influence of dispersion of the third-order dielectric susceptibility at the intensive electromagnetic field in the medium. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. These new nonlinear waves one can use for designing optical devices such as the nonlinear optical filter converter. PMID:23669776

  5. The Influence of Dielectric Decrement on Electrokinetics.

    Science.gov (United States)

    Zhao, Hui; Zhai, Shengjie

    2013-06-01

    We treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson-Nernst-Planck (PNP) equations accounting for the dielectric decrement. The dielectric decrement is determined by the excess ion polarization parameter α and when α = 0 the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials (ζ). Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer (lc ). For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large ζ, when α ≠ 0, the electro-osmotic mobility is found to be proportional to ζ/2, in contrast to ζ predicted by the standard PNP model. This is attributed to ion saturation at large ζ. In terms of the electrophoretic mobility Me , we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute Me . Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate ζ, the dielectric decrement decreases Me with an increasing α. At large ζ, it is well known that the surface conduction becomes significant and plays an important role in determining Me . It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, Me increases as α increases. Our predictions of the contrast dependence of the mobility on α at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large ζ the validity of the thin

  6. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  7. Dielectric Engineered Tunnel Field-Effect Transistor

    OpenAIRE

    Ilatikhameneh, Hesameddin; Tarek A. Ameen; Klimeck, Gerhard; Appenzeller, Joerg; Rahman, Rajib

    2015-01-01

    The dielectric engineered tunnel field-effect transistor (DE-TFET) as a high performance steep transistor is proposed. In this device, a combination of high-k and low-k dielectrics results in a high electric field at the tunnel junction. As a result a record ON-current of about 1000 uA/um and a subthreshold swing (SS) below 20mV/dec are predicted for WTe2 DE-TFET. The proposed TFET works based on a homojunction channel and electrically doped contacts both of which are immune to interface stat...

  8. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  9. Frequency-dependent dielectric response model for polyimide-poly(vinilydenefluoride) multilayered dielectrics

    Science.gov (United States)

    Di Lillo, Luigi; Bergamini, Andrea; Albino Carnelli, Dario; Ermanni, Paolo

    2012-07-01

    A physical model for the frequency-dependent dielectric response of multilayered structures is reported. Two frequency regimes defined by the relative permittivities and volume resistivities of the layers have been analytically identified and experimentally investigated on a structure consisting of polyimide and poly(vinilydenefluoride) layers. The relative permittivity follows an effective medium model at high frequency while showing a dependence on the volume resistivity at low frequency. In this regime, relative permittivities exceeding those expected from effective medium model are recorded. These findings provide insights into inhomogeneous dielectrics behavior for the development of high energy density dielectric films.

  10. Polymerization of epoxy resins studied by positron annihilation

    International Nuclear Information System (INIS)

    The polymerization process of epoxy resins (bisphenol-A dicyanate) was studied using positron-annihilation spectroscopy. The polymerization from monomer to polymer through a polymerization reaction was followed by positron-annihilation lifetime spectroscopy measurements. Resins kept at curing temperatures (120, 150 and 200 oC) changed form from of powder to a solid through a liquid. The size of the intermolecular spaces of the solid samples increased along with the progress of polymerization. (author)

  11. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  12. Experimental investigation of streamer affinity for dielectric surfaces

    OpenAIRE

    Trienekens, Dirk; Nijdam, Sander; Akkermans, G.; Plompen, I.; Christen, T.; Ebert, Ute

    2015-01-01

    We have experimentally investigated the affinity of streamers for dielectric surfaces using stroboscopic imaging and stereo photography. Affinity of streamers for dielectric surfaces was found to depend on a wide set of parameters, including pressure, voltage, dielectric material and discharge gap geometry. Our results show that higher relative permittivity, higher pressure, lower voltage, an d asymmetrical sample placement increase the chance of the streamer following the dielectric surface.

  13. Mechanism and Modeling for Polymerization of Acrylamide in Inverse Microemulsions

    Institute of Scientific and Technical Information of China (English)

    LiXiao; ZhangWeiying; YuanHuigen

    2004-01-01

    After discussion on the mechanism of polymer particle nucleation and growth in inverse microemulsion polymerization, a schematic physical model for polymerization of acrylamide in inverse microemulsions was presented. Furthermore, several key problems in mathematically modeling of inverse microemulsion polymerization were pointed out.

  14. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania;

    2007-01-01

    water soluble polymers, polyethylene glycol (PEG), and poly(acrylic acid) (PAA) with good mycoadhesive properties, are all prepared by living/controlled polymerization techniques. These techniques, atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP), ensure at the same time...

  15. Dielectric-Particle Injector For Processing Of Materials

    Science.gov (United States)

    Leung, Philip L.; Gabriel, Stephen B.

    1992-01-01

    Device generates electrically charged particles of solid, or droplets of liquid, fabricated from dielectric material and projects them electrostatically, possibly injecting them into electrostatic-levitation chamber for containerless processing. Dielectric-particle or -droplet injector charges dielectric particles or droplets on zinc plate with photo-electrons generated by ultraviolet illumination, then ejects charged particles or droplets electrostatically from plate.

  16. Analyzing the effect of gate dielectric on the leakage currents

    OpenAIRE

    Sakshi; Dhariwal Sandeep; Singh Amandeep

    2016-01-01

    An analytical threshold voltage model for MOSFETs has been developed using different gate dielectric oxides by using MATLAB software. This paper explains the dependency of threshold voltage on the dielectric material. The variation in the subthreshold currents with the change in the threshold voltage sue to the change of dielectric material has also been studied.

  17. A Route Towards Sustainability Through Engineered Polymeric Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reeja-Jayan, B; Kovacik, P; Yang, R; Sojoudi, H; Ugur, A; Kim, DH; Petruczok, CD; Wang, XX; Liu, AD; Gleason, KK

    2014-05-30

    Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniques engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.

  18. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  19. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  20. The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Cools, Pieter, E-mail: Pieter.cools@ugent.be; Van Vrekhem, Stijn; De Geyter, Nathalie; Morent, Rino

    2014-12-01

    Surface modification of polymers for biomedical applications is a thoroughly studied area. The goal of this paper is to show the use of atmospheric pressure plasma technology for the treatment of polyethylene shoulder implants. Atmospheric pressure plasma polymerization of methyl methacrylate will be performed on PE samples to increase the adhesion between the polymer and a PMMA bone cement. For the plasma polymerization, a dielectric barrier discharge is used, operating in a helium atmosphere at an ambient pressure. Parameters such as treatment time, monomer gas flow and discharge power are varied one at a time. Chemical and physical changes at the sample surface are studied making use of X-ray photoelectron spectroscopy and atomic force microscopy measurements. Coating thicknesses are determined by making use of optical reflectance spectroscopy. After characterization, the coated samples are incubated into a phosphate buffered saline solution for a minimum of one week at 37 °C, testing the coating stability when exposed to implant conditions. The results show that PMMA coatings can be deposited with a high degree of control in terms of chemical composition and layer thickness. - Highlights: • Medium pressure DBD successfully activates UHMWPE substrates. • Deposition of PMMA like film via atmospheric pressure DBD on activated UHMWPE • Fast deposition rate is confirmed via optical reflectance spectroscopy. • Relative stable coating found after tests in PBS solution and analysed via FT-IR.

  1. Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure

    International Nuclear Information System (INIS)

    Plasma polymerization of acrylic acid has become an interesting research subject, since these coatings are expected to be beneficial for biomedical applications due to their high surface density of carboxylic acid functional groups. However, the application of these monomers is counteracted by their low stability in humid environments, since a high stability is a required characteristic for almost any biological application. The present work investigates whether it is possible to obtain stable deposits with a high retention of carboxylic acid functions by performing plasma polymerization on polypropylene substrates with a dielectric barrier discharge operating at medium pressure. In order to obtain coatings with the desired properties, the plasma parameters need to be optimized. Therefore, in this paper, the influence of discharge power and location of the substrate in the discharge chamber is examined in detail. The properties of the deposited films are studied using contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. Moreover, to determine whether the obtained deposits are soluble in water, the coatings are once again analyzed after rinsing in water. This paper will clearly show that stable COOH-rich surfaces can be obtained at high discharge power and close to the monomer inlet, which might open perspectives for future biomedical applications.

  2. The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE

    International Nuclear Information System (INIS)

    Surface modification of polymers for biomedical applications is a thoroughly studied area. The goal of this paper is to show the use of atmospheric pressure plasma technology for the treatment of polyethylene shoulder implants. Atmospheric pressure plasma polymerization of methyl methacrylate will be performed on PE samples to increase the adhesion between the polymer and a PMMA bone cement. For the plasma polymerization, a dielectric barrier discharge is used, operating in a helium atmosphere at an ambient pressure. Parameters such as treatment time, monomer gas flow and discharge power are varied one at a time. Chemical and physical changes at the sample surface are studied making use of X-ray photoelectron spectroscopy and atomic force microscopy measurements. Coating thicknesses are determined by making use of optical reflectance spectroscopy. After characterization, the coated samples are incubated into a phosphate buffered saline solution for a minimum of one week at 37 °C, testing the coating stability when exposed to implant conditions. The results show that PMMA coatings can be deposited with a high degree of control in terms of chemical composition and layer thickness. - Highlights: • Medium pressure DBD successfully activates UHMWPE substrates. • Deposition of PMMA like film via atmospheric pressure DBD on activated UHMWPE • Fast deposition rate is confirmed via optical reflectance spectroscopy. • Relative stable coating found after tests in PBS solution and analysed via FT-IR

  3. Coupling of phonon-polariton modes at dielectric-dielectric interfaces by the ATR technique

    Science.gov (United States)

    Cocoletzi, G. H.; Olvera Hernández, J.; Martínez Montes, G.

    1989-08-01

    We report the calculated ATR dispersion relation of the interface phonon-polariton modes in the prism-dielectric-dielectric configuration. Comparison of electromagnetic dispersion relations (EMDR) with the ATR dispersion relations are presented for three different interfaces: I) GaAs/GaP, II) CdF2/CaF2 and III) CaF2/GaP in two propagation windows, using the Otto and Kretschmann geometries for p-polarized light. We have studied the three cases using angle and frequency scans for each window and geometry. The results indicate that it is possible to excite and detect phonon-polariton modes at the dielectric-dielectric interface.

  4. All-dielectric left-handed metamaterial based on dielectric resonator: design, simulation and experiment

    Institute of Scientific and Technical Information of China (English)

    Yang Yi-Ming; Wang Jia-Fu; Xia Song; Bai Peng; Li Zhe; Wang Jun; Xu Zhuo; Qu Shao-Bo

    2011-01-01

    Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.

  5. A self-similarity model for dielectric constant of porous ultra low-k dielectrics

    International Nuclear Information System (INIS)

    A self-similarity model applying the Sierpinski carpet approximation for the effective dielectric constant of nanoporous low-k dielectrics is proposed based on the statistically self-similar characteristics of pore size distributions in the medium and on the 'mixture rule' technique. The proposed model for the dielectric constant is expressed as a function of porosity (related to stage n of Sierpinski carpet) and the dielectric coefficient of components of the medium. The model predictions are compared with the existing experimental data and with other model predictions, and good agreement is obtained between the present model predictions and the experimental data. The proposed technique may have the potential of analysing other properties such as thermal conductivity and Young's modulus

  6. Dielectric Elastomer Based "Grippers" for Soft Robotics.

    Science.gov (United States)

    Shian, Samuel; Bertoldi, Katia; Clarke, David R

    2015-11-18

    The use of few stiff fibers to control the deformation of dielectric elastomer actuators, in particular to break the symmetry of equi-biaxial lateral strain in the absence of prestretch, is demonstrated. Actuators with patterned fibers are shown to evolve into unique shapes upon electrical actuation, enabling novel designs of gripping actuators for soft robotics. PMID:26418227

  7. Nonlinear polariton waves in dielectric medium

    CERN Document Server

    Dzedolik, Igor V

    2012-01-01

    We theoretically investigate the properties of phonon-polariton inhomogeneous harmonic wave, cnoidal wave and spatial soliton propagating in boundless dielectric medium and compute the shape of nonlinear vector polariton wave. We obtain analytically the envelopes of linearly polarized nonlinear polariton waves in the self-focusing and self-defocusing media.

  8. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    LIU YanJu; LIU LiWu; SUN ShouHua; ZHANG Zhen; LENG JinSong

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field, due to the electrostatic force between the two electrodes, the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value, the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases, which can be applied to design of actuators. Finally, this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  9. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field,due to the electrostatic force between the two electrodes,the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value,the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases,which can be applied to design of actuators. Finally,this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  10. Bandwidth Enhancement Techniques of Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    ARCHANA SHARMA

    2011-07-01

    Full Text Available The paper briefly reviews the historical background of dielectric resonator antenna and its bandwidth enhancement techniques. The main focus is on a compact DRA that can offer broad band operation. It has been illustrated that dual resonance and multi resonance operation can be much effective to give wide band characteristics of DRA.

  11. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  12. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  13. Chains of coupled square dielectric optical microcavities

    NARCIS (Netherlands)

    Hammer, Manfred

    2009-01-01

    Chains of coupled square dielectric cavities are investigated in a 2-D setting, by means of a quasi-analytical eigenmode expansion method. Resonant transfer of optical power can be achieved along quite arbitrary, moderately long rectangular paths (up to 9 coupled cavities are considered), even with

  14. Dielectric Properties of Water Under Extreme Conditions

    Science.gov (United States)

    Pan, Ding

    2014-03-01

    Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties has greatly limited our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. We also computed the electronic dielectric constant of water as a function of pressure and we found that, contrary to expectations based on widely used simple models, both the refractive index and the electronic band gap of water increase under pressure. The work is supported by DOE-CMCSN under Grant DE-SC0005180 and by the Sloan Foundation through the Deep Carbon Observatory.

  15. Casimir effect in dielectrics: Bulk energy contribution

    International Nuclear Information System (INIS)

    In a recent series of papers, Schwinger discussed a process that he called the dynamical Casimir effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger close-quote s result is that the change in Casimir energy is proportional to the change in the volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this paper, which is an expansion of an earlier Letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading order a bulk volume dependence. This is in full agreement with Schwinger close-quote s result, once the correct physical question is asked. We have nothing new to say about sonoluminescence itself. copyright 1997 The American Physical Society

  16. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah;

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide guideli...

  17. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.;

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improve...

  18. Optimization of Organotin Polymers for Dielectric Applications.

    Science.gov (United States)

    Treich, Gregory M; Nasreen, Shamima; Mannodi Kanakkithodi, Arun; Ma, Rui; Tefferi, Mattewos; Flynn, James; Cao, Yang; Ramprasad, Rampi; Sotzing, Gregory A

    2016-08-24

    Recently, there has been a growing interest in developing wide band gap dielectric materials as the next generation insulators for capacitors, photovoltaic devices, and transistors. Organotin polyesters have shown promise as high dielectric constant, low loss, and high band gap materials. Guided by first-principles calculations from density functional theory (DFT), in line with the emerging codesign concept, the polymer poly(dimethyltin 3,3-dimethylglutarate), p(DMTDMG), was identified as a promising candidate for dielectric applications. Blends and copolymers of poly(dimethyltin suberate), p(DMTSub), and p(DMTDMG) were compared using increasing amounts of p(DMTSub) from 10% to 50% to find a balance between electronic properties and film morphology. DFT calculations were used to gain further insight into the structural and electronic differences between p(DMTSub) and p(DMTDMG). Both blend and copolymer systems showed improved results over the homopolymers with the films having dielectric constants of 6.8 and 6.7 at 10 kHz with losses of 1% and 2% for the blend and copolymer systems, respectively. The energy density of the film measured as a D-E hysteresis loop was 6 J/cc for the copolymer, showing an improvement compared to 4 J/cc for the blend. This improvement is hypothesized to come from a more uniform distribution of diacid repeat units in the copolymer compared to the blend, leading toward improved film quality and subsequently higher energy density. PMID:27467895

  19. Development of dielectric window to conductor assembly

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, L.; Nuutinen, S.; Taehtinen, S. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1998-12-31

    The report summarises the work done by Association Euratom-Tekes in developing manufacturing procedures for vacuum tight ceramic to metal joints and in manufacturing full scale components for the ICRF vacuum window construction. The development started at VTT Manufacturing Technology in 1996 under the Task T238.2 and continued in 1997 under the Underlying Technology tasks. In the design of the components, the following issues were addressed and resolved: (1) The choice of dielectric material; The choice is made as the best compromise among nuclear, mechanical, and thermal properties, but in due consideration of material availability, fabrication issues and response to cyclic loads, (2) Layout and detailed design. The shape of the dielectric window is optimized to minimize electric fields in the dielectric materials; The optimised field distribution is computed in a 2D geometry; The design includes thermal calculation and the cooling layout and includes provision for remote handling replacement in one block, (3) Metal/dielectric joining. The joining technology is selected and justified. Joining tests on material selections to verify the applicability has been done, the validation of the design pre-prototype tests have been carried out selectively. The steps for the manufacture of these full scale components are described in the report with the appropriate concluding remarks and suggestions for the further actions. (orig.)

  20. Large scale processing of dielectric electroactive polymers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  1. Dielectric anomaly in coupled rotor systems

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically investigated. The energy spectra of coupled rotors as a function of dipolar interaction energy is analytically solved. The calculated dielectric susceptibilities of the system show the peculiar temperature dependence different from that of isolated rotors.

  2. Dielectric anomaly in coupled rotor systems

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically investigated. The energy spectra of coupled rotors as a function of dipolar interaction energy are analytically solved. The calculated dielectric susceptibilities of the system show a peculiar temperature dependence different from that of isolated rotors.

  3. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  4. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  5. Dielectric elastomers: generator mode fundamentals and applications

    Science.gov (United States)

    Pelrine, Ron; Kornbluh, Roy D.; Eckerle, Joseph; Jeuck, Philip; Oh, Seajin; Pei, Qibing; Stanford, Scott

    2001-07-01

    Dielectric elastomers have shown great promise as actuator materials. Their advantages in converting mechanical to electrical energy in a generator mode are less well known. If a low voltage charge is placed on a stretched elastomer prior to contraction, the contraction works against the electrostatic field pressure and raises the voltage of the charge, thus generating electrical energy. This paper discusses the fundamentals of dielectric elastomer generators, experimental verification of the phenomenon, practical issues, and potential applications. Acrylic elastomers have demonstrated an estimated 0.4 J/g specific energy density, greater than that of piezoelectric materials. Much higher energy densities, over 1 J/g, are predicted. Conversion efficiency can also be high, theoretically up to 80-90%; the paper discusses the operating conditions and materials required for high efficiency. Practical considerations may limit the specific outputs and efficiencies of dielectric elastomeric generators, tradeoffs between electronics and generator material performance are discussed. Lastly, the paper describes work on potential applications such as an ongoing effort to develop a boot generator based on dielectric elastomers, as well as other applications such as conventional power generators, backpack generators, and wave power applications.

  6. Photon Momentum in Linear Dielectric Media

    CERN Document Server

    Crenshaw, Michael E

    2015-01-01

    According to the scientific literature, the momentum of a photon in a simple linear dielectric is either $\\hbar\\omega/(nc)$ or $n\\hbar\\omega/c$ with a unit vector ${\\bf \\hat e}_k$ in the direction of propagation. These momentums are typically used to argue the century-old Abraham--Minkowski controversy in which the momentum density of the electromagnetic field in a dielectric is either the Abraham momentum density, ${\\bf g}_A={\\bf E}\\times{\\bf H}/c$, or the Minkowski momentum density, ${\\bf g}_M={\\bf D}\\times{\\bf B}/c$. The elementary optical excitations, photons, are typically known as polaritions in the particular case of light traveling in a dielectric medium. Applying the relativistic energy formula, we find that the total momentum that is attributable to a polariton in a dielectric is $\\hbar\\omega{\\bf \\hat e}_k/c$ corresponding to a total momentum density ${\\bf g}_T=n{\\bf E}\\times{\\bf B}/c$.

  7. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  8. Dielectric Signatures of Annealing in Glacier Ice

    Science.gov (United States)

    Grimm, R. E.; Stillman, D. E.; MacGregor, J. A.

    2015-12-01

    We analyzed the dielectric spectra of 49 firn and ice samples from ice sheets and glaciers to better understand how differing ice formation and evolution affect electrical properties. The dielectric relaxation of ice is well known and its characteristic frequency increases with the concentration of soluble impurities in the ice lattice. We found that meteoric ice and firn generally possess two such relaxations, indicating distinct crystal populations or zonation. Typically, one population is consistent with that of relatively pure ice, and the other is significantly more impure. However, high temperatures (e.g., temperate ice), long residence times (e.g., ancient ice from Mullins Glacier, Antarctica), or anomalously high impurity concentrations favor the development of a single relaxation. These relationships suggest that annealing causes two dielectrically distinct populations to merge into one population. The dielectric response of temperate ice samples indicates increasing purity with increasing depth, suggesting final rejection of impurities from the lattice. Separately, subglacially frozen samples from the Vostok 5G ice core possess a single relaxation whose variable characteristic frequency likely reflects the composition of the source water. Multi-frequency electrical measurements on cores and in the field can track annealing of glacier ice.

  9. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...

  10. Functionalized polymer networks: synthesis of microporous polymers by frontal polymerization

    Indian Academy of Sciences (India)

    N S Pujari; A R Vishwakarma; T S Pathak; A M Kotha; S Ponrathnam

    2004-12-01

    A series of glycidyl methacrylate (GMA)–ethylene dimethacrylate (EGDM) copolymers of varying compositions were synthesized by free-radically triggered thermal frontal polymerization (FP) as well as by suspension polymerization (SP) using azobisisobutyronitrile [AIBN] as initiator. The two sets of copolymers were characterized by IR spectroscopy and mercury intrusion porosimetry, for determination of epoxy number and specific surface area. Frontal polymerization was more efficient, yielding greater conversions at much shorter reaction times. The self-propagating frontal polymerization also generates microporous material with narrow pore size distribution. It yields higher internal pore volume and surface area than suspension polymerization, surface morphologies are, however, inferior.

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  13. Dielectric and photo-dielectric properties of TlGaSeS crystals

    Indian Academy of Sciences (India)

    A F Qasrawi; Samah F Abu-Zaid; Salam A Ghanameh; N M Gasanly

    2014-05-01

    The room temperature, dark and photo-dielectric properties of the novel crystals TlGaSeS are investigated in the frequency, intensity and biasing voltage having ranges of ~ 1–120 MHz, 14–40 klux and 0–1 V, respectively. The crystals are observed to exhibit a dark high frequency effective dielectric constant value of ∼ 10.65 × 103 with a quality factor of ∼ 8.84 × 104 at ∼ 120 MHz. The dielectric spectra showed sharp resonance–antiresonance peaks in the frequency range of ∼ 25–250 kHz. When photoexcited, pronounced increase in the dielectric constant and in the quality factor values with increasing illumination intensity are observed. Signal amplification up to ∼ 33% with improved signal quality up to ∼ 29% is attainable via photoexcitation. On the other hand, the illuminated capacitance–voltage characteristics of the crystals reflected a downward shift in the voltage biasing and in the built-in voltage of the device that is associated with increase in the uncompensated carrier density. The increase in the dielectric constant with increasing illumination intensity is ascribed to the decrease in the crystal's resistance as a result of increased free carrier density. The light sensitivity of the crystals, the improved dielectric properties and the lower biasing voltage obtained via photoexcitation and the well-enhanced signal quality factor of the crystals make them promising candidates for optical communication systems.

  14. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    A Tanwar; K K Gupta; P J Singh; Y K Vijay

    2006-04-01

    In quest of finding new substrate for printed wiring board (PWB) having low dielectric constant, we have made PSF/PMMA blends and evaluated the dielectric parameters at 8.92 GHz frequency and at 35°C temperature. Incorporating PMMA in PSF matrix results in reduced dielectric constant than that of pure PSF. The dielectric parameters of pure PMMA and PSF films of different thicknesses have also been obtained at microwave frequencies. We have used dielectric data at microwave frequencies as a tool to evaluate optical constants, absorption index `’ and refractive index `’. The blends of PSF/PMMA may be used as base materials for PWBs.

  15. Effective Dielectric Response of Composites with Graded Material

    Institute of Scientific and Technical Information of China (English)

    YANG Zi-Dong; WEI En-Bo; SONG Jin-Bao

    2004-01-01

    The effective dielectric response of linear composites containing graded material is investigated under an applied electric field Eo. For the cylindrical inclusion with gradient dielectric function, εi(r) = b+cr, randomly embedded in a host with dielectric constant εm, we have obtained the exact solution of local electric potential of the composite media regions, which obeys a linear constitutive relation D= εE, using hypergeometric function. In dilute limit, we have derived the effective dielectric response of the linear composite media. Furthermore, for larger volume fraction, the formulas of effective dielectric response of the graded composite media are given.

  16. Trends of microwave dielectric materials for antenna application

    Science.gov (United States)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-07-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ɛr), high quality factor (Q f ≥ 5000GH z) and good temperature coefficient of resonant frequency (τf). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  17. Comparison of an elemental and polymeric enteral diet in patients with normal gastrointestinal function.

    OpenAIRE

    Jones, B. J.; Lees, R; Andrews, J; Frost, P.; Silk, D. B.

    1983-01-01

    In a prospective controlled clinical trial, 70 patients with normal gastrointestinal function were randomised to receive either an elemental diet based on Vivonex HN or an isonitrogenous isocalorie polymeric diet based on Clinifeed 400, administered by continuous 24 hour nasogastric infusion. The two groups of patients were well matched for age, sex, diagnosis, prior starvation, duration of feeding, initial nutritional status, and metabolic status. Nitrogen losses were significantly less on t...

  18. Performance of Polymer Modified Mortar with Different Dosage of Polymeric Modifier

    OpenAIRE

    Ganesan Shankar; Othuman Mydin Md Azree; Sani Norazmawati Md.; Che Ani Adi Irfan

    2014-01-01

    Polymer modified mortar system is defined as hydraulic cement combined at the time of mixing with organic polymers that are dispersed or re-dispersed in water, with or without aggregates. The compressive strength and flexural strength of polymer modified mortar obtained at early age are low and it required prolong curing period for the strength enhancement. In order to enhance the mechanical properties of cementitious mixture as well as its durability, hybridization of polymeric modifiers are...

  19. Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric and morphological properties

    International Nuclear Information System (INIS)

    Epoxy resin nanocomposites, based on the diglycidyl ether of bisphenol-A (DGEBA) and tetraglycidyl diamino diphenyl methane (TGDDM), are prepared via in situ co-polymerization with 4,4'-diaminodiphenylsulfone (DDS) in the presence of octa-aminophenyl silsesquioxane (OAPS) at levels of up to 20 wt.% of the latter. The curing reaction involving epoxy, DDS and OAPS is investigated using Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the polyhedral oligomeric silsesquioxane (POSS) containing nanocomposites are higher than the corresponding neat epoxy systems at lower concentrations of POSS (≤3 wt.%). Thermogravimetric analysis indicates that the POSS-epoxy nanocomposites display high ceramic yields, suggesting improved flame retardancy. The increasing concentration of OAPS into epoxy-amine networks exhibits a decreasing trend in the values of dielectric constant compared with those values obtained from neat epoxy systems. The higher epoxy functionality present in TGDDM leads to nanocomposites which possess enhanced thermal stability and higher dielectric constants than the DGEBA-based nanocomposites. X-ray diffraction analysis reveals that the molecular level reinforcement of POSS cages occurs in both the cases of DGEBA- and TGDDM-based hybrid epoxy nanocomposites. Furthermore, homogeneous dispersion of POSS cages in the epoxy matrices is evidenced by scanning electron microscopy, which further confirms that the POSS molecule has become an integral part of the organic-inorganic inter-cross-linked network systems.

  20. Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Nagendiran, Shanmugam [Department of Chemical Engineering, Anna University, Chennai 600 025 (India); Alagar, Muthukaruppan, E-mail: mkalagar@yahoo.com [Department of Chemical Engineering, Anna University, Chennai 600 025 (India); Hamerton, Ian [Chemical Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2010-05-15

    Epoxy resin nanocomposites, based on the diglycidyl ether of bisphenol-A (DGEBA) and tetraglycidyl diamino diphenyl methane (TGDDM), are prepared via in situ co-polymerization with 4,4'-diaminodiphenylsulfone (DDS) in the presence of octa-aminophenyl silsesquioxane (OAPS) at levels of up to 20 wt.% of the latter. The curing reaction involving epoxy, DDS and OAPS is investigated using Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the polyhedral oligomeric silsesquioxane (POSS) containing nanocomposites are higher than the corresponding neat epoxy systems at lower concentrations of POSS ({<=}3 wt.%). Thermogravimetric analysis indicates that the POSS-epoxy nanocomposites display high ceramic yields, suggesting improved flame retardancy. The increasing concentration of OAPS into epoxy-amine networks exhibits a decreasing trend in the values of dielectric constant compared with those values obtained from neat epoxy systems. The higher epoxy functionality present in TGDDM leads to nanocomposites which possess enhanced thermal stability and higher dielectric constants than the DGEBA-based nanocomposites. X-ray diffraction analysis reveals that the molecular level reinforcement of POSS cages occurs in both the cases of DGEBA- and TGDDM-based hybrid epoxy nanocomposites. Furthermore, homogeneous dispersion of POSS cages in the epoxy matrices is evidenced by scanning electron microscopy, which further confirms that the POSS molecule has become an integral part of the organic-inorganic inter-cross-linked network systems.

  1. Dielectric property of NiTiO{sub 3} doped substituted ortho-chloropolyaniline composites

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, Mohana; Faisal, Muhammad [Department of Physics, PES Institute of Technology, BSC, Bangalore- 560100 (India); Roy, Aashish S. [Department of Materials Science, Gulbarga University, Gulbarga-585106, Karnataka (India); Khasim, Syed, E-mail: syed.pes@gmail.com [Department of Physics, PES Institute of Technology, BSC, Bangalore- 560100 (India); Department of Physics, University of Tabuk-71491 (Saudi Arabia); Sajjan, K. C. [Department of Physics, Veerashaiva College, Bellary - 583 104, Karnataka (India); Revanasiddappa, M. [Department of Chemistry, PES Institute of Technology, BSC, Bangalore - 560100 (India)

    2013-11-15

    Ortho-chloropolyaniline (OCP)-NiTiO{sub 3} composites have been synthesized via in-situ polymerization of ortho-chloroaniline with various weight percentages of NiTiO{sub 3.} Fourier Transform Infrared spectroscopic studies of Ortho-chloropolyaniline and its composites indicated the formation of composites as a result of Vander Waal's interaction between OCP and NiTiO{sub 3} particles. Surface morphology of OCP and OCP-NiTiO{sub 3} composites were studied using Scanning Electron Microscope (SEM). The SEM micrographs indicated a modified morphology after the composite formation. Dielectric properties and electric modulus of OCP and OCP-NiTiO{sub 3} composites have been investigated in the frequency range of 50 Hz – 5 MHz. It has been noticed that electrical resistance decreases with increase in weight percentage of NiTiO{sub 3} particles in polymer matrix as well as with applied frequency. The display of semicircular arcs in Cole-Cole plots indicates the formation of series resistor and capacitor in network causing a decrease in the relaxation time and as a result conductivity enhances in these composites. The facile and cost effective synthesis process and excellent dielectric and conductivity response of these materials makes them promising materials for practical applications.

  2. Non-destructive dielectric assessment of water permeation in composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Boinard, P.; Boinard, E.; Pethrick, R.A.; Banks, W.M.; Crane, R.L.

    2000-07-01

    Over the last ten years, the application of high frequency dielectric spectroscopy techniques for the assessment of composite structures has been investigated. Novel approaches to assess non-destructively the evolution during ageing of adhesively bonded carbon fiber reinforced plastic (CFRP) structures and bulk glass fiber reinforced plastic (GRP) structures are presented in this paper and the results are critically assessed. The applicability and limitations of dielectric measurements, in both frequency and time domain, to the monitoring of water ingress at 30 C and 60 C are examined. The correlation between gravimetric and high frequency dielectric spectroscopy data demonstrates the suitability of the techniques regarding the assessment of water uptake in composites structures and illustrates its potential as a non-destructive evaluation (NDE) technique. The dielectric time domain response (TDR) study of adhesively bonded structures indicates a new way to assess such structures. The approach for frequency domain analysis of bulk GRP using a coaxial probe technique indicates the potential portability of the technique for in-situ measurements.

  3. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  4. Aging Skin

    Science.gov (United States)

    ... email address Submit Home > Healthy Aging > Wellness Healthy Aging Aging skin More information on aging skin When it ... treated early. Return to top More information on Aging skin Read more from womenshealth.gov Varicose Veins ...

  5. Latent and delayed action polymerization systems.

    Science.gov (United States)

    Naumann, Stefan; Buchmeiser, Michael R

    2014-04-01

    Various approaches to latent polymerization processes are described. In order to highlight recent advances in this field, the discussion is subdivided into chapters dedicated to diverse classes of polymers, namely polyurethanes, polyamides, polyesters, polyacrylates, epoxy resins, and metathesis-derived polymers. The described latent initiating systems encompass metal-containing as well as purely organic compounds that are activated by external triggers such as light, heat, or mechanical force. Special emphasis is put on the different chemical venues that can be taken to achieve true latency, which include masked N-heterocyclic carbenes, latent metathesis catalysts, and photolatent radical initiators, among others. Scientific challenges and the advantageous application of latent polymerization processes are discussed. PMID:24519912

  6. Radiation-induced polymerization of hydrogen cyanide

    International Nuclear Information System (INIS)

    The chain reaction of HCN polymerization in a γ-radiation field does not occur at 77 K. When irradiated HCN is warmed up to ambient temperature, a polymer is formed. The heat of polymerization of HCN is 44.0±6.0 kJ/mol and the polymer yield reaches 2.5% for a dose of 725 kGy. Amorphous polymer products (with yields increasing up to 33.5%) and needle crystals (presumably HCN tetramer) are formed upon storage of irradiated HCN at room temperature. The polymer is stable below 700 K, has a conductivity of 3x10-5Ω-1cm-f1, and displays an EPR spectrum typical of polyconjugated systems. A radical mechanism of the formation of conjugated chain -C=N-C=N- is suggested. The tetramer is produced by a combination of aminocyanocarbene biradicals

  7. Therapeutic Strategies Based on Polymeric Microparticles

    Directory of Open Access Journals (Sweden)

    C. Vilos

    2012-01-01

    Full Text Available The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  8. Polymeric Piezoelectric Transducers for Hydrophone Applications

    Directory of Open Access Journals (Sweden)

    D. K. Kharat

    2007-01-01

    Full Text Available Conventional ceramic piezoelectric materials have been used in hydrophones for sonarapplications since 1940's. In the last few years since the discovery of polymeric piezoelectrichydrophones, the technology has matured, applications have emerged in extraordinary number ofcases such as underwater navigation, biomedical applications, biomimetics, etc. Hydrophones areused underwater at high hydrostatic pressures. In the presence of hydrostatic pressures, theanisotropic piezoelectric response of ceramic materials is such that it has poor hydrophone performancecharacteristics whereas polymeric piezoelectric materials show enough hydrostatic piezoelectriccoefficients. Moreover, piezoelectric polymers have low acoustic impedance, which is only 2-6 timethat of water, whereas in piezoelectric ceramics, it is typically 11-time greater than that of water. Aclose impedance match permits efficient transduction of acoustic signals in water and tissues. Newlydeveloped hydrostatic-mode polyvinylidene flouride (PVDF hydrophones use a pressure-releasesystem to achieve improved sensitivity. Recently, voided PVDF materials have been used for makinghydrophones having higher sensitivity and figure of merit than unvoided PVDF materials.

  9. Radiation polymerization of tetrafluoroethylene in freon-22

    International Nuclear Information System (INIS)

    The radiation-induced solution-polymerization of tetrafluoroethylene in Freon-22 has been investigated over a temperature range of - 62 degrees celcius to 0 degrees celcius. The rate of polymerization for the in-source process was found to be directly propertional to monomer concentration and an activation energy of only 7,66 kj/mole was calculated. The number-average molecular mass of the product PTFE ranged from 2X104 to 6X104 and was relatively independent of the usual reaction parameters. The rate of postpolymerization was also found to be directly proportional to monomer concentration. The postpolyerization process did not result in any enchancement of the initial PTFE molecular mass

  10. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere-Pearson ......We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere......-Pearson condition.Molecularly based models such as the neo-Hookean, Doi-Edwardsor Pom-Pom models, as well as the network model recently proposed byMarrucci, exhibit a pressure maximum when inflated. Membranesdescribed by these models develop local thinningwhich may lead to bursting in finite time.Chain branching...

  11. Polymeric membrane studied using slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hung, W.-S.; Lo, C.-H. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Cheng, M.-L. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Chen Hongmin; Liu Guang; Chakka, Lakshmi [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Sun Yiming [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Yu Changcheng [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Zhang Renwu [Physical Science Department, Southern Utah University, Cedar City, UT 84720 (United States); Jean, Y.C. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)], E-mail: jeany@umkc.edu

    2008-10-31

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes.

  12. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  13. Raman Laser Polymerization of C60 Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Ryoei Kato

    2012-01-01

    Full Text Available Photopolymerization of C60 nanowhiskers (C60NWs was investigated by using a Raman spectrometer in air at room temperature, since the polymerized C60NWs are expected to exhibit a high mechanical strength and a thermal stability. Short C60NWs with a mean length of 4.4 μm were synthesized by LLIP method (liquid-liquid interfacial precipitation method. The Ag(2 peak of C60NWs shifted to the lower wavenumbers with increasing the laser beam energy dose, and an energy dose more than about 1520 J/mm2 was found necessary to obtain the photopolymerized C60NWs. However, excessive energy doses at high-power densities increased the sample temperature and lead to the thermal decomposition of polymerized C60 molecules.

  14. Biologically produced acid precipitable polymeric lignin

    Science.gov (United States)

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  15. SMART POLYMERIC DRUG NANOCARRIERS FOR BIOMEDICAL APPLICATIONS

    OpenAIRE

    Mattu, Clara

    2012-01-01

    Biodegradable polymeric nanoparticles (nps) have shown to be promising forms for the delivery of a wide array of drug formulations, because of their ability to: (i) increase the drug half-life in the blood stream, (ii) enhance the solubility of poorly-water soluble drugs, which represents the main obstacle to their efficient administration (iii) improve drug bioavailability and (iv) reduce systemic toxicity. These properties are of particular interest when dealing with deseases like cancer, s...

  16. Suicidal nucleotide sequences for DNA polymerization.

    OpenAIRE

    Samadashwily, G M; Dayn, A; Mirkin, S M

    1993-01-01

    Studying the activity of T7 DNA polymerase (Sequenase) on open circular DNAs, we observed virtually complete termination within potential triplex-forming sequences. Mutations destroying the triplex potential of the sequences prevented termination, while compensatory mutations restoring triplex potential restored it. We hypothesize that strand displacement during DNA polymerization of double-helical templates brings three DNA strands (duplex DNA downstream of the polymerase plus a displaced ov...

  17. Mechanisms of triplex-caused polymerization arrest.

    OpenAIRE

    Krasilnikov, A S; Panyutin, I G; Samadashwily, G M; Cox, R.; Lazurkin, Y S; Mirkin, S M

    1997-01-01

    Pyrimidine/purine/purine triplexes are known to inhibit DNA polymerization. Here we have studied the mechanisms of this inhibition by comparing the efficiency of Vent DNA polymerase on triplex- and duplex-containing templates at different temperatures, Mg2+concentrations and time intervals with the thermal stability of the corresponding structures. Our results show that triplexes can only be by-passed at temperatures where thermal denaturation initiates, while duplexes, in contrast, are overc...

  18. Charpy Impact Test on Polymeric Molded Parts

    OpenAIRE

    Alexandra Raicu

    2012-01-01

    The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS) polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture ...

  19. Microencapsulation of Chlorocyclophosphazene by Interfacial Polymerization

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-qing; ZHAO Gui-zhe

    2007-01-01

    A polyurea-chlorocyclophosphazene microcapsule flame retardant is prepared by an interfacial polymerization process using 2, 4-toluene diisocyanate (TDI) and hexanediamine as the raw materials. TG tests show that the thermal decomposition temperature of chlorocyclophosphazene in microcapsule obviously rises. The flame retardancy of HDPE/chlorocyclophosphazene in microencapsules is better than that of HDPE/chlorocyclophosphazene. Mechanical properties of HDPE/chlorocyclophosphazene microencapsule turn out to be superior to those of HDPE/chlorocyclophosphazene.

  20. Mode-coupling theory and polynomial fitting functions: a complex-plane representation of dielectric data on polymers.

    Science.gov (United States)

    Eliasson, H

    2001-07-01

    Recently, it has been shown that the higher-order A3 and A4 scenarios of the mode-coupling theory (MCT) are in many cases capable of providing a good description of the complicated dielectric spectra often encountered in polymeric systems. In this paper, more data from dielectric measurements on poly(ethylene terephthalate), poly(vinylidene fluoride), Nylon-66, poly(chlorotrifluoroethylene) (PCTFE), and the polymer gel system poly(acrylonitrile)-ethylene carbonate-propylene carbonate are evaluated within the A4 scenario of the MCT. For all these systems, very good agreement is found between the theoretical and experimental spectra. The data analysis is demonstrated to be facilitated considerably by plotting the data in the complex plane whereby the elliptic functions derived from the theory for the frequency-dependent dielectric function can be replaced by polynomials. For PCTFE, the scaling behavior predicted by the MCT could be verified and the temperature dependences of the extracted scaling parameters were found to be consistent with theory.

  1. Effect of Zn(NO3)2 filler on the dielectric permittivity and electrical modulus of PMMA

    Indian Academy of Sciences (India)

    P Maji; P P Pande; R B Choudhary

    2015-04-01

    Composite films consisting of polymethyl methacrylate (PMMA) and Zn(NO3)2 were developed in the laboratory through the sol casting technique. These films were characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The morphological analysis was carried out by scanning electron microscopy (SEM). These analyses revealed the homogeneous and semi-crystalline behaviour of the films. The dielectric response measurement was conducted in the frequency range from 100 Hz to 5 MHz. The real and imaginary part of the dielectric permittivity decreased with the increase in frequency but increased with temperature. The electrical conductivity measurement showed a plateau-like behaviour in the low-frequency region and dispersion in the high-frequency region. The frequency-dependent electrical modulus obeyed Arrhenius law, and it showed an increase in the dipolar interaction with the temperature due to thermal activation. The activation energy of the film specimen was estimated to be about 0.448 eV. Thus the polymeric composite PMMA–Zn(NO3)2 is one of the appropriate candidate for numerous technical applications such as supercapacitors, high-speed computers and gate dielectric material for organic FETs.

  2. Homogeneous catalysts for stereoregular olefin polymerization

    Science.gov (United States)

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  3. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  4. Immobilization of Polymeric Luminophor on Nanoparticles Surface.

    Science.gov (United States)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-12-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor. PMID:27090657

  5. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  6. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  7. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    Science.gov (United States)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  8. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  9. Microscopic dielectric permittivities of graphene nanoribbons and graphene

    Science.gov (United States)

    Fang, Jingtian; Vandenberghe, William G.; Fischetti, Massimo V.

    2016-07-01

    We derive a microscopic Poisson equation using the density-density response function. This equation is valid for any realistic potential perturbation and permits the study of dielectric response in nanostructures, especially in one-dimensional nanostructures and quantum dots. We apply this equation to simulate a nanoscale parallel-plate capacitor (nanocapacitor) with graphene as dielectric and two nanocapacitors with a graphene nanoribbon (GNR) as dielectric. The density-density response function is calculated using first-order perturbation theory and empirical pseudopotentials. From the microscopic electric field of the graphene nanocapacitor, we calculate the out-of-plane microscopic dielectric constant of graphene and from the electric field of GNR nanocapacitors, we calculate the full microscopic dielectric tensor of several GNRs with different widths. We find that the out-of-plane microscopic dielectric constants of GNRs and graphene do not depend on their energy band gap. We also study the effect of a surrounding dielectric on the dielectric permittivity of graphene and we conclude that the surrounding dielectric barely affects the dielectric permittivity of graphene.

  10. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    D Ravinder; K Vijaya Kumar

    2001-10-01

    Dielectric properties such as dielectric constant (') and dielectric loss tangent (tan ⋹ ) of mixed Mn–Zn–Er ferrites having the compositional formula Mn0.58Zn0.37Fe2.05–ErO4 (where = 0.2, 0.4, 0.6, 0.8 and 1.0) were measured at room temperature in the frequency range 1–13 MHz using a HP 4192A impedance analyser. Plots of dielectric constant (') vs frequency show a normal dielectric behaviour of spinel ferrites. The frequency dependence of dielectric loss tangent (tan ) was found to be abnormal, giving a peak at certain frequency for all mixed Mn–Zn–Er ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric constant and dielectric loss tangent. Plots of dielectric constant vs temperature have shown a transition near the Curie temperature for all the samples of Mn–Zn–Er ferrites. However, Mn0.58Zn0.37Er1.0Fe1.05O4 does not show a transition. On the basis of these results an explanation for the dielectric mechanism in Mn–Zn–Er ferrites is suggested.

  11. Dielectric and electrical transport properties of biopolymers

    Science.gov (United States)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2007-02-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows electrical measurements to be taken easily under an applied DC electric field and at various temperatures. The dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], also known as amorphous polycarbonate (APC).

  12. Spacecraft dielectric material properties and spacecraft charging

    Science.gov (United States)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  13. Bistable dielectric elastomer minimum energy structures

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; McCoul, David; Xing, Zhiguang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    Dielectric elastomer minimum energy structures (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as soft actuators. If the task only needs binary action, the bistable structure will be an efficient solution and can save energy because it requires only a very short duration of voltage to switch its state. To obtain bistable DEMES, a method to realize the two stable states of traditional DEMES is provided in this paper. Based on this, a type of symmetrical bistable DEMES is proposed, and the required actuation pulse duration is shorter than 0.1 s. When a suitable mass is attached to end of the DEMES, or two layers of dielectric elastomer are affixed to both sides of the primary frame, the DEMES can realize two stable states and can be switched by a suitable pulse duration. To calculate the required minimum pulse duration, a mathematical model is provided and validated by experiment.

  14. Rational design of all organic polymer dielectrics

    Science.gov (United States)

    Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.; Ma, Rui; Zhu, Qiang; Sinkovits, Daniel W.; Pilania, Ghanshyam; Oganov, Artem R.; Kumar, Sanat; Sotzing, Gregory A.; Boggs, Steven A.; Ramprasad, Rampi

    2014-09-01

    To date, trial and error strategies guided by intuition have dominated the identification of materials suitable for a specific application. We are entering a data-rich, modelling-driven era where such Edisonian approaches are gradually being replaced by rational strategies, which couple predictions from advanced computational screening with targeted experimental synthesis and validation. Here, consistent with this emerging paradigm, we propose a strategy of hierarchical modelling with successive downselection stages to accelerate the identification of polymer dielectrics that have the potential to surpass ‘standard’ materials for a given application. Successful synthesis and testing of some of the most promising identified polymers and the measured attractive dielectric properties (which are in quantitative agreement with predictions) strongly supports the proposed approach to material selection.

  15. Dielectric square resonator investigated with microwave experiments.

    Science.gov (United States)

    Bittner, S; Bogomolny, E; Dietz, B; Miski-Oglu, M; Richter, A

    2014-11-01

    We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.

  16. Dielectric transition of polyacrylonitrile derived carbon nanofibers

    Science.gov (United States)

    Li, Jiangling; Su, Shi; Zhou, Lei; Abbot, Andrew M.; Ye, Haitao

    2014-09-01

    The dielectric behavior of polyacrylonitrile derived carbon nanofibers formed at different carbonization temperatures was investigated using impedance spectroscopy. The impedance data are presented in the form of Cole-Cole plots and four equivalent electrical circuits are derived. It is found that by increasing carbonization temperature from 500 to 800 °C, a strong capacitive element in the parallel equivalent circuit is transformed into an inductive element, while the contact resistance and parallel resistance are significantly decreased. Along with the morphological and chemical structural evolution, respectively witnessed by scanning electron microscopy and Raman spectroscopy, the dielectric transition deduced from the transformation of electrical circuits can be correlated to the proposed microstructural changes of polyacrylonitrile derived carbon nanofibers and the interaction/interference among them.

  17. Elements of a dielectric laser accelerator

    CERN Document Server

    McNeur, Joshua; Schönenberger, Norbert; Leedle, Kenneth J; Deng, Huiyang; Ceballos, Andrew; Hoogland, Heinar; Ruehl, Axel; Hartl, Ingmar; Solgaard, Olav; Harris, James S; Byer, Robert L; Hommelhoff, Peter

    2016-01-01

    The widespread use of high energy particle beams in basic research, medicine and coherent X-ray generation coupled with the large size of modern radio frequency (RF) accelerator devices and facilities has motivated a strong need for alternative accelerators operating in regimes outside of RF. Working at optical frequencies, dielectric laser accelerators (DLAs) - transparent laser-driven nanoscale dielectric structures whose near fields can synchronously accelerate charged particles - have demonstrated high-gradient acceleration with a variety of laser wavelengths, materials, and electron beam parameters, potentially enabling miniaturized accelerators and table-top coherent x-ray sources. To realize a useful (i.e. scalable) DLA, crucial developments have remained: concatenation of components including sustained phase synchronicity to reach arbitrary final energies as well as deflection and focusing elements to keep the beam well collimated along the design axis. Here, all of these elements are demonstrated wit...

  18. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue.......Moreover, a series of elastomers with the same mass ratio (7:3) between long and short PDMS chains were made at different humidity (90%, 70%, 50%, 30%, 10%) at 23oC. The dielectric and mechincal properties of the resulting elastomers were shown to depend strongly on the atmospheric humidity level.In addition......, the top and bottom surfaces of the elastomer (7:3) prepared at 23oC and 50% humidity were tested by water contact angle and optical microscope. The results show the bimodal condensation elastomer possesses structural heterogeneity, which may lead to favourable properties for DE applications....

  19. Microfabrication of stacked dielectric elastomer actuator fibers

    Science.gov (United States)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  20. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    Science.gov (United States)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  1. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  2. Measuring the dielectric properties of soil-organic mixtures using coaxial impedance dielectric reflectometry

    Science.gov (United States)

    Francisca, Franco M.; Montoro, Marcos A.

    2012-05-01

    Contamination of soils with non-aqueous phase liquids (NAPLs) is frequently produced by accidental spills and storage tanks or pipes leakage. The main goals dealing with soil and groundwater contamination include determining the extension of the affected zone, monitoring the contaminant plume and quantifying the pollution degree. The objective of this work is to evaluate the potential of dielectric permittivity measurements to detect the presence of NAPLs in sands. Tested samples were fine, medium, coarse and silty sand with different volumetric contents of water and paraffin oil. The dielectric permittivity was measured by means of a Coaxial Impedance Dielectric Reflectometry method in specimens with either known fluid content or at different stages during immiscible displacement tests. A simplified method was developed to quantify the amount of oil from dielectric permittivity measurements and effective mixture media models. Obtained results showed that groundwater contamination with NAPL and the monitoring of immiscible fluid displacement in saturated porous media can be clearly identified from dielectric measurements. Finally, very accurate results can be obtained when computing the contamination degree with the proposed method in comparison with the real volumetric content of NAPL (r2 > 90%).

  3. Synthesis and Characterization of Star-branched Polyisobutylene by Combination of Anionic Polymerization and Cationic Polymerization

    Institute of Scientific and Technical Information of China (English)

    Hai Feng LIU; Yang LI; Yu Rong WANG; Yan REN; Zhan Xia LU; Jin Bo ZHAO

    2006-01-01

    A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclohexane as solvent by living anionic polymerization.Using this polymer as grafting agent, a novel star-shaped branched polymer, containing several polyisobutylene, was prepared via cationic polymerization.The star PS-b-PI and star-branched polyisobutylene were characterized by GPC, HNMR and FT-IR, and the effects of different adding order and the amount of grafting agent were investigated.

  4. A MEMS Dielectric Affinity Glucose Biosensor

    OpenAIRE

    Xian HUANG; Li, SiQi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-01-01

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concent...

  5. Highly tunable elastic dielectric metasurface lenses

    OpenAIRE

    Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Horie, Yu; Faraon, Andrei

    2016-01-01

    Dielectric metasurfaces are two-dimensional structures composed of nano-scatterers that manipulate phase and polarization of optical waves with subwavelength spatial resolution, enabling ultra-thin components for free-space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have a fixed functionality. Here we demonstrate highly tunable metasurface devi...

  6. Extremely Thin Dielectric Metasurface for Carpet Cloaking

    OpenAIRE

    Hsu, LiYi; Lepetit, Thomas; Kanté, Boubacar

    2015-01-01

    We demonstrate a novel and simple approach to cloaking a scatterer on a ground plane. We use an extremely thin dielectric metasurface ({\\lambda}/12) to reshape the wavefronts distorted by a scatterer in order to mimic the reflection pattern of a flat ground plane. To achieve such carpet cloaking, the reflection angle has to be equal to the incident angle everywhere on the scatterer. We use a graded metasurface and calculate the required phase gradient to achieve cloaking. Our metasurface loca...

  7. Dielectric elastomer generators that stack up

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  8. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  9. Partial discharges and bulk dielectric field enhancement

    OpenAIRE

    McAllister, Iain Wilson; Johansson, Torben

    2000-01-01

    A consequence of partial discharge activity within a gaseous void is the production of a field enhancement in the solid dielectric in the proximity of the void. This situation arises due to the charge created by the partial discharges accumulating at the void wall. The influence of the spatial extent of this wall charge upon the maximum field strength in the solid is examined and discussed.

  10. Photonic spin filter with dielectric metasurfaces.

    Science.gov (United States)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2015-12-28

    We propose a photonic spin filter whose structure is similar to that of conventional spatial filter, but the two plano-convex lenses are replaced by Pancharatnam-Berry phase ones. The dielectric metasurface with high transmission and conversion efficiency is designed to work as Pancharatnam-Berry phase lens. The photonic spin filter can sort desired spin photons from the input beam with mixed spin states, and thereby facilitate possible applications in spin-based photonics. PMID:26831976

  11. Magnetic Resonance Imaging with a Dielectric Lens

    OpenAIRE

    Vazquez, F.; Marrufo, O.; MARTIN,R; Rodriguez, A. O.

    2009-01-01

    Recently, metamaterials have been introduced to improve the signal-to-noise ratio (SNR) of magnetic resonance images with very promising results. However, the use polymers in the generation of high quality images in magnetic resonance imaging has not been fully been investigated. These investigations explored the use of a dielectric periodical array as a lens to improve the image SNR generated with single surface coils. Commercial polycarbonate glazing sheets were used together with a circula...

  12. Radiation-induced charge dynamics in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, K.

    1982-12-01

    A general physical model is presented for the analysis of charge dynamics in dielectrics exposed to ionizing radiation. Discrete trap levels, recombination between trapped and free carriers, trapping and detrapping events, and the mobility of positive and negative charge carriers are included in the theory. This model is applied to electron beam irradiated Teflon FEP foils and results for various boundary conditions are compared with experimental data from a split Faraday cup arrangement.

  13. Dielectric elastomer generators that stack up

    Science.gov (United States)

    McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.

    2015-01-01

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  14. 油浸绝缘纸在不均匀热老化下的试验研究%Experimental Study on Oil-Impregnated PaperWith Non-Uniform Thermal Aging

    Institute of Scientific and Technical Information of China (English)

    吴广宁; 姚梦熙; 辛东立; 高波

    2015-01-01

    在实际运行的油浸式电力变压器中,绕组和油温之间的温度梯度致使油浸绝缘纸不均匀热老化,为了模拟油浸绝缘纸的不均匀热老化过程,在实验室中建立了油浸绝缘纸不均匀热老化实验平台,通过测定样品的聚合度变化规律和频域介电响应得出如下结论:贴近高温热源、处于一定温度梯度下的受热对象聚合度降低速率最大,复介电常数实部和虚部值也最大;在同一温度等级下,一定温度梯度中的受热对象热老化更迅速。此外,利用油纸绝缘介电模型计算得出了由不同位置的3张油浸绝缘纸叠加而成的不均匀热老化油浸绝缘纸模型的频域介电谱。计算值与测量值基本吻合,验证了油纸绝缘介电模型的有效性。%In actual operation of oil-immersed power transformer,temperature gradient between windingsand oil causes non-uniform aging ofinsulatingpaper.In order to simulate non-uniform thermal aging process of oil-immersed paper,a test platformisestablished in laboratory,coming to conclusions by measuring polymerizationdegree and frequency domainresponse of samples:heated object close to high temperature heat source and under certain temperature gradient has maximum real and imaginary partsof complex dielectric constant than others and its polymerization degree reduces most quickly; under the same temperature grade, heated objects in certain temperature gradientarethermally agedmore quickly than other objects.Besides,this article also obtains frequency domain dielectric spectrum of non-uniform thermal aging oil-impregnated insulation paper modelwith three oil-impregnated insulation papers in different positions using oil-paper dielectric model.Calculated and measured values are basically consistent,showingeffectiveness of oil-paper dielectric model and providingempirical data for determination of actual transformer oil-impregnated paper spectrum.

  15. Electrical insulating materials - Determination of the effects of ionizing radiation - Part 5: Procedures for assessment of ageing in service

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2003-01-01

    Covers ageing assessment methods which can be applied to components based on polymeric materials (for example, cable insulation and jackets, elastomeric seals, polymeric coatings, gaiters) which are used in environments where they are exposed to radiation. The object of this part of IEC 60544 is to provide guidelines on the assessment of ageing in service. The approaches discussed cover ageing assessment programmes based on condition monitoring (CM), the use of equipment deposits in severe environments and sampling of real-time aged components.

  16. Casimir effect in dielectrics Surface area contribution

    CERN Document Server

    Molina-Paris, C; Molina-Paris, Carmen; Visser, Matt

    1997-01-01

    In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which the Casimir energy in dielectric media is interpreted as the change in the total zero point energy of the electromagnetic vacuum summed over all states. Extending results presented in previous papers [hep-th/9609195; hep-th/9702007] we approximate the sum over states by an integral over the density of states including finite volume corrections. For an arbitrarily-shaped finite dielectric, the first finite-volume correction to the density of states is shown to be proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic calculations. As a concrete example we discuss Schwinger's suggestion that the Casimir effect might be the underlying ph...

  17. A spherical cavity model for quadrupolar dielectrics.

    Science.gov (United States)

    Dimitrova, Iglika M; Slavchov, Radomir I; Ivanov, Tzanko; Mosbach, Sebastian

    2016-03-21

    The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ε and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures. PMID:27004882

  18. Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics

    Science.gov (United States)

    Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert

    2010-03-01

    Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.

  19. Dielectric relaxation spectroscopy of phlogopite mica

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjeet; Singh, Mohan; Singh, Anupinder [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Awasthi, A.M. [Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, Indore 452001 (India); Singh, Lakhwant, E-mail: lakhwant@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India)

    2012-11-15

    An in-depth investigation of the dielectric characteristics of annealed phlogopite mica has been conducted in the frequency range 0.1 Hz-10 MHz and over the temperature range 653-873 K through the framework of dielectric permittivity, electric modulus and conductivity formalisms. These formalisms show qualitative similarities in relaxation processes. The frequency dependence of the M Double-Prime and dc conductivity is found to obey an Arrhenius law and the activation energy of the phlogopite mica calculated both from dc conductivity and the modulus spectrum is similar, indicating that same type of charge carriers are involved in the relaxation phenomena. The electric modulus and conductivity data have been fitted with the Havriliak-Negami function. Scaling of M Prime , M Double-Prime , ac conductivity has also been performed in order to obtain insight into the relaxation mechanisms. The scaling behaviour indicates that the relaxation describes the same mechanism at different temperatures. The relaxation mechanism was also examined using the Cole-Cole approach. The study elaborates that the investigation regarding the temperature and frequency dependence of dielectric relaxation in the phlogopite mica will be helpful for various cutting edge applications of this material in electrical engineering.

  20. Microwave dielectric properties of horticultural peat products

    Directory of Open Access Journals (Sweden)

    G. Ayalew

    2007-04-01

    Full Text Available The microwave dielectric properties of horticultural peat and compost peat were measured with a HP85107C network analyser in conjunction with a HP85070B open-ended coaxial dielectric probe for the frequency range 0.5–20 GHz. Loose samples had volumetric water contents ranging from 0.11 to 0.24 Mg m-3. For analysis, samples were compressed to 1.0× (no compression, 1.2×, 1.5× and 2.0× original bulk density, giving volumetric water contents ranging from 0.11 to 0.48 Mg m-3. The raw relative permittivity data exhibited a high degree of variability, but rank-based removal of outlier measurements helped to improve their coherence with volumetric water content. The difference between horticultural peat and compost peat was insignificant in terms of both the dielectric constant and the loss factor. The results suggest that relative permittivity data after the removal of outliers can be of sufficiently high quality for sensing applications in the horticultural peat industry such as dedicated water content monitoring, nutrient management, and foreign body detection systems for health and safety purposes, given the low-precision requirements that are appropriate for horticultural and compost peat as high-volume, low-value and non-critical commodities.

  1. Methods for probing charging properties of polymeric materials using XPS

    Energy Technology Data Exchange (ETDEWEB)

    Sezen, Hikmet; Ertas, Gulay [Department of Chemistry, and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.t [Department of Chemistry, and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2010-05-15

    Various thin polystyrene, PS, and poly(methyl methacrylate), PMMA and PS + PMMA blend films have been examined using the technique of recording X-ray photoelectron spectrum while the sample is subjected to +-10 V d.c. bias, and three different forms of (square-wave (SQW), sinusoidal (SIN) and triangular (TRG)), a.c. pulses. All films exhibit charging shifts as observed in the position of the corresponding C1s peak under d.c. bias. The a.c. pulses convert the single C1s peak to twinned peaks in the case of the square-wave form, and distort severely in the cases of the SIN, and TRG forms, and all three of them exhibit strong frequency dependence. In order to mimic and better understand the behavior of these polymeric materials, an artificial dielectric system consisting of a clean Si-wafer coupled to an external 1 MOMEGA resistor and 56 nF capacitor is created, and its response to different forms of voltage stimuli, is examined in detail. A simple electrical circuit model is also developed treating the system as consisting of a parallel resistor and a series capacitor. With the help of the model, the response of the artificial system is successfully calculated as judged by comparison with the experimental data. Using one high frequency SQW measurements, the off-set in the charging shift due to the extra low-energy neutralizing electrons is estimated. After correcting the corresponding off-set shifts, the XPS spectra of the three different PS films, one PMMA, and one PS + PMMA blend film are re-examined. As a result of these detailed analysis, there emerges a clear relationship between the thicknesses of the PS films with their charging abilities. In the blend film, PS and PMMA domains are electrically separated, and exhibit different charging shifts, however, the presence of one is felt by the other. Hence, the PS component shifts are larger in the blend, due to the presence of PMMA domains, which has intrinsically a larger R{sub eff}, and conversely the PMMA

  2. Methods for probing charging properties of polymeric materials using XPS

    International Nuclear Information System (INIS)

    Various thin polystyrene, PS, and poly(methyl methacrylate), PMMA and PS + PMMA blend films have been examined using the technique of recording X-ray photoelectron spectrum while the sample is subjected to ±10 V d.c. bias, and three different forms of (square-wave (SQW), sinusoidal (SIN) and triangular (TRG)), a.c. pulses. All films exhibit charging shifts as observed in the position of the corresponding C1s peak under d.c. bias. The a.c. pulses convert the single C1s peak to twinned peaks in the case of the square-wave form, and distort severely in the cases of the SIN, and TRG forms, and all three of them exhibit strong frequency dependence. In order to mimic and better understand the behavior of these polymeric materials, an artificial dielectric system consisting of a clean Si-wafer coupled to an external 1 MΩ resistor and 56 nF capacitor is created, and its response to different forms of voltage stimuli, is examined in detail. A simple electrical circuit model is also developed treating the system as consisting of a parallel resistor and a series capacitor. With the help of the model, the response of the artificial system is successfully calculated as judged by comparison with the experimental data. Using one high frequency SQW measurements, the off-set in the charging shift due to the extra low-energy neutralizing electrons is estimated. After correcting the corresponding off-set shifts, the XPS spectra of the three different PS films, one PMMA, and one PS + PMMA blend film are re-examined. As a result of these detailed analysis, there emerges a clear relationship between the thicknesses of the PS films with their charging abilities. In the blend film, PS and PMMA domains are electrically separated, and exhibit different charging shifts, however, the presence of one is felt by the other. Hence, the PS component shifts are larger in the blend, due to the presence of PMMA domains, which has intrinsically a larger Reff, and conversely the PMMA component shifts

  3. A Comparative Study on AC Conductivity and Dielectric Behavior of Multiwalled Carbon Nanotubes and Polyaniline Coated Multiwalled Carbon Nanotubes Filled High Density Polyethylene-Carbon Black Nanocomposites

    International Nuclear Information System (INIS)

    This paper presents an experimental investigation on AC conductivity and dielectric behavior of carbon black reinforced high density polyethylene (HDPE-CB) and HDPE-CB filled with multiwalled carbon nanotubes (MWNTs-CB-HDPE) and Polyaniline (PAni) coated MWNTs-CB-HDPE nanocomposites. The electrical properties such as dielectric constant (ε'), dissipation factor (tan δ) and AC conductivity (σac) of nanocomposites have been measured with reference to the weight fraction (0.5 and 1 wt% MWNTs), frequency (75 KHz-30 MHz), temperature (25-90 deg. C) and sea water ageing. The experimental results showed that the increased AC conductivity and dielectric constant of the nanocomposites were influenced by PAni coated MWNTs in HDPE-CB nanocomposites. The value of dielectric constant and tan δ decreased with increasing frequency. Further more, above 5 MHz the AC conductivity increases drastically whereas significant effect on tan δ was observed in less than 1 MHz.

  4. Preliminary investigation of polystyrene/MoS2-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics

    Science.gov (United States)

    Landi, Giovanni; Altavilla, Claudia; Ciambelli, Paolo; Neitzert, Heinrich C.; Iannace, Salvatore; Sorrentino, Andrea

    2015-12-01

    Insulating materials play a vital role in the design and performance of electrical systems for both steady and transient state conditions. Among the other properties, also in this field, polymer nanocomposites promise to offer exciting improvements. Many studies in the last decade has witnessed significant developments in the area of nano-dielectric materials and significant effects of nano-scale fillers on electric, thermal and mechanical properties of polymeric materials have been observed. However, the developments of new and advanced materials to be used the miniaturization of electronic devices fabrication require extensive studies on electrical insulation characteristics of these materials before they can be used in commercial systems. In this work, Polystyrene (PS) composites were prepared by the blend solution method using MoS2@Oleylamine nanosheets as filler. The dielectric properties of the resulting comoposite have been investigated at 300K and in the frequency range between 1000 Hz and 1 MHz. The addition of the MoS2@Oleylamine nanosheets leads to a decreasing of the relative dielectric constant and of the electrical conductivity measured in the voltage range between ±500V. Thanks to a possibility to tune the electrical permittivity with the control of MoS2 concentration, these materials could be used as a low-dielectric material in the microelectronics applications.

  5. Preliminary investigation of polystyrene/MoS{sub 2}-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Giovanni, E-mail: glandi@unisa.it [Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P. Enrico Fermi 1, 80055 Portici (Italy); Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy); Altavilla, Claudia; Iannace, Salvatore; Sorrentino, Andrea, E-mail: andrea.sorrentino@cnr.it [Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P. Enrico Fermi 1, 80055 Portici (Italy); Ciambelli, Paolo [Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy); Centre NANO-MATES, University of Salerno, Fisciano, Via G. Paolo II 132, 84084 Fisciano (Italy); Neitzert, Heinrich C. [Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    Insulating materials play a vital role in the design and performance of electrical systems for both steady and transient state conditions. Among the other properties, also in this field, polymer nanocomposites promise to offer exciting improvements. Many studies in the last decade has witnessed significant developments in the area of nano-dielectric materials and significant effects of nano-scale fillers on electric, thermal and mechanical properties of polymeric materials have been observed. However, the developments of new and advanced materials to be used the miniaturization of electronic devices fabrication require extensive studies on electrical insulation characteristics of these materials before they can be used in commercial systems. In this work, Polystyrene (PS) composites were prepared by the blend solution method using MoS{sub 2}@Oleylamine nanosheets as filler. The dielectric properties of the resulting comoposite have been investigated at 300K and in the frequency range between 1000 Hz and 1 MHz. The addition of the MoS{sub 2}@Oleylamine nanosheets leads to a decreasing of the relative dielectric constant and of the electrical conductivity measured in the voltage range between ±500V. Thanks to a possibility to tune the electrical permittivity with the control of MoS{sub 2} concentration, these materials could be used as a low-dielectric material in the microelectronics applications.

  6. Free volume study on the origin of dielectric constant in a fluorine-containing polyimide blend: poly(vinylidene fluoride-co-hexafluoro propylene)/poly(ether imide).

    Science.gov (United States)

    Ramani, R; Das, V; Singh, A; Ramachandran, R; Amarendra, G; Alam, S

    2014-10-23

    The dielectric constant of fluorinated polymides, their blends, and composites is known to decrease with the increase in free volume due to a decrease in the number of polarizable groups per unit volume. Herein, we report an interesting finding on the origin of dielectric constant in a polymer blend prepared using a fluorine-containing polymer and a polyimide probed in terms of its available free volume, which is distinct from the generally observed behavior in fluorinated polyimides. For this study, a blend of poly(vinylidene fluoride-co-hexafluoro propylene) and poly(ether imide) was chosen and the interaction between them was studied using FTIR, XRD, TGA, and SEM. The blend was investigated by positron annihilation lifetime spectroscopy (PALS), Doppler broadening (DB), and dielectric analysis (DEA). With the increase in the free volume content in the blend, surprisingly, the dielectric constant also increases and is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field. The results obtained would pave the way for more effective design of polymeric electrical charge storage devices.

  7. Theory aided design and analysis of dielectric and semiconductor components for organic field-effect transistors

    Science.gov (United States)

    Dibenedetto, Sara Arlene

    Perfluoroacyl/acyl-derivatized quaterthiophens are developed and synthesized. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. The majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. The design of chemical and film microstructural alternative hybrid organic-inorganic gate dielectrics is described using the classic Clausius-Mossotti relation. The Maxwell-Wagner effective medium model is used to compute the effective dielectric permittivity of two types of dielectrics self-assembled nanodielectrics (SANDs) and crosslinked polymer blends (CPBs). In these calculations showing good agreement between theory and experiment, it is found that greater capacitances should be achievable with mixed composites than with layered composites. With this insight, a series of mixed metal oxide-polyolefin nanocomposites is synthesized via in-situ olefin polymerization using the single-site metallocene catalysts. By integrating organic and inorganic constituents, the resulting hybrid material exhibit high permittivity (from the inorganic inclusions) and high breakdown strength, mechanical flexibility, and facile processability (from the polymer matrices). In order to better optimize the capacitance and leakage current of hybrid organic-inorganic dielectrics, the capacitance, leakage current and OFET gate

  8. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  9. Normal modes and quality factors of spherical dielectric resonators: I — Shielded dielectric sphere

    Indian Academy of Sciences (India)

    R A Yadav; I D Singh

    2004-06-01

    Electromagnetic theoretic analysis of shielded homogeneous and isotropic dielectric spheres has been made. Characteristic equations for the TE and TM modes have been derived. Dielectric spheres of radii of the order of $$m size are found suitable for the optical frequency region whereas for the microwave region radii of the order of mm size are found suitable. Parameters suitable for their application in the optical and microwave frequency ranges have been used to compute the frequencies corresponding to the normal modes for the TE and TM modes. Expressions for the quality factors for realistic resonators, i.e., for a dielectric sphere with a non-zero conductivity and a metal shield with a finite conductivity have also been derived for the TE and TM modes. Computations of the quality factors have been made for resonators with parameters suitable for the optical and the microwave regions.

  10. Polymerization shrinkage of flowable resin-based restorative materials

    OpenAIRE

    Stavridakis, Minos M; Dietschi, Didier; Krejci, Ivo

    2005-01-01

    This study measured the linear polymerization displacement and polymerization forces induced by polymerization shrinkage of a series of flowable resin-based restorative materials. The materials tested were 22 flowable resin-based restorative materials (Admira Flow, Aelite Flow, Aeliteflow LV, Aria, Crystal Essence, Definite Flow, Dyract Flow, Filtek Flow, FloRestore, Flow-it, Flow-Line, Freedom, Glacier, OmegaFlo, PermaFlo, Photo SC, Revolution 2, Star Flow, Synergy Flow, Tetric Flow, Ultrase...

  11. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    OpenAIRE

    Leif P. Jentoft; Aaron M. Dollar; Wagner, Christopher R; Howe, Robert D.

    2014-01-01

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-ax...

  12. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    OpenAIRE

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity h...

  13. Shape of the Polymerization Rate in the Prion Equation

    CERN Document Server

    Gabriel, Pierre

    2010-01-01

    We consider a polymerization (fragmentation) model with size-dependent parameters involved in prion proliferation. Using power laws for the different rates of this model, we recover the shape of the polymerization rate using experimental data. The technique used is inspired from an article of Zampieri et al. where the fragmentation dependency on prion strains is investigated. Our improvement is to use power laws for the rates whereas Zampieri et al. used a constant polymerization coefficient and linear fragmentation.

  14. Polymerization of Pyrrole and Thiophene on Polyethylene Adipate Electrodes

    OpenAIRE

    Erturan, Seyfettin; TORAMAN, Burcu YALVAÇ and Sena

    1998-01-01

    Polymerizations of pyrrole and thiophene on a platinum foil coated by polyethylene adipate (PEA) were carried out in acetonitrile by electrochemical methods. Different compositions of semi-conducting composite films of PEA/Polypyrrole(PPy), PEA/Polythiophene(PT) were prepared by the electrochemical polymerization of pyrrole and thiophene on PEA electrode. The polymerization was possible only for a certain thickness of the polyethylene adipate(PEA) on the platinum. Conductivities of PEA/PPy, P...

  15. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind)2ZrCl2 or rac-Me2Si(Ind)2ZrCl2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  16. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    Science.gov (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  17. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies.

    Science.gov (United States)

    Gutruf, Philipp; Zou, Chengjun; Withayachumnankul, Withawat; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2016-01-26

    Devices that manipulate light represent the future of information processing. Flat optics and structures with subwavelength periodic features (metasurfaces) provide compact and efficient solutions. The key bottleneck is efficiency, and replacing metallic resonators with dielectric resonators has been shown to significantly enhance performance. To extend the functionalities of dielectric metasurfaces to real-world optical applications, the ability to tune their properties becomes important. In this article, we present a mechanically tunable all-dielectric metasurface. This is composed of an array of dielectric resonators embedded in an elastomeric matrix. The optical response of the structure under a uniaxial strain is analyzed by mechanical-electromagnetic co-simulations. It is experimentally demonstrated that the metasurface exhibits remarkable resonance shifts. Analysis using a Lagrangian model reveals that strain modulates the near-field mutual interaction between resonant dielectric elements. The ability to control and alter inter-resonator coupling will position dielectric metasurfaces as functional elements of reconfigurable optical devices. PMID:26617198

  18. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  19. Submicron Polyethylene Particles from Catalytic Emulsion Polymerization

    OpenAIRE

    Bauers, Florian Martin; Thomann, Ralf; Mecking, Stefan

    2003-01-01

    Particles of linear polyethylene (Mn = (2-3)X 10000 g mol-1; Mw/Mn = 2-4) obtained by catalytic emulsion polymerization of ethylene possess a nonspherical, lentil-like shape with an average aspect ratio of ca. 10 and diameters from 30 to > 300 nm, as determined by TEM and AFM. The particle structure results from a stacking of the lamellae along the one shorter axis of the lentils (i.e., their height, by contrast to the diameter). In addition to these multilamellae particles, remarkably, a con...

  20. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis