WorldWideScience

Sample records for age-related olfactory decline

  1. Accelerated age-related olfactory decline among type 1 Usher patients.

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-06-22

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.

  2. Accelerated age-related olfactory decline among type 1 Usher patients

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  3. Age-related olfactory decline is associated with the BDNF val66met polymorphism: evidence from a population-based study

    Directory of Open Access Journals (Sweden)

    Margareta Hedner

    2010-06-01

    Full Text Available The present study investigates the effect of the brain-derived neurotrophic factor (BDNF val66met polymorphism on change in olfactory function in a large scale, longitudinal population-based sample (n=836. The subjects were tested on a 13 item force-choice odor identification test on two test occasions over a 5-year-interval. Sex, education, health-related factors, and semantic ability were controlled for in the statistical analyses. Results showed an interaction effect of age and BDNF val66met on olfactory change, such that the magnitude of olfactory decline in the older age cohort (70-90 years old at baseline was larger for the val homozygote carriers than for the met carriers. The older met carriers did not display larger age-related decline in olfactory function compared to the younger group. The BDNF val66met polymorphism did not affect the rate of decline in the younger age cohort (45-65 years. The findings are discussed in the light of the proposed roles of BDNF in neural development and maintenance.

  4. The age-related performance decline in ultraendurance mountain biking.

    Science.gov (United States)

    Haupt, Samuel; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    The age-related changes in ultraendurance performance have been previously examined for running and triathlon but not mountain biking. The aims of this study were (i) to describe the performance trends and (ii) to analyze the age-related performance decline in ultraendurance mountain biking in a 120-km ultraendurance mountain bike race the "Swiss Bike Masters" from 1995 to 2009 in 9,325 male athletes. The mean (±SD) race time decreased from 590 ± 80 min to 529 ± 88 min for overall finishers and from 415 ± 8 min to 359 ± 16 min for the top 10 finishers, respectively. The mean (±SD) age of all finishers significantly (P Bike Masters" appears to start earlier compared with other ultraendurance sports.

  5. Age-related decline in global form suppression

    DEFF Research Database (Denmark)

    Wiegand, Iris Michaela; Finke, Kathrin; Töllner, Thomas

    2015-01-01

    . Selective attention, i.e., the ability to focus on relevant and ignore irrelevant information, declines with increasing age; however, how this deficit affects selection of global vs. local configurations remains unknown. On this background, the present study examined for age-related differences in a global...... differences in the subsequent (250–500 ms) posterior contralateral negativity (PCN) indicated that attentional resources were allocated faster to Kanisza, as compared to non-Kanisza, targets in both age groups, while the allocation of spatial attention seemed to be generally delayed in older relative...... to younger age. Our results suggest that the enhanced global-local asymmetry in the older age group originated from less effective suppression of global distracter forms on early processing stages – indicative of older observers having difficulties with disengaging from a global default selection mode...

  6. Female age-related fertility decline. Committee Opinion No. 589.

    Science.gov (United States)

    2014-03-01

    The fecundity of women decreases gradually but significantly beginning approximately at age 32 years and decreases more rapidly after age 37 years. Education and enhanced awareness of the effect of age on fertility are essential in counseling the patient who desires pregnancy. Given the anticipated age-related decline in fertility, the increased incidence of disorders that impair fertility, and the higher risk of pregnancy loss, women older than 35 years should receive an expedited evaluation and undergo treatment after 6 months of failed attempts to conceive or earlier, if clinically indicated. In women older than 40 years, more immediate evaluation and treatment are warranted. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors.

    Science.gov (United States)

    Prediger, Rui D S; Batista, Luciano C; Takahashi, Reinaldo N

    2005-06-01

    Caffeine, a non-selective adenosine receptor antagonist, has been suggested as a potential drug to counteract age-related cognitive decline since critical changes in adenosinergic neurotransmission occur with aging. In the present study, olfactory discrimination and short-term social memory of 3, 6, 12 and 18 month-old rats were assessed with the olfactory discrimination and social recognition tasks, respectively. The actions of caffeine (3.0, 10.0 and 30.0 mg/kg, i.p.), the A1 receptor antagonist DPCPX (1.0 and 3.0 mg/kg, i.p.) and the A2A receptor antagonist ZM241385 (0.5 and 1.0 mg/kg, i.p.) in relation to age-related effects on olfactory functions were also studied. The 12 and 18 month-old rats exhibited significantly impaired performance in both models, demonstrating deficits in their odor discrimination and in their ability to recognize a juvenile rat after a short period of time. Acute treatment with caffeine or ZM241385, but not with DPCPX, reversed these age-related olfactory deficits. The present results suggest the participation of adenosine receptors in the control of olfactory functions and confirm the potential of caffeine for the treatment of aged-related cognitive decline.

  8. Alzheimer's disease and age-related memory decline (preclinical).

    Science.gov (United States)

    Terry, Alvin V; Callahan, Patrick M; Hall, Brandon; Webster, Scott J

    2011-08-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  9. Aging-related episodic memory decline: are emotions the key?

    Science.gov (United States)

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21–45), middle-aged (N = 16, age: 48–62) and aged but otherwise healthy participants (N = 8, age: 71–83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group. PMID:23378831

  10. [Physical activity diminishes aging-related decline of physical and cognitive performance].

    Science.gov (United States)

    Apor, Péter; Babai, László

    2014-05-25

    Aging-related decline of muscle force, walking speed, locomotor coordination, aerobic capacity and endurance exert prognostic impact on life expectancy. Proper use of training may diminish the aging process and it may improve the quality of life of elderly persons. This paper provides a brief summary on the impact of training on aging-related decline of physical and cognitive functions.

  11. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response.

    Science.gov (United States)

    Everman, Elizabeth R; Morgan, Theodore J

    2018-02-01

    As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Perceptions of oocyte banking from women intending to circumvent age-related fertility decline

    NARCIS (Netherlands)

    de Groot, Marije; Dancet, Eline; Repping, Sjoerd; Goddijn, Mariette; Stoop, Dominic; van der Veen, Fulco; Gerrits, Trudie

    2016-01-01

    Women can now opt to bank their oocytes with the intention of increasing their chances of achieving a pregnancy after their fertility has declined. This exploratory study aimed to gain insight into how women, considering oocyte banking to circumvent age-related fertility decline, perceive this

  13. Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span

    Science.gov (United States)

    Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.

    2013-01-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…

  14. The impact of retirement on age related cognitive decline - a systematic review.

    Science.gov (United States)

    Meng, Annette; Nexø, Mette Andersen; Borg, Vilhelm

    2017-07-21

    Knowledge on factors affecting the rate of cognitive decline and how to maintain cognitive functioning in old age becomes increasingly relevant. The purpose of the current study was to systematically review the evidence for the impact of retirement on cognitive functioning and on age related cognitive decline. We conducted a systematic literature review, following the principles of the PRISMA statement, of longitudinal studies on the association between retirement and cognition. Only seven studies fulfilled the inclusion criteria. We found weak evidence that retirement accelerates the rate of cognitive decline in crystallised abilities, but only for individuals retiring from jobs high in complexity with people. The evidence of the impact of retirement on the rate of decline in fluid cognitive abilities is conflicting. The review revealed a major knowledge gap in regards to the impact of retirement on cognitive decline. More knowledge on the association between retirement and age related cognitive decline as well as knowledge on the mechanisms behind these associations is needed.

  15. Gender differences in age-related decline in regional cerebral glucose metabolism

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Park, Hyun Soo; Lee, Eun Ju; Kim, Yu Kyeong; Kim, Sang Sun

    2007-01-01

    In this study, we investigated gender differences in age-related declines in regional cerebral glucose metabolism using FDG-PET in a large population sample with a broad age range. 230 healthy subjects (90 male; age: 34-80 y, 140 females; age: 33-82 y) participated. Correlation maps showing age related declines in glucose uptake were created separately for each gender in SPM2. Using population-based probabilistic volume of interests (VOIs), VOIs were defined for the regions showing significant decline with aging. Age related declines were separately assessed within each age range using analysis of covariate in SPSS 13.0. In the total population without gender effect, age-related negative correlation of glucose metabolism was found in the bilateral inferior frontal gyri, bilateral caudate, bilateral thalamus, left insula, left superior frontal gyrus, left uncus, right superior temporal gyrus, right medial frontal gyrus, right parahippocampal gyrus, right anterior cingulate gyrus (P < 0.001 corrected, extent threshold k = 100). 14 VOIs values of brain regions were calculated based on this negative correlation results. The rate of decline across all defined VOIs assessed in the age category of 'more than 70' referenced to the category of '30- 39years' were 7.85% in the entire sample; 7.62% in male and 8.09% in female. Detailed analyses of declines in each age range showed separable patterns of declines across gender. In males, greater decline was observed after the age 60 (20.45%) than the ages of 30 and 50(7.98%). Whereas in females, greater declines were found in age 60s (20.15%) compared to 50s, and in 40(14.84%) compared to 30s. Age-related decline in cerebral glucose metabolism was found in both genders. We further observed that males show a relatively constant pattern of decline across a life span; whereas, females show a pattern of steep changes aging to 60s and to 40s, which may be related to changes in sex hormone levels after menopause

  16. Gender differences in age-related decline in regional cerebral glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Park, Hyun Soo; Lee, Eun Ju; Kim, Yu Kyeong; Kim, Sang Sun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    In this study, we investigated gender differences in age-related declines in regional cerebral glucose metabolism using FDG-PET in a large population sample with a broad age range. 230 healthy subjects (90 male; age: 34-80 y, 140 females; age: 33-82 y) participated. Correlation maps showing age related declines in glucose uptake were created separately for each gender in SPM2. Using population-based probabilistic volume of interests (VOIs), VOIs were defined for the regions showing significant decline with aging. Age related declines were separately assessed within each age range using analysis of covariate in SPSS 13.0. In the total population without gender effect, age-related negative correlation of glucose metabolism was found in the bilateral inferior frontal gyri, bilateral caudate, bilateral thalamus, left insula, left superior frontal gyrus, left uncus, right superior temporal gyrus, right medial frontal gyrus, right parahippocampal gyrus, right anterior cingulate gyrus (P < 0.001 corrected, extent threshold k = 100). 14 VOIs values of brain regions were calculated based on this negative correlation results. The rate of decline across all defined VOIs assessed in the age category of 'more than 70' referenced to the category of '30- 39years' were 7.85% in the entire sample; 7.62% in male and 8.09% in female. Detailed analyses of declines in each age range showed separable patterns of declines across gender. In males, greater decline was observed after the age 60 (20.45%) than the ages of 30 and 50(7.98%). Whereas in females, greater declines were found in age 60s (20.15%) compared to 50s, and in 40(14.84%) compared to 30s. Age-related decline in cerebral glucose metabolism was found in both genders. We further observed that males show a relatively constant pattern of decline across a life span; whereas, females show a pattern of steep changes aging to 60s and to 40s, which may be related to changes in sex hormone levels after menopause.

  17. The posterior parahippocampal gyrus is preferentially affected in age-related memory decline.

    NARCIS (Netherlands)

    Burgmans, S.; van Boxtel, M.P.J.; van den Berg, K.E.M.; Gronenschild, E.H.B.M.; Jacobs, H.I.L.; Jolles, J.; Uylings, H.B.M.

    2011-01-01

    Atrophy in the medial temporal lobe is generally considered to be highly associated with age-related memory decline. Volume loss in the hippocampus and entorhinal cortex has extensively been investigated, but the posterior parts of the parahippocampal gyrus have received little attention. The

  18. The posterior parahippocampal gyrus is preferentially affected in age-related memory decline

    NARCIS (Netherlands)

    Burgmans, S.; van Boxtel, M.P.J.; van den Berg, K.E.M.; Gronenschild, E.H.; Jacobs, H.I.L.; Jolles, J.; Uylings, H.B.M.

    2009-01-01

    Atrophy in the medial temporal lobe is generally considered to be highly associated with age-related memory decline. Volume loss in the hippocampus and entorhinal cortex has extensively been investigated, but the posterior parts of the parahippocampal gyrus have received little attention. The

  19. Ability of university-level education to prevent age-related decline in emotional intelligence

    Science.gov (United States)

    Cabello, Rosario; Navarro Bravo, Beatriz; Latorre, José Miguel; Fernández-Berrocal, Pablo

    2014-01-01

    Numerous studies have suggested that educational history, as a proxy measure of active cognitive reserve, protects against age-related cognitive decline and risk of dementia. Whether educational history also protects against age-related decline in emotional intelligence (EI) is unclear. The present study examined ability EI in 310 healthy adults ranging in age from 18 to 76 years using the Mayer–Salovey–Caruso Emotional Intelligence Test (MSCEIT). We found that older people had lower scores than younger people for total EI and for the EI branches of perceiving, facilitating, and understanding emotions, whereas age was not associated with the EI branch of managing emotions. We also found that educational history protects against this age-related EI decline by mediating the relationship between age and EI. In particular, the EI scores of older adults with a university education were higher than those of older adults with primary or secondary education, and similar to those of younger adults of any education level. These findings suggest that the cognitive reserve hypothesis, which states that individual differences in cognitive processes as a function of lifetime intellectual activities explain differential susceptibility to functional impairment in the presence of age-related changes and brain pathology, applies also to EI, and that education can help preserve cognitive-emotional structures during aging. PMID:24653697

  20. Age-Related Decline in Controlled Retrieval: The Role of the PFC and Sleep

    Directory of Open Access Journals (Sweden)

    Kristine A. Wilckens

    2012-01-01

    Full Text Available Age-related cognitive impairments often include difficulty retrieving memories, particularly those that rely on executive control. In this paper we discuss the influence of the prefrontal cortex on memory retrieval, and the specific memory processes associated with the prefrontal cortex that decline in late adulthood. We conclude that preretrieval processes associated with preparation to make a memory judgment are impaired, leading to greater reliance on postretrieval processes. This is consistent with the view that impairments in executive control significantly contribute to deficits in controlled retrieval. Finally, we discuss age-related changes in sleep as a potential mechanism that contributes to deficiencies in executive control that are important for efficient retrieval. The sleep literature points to the importance of slow-wave sleep in restoration of prefrontal cortex function. Given that slow-wave sleep significantly declines with age, we hypothesize that age-related changes in slow-wave sleep could mediate age-related decline in executive control, manifesting a robust deficit in controlled memory retrieval processes. Interventions, like physical activity, that improve sleep could be effective methods to enhance controlled memory processes in late life.

  1. Age-Related Decline of Precision and Binding in Visual Working Memory

    Science.gov (United States)

    2013-01-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer’s disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  2. Age-related differences in associative memory: the role of sensory decline.

    Science.gov (United States)

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. The impact of retirement on age related cognitive decline - a systematic review

    DEFF Research Database (Denmark)

    Meng, Annette; Nexø, Mette Andersen; Borg, Vilhelm

    2017-01-01

    BACKGROUND: Knowledge on factors affecting the rate of cognitive decline and how to maintain cognitive functioning in old age becomes increasingly relevant. The purpose of the current study was to systematically review the evidence for the impact of retirement on cognitive functioning and on age...... related cognitive decline. METHOD: We conducted a systematic literature review, following the principles of the PRISMA statement, of longitudinal studies on the association between retirement and cognition. RESULTS: Only seven studies fulfilled the inclusion criteria. We found weak evidence...... that retirement accelerates the rate of cognitive decline in crystallised abilities, but only for individuals retiring from jobs high in complexity with people. The evidence of the impact of retirement on the rate of decline in fluid cognitive abilities is conflicting. CONCLUSION: The review revealed a major...

  4. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    Science.gov (United States)

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (pvascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline.

    Science.gov (United States)

    Ferreira, Nicola; Owen, Adrian; Mohan, Anita; Corbett, Anne; Ballard, Clive

    2015-04-01

    Emerging literature suggests that lifestyle factors may play an important role in reducing age-related cognitive decline. There have, however, been few studies investigating the role of cognitively stimulating leisure activities in maintaining cognitive health. This study sought to identify changes in cognitive performance with age and to investigate associations of cognitive performance with several key cognitively stimulating leisure activities. Over 65,000 participants provided demographic and lifestyle information and completed tests of grammatical reasoning, spatial working memory, verbal working memory and episodic memory. Regression analyses suggested that frequency of engaging in Sudoku or similar puzzles was significantly positively associated with grammatical reasoning, spatial working memory and episodic memory scores. Furthermore, for participants aged under 65 years, frequency of playing non-cognitive training computer games was also positively associated with performance in the same cognitive domains. The results also suggest that grammatical reasoning and episodic memory are particularly vulnerable to age-related decline. Further investigation to determine the potential benefits of participating in Sudoku puzzles and non-cognitive computer games is indicated, particularly as they are associated with grammatical reasoning and episodic memory, cognitive domains found to be strongly associated with age-related cognitive decline. Results of this study have implications for developing improved guidance for the public regarding the potential value of cognitively stimulating leisure activities. The results also suggest that grammatical reasoning and episodic memory should be targeted in developing appropriate outcome measures to assess efficacy of future interventions, and in developing cognitive training programmes to prevent or delay cognitive decline. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    Science.gov (United States)

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  7. A novel radial water tread maze tracks age-related cognitive decline in mice

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2013-10-01

    Full Text Available There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT maze and tested male C57BL/6 (B6 and C57BL/6 x Balb/c F1 (CB6F1 mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age.

  8. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    Science.gov (United States)

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline.

  9. Perceptions of oocyte banking from women intending to circumvent age-related fertility decline.

    Science.gov (United States)

    de Groot, Marije; Dancet, Eline; Repping, Sjoerd; Goddijn, Mariette; Stoop, Dominic; van der Veen, Fulco; Gerrits, Trudie

    2016-12-01

    Women can now opt to bank their oocytes with the intention of increasing their chances of achieving a pregnancy after their fertility has declined. This exploratory study aimed to gain insight into how women, considering oocyte banking to circumvent age-related fertility decline, perceive this intervention. We conducted a qualitative study in a Dutch university medical center and held in-depth interviews with women on the waiting list for oocyte banking. We recorded the interviews, transcribed them verbatim and used thematic analysis. All women were financially independent and lived in single-person urban households. They opted for oocyte banking because they wished to share parenthood with a future partner rather than becoming a single parent. This strong desire was key in their interpretation of all aspects of the intervention. Women set aside information about the limited success rates and potential risks, as they were optimistic about their own prognosis, thought that the chances for success were equally likely as the chances it would fail, and because of "anticipatory regret". They perceived oocyte banking as a "helping hand" to achieve shared parenthood. Although women found the costs of the intervention high, they were willing to invest their money to increase their chances for shared parenthood. Oocyte banking allows women to circumvent age-related fertility decline. The prospect of potential shared parenthood overrules the perceived health risks and burden. Health professionals should take this into account when informing potential users of oocyte banking. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Age-related hearing decline in individuals with and without occupational noise exposure

    Directory of Open Access Journals (Sweden)

    Christina Hederstierna

    2016-01-01

    Full Text Available This study was conducted to compare the pattern of age-related hearing decline in individuals with and without self-reported previous occupational noise exposure. This was a prospective, population-based, longitudinal study of individuals aged 70-75 years, from an epidemiological investigation, comprising three age cohorts. In total there were 1013 subjects (432 men and 581 women. Participants were tested with pure tone audiometry, and they answered a questionnaire to provide information regarding number of years of occupational noise exposure. There were no significant differences in hearing decline, at any frequency, for those aged 70-75 years between the noise-exposed (N= 62 men, 22 women and the nonexposed groups (N = 96 men, 158 women. This study supports the additive model of noise-induced hearing loss (NIHL and age-related hearing loss (ARHL. The concept of different patterns of hearing decline between persons exposed and not exposed to noise could not be verified.

  11. Mechanisms and potential treatments for declining olfactory function and neurogenesis in the ageing brain

    OpenAIRE

    Broad, K. D.

    2017-01-01

    The role of olfactory function in maintaining quality of life and as a potential surrogate marker of neurogenic activity in the elderly brain is an underappreciated topic. The olfactory system is complex and is unusual in that its function is maintained by neurogenesis at multiple sites throughout the lifetime of an organism, which in humans may be over 80 years in length. Declines in olfactory function are common with advancing age and this is associated with reductions in the qu...

  12. Basis for the Age-related Decline in Intestinal Mucosal Immunity

    Directory of Open Access Journals (Sweden)

    Douglas L. Schmucker

    2003-01-01

    Full Text Available The elderly are characterized by mucosal immunosenescence and high rates of morbidity and mortality associated with infectious diseases of the intestinal tract. Little is known about how the differentiation of immunoglobulin A (IgA plasma cells in Peyer's patches (PPs and their subsequent homing to the small intestinal lamina propria (LP is affected by aging. Quantitative immunohistochemical analyses demonstrated a 2-fold increase in the number of IgA+ cells in the PPs, coupled with significant declines in the numbers of IgA+ and antibody-positive cells in the intestinal LP of senescent rats compared to young adult animals. These data suggest that aging diminishes the emigration of IgA immunoblasts from these lymphoid aggregates, as well as their migration to the intestinal LP. Flow cytometry and lymphocyte adoptive transfer studies showed 3- to 4-fold age-related declines in the homing of antibody-containing cells and mesenteric lymph node lymphocytes to the small intestines of rhesus macaques and rats, respectively. The number of peripheral blood IgA immunoblasts expressing the homing molecule α4β7 declined 30% in senescent rats. This was accompanied by a >17% decrease in the areal density of LP blood vessels staining positive for the cell adhesion molecule MAdCAM-1. Cumulatively, declines in expression of these homing molecules constitute a substantial age-related diminution of IgA immunoblast homing potential. In vitro antibody secretion by LP plasma cells, i.e. antibody secreted per antibody-positive cell, remains unchanged as a function of donor age. Intestinal mucosal immunosenescence is a consequence of reduced homing of IgA plasma cells to the intestinal LP as a result of declines in homing molecule expression.

  13. Developmental improvement and age-related decline in unfamiliar face matching.

    Science.gov (United States)

    Megreya, Ahmed M; Bindemann, Markus

    2015-01-01

    Age-related changes have been documented widely in studies of face recognition and eyewitness identification. However, it is not clear whether these changes arise from general developmental differences in memory or occur specifically during the perceptual processing of faces. We report two experiments to track such perceptual changes using a 1-in- 10 (experiment 1) and 1-in-1 (experiment 2) matching task for unfamiliar faces. Both experiments showed improvements in face matching during childhood and adult-like accuracy levels by adolescence. In addition, face-matching performance declined in adults of the age of 65 years. These findings indicate that developmental improvements and aging-related differences in face processing arise from changes in the perceptual encoding of faces. A clear face inversion effect was also present in all age groups. This indicates that those age-related changes in face matching reflect a quantitative effect, whereby typical face processes are engaged but do not operate at the best-possible level. These data suggest that part of the problem of eyewitness identification in children and elderly persons might reflect impairments in the perceptual processing of unfamiliar faces.

  14. Food for thought: the role of appetitive peptides in age-related cognitive decline.

    Science.gov (United States)

    Fadel, Jim R; Jolivalt, Corinne G; Reagan, Lawrence P

    2013-06-01

    Through their well described actions in the hypothalamus, appetitive peptides such as insulin, orexin and leptin are recognized as important regulators of food intake, body weight and body composition. Beyond these metabolic activities, these peptides also are critically involved in a wide variety of activities ranging from modulation of immune and neuroendocrine function to addictive behaviors and reproduction. The neurological activities of insulin, orexin and leptin also include facilitation of hippocampal synaptic plasticity and enhancement of cognitive performance. While patients with metabolic disorders such as obesity and diabetes have greater risk of developing cognitive deficits, dementia and Alzheimer's disease (AD), the underlying mechanisms that are responsible for, or contribute to, age-related cognitive decline are poorly understood. In view of the importance of these peptides in metabolic disorders, it is not surprising that there is a greater focus on their potential role in cognitive deficits associated with aging. The goal of this review is to describe the evidence from clinical and pre-clinical studies implicating insulin, orexin and leptin in the etiology and progression of age-related cognitive decline. Collectively, these studies support the hypothesis that leptin and insulin resistance, concepts normally associated with the hypothalamus, are also applicable to the hippocampus. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training

    Directory of Open Access Journals (Sweden)

    Ann Van de Winckel

    2017-11-01

    Full Text Available Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years without cognitive decline (Mini Mental State Examination-brief version ≥13/16 and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years. Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01. Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38

  16. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.

  17. Do Depressive Traits and Hostility Predict Age-Related Decline in General Intelligence?

    Directory of Open Access Journals (Sweden)

    Erik Lykke Mortensen

    2012-01-01

    Full Text Available Certain personality traits are likely to be associated with stress and distress through the lifespan, and as a consequence these traits may influence the rate of age-related cognitive decline. The present study uses data from the Glostrup 1914 cohort to analyze potential effects of personality on decline in general intelligence over a 30-year period. The Minnesota Multiphasic Personality Inventory was administered at a 50-year baseline exam, and from this inventory the Obvious Depression Scale and an abbreviated version of the Cook-Medley Hostility Scale were derived. At the 50-year baseline and at the 60-, 70-, and 80-year followups the full version of Wechsler's Adult Intelligence Scale (WAIS was administered to 673, 513, 136, and 184 participants. Mixed effects statistical models were used to evaluate both the effect of the personality scores on level of intelligence and the interaction between the personality scores and the time since followup. Analyses were adjusted for demographic background and a wide range of lifestyle factors. Both obvious depression and hostility were negatively associated with level of intelligence, but personality scores did not influence rate of decline in general intelligence.

  18. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    Science.gov (United States)

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Neural correlates of age-related decline and compensation in visual attention capacity

    DEFF Research Database (Denmark)

    Wiegand, Iris; Töllner, Thomas; Dyrholm, Mads

    2014-01-01

    -individual differences in K. Moreover, both parameters were selectively related to two further ERP waves in older age: The anterior N1 was reduced for older participants with lower processing speed, indicating that age-related loss of attentional resources slows encoding. An enhanced right-central positivity (RCP......We identified neural correlates of declined and preserved basic visual attention functions in aging individuals based on Bundesen’s ‘Theory of Visual Attention’ (TVA). In an inter-individual difference approach, we contrasted electrophysiology of higher- and lower-performing younger and older......) was found only for older participants with high storage capacity, suggesting compensatory recruitment for retaining vSTM performance. Together, our results demonstrate that attentional capacity in older age depends on both preservation and successful reorganization of the underlying brain circuits...

  20. Age-related decline in bottom-up processing and selective attention in the very old.

    Science.gov (United States)

    Zhuravleva, Tatyana Y; Alperin, Brittany R; Haring, Anna E; Rentz, Dorene M; Holcomb, Philip J; Daffner, Kirk R

    2014-06-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials in 15 young-old (65-79 years old) and 23 old-old (80-99 years old) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high loads. There were no group differences in visual acuity, accuracy, reaction time, or latency of early event-related potential components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults.

  1. Age-related skeletal muscle decline is similar in HIV-infected and uninfected individuals.

    Science.gov (United States)

    Yarasheski, Kevin E; Scherzer, Rebecca; Kotler, Donald P; Dobs, Adrian S; Tien, Phyllis C; Lewis, Cora E; Kronmal, Richard A; Heymsfield, Steven B; Bacchetti, Peter; Grunfeld, Carl

    2011-03-01

    Skeletal muscle (SM) mass decreases with advanced age and with disease in HIV infection. It is unknown whether age-related muscle loss is accelerated in the current era of antiretroviral therapy and which factors might contribute to muscle loss among HIV-infected adults. We hypothesized that muscle mass would be lower and decline faster in HIV-infected adults than in similar-aged controls. Whole-body (1)H-magnetic resonance imaging was used to quantify regional and total SM in 399 HIV-infected and 204 control men and women at baseline and 5 years later. Multivariable regression identified associated factors. At baseline and Year 5, total SM was lower in HIV-infected than control men. HIV-infected women were similar to control women at both time points. After adjusting for demographics, lifestyle factors, and total adipose tissue, HIV infection was associated with lower Year 5 SM in men and higher SM in women compared with controls. Average overall 5-year change in total SM was small and age related, but rate of change was similar in HIV-infected and control men and women. CD4 count and efavirenz use in HIV-infected participants were associated with increasing SM, whereas age and stavudine use were associated with decreasing SM. Muscle mass was lower in HIV-infected men compared with controls, whereas HIV-infected women had slightly higher SM than control women after multivariable adjustment. We found evidence against substantially faster SM decline in HIV infected versus similar-aged controls. SM gain was associated with increasing CD4 count, whereas stavudine use may contribute to SM loss.

  2. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    Science.gov (United States)

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  3. Age-related Decline in Case-Marker Processing and its Relation to Working Memory Capacity.

    Science.gov (United States)

    Sung, Jee Eun

    2017-09-01

    Purposes of the current study were to investigate whether age-related decline emerged in a case-marker assignment task (CMAT) and to explore the relationship between working-memory (WM) capacity and case-marker processing. A total of 121 individuals participated in the study with 62 younger adults and 59 elderly adults. All were administered a CMAT that consisted of active and passive constructions with canonical and noncanonical word-order conditions. A composite measure of WM tasks served as an index of participants' WM capacity. The older group performed worse than the younger group, and the noncanonical word order elicited worse performance than the canonical condition. The older group demonstrated greater difficulty in case-marker processing under the canonical condition and passive construction. Regression results revealed that age, education, and sentence type were the best predictors to account for performance on the CMAT. The canonicity of word order and passive construction were critical factors related to decline in abilities in a case-marker assignment. The combination of age, education, and sentence type factors accounted for overall performance on case-marker processing. Results indicated the crucial necessity to find a cognitively and linguistically demanding condition that elicits aging effects most efficiently, considering language-specific syntactic features. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    Science.gov (United States)

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Memory's aging echo: age-related decline in neural reactivation of perceptual details during recollection.

    Science.gov (United States)

    McDonough, Ian M; Cervantes, Sasha N; Gray, Stephen J; Gallo, David A

    2014-09-01

    Episodic memory decline is a hallmark of normal cognitive aging. Here, we report the first event-related fMRI study to directly investigate age differences in the neural reactivation of qualitatively rich perceptual details during recollection. Younger and older adults studied pictures of complex scenes at different presentation durations along with descriptive verbal labels, and these labels subsequently were used during fMRI scanning to cue picture recollections of varying perceptual detail. As expected from prior behavioral work, the two age groups subjectively rated their recollections as containing similar amounts of perceptual detail, despite objectively measured recollection impairment in older adults. In both age groups, comparisons of retrieval trials that varied in recollected detail revealed robust activity in brain regions previously linked to recollection, including hippocampus and both medial and lateral regions of the prefrontal and posterior parietal cortex. Critically, this analysis also revealed recollection-related activity in visual processing regions that were active in an independent picture-perception task, and these regions showed age-related reductions in activity during recollection that cannot be attributed to age differences in response criteria. These fMRI findings provide new evidence that aging reduces the absolute quantity of perceptual details that are reactivated from memory, and they help to explain why aging reduces the reliability of subjective memory judgments. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    Science.gov (United States)

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  7. Age-related decline in cerebral blood flow and brain atrophy

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Yamada, Kenji

    1987-01-01

    Using computed tomography, the authors studied brain atrophy during aging in 536 men and 529 women with no neurologic disturbances. They measured cerebrospinal fluid (CSF) space volume and cranial cavity volume above the level of the tentorium cerebelli and calculated a brain atrophy index. CFS space volume strated to increase significantly in the group aged from 45 to 54 years, while the BAI started to increase significantly in the group aged from 35 to 44 years in both men and women. The BAI increased exponentially with the increasing age after 25 years, continuing to increase until 75 years or more in both men and women: log BAI = -0.260 + 0.0150 x age, r = 0.707, n = 493, p < 0.001 in men; log BAI = -0.434 + 0.0162 x age, r = 0.757, n = 504, p < 0.001 in women. Using the xenon-133 inhalation method, the authors studied age-related decline in regional cerebral blood flow (regional initial slope index; rISI) in 197 men and 238 women with no neurologic disturbances, ranging in age from 19 to 88 years. The rISI values in women declined almost linearly with the advancing age from the 50s to the 80s except the 70s. The rISI values in men declined with the advancing age from the 40s to the 60s, but remained unchanged thereafter until the 80s, suggesting the existence of a threshold of rISI values. We estimated the rISI values (probable threshold of brain atrophy), the frequency under which is equivalent to the volume of brain tissues atrophying in a decade, and obtained constant values as about 32 for men and about 37 for women in the 50s, 60s and 70s. If the frequency of rISI values in the brain is distributed according to a Gaussian function and mean of rISI values decreases linearly to the increasing age, then brain tissues having rISI values below the thresholds degenerate almost exponentially with the increasing age, leading to the exponential atrophy of the brain. (J.P.N.)

  8. Experience-Based Mitigation of Age-Related Performance Declines: Evidence from Air Traffic Control

    Science.gov (United States)

    Nunes, Ashley; Kramer, Arthur F.

    2009-01-01

    Previous research has found age-related deficits in a variety of cognitive processes. However, some studies have demonstrated age-related sparing on tasks where individuals have substantial experience, often attained over many decades. Here, the authors examined whether decades of experience in a fast-paced demanding profession, air traffic…

  9. Career-span analyses of track performance: longitudinal data present a more optimistic view of age-related performance decline.

    Science.gov (United States)

    Young, Bradley W; Starkes, Janet L

    2005-01-01

    Sport scientists (Starkes, Weir, Singh, Hodges, & Kerr, 1999; Starkes, Weir, & Young, 2003) have suggested that prolonged training is critical for the maintenance of athletic performance even in the face of predicted age-related decline. This study used polynomial regression analyses to examine the relationship between age and running performance in the 1500 and 10,000 metre events. We compared the age and career-longitudinal performances for 15 male Canadian Masters athletes with a cross-sectional sample of performances at different ages. We hypothesized that the 30 years of uninterrupted training characteristic of this longitudinal sample would moderate the patterns of age-related decline (retention hypothesis); alternatively, the cross-sectional data were expected to demonstrate pronounced age-related decline (quadratic hypothesis). Investigators performed multimodel regression analyses on the age and performance data. Based on the absence (for longitudinal data) or presence (for the cross-sectional data) of significant quadratic components in second-order polynomial models, the authors found support for their respective hypotheses. The longitudinal data showed that running performance declined with age in a more linear fashion than did cross-sectional data. Graphical trends showed that the moderation of age-related decline appeared greater for the longitudinal 10 km performances than for the 1500m event.

  10. Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal.

    Directory of Open Access Journals (Sweden)

    Christopher Beirne

    Full Text Available Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes ('immune cells', stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles. Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.

  11. A Neuropsychological Instrument Measuring Age-Related Cerebral Decline in Older Drivers : Development, Reliability, and Validity of MedDrive.

    NARCIS (Netherlands)

    Vaucher, Paul; cardoso, isabel; Veldstra, Janet; Herzig, Daniela; Mangin, Patrice; Herzog, Micheal; Favrat, Bernard

    2014-01-01

    When facing age-related cerebral decline, older adults are unequally affected by cognitive impairment without us knowing why. To explore underlying mechanisms and find possible solutions to maintain life-space mobility, there is a need for a standardized behavioral test that relates to behaviors in

  12. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

    Science.gov (United States)

    Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N

    2016-06-14

    Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence.

    Science.gov (United States)

    Clay, Olivio J; Edwards, Jerri D; Ross, Lesley A; Okonkwo, Ozioma; Wadley, Virginia G; Roth, David L; Ball, Karlene K

    2009-06-01

    To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. In addition, the common cause, sensory degradation and speed of processing hypotheses were compared. Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. The findings support both the sensory degradation and speed of processing accounts of age-related, cognitive decline. Furthermore, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained.

  14. Age-related decline in functional connectivity of the vestibular cortical network.

    Science.gov (United States)

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability--we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD--signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs.

  15. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    Science.gov (United States)

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.

    Science.gov (United States)

    Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara

    2017-06-01

    Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Age Differences in Brain Activity during Emotion Processing: Reflections of Age-Related Decline or Increased Emotion Regulation?

    OpenAIRE

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2011-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processi...

  18. Can musical engagement alleviate age-related decline in inhibitory control?

    NARCIS (Netherlands)

    Vromans, R.D.; Nilsenova, Marie; Papafragou, A.; Grodner, D.; Mirman, D.; Trueswell, J. C.

    2016-01-01

    The purpose of our study was to determine whether active musical engagement alleviates decline in inhibitory control due to cognitive aging. Given that musical training in young adults has been shown to improve attentional performance, we can expect this benefit to persist for older adults as well.

  19. Do depressive traits and hostility predict age-related decline in general intelligence?

    DEFF Research Database (Denmark)

    Mortensen, Erik Lykke; Barefoot, John Calvin; Avlund, Kirsten

    2012-01-01

    on decline in general intelligence over a 30-year period. The Minnesota Multiphasic Personality Inventory was administered at a 50-year baseline exam, and from this inventory the Obvious Depression Scale and an abbreviated version of the Cook-Medley Hostility Scale were derived. At the 50-year baseline...... and at the 60-, 70-, and 80-year followups the full version of Wechsler's Adult Intelligence Scale (WAIS) was administered to 673, 513, 136, and 184 participants. Mixed effects statistical models were used to evaluate both the effect of the personality scores on level of intelligence and the interaction between...... the personality scores and the time since followup. Analyses were adjusted for demographic background and a wide range of lifestyle factors. Both obvious depression and hostility were negatively associated with level of intelligence, but personality scores did not influence rate of decline in general intelligence....

  20. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    Science.gov (United States)

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  1. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    Science.gov (United States)

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  2. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    Science.gov (United States)

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  3. Age-related cognitive decline as a function of daytime testing.

    Science.gov (United States)

    Puiu, Andrei Alexandru

    2017-05-01

    The current study investigates the effects of age, cognitive load, optimal time-of-day testing, and irrelevant background noise suppression on mental processing. One hundred and seventy-eight young (M = 22.97 years) and 114 old adults (M = 56.38 years) were assessed for implicit learning and speed of information processing under irrelevant sound interference early during daytime (7AM-2.30PM) or in the afternoons (3PM-midnight). No direct effect of irrelevant speech effect was found on implicit learning. An optimal time of testing per age group was identified according to the ability to suppress irrelevant auditory information. If no semantic meaning was derived from the sound conditions, irrelevant sound was easily inhibited leaving no room for declined cognitive performance. This suggests an intact phonological inhibition in older adults and a further circumvention of the phonological loop. However, when difficulty was increased, a widened performance gap between young and old people could be observed. Education modulated difficult performance irrespective of age. With increasing age, task demand fulfillment becomes a function of a limited time mechanism. If extraneous time is not adapted to cognitive skills and performance, higher order processing cannot be reached, rendering older adults slower than their younger counterparts.

  4. Meditation and successful aging: can meditative practices counteract age-related cognitive decline?

    Science.gov (United States)

    Sperduti, Marco; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-06-01

    Life expectancy is constantly increasing in the developed countries due to medical, hygiene and socio-economic advances. Unfortunately, a longer life not always corresponds to a healthier life. Indeed, aging is associated with growing risk factors for illness associated with societal conditions (isolation, maltreatment), and neurodegenerative diseases. Even normal aging is associated with a cognitive decline that can hinder independence and quality of life of elderly. Thus, one major societal challenge is to build policies that support people of all ages to maintain a maximum health and functional capacity throughout their lives. Meditation could be a promising intervention in contrasting the negative effects of aging. Indeed, it has been shown to enhance cognitive efficiency in several domains, such as attention and executive functions in young adults. Nevertheless, whether these effects extend to old participants is still a matter of debate. Few studies have directly investigated this issue, reporting encouraging results in a large panel of cognitive functions, such as: attention, executive functions and memory. However, a final conclusion about the causal role of meditation and the generalization of these results is made difficult due to several methodological limitations. We propose a roadmap for future studies to pass these limitations with the hope that the present work would contribute to the development of the young research field of meditation in gerontology.

  5. Exercise as an intervention for the age-related decline in brain metabolic support

    Directory of Open Access Journals (Sweden)

    Brenda J Anderson

    2010-08-01

    Full Text Available To identify interventions for brain aging, we must first identify the processes in which we hope to intervene. Brain aging is a period of decreasing functional capacity and increasing vulnerability, which reflect a reduction in morphological organization and perhaps degeneration. Since life is ultimately dependent upon the ability to maintain cellular organization through metabolism, this review explores evidence for a decline in neural metabolic support during aging, which includes a reduction in whole brain cerebral blood flow, and cellular metabolic capacity. Capillary density may also decrease with age, although the results are less clear. Exercise may be a highly effective intervention for brain aging, because it improves the cardiovascular system as a whole, and increases regional capillary density and neuronal metabolic capacity. Although the evidence is strongest for motor regions, more work may yield additional evidence for exercise-related improvement in metabolic support in non-motor regions. The protective effects of exercise may be specific to brain region and the type of insult. For example, exercise protects striatal cells from ischemia, but it produces mixed results after hippocampal seizures. Exercise can improve metabolic support and bioenergetic capacity in adult animals, but it remains to be determined whether it has similar effects in aging animals. What is clear is that exercise can influence the multiple levels of support necessary for maintaining optimal neuronal function, which is unique among proposed interventions for aging.

  6. Feasibility and validity of mobile cognitive testing in the investigation of age-related cognitive decline.

    Science.gov (United States)

    Schweitzer, Pierre; Husky, Mathilde; Allard, Michèle; Amieva, Hélène; Pérès, Karine; Foubert-Samier, Alexandra; Dartigues, Jean-François; Swendsen, Joel

    2017-09-01

    Mobile cognitive testing may be used to help characterize subtle deficits at the earliest stages of cognitive decline. Despite growing interest in this approach, comprehensive information concerning its feasibility and validity has been lacking in elderly samples. Over a one-week period, this study applied mobile cognitive tests of semantic memory, episodic memory and executive functioning in a cohort of 114 elderly non-demented community residents. While the study acceptance rate was moderate (66%), the majority of recruited individuals met minimal compliance thresholds and responded to an average of 82% of the repeated daily assessments. Missing data did not increase over the course of the study, but practice effects were observed for several test scores. However, even when controlling for practice effects, traditional neuropsychological tests were significantly associated with mobile cognitive test scores. In particular, the Isaacs Set Test was associated with mobile assessments of semantic memory (γ = 0.084, t = 5.598, p mobile assessments of episodic memory (γ = 0.069, t = 3.156, p mobile assessments of executive functioning (γ = 0.168, t = 4.562, p Mobile cognitive testing in the elderly may provide complementary and potentially more sensitive data relative to traditional neuropsychological assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Video Games as a Means to Reduce Age-related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    Directory of Open Access Journals (Sweden)

    Walter R. Boot

    2013-02-01

    Full Text Available Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a brain fitness game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  8. The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline.

    Science.gov (United States)

    Castonguay, David; Dufort-Gervais, Julien; Ménard, Caroline; Chatterjee, Manavi; Quirion, Rémi; Bontempi, Bruno; Schneider, Jay S; Arnsten, Amy F T; Nairn, Angus C; Norris, Christopher M; Ferland, Guylaine; Bézard, Erwan; Gaudreau, Pierrette; Lombroso, Paul J; Brouillette, Jonathan

    2018-04-02

    Cognitive disabilities that occur with age represent a growing and expensive health problem. Age-associated memory deficits are observed across many species, but the underlying molecular mechanisms remain to be fully identified. Here, we report elevations in the levels and activity of the striatal-enriched phosphatase (STEP) in the hippocampus of aged memory-impaired mice and rats, in aged rhesus monkeys, and in people diagnosed with amnestic mild cognitive impairment (aMCI). The accumulation of STEP with aging is related to dysfunction of the ubiquitin-proteasome system that normally leads to the degradation of STEP. Higher level of active STEP is linked to enhanced dephosphorylation of its substrates GluN2B and ERK1/2, CREB inactivation, and a decrease in total levels of GluN2B and brain-derived neurotrophic factor (BDNF). These molecular events are reversed in aged STEP knockout and heterozygous mice, which perform similarly to young control mice in the Morris water maze (MWM) and Y-maze tasks. In addition, administration of the STEP inhibitor TC-2153 to old rats significantly improved performance in a delayed alternation T-maze memory task. In contrast, viral-mediated STEP overexpression in the hippocampus is sufficient to induce memory impairment in the MWM and Y-maze tests, and these cognitive deficits are reversed by STEP inhibition. In old LOU/C/Jall rats, a model of healthy aging with preserved memory capacities, levels of STEP and GluN2B are stable, and phosphorylation of GluN2B and ERK1/2 is unaltered. Altogether, these data suggest that elevated levels of STEP that appear with advancing age in several species contribute to the cognitive declines associated with aging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    2017-06-01

    Full Text Available Normal aging is typically characterized by abnormal resting-state functional connectivity (FC, including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.

  10. Music to my ears: Age-related decline in musical and facial emotion recognition.

    Science.gov (United States)

    Sutcliffe, Ryan; Rendell, Peter G; Henry, Julie D; Bailey, Phoebe E; Ruffman, Ted

    2017-12-01

    We investigated young-old differences in emotion recognition using music and face stimuli and tested explanatory hypotheses regarding older adults' typically worse emotion recognition. In Experiment 1, young and older adults labeled emotions in an established set of faces, and in classical piano stimuli that we pilot-tested on other young and older adults. Older adults were worse at detecting anger, sadness, fear, and happiness in music. Performance on the music and face emotion tasks was not correlated for either age group. Because musical expressions of fear were not equated for age groups in the pilot study of Experiment 1, we conducted a second experiment in which we created a novel set of music stimuli that included more accessible musical styles, and which we again pilot-tested on young and older adults. In this pilot study, all musical emotions were identified similarly by young and older adults. In Experiment 2, participants also made age estimations in another set of faces to examine whether potential relations between the face and music emotion tasks would be shared with the age estimation task. Older adults did worse in each of the tasks, and had specific difficulty recognizing happy, sad, peaceful, angry, and fearful music clips. Older adults' difficulties in each of the 3 tasks-music emotion, face emotion, and face age-were not correlated with each other. General cognitive decline did not appear to explain our results as increasing age predicted emotion performance even after fluid IQ was controlled for within the older adult group. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study

    DEFF Research Database (Denmark)

    Garde, E; Mortensen, E L; Krabbe, K

    2000-01-01

    BACKGROUND: White-matter hyperintensities are commonly found on magnetic resonance imaging (MRI) of elderly people with or without dementia. Studies of the relation between severity of white-matter hyperintensities and cognitive impairment have had conflicting results. We undertook a longitudinal...... study of age-related decline in intellectual function and MRI at age 80 years. METHODS: From a cohort of 698 people born in 1914 and living in seven municipalities in Denmark, 68 healthy non-demented individuals had been tested with the Wechsler adult intelligence scale (WAIS) at ages 50, 60, and 70...

  12. Age Differences in Brain Activity during Emotion Processing: Reflections of Age-Related Decline or Increased Emotion Regulation?

    Science.gov (United States)

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2012-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model. PMID:21691052

  13. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Geraldine Gontier

    2018-02-01

    Full Text Available Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2, which catalyzes the production of 5-hydroxymethylcytosine (5hmC, rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.

  14. Genetic contributions to age-related decline in executive function: a 10-year longitudinal study of COMT and BDNF polymorphisms

    Directory of Open Access Journals (Sweden)

    Kirk I Erickson

    2008-09-01

    Full Text Available Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT and brain-derived neurotrophic factor (BDNF were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single-nucleotide polymorphism (SNP in the COMT (Val158/108Met gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age.

  15. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    Science.gov (United States)

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    Science.gov (United States)

    Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL. PMID:27667674

  17. Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-є4.

    Science.gov (United States)

    Olofsson, Jonas K; Josefsson, Maria; Ekström, Ingrid; Wilson, Donald; Nyberg, Lars; Nordin, Steven; Nordin Adolfsson, Annelie; Adolfsson, Rolf; Nilsson, Lars-Göran; Larsson, Maria

    2016-05-01

    The ɛ4 allele of the Apolipoprotein E gene is a genetic risk factor for late-onset dementia of the Alzheimers' type (DAT), which is characterized by loss of both episodic memory and olfactory functions. Little is known about the possible role of ɛ4 in the association between ongoing episodic memory decline and olfactory deficits in the general population, but such information is relevant in determining the relevance of olfaction as a marker of DAT risk. The present study was based on a large, population-based sample (n=1087, aged 45-90 years, of which 324 were ɛ4-carriers). Episodic memory change rates were established using data collected every 5 years for a 10-20 year interval leading up to an olfactory assessment using the Scandinavian Odor Identification Test at the last wave of data collection. Participants were classified according to whether or not their episodic memory ability declined more rapidly than the age-typical norm (by >1SD). Our main result is that only in ɛ4-carriers was episodic memory decline associated with odor identification impairment. In individuals without ɛ4, odor identification was unrelated to episodic memory decline status. Follow-up analyses indicated that this moderation by ɛ4 was due to the olfactory nature of the identification test, and that the effect was not caused by 63 individuals with dementia. Our results suggest that the ɛ4 determines the functional association between ongoing episodic memory decline and olfaction. These findings are consistent with the notion that ɛ4-carriers with DAT, compared to non-carriers, display a cortical atrophy pattern that is more focused on mediotemporal lobe regions supporting olfactory and episodic memory functions. Olfactory and memory assessments might provide complementary information on mediotemporal atrophy prior to clinical dementia onset, but the ɛ4 should be considered when using olfactory assessment as an early-stage indicator. Copyright © 2016. Published by Elsevier Ltd.

  18. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease.

    Science.gov (United States)

    Harrison, Fiona E

    2012-01-01

    Antioxidants in the diet have long been thought to confer some level of protection against the oxidative damage that is involved in the pathology of Alzheimer's disease as well as general cognitive decline in normal aging. Nevertheless, support for this hypothesis in the literature is equivocal. In the case of vitamin C (ascorbic acid) in particular, lack of consideration of some of the specific features of vitamin C metabolism has led to studies in which classification of participants according to vitamin C status is inaccurate, and the absence of critical information precludes the drawing of appropriate conclusions. Vitamin C levels in plasma are not always reported, and estimated daily intake from food diaries may not be accurate or reflect actual plasma values. The ability to transport ingested vitamin C from the intestines into blood is limited by the saturable sodium-dependent vitamin C transporter (SVCT1) and thus very high intakes and the use of supplements are often erroneously considered to be of greater benefit that they really are. The current review documents differences among the studies in terms of vitamin C status of participants. Overall, there is a large body of evidence that maintaining healthy vitamin C levels can have a protective function against age-related cognitive decline and Alzheimer's disease, but avoiding vitamin C deficiency is likely to be more beneficial than taking supplements on top of a normal, healthy diet.

  19. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    Science.gov (United States)

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  20. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    Science.gov (United States)

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Investigation of age-related decline of microfibril-associated glycoprotein-1 in human skin through immunohistochemistry study

    Directory of Open Access Journals (Sweden)

    Zheng Q

    2013-12-01

    Full Text Available Qian Zheng, Siming Chen, Ying Chen, John Lyga, Russell Wyborski, Uma SanthanamGlobal Research and Development, Avon Products Inc., Suffern, New York, USAAbstract: During aging, the reduction of elastic and collagen fibers in dermis can lead to skin atrophy, fragility, and aged appearance, such as increased facial wrinkling and sagging. Microfibril-associated glycoprotein-1 (MAGP-1 is an extracellular matrix protein critical for elastic fiber assembly. It integrates and stabilizes the microfibril and elastin matrix network that helps the skin to endure mechanical stretch and recoil. However, the observation of MAGP-1 during skin aging and its function in the dermis has not been established. To better understand age-related changes in the dermis, we investigated MAGP-1 during skin aging and photoaging, using a combination of in vitro and in vivo studies. Gene expression by microarray was performed using human skin biopsies from young and aged female donors. In addition, immunofluorescence analysis on the MAGP-1 protein was performed in dermal fibroblast cultures and in human skin biopsies. Specific antibodies against MAGP-1 and fibrillin-1 were used to examine protein expression and extracellular matrix structure in the dermis via biopsies from donors of multiple age groups. A reduction of the MAGP-1 gene and protein levels were observed in human skin with increasing age and photoexposure, indicating a loss of the functional MAGP-1 fiber network and a lack of structural support in the dermis. Loss of MAGP-1 around the hair follicle/pore areas was also observed, suggesting a possible correlation between MAGP-1 loss and enlarged pores in aged skin. Our findings demonstrate that a critical “pre-elasticity” component, MAGP-1, declines with aging and photoaging. Such changes may contribute to age-related loss of dermal integrity and perifollicular structural support, which may lead to skin fragility, sagging, and enlarged pores

  2. Testing cognitive performance of socially housed monkeys: possibilities and limitations of the study of social influences on age-related cognitive decline

    NARCIS (Netherlands)

    Toxopeus, Ido Bart

    2004-01-01

    In both humans and monkeys not all individuals show the same rate of age-related cognitive decline. One important factor to influence the rate of decline is extended exposure to elevated levels of glucocorticoids, which play a central role in the response to stress. Furthermore, studies with humans

  3. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    Directory of Open Access Journals (Sweden)

    Joseph J Thompson

    Full Text Available Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  4. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    Science.gov (United States)

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  5. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population.

    Science.gov (United States)

    Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O

    2018-05-01

    Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. SORL1 rs1699102 polymorphism modulates age-related cognitive decline and gray matter volume reduction in non-demented individuals.

    Science.gov (United States)

    Li, He; Lv, Chenlong; Yang, Caishui; Wei, Dongfeng; Chen, Kewei; Li, Shaowu; Zhang, Zhanjun

    2017-01-01

    SORL1 rs1699102 is associated with the risk of late-onset Alzheimer's disease. However, the effects of this single nucleotide polymorphism on cognition and brain structure during normal aging are unclear. This study aimed to examine the effects of the rs1699102 polymorphism on age-related cognitive decline and cortical gray matter reduction in the Chinese Han population. A total of 780 non-demented adults completed a battery of neuropsychological tests. High-resolution T1-weighted structural magnetic resonance imaging data from 89 of these subjects were also collected using a Siemens Trio 3.0 Tesla scanner. The T allele carriers displayed an accelerated age-related change in episodic memory and processing speed tests relative to the CC genotype. A similar pattern was observed in the age-related gray matter volume (GMV) reduction of the right middle temporal pole. The GMV in this region was significantly positively correlated with the episodic memory scores. The SORL1 gene rs1699102 polymorphism has been found to be associated with age-related cognitive decline and GMV reduction of the right middle temporal pole in older adults. These findings elucidate how the SORL1 variants shape the neural system to modulate age-related cognitive decline and support the hypothesis that SORL1 may represent a candidate gene for late-onset Alzheimer's disease. © 2016 EAN.

  7. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    Science.gov (United States)

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  8. Decline of the relative risk of death associated with low employment grade at older age: the impact of age related differences in smoking, blood pressure and plasma cholesterol

    NARCIS (Netherlands)

    Marang-van de Mheen, P. J.; Shipley, M. J.; Witteman, J. C.; Marmot, M. G.; Gunning-Schepers, L. J.

    2001-01-01

    To explore whether the observed age related decline in the relative risk of death associated with low employment grade can be explained by the profiles of smoking, blood pressure and plasma cholesterol changing differently with age between the employment grades. Prospective cohort study with 25

  9. Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey.

    Science.gov (United States)

    Cruz, L; Roe, D L; Urbanc, B; Inglis, A; Stanley, H E; Rosene, D L

    2009-02-18

    The age-related decline in cognitive function that is observed in normal aging monkeys and humans occurs without significant loss of cortical neurons. This suggests that cognitive impairment results from subtle, sub-lethal changes in the cortex. Recently, changes in the structural coherence in mini- or microcolumns without loss of neurons have been linked to loss of function. Here we use a density map method to quantify microcolumnar structure in both banks of the sulcus principalis (prefrontal cortical area 46) of 16 (ventral) and 19 (dorsal) behaviorally tested female rhesus monkeys from 6 to 33 years of age. While total neuronal density does not change with age in either of these banks, there is a significant age-related reduction in the strength of microcolumns in both regions on the order of 40%. This likely reflects a subtle but definite loss of organization in the structure of the cortical microcolumn. The reduction in strength in ventral area 46 correlates with cognitive impairments in learning and memory while the reduction in dorsal area 46 does not. This result is congruent with published data attributing cognitive functions to ventral area 46 that are similar to our particular cognitive battery which does not optimally tap cognitive functions attributed to dorsal area 46. While the exact mechanisms underlying this loss of microcolumnar organization remain to be determined, it is plausible that they reflect age-related alterations in dendritic and/or axonal organization which alter connectivity and may contribute to age-related declines in cognitive performance.

  10. Neural markers of age-related reserve and decline in visual processing speed and visual short-term memory capacity

    DEFF Research Database (Denmark)

    Wiegand, Iris

    2013-01-01

    Attentional performance is assumed to be a major source of general cognitive abilities in older age. The present study aimed at identifying neural markers of preserved and declined basic visual attention functions in aging individuals. For groups of younger and older adults, we modeled general ca...

  11. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions

    Science.gov (United States)

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  12. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions.

    Science.gov (United States)

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons.

  13. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study

    DEFF Research Database (Denmark)

    Garde, E; Mortensen, Erik Lykke; Krabbe, K

    2000-01-01

    , but no participant scored more than 75% of maximum for deep white-matter hyperintensities. Neither type was related to the WAIS IQs of the 80-year assessment, but both were significantly associated with decline in performance IQ from age 50 to age 80 years (bivariate correlation coefficients 0.32, p=0.0087, and 0......, and they agreed to further WAIS testing at age 80, and cerebral MRI at age 80-82 (mean age 82.3 years). We scored separately the numbers of periventricular and deep white-matter hyperintensities. FINDINGS: Scores for periventricular hyperintensities in this sample included all possible degrees of severity.......28, p=0.0227, respectively). An analysis based on two WAIS subtests showed that the association between white-matter hyperintensities and cognitive impairment was significant only for cognitive decline in the decade 70-80 years. INTERPRETATION: Both periventricular and deep white-matter hyperintensities...

  14. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  15. A critical review of Vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease

    OpenAIRE

    Harrison, Fiona E

    2012-01-01

    Antioxidants in the diet have long been thought to confer some level of protection against the oxidative damage that is involved in the pathology of Alzheimer’s disease as well as general cognitive decline in normal aging. Nevertheless, support for this hypothesis in the literature is equivocal. In the case of vitamin C (ascorbic acid) in particular, lack of consideration of some of the specific features of vitamin C metabolism has led to studies in which classification of participants accord...

  16. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions

    Directory of Open Access Journals (Sweden)

    Oliveira TCG

    2014-02-01

    Full Text Available Thaís Cristina Galdino De Oliveira,1 Fernanda Cabral Soares,1 Liliane Dias E Dias De Macedo,1 Domingos Luiz Wanderley Picanço Diniz,1 Natáli Valim Oliver Bento-Torres,1,2 Cristovam Wanderley Picanço-Diniz1 1Laboratory of Investigations in Neurodgeneration and Infection, Biological Sciences Institute, University Hospital João de Barros Barreto, 2College of Physical Therapy and Occupational Therapy, Federal University of Pará, Belém, Brazil Abstract: The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I] or in communities with their families (noninstitutionalized [NI]. We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total. Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation, in the middle (after 24 sessions, and at the end (after 48 sessions of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion

  17. Age-related decline in dopamine transporter in human brain using PET with a new radioligand [18F]FE-PE2I

    International Nuclear Information System (INIS)

    Shingai, Yoshitoshi; Tateno, Amane; Arakawa, Ryosuke; Sakayori, Takeshi; Kim, WooChan; Okubo, Yoshiro; Suzuki, Hidenori

    2014-01-01

    Dopamine transporter (DAT) density is considered as a marker of pre-synaptic function. Numerous neuroimaging studies have consistently demonstrated an age-related decrease in DAT density in normal human brain. However, the precise degree of the regional decline is not yet clear. The purpose of this study was to evaluate the effect of the normal aging process on DAT densities in human-specific brain regions including the substantia nigra and thalamus using positron emission tomography (PET) with [ 18 F]FE-PE2I, a new PET radioligand with high affinity and selectivity for DAT. Thirty-six healthy volunteers ranging in age from 22 to 80 years were scanned with PET employing [ 18 F]FE-PE2I for measuring DAT densities. Region of interest (ROI)-based analysis was used, and ROIs were manually defined for the caudate, putamen, substantia nigra, thalamus, and cerebellar cortex. DAT binding was quantified using a simplified reference tissue model, and the cerebellum was used as reference region. Estimations of binding potential in the caudate, putamen, substantia nigra, and thalamus were individually regressed according to age using simple regression analysis. Estimates of DAT loss per decade were obtained using the values from the regression slopes. There were 7.6, 7.7, and 3.4% per-decade declines in DAT in the caudate, putamen, and substantia nigra, respectively. By contrast, there was no age-related decline of DAT in the thalamus. [ 18 F]FE-PE2I allowed reliable quantification of DAT, not only in the caudate and putamen but also in the substantia nigra. From the results, we demonstrated the age-related decline in the caudate and putamen as reported in previous studies, and additionally for those in the substantia nigra for the first time. (author)

  18. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    Science.gov (United States)

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  19. Gender-specific patterns in age-related decline in general health among Danish and Chinese: A cross-national comparative study

    DEFF Research Database (Denmark)

    Wu, Yili; Zhang, Dongfeng; Pang, Zengchang

    2012-01-01

    Aim:  Studies carried out in Western populations have shown age-related changes in multiple health domains together with gender-specific patterns. By focusing on five health domains, self-rated health, hand grip strength, sit-to-stand test, cognitive performance and depression, we examined the age....... Conclusion:  Our cross population analysis identified significant gender and population differences suggesting endogenous biological, physical and social environmental determinants in age-related decline in general health. Geriatr Gerontol Int 2011; ••: ••-••....... trajectories in general health in a cross-sectional Chinese sample representing the world's largest ethnic population and compare with Danish data that represent Western populations in developed countries. Methods:  Multiple regression models were fitted to compare patterns across genders and populations...

  20. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Higher serum cholesterol is associated with intensified age-related neural network decoupling and cognitive decline in early- to mid-life.

    Science.gov (United States)

    Spielberg, Jeffrey M; Sadeh, Naomi; Leritz, Elizabeth C; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Salat, David H

    2017-06-01

    Mounting evidence indicates that serum cholesterol and other risk factors for cardiovascular disease intensify normative trajectories of age-related cognitive decline. However, the neural mechanisms by which this occurs remain largely unknown. To understand the impact of cholesterol on brain networks, we applied graph theory to resting-state fMRI in a large sample of early- to mid-life Veterans (N = 206, Mean age  = 32). A network emerged (centered on the banks of the superior temporal sulcus) that evidenced age-related decoupling (i.e., decreased network connectivity with age), but only in participants with clinically-elevated total cholesterol (≥180 mg/dL). Crucially, decoupling in this network corresponded to greater day-to-day disability and mediated age-related declines in psychomotor speed. Finally, examination of network organization revealed a pattern of age-related dedifferentiation for the banks of the superior temporal sulcus, again present only with higher cholesterol. More specifically, age was related to decreasing within-module communication (indexed by Within-Module Degree Z-Score) and increasing between-module communication (indexed by Participation Coefficient), but only in participants with clinically-elevated cholesterol. Follow-up analyses indicated that all findings were driven by low-density lipoprotein (LDL) levels, rather than high-density lipoprotein (HDL) or triglycerides, which is interesting as LDL levels have been linked to increased risk for cardiovascular disease, whereas HDL levels appear inversely related to such disease. These findings provide novel insight into the deleterious effects of cholesterol on brain health and suggest that cholesterol accelerates the impact of age on neural trajectories by disrupting connectivity in circuits implicated in integrative processes and behavioral control. Hum Brain Mapp 38:3249-3261, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer's disease.

    Science.gov (United States)

    Carman, A J; Dacks, P A; Lane, R F; Shineman, D W; Fillit, H M

    2014-04-01

    Although nothing has been proven conclusively to protect against cognitive aging, Alzheimer's disease or related dementias, decades of research suggest that specific approaches including the consumption of coffee may be effective. While coffee and caffeine are known to enhance short-term memory and cognition, some limited research also suggests that long-term use may protect against cognitive decline or dementia. In vitro and pre-clinical animal models have identified plausible neuroprotective mechanisms of action of both caffeine and other bioactive components of coffee, though epidemiology has produced mixed results. Some studies suggest a protective association while others report no benefit. To our knowledge, no evidence has been gathered from randomized controlled trials. Although moderate consumption of caffeinated coffee is generally safe for healthy people, it may not be for everyone, since comorbidities and personal genetics influence potential benefits and risks. Future studies could include short-term clinical trials with biomarker outcomes to validate findings from pre-clinical models and improved epidemiological studies that incorporate more standardized methods of data collection and analysis. Given the enormous economic and emotional toll threatened by the current epidemic of Alzheimer's disease and other dementias, it is critically important to validate potential prevention strategies such as coffee and caffeine.

  3. Computer-Based Cognitive Programs for Improvement of Memory, Processing Speed and Executive Function during Age-Related Cognitive Decline: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Yan-kun Shao

    Full Text Available Several studies have assessed the effects of computer-based cognitive programs (CCP in the management of age-related cognitive decline, but the role of CCP remains controversial. Therefore, this systematic review evaluated the evidence on the efficacy of CCP for age-related cognitive decline in healthy older adults.Six electronic databases (through October 2014 were searched. The risk of bias was assessed using the Cochrane Collaboration tool. The standardized mean difference (SMD and 95% confidence intervals (CI of a random-effects model were calculated. The heterogeneity was assessed using the Cochran Q statistic and quantified with the I2 index.Twelve studies were included in the current review and were considered as moderate to high methodological quality. The aggregated results indicate that CCP improves memory performance (SMD, 0.31; 95% CI 0.16 to 0.45; p < 0.0001 and processing speed (SMD, 0.50; 95% CI 0.14 to 0.87; p = 0.007 but not executive function (SMD, -0.12; 95% CI -0.33 to 0.09; p = 0.27. Furthermore, there were long-term gains in memory performance (SMD, 0.59; 95% CI 0.13 to 1.05; p = 0.01.CCP may be a valid complementary and alternative therapy for age-related cognitive decline, especially for memory performance and processing speed. However, more studies with longer follow-ups are warranted to confirm the current findings.

  4. Preliminary development of a new individualised questionnaire measuring quality of life in older men with age-related hormonal decline: the A-RHDQoL

    Directory of Open Access Journals (Sweden)

    Giannoulis Manthos

    2003-10-01

    Full Text Available Abstract Background There is increasing interest in hormone replacement therapy to improve health and quality of life (QoL of older men with age-related decline in hormone levels. This paper reports the preliminary development and evaluation of the psychometric properties of a new individualised questionnaire, the A-RHDQoL, measuring perceived impact of age-related hormonal decline on QoL of older men. A-RHDQoL design was based on the HDQoL for people with growth hormone (GH deficiency and the ADDQoL (for diabetes. Methods Internal consistency reliability and some aspects of validity of the A-RHDQoL were investigated in a cross-sectional survey of 128 older men (age range: 64 – 80 yrs, being screened for inclusion in a trial of GH and testosterone (T replacement, and who completed the A-RHDQoL once. Respondents rated personally applicable life domains for importance and impact of their hormonal decline. A single overview item measured present QoL. Serum levels of Insulin-like Growth Factor-I and total T were measured. Results Of the 24 A-RHDQoL domains, 21 were rated as relevant and important for older men. All domains were perceived as negatively impacted by hormonal decline. The most negatively impacted domains were: memory (-4.54 ± 3.02, energy (-4.44 ± 2.49, sex life (-4.34 ± 3.08 and physical stamina (-4.29 ± 2.41, (maximum range -9 to +9. The shorter 21-domain A-RHDQoL had high internal consistency reliability (Cronbach's alpha coefficient = 0.935, N = 103 and applicable domains could be weighted and summed into an overall Average Weighted Impact score. The questionnaire was acceptable to the majority of respondents and content validity was good. The single overview item measuring present QoL correlated significantly with total T levels [r = 0.26, p Conclusion The new 21-item A-RHDQoL is an individualised questionnaire measuring perceived impact of age-related hormonal decline on the QoL of older men. The internal consistency

  5. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2012-10-01

    Full Text Available Abstract Background Increasing evidence shows an association between the use of vitamin D and improvement in age-related cognitive decline. In this study, we investigated the possible mechanisms involved in the neuroprotective effects of vitamin D on age-related brain changes and cognitive function. Methods Male F344 rats aged 20 months (old and 6 months (young were used and randomly assigned to either vitamin D supplementation or no supplementation (control. A total of n = 39 rats were used in the study. Rats were individually housed and the supplementation group received a subcutaneous injection of vitamin D (1, α25-dihydroxyvitamin D3 42 I.U./Kg for 21 days. Control animals received equal volume of normal saline. Behavioral testing in water maze and spontaneous object recognition tasks started on day 14. Levels of interleukin (IL-1β and IL-10 were quantified to assess inflammatory state. Also, beta amyloid (Aβ clearance and Aβ load were measured. Results Our results show that: (1 aged rats demonstrated significant learning and memory impairment overall compared to younger animals. However, the age-related decline in learning and memory was ameliorated by the supplementation of vitamin D. No vitamin D effect on learning and memory was seen in the young animals; 2 the pro-inflammatory cytokine IL-1β is significantly increased while the anti-inflammatory cytokine IL-10 is significantly decreased in the aged rats compared to the young animals; but this age-related change in inflammatory state was mitigated by vitamin D supplementation. No effects of vitamin D were seen on the IL-1β and IL-10 expression in the young rats; (3 vitamin D increased Aβ clearance and decreased amyloid burden in the aged rats while no significant difference was seen between the young animal groups. Conclusions Our data suggest that vitamin D supplementation modulated age-related increase in pro-inflammatory state and amyloid burden. It is possible that these

  6. Long-term moderate alcohol consumption does not exacerbate age-related cognitive decline in healthy, community-dwelling older adults

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2015-01-01

    Full Text Available Recent census data has found that roughly 40% of adults 65 years and older not only consume alcohol but also drink more of it than previous generations. Older drinkers are more vulnerable than younger counterparts to the psychoactive effects of alcohol due to natural biological changes that occur with aging. This study was specifically designed to measure the effect of long-term moderate alcohol consumption on cognitive health in older adult drinkers. An extensive battery of validated tests commonly used in aging and substance use literature was used to measure performance in specific cognitive domains, including working memory and attention. An age (young, old * alcohol consumption (light, moderate factorial study design was used to evaluate the main effects of age and alcohol consumption on cognitive performance. The focus of the study was then limited to light and moderate older drinkers, and whether or not long–term moderate alcohol consumption exacerbated age-related cognitive decline. No evidence was found to support the idea that long-term moderate alcohol consumption in older adults exacerbates age-related cognitive decline. Findings were specific to healthy community dwelling social drinkers in older age and they should not be generalized to individuals with other consumption patterns, like heavy drinkers, binge drinkers or ex-drinkers.

  7. Protective Role of Recent and Past Long-Term Physical Activity on Age-Related Cognitive Decline: The Moderating Effect of Sex.

    Science.gov (United States)

    Lopez-Fontana, Iréné; Castanier, Carole; Le Scanff, Christine; Perrot, Alexandra

    2018-06-13

    This study aimed to investigate if the impact of both recent and long-term physical activity on age-related cognitive decline would be modified by sex. One-hundred thirty-five men (N = 67) and women (N = 68) aged 18 to 80 years completed the Modifiable Activity Questionnaire and the Historical Leisure Activity Questionnaire. A composite score of cognitive functions was computed from five experimental tasks. Hierarchical regression analyses performed to test the moderating effect of recent physical activity on age-cognition relationship had not revealed significant result regardless of sex. Conversely, past long-term physical activity was found to slow down the age-related cognitive decline among women (β = 0.22, p = .03), but not men. The findings support a lifecourse approach in identifying determinants of cognitive aging and the importance of taking into account the moderating role of sex. This article presented potential explanations for these moderators and future avenues to explore.

  8. Learning to remember: Cognitive training-induced attenuation of age-related memory decline depends on sex and cognitive demand, and can transfer to untrained cognitive domains

    Science.gov (United States)

    Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.

    2014-01-01

    Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561

  9. Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference.

    Science.gov (United States)

    Sallard, Etienne; Spierer, Lucas; Ludwig, Catherine; Deiber, Marie-Pierre; Barral, Jérôme

    2014-02-01

    Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14-20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a 'kinesthetic' mechanism for UM and a 'visual imagery' mechanism for BM tapping movement.

  10. The fertility myth: Israeli students' knowledge regarding age-related fertility decline and late pregnancies in an era of assisted reproduction technology.

    Science.gov (United States)

    Hashiloni-Dolev, Yael; Kaplan, Amit; Shkedi-Rafid, Shiri

    2011-11-01

    As in many advanced societies, the age at first birth and the rate of post-menopausal pregnancies in Israel are constantly increasing. Since Israeli university students are the most likely population to postpone parenthood, this study aims at evaluating their awareness of: (i) women's age-related fertility decline; (ii) age-dependent success rates of IVF technology and (iii) medical procedures allowing late and post-menopausal pregnancies. Israeli undergraduate students (n= 410), attending four academic institutions and studying in different fields, completed a structured questionnaire in the 2009/2010 academic year. Students overestimated women's chances of spontaneous pregnancy in all age groups, whereas women's chances of achieving a live birth following IVF treatment were overestimated only for ages 40 years and above. Regarding both spontaneous and IVF pregnancies, success rates of very late pregnancies (beyond 45 years and after menopause) were greatly overestimated. Only 11% of the students knew that genetic motherhood is unlikely to be achieved from the mid-40s onward, unless using oocytes frozen in advance. The findings demonstrate entrenched fertility myths among Israeli students, particularly the false belief in the possibility of late (beyond 35 years) and very late genetic motherhood. This can be explained by technological 'hype' and favorable media coverage of very late pregnancies. Since this may culminate in involuntary childlessness, it is highly important to increase the awareness of the Israeli public on the subject of fertility. However, as our sample is not representative of the Israeli student population, our findings should be tested in future studies.

  11. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye.

    Science.gov (United States)

    Patel, Roshni; Zhu, Meifang; Robertson, Danielle M

    2018-02-06

    The human corneal epithelium expresses both the insulin-like growth factor type 1 receptor (IGF-1R) and the IGF-1R/insulin receptor (INSR) hybrid. Despite the previous identification of IGF-1 in human tear fluid, little is known regarding the regulation of IGF-1 in tear fluid and its role in corneal epithelial homeostasis. In the present study, we investigated the impact of biological parameters on the concentration of human tear levels of IGF-1. Tear levels of IGF-1 were measured in 41 healthy, human volunteers without any reported symptoms of dry eye. All volunteers underwent standard biomicroscopic examination of the cornea and tear film. In a subgroup of volunteers, corneal staining with sodium fluorescein, tear film break up time and tear production using a Schirmer's test strip were measured to assess clinical signs of dry eye. Tears were collected from the inferior tear meniscus using glass microcapillary tubes and IGF-1 levels were measured using a solid phase sandwich ELISA. Tear levels of IGF-1 were highest in young adults and significantly decreased in older adults (P = 0.003). There were no differences in tear IGF-1 between males and females (P = 0.628). Tear IGF-1 levels were correlated with tear film break up time (R = 0.738) and tear production (R = 0.826). These data indicate that there is a progressive decline in tear IGF-1 due to aging that is associated with clinical signs of dry eye. This effect is likely due to age-related changes in the lacrimal gland. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Divergence of Age-Related Differences in Social-Communication: Improvements for Typically Developing Youth but Declines for Youth with Autism Spectrum Disorder

    Science.gov (United States)

    Wallace, Gregory L.; Dudley, Katerina; Anthony, Laura; Pugliese, Cara E.; Orionzi, Bako; Clasen, Liv; Lee, Nancy Raitano; Giedd, Jay N.; Martin, Alex; Raznahan, Armin; Kenworthy, Lauren

    2017-01-01

    Although social-communication difficulties and repetitive behaviors are hallmark features of autism spectrum disorder (ASD) and persist across the lifespan, very few studies have compared age-related differences in these behaviors between youth with ASD and same-age typically developing (TD) peers. We examined this issue using SRS-2 (Social…

  13. Hyposalivation and Poor Dental Health Status Are Potential Correlates of Age-Related Cognitive Decline in Late Midlife in Danish Men

    DEFF Research Database (Denmark)

    Sorensen, Christiane E.; Hansen, Naja L.; Mortensen, Erik L.

    2018-01-01

    and nocturnal xerostomia were associated with daily intake of medication and alcohol. Discussion: Overall, hyposalivation, xerostomia and poor dental status distinguished a group of men displaying relative decline in cognitive performance from a group of men without evidence of cognitive decline. Thus...... and salivary gland hypofunction were tested in two groups of middle-aged men in late midlife, who differed substantially with respect to their midlife performance in verbal intelligence when compared with their performance in young adulthood. Materials and Methods: Participants (n = 193) were recruited from...... the Danish Metropolit Cohort of men born in 1953. Based on their individual change in performance in two previously administered intelligence tests, they were allocated to one group of positive and one group of negative outliers in midlife cognition scores, indicating no decline versus decline in test...

  14. Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women.

    NARCIS (Netherlands)

    Zonneveld, P. van; Scheffer, G.J.; Broekmans, F.J.; Blankenstein, M.A.; Jong, F.H. de; Looman, C.W.; Habbema, J.D.F.; Velde, E.R. te

    2003-01-01

    BACKGROUND: The cause of declining fertility with age, in women who still have regular menstrual cycles, is not clear. METHODS: Follicle development, endometrial growth and hormonal patterns were evaluated in cycles of older women (aged 41-46 years; n = 26) who previously were normally fertile, and

  15. Building a better hormone therapy?: How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline

    Science.gov (United States)

    Frick, Karyn M.

    2012-01-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women. PMID:22289043

  16. Olfactory Memory

    Science.gov (United States)

    Eichenbaum, Howard; Robitsek, R. Jonathan

    2009-01-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electro-physiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory. PMID:19686208

  17. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors and two forms of semantic memory (cued and free identification of odors. Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people.

  18. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People.

    Science.gov (United States)

    Sorokowska, Agnieszka; Karwowski, Maciej

    2017-01-01

    Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people.

  19. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People

    Science.gov (United States)

    Sorokowska, Agnieszka; Karwowski, Maciej

    2017-01-01

    Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people. PMID:29276494

  20. Effect of irradiation on olfactory function

    International Nuclear Information System (INIS)

    Aiba, Tsunemasa; Sugimoto, Midori; Matsuda, Yasuaki; Sugiura, Yoshikazu; Nakai, Yoshiaki; Nakajima, Toshifumi

    1990-01-01

    The effects of therapeutic irradiation on olfactory function were investigated in 20 patients who received radiation therapy because of a malignant tumor of the nose or paranasal sinuses. The standard olfaction test with a T and T olfactometer and an intravenous olfaction test were given before the radiation therapy, during the period of radiation therapy and 1, 3, 6 and 12 months or more later. Five patients whose olfactory epithelium was outside the radiation field showed no damage to olfactory function. The olfactory function of the other 15 patients whose olfactory epithelium had been exposed to radiation was not obviously changed or damaged at the time of radiation therapy. However, 6 months after irradiation, some patients showed a decline in olfactory function, and after 12 months, 4 of 7 patients showed severe damage to olfactory function. These results suggest that a therapeutic dose of irradiation will not cause severe damage to the olfactory function during the period of radiation therapy, but could cause delayed olfactory disorders in some patients after a few years. These olfactory disorders might be caused by damage to or degeneration of the olfactory epithelium or olfactory nerve. (author)

  1. [Presbycusis - Age Related Hearing Loss].

    Science.gov (United States)

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  3. Age-related hearing loss

    Science.gov (United States)

    ... grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following factors contribute to age-related hearing loss: Family history (age-related hearing loss tends to run in ...

  4. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.

    Science.gov (United States)

    Lee, Anderson C; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-10-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.

  5. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  6. Age-related declines of stability in visual perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo

    2014-12-15

    One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessment of Olfactory Memory in Olfactory Dysfunction.

    Science.gov (United States)

    Kollndorfer, Kathrin; Reichert, Johanna; Braunsteiner, Josephine; Schöpf, Veronika

    2017-01-01

    To assess all clinically relevant components of olfactory perception, examinations for olfactory sensitivity, discrimination, and identification are performed. Besides the standard perceptual test battery, episodic olfactory memory might offer additional information about olfactory abilities relative to these standard clinical tests. As both olfactory deficits and memory deficits are early symptoms in neurodegenerative disorders, olfactory memory may be of particular interest. However, to date little is known about episodic olfactory memory performance in patients with decreased olfactory function. This study includes the investigation of olfactory memory performance in 14 hyposmic patients (8 female, mean age 52.6 years) completing two episodic odor memory tests (Sniffin' Test of Odor Memory and Odor Memory Test). To control for a general impairment in memory function, a verbal and a figural memory test were carried out. A regression model with multiple predictors was calculated for both odor memory tests separately. Odor identification was identified as the only significant predictor for both odor memory tasks. From our results, we conclude that currently available olfactory memory tests are highly influenced by odor identification abilities, implying the need for the development and validation of additional tests in this field which could serve as additional olfactory perception variables for clinical assessment.

  8. Age-Related Macular Degeneration.

    Science.gov (United States)

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Age-related oral changes.

    LENUS (Irish Health Repository)

    Mckenna, Gerald

    2010-10-01

    Age-related oral changes are seen in the oral hard and soft tissues as well as in bone, the temporomandibular joints and the oral mucosa. As older patients retain their natural teeth for longer, the clinical picture consists of normal physiological age changes in combination with pathological and iatrogenic effects. Clinical Relevance: With an ageing population retaining more of its natural teeth for longer, dental professionals should expect to observe oral age changes more frequently.

  10. Expertise and age-related changes in components of intelligence.

    Science.gov (United States)

    Masunaga, H; Horn, J

    2001-06-01

    In a sample of 263 male GO players at 48 levels of expertise and ranging from 18 to 78 years of age, it was found that factors of expertise deductive reasoning (EDR) and expertise working memory (EWM) were independent of factors of fluid reasoning (Gf) and short-term working memory (STWM) that, along with cognitive speed (Gs), have been found to characterize decline of intelligence in adulthood. The main effects of analyses of cross-sectional age differences indicated age-related decline in EDR and EWM as well as in Gf, STWM, and Gs. However, interaction and partialing analyses indicated that decline in EDR and EWM decreased to no decline with increase in level of expertise. The results thus suggest that with increase in factors known to raise the level of expertise--particularly, intensive, well-designed practice--there may be no age-related decline in the intelligence that is measured in the abilities of expertise.

  11. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  12. Age-related macular degeneration

    DEFF Research Database (Denmark)

    la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst

    2002-01-01

    Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian....... Smoking is probably also a risk factor. Preventive strategies using macular laser photocoagulation are under investigation, but their efficacy in preventing visual loss is as yet unproven. There is no treatment with proven efficacy for geographic atrophy. Optimal treatment for exudative AMD requires...

  13. Age-related macular degeneration.

    Science.gov (United States)

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease. © 2013 Pharmacotherapy Publications, Inc.

  14. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    Context: Age-related bone loss is associated with progressive changes in bone remodeling characterized by decreased bone formation relative to bone resorption. Both trabecular and periosteal bone formation decline with age in both sexes, which contributes to bone fragility and increased risk of f...

  15. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    Science.gov (United States)

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  16. Age-related synaptic loss of the medial olivocochlear efferent innervation

    Directory of Open Access Journals (Sweden)

    Schrader Angela

    2010-11-01

    Full Text Available Abstract Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis, a major cause of which is the loss of outer hair cells (OHCs and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP, under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.

  17. Sarcopenia and Age-Related Endocrine Function

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2012-01-01

    Full Text Available Sarcopenia, the age-related loss of skeletal muscle, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, and an increased risk of fall-related injuries. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, numerous targets exist for drug discovery. In this paper, we summarize the current understanding of the endocrine contribution to sarcopenia and provide an update on hormonal intervention to try to improve endocrine defects. Myostatin inhibition seems to be the most interesting strategy for attenuating sarcopenia other than resistance training with amino acid supplementation. Testosterone supplementation in large amounts and at low frequency improves muscle defects with aging but has several side effects. Although IGF-I is a potent regulator of muscle mass, its therapeutic use has not had a positive effect probably due to local IGF-I resistance. Treatment with ghrelin may ameliorate the muscle atrophy elicited by age-dependent decreases in growth hormone. Ghrelin is an interesting candidate because it is orally active, avoiding the need for injections. A more comprehensive knowledge of vitamin-D-related mechanisms is needed to utilize this nutrient to prevent sarcopenia.

  18. Idiom understanding in adulthood: examining age-related differences.

    Science.gov (United States)

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults.

  19. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  20. Age-Related Differences in Multiple Task Monitoring

    OpenAIRE

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men excee...

  1. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  2. Changes in olfactory bulb volume following lateralized olfactory training.

    Science.gov (United States)

    Negoias, S; Pietsch, K; Hummel, T

    2017-08-01

    Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.

  3. [Impact of thymic function in age-related immune deterioration].

    Science.gov (United States)

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin.

    Science.gov (United States)

    Lietzau, Grazyna; Davidsson, William; Östenson, Claes-Göran; Chiazza, Fausto; Nathanson, David; Pintana, Hiranya; Skogsberg, Josefin; Klein, Thomas; Nyström, Thomas; Darsalia, Vladimer; Patrone, Cesare

    2018-02-23

    Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms.The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system.Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons.We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity.The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for

  5. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    overexpressing CREB had increased excitability. This indicates that overexpression of CREB was sufficient to rescue both the cognitive deficits, and the biophysical dysfunction normally seen in aged animals. Together, the results from this thesis identify CREB as a new mechanism underlying age-related cognitive deficits. This not only furthers our understanding of how cognitive processes change with age, but also suggests that increasing activity of CREB or its downstream transcription targets may be a novel therapeutic for the treatment of age-related cognitive decline.

  6. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  7. Age-related changes in contextual associative learning.

    Science.gov (United States)

    Luu, Trinh T; Pirogovsky, Eva; Gilbert, Paul E

    2008-01-01

    The hippocampus plays a critical role in processing contextual information. Although age-related changes in the hippocampus are well documented in humans, nonhuman primates, and rodents, few studies have examined contextual learning deficits in old rats. The present study investigated age-related differences in contextual associative learning in young (6 mo) and old (24 mo) rats using olfactory stimuli. Stimuli consisted of common odors mixed in sand and placed in clear plastic cups. Testing was conducted in two boxes that represented two different contexts (Context 1 and Context 2). The contexts varied based on environmental features of the box such as color (black vs. white), visual cues on the walls of the box, and flooring texture. Each rat was simultaneously presented with two cups, one filled with Odor A and one filled with Odor B in each context. In Context 1, the rat received a food reward for digging in the cup containing Odor A, but did not receive a food reward for digging in the cup containing Odor B. In Context 2, the rat was rewarded for digging in the cup containing Odor B, but did receive a reward for digging in the cup containing Odor A. Therefore, the rat learned to associate Context 1 with Odor A and Context 2 with Odor B. The rat was tested for eight days using the same odor problem throughout all days of testing. The results showed no significant difference between young and old rats on the first two days of testing; however, young rats significantly outperformed old rats on Day 3. Young rats continued to maintain superior performance compared to old rats on Days 4-8. The results suggest that aging results in functional impairments in brain regions that support memory for associations between specific cues and their respective context.

  8. Age-related variations of visuo-motor adaptation beyond explicit knowledge

    Directory of Open Access Journals (Sweden)

    Herbert eHeuer

    2014-07-01

    Full Text Available Visuo-motor adaptation suffers at older working age. The age-related decline of behavioural adjustments is accompanied by reduced explicit knowledge of the visuo-motor transformation. It disappears when explicit knowledge is kept constant across the age range, except for particularly high levels of explicit knowledge. According to these findings, at older adult age both the acquisition of explicit knowledge and its application for strategic corrections become poorer. Recently it has been posited that visuo-motor adaptation can involve model-free reinforcement mechanisms of learning in addition to model-based mechanisms. We tested whether age-related declines of reinforcement learning can also contribute to the age-related changes of visuo-motor adaptation. Therefore we enhanced the contribution of reinforcement learning to visuo-motor adaptation by way of introducing salient markers of success and failure during practice. With such modified practice conditions, there were residual age-related variations of behavioural adjustments at all levels of explicit knowledge, even when explicit knowledge was absent. The residual age-related variations were observed for practiced target directions only, but not for new target directions. These findings are consistent with an age-related decline of model-free reinforcement learning as a third factor in the age-related decline of visuo-motor adaptation. Under practice conditions, which spur model-free reward-based learning, this factor adds to the decrements of the acquisition of explicit knowledge and its use for strategic corrections.

  9. Age-related effects in the neocortical organization of chimpanzees

    DEFF Research Database (Denmark)

    Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine

    2014-01-01

    chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening...... of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non......Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray...

  10. Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

    OpenAIRE

    Lee, Anderson C.; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-01-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)—2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3–27 ...

  11. Age-Related White Matter Changes

    Directory of Open Access Journals (Sweden)

    Yun Yun Xiong

    2011-01-01

    Full Text Available Age-related white matter changes (WMC are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC.

  12. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Michelle E.Fullard; James F.Morley; John E.Duda

    2017-01-01

    Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years,reflecting early deposition of Lewy pathology,the histologic hallmark of PD,in the olfactory bulb.Clinical tests are available that allow for the rapid characterization of olfactory dysfunction,including tests of odor identification,discrimination,detection,and recognition thresholds,memory,and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations.The high prevalence of olfactory impairment,along with the ease and low cost of assessment,has fostered great interest in olfaction as a potential biomarker for PD.Hyposmia may help differentiate PD from other causes of parkinsonism,and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways.Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline.In this article,we summarize the existing literature on olfaction in PD,focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.

  13. The period-age relation for cepheids

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1978-01-01

    The list of 119 cepheid-members of 55 clusters and associations of the Magellanic Clouds, the Galaxy, and M31 is given. The period-age relation is found from the data on 64 cepheids in 29 clusters for which the age determinations are available, the ages of extragalactic clusters were determined mainly from their integral colours. The U-B colours are found to be of much better age parameters than the B-V ones. The composite period-age relation agrees well with the theoretical one. The observed dispersion of the period-age relation leads to an estimate of the age dispersion about 1x10 7 years in the associations. Some peculiarities of the cepheids with the shortest periods amongst others in the same clusters are probably explained if they are overtone pulsators. The period-age relation may be used for an investigation of the recent history of star formation in the galaxies. This relation allows to determine the age gradient across the spiral arm in M31 which is in agreement with the density wave theory predictions. The distribution of cepheids in our Galaxy and neighbouring galaxies is consistent with the conception of star formation lasting for some dozen million years in cells with a dimension of some hundreds of parsecs

  14. Driving and Age-Related Macular Degeneration

    OpenAIRE

    Owsley, Cynthia; McGwin, Gerald

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research.

  15. What Is Age-Related Macular Degeneration?

    Science.gov (United States)

    ... Eye Health / Eye Health A-Z Age-Related Macular Degeneration Sections What Is Macular Degeneration? How is AMD ... What Does Macular Degeneration Look Like? What Is Macular Degeneration? Leer en Español: ¿Qué es la degeneración macular ...

  16. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  17. Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations.

    Science.gov (United States)

    Frasnelli, J; Schuster, B; Hummel, T

    2010-01-14

    Next to olfaction and gustation, the trigeminal system represents a third chemosensory system. These senses are interconnected; a loss of olfactory function also leads to a reduced sensitivity in the trigeminal chemosensory system. However, most studies so far focused on comparing trigeminal sensitivity to suprathreshold stimuli; much less data is available with regard to trigeminal sensitivity in the perithreshold range. Therefore we assessed detection thresholds for CO(2), a relatively pure trigeminal stimulus in controls and in patients with olfactory dysfunction (OD). We could show that OD patients exhibit higher detection thresholds than controls. In addition, we were able to explore the effects of different etiologies of smell loss on trigeminal detection thresholds. We could show that in younger subjects, patients suffering from olfactory loss due to head trauma are more severely impaired with regard to their trigeminal sensitivity than patients with isolated congenital anosmia. In older patients, we could not observe any differences between different etiologies, probably due to the well known age-related decrease of trigeminal sensitivity. Furthermore we could show that a betterment of the OD was accompanied by decreased thresholds. This was most evident in patients with postviral OD. In conclusion, factors such as age, olfactory status and etiology of olfactory disorder can affect responsiveness to perithreshold trigeminal chemosensory stimuli. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe.

    Science.gov (United States)

    Twick, Isabell; Lee, John Anthony; Ramaswami, Mani

    2014-01-01

    A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory. © 2014 Elsevier B.V. All rights reserved.

  19. Interventions for age-related diseases

    DEFF Research Database (Denmark)

    Figueira, Inês; Fernandes, Adelaide; Mladenovic Djordjevic, Aleksandra

    2016-01-01

    Over 60% of people aged over 65 are affected by multiple morbidities, which are more difficult to treat, generate increased healthcare costs and lead to poor quality of life compared to individual diseases. With the number of older people steadily increasing this presents a societal challenge. Age...... is the major risk factor for age-related diseases and recent research developments have led to the proposal that pharmacological interventions targeting common mechanisms of ageing may be able to delay the onset of multimorbidity. Here we review the state of the knowledge of multimorbidity, appraise...... the available evidence supporting the role of mechanisms of ageing in the development of the most common age-related diseases and assess potential molecules that may successfully target those key mechanisms....

  20. Prevention of age-related macular degeneration.

    Science.gov (United States)

    Wong, Ian Yat Hin; Koo, Simon Chi Yan; Chan, Clement Wai Nang

    2011-02-01

    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula.

  1. Immunology of age-related macular degeneration

    Science.gov (United States)

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  2. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  3. Age-Related Changes in Visual Pseudoneglect

    Science.gov (United States)

    Schmitz, Remy; Peigneux, Philippe

    2011-01-01

    Pseudoneglect is a slight but consistent leftward attentional bias commonly observed in healthy young populations, purportedly explained by right hemispheric dominance. It has been suggested that normal aging might be associated with a decline of the right hemisphere. According to this hypothesis, a few studies have shown that elderly tend to…

  4. Age-related hair pigment loss.

    Science.gov (United States)

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. © 2015 S. Karger AG, Basel.

  5. Risk factors for age-related maculopathy.

    Science.gov (United States)

    Connell, Paul P; Keane, Pearse A; O'Neill, Evelyn C; Altaie, Rasha W; Loane, Edward; Neelam, Kumari; Nolan, John M; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  6. Risk Factors for Age-Related Maculopathy

    Directory of Open Access Journals (Sweden)

    Paul P. Connell

    2009-01-01

    Full Text Available Age-related maculopathy (ARM is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  7. Psychophysical function in age-related maculopathy.

    LENUS (Irish Health Repository)

    Neelam, Kumari

    2012-02-01

    Age-related macular degeneration (AMD), the late stage of age-related maculopathy (ARM), is the leading cause of blind registration in developed countries. The visual loss in AMD occurs due to dysfunction and death of photoreceptors (rods and cones) secondary to an atrophic or a neovascular event. The psychophysical tests of vision, which depend on the functional status of the photoreceptors, may detect subtle alterations in the macula before morphological fundus changes are apparent ophthalmoscopically, and before traditional measures of visual acuity exhibit deterioration, and may be a useful tool for assessing and monitoring patients with ARM. Furthermore, worsening of these visual functions over time may reflect disease progression, and some of these, alone or in combination with other parameters, may act as a prognostic indicator for identifying eyes at risk for developing neovascular AMD. Lastly, psychophysical tests often correlate with subjective and relatively undefined symptoms in patients with early ARM, and may reflect limitation of daily activities for ARM patients. However, clinical studies investigating psychophysical function have largely been cross-sectional in nature, with small sample sizes, and lack consistency in terms of the grading and classification of ARM. This article aims to comprehensively review the literature germane to psychophysical tests in ARM, and to furnish the reader with an insight into this complex area of research.

  8. Risk factors for age-related maculopathy.

    LENUS (Irish Health Repository)

    Connell, Paul P

    2012-02-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715\\/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  9. Age-related differences in multiple task monitoring.

    Science.gov (United States)

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  10. Age-related differences in multiple task monitoring.

    Directory of Open Access Journals (Sweden)

    Ivo Todorov

    Full Text Available Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  11. Age-related motor unit remodeling in the Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar

    2015-01-01

    Limited studies exist on the use of surface electromyogram (EMG) signal features to detect age-related motor unit remodeling in the Tibialis Anterior. Motor unit remodeling leads to declined muscle strength and force steadiness during submaximal contractions which are factors for risk of falls in the elderly. This study investigated the remodeling phenomena in the Tibialis Anterior using sample entropy and higher order statistics. Eighteen young (26.1 ± 2.9 years) and twelve elderly (68.7 ± 9.0 years) participants performed isometric dorsiflexion of the ankle at 20% maximal voluntary contraction (MVC) and their Tibialis Anterior (TA) EMG was recorded. Sample entropy, Gaussianity and Linearity Test statistics were calculated from the recorded EMG for each MVC. Shapiro-Wilk test was used to determine normality, and either a two-tail student t-test or Wilcoxon rank sum test was performed to determine significant difference in the EMG features between the young and old cohorts. Results show age-related motor unit remodeling to be depicted by decreased sample entropy (p <; 0.1), increased non-Gaussianity (p <; 0.05) and lesser degree of linearity in the elderly. This is due to the increased sparsity of the MUAPs as a result of the denervation-reinnervation process, and the decrease in total number of motor units.

  12. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Reduction of Glucose Metabolism in Olfactory Bulb is an Earlier Alzheimer's Disease-related Biomarker in 5XFAD Mice

    Directory of Open Access Journals (Sweden)

    Nai-An Xiao

    2015-01-01

    Conclusions: The decline of (18F-FDG uptake in the olfactory bulb occurs earlier than other incidents, serving as an earlier in vivo biological marker of AD in 5XFAD mice and making early diagnosis of AD possibly.

  14. Olfactory memory in the old and very old: relations to episodic and semantic memory and APOE genotype.

    Science.gov (United States)

    Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J

    2016-02-01

    The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Age-related perspectives and emotion processing.

    Science.gov (United States)

    Lynchard, Nicholas A; Radvansky, Gabriel A

    2012-12-01

    Emotion is processed differently in younger and older adults. Older adults show a positivity effect, whereas younger adults show a negativity effect. Socioemotional selectivity theory suggests that these effects can be elicited in any age group when age-related perspectives are manipulated. To examine this, younger and older adults were oriented to actual and age-contrasting possible selves. Emotion activations were assessed using lexical decision. In line with socioemotional selectivity theory, shifts in emotion orientation varied according to perspective, with both younger and older adults showing a negativity effect when a younger adult perspective was taken and a positivity effect when an older adult perspective was taken. 2013 APA, all rights reserved

  16. Olfactory dysfunction in neuromyelitis optica spectrum disorders

    NARCIS (Netherlands)

    Zhang, L.J.; Zhao, N.; Fu, Y.; Zhang, D.Q.; Wang, J.; Qin, W.; Zhang, N.N.N.; Wood, K.; Liu, Y.; Yu, C.S.; Shi, F.D.; Yang, L.

    2015-01-01

    Few data were available for the understanding of olfactory function in neuromyelitis optica spectrum disorders (NMOSDs). The aims of our study were to investigate the incidence of olfactory dysfunction and characterize olfactory structures, using MRI, in patients with NMOSDs. Olfactory function was

  17. Olfactory impairment is related to REM sleep deprivation in rotenone model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Mariana F. Aurich

    Full Text Available Introduction: Olfactory dysfunction affects about 85-90% of Parkinson's disease (PD patients with severe deterioration in the ability of discriminate several types of odors. In addition, studies reported declines in olfactory performances during a short period of sleep deprivation. Besides, PD is also known to strongly affect the occurrence and maintenance of rapid eye movement (REM sleep. Methods: Therefore, we investigated the mechanisms involved on discrimination of a social odor (dependent on the vomeronasal system and a non-social odor (related to the main olfactory pathway in the rotenone model of PD. Also, a concomitant impairment in REM sleep was inflicted with the introduction of two periods (24 or 48 h of REM sleep deprivation (REMSD. Rotenone promoted a remarkable olfactory impairment in both social and non-social odors, with a notable modulation induced by 24 h of REMSD for the non-social odor. Results: Our findings demonstrated the occurrence of a strong association between the density of nigral TH-ir neurons and the olfactory discrimination capacity for both odorant stimuli. Specifically, the rotenone-induced decrease of these neurons tends to elicit reductions in the olfactory discrimination ability. Conclusions: These results are consistent with the participation of the nigrostriatal dopaminergic system mainly in the olfactory discrimination of a non-social odor, probably through the main olfactory pathway. Such involvement may have produce relevant impact in the preclinical abnormalities found in PD patients.

  18. Immunocytochemistry of the olfactory marker protein.

    Science.gov (United States)

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  19. Gender Differences in Age-Related Striatal Dopamine Depletion in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jae Jung Lee

    2015-09-01

    Full Text Available Objective Gender differences are a well-known clinical characteristic of Parkinson’s disease (PD. In-vivo imaging studies demonstrated that women have greater striatal dopamine transporter (DAT activity than do men, both in the normal population and in PD patients. We hypothesize that women exhibit more rapid aging-related striatal DAT reduction than do men, as the potential neuroprotective effect of estrogen wanes with age. Methods This study included 307 de novo PD patients (152 men and 155 women who underwent DAT scans for an initial diagnostic work-up. Gender differences in age-related DAT decline were assessed in striatal sub-regions using linear regression analysis. Results Female patients exhibited greater DAT activity compared with male patients in all striatal sub-regions. The linear regression analysis revealed that age-related DAT decline was greater in the anterior and posterior caudate, and the anterior putamen in women compared with men; we did not observe this difference in other sub-regions. Conclusions This study demonstrated the presence of gender differences in age-related DAT decline in striatal sub-regions, particularly in the antero-dorsal striatum, in patients with PD, presumably due to aging-related decrease in estrogen. Because this difference was not observed in the sensorimotor striatum, this finding also suggests that women may not have a greater capacity to tolerate PD pathogenesis than do men.

  20. Adaptation to Low Vision Caused by Age-Related Macular Degeneration: A Case Study

    Science.gov (United States)

    Smith, Theresa Marie

    2008-01-01

    One in eight Americans aged 65 and older has an eye disease resulting in low vision, and more women than men are visually impaired, mainly because women live longer. Age-related visual impairments are an indicator of a decline in activities of daily living and self-help skills. The top eye conditions that affect older adults are macular…

  1. Improvement in age-related cognitive functions and life expectancy by ketogenic diets

    DEFF Research Database (Denmark)

    Astrup, Arne; Hjorth, Mads Fiil

    2017-01-01

    Rodent studies have indicated that low-carbohydrate diets prevent age-related cognitive decline and extend lifespan due to increased circulating levels of ketone bodies. A possible physiological mechanism for how ketone bodies exert this effect might be by improving central nervous system insulin...

  2. Age-related changes in mastication.

    Science.gov (United States)

    Peyron, M A; Woda, A; Bourdiol, P; Hennequin, M

    2017-04-01

    The paper reviews human mastication, focusing on its age-related changes. The first part describes mastication adaptation in young healthy individuals. Adaptation to obtain a food bolus ready to be swallowed relies on variations in number of cycles, muscle strength and volume of emitted saliva. As a result, the food bolus displays granulometric and rheological properties, the values of which are maintained within the adaptive range of deglutition. The second part concerns healthy ageing. Some mastication parameters are slightly modified by age, but ageing itself does not impair mastication, as the adaptation possibilities remain operant. The third part reports on very aged subjects, who display frequent systemic or local diseases. Local and/or general diseases such as tooth loss, salivary defect, or motor impairment are then indistinguishably superimposed on the effects of very old age. The resulting impaired function increases the risk of aspiration and choking. Lastly, the consequences for eating behaviour and nutrition are evoked. © 2016 John Wiley & Sons Ltd.

  3. Radiation therapy: age-related macular degeneration.

    Science.gov (United States)

    Mendez, Carlos A Medina; Ehlers, Justis P

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of severe irreversible vision loss in patients over the age of 50 years in the developed world. Neovascular AMD (NVAMD) is responsible for 90% of the cases with severe visual loss. In the last decade, the treatment paradigm for NVAMD has been transformed by the advent of anti-vascular endothelial growth factor therapy. Despite the excellent results of anti-vascular endothelial growth factor therapy, frequent injections remain a necessity for most patients. The burden of these frequent visits as well as the cumulative risks of indefinite intravitreal injections demand continued pursuit of more enduring therapy that provides similar functional results. Radiotherapy has been studied for two decades as a potential therapy for NVAMD. Because of its antiangiogenic properties, radiation therapy remains a promising potential adjunctive resource for the treatment of choroidal neovascularization secondary to NVAMD. This review considers the past, present and future of radiation as a treatment or combination treatment of NVAMD. Copyright © 2013 S. Karger AG, Basel.

  4. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  5. Radiotherapy in age-related macula degeneration

    International Nuclear Information System (INIS)

    Gripp, Stephan; Stammen, Johannes; Petersen, Claudia; Hartmann, Axel; Willers, Reinhart; Althaus, Christoph

    2002-01-01

    Purpose: To ascertain the benefit from radiotherapy in age-related macula degeneration in a single-arm longitudinal study. Methods and Materials: From 1997 to 1998, 39 patients with occult and 33 patients with classic choroidal neovascularization (CNV) were irradiated with 16 Gy. Fluorescein angiography and measurements of visual acuity were performed before and 3, 6, and 12 months after irradiation. Results: Complete follow-up data for 1 year were available from 69 patients. The mean patient age was 72 years (range 49-92). Vision decreased in 43, was stable in 18, and improved in 8 cases. The mean vision deteriorated significantly (p=0.02, Wilcoxon test), particularly within the first 3 months. Patients with occult CNV did significantly better than did those with classic CNV (p=0.03). The proportion of patients retaining vision ≥0.2 fell from 65% to 42% (p <0.01), for classic and occult CNV from 50% to 23%, and for occult CNV from 77% to 56% (p<0.02), respectively. CNV size increased in 30 patients and was stable in 38. Neither age (p=0.17) nor gender (p=0.21, chi-square test) influenced prognosis. Four patients reported transitional complaints. Conclusion: Low-dose fractionated radiotherapy with 16 Gy is well tolerated. However, vision and reading ability were not preserved in most patients

  6. Age-related hearing loss or presbycusis.

    Science.gov (United States)

    Huang, Qi; Tang, Jianguo

    2010-08-01

    Aging is a natural consequence of a society developing process. Although many adults retain good hearing as they aging, hearing loss related with age-presbycusis which can vary in severity from mild to substantial is common among elderly persons. There are a number of pathophysiological processes underlying age-related changes in the auditory system as well as in the central nervous systems. Many studies have been dedicated to the illustration of risk factors accumulating presbycusis such as heritability, environment factors, medical conditions, free radical (reactive oxygen species, ROS) and damage of mitochondrial DNA. Left untreated, presbycusis can not only lead sufferers to reduced quality of life, isolation, dependence and frustration, but also affect the healthy people around. These can be partly corrected using hearing aids, but it is not enough, more and more strategies of treatment based on the findings associating with presbycusis should be added rather than using single hearing aids. We review here the pathophysiology; heritability, susceptibility genes and other risk factors including environmental, medical, especially free radical (ROS) and damage of mitochondrial DNA; and some strategies of treatment, as well as promising rehabilitations associating with presbycusis.

  7. Age related macular degeneration and visual disability.

    Science.gov (United States)

    Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro

    2011-02-01

    Age-related macular degeneration (AMD) is the leading cause of central blindness or low vision among the elderly in industrialized countries. AMD is caused by a combination of genetic and environmental factors. Among modifiable environmental risk factors, cigarette smoking has been associated with both the dry and wet forms of AMD and may increase the likelihood of worsening pre-existing AMD. Despite advances, the treatment of AMD has limitations and affected patients are often referred for low vision rehabilitation to help them cope with their remaining eyesight. The characteristic visual impairment for both forms of AMD is loss of central vision (central scotoma). This loss results in severe difficulties with reading that may be only partly compensated by magnifying glasses or screen-projection devices. The loss of central vision associated with the disease has a profound impact on patient quality of life. With progressive central visual loss, patients lose their ability to perform the more complex activities of daily living. Common vision aids include low vision filters, magnifiers, telescopes and electronic aids. Low vision rehabilitation (LVR) is a new subspecialty emerging from the traditional fields of ophthalmology, optometry, occupational therapy, and sociology, with an ever-increasing impact on the usual concepts of research, education, and services for visually impaired patients. Relatively few ophthalmologists practise LVR and fewer still routinely use prismatic image relocation (IR) in AMD patients. IR is a method of stabilizing oculomotor functions with the purpose of promoting better function of preferred retinal loci (PRLs). The aim of vision rehabilitation therapy consists in the achievement of techniques designed to improve PRL usage. The use of PRLs to compensate for diseased foveae has offered hope to these patients in regaining some function. However, in a recently published meta-analysis, prism spectacles were found to be unlikely to be of

  8. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen neither as a cause conditioning receptor gene expression, nor as a final effect resulting from genetically predetermined programs, but as a direct...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  9. Poor knowledge of age-related fertility decline and assisted reproduction among healthcare professionals.

    Science.gov (United States)

    García, Désirée; Vassena, Rita; Prat, Andrés; Vernaeve, Valérie

    2017-01-01

    Reproduction is a matter of concern for individuals and society due to the postponement of childbearing, and healthcare professionals are the main source of information and counselling. This study aims to evaluate how knowledgeable healthcare professionals are about fertility and assisted reproduction, and to explore attitudes towards social oocyte freezing. A cross-sectional study was performed with 201 professionals (gynaecologists, physicians and nurses) from four public centres in Spain. Participants completed a survey about fertility, IVF, oocyte donation (OD) and social oocyte freezing, between May 2013 and March 2014. Reported mean age limits for pregnancy were 39.5 ± 4.5 (spontaneously), 43.7 ± 5.2 (IVF) and 49.0 ± 6.5 (OD). Gynaecologists reported a younger limit for spontaneous and IVF pregnancies (P 39, compared with 77.3% of other physicians and 72.9% of nurses. Regarding social oocyte freezing, 41.8% of gynaecologists thought it should be offered to every young woman, versus 62.7% of other physicians and 48.9% of nurses (P = 0.041). In conclusion, gynaecologists are more knowledgeable about fertility and assisted reproduction, while more restrictive towards social oocyte freezing. Knowledge and attitudes could influence the quality of information and counselling given to patients. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  11. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    Indira Pokkunuri

    2016-01-01

    Full Text Available We examined the effects and mechanism of grape powder- (GP- mediated improvement, if any, on aging kidney function. Adult (3-month and aged (21-month Fischer 344 rats were treated without (controls and with GP (1.5% in drinking water and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1, which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions.

  12. Age-related decline in lateralised prey capture success in Garnett's bushbaby (Otolemur garnettii).

    Science.gov (United States)

    Hanbury, David B; Edens, Kyle D; Legg, Claire E; Harrell, Shane P; Greer, Tammy F; Watson, Sheree L

    2012-01-01

    We examined differences in prey capture success when reaching for moving prey with the preferred and non-preferred hand (as determined previously using stationary food items) in 12 Garnett's bushbabies (Otolemur garnettii). Hand preference was determined by a test of simple reaching for stationary food items. We assessed both the frequency of hand use and success rates for each hand in capturing live mealworms. We also examined the effect of age on overall prey capture success. Subjects were individually presented with live mealworms in a cup partially filled with a cornmeal medium. The preferred hand was used significantly more often than the non-preferred hand to obtain the moving prey; however, no differences were found in the frequency of usage of the left vs the right hand. Furthermore, there were no differences in the success rates of the left vs the right hand, nor the preferred vs the non-preferred hand. There was a significant negative correlation between age and prey capture success. These data suggest that age, rather than preferred hand, may be the most relevant factor in the bushbabies' prey capture success.

  13. [Decline in renal function in old age : Part of physiological aging versus age-related disease].

    Science.gov (United States)

    Braun, F; Brinkkötter, P T

    2016-08-01

    The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.

  14. Age-related decline in mitral peak diastolic velocities is unaffected in well-trained runners

    DEFF Research Database (Denmark)

    Olsen, Rasmus Huan; Couppé, Christian; Dall, Christian Have

    2015-01-01

    (a') diastolic and systolic (s') annular longitudinal tissue Doppler velocities were measured by echocardiography during four stages (rest, supine bike exercise at 30% and 60% of maximal workload, and recovery). RESULTS: The athletes had marked cardiac remodeling, while overall differences in mitral...

  15. Compensatory effects of pointing and predictive cueing on age-related declines in visuospatial working memory

    NARCIS (Netherlands)

    Ouwehand, Kim; van Gog, Tamara; Paas, Fred

    2016-01-01

    In this study, we investigated whether the visuospatial working memory performance of young and older adults would improve if they used a multimodal as compared with a unimodal encoding strategy, and whether or not visual cues would add to this effect. In Experiment 1, participants were presented

  16. Compensatory effects of pointing and predictive cueing on age-related declines in visuospatial working memory

    NARCIS (Netherlands)

    K.H.R. Ouwehand (Kim); T.A.J.M. van Gog (Tamara); G.W.C. Paas (Fred)

    2016-01-01

    textabstractIn this study, we investigated whether the visuospatial working memory performance of young and older adults would improve if they used a multimodal as compared with a unimodal encoding strategy, and whether or not visual cues would add to this effect. In Experiment 1, participants were

  17. Compensatory effects of pointing and predictive cueing on age-related declines in visuospatial working memory.

    Science.gov (United States)

    Ouwehand, Kim; van Gog, Tamara; Paas, Fred

    2016-08-01

    In this study, we investigated whether the visuospatial working memory performance of young and older adults would improve if they used a multimodal as compared with a unimodal encoding strategy, and whether or not visual cues would add to this effect. In Experiment 1, participants were presented with trials consisting of an array of squares and an array of circles. They were instructed to point at one type of figure (multimodal encoding strategy) and only to observe the other (unimodal encoding strategy). After each trial, an immediate location recognition test of one of the two arrays followed. In Experiment 2, the same task was used, but a cue was provided, either before or after the encoding phase, indicating which of the two arrays would be tested. Our results showed that a multimodal, as compared with a unimodal, encoding strategy improved visuospatial working memory performance in both young and older adults (Exp. 1), and that adding visual cues to the multimodal but not to the unimodal encoding strategy improved older adults' performance up to the level of young adults (Exp. 2). In both age groups, cueing after encoding led to higher performance in the multimodal than in the unimodal condition when the second array was tested. However, cueing before encoding led to higher performance in the multimodal than in the unimodal condition when the first array of the figure sequence was tested. These results suggest that pointing together with predictive cueing can have beneficial effects on visuospatial working memory, which is especially important for older adults.

  18. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    Science.gov (United States)

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Age-related decline in brain resources modulates genetic effects on cognitive functioning

    Directory of Open Access Journals (Sweden)

    Ulman Lindenberger

    2008-12-01

    Full Text Available Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging.Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008, who reported that the effects of the Catechol-O-Methyltransferase (COMT gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed.

  20. Age-Related Decline in Spelling Ability: A Link with Fluid Intelligence?

    Science.gov (United States)

    Stuart-Hamilton, Ian; Rabbitt, Patrick

    1997-01-01

    On spelling tests taken by 159 adults over 50, younger subjects had significantly higher scores. Statistically removing effects of crystallized intelligence and education had no effect, but removing effects of fluid intelligence made the difference insignificant. Although spelling is considered a crystallized skill, in older people it may rely…

  1. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection.

    Science.gov (United States)

    Guan, Jing; Ni, Dao-feng; Wang, Jian; Gao, Zhi-qiang

    2009-07-05

    Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrophysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  2. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  3. Statins for age-related macular degeneration.

    Science.gov (United States)

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2015-02-11

    Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the included studies. Two RCTs with 144 total participants met the selection criteria

  4. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Directory of Open Access Journals (Sweden)

    Takahiro Chihara

    2014-06-01

    Full Text Available Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity, we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs, Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  5. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kitabayashi, Aki; Morimoto, Michie; Takeuchi, Ken-ichi; Masuyama, Kaoru; Tonoki, Ayako; Davis, Ronald L; Wang, Jing W; Miura, Masayuki

    2014-06-01

    Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  6. Brain correlates of progressive olfactory loss in Parkinson's disease.

    Science.gov (United States)

    Campabadal, Anna; Uribe, Carme; Segura, Barbara; Baggio, Hugo C; Abos, Alexandra; Garcia-Diaz, Anna Isabel; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Bargallo, Nuria; Junque, Carme

    2017-08-01

    Olfactory dysfunction is present in a large proportion of patients with Parkinson's disease (PD) upon diagnosis. However, its progression over time has been poorly investigated. The few available longitudinal studies lack control groups or MRI data. To investigate the olfactory changes and their structural correlates in non-demented PD over a four-year follow-up. We assessed olfactory function in a sample of 25 PD patients and 24 normal controls of similar age using the University of Pennsylvania Smell Identification test (UPSIT). Structural magnetic resonance imaging data, obtained with a 3-T Siemens Trio scanner, were analyzed using FreeSurfer software. Analysis of variance showed significant group (F = 53.882; P effects, but the group-by-time interaction was not statistically significant. UPSIT performance declined ≥1.5 standard deviations in 5 controls and 7 patients. Change in UPSIT scores of patients correlated positively with volume change in the left putamen, right thalamus, and right caudate nucleus. Olfactory loss over time in PD and controls is similar, but we have observed significant correlation between this loss and basal ganglia volumes only in patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction

    Directory of Open Access Journals (Sweden)

    Corina T. Madreiter-Sokolowski

    2018-03-01

    Full Text Available Senescence is related to the loss of cellular homeostasis and functions, which leads to a progressive decline in physiological ability and to aging-associated diseases. Since mitochondria are essential to energy supply, cell differentiation, cell cycle control, intracellular signaling and Ca2+ sequestration, fine-tuning mitochondrial activity appropriately, is a tightrope walk during aging. For instance, the mitochondrial oxidative phosphorylation (OXPHOS ensures a supply of adenosine triphosphate (ATP, but is also the main source of potentially harmful levels of reactive oxygen species (ROS. Moreover, mitochondrial function is strongly linked to mitochondrial Ca2+ homeostasis and mitochondrial shape, which undergo various alterations during aging. Since mitochondria play such a critical role in an organism’s process of aging, they also offer promising targets for manipulation of senescent cellular functions. Accordingly, interventions delaying the onset of age-associated disorders involve the manipulation of mitochondrial function, including caloric restriction (CR or exercise, as well as drugs, such as metformin, aspirin, and polyphenols. In this review, we discuss mitochondria’s role in and impact on cellular aging and their potential to serve as a target for therapeutic interventions against age-related cellular dysfunction.

  8. Effect of NCAM on aged-related deterioration in vision.

    Science.gov (United States)

    Luke, Margaret Po-Shan; LeVatte, Terry L; O'Reilly, Amanda M; Smith, Benjamin J; Tremblay, François; Brown, Richard E; Clarke, David B

    2016-05-01

    The neural cell adhesion molecule (NCAM) is involved in developmental processes and age-associated cognitive decline; however, little is known concerning the effects of NCAM in the visual system during aging. Using anatomical, electrophysiological, and behavioral assays, we analyzed age-related changes in visual function of NCAM deficient (-/-) and wild-type mice. Anatomical analyses indicated that aging NCAM -/- mice had fewer retinal ganglion cells, thinner retinas, and fewer photoreceptor cell layers than age-matched controls. Electroretinogram testing of retinal function in young adult NCAM -/- mice showed a 2-fold increase in a- and b-wave amplitude compared with wild-type mice, but the retinal activity dropped dramatically to control levels when the animals reached 10 months. In behavioral tasks, NCAM -/- mice had no visual pattern discrimination ability and showed premature loss of vision as they aged. Together, these findings demonstrate that NCAM plays significant roles in the adult visual system in establishing normal retinal anatomy, physiology and function, and in maintaining vision during aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Age-Related Changes in Binaural Interaction at Brainstem Level.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M

    2016-01-01

    Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.

  10. The Hayflick Limit and Age-Related Adaptive Immune Deficiency.

    Science.gov (United States)

    Gill, Zoe; Nieuwoudt, Martin; Ndifon, Wilfred

    2018-01-01

    The adaptive immune system (AIS) acquires significant deficiency during chronological ageing, making older individuals more susceptible to infections and less responsive to vaccines compared to younger individuals. At the cellular level, one of the most striking features of this ageing-related immune deficiency is the dramatic loss of T-cell diversity that occurs in elderly humans. After the age of 70 years, there is a sharp decline in the diversity of naïve T cells, including a >10-fold decrease in the CD4+ compartment and a >100-fold decrease in the CD8+ compartment. Such changes are detrimental because the AIS relies on a diverse naïve T-cell pool to respond to novel pathogens. Recent work suggests that this collapse of naïve T-cell diversity results from T cells reaching the Hayflick limit and being eliminated through both antigen-dependent and -independent pathways. The progressive attrition of telomeres is the molecular mechanism that underlies this Hayflick limit. Therefore, we propose that by measuring the telomere lengths of T cells with high resolution, it is possible to develop a unique biomarker of immune deficiency, potentially much better correlated with individual susceptibility to diseases compared to chronological age alone. © 2017 S. Karger AG, Basel.

  11. Olfactory groove meningiomas.

    Science.gov (United States)

    Hentschel, Stephen J; DeMonte, Franco

    2003-06-15

    Olfactory groove meningiomas (OGMs) arise over the cribriform plate and may reach very large sizes prior to presentation. They can be differentiated from tuberculum sellae meningiomas because OGMs arise more anterior in the skull base and displace the optic nerve and chiasm inferiorly rather than superiorly. The authors searched the neurosurgery database at the M. D. Anderson Cancer Center for cases of OGM treated between 1993 and 2003. The records of these patients were then reviewed retrospectively for details regarding clinical presentation, imaging findings, surgical results and complications, and follow-up status. Thirteen patients, (12 women and one man, mean age 56 years) harbored OGMs (mean size 5.7 cm). All patients underwent bifrontal craniotomies and biorbital osteotomies. There were 11 complete resections (including the hyperostotic bone and dura of the cribriform plate and any extension into the ethmoid sinuses) and two subtotal resections with minimal residual tumor left in patients with recurrent lesions. No complication directly due to the surgery occurred in any patient. There were no recurrences in a mean follow-up period of 2 years (range 0-5 years). With current microsurgical techniques, the results of OGM resection are excellent, with a high rate of total resection and a low incidence of complications. All hyperostotic bone should be removed with the dura of the anterior skull base to minimize the risk of recurrence.

  12. Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    DEFF Research Database (Denmark)

    Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice

    2016-01-01

    vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years......). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group...

  13. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  14. Olfactory Memory Impairment in Neurodegenerative Diseases

    OpenAIRE

    Bahuleyan, Biju; Singh, Satendra

    2012-01-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the prese...

  15. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  16. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  17. Sniffing and Oxytocin: Effects on Olfactory Memories.

    Science.gov (United States)

    Stoop, Ron

    2016-05-04

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    . Between 40-44% of the patients showing olfactory impairments were not aware of their deficit. CONCLUSIONS: Since a significant proportion of the patients showing olfactory impairments were not aware of their deficit, it is recommended than clinicians systematically evaluate olfactory functions using...

  19. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    Science.gov (United States)

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Olfactory memory impairment in neurodegenerative diseases.

    Science.gov (United States)

    Bahuleyan, Biju; Singh, Satendra

    2012-10-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.

  1. Therapeutic potential of eccentric exercises for age-related muscle atrophy

    Directory of Open Access Journals (Sweden)

    Jae-Young Lim

    2016-09-01

    Full Text Available Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia. Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force–velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force–velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process, are needed to improve both muscle force and velocity.

  2. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    Science.gov (United States)

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  3. Age-Related Difference in Functional Brain Connectivity of Mastication

    Science.gov (United States)

    Lin, Chia-shu; Wu, Ching-yi; Wu, Shih-yun; Lin, Hsiao-Han; Cheng, Dong-hui; Lo, Wen-liang

    2017-01-01

    The age-related decline in motor function is associated with changes in intrinsic brain signatures. Here, we investigated the functional connectivity (FC) associated with masticatory performance, a clinical index evaluating general masticatory function. Twenty-six older adults (OA) and 26 younger (YA) healthy adults were recruited and assessed using the masticatory performance index (MPI) and resting-state functional magnetic resonance imaging (rs-fMRI). We analyzed the rs-fMRI FC network related to mastication, which was constructed based on 12 bilateral mastication-related brain regions according to the literature. For the OA and the YA group, we identified the mastication-related hubs, i.e., the nodes for which the degree centrality (DC) was positively correlated with the MPI. For each pair of nodes, we identified the inter-nodal link for which the FC was positively correlated with the MPI. The network analysis revealed that, in the YA group, the FC between the sensorimotor cortex, the thalamus (THA) and the cerebellum was positively correlated with the MPI. Consistently, the cerebellum nodes were defined as the mastication-related hubs. In contrast, in the OA group, we found a sparser connection within the sensorimotor regions and cerebellum and a denser connection across distributed regions, including the FC between the superior parietal lobe (SPL), the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). Compared to the YA group, the network of the OA group also comprised more mastication-related hubs, which were spatially distributed outside the sensorimotor regions, including the right SPL, the right aINS, and the bilateral dACC. In general, the findings supported the hypothesis that in OA, higher masticatory performance is associated with a widespread pattern of mastication-related hubs. Such a widespread engagement of multiple brain regions associated with the MPI may reflect an increased demand in sensorimotor integration, attentional

  4. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  5. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  6. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  7. Age-related practice effects across longitudinal neuropsychological assessments in older people with schizophrenia.

    Science.gov (United States)

    Granholm, Eric; Link, Peter; Fish, Scott; Kraemer, Helena; Jeste, Dilip

    2010-09-01

    The relationship between aging and practice effects on longitudinal neuropsychological assessments was investigated in middle-aged and older people with schizophrenia and healthy controls. Older people with schizophrenia (n = 107; M age = 56.1) and age-comparable nonpsychiatric controls (n = 107; M age = 57.7) were scheduled to receive annual assessments on a comprehensive battery of neuropsychological tests for an average of 2.5 years (range 11 months to 4 years). Mixed-model analyses were used to separately examine the effects of practice and age on test performance. Number of prior assessments (practice) was associated with significant performance improvement across assessments, whereas older age was associated with significant decline in performance. The groups did not differ significantly in extent of age-related cognitive decline, but a three-way interaction among group, age, and practice was found, such that greater age-related decline in practice effects were found for older people with schizophrenia relative to nonpsychiatric participants. This study did not find any evidence of neurodegenerative age-related decline in neuropsychological abilities in middle-aged and older people with schizophrenia, but older age was associated with diminished ability to benefit from repeated exposure to cognitive tasks in people with schizophrenia. Cognitive impairment in schizophrenia may combine with cognitive decline associated with normal aging to reduce practice effects in older patients. These findings have important implications for the design of studies examining the longitudinal trajectory of cognitive functioning across the life span of people with schizophrenia, as well as clinical trials that attempt to demonstrate cognitive enhancement in these individuals. Copyright 2010 APA, all rights reserved.

  8. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  9. Age-Related Maculopathy: a biochemical and immunohistochemical study

    NARCIS (Netherlands)

    M. Kliffen (Mike)

    1996-01-01

    textabstractAge-related maculopathy (ARM) is an age-related degenerative disorder of the central part of the retina, the macula lutea (yellow spot). Essentially, ARM is a clinical diagnosis based on funduscopical changes. It is customary nowadays to call the late stages of ARM, geographic atrophy

  10. Prevalence of age-related macular degeneration in elderly Caucasians

    DEFF Research Database (Denmark)

    Erke, Maja G; Bertelsen, Geir; Peto, Tunde

    2012-01-01

    To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD).......To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD)....

  11. Proteomic Analysis of the Human Olfactory Bulb.

    Science.gov (United States)

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  12. Localizing Age-Related Changes in Brain Structure Using Voxel-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Shu Hua Mu

    2017-01-01

    Full Text Available Aim. We report the dynamic anatomical sequence of human cortical gray matter development from late childhood to young adults using VBM and ROI-based methods. Method. The structural MRI of 91 normal individuals ranging in age from 6 to 26 years was obtained and the GMV for each region was measured. Results. Our results showed that the earliest loss of GMV occurred in left olfactory, right precuneus, caudate, left putamen, pallidum, and left middle temporal gyrus. In addition, the trajectory of maturational and aging showed a linear decline in GMV on both cortical lobes and subcortical regions. The most loss of gray matter was observed in the parietal lobe and basal ganglia, whereas the less loss occurred in the temporal lobe and hippocampus, especially in the left middle temporal pole, which showed no decline until 26 years old. Moreover, the volumes of GM, WM, and CSF were also assessed for linear age effects, showing a significant linear decline in GM with age and a significant linear increase in both WM and CSF with age. Interpretation. Overall, our findings lend support to previous findings of the normal brain development of regional cortex, and they may help in understanding of neurodevelopmental disorders.

  13. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  14. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  15. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  16. The Age-Related Changes in Cartilage and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    YongPing Li

    2013-01-01

    Full Text Available Osteoarthritis (OA is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes’ low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.

  17. Impacts of age-related failures on nuclear systems

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.; Krantz, E.A.; MacDonald, P.E.

    1986-01-01

    Aging-related failure data from nine light water reactor safety, support, and power conversion systems have been extracted from an operational data base. Systems and components within the systems that are most affected by aging are identified. In addition, information on aging-related root causes of component failures has been extracted for service water and Class 1E electrical power distribution systems. Engineering insights are presented, and preliminary quantification of the importance of aging-related root causes for a service water system is provided

  18. [Current concepts in pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  19. Sleep duration and age-related changes in brain structure and cognitive performance.

    Science.gov (United States)

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  20. Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Barelds, R.J.; Knook, D.L.

    1985-01-01

    There are many indications that the functional capacity of the reticuloendothelial system (RES) declines with age. The aim of this study was to investigate the cellular basis of age-related changes in the clearance function of the RES. The experiments were focused mainly on Kupffer and endothelial cells of the liver which represent a major part of the RES and are primarily responsible for clearance of colloidal material from the circulation. The clearance capacity of the RES was tested clinically and experimentally by intravenous injection of colloids, such as radiolabeled heat-aggregated colloidal albumin. Age-related changes in the endocytosis of 125 I-labeled colloidal albumin (CA) in rats were determined by clearance and organ distribution of different doses of intravenously injected CA, uptake of CA by Kupffer and endothelial liver cells in vivo as determined after isolation of the cells from injected rats and kinetic studies on CA uptake by Kupffer cells in culture. The results show that, at a low dose, the clearance of CA is primarily determined by liver blood flow. At a higher saturating dose, plasma clearance and uptake by the liver are not significantly decreased with age. Endocytosis by endothelial cells, which accounts for about 60% of that of the whole liver, is also unchanged with age. In contrast, a significant decrease in endocytic capacity was observed for Kupffer cells in vivo. This age-related functional decline was also observed in Kupffer cells which were isolated from rats of different ages and maintained in culture

  1. Gender difference and age-related changes in performance at the long-distance duathlon.

    Science.gov (United States)

    Rüst, Christoph A; Knechtle, Beat; Knechtle, Patrizia; Pfeifer, Susanne; Rosemann, Thomas; Lepers, Romuald; Senn, Oliver

    2013-02-01

    The differences in gender- and the age-related changes in triathlon (i.e., swimming, cycling, and running) performances have been previously investigated, but data are missing for duathlon (i.e., running, cycling, and running). We investigated the participation and performance trends and the gender difference and the age-related decline in performance, at the "Powerman Zofingen" long-distance duathlon (10-km run, 150-km cycle, and 30-km run) from 2002 to 2011. During this period, there were 2,236 finishers (272 women and 1,964 men, respectively). Linear regression analyses for the 3 split times, and the total event time, demonstrated that running and cycling times were fairly stable during the last decade for both male and female elite duathletes. The top 10 overall gender differences in times were 16 ± 2, 17 ± 3, 15 ± 3, and 16 ± 5%, for the 10-km run, 150-km cycle, 30-km run and the overall race time, respectively. There was a significant (p triathlons, the age-related decline in the duathlon performance was more pronounced in running than in cycling. Athletes and coaches can use these findings to plan the career in long-distance duathletes with the age of peak performance between 25 and 39 years for both women and men.

  2. Effects of radiotherapy on olfactory function

    International Nuclear Information System (INIS)

    Hoelscher, Tobias; Seibt, Annedore; Appold, Steffen; Doerr, Wolfgang; Herrmann, Thomas; Huettenbrink, Karl-Bernd; Hummel, Thomas

    2005-01-01

    Background and Purpose: Changes in olfactory function have been reported in patients receiving significant doses of radiation to the olfactory epithelium. Aim of this study was to investigate severity and time course of changes in olfactory function in patients irradiated for tumours of the head and neck region. Material and Methods: Forty-four patients receiving radiotherapy (RT) for tumours in the area of the head and neck participated (16 women, 28 men; age 11-81 y; mean 55 y). Olfactory function was measured before and bi-weekly during RT for 6 weeks. A subgroup (25 patients) was followed for 12 months. Patients were divided into two groups according to the dose to the olfactory epithelium. Twenty-two patients ('OLF group') had radiation doses to the olfactory epithelium between 23.7 and 79.5 Gy (median 62.2 Gy). In the 22 patients of the 'non-OLF group' the dose applied to the olfactory epithelium was significantly lower (2.9-11.1 Gy, median 5.9 Gy). Total tumour dose (30-76.8 Gy), age, sex distribution, and baseline chemosensory function were not significantly different between groups. Testing was performed for odour identification, odour discrimination, and olfactory thresholds. Results: Odour discrimination, but not odour identification or odour threshold, was significantly decreased 2-6 weeks after begin of therapy in the OLF group. In addition, a significant effect of the radiation dose was observed for odour discrimination. More than 6 months after therapy, OLF group patients had significantly lower odour identification scores compared to the non-OLF group. Conclusion: As indicated through the non-significant change of olfactory thresholds, the olfactory epithelium is relatively resistant against effects of radiation. It is hypothesized that RT has additional effects on the olfactory bulb/orbitofrontal cortex responsible for the observed changes of suprathreshold olfactory function

  3. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    Science.gov (United States)

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  4. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  5. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    Science.gov (United States)

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  6. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    Science.gov (United States)

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  7. Aging-Related Systemic Manifestations in COPD Patients and Cigarette Smokers

    Science.gov (United States)

    Boyer, Laurent; Marcos, Elisabeth; Margarit, Laurent; Le Corvoisier, Philippe; Vervoitte, Laetitia; Hamidou, Leila; Frih, Lamia; Audureau, Etienne; Covali-Noroc, Ala; Andujar, Pascal; Saakashvili, Zakaria; Lino, Anne; Ghaleh, Bijan; Hue, Sophie; Derumeaux, Geneviève; Housset, Bruno; Dubois-Randé, Jean-Luc; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is often associated with age-related systemic abnormalities that adversely affect the prognosis. Whether these manifestations are linked to the lung alterations or are independent complications of smoking remains unclear. Objectives To look for aging-related systemic manifestations and telomere shortening in COPD patients and smokers with minor lung destruction responsible for a decline in the diffusing capacity for carbon monoxide (DLCO) corrected for alveolar volume (KCO). Methods Cross-sectional study in 301 individuals (100 with COPD, 100 smokers without COPD, and 101 nonsmokers without COPD). Measurements and Main Results Compared to control smokers, patients with COPD had higher aortic pulse-wave velocity (PWV), lower bone mineral density (BMD) and appendicular skeletal muscle mass index (ASMMI), and shorter telomere length (TL). Insulin resistance (HOMA-IR) and glomerular filtration rate (GFR) were similar between control smokers and COPD patients. Smokers did not differ from nonsmokers for any of these parameters. However, smokers with normal spirometry but low KCO had lower ASMMI values compared to those with normal KCO. Moreover, female smokers with low KCO, had lower BMD and shorter TL compared to those with normal KCO. Conclusions Aging-related abnormalities in patients with COPD are also found in smokers with minor lung dysfunction manifesting as a KCO decrease. Decreased KCO might be useful, particularly among women, for identifying smokers at high risk for aging-related systemic manifestations and telomere shortening. PMID:25785739

  8. Aging-related systemic manifestations in COPD patients and cigarette smokers.

    Directory of Open Access Journals (Sweden)

    Laurent Boyer

    Full Text Available Chronic obstructive pulmonary disease (COPD is often associated with age-related systemic abnormalities that adversely affect the prognosis. Whether these manifestations are linked to the lung alterations or are independent complications of smoking remains unclear.To look for aging-related systemic manifestations and telomere shortening in COPD patients and smokers with minor lung destruction responsible for a decline in the diffusing capacity for carbon monoxide (DLCO corrected for alveolar volume (KCO.Cross-sectional study in 301 individuals (100 with COPD, 100 smokers without COPD, and 101 nonsmokers without COPD.Compared to control smokers, patients with COPD had higher aortic pulse-wave velocity (PWV, lower bone mineral density (BMD and appendicular skeletal muscle mass index (ASMMI, and shorter telomere length (TL. Insulin resistance (HOMA-IR and glomerular filtration rate (GFR were similar between control smokers and COPD patients. Smokers did not differ from nonsmokers for any of these parameters. However, smokers with normal spirometry but low KCO had lower ASMMI values compared to those with normal KCO. Moreover, female smokers with low KCO, had lower BMD and shorter TL compared to those with normal KCO.Aging-related abnormalities in patients with COPD are also found in smokers with minor lung dysfunction manifesting as a KCO decrease. Decreased KCO might be useful, particularly among women, for identifying smokers at high risk for aging-related systemic manifestations and telomere shortening.

  9. Resveratrol and pinostilbene confer neuroprotection against aging-related deficits through an ERK1/2 dependent-mechanism

    Science.gov (United States)

    Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to death of brain cells that transmit dopamine (DA), one of the brain chemicals responsible for transmitting signals between brain nerve cells. We examined the neuroprotective ef...

  10. Low Calorie Diet Affects Aging-Related Factors

    Science.gov (United States)

    ... Current Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / ... to learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. ...

  11. Review Article Therapeutic Potential of Statins in Age-related ...

    African Journals Online (AJOL)

    2011-08-09

    Aug 9, 2011 ... Keywords: Age-related macular, Non-invasive treatment, Pleiotropic effects, Prevention, Statins. Received 14 June ... two types: non-exudative or “dry', characterised by .... Dam Eye Study in Wisconsin, statin use at the 10-.

  12. [Depression in Patients with Age-Related Macular Degeneration].

    Science.gov (United States)

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  13. Digital histologic analysis reveals morphometric patterns of age-related involution in breast epithelium and stroma.

    Science.gov (United States)

    Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L; Midkiff, Bentley; Troester, Melissa A

    2016-02-01

    Complete age-related regression of mammary epithelium, often termed postmenopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study. High-resolution digital images of normal breast hematoxylin and eosin-stained slides were partitioned into epithelium, adipose tissue, and nonfatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models. Stromal area decreased (P = 0.0002), and adipose tissue area increased (P epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Do age-related increases in tip-of-the-tongue experiences signify episodic memory impairments?

    Science.gov (United States)

    Salthouse, Timothy A; Mandell, Arielle R

    2013-12-01

    Tip-of-the-tongue experiences (TOTs), in which a name is known but cannot be immediately retrieved from memory, can be a cause of concern if these experiences are viewed as a sign of memory decline. The current study was conducted to investigate the relation between age and TOT frequency, and the influence of episodic memory, which is the type of memory most often assessed to detect memory problems, on that relation. In a sample of adults, increased age was found to be associated with more TOTs across different types of materials, and additional analyses suggested that these relations between age and TOT frequency were not attributable to the use of different response criteria or to different amounts of knowledge. Because statistical control of a measure of episodic memory had little effect on the relation between age and TOT frequency, age-related increases in TOTs and age-related decreases in episodic memory appear to be at least partially independent phenomena.

  15. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  16. Risk factors of age-related macular degeneration in Argentina

    Directory of Open Access Journals (Sweden)

    María Eugenia Nano

    2013-04-01

    Full Text Available PURPOSES: To assess the risk factors of age-related macular degeneration in Argentina using a case-control study. METHODS: Surveys were used for subjects' antioxidant intake, age/gender, race, body mass index, hypertension, diabetes (and type of treatment, smoking, sunlight exposure, red meat consumption, fish consumption, presence of age-related macular degeneration and family history of age-related macular degeneration. Main effects models for logistic regression and ordinal logistic regression were used to analyze the results. RESULTS: There were 175 cases and 175 controls with a mean age of 75.4 years and 75.5 years, respectively, of whom 236 (67.4% were female. Of the cases with age-related macular degeneration, 159 (45.4% had age-related macular degeneration in their left eyes, 154 (44.0% in their right eyes, and 138 (39.4% in both eyes. Of the cases with age-related macular degeneration in their left eyes, 47.8% had the dry type, 40.3% had the wet type, and the type was unknown for 11.9%. The comparable figures for right eyes were: 51.9%, 34.4%, and 13.7%, respectively. The main effects model was dominated by higher sunlight exposure (OR [odds ratio]: 3.3 and a family history of age-related macular degeneration (OR: 4.3. Other factors included hypertension (OR: 2.1, smoking (OR: 2.2, and being of the Mestizo race, which lowered the risk of age-related macular degeneration (OR: 0.40. Red meat/fish consumption, body mass index, and iris color did not have an effect. Higher age was associated with progression to more severe age-related macular degeneration. CONCLUSION: Sunlight exposure, family history of age-related macular degeneration, and an older age were the significant risk factors. There may be other variables, as the risk was not explained very well by the existing factors. A larger sample may produce different and better results.

  17. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  18. Glutathione maintenance mitigates age-related susceptibility to redox cycling agents

    Directory of Open Access Journals (Sweden)

    Nicholas O. Thomas

    2016-12-01

    Full Text Available Isolated hepatocytes from young (4–6 mo and old (24–26 mo F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC50 for young: 405 μM; LC50 for old: 275 μM. Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(PH: quinone oxido-reductase 1 (NQO1 protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3, but glutathione peroxidase 4 (GPX4 declined by 70% (p=0.0043; N=3. These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300 µM menadione (p2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds.

  19. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice

    Directory of Open Access Journals (Sweden)

    Hernán H. Dieguez

    2018-02-01

    Full Text Available Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related

  20. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.

    Science.gov (United States)

    Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián

    2018-02-07

    Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and

  1. Olfactory sensitivity of Pacific Lampreys to lamprey bile acids

    Science.gov (United States)

    Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.

    2009-01-01

    Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.

  2. Glucose and age-related changes in memory.

    Science.gov (United States)

    Gold, Paul E

    2005-12-01

    Epinephrine, released from the adrenal medulla, enhances memory in young rats and mice and apparently does so, at least in part, by increasing blood glucose levels. Like epinephrine, administration of glucose enhances cognitive functions in humans and rodents, including reversing age-related impairments in learning and memory. Epinephrine responses to training are increased in aged rats but the subsequent increase in blood glucose levels is severely blunted. The absence of increases in blood glucose levels during training might contribute to age-related deficits in learning and memory. Also, extracellular glucose levels in the hippocampus are depleted during spontaneous alternation testing to a far greater extent in aged than in young rats. Importantly, systemic injections of glucose block the depletion in the hippocampus and also enhance performance on the alternation task. Thus, the extensive depletion of extracellular glucose during training in aged rats may be associated with age-related memory impairments, an effect that might be related to - or may exacerbate - the effects on learning and memory of an absence of the increases in blood glucose levels to training as seen in young rats. Together, these findings suggest that age-related changes in both peripheral and central glucose physiology contribute to age-related impairments in memory.

  3. The first report of CADASIL in Peru: Olfactory dysfunction on initial presentation

    Directory of Open Access Journals (Sweden)

    Anastasia Vishnevetsky

    2016-12-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL is a rare, heritable, small vessel vascular disease caused by mutations in the Notch3 gene that is characterized by migraines, subcortical vascular events, cognitive decline, and mood disturbances. However, many CADASIL cases present with unusual symptoms such as status epilepticus, a movement disorder, or sensory dysfunction. This study describes the clinical, genetic, and radiologic characteristics of a Peruvian family with CADASIL in which multiple family members presented with severe olfactory deficits. Seven members of the family have symptoms suggestive of CADASIL, with genetic testing revealing R133C mutations in the two patients who underwent genetic testing. Cognitive testing and olfactory identification testing (Smell Identification Test were performed in three CADASIL patients revealing total anosmia in two tested patients and severe hyposmia in the other. Olfactory dysfunction has been associated with various neurologic and psychiatric conditions, though few studies have linked it with neurovascular disorders such as CADASIL. This first reported case of CADASIL in Peru emphasizes that symptomatic olfactory dysfunction may be an unusual presentation of CADASIL and that olfactory dysfunction is important to evaluate in CADASIL patients.

  4. Duration and specificity of olfactory nonassociative memory.

    Science.gov (United States)

    Freedman, Kaitlin G; Radhakrishna, Sreya; Escanilla, Olga; Linster, Christiane

    2013-05-01

    Olfactory habituation is a simple form of nonassociative memory in which responsiveness to stable but behaviorally nonsignificant stimuli is decreased. Olfactory habituation has recently become a paradigm widely used to probe the neural substrate underlying olfactory perception and memory. This simple behavioral paradigm has been used successfully used to probe many aspects of olfactory processing, and it has recently become clear that the neural processes underlying olfactory habituation can depend on the task parameters used. We here further investigate memory specificity and duration using 2 variations in task parameters: the number of habituation trials and the time delay between habituation and cross-habituation testing. We find that memory specificity increases with the number of habituation trials but decreases with time after the last habituation trial.

  5. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  6. Age-related slowing of digit symbol substitution revisited: what do longitudinal age changes reflect?

    Science.gov (United States)

    MacDonald, Stuart W S; Hultsch, David F; Strauss, Esther; Dixon, Roger A

    2003-05-01

    A previous investigation reported that cross-sectional age differences in Digit Symbol Substitution (DSS) test performance reflect declines in perceptual processing speed. Support for the tenability of the processing speed hypothesis requires examining whether longitudinal age-related change in DSS performance is largely mediated by changes in speed. The present study used data from the Victoria Longitudinal Study to examine patterns and predictors of longitudinal change in DSS for 512 older adults (M(age) = 68.37 years, SD = 7.43). On the basis of multilevel modeling, baseline DSS performance was poorer for older participants and men, with longitudinal declines more pronounced with increasing age and decreasing speed. In contrast to the present cross-sectional findings, statistical control of change trajectories in perceptual speed using the same data did not substantially attenuate age changes. These discrepancies suggest different sources of variance may underlie cross-sectional age differences and longitudinal age changes for DSS.

  7. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    Science.gov (United States)

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  8. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Directory of Open Access Journals (Sweden)

    Laís Soares Rodrigues

    2014-12-01

    Full Text Available Olfactory and rapid eye movement (REM sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD. Besides different studies reported declines in olfactory performances during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood although the impairment in the dopamine (DA neurotransmission in the olfactory bulb and in the nigrostriatal pathway may have important roles in olfactory as well as in REM sleep disturbances. Therefore, we have led to the hypothesis that a modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and after a short period of REM sleep deprivation (REMSD. We decided to investigate the olfactory, neurochemical and histological alterations generated by the administration of piribedil (a selective D2 agonist or raclopride (a selective D2 antagonist, within the glomerular layer of the olfactory bulb, in rats submitted to intranigral rotenone and REMSD. Our findings provided a remarkable evidence of the occurrence of a negative correlation (r = - 0.52, P = 0.04 between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham groups. A significant positive correlation (r = 0.34, P = 0.03 was observed between nigral DA and olfactory discrimination index (DI, for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc are associated to enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA induced by piribedil in the rotenone control and rotenone REMSD groups were consistent with reduced amounts of DI. The present evidence reinforce that DA produced by periglomerular neurons, and particularly the bulbar dopaminergic D2 receptors, are essential participants in the olfactory discrimination processes, as well as SNpc

  9. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  10. The role of main olfactory and vomeronasal systems in animal ...

    African Journals Online (AJOL)

    In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that ...

  11. Caffeine and the olfactory bulb.

    Science.gov (United States)

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  12. Genetics Home Reference: age-related hearing loss

    Science.gov (United States)

    ... quality of life. Because affected individuals have trouble understanding speech, the condition affects their ability to communicate. It can contribute to social isolation, depression, and loss of self-esteem. Age-related hearing loss also causes safety issues if individuals become ...

  13. Age-Related Differences in Idiom Production in Adulthood

    Science.gov (United States)

    Conner, Peggy S.; Hyun, Jungmoon; O'Connor Wells, Barbara; Anema, Inge; Goral, Mira; Monereau-Merry, Marie-Michelle; Rubino, Daniel; Kuckuk, Raija; Obler, Loraine K.

    2011-01-01

    To investigate whether idiom production was vulnerable to age-related difficulties, we asked 40 younger (ages 18-30) and 40 older healthy adults (ages 60-85) to produce idiomatic expressions in a story-completion task. Younger adults produced significantly more correct idiom responses (73%) than did older adults (60%). When older adults generated…

  14. Age-related maculopathy: A genetic and epidemiological approach

    NARCIS (Netherlands)

    J.J.M. Willemse-Assink (Jacqueline)

    2000-01-01

    textabstractIn the 19th century, age-related maculopathy (ARM) was described for the first time as an agerelated abnormality of the macula lutea. ARM consists of a variety of clinical signs, from the early stages with soft distinct drusen, indistinct drusen and pigment alterations up to the late

  15. Prevalence of Age-Related Macular Degeneration in Europe

    NARCIS (Netherlands)

    Colijn, Johanna M.; Buitendijk, Gabriëlle H. S.; Prokofyeva, Elena; Alves, Dalila; Cachulo, Maria L.; Khawaja, Anthony P.; Cougnard-Gregoire, Audrey; Merle, Bénédicte M. J.; Korb, Christina; Erke, Maja G.; Bron, Alain; Anastasopoulos, Eleftherios; Meester-Smoor, Magda A.; Segato, Tatiana; Piermarocchi, Stefano; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Topouzis, Fotis; Creuzot-Garcher, Catherine; Bertelsen, Geir; Pfeiffer, Norbert; Fletcher, Astrid E.; Foster, Paul J.; Silva, Rufino; Korobelnik, Jean-François; Delcourt, Cécile; Klaver, Caroline C. W.; Ajana, Soufiane; Arango-Gonzalez, Blanca; Arndt, Verena; Bhatia, Vaibhav; Bhattacharya, Shomi S.; Biarnés, Marc; Borrell, Anna; Bühren, Sebastian; Calado, Sofia M.; Cougnard-Grégoire, Audrey; Dammeier, Sascha; de Jong, Eiko K.; de la Cerda, Berta; den Hollander, Anneke I.; Diaz-Corrales, Francisco J.; Diether, Sigrid; Emri, Eszter; Endermann, Tanja; Ferraro, Lucia L.; Garcia, Míriam; Heesterbeek, Thomas J.; Honisch, Sabina; Bergen, Arthur

    2017-01-01

    Purpose: Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in

  16. Age-Related Changes in Binaural Interaction at Brainstem Level

    NARCIS (Netherlands)

    Yper, L.N. Van; Vermeire, K.; Vel, E.F. De; Beynon, A.J.; Dhooge, I.J.

    2016-01-01

    OBJECTIVES: Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The

  17. Pathophysiology of Age-Related Hearing Loss (Peripheral and Central)

    OpenAIRE

    Lee, Kyu-Yup

    2013-01-01

    Age-related hearing loss (presbycusis) refers to bilaterally symmetrical hearing loss resulting from aging process. Presbycusis is a complex phenomenon characterized by audiometric threshold shift, deterioration in speech-understanding and speech-perception difficulties in noisy environments. Factors contributing to presbycusis include mitochondria DNA mutation, genetic disorders including Ahl, hypertension, diabetes, metabolic disease and other systemic diseases in the intrinsic aspects. Ext...

  18. Age-related differences in muscular capacity among workers

    NARCIS (Netherlands)

    Hamberg-van Reenen, H.H.; Beek, A.J. van der; Blatter, B.M.

    2009-01-01

    Purpose: To quantify the age-related changes in muscular capacity in a working population, and to investigate whether these changes are dependent on sports participation. Methods: Data were used from the longitudinal study on musculoskeletal disorders, absenteeism, stress and health (n = 1,800). At

  19. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  20. Age-related macular degeneration in Onitsha, Nigeria | Nwosu ...

    African Journals Online (AJOL)

    Objectives: To determine the incidence, pattern and ocular morbidity associated with age-related macular degeneration (AMD) at the Guinness Eye Center Onitsha Nigeria. Materials and Methods: The case files of all new patients aged 50 years and above seen between January 1997 and December 2004 were reviewed.

  1. Age-related decrements in cycling and running performance ...

    African Journals Online (AJOL)

    South African Journal of Sports Medicine ... This study examined age-related decrements in athletic performance during running and cycling activities. ... These findings establish a trend that there is 'accelerated' aging during running which can perhaps be attributed to the increased weight-bearing stress on the muscles ...

  2. Age Related Variations in The Architecture of Caprine Haemal Nodes

    African Journals Online (AJOL)

    Age related variations in the architecture of caprine haemal nodes were studied in West African dwarf goats aged between 1-24 months. Variations were observed in the thickness of the capsule, the content and organization of the cortical and medullary parenchyma as well as the stroma. In young goats age between 1-4 ...

  3. Gene-diet interactions in age-related macular degeneration

    Science.gov (United States)

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50% of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation...

  4. Prevalence of Age-Related Macular Degeneration in Europe

    DEFF Research Database (Denmark)

    Colijn, Johanna M; Buitendijk, Gabriëlle H S; Prokofyeva, Elena

    2017-01-01

    PURPOSE: Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD...

  5. Ranibizumab vs. aflibercept for wet age-related macular degeneration

    DEFF Research Database (Denmark)

    Szabo, Shelagh M; Hedegaard, Morten; Chan, Keith

    2015-01-01

    OBJECTIVE: Although a reduced aflibercept (2.0 mg) injection frequency relative to the approved dosing posology is included in national treatment guidelines for wet age-related macular degeneration (AMD), there is limited evidence of its comparative efficacy. The objective was to compare...

  6. Nutritional modulation of age-related macular degeneration

    Science.gov (United States)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  7. Impact of age-related neuroglial cell responses on hippocampal deterioration

    Directory of Open Access Journals (Sweden)

    Joseph O Ojo

    2015-04-01

    Full Text Available Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS. These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signalling. Normally, these changes occur without any concurrent pathology, however, they can correlate with deteriorations in hippocampal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function and underlying neuroglial response(s, and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.

  8. Age-related differences in emotion recognition ability: a cross-sectional study.

    Science.gov (United States)

    Mill, Aire; Allik, Jüri; Realo, Anu; Valk, Raivo

    2009-10-01

    Experimental studies indicate that recognition of emotions, particularly negative emotions, decreases with age. However, there is no consensus at which age the decrease in emotion recognition begins, how selective this is to negative emotions, and whether this applies to both facial and vocal expression. In the current cross-sectional study, 607 participants ranging in age from 18 to 84 years (mean age = 32.6 +/- 14.9 years) were asked to recognize emotions expressed either facially or vocally. In general, older participants were found to be less accurate at recognizing emotions, with the most distinctive age difference pertaining to a certain group of negative emotions. Both modalities revealed an age-related decline in the recognition of sadness and -- to a lesser degree -- anger, starting at about 30 years of age. Although age-related differences in the recognition of expression of emotion were not mediated by personality traits, 2 of the Big 5 traits, openness and conscientiousness, made an independent contribution to emotion-recognition performance. Implications of age-related differences in facial and vocal emotion expression and early onset of the selective decrease in emotion recognition are discussed in terms of previous findings and relevant theoretical models.

  9. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  10. Age-related effects on perceptual and semantic encoding in memory.

    Science.gov (United States)

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Cardiovascular Prevention of Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Monsuez

    2011-01-01

    Full Text Available Midlife cardiovascular risk factors, including diabetes, hypertension, dyslipemia, and an unhealthy lifestyle, have been linked to subsequent incidence, delay of onset, and progression rate of Alzheimer disease and vascular dementia. Conversely, optimal treatment of cardiovascular risk factors prevents and slows down age-related cognitive disorders. The impact of antihypertensive therapy on cognitive outcome in patients with hypertension was assessed in large trials which demonstrated a reduction in progression of MRI white matter hyperintensities, in cognitive decline and in incidence of dementia. Large-scale database correlated statin use and reduction in the incidence of dementia, mainly in patients with documented atherosclerosis, but clinical trials failed to reach similar conclusions. Whether a multitargeted intervention would substantially improve protection, quality of life, and reduce medical cost expenditures in patients with lower risk profile has not been ascertained. This would require appropriately designed trials targeting large populations and focusing on cognitive decline as a primary outcome endpoint.

  12. Imaging the olfactory tract (Cranial Nerve no.1)

    International Nuclear Information System (INIS)

    Duprez, Thierry P.; Rombaux, Philippe

    2010-01-01

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  13. Olfactory Functioning in First-Episode Psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Lasutschinkow, Patricia; Ishizuka, Koko; Sawa, Akira

    2018-04-06

    Though olfactory deficits are well-documented in schizophrenia, fewer studies have examined olfactory performance profiles across the psychosis spectrum. The current study examined odor identification, discrimination, and detection threshold performance in first-episode psychosis (FEP) patients diagnosed with schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, major depression with psychotic features, and other psychotic conditions. FEP patients (n = 97) and healthy adults (n = 98) completed birhinal assessments of odor identification, discrimination, and detection threshold sensitivity for lyral and citralva. Participants also completed measures of anticipatory pleasure, anhedonia, and empathy. Differences in olfactory performances were assessed between FEP patients and controls and within FEP subgroups. Sex-stratified post hoc analyses were employed for a complete analysis of sex differences. Relationships between self-report measures and olfactory scores were also examined. Individuals with psychosis had poorer scores across all olfactory measures when compared to the control group. Within the psychosis cohort, patients with schizophrenia-associated psychosis had poorer odor identification, discrimination, and citralva detection threshold scores relative to controls. In schizophrenia patients, greater olfactory disturbance was associated with increased negative symptomatology, greater self-reported anhedonia, and lower self-reported anticipatory pleasure. Patients with mood-associated psychosis performed comparable to controls though men and women in this cohort showed differential olfactory profiles. These findings indicate that olfactory deficits extend beyond measures of odor identification in FEP with greater deficits observed in schizophrenia-related subgroups of psychosis. Studies examining whether greater olfactory dysfunction confers greater risk for developing schizophrenia relative to other forms of psychosis are

  14. Clinical diagnosis and treatment of olfactory meningioma

    International Nuclear Information System (INIS)

    Li Xiangdong; Wang Zhong; Zhang Shiming; Zhu Fengqing; Zhou Dai; Hui Guozhen

    2005-01-01

    Objective: To analyze the clinical diagnosis and treatment of olfactory meningioma. Methods: In this group 17 olfactory meningiomas were operated, and the clinical presentations and the surgery results were obtained. Results: The symptoms of psychiatrical disorder, visual disturbances and eclipse at presentation was higher. In 16 cases the grade of resection was Simpson II, 1 case Simpson III, most of the cases had a good recovery. Conclusion: Attention should be paid to the early symptom at presentation such as psychiatrical disorder to obtain an early diagnosis. Microsurgery is useful in the treatment of olfactory meningioma. (authors)

  15. Dietary compound score and risk of age-related macular degeneration in the Age-Related Eye Disease Study

    Science.gov (United States)

    Purpose: Because foods provide many nutrients, which may interact with each other to modify risk for multifactorial diseases such as age-related macular degeneration (AMD), we sought to develop a composite scoring system to summarize the combined effect of multiple dietary nutrients on AMD risk. Th...

  16. Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium

    NARCIS (Netherlands)

    Klein, Ronald; Myers, Chelsea E.; Buitendijk, Gabriëlle H. S.; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T. V. M.; Sivakumaran, Theru A.; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K.; Lee, Kristine E.; Stricker, Bruno H.; Vingerling, Johannes R.; Mitchell, Paul; Klein, Barbara E. K.; Klaver, Caroline C. W.; Wang, Jie Jin

    2014-01-01

    To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES),

  17. Olfactory nerve transport of macromolecular drugs to the brain. A problem in olfactory impaired patients

    International Nuclear Information System (INIS)

    Shiga, Hideaki; Yamamoto, Junpei; Miwa, Takaki

    2012-01-01

    Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 ( 201 Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201 Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201 Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)

  18. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  19. Olfactory cuing of autobiographical memory.

    Science.gov (United States)

    Rubin, D C; Groth, E; Goldsmith, D J

    1984-01-01

    In Experiment 1, subjects were presented with either the odors or the names of 15 common objects. In Experiment 2, subjects were presented with either the odors, photographs, or names of 16 common objects. All subjects were asked to describe an autobiographical memory evoked by each cue, to date each memory, and to rate each memory on vividness, pleasantness, and the number of times that the memory had been thought of and talked about prior to the experiment. Compared with memories evoked by photographs or names, memories evoked by odors were reported to be thought of and talked about less often prior to the experiment and were more likely to be reported as never having been thought of or talked about prior to the experiment. No other effects were consistently found, though there was a suggestion that odors might evoke more pleasant and emotional memories than other types of cues. The relation of these results to the folklore concerning olfactory cuing is discussed.

  20. Age-Related Neurodegeneration and Memory Loss in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Jason P. Lockrow

    2012-01-01

    Full Text Available Down syndrome (DS is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.

  1. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  2. Reviewing fluid systems for age-related degradation

    International Nuclear Information System (INIS)

    Smith, Stan

    1991-01-01

    Yankee Atomic Electric Company has developed the component degradation assessment tool (CoDAT), an expert system, that aids in handling and evaluating the large amounts of data required to support the license renewal process for nuclear power station fluid systems. In 1990, CoDAT evaluated the Yankee Nuclear Power Station fluid systems for age-related degradation. Its results are now being used to help focus the plant's maintenance programs and manage the expected degradation. CoDAT uses 'If-Then' rules, developed from industry codes, standards and publications, to determine the potential for 19 age-related degradation mechanisms. Other nuclear utilities pursuing the license renewal option also could use CoDAT. (author)

  3. Hot Topics in Pharmacogenetics of Age-Related Macular Degeneration.

    Science.gov (United States)

    Schwartz, Stephen G; Brantley, Milam A; Kovach, Jaclyn L; Grzybowski, Andrzej

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss and is primarily treated with nutritional supplementation as well as with anti-vascular endothelial growth factor (VEGF) agents for certain patients with neovascular disease. AMD is a complex disease with both genetic and environmental risk factors. In addition, treatment outcomes from nutritional supplementation and anti-VEGF agents vary considerably. Therefore, it is reasonable to suspect that there may be pharmacogenetic influences on these treatments. Many series have reported individual associations with variants in complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and other loci. However, at this time there are no validated associations. With respect to AMD, pharmacogenetics remains an intriguing area of research but is not helpful for routine clinical management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Heart Failure as an Aging-Related Phenotype.

    Science.gov (United States)

    Morita, Hiroyuki; Komuro, Issei

    2018-01-27

    The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.

  5. Age-related percutaneous penetration part 1: skin factors.

    Science.gov (United States)

    Konda, S; Meier-Davis, S R; Cayme, B; Shudo, J; Maibach, H I

    2012-05-01

    Changes in the skin that occur in the elderly may put them at increased risk for altered percutaneous penetration from pharmacotherapy along with potential adverse effects. Skin factors that may have a role in age-related percutaneous penetration include blood flow, pH, skin thickness, hair and pore density, and the content and structure of proteins, glycosaminoglycans (GAGs), water, and lipids. Each factor is examined as a function of increasing age along with its potential impact on percutaneous penetration. Additionally, topical drugs that successfully overcome the barrier function of the skin can still fall victim to cutaneous metabolism, thereby producing metabolites that may have increased or decreased activity. This overview discusses the current data and highlights the importance of further studies to evaluate the impact of skin factors in age-related percutaneous penetration.

  6. Radiation treatment for age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tomoko; Mandai, Michiko; Honjo, Megumi; Matsuda, Naoko; Miyamoto, Hideki; Takahashi, Masayo; Ogura, Yuichiro; Sasai, Keisuke [Kyoto Univ. (Japan). Faculty of Medicine

    1996-11-01

    Fifteen eyes of age-related macular degeneration were treated by low-dose radiation. All the affected eyes had subfoveal neovascular membrane. Seventeen nontreated eyes with similar macular lesion served as control. Radiation was performed using photon beam at 6MV. Each eye received daily dose of 2 Gy for 5 consecutive days. When evaluated 9 to 12 months after treatment, the size of neovascular membrane had decreased in 47% of treated eyes and 7% of control eyes. The visual acuity improved by 2 lines or more in 13% of treated eyes and in none of control eyes. When the initial neovascular membrane was less than 1.5 disc diameter in size, the visual acuity had improved or remained stationary in 90% of treated eyes and in 36% of control eyes. The findings show the potential beneficial effect of radiation for age-related macular degeneration. (author)

  7. Olfactory marker protein: turnover and transport in normal and regenerating neurons

    International Nuclear Information System (INIS)

    Kream, R.M.; Margolis, F.L.

    1984-01-01

    A 19,000-dalton acidic protein designated olfactory marker protein (OMP) is a cell-specific marker of mature olfactory chemosensory neurons. Intranasal irrigation of mouse olfactory epithelium with [ 35 S]methionine labeled OMP to high specific activity. Turnover and transport characteristics of 35 S-labeled OMP were compared to those of 35 S-labeled global cytosol protein in groups of young, adult, and Triton-treated adult mice. The latter contained primarily large numbers of regenerating olfactory neurons. In olfactory epithelium of young and Triton-treated mice, the specific activity of OMP was three times that of global cytosol protein, whereas in adults the two measures were equal. In all three groups, however, the rate of degradation of OMP was roughly equal to that of cytosol protein (T1/2 . 5 to 6 days). By contrast, differences in T1/2 for OMP decline in the bulb of adult, young, and Triton-treated adult mice were highly significant (T1/2's of 9.3, 6.1, and 4 to 5 days, respectively; p . 0.001). The specific activity of [35S]methionine incorporated in OMP exceeded that of the free amino acid 5-fold, indicating minimal precursor reutilization during the course of our experiments. Turnover data indicate that increased isotope incorporation into OMP in the epithelium is matched by an accelerated rate of degradation in the bulb. This may be correlated with the physiological state or developmental age of the primary neurons since in young and Triton-treated adult mice, rapidly maturing ''young'' olfactory neurons represent a larger proportion of the total population than in adults. Thus, OMP behaves as a typical, relatively slowly transported soluble protein (v . 2 to 4 mm/day, slow component b)

  8. Smoking and olfactory dysfunction: A systematic literature review and meta-analysis.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Wroblewski, Kristen E; Pinto, Jayant M

    2017-08-01

    A systematic review and meta-analysis of the literature was undertaken, examining the association between tobacco smoking and olfactory function in humans, utilizing PubMed and Web of Science (1970-2015) as data sources. Systematic literature review and meta-analysis. This database review of studies of smoking and olfaction, with a focus on identifying high-quality studies (based on modified versions of the Newcastle-Ottawa Scale), used validated olfactory tests among the generally healthy population. We identified 11 studies meeting inclusion criteria. Of 10 cross-sectional studies, two were excluded from meta-analysis because the cohorts they studied were included in another article in the review. In meta-analysis, current smokers had substantially higher odds of olfactory dysfunction compared to never smokers (odds ratio [OR] = 1.59, 95% confidence interval [CI] = 1.37-1.85). In contrast, former smokers were found to have no difference in risk of impaired olfaction compared to never smokers (OR = 1.05, 95% CI = 0.91-1.21). The single longitudinal study reviewed found a trend toward increased risk of olfactory decline over time in ever smokers; this trend was stronger in current as compared to former smokers. Current smoking, but not former smoking, is associated with significantly increased risk of olfactory dysfunction, suggesting that the effects of smoking on olfaction may be reversible. Future studies that prospectively evaluate the impact of smoking cessation on improvement in olfactory function are warranted. N/A. Laryngoscope, 127:1753-1761, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  9. eNOS-uncoupling in age-related erectile dysfunction

    OpenAIRE

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ...

  10. Complement pathway biomarkers and age-related macular degeneration

    Science.gov (United States)

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  11. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice

    Directory of Open Access Journals (Sweden)

    Dustin H Brewton

    2016-11-01

    Full Text Available Age-related changes in inhibitory neurotransmission in sensory cortex may underlie deficits in sensory function. Perineuronal nets (PNNs are extracellular matrix components that ensheath some inhibitory neurons, particularly parvalbumin positive (PV+ interneurons. PNNs may protect PV+ cells from oxidative stress and help establish their rapid spiking properties. Although PNN expression has been well characterized during development, possible changes in aging sensory cortex have not been investigated. Here we tested the hypothesis that PNN+, PV+ and PV/PNN co-localized cell densities decline with age in the primary auditory cortex (A1. This hypothesis was tested using immunohistochemistry in two strains of mice (C57BL/6 and CBA/CaJ with different susceptibility to age-related hearing loss and at three different age ranges (1-3, 6-8 and 14-24 months old. We report that PNN+ and PV/PNN co-localized cell densities decline significantly with age in A1 in both mouse strains. In the PNN+ cells that remain in the old group, the intensity of PNN staining is reduced in the C57 strain, but not the CBA strain. PV+ cell density also declines only in the C57, but not the CBA, mouse suggesting a potential exacerbation of age-effects by hearing loss in the PV/PNN system. Taken together, these data suggest that PNN deterioration may be a key component of altered inhibition in the aging sensory cortex, that may lead to altered synaptic function, susceptibility to oxidative stress and processing deficits.

  12. Age-related differences in working memory updating components.

    Science.gov (United States)

    Linares, Rocío; Bajo, M Teresa; Pelegrina, Santiago

    2016-07-01

    The aim of this study was to investigate possible age-related changes throughout childhood and adolescence in different component processes of working memory updating (WMU): retrieval, transformation, and substitution. A set of numerical WMU tasks was administered to four age groups (8-, 11-, 14-, and 21-year-olds). To isolate the effect of each of the WMU components, participants performed different versions of a task that included different combinations of the WMU components. The results showed an expected overall decrease in response times and an increase in accuracy performance with age. Most important, specific age-related changes in the retrieval component were found, demonstrating that the effect of retrieval on accuracy was larger in children than in adolescents or young adults. These findings indicate that the availability of representations from outside the focus of attention may change with age. Thus, the retrieval component of updating could contribute to the age-related changes observed in the performance of many updating tasks. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  14. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  15. Accident sequence precursor events with age-related contributors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as a contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.

  16. Identification of Age-Related Macular Degeneration Using OCT Images

    Science.gov (United States)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  17. Methods to measure olfactory behavior in mice.

    Science.gov (United States)

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-02-02

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors. Copyright © 2015 John Wiley & Sons, Inc.

  18. Developmental decline in height growth in Douglas-fir.

    Science.gov (United States)

    Barbara J. Bond; Nicole M. Czarnomski; Clifton Cooper; Michael E. Day; Michael S. Greenwood

    2007-01-01

    The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether...

  19. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  20. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  1. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  2. Age-related patterns of vigorous-intensity physical activity in youth: The International Children's Accelerometry Database

    Directory of Open Access Journals (Sweden)

    Kirsten Corder

    2016-12-01

    Age-related declines in vigorous-intensity activity during youth appear relatively greater than those of moderate activity. However, due to a higher baseline, absolute moderate-intensity activity decreases more than vigorous. Overweight/obese individuals, girls, and North Americans appear especially in need of vigorous-intensity activity promotion due to low levels at 5.0–5.9 y and larger negative annual differences.

  3. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [Deficits in medical counseling in olfactory dysfunction].

    Science.gov (United States)

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  5. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  6. Insect olfactory memory in time and space.

    Science.gov (United States)

    Liu, Xu; Davis, Ronald L

    2006-12-01

    Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.

  7. Age-related changes of adaptive and neuropsychological features in persons with Down Syndrome.

    Directory of Open Access Journals (Sweden)

    Alessandro Ghezzo

    Full Text Available Down Syndrome (DS is characterised by premature aging and an accelerated decline of cognitive functions in the vast majority of cases. As the life expectancy of DS persons is rapidly increasing, this decline is becoming a dramatic health problem. The aim of this study was to thoroughly evaluate a group of 67 non-demented persons with DS of different ages (11 to 66 years, from a neuropsychological, neuropsychiatric and psychomotor point of view in order to evaluate in a cross-sectional study the age-related adaptive and neuropsychological features, and to possibly identify early signs predictive of cognitive decline. The main finding of this study is that both neuropsychological functions and adaptive skills are lower in adult DS persons over 40 years old, compared to younger ones. In particular, language and short memory skills, frontal lobe functions, visuo-spatial abilities and adaptive behaviour appear to be the more affected domains. A growing deficit in verbal comprehension, along with social isolation, loss of interest and greater fatigue in daily tasks, are the main features found in older, non demented DS persons evaluated in our study. It is proposed that these signs can be alarm bells for incipient dementia, and that neuro-cognitive rehabilitation and psycho-pharmacological interventions must start as soon as the fourth decade (or even earlier in DS persons, i.e. at an age where interventions can have the greatest efficacy.

  8. Like cognitive function, decision making across the life span shows profound age-related changes.

    Science.gov (United States)

    Tymula, Agnieszka; Rosenberg Belmaker, Lior A; Ruderman, Lital; Glimcher, Paul W; Levy, Ifat

    2013-10-15

    It has long been known that human cognitive function improves through young adulthood and then declines across the later life span. Here we examined how decision-making function changes across the life span by measuring risk and ambiguity attitudes in the gain and loss domains, as well as choice consistency, in an urban cohort ranging in age from 12 to 90 y. We identified several important age-related patterns in decision making under uncertainty: First, we found that healthy elders between the ages of 65 and 90 were strikingly inconsistent in their choices compared with younger subjects. Just as elders show profound declines in cognitive function, they also show profound declines in choice rationality compared with their younger peers. Second, we found that the widely documented phenomenon of ambiguity aversion is specific to the gain domain and does not occur in the loss domain, except for a slight effect in older adults. Finally, extending an earlier report by our group, we found that risk attitudes across the life span show an inverted U-shaped function; both elders and adolescents are more risk-averse than their midlife counterparts. Taken together, these characterizations of decision-making function across the life span in this urban cohort strengthen the conclusions of previous reports suggesting a profound impact of aging on cognitive function in this domain.

  9. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  10. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  11. Pathogenesis of age-related bone loss in humans.

    Science.gov (United States)

    Khosla, Sundeep

    2013-10-01

    Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. This review provides an update on mechanisms of age-related bone loss in humans based on the author's knowledge of the field and focused literature reviews. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD.

  12. Age-related deterioration of rod vision in mice.

    Science.gov (United States)

    Kolesnikov, Alexander V; Fan, Jie; Crouch, Rosalie K; Kefalov, Vladimir J

    2010-08-18

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and, more specifically, photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid-deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5-year-old mice compared with 4-month-old animals. Aging also resulted in a twofold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by twofold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods, providing an alternative mechanism for their desensitization.

  13. Age-related degradation of Westinghouse 480-volt circuit breakers

    International Nuclear Information System (INIS)

    Subudhi, M.; Shier, W.; MacDougall, E.

    1990-07-01

    An aging assessment of Westinghouse DS-series low-voltage air circuit breakers was performed as part of the Nuclear Plant Aging Research (NPAR) program. The objectives of this study are to characterize age-related degradation within the breaker assembly and to identify maintenance practices to mitigate their effect. Since this study has been promulgated by the failures of the reactor trip breakers at the McGuire Nuclear Station in July 1987, results relating to the welds in the breaker pole lever welds are also discussed. The design and operation of DS-206 and DS-416 breakers were reviewed. Failure data from various national data bases were analyzed to identify the predominant failure modes, causes, and mechanisms. Additional operating experiences from one nuclear station and two industrial breaker-service companies were obtained to develop aging trends of various subcomponents. The responses of the utilities to the NRC Bulletin 88-01, which discusses the center pole lever welds, were analyzed to assess the final resolution of failures of welds in the reactor trips. Maintenance recommendations, made by the manufacturer to mitigate age-related degradation were reviewed, and recommendations for improving the monitoring of age-related degradation are discussed. As described in Volume 2 of this NUREG, the results from a test program to assess degradation in breaker parts through mechanical cycling are also included. The testing has characterized the cracking of center-pole lever welds, identified monitoring techniques to determine aging in breakers, and provided information to augment existing maintenance programs. Recommendations to improve breaker reliability using effective maintenance, testing, and inspection programs are suggested. 13 refs., 21 figs., 8 tabs

  14. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    Directory of Open Access Journals (Sweden)

    Yoshihiro Yonekawa

    2015-02-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies.

  15. Figure ground discrimination in age-related macular degeneration.

    Science.gov (United States)

    Tran, Thi Ha Chau; Guyader, Nathalie; Guerin, Anne; Despretz, Pascal; Boucart, Muriel

    2011-03-01

    To investigate impairment in discriminating a figure from its background and to study its relation to visual acuity and lesion size in patients with neovascular age-related macular degeneration (AMD). Seventeen patients with neovascular AMD and visual acuity Figure/ground segregation is impaired in patients with AMD. A white space surrounding an object is sufficient to improve the object's detection and to facilitate figure/ground segregation. These results may have practical applications to the rehabilitation of the environment in patients with AMD.

  16. Age related macular degeneration - modern diagnostic and therapeutic preventive approach

    OpenAIRE

    Gogelová, Blanka

    2009-01-01

    Age-related macular degeneration (AMD) is a disease associated with aging that gradually destroys sharp, central vision. Central vision is needed for seeing objects clearly and for common daily tasks such as reading and driving. AMD affects the macula, the part of the eye that alows seeing of fine details. AMD occurs in two form: dry and wet. In dry AMD, the light sensitive cells in the macula slowly break down. As fewer cells in the macula are able to function, people will see details less c...

  17. New developments in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Lyndon da Cruz

    2008-09-01

    Full Text Available The World Health Organization (WHO estimates that over 3 million people (9% of global blindness are blinded by age-related macular degeneration (AMD. AMD affects people over the age of 55. There are two main types of AMD, dry and wet. In dry AMD, patients slowly lose vision through progressive atrophy of the macular tissue. Wet, or exudative, AMD, is associated with new blood vessels called subretinal neovascular membranes (or SRNVM and affected patients lose vision more rapidly due to fluid leakage and haemorrhage at the macula.

  18. Counteracting age-related loss of skeletal muscle mass

    DEFF Research Database (Denmark)

    Bechshøft, Rasmus; Reitelseder, Søren; Højfeldt, Grith

    2016-01-01

    Background Aging is associated with decreased muscle mass and functional capacity, which in turn decrease quality of life. The number of citizens over the age of 65 years in the Western world will increase by 50 % over the next four decades, and this demographic shift brings forth new challenges...... at both societal and individual levels. Only a few longitudinal studies have been reported, but whey protein supplementation seems to improve muscle mass and function, and its combination with heavy strength training appears even more effective. However, heavy resistance training may reduce adherence...... Intervention Study will generate scientific evidence and recommendations to counteract age-related loss of skeletal muscle mass in elderly individuals....

  19. Age-related macular degeneration: epidemiology and optimal treatment

    DEFF Research Database (Denmark)

    la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst

    2002-01-01

    Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian....... Smoking is probably also a risk factor. Preventive strategies using macular laser photocoagulation are under investigation, but their efficacy in preventing visual loss is as yet unproven. There is no treatment with proven efficacy for geographic atrophy. Optimal treatment for exudative AMD requires...

  20. Research status of conbercept treating age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Hai-Yan He

    2015-08-01

    Full Text Available Age-related macular degeneration(AMDis one of the major reasons of blindness among the elderly in the developed countries. As AMD patients are increasing year by year, AMD has become one of the important topics of ophthalmic research to prevent blindness. Its pathogenesis is not fully understood, but many studies have shown that vascular endothelial growth factor(VEGFplays an important role in the pathogenesis. With the development and application of anti-VEGF drugs, there are a variety of drugs applied to the disease. This article introduces conbercept for the treatment of AMD.

  1. Age-related changes in crowding and reading speed

    OpenAIRE

    Liu, Rong; Patel, Bhavika N.; Kwon, MiYoung

    2017-01-01

    Crowding, the inability to recognize objects in clutter, is known to play a role in developmental changes in reading speed. Here, we investigated whether crowding also plays a role in age-related changes in reading speed. We recruited 18 young (mean age: 22.6???3.5; range: 18~31) and 21 older adults (mean age: 58.2???7.0; range: 50~73) with normal vision. Reading speed was measured with short blocks of text. The degree of crowding was determined by measuring crowding zone (the distance betwee...

  2. The mouse olfactory peduncle. 3. Development of neurons, glia and centrifugal afferents

    Directory of Open Access Journals (Sweden)

    Peter eBrunjes

    2014-06-01

    Full Text Available The present series of studies was designed to provide a general overview of the development of the region connecting the olfactory bulb to the forebrain. The olfactory peduncle contains several structures involved in processing odor information with the anterior olfactory nucleus (cortex being the largest and most studied. Results indicate that considerable growth occurs in the peduncle from postnatal day (P10-P20, with reduced expansion from P20-P30. No evidence was found for the addition of new projection or interneurons during the postnatal period. GABAergic cells decreased in both number and density after P10. Glial populations exhibited different patterns of development, with astrocytes declining in density from P10-P30, and both oligodendrocytes and microglia increasing through the interval. Myelination in the anterior commissure emerged between P11-14. Dense cholinergic innervation was observed at P10 and remained relatively stable through P30, while considerable maturation of serotonergic innervation occurred through the period. Unilateral naris occlusion from P1-P30 resulted in about a 30% reduction in the size of the ipsilateral peduncle but few changes were observed on the contralateral side. The ipsilateral peduncle also exhibited higher densities of GAD67- containing interneurons and cholinergic fibers suggesting a delay in normal developmental pruning. Lower densities of interneurons expressing CCK, somatostatin and NPY and in myelin basic protein staining were also observed. Understanding variations in developmental trajectories within the olfactory peduncle may be an important tool for unravelling the functions of the region.

  3. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  4. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: Age-Related Eye Disease Study Report No. 28.

    Science.gov (United States)

    Cukras, Catherine; Agrón, Elvira; Klein, Michael L; Ferris, Frederick L; Chew, Emily Y; Gensler, Gary; Wong, Wai T

    2010-03-01

    To describe the natural history of eyes with drusenoid pigment epithelial detachments (DPEDs) associated with age-related macular degeneration (AMD). Multicenter, clinic-based, prospective cohort study. Among 4757 participants enrolled in the Age-Related Eye Disease Study (AREDS), 255 were identified as having DPED in at least 1 eye and having 5 or more years of follow-up after the initial detection of the DPED. Baseline and annual fundus photographs were evaluated for the evolution of the fundus features and the development of advanced AMD in the forms of central geographic atrophy (CGA) or neovascular (NV) AMD. Kaplan-Meier analyses of progression to advanced AMD and of moderate vision loss (> or =15 letters compared with baseline) were performed. Rate of progression to advanced AMD and change in visual acuity from baseline (in terms of mean letters lost and proportion losing > or =15 letters). A total of 311 eyes (from 255 participants) with DPED were followed for a median follow-up time of 8 years subsequent to the initial detection of a DPED. Of the 282 eyes that did not have advanced AMD at baseline, advanced AMD developed within 5 years in 119 eyes (42%) (19% progressing to CGA and 23% progressing to NV-AMD). In the remaining eyes that did not develop advanced AMD (n=163), progressive fundus changes, typified by the development of calcified drusen and pigmentary changes, were detected. Visual decline was prominent among study eyes, with approximately 40% of all eyes decreasing in visual acuity by > or =15 letters at 5 years follow-up. Mean visual acuity decreased from 76 letters ( approximately 20/30) at baseline to 61 letters ( approximately 20/60) at 5 years. Five-year decreases in mean visual acuity averaged 26 letters for eyes progressing to advanced AMD and 8 letters for non-progressing eyes. The natural history of eyes containing DPED is characterized by a high rate of progression to both CGA and NV-AMD. Among eyes not progressing to advanced AMD

  5. Age-related changes in neural control of posture

    NARCIS (Netherlands)

    Papegaaij, Selma

    2016-01-01

    As we get older many physiological functions decline, including muscle strength, flexibility, and memory. Also in the aging brain there are changes, such as shrinkage of its volume. Since we need our brain to keep our balance while standing, it seems likely that these changes also affect our balance

  6. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  7. KCNQ channels regulate age-related memory impairment.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment.

  8. Age Related Changes in Hematological Values of Myanmar Local Puppies

    Directory of Open Access Journals (Sweden)

    Thandar Oo

    2017-10-01

    Full Text Available The hematological parameters were used to monitor the health status and its components also changed according to the ages. However, there were no reports for this issues in Myanmar local dogs. Thus, this study was carried out to investigate the age-related changes on the hematological parameters of local puppies in Myanmar. Ten local puppies with the age of 2-3 month old were used in this experiment, which was lasted for 8 weeks.The daily clinical examinations were conducted throughout the entire experimental period for general health check-up. Haematological parameters (Total WBC count and its differential counts, and RBC, HCT, MCV, HGB, MCH, MCHC and platelets were measured bi-weekly with Abacus Vet-5 automate haematology analyser. According to the results, the total WBC and eosinophil counts were not significantly different (P>0.05, while lymphocytes, monocytes, neutrophils and basophils were significantly different (P0.05 throughout the experimental periods. Thus, the age-related changes were observed on cell counts of lymphocytes, monocytes, neutrophils, basophils in Myanmar local puppies.

  9. Splicing regulatory factors, ageing and age-related disease.

    Science.gov (United States)

    Latorre, Eva; Harries, Lorna W

    2017-07-01

    Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Gender effects on age-related changes in brain structure.

    Science.gov (United States)

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  11. MORPHOLOGICAL STUDY OF THE AGE RELATED CHANGES OF THE CERVIX

    Directory of Open Access Journals (Sweden)

    Monjushree Chakravarty

    2016-07-01

    Full Text Available BACKGROUND Disease of the cervix is a common clinical condition in females, worldwide and especially in a developing country like India. The study was undertaken in Guwahati Medical College to see the age related changes in the morphology of the cervix. AIM The study was done to observe the age related changes in the cervix and compare the same with the different studies done by the previous workers around the world so as to help clinicians to diagnose the pathologies of this part of the female reproductive system better. MATERIALS AND METHOD The specimens were divided into three groups viz. pre-reproductive, reproductive and post-menopausal. Twenty specimens were collected of each group. The results were statistically analysed and ‘t’ test was employed to find out the significant difference between the mean value. SUMMARY A study of the 60 specimens collected were done to find the morphological parameters of each group viz. pre-reproductive, reproductive and post-menopausal and the findings of each group were compared to one another and were related to the finding of previous workers. CONCLUSION The study showed that there were certain differences in the morphology of the three groups and these differences tallied with that of the previous workers.

  12. Radiation therapy for neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Robert Petrarca

    2011-01-01

    Full Text Available Robert Petrarca, Timothy L JacksonDepartment of Ophthalmology, King’s College Hospital NHS Foundation Trust, London, UKAbstract: Antivascular endothelial growth factor (anti-VEGF therapies represent the standard of care for most patients presenting with neovascular (wet age-related macular degeneration (neovascular AMD. Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET. Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002, with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections.Keywords: wet age-related macular degeneration, neovascular, radiation therapy, epimacular brachytherapy, stereotactic radiosurgery, anti-VEGF

  13. Parainflammation, chronic inflammation and age-related macular degeneration

    Science.gov (United States)

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  14. Radiation therapy for age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Chikako; Mori, Hideo; Akuta, Keizou [Otsu Red Cross Hospital, Shiga (Japan); Yoshimura, Nagahisa

    1998-04-01

    We evaluated the effect of low-dose radiation on age-related macular degeneration in 8 affected eyes. Radiation was applied using photons at 4 MV. Each eye received 10 fractions of 2 Gy per day over 2 weeks. At 6 months after treatment, funduscopic or angiographic findings had either improved or remained unchanged in all the eyes. The visual acuity improved by 2 lines or more in 2 eyes (25%), remained unchanged in 5 eyes (63%) and deteriorated in 1 eye (13%). At the last examination, fundus findings had improved in 2 eyes (25%), remained unchanged in 1 eye (13%) and deteriorated in 5 eyes (63%). The visual acuity had improved or unchanged in 2 eyes each (25%) and deteriorated in 4 eyes (50%). There has been no negative side effects of radiation. Above findings show that low-dose radiation is potentially beneficial for subfoveal or juxtafoveal choroidal neovascularizations in age-related macular degeneration on a short term basis. (author)

  15. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  16. Experience-based attenuation of age-related differences in music cognition tasks.

    Science.gov (United States)

    Meinz, E J

    2000-06-01

    Pianists of a wide experience and age range were tested on measures of musical memory and musical perceptual speed to better understand the effects of experience on age-cognition relations. Experience-related attenuation might be in the form of an Age x Experience interaction or in the form of a "confounding" of age and experience such that positive age-experience relations offset negative age-cognition relations. It was predicted that the former, considered evidence for disuse interpretations of aging, would be likely to emerge in tasks with strong experience effects and strong age-related declines among inexperienced individuals. However, in no case were the interactions of age and experience on the memory or perceptual speed variables significant. There was, however, evidence that high levels of experience in the older participants partially attenuated the negative effects of age on the memory and perceptual speed tasks.

  17. Age-Related Increase in Electromyography Burst Activity in Males and Females

    Directory of Open Access Journals (Sweden)

    Olga Theou

    2013-01-01

    Full Text Available The rapid advancement of electromyography (EMG technology facilitates measurement of muscle activity outside the laboratory during daily life. The purpose of this study was to determine whether bursts in EMG recorded over a typical 8-hour day differed between young and old males and females. Muscle activity was recorded from biceps brachii, triceps brachii, vastus lateralis, and biceps femoris of 16 young and 15 old adults using portable surface EMG. Old muscles were active 16–27% of the time compared to 5–9% in young muscles. The number of bursts was greater in old than young adults and in females compared to males. Burst percentage and mean amplitude were greater in the flexor muscles compared with the extensor muscles. The greater burst activity in old adults coupled with the unique activity patterns across muscles in males and females provides further understanding of how changes in neuromuscular activity effects age-related functional decline between the sexes.

  18. [Age-related changes of sensory peripheral nerve system in healthy subjects.

    Science.gov (United States)

    Voitenkov, V B; Ekusheva, E V; Komancev, V N; Skripchenko, N V; Grigoryev, S G; Klimkin, A V; Aksenova, A I

    2017-01-01

    Our aim was to present and evaluate age-related changes of peripheral nerves of limbs on a huge population of healthy subjects of different ages. In 2009-2016 subjects aged from 1months to 90 years were studied by nerve conduction velocity studies (NCV). Data of those confirmed healthy was included in our study. In total there were 372 healthy subjects. NCV for nn. Medianus et Ulnaris was registered, with NCV and amplitude of compound sensory action potential (CSAP) being analyzed. There were significant differences on both these parameters between different age groups. Since the childhood the improvement of conduction (which was reflected in rising of CSAP amplitudes and NCV quickening) was registered; from 40-50 years steady decline of both these parameters were observed in both nerves. Conduction studies of peripheral nerves may be implemented in gerontology for early detection of neurophysiology patterns reflecting physiological aging. Also our results may be implemented for accelerated aging detection.

  19. Diminished stress resistance and defective adaptive homeostasis in age-related diseases.

    Science.gov (United States)

    Lomeli, Naomi; Bota, Daniela A; Davies, Kelvin J A

    2017-11-01

    Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events ( Mol. Aspects Med. (2016) 49, 1-7 ). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Dietary Curcumin Ameliorates Aging-Related Cerebrovascular Dysfunction through the AMPK/Uncoupling Protein 2 Pathway

    Directory of Open Access Journals (Sweden)

    Yunfei Pu

    2013-11-01

    Full Text Available Background/Aims: Age-related cerebrovascular dysfunction contributes to stroke, cerebral amyloid angiopathy, cognitive decline and neurodegenerative diseases. One pathogenic mechanism underlying this effect is increased oxidative stress. Up-regulation of mitochondrial uncoupling protein 2 (UCP2 plays a crucial role in regulating reactive oxygen species (ROS production. Dietary patterns are widely recognized as contributors to cardiovascular and cerebrovascular disease. In this study, we tested the hypothesis that dietary curcumin, which has an antioxidant effect, can improve aging-related cerebrovascular dysfunction via UCP2 up-regulation. Methods: The 24-month-old male rodents used in this study, including male Sprague Dawley (SD rats and UCP2 knockout (UCP2-/- and matched wild type mice, were given dietary curcumin (0.2%. The young control rodents were 6-month-old. Rodent cerebral artery vasorelaxation was detected by wire myograph. The AMPK/UCP2 pathway and p-eNOS in cerebrovascular and endothelial cells were observed by immunoblotting. Results: Dietary curcumin administration for one month remarkably restored the impaired cerebrovascular endothelium-dependent vasorelaxation in aging SD rats. In cerebral arteries from aging SD rats and cultured endothelial cells, curcumin promoted eNOS and AMPK phosphorylation, up-regulated UCP2 and reduced ROS production. These effects of curcumin were abolished by either AMPK or UCP2 inhibition. Chronic dietary curcumin significantly reduced ROS production and improved cerebrovascular endothelium-dependent relaxation in aging wild type mice but not in aging UCP2-/- mice. Conclusions: Curcumin improves aging-related cerebrovascular dysfunction via the AMPK/UCP2 pathway.

  1. Age-related differences in working memory performance in a 2-back task

    Directory of Open Access Journals (Sweden)

    Nele eWild-Wall

    2011-08-01

    Full Text Available The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus-response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage and retrieval of information in working memory.

  2. Age-Related Differences in Working Memory Performance in A 2-Back Task

    Science.gov (United States)

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2011-01-01

    The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328

  3. Stroop color-word interference and electroencephalogram activation: evidence for age-related decline of the anterior attention system.

    Science.gov (United States)

    West, R; Bell, M A

    1997-07-01

    Groups of healthy, community-dwelling younger and older adults performed a Stroop task in which color and word could be congruent or incongruent and spatially integrated or separated. During the task, continuous electroencephalogram (EEG) was recorded from frontal, parietal, and occipital regions. The magnitude of the Stroop interference effect and task-related EEG activation was greater for older than younger adults when stimuli were integrated. This effect was significant over medial and lateral frontal and parietal, but not occipital, regions. In comparison, interference and EEG activation did not differ for younger and older adults when stimuli were separated. These findings support the hypothesis that the anterior attention system is more sensitive to the effects of increasing age than the posterior attention system.

  4. Central Determinants of Age-Related Declines in Motor Function (Annals of the New York Academy of Sciences. Volume 515)

    Science.gov (United States)

    1988-01-18

    postural muscle response latencies are significantly longer in the aging adult (con1- pared to the young one) when these responses are activated by external...posterior sway) were calculated and com- pared for the two age groups. Significant differences (p < 0.001) were observed be- tween correlations in the two...Laboratory of Celular and Molecu/ar Bioloi< Gerontology Research Center" Aautional Institute on .lging Francis Scott Key Medical Center Bc imore

  5. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography.

    Directory of Open Access Journals (Sweden)

    Kate E Sprecher

    Full Text Available Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel electroencephalography (EEG during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18-65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson's coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.

  6. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    International Nuclear Information System (INIS)

    Fortuna, S.; Pintor, A.; Michalek, H.

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of 3 H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats

  7. Early selection versus late correction: Age-related differences in controlling working memory contents.

    Science.gov (United States)

    Schwarzkopp, Tina; Mayr, Ulrich; Jost, Kerstin

    2016-08-01

    We examined whether a reduced ability to ignore irrelevant information is responsible for the age-related decline of working memory (WM) functions. By means of event-related brain potentials, we will show that filtering is not out of service in older adults but shifted to a later processing stage. Participants performed a visual short-term memory task (change-detection task) in which targets were presented along with distractors. To allow early selection, a cue was presented in advance of each display, indicating where the targets were to appear. Despite this relatively easy selection criterion, older adults' filtering was delayed as indicated by the amplitude pattern of the contralateral delay activity. Importantly, WM-equated younger adults did not show a delay indicating that the delay is specific to older adults and not a general phenomenon that comes with low WM capacity. Moreover, the analysis of early visual potentials revealed qualitatively different perceptual/attentional processing between the age groups. Young adults exhibited stronger distractor sensitivity that in turn facilitated filtering. Older adults, in contrast, seemed to initially store distractors and to suppress them after the fact. These early selection versus late-correction modes suggest an age-related shift in the strategy to control the contents of WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Functional and Homeostatic Impact of Age-Related Changes in Lymph Node Stroma

    Directory of Open Access Journals (Sweden)

    Heather L. Thompson

    2017-06-01

    Full Text Available Adults over 65 years of age are more vulnerable to infectious disease and show poor responses to vaccination relative to those under 50. A complex set of age-related changes in the immune system is believed to be largely responsible for these defects. These changes, collectively termed immune senescence, encompass alterations in both the innate and adaptive immune systems, in the microenvironments where immune cells develop or reside, and in soluble factors that guide immune homeostasis and function. While age-related changes in primary lymphoid organs (bone marrow, and, in particular, the thymus, which involutes in the first third of life have been long appreciated, changes affecting aging secondary lymphoid organs, and, in particular, aging lymph nodes (LNs have been less well characterized. Over the last 20 years, LN stromal cells have emerged as key players in maintaining LN morphology and immune homeostasis, as well as in coordinating immune responses to pathogens. Here, we review recent progress in understanding the contributions of LN stromal cells to immune senescence. We discuss approaches to understand the mechanisms behind the decline in LN stromal cells and conclude by considering potential strategies to rejuvenate aging LN stroma to improve immune homeostasis, immune responses, and vaccine efficacy in the elderly.

  9. Age-related patterns of vigorous-intensity physical activity in youth

    DEFF Research Database (Denmark)

    Corder, Kirsten; Sharp, Stephen J; Atkin, Andrew J

    2016-01-01

    the relative reduction was 6.0% (5.6%, 6.4%). The age-related decrease in vigorous-intensity activity remained after adjustment for moderate activity. A larger age-related decrease in vigorous activity was observed for girls (- 10.7%) versus boys (- 2.9%), non-white (- 12.9% to - 9.4%) versus white individuals......Physical activity declines during youth but most evidence reports on combined moderate and vigorous-intensity physical activity. We investigated how vigorous-intensity activity varies with age. Cross-sectional data from 24,025 participants (5.0-18.0 y; from 20 studies in 10 countries obtained 2008...... (- 6.1%), lowest maternal education (high school (- 2.0%)) versus college/university (ns) and for overweight/obese (- 6.1%) versus healthy-weight participants (- 8.1%). In addition to larger annual decreases in vigorous-intensity activity, overweight/obese individuals, girls and North Americans had...

  10. Longitudinal Mediation of Processing Speed on Age-Related Change in Memory and Fluid Intelligence

    Science.gov (United States)

    Robitaille, Annie; Piccinin, Andrea M.; Muniz, Graciela; Hoffman, Lesa; Johansson, Boo; Deeg, Dorly J.H.; Aartsen, Marja J.; Comijs, Hannie C.; Hofer, Scott M.

    2014-01-01

    Age-related decline in processing speed has long been considered a key driver of cognitive aging. While the majority of empirical evidence for the processing speed hypothesis has been obtained from analyses of between-person age differences, longitudinal studies provide a direct test of within-person change. Using recent developments in longitudinal mediation analysis, we examine the speed–mediation hypothesis at both the within- and between-person levels in two longitudinal studies, LASA and OCTO-Twin. We found significant within-person indirect effects of change in age, such that increasing age was related to lower speed which, in turn, relates to lower performance across repeated measures on other cognitive outcomes. Although between-person indirect effects were also significant in LASA, they were not in OCTO-Twin. These differing magnitudes of direct and indirect effects across levels demonstrate the importance of separating between- and within-person effects in evaluating theoretical models of age-related change. PMID:23957224

  11. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease

    Science.gov (United States)

    Mora, Ana L.; Rojas, Mauricio; Pardo, Annie; Selman, Moises

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease that is characterized by progressive and irreversible scarring of the lung. The pathogenesis of IPF is not completely understood and current therapies are limited to those that reduce the rate of functional decline in patients with mild-to-moderate disease. In this context, new therapeutic approaches that substantially improve the survival time and quality of life of these patients are urgently needed. Our incomplete understanding of the pathogenic mechanisms of IPF and the lack of appropriate experimental models that reproduce the key characteristics of the human disease are major challenges. As ageing is a major risk factor for IPF, age-related cell perturbations such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis and mitochondrial dysfunction are becoming targets of interest for IPF therapy. In this Review, we discuss current and emerging therapies for IPF, particularly those targeting age-related mechanisms, and discuss future therapeutic approaches. PMID:29081515

  12. Age-related changes in cutaneous sensation in the healthy human hand.

    Science.gov (United States)

    Bowden, Jocelyn L; McNulty, Penelope A

    2013-08-01

    Cutaneous sensation deteriorates with age. It is not known if this change is consistent over the entire hand or if sensation is affected by changes in skin mechanics. Cutaneous perceptual thresholds were tested at eight sites in the glabrous skin and two in the hairy skin of both hands in 70 subjects (20-88 years), five male and five female per decade, using calibrated von Frey filaments, two-point discrimination, and texture discrimination. Venous occlusion at the wrist (40 ± 10 mmHg) and moisturizer were used to alter skin mechanics. Cutaneous thresholds increased significantly with age (p sensation varied according to the site tested with smaller changes on the fingers compared to the palm. Two-point discrimination deteriorated with age (p = 0.046), but with no interaction between sex, handedness, or changes in skin mechanics. There were no significant differences for texture discrimination. Changes in skin mechanics improved cutaneous thresholds in the oldest males after moisturizing (p = 0.001) but not otherwise. These results emphasize the complex pattern of age-related deterioration in cutaneous sensation with differences between sexes, the hands, sites on the hand, and the mode of testing. As the index fingertip is not a sensitive indicator of sensory decline, the minimum assessment of age-related changes in cutaneous sensation should include both hands, and sites on the palm.

  13. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease.

    Science.gov (United States)

    Shlisky, Julie; Bloom, David E; Beaudreault, Amy R; Tucker, Katherine L; Keller, Heather H; Freund-Levi, Yvonne; Fielding, Roger A; Cheng, Feon W; Jensen, Gordon L; Wu, Dayong; Meydani, Simin N

    2017-01-01

    A projected doubling in the global population of people aged ≥60 y by the year 2050 has major health and economic implications, especially in developing regions. Burdens of unhealthy aging associated with chronic noncommunicable and other age-related diseases may be largely preventable with lifestyle modification, including diet. However, as adults age they become at risk of "nutritional frailty," which can compromise their ability to meet nutritional requirements at a time when specific nutrient needs may be high. This review highlights the role of nutrition science in promoting healthy aging and in improving the prognosis in cases of age-related diseases. It serves to identify key knowledge gaps and implementation challenges to support adequate nutrition for healthy aging, including applicability of metrics used in body-composition and diet adequacy for older adults and mechanisms to reduce nutritional frailty and to promote diet resilience. This review also discusses management recommendations for several leading chronic conditions common in aging populations, including cognitive decline and dementia, sarcopenia, and compromised immunity to infectious disease. The role of health systems in incorporating nutrition care routinely for those aged ≥60 y and living independently and current actions to address nutritional status before hospitalization and the development of disease are discussed. © 2017 American Society for Nutrition.

  14. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease12

    Science.gov (United States)

    Shlisky, Julie; Bloom, David E; Beaudreault, Amy R; Tucker, Katherine L; Keller, Heather H; Freund-Levi, Yvonne; Fielding, Roger A; Cheng, Feon W; Jensen, Gordon L; Wu, Dayong; Meydani, Simin N

    2017-01-01

    A projected doubling in the global population of people aged ≥60 y by the year 2050 has major health and economic implications, especially in developing regions. Burdens of unhealthy aging associated with chronic noncommunicable and other age-related diseases may be largely preventable with lifestyle modification, including diet. However, as adults age they become at risk of “nutritional frailty,” which can compromise their ability to meet nutritional requirements at a time when specific nutrient needs may be high. This review highlights the role of nutrition science in promoting healthy aging and in improving the prognosis in cases of age-related diseases. It serves to identify key knowledge gaps and implementation challenges to support adequate nutrition for healthy aging, including applicability of metrics used in body-composition and diet adequacy for older adults and mechanisms to reduce nutritional frailty and to promote diet resilience. This review also discusses management recommendations for several leading chronic conditions common in aging populations, including cognitive decline and dementia, sarcopenia, and compromised immunity to infectious disease. The role of health systems in incorporating nutrition care routinely for those aged ≥60 y and living independently and current actions to address nutritional status before hospitalization and the development of disease are discussed. PMID:28096124

  15. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    Energy Technology Data Exchange (ETDEWEB)

    Fortuna, S.; Pintor, A.; Michalek, H. (Istituto Superiore di Sanita, Rome (Italy))

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of {sup 3}H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats.

  16. Age-Related Differences and Heterogeneity in Executive Functions: Analysis of NAB Executive Functions Module Scores.

    Science.gov (United States)

    Buczylowska, Dorota; Petermann, Franz

    2016-05-01

    Normative data from the German adaptation of the Neuropsychological Assessment Battery were used to examine age-related differences in 6 executive function tasks. A multivariate analysis of variance was employed to investigate the differences in performance in 484 participants aged 18-99 years. The coefficient of variation was calculated to compare the heterogeneity of scores between 10 age groups. Analyses showed an increase in the dispersion of scores with age, varying from 7% to 289%, in all subtests. Furthermore, age-dependent heterogeneity appeared to be associated with age-dependent decline because the subtests with the greatest increase in dispersion (i.e., Mazes, Planning, and Categories) also exhibited the greatest decrease in mean scores. In contrast, scores for the subtests Letter Fluency, Word Generation, and Judgment had the lowest increase in dispersion with the lowest decrease in mean scores. Consequently, the results presented here show a pattern of age-related differences in executive functioning that is consistent with the concept of crystallized and fluid intelligence. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  18. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  19. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  20. Prevalence of age-related maculopathy and age-related macular degeneration among the inuit in Greenland. The Greenland Inuit Eye Study

    DEFF Research Database (Denmark)

    Andersen, Mads Varis Nis; Rosenberg, Thomas; la Cour, Morten

    2008-01-01

    To examine the age- and gender-specific prevalence and describe the common phenotype of early age-related maculopathy (ARM) and late-stage age-related macular degeneration (AMD) among the Inuit in Greenland.......To examine the age- and gender-specific prevalence and describe the common phenotype of early age-related maculopathy (ARM) and late-stage age-related macular degeneration (AMD) among the Inuit in Greenland....

  1. Age-related changes in False Recognition: An ERP Study

    OpenAIRE

    Robb, Lindsey

    2011-01-01

    Episodic memory function is well known to decline with age and there is evidence to suggest seniors prone to forget events compared to younger adults (Aizpurua & Koutstaal, 2010). What’s more, seniors are inclined to falsely ‘remember’ events which did not happen. For example, seniors are more affected by misleading post-event information (e.g. lures), remembering that information as having occurred alongside the original event (Roediger & Geraci, 2007; Chan & McDermott, 2007; Koutstaal, 2006...

  2. Age Related Changes in Cognition during the Working Years.

    Science.gov (United States)

    1981-05-31

    Psscholog-, 1979, 30, 63-102# Craik , F. I. H., & Lockhart , R. S. Levels of processing : A framework for memor5 research. Journal of Verbal Learning and Verbal...progressively lower levels of performance* The decline is assumed tu be due to the biological aging process . Reductions in physiological functioning lead in turn... levels of cognitive processing were taken -- for examplep measures of masking could be related to performance In situations requiring visual scanningp

  3. Age related differences in the disposition of acetanilide.

    Science.gov (United States)

    Playfer, J R; Baty, J D; Lamb, J; Powell, C; Price-Evans, D A

    1978-01-01

    1 The metabolism of fifteen elderly hospital in-patients and fifteen young people was studied, using a gas chromatography mass spectrometer method. 2 The results suggest that there is no significant change in hepatic oxidation of acetanilide with age. 3 The concentrations of metabolites were however, significantly elevated in the older group. 4 These results illustrate the importance of the decline in renal function with age in the disposition of drugs. PMID:728323

  4. Vitamin D and Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Alfredo Garcia Layana

    2017-10-01

    Full Text Available In recent years, the relationship between vitamin D and health has received growing attention from the scientific and medical communities. Vitamin D deficiencies have been repeatedly associated with various acute and chronic diseases, including age-related macular degeneration (AMD. Its active metabolite, 1α,25-dihydoxy vitamin D, acts as a modulator of cell proliferation, differentiation and apoptosis, and cumulative data from experimental and observational studies suggest that relatively a lower vitamin D status could be a potential risk factor for the development of early and/or late AMD. Herein, we made a narrative review of the mechanisms linking a potential role of vitamin D with the current concepts of AMD pathophysiology.

  5. Stem cells: Potential therapy for age-related diseases

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2006-01-01

    Aging is associated with a progressive failing of tissues and organs of the human body leading to a large number of age-related diseases. Regenerative medicine is an emerging clinical discipline that aims to employ cellular medicines (normal cells, ex vivo expanded cells, or tissue......-engineered organs) to restore the functions of damaged or defective tissues and organs and thus to "rejuvenate" the failing aging body. One of the most important sources for cellular medicine is embryonic and adult (somatic) stem cells (SSCs). One example of SCCs with enormous clinical potential is the mesenchymal...... and organs in tissue-engineering protocols. However, several challenges confront the use of these cells in the clinic, ranging from biological challenges (e.g., how to isolate a homogenous populations of the cells with specific criteria from the bone marrow and how to expand them ex vivo without affecting...

  6. Imaging geographic atrophy in age-related macular degeneration.

    Science.gov (United States)

    Göbel, Arno P; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Brinkmann, Christian K; Holz, Frank G

    2011-01-01

    Advances in retinal imaging technology have largely contributed to the understanding of the natural history, prognostic markers and disease mechanisms of geographic atrophy (GA) due to age-related macular degeneration. There is still no therapy available to halt or slow the disease process. In order to evaluate potential therapeutic effects in interventional trials, there is a need for precise quantification of the GA progression rate. Fundus autofluorescence imaging allows for accurate identification and segmentation of atrophic areas and currently represents the gold standard for evaluating progressive GA enlargement. By means of high-resolution spectral-domain optical coherence tomography, distinct microstructural alterations related to GA can be visualized. Copyright © 2011 S. Karger AG, Basel.

  7. Age-related associative deficits and the isolation effect.

    Science.gov (United States)

    Badham, Stephen P; Maylor, Elizabeth A

    2013-01-01

    If all but one of the items in a list are similar (e.g., all black except one red), memory for the different item is enhanced (the isolation effect). Older adults generally show similar or smaller isolation effects compared to young adults, which has been attributed to age-related deficits in associative memory whereby older adults are less able to associate an isolated stimulus to its isolating feature. Experiment 1 examined the isolation effect for isolation based on spatial position, modality and color; in Experiment 2, the criterion for isolation was the associative relation between stimuli. The results consistently showed no differences between young and older participants in the magnitude of the isolation effect. Whilst age deficits in associative memory may act to reduce the isolation effect in older adults, age deficits in self-initiated processing and inhibitory functionality may counteract this reduction by enhancing the isolation effect in older adults.

  8. Transcriptome changes in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Whitmore S Scott

    2012-02-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a debilitating, common cause of visual impairment. While the last decade has seen great progress in understanding the pathophysiology of AMD, the molecular changes that occur in eyes with AMD are still poorly understood. In the current issue of Genome Medicine, Newman and colleagues present the first systematic transcriptional profile analysis of AMD-affected tissues, providing a comprehensive set of expression data for different regions (macula versus periphery, tissues (retina versus retinal pigment epithelium (RPE/choroid, and disease state (control versus early or advanced AMD. Their findings will serve as a foundation for additional systems-level research into the pathogenesis of this blinding disease. Please see related article: http://genomemedicine.com/content/4/2/16

  9. Age-related differences in the attention network test (ANT).

    Science.gov (United States)

    Gamboz, Nadia; Zamarian, Stefania; Cavallero, Corrado

    2010-07-01

    This study investigates the effect of aging on alerting, orienting, and conflict resolution by assessing younger (mean age = 25.8) and older (mean age = 67.9) adults' performance in the Attention Network Test that combines, in a single experimental paradigm, a flanker task with alerting and orienting cues. The analyses of response times indicated equivalent orienting and conflict resolution effects in younger and older adults. By contrast, alerting was found to be significantly reduced in the elderly. This result is only marginally in accordance with recent studies addressing the issues of age-related differences in alerting, which provide mixed results. The possible role of methodological differences across studies in accounting for the controversial results concerning the aging affect on alerting is discussed.

  10. Vitamin D and Age-Related Macular Degeneration.

    Science.gov (United States)

    Layana, Alfredo Garcia; Minnella, Angelo Maria; Garhöfer, Gerhard; Aslam, Tariq; Holz, Frank G; Leys, Anita; Silva, Rufino; Delcourt, Cécile; Souied, Eric; Seddon, Johanna M

    2017-10-13

    In recent years, the relationship between vitamin D and health has received growing attention from the scientific and medical communities. Vitamin D deficiencies have been repeatedly associated with various acute and chronic diseases, including age-related macular degeneration (AMD). Its active metabolite, 1α,25-dihydoxy vitamin D, acts as a modulator of cell proliferation, differentiation and apoptosis, and cumulative data from experimental and observational studies suggest that relatively a lower vitamin D status could be a potential risk factor for the development of early and/or late AMD. Herein, we made a narrative review of the mechanisms linking a potential role of vitamin D with the current concepts of AMD pathophysiology.

  11. Age-related Deterioration of Hematopoietic Stem Cells.

    Science.gov (United States)

    Kim, Mi Jung; Kim, Min Hwan; Kim, Seung Ah; Chang, Jae Suk

    2008-11-01

    Aging is the process of system deterioration over time in the whole body. Stem cells are self-renewing and therefore have been considered exempt from the aging process. Earlier studies by Hayflick showed that there is an intrinsic limit to the number of divisions that mammalian somatic cells can undergo, and cycling kinetics and ontogeny-related studies strongly suggest that even the most primitive stem cell functions exhibit a certain degree of aging. Despite these findings, studies on the effects of aging on stem cell functions are inconclusive. Here we review the age-related properties of hematopoietic stem cells in terms of intrinsic and extrinsic alterations, proliferative potential, signaling molecules, telomere and telomerase, senescence and cancer issues, regenerative potential and other indications of stem cell aging are discussed in detail.

  12. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    Directory of Open Access Journals (Sweden)

    Raffaella Cascella

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old. AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension. In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2 that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines, immune cells (macrophages, and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.

  13. Risk Factors and Biomarkers of Age-Related Macular Degeneration

    Science.gov (United States)

    Lambert, Nathan G.; Singh, Malkit K.; ElShelmani, Hanan; Mansergh, Fiona C.; Wride, Michael A.; Padilla, Maximilian; Keegan, David; Hogg, Ruth E.; Ambati, Balamurali K.

    2016-01-01

    A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings. PMID:27156982

  14. Radiation Therapy for Neovascular Age-related Macular Degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kishan, Amar U. [Harvard Medical School, Boston, Massachusetts (United States); Modjtahedi, Bobeck S.; Morse, Lawrence S. [Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento, California (United States); Lee, Percy, E-mail: percylee@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States)

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  15. Nutritional supplements in age-related macular degeneration.

    Science.gov (United States)

    Schmidl, Doreen; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-03-01

    Age-related macular degeneration (AMD) is the most frequent cause of blindness in the Western World. While with new therapies that are directed towards vascular endothelial growth factor (VEGF), a potentially efficient treatment option for the wet form of the disease has been introduced, a therapeutic regimen for dry AMD is still lacking. There is evidence from several studies that oral intake of supplements is beneficial in preventing progression of the disease. Several formulations of micronutrients are currently available. The present review focuses on the role of supplements in the treatment and prevention of AMD and sums up the current knowledge about the most frequently used micronutrients. In addition, regulatory issues are discussed, and future directions for the role of supplementation in AMD are highlighted. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Age-related degradation of boiling water reactor vessel internals

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1992-01-01

    Researchers at the Idaho National Engineering Laboratory performed an assessment of the aging of the reactor internals in boiling water reactors (BWRs), and identified the unresolved technical issues related to the degradation of these components. The overall life-limiting mechanism is intergranular stress corrosion cracking (IGSCC). Irradiation-assisted stress corrosion cracking, fatigue, and thermal aging embrittlement are other potential degradation mechanisms. Several failures in BWR internals have been caused by a combination of factors such as environment, high residual or preload stresses, and flow-induced vibration. The ASME Code Section XI in-service inspection requirements are insufficient for detecting aging-related degradation at many locations in reactor internals. Many of the potential locations for IGSCC or fatigue are not accessible for inspection. (orig.)

  17. Age-related degradation of Westinghouse 480-volt circuit breakers

    International Nuclear Information System (INIS)

    Subudhi, M.; MacDougall, E.; Kochis, S.; Wilhelm, W.; Lee, B.S.

    1990-11-01

    After the McGuire event in 1987 relating to failure of the center pole weld in one of its reactor trip breakers, activities were initiated by the NRC to investigate the probable causes. A review of operating experience suggested that the burning of coils, jamming of the operating mechanism, and deterioration of the contacts dominated the breakers failures. Although failures of the pole shaft weld were not included as one of the generic problems, the NRC augmented inspection team had suspected that these welds were substandard which led them to crack prematurely. A DS-416 low voltage air circuit breaker manufactured by Westinghouse was mechanically cycled to identify age-related degradations. This accelerated aging test was conducted for over 36,000 cycles during nine months. Three separate pole shafts, one with a 60 degree weld, one with a 120 degree and one with a 180 degree were used to characterize the cracking in the pole level welds. In addition, three different operating mechanisms and several other parts were replaced as they became inoperable. The testing yielded many useful results. The burning of the closing coils was found to be the effect of binding in the linkages that are connected to this device. Among the seven welds on the pole shaft, number-sign 1 and number-sign 3 were the critical ones which cracked first to cause misalignment of the pole levers, which, in turn, had led to many problems with the operating mechanism including the burning of coils, excessive wear in certain parts, and overstressed linkages. Based on these findings, a maintenance program is suggested to alleviate the age-related degradations that occur due to mechanical cycling of this type of breaker. 3 refs., 39 figs., 7 tabs

  18. Age-related changes in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Xiaorong Gu

    Full Text Available Age-related changes in the retina are often accompanied by visual impairment but their mechanistic details remain poorly understood.Proteomic studies were pursued toward a better molecular understanding of retinal pigment epithelium (RPE aging mechanisms. RPE cells were isolated from young adults (3-4 month-old and old (24-25 month-old F344BN rats, and separated into subcellular fractions containing apical microvilli (MV and RPE cell bodies (CB lacking their apical microvilli. Proteins were extracted in detergent, separated by SDS-PAGE, digested in situ with trypsin and analyzed by LC MS/MS. Select proteins detected in young and old rat RPE were further studied using immunofluorescence and Western blot analysis.A total of 356 proteins were identified in RPE MV from young and 378 in RPE MV from old rats, 48% of which were common to each age group. A total of 897 proteins were identified in RPE CB from young rats and 675 in old CB, 56% of which were common to each age group. Several of the identified proteins, including proteins involved in response to oxidative stress, displayed both quantitative and qualitative changes in overall abundance during RPE aging. Numerous proteins were identified for the first time in the RPE. One such protein, collectrin, was localized to the apical membrane of apical brush border of proximal tubules where it likely regulates several amino acid transporters. Elsewhere, collectrin is involved in pancreatic β cell proliferation and insulin secretion. In the RPE, collectrin expression was significantly modulated during RPE aging. Another age-regulated, newly described protein was DJ-1, a protein extensively studied in brain where oxidative stress-related functions have been described.The data presented here reveals specific changes in the RPE during aging, providing the first protein database of RPE aging, which will facilitate future studies of age-related retinal diseases.

  19. Serum 25-hydroxyvitamin D and Age-Related Cataract.

    Science.gov (United States)

    Park, Sangshin; Choi, Nam-Kyong

    2017-10-01

    Cataract and insufficient vitamin D intake are both increasing worldwide concerns, yet little is known about the relationship between serum 25-hydroxyvitamin D (25(OH)D) levels and age-related cataract. We performed this study to determine the association between serum 25(OH)D levels and age-related cataract in adults. Study participants comprised 16,086 adults aged 40 years or older who had never been diagnosed with or undergone surgery for cataract using Korean National Health and Nutrition Examination Survey data from 2008 to 2012. Participants were assessed to have cataract when diagnosed with cortical, nuclear, anterior subcapsular, posterior subcapsular, or mixed cataract. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the magnitude and significance of the association between serum 25(OH)D levels and cataract in multivariable logistic regression models. The OR for nuclear cataract with the highest quintile of serum 25(OH)D levels was 0.86 (95% CI 0.75-0.99) compared to the lowest quintile. A linear trend across quintiles was significant. Natural log-transformed serum 25(OH)D levels were also significantly associated with nuclear cataract (OR 0.84, 95% CI 0.75-0.95). The opulation-attributable fraction of nuclear cataract due to serum 25(OH)D insufficiency (D levels were inversely associated with the risk of nuclear cataract. Prospective studies investigating the effects of serum 25(OH)D levels on the development of nuclear cataract are needed to confirm our findings.

  20. Age-Related Neurochemical Changes in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Paul eSmith

    2016-03-01

    Full Text Available There is evidence that the normal aging process is associated with impaired vestibulo-ocular (VOR and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC, it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarises and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics.

  1. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    Science.gov (United States)

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics.

  2. Nutritional Modulation of Age-Related Macular Degeneration

    Science.gov (United States)

    Weikel, Karen A; Taylor, Allen

    2012-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30–50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated with AMD are in excess of $340 billion US (American-Health-Assistance-Foundation, 2012). The majority of AMD patients in the United States are not eligible for clinical treatments (Biarnes et al., 2011; Klein et al., 2011). Preventive interventions through dietary modulation are attractive strategies because many studies suggest a benefit of micro and macronutrients with respect to AMD, as well as other age-related debilities, and with few, if any, adverse effects (Chiu, 2011). Preservation of vision would enhance quality of life for millions of elderly people, and alleviate the personal and public health financial burden of AMD (Frick et al., 2007; Wood et al., 2011). Observational studies indicate that maintaining adequate levels of omega-3 fatty acids (i.e. with 2 servings/wk of fish) or a low glycemic index diet may be particularly beneficial for early AMD and that higher levels of carotenoids may be protective, most probably, against neovascular AMD. Intervention trials are needed to better understand the full effect of these nutrients and/or combinations of nutrients on retinal health. Analyses that describe effects of a nutrient on onset and/or progress of AMD are valuable because they indicate the value of a nutrient to arrest AMD at the early stages. This comprehensive summary provides essential information about the value of nutrients with regard to diminishing risk for onset or progress of AMD and can serve as a guide until data from ongoing intervention trials are available. PMID:22503690

  3. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Science.gov (United States)

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  4. Development of the ETOC: a European test of olfactory capabilities

    NARCIS (Netherlands)

    Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; Graaf, de C.; Rousseau, F.; Dumont, J.P.

    2003-01-01

    A number of smell tests designed to evaluate human olfactory capabilities have been published, but none have been validated cross-culturally. The aim of this study was therefore to develop a reliable and quick olfactory test that could be used to evaluate efficiently the olfactory abilities of a

  5. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Perceptual and social attributes underlining age-related preferences for faces

    Directory of Open Access Journals (Sweden)

    Hanni SM Kiiski

    2016-08-01

    with older aged faces, led to more positive evaluations of competence. The results are discussed within the context of an age-related decline in the differentiation of faces in memory. Our findings have important implications for a better understanding of age-related perceptual factors and cognitive determinants of social interactions with unfamiliar others across the adult lifespan.

  7. Perceptual and Social Attributes Underlining Age-Related Preferences for Faces

    Science.gov (United States)

    Kiiski, Hanni S. M.; Cullen, Brendan; Clavin, Sarah L.; Newell, Fiona N.

    2016-01-01

    faces, led to more positive evaluations of competence. The results are discussed within the context of an age-related decline in the differentiation of faces in memory. Our findings have important implications for a better understanding of age-related perceptual factors and cognitive determinants of social interactions with unfamiliar others across the adult lifespan. PMID:27630553

  8. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  9. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  10. Enhanced olfactory sensitivity in autism spectrum conditions.

    Science.gov (United States)

    Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon

    2014-01-01

    People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.

  11. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: no evidence for senescence.

    Directory of Open Access Journals (Sweden)

    Hannah Froy

    Full Text Available Age-related variation in demographic rates is now widely documented in wild vertebrate systems, and has significant consequences for population and evolutionary dynamics. However, the mechanisms underpinning such variation, particularly in later life, are less well understood. Foraging efficiency is a key determinant of fitness, with implications for individual life history trade-offs. A variety of faculties known to decline in old age, such as muscular function and visual acuity, are likely to influence foraging performance. We examine age-related variation in the foraging behaviour of a long-lived, wide-ranging oceanic seabird, the wandering albatross Diomedea exulans. Using miniaturised tracking technologies, we compared foraging trip characteristics of birds breeding at Bird Island, South Georgia. Based on movement and immersion data collected during the incubation phase of a single breeding season, and from extensive tracking data collected in previous years from different stages of the breeding cycle, we found limited evidence for age-related variation in commonly reported trip parameters, and failed to detect signs of senescent decline. Our results contrast with the limited number of past studies that have examined foraging behaviour in later life, since these have documented changes in performance consistent with senescence. This highlights the importance of studies across different wild animal populations to gain a broader perspective on the processes driving variation in ageing rates.

  12. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety.

    Science.gov (United States)

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-07-01

    A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract 3 indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults.

  13. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    Science.gov (United States)

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  14. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety

    Science.gov (United States)

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-01-01

    Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708

  15. Radiation therapy for small choroidal neovascularization in age-related macular degeneration

    International Nuclear Information System (INIS)

    Matsuhashi, Hideaki; Noda, Yasuko; Takahashi, Daisuke; Mariya, Yasushi

    2000-01-01

    The purpose of this study was to evaluate the effects of radiation therapy on age-related macular degeneration with subfoveal or juxtafoveal choroidal neovascularization ≤1 disc area. Fourteen patients (14 eyes) received a total radiation dose of 10-20 Gy in 5-10 fractions. The mean follow-up time was 22 months. Ten patients (10 eyes) in a control group were followed up for an average of 16 months without treatment. At a 12-month posttreatment examination, funduscopic and angiographic findings showed improvement in 7 eyes (50%), no change in 1 eye (7%), and deterioration in 6 eyes (43%) among the treated patients. The same findings demonstrated improvement in 1 eye (10%), no change in 2 eyes (20%), and deterioration in 7 eyes (70%) among the control patients. This difference was determined to be statistically significant between the two groups by the Mann-Whitney U-test. Visual acuity had improved in 4 eyes (29%), was unchanged in 6 eyes (43%), and had declined in 4 eyes (29%), among the treated patients. Among the control patients, visual acuity had improved in none of the eyes (0%), was unchanged in 6 eyes (60%), and had declined in 4 eyes (40%). The difference in visual acuity between the two groups was not statistically significant. Radiation therapy inhibited small choroidal neovascularization, as seen by funduscopy and angiography, but its effectiveness in improving visual prognosis was not always evident. (author)

  16. Radiation therapy for small choroidal neovascularization in age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Hideaki; Noda, Yasuko; Takahashi, Daisuke; Mariya, Yasushi [Hirosaki Univ., Aomori (Japan). School of Medicine

    2000-12-01

    The purpose of this study was to evaluate the effects of radiation therapy on age-related macular degeneration with subfoveal or juxtafoveal choroidal neovascularization {<=}1 disc area. Fourteen patients (14 eyes) received a total radiation dose of 10-20 Gy in 5-10 fractions. The mean follow-up time was 22 months. Ten patients (10 eyes) in a control group were followed up for an average of 16 months without treatment. At a 12-month posttreatment examination, funduscopic and angiographic findings showed improvement in 7 eyes (50%), no change in 1 eye (7%), and deterioration in 6 eyes (43%) among the treated patients. The same findings demonstrated improvement in 1 eye (10%), no change in 2 eyes (20%), and deterioration in 7 eyes (70%) among the control patients. This difference was determined to be statistically significant between the two groups by the Mann-Whitney U-test. Visual acuity had improved in 4 eyes (29%), was unchanged in 6 eyes (43%), and had declined in 4 eyes (29%), among the treated patients. Among the control patients, visual acuity had improved in none of the eyes (0%), was unchanged in 6 eyes (60%), and had declined in 4 eyes (40%). The difference in visual acuity between the two groups was not statistically significant. Radiation therapy inhibited small choroidal neovascularization, as seen by funduscopy and angiography, but its effectiveness in improving visual prognosis was not always evident. (author)

  17. Radiation therapy for small choroidal neovascularization in age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Hideaki; Noda, Yasuko; Takahashi, Daisuke; Mariya, Yasushi [Hirosaki Univ., Aomori (Japan). School of Medicine

    1999-06-01

    Radiation therapy for age-related macular degeneration with subfoveal or juxtafoveal choroidal neovascularization smaller than or equal to 1 disc area was evaluated. Fourteen eyes received a total radiation dose of 10-20 Gy in 5-10 fractions. The mean follow-up time was 22 months. Ten eyes in a control group were followed for an average of 16 months without any treatment. At a 12-month follow-up examination, funduscopic and angiographic findings had improved in 7 eyes (50%), were unchanged in 1 eye (7%) and, had deteriorated in 6 eyes (43%) among the treated patients. The same findings had improved in 1 eye (10%), were unchanged in 2 eyes (20%), and had deteriorated in 7 eyes (70%) among the control patients. There was a statistically significant difference by Mann-Whitney U test between the two groups. Visual acuity had improved in 4 eyes (29%), was unchanged in 6 eyes (43%), and had declined in 4 eyes (29%) among the treated patients. Among the control patients visual acuity had improved in none of the eyes (0%), was unchanged in 6 eyes (60%), and had declined in 4 eyes (40%). The difference between the two groups was not statistically significant. Of the 7 cases whose fundus had improved by 12 months, 4 cases maintained a favorable status through the following 2 years. Radiation therapy had an inhibitory effect on small choroidal neovascularization when viewed by funduscopy and angiography, but, the efficacy for visual prognosis was not always identified. (author)

  18. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Directory of Open Access Journals (Sweden)

    Jordanna D H Sprayberry

    Full Text Available Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  19. The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.

    Science.gov (United States)

    Sprayberry, Jordanna D H; Ritter, Kaitlin A; Riffell, Jeffrey A

    2013-01-01

    Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.

  20. Age-related reduction of the confidence-accuracy relationship in episodic memory: effects of recollection quality and retrieval monitoring.

    Science.gov (United States)

    Wong, Jessica T; Cramer, Stefanie J; Gallo, David A

    2012-12-01

    We investigated age-related reductions in episodic metamemory accuracy. Participants studied pictures and words in different colors and then took forced-choice recollection tests. These tests required recollection of the earlier presentation color, holding familiarity of the response options constant. Metamemory accuracy was assessed for each participant by comparing recollection test accuracy with corresponding confidence judgments. We found that recollection test accuracy was greater in younger than older adults and also for pictures than font color. Metamemory accuracy tracked each of these recollection differences, as well as individual differences in recollection test accuracy within each age group, suggesting that recollection ability affects metamemory accuracy. Critically, the age-related impairment in metamemory accuracy persisted even when the groups were matched on recollection test accuracy, suggesting that metamemory declines were not entirely due to differences in recollection frequency or quantity, but that differences in recollection quality and/or monitoring also played a role. We also found that age-related impairments in recollection and metamemory accuracy were equivalent for pictures and font colors. This result contrasted with previous false recognition findings, which predicted that older adults would be differentially impaired when monitoring memory for less distinctive memories. These and other results suggest that age-related reductions in metamemory accuracy are not entirely attributable to false recognition effects, but also depend heavily on deficient recollection and/or monitoring of specific details associated with studied stimuli. 2013 APA, all rights reserved

  1. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    International Nuclear Information System (INIS)

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F.

    1991-01-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa

  2. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    Science.gov (United States)

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-08-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.

  3. Spontaneous Age-Related Neurite Branching in C. elegans

    Science.gov (United States)

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  4. Imaging Polarimetry in Age-Related Macular Degeneration

    Science.gov (United States)

    Miura, Masahiro; Yamanari, Masahiro; Iwasaki, Takuya; Elsner, Ann E.; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2010-01-01

    PURPOSE To evaluate the birefringence properties of eyes with age-related macular degeneration (AMD). To compare the information from two techniques—scanning laser polarimetry (GDx) and polarization-sensitive spectral-domain optical coherence tomography (OCT)—and investigate how they complement each other. METHODS The authors prospectively examined the eyes of two healthy subjects and 13 patients with exudative AMD. Using scanning laser polarimetry, they computed phase-retardation maps, average reflectance images, and depolarized light images. To obtain polarimetry information with improved axial resolution, they developed a fiber-based, polarization-sensitive, spectral-domain OCT system and measured the phase retardation associated with birefringence in the same eyes. RESULTS Both GDx and polarization-sensitive spectral-domain optical coherence tomography detected abnormal birefringence at the locus of exudative lesions. Polarization-sensitive, spectral-domain OCT showed that in the old lesions with fibrosis, phase-retardation values were significantly larger than in the new lesions (P = 0.020). Increased scattered light and altered polarization scramble were associated with portions of the lesions. CONCLUSIONS GDx and polarization-sensitive spectral-domain OCT are complementary in probing birefringence properties in exudative AMD. Polarimetry findings in exudative AMD emphasized different features and were related to the progression of the disease, potentially providing a noninvasive tool for microstructure in exudative AMD. PMID:18515594

  5. Mechanism of Inflammation in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2012-01-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.

  6. Age related changes in steroid receptors on cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Barile, F.A.; Bienkowski, R.S.

    1986-01-01

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with ( 3 H)-dexamethasone (( 3 H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol ( 3 H)Dex/10 6 cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms

  7. Age-related cerebral white matter changes on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hitoshi; Kobayashi, Shotai; Koide, Hiromi; Yamaguchi, Shuhei; Okada, Kazunori; Shimote, Kouichi; Tsunematsu, Tokugoro

    1989-01-01

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm/sup 2/) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author).

  8. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  9. Age-related cerebral white matter changes on computed tomography

    International Nuclear Information System (INIS)

    Fukuda, Hitoshi; Kobayashi, Shotai; Koide, Hiromi; Yamaguchi, Shuhei; Okada, Kazunori; Shimote, Kouichi; Tsunematsu, Tokugoro

    1989-01-01

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm 2 ) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author)

  10. Cellular models and therapies for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    David L. Forest

    2015-05-01

    Full Text Available Age-related macular degeneration (AMD is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD. A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease.

  11. MR imaging of proximal femur: age-related changes

    International Nuclear Information System (INIS)

    Kim, Ju Heon; Jeon, Woo Jin; Sohn, Cheol Ho; Park, Mi Ok; Lee, Seong Mun; Joo, Yang Gu; Suh, Soo Jhi; Pyun, Young Sik

    1995-01-01

    The purpose of this study is to illustrate MR patterns of signal intensity of proximal femur in normal subjects according to the age distribution. T1-weighted MR images of the proximal femur in 125 subjects, aged 13 days to 25 years, were retrospectively analyzed. Age distribution was classified to 4 groups; below 4 months, 5 months to 4 years, 5 years to 14 years, and 15 years to 25 years. By the age of 4 months, the non-ossified femoral epiphysis was seen as intermediate-signal-intensity cartilage. At 5 months-4 years, the ossified femoral capital epiphysis was seen within intermediate-signal-intensity cartilage and appeared as decreased or increased signal-intensity red or yellow marrow surrounded by a rim of low-signal-intensity cortical bone. At 5-14 years, the ossified femoral capital and greater trochanteric epiphysis were seen within the intermediate-signal-intensity cartilage and appeared as decreased or increased signal-intensity red or yellow marrow. At 15-25 years, the proximal metaphyseal marrow showed increased signal intensity. Four patterns of the metaphyseal marrow were recognized by Ricci et al. The frequency of pattern 1 a progressively decreased with age. Pattern 2 and 3 were visible in the 15-25 years age group. An understanding of the spectrum of normal age-related change of the proximal femoral cartilage and marrow patterns serves as the foundation for interpretation of proximal femur pathologies

  12. The theory behind the age-related positivity effect

    Directory of Open Access Journals (Sweden)

    Andrew E Reed

    2012-09-01

    Full Text Available The positivity effect refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather & Carstensen, 2005 scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision-making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people.

  13. Radiation therapy for age-related macular degeneration

    International Nuclear Information System (INIS)

    Yoshida, Ayako; Honda, Kaoru; Ishibashi, Tatsuro; Shioyama, Yoshiyuki

    1998-01-01

    We evaluated the effects of low-dose radiation on choroidal neovascular membrane (CNV) in age-related macular degeneration (AMD). Since Chakravarthy reported the benefits from administration of low-dose external-beam irradiation for CNV, many studies have demonstrated that irradiation could have a beneficial treatment effect, whereas several reports have not. In our hospital, 12 eyes with AMD received 10 Gy of 4 MV photons and the other 9 eyes received 20 Gy. Another 4 eyes were untreated as control. After 6 months of treatment, visual acuity was maintained in 11 eyes, improved in 5 eyes, and deteriorated in 5 eyes of treated patients. In control group, visual acuity was maintained in 1 eye and deteriorated in 3 eyes. The size of CNV regressed in 10 eyes, remained stationary in 2 eyes and progressed in 2 eyes of treated patients, while in control group CNV regressed in 2 eyes and remained stationary in 1 eye. After 12 months some CNV progressed. Although the present result seems to be better than those in previous reports, whether or not the treatment is beneficial has to be awaited. (author)

  14. Mechanism of Inflammation in Age-Related Macular Degeneration

    Science.gov (United States)

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  15. Ocular Surface Temperature in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Andrea Sodi

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320. The ocular surface temperature (OST of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272. OST in AMD patients was significantly lower than in controls (P>0.05. Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  16. Automatic age-related macular degeneration detection and staging

    Science.gov (United States)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  17. Radiation therapy for age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ayako; Honda, Kaoru; Ishibashi, Tatsuro; Shioyama, Yoshiyuki [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1998-11-01

    We evaluated the effects of low-dose radiation on choroidal neovascular membrane (CNV) in age-related macular degeneration (AMD). Since Chakravarthy reported the benefits from administration of low-dose external-beam irradiation for CNV, many studies have demonstrated that irradiation could have a beneficial treatment effect, whereas several reports have not. In our hospital, 12 eyes with AMD received 10 Gy of 4 MV photons and the other 9 eyes received 20 Gy. Another 4 eyes were untreated as control. After 6 months of treatment, visual acuity was maintained in 11 eyes, improved in 5 eyes, and deteriorated in 5 eyes of treated patients. In control group, visual acuity was maintained in 1 eye and deteriorated in 3 eyes. The size of CNV regressed in 10 eyes, remained stationary in 2 eyes and progressed in 2 eyes of treated patients, while in control group CNV regressed in 2 eyes and remained stationary in 1 eye. After 12 months some CNV progressed. Although the present result seems to be better than those in previous reports, whether or not the treatment is beneficial has to be awaited. (author)

  18. Recent developments in age-related macular degeneration: a review

    Science.gov (United States)

    Al-Zamil, Waseem M; Yassin, Sanaa A

    2017-01-01

    Background Visual impairment in elderly people is a considerable health problem that significantly affects quality of life of millions worldwide. The magnitude of this issue is becoming more evident with an aging population and an increasing number of older individuals. Objective The objective of this article was to review the clinical and pathological aspects of age-related macular degeneration (AMD), diagnostic tools, and therapeutic modalities presently available or underway for both atrophic and wet forms of the disease. Methods An online review of the PubMed database was performed, searching for the key words. The search was limited to articles published since 1980 to date. Results Several risk factors have been linked to AMD, such as age (>60 years), lifestyle (smoking and diet), and family history. Although the pathogenesis of AMD remains unclear, genetic factors have been implicated in the condition. Treatment for atrophic AMD is mainly close observation, coupled with nutritional supplements such as zinc and antioxidants, whereas treatment of wet AMD is based on targeting choroidal neovascular membranes. Conclusion Identification of modifiable risk factors would improve the possibilities of preventing the progression of AMD. The role of anti-vascular endothelial growth factor (anti-VEGF) agents has transformed the therapeutic approach of the potentially blinding disease “wet AMD” into a more favorable outcome. PMID:28860733

  19. Chlorinative stress in age-related diseases: a literature review.

    Science.gov (United States)

    Casciaro, Marco; Di Salvo, Eleonora; Pace, Elisabetta; Ventura-Spagnolo, Elvira; Navarra, Michele; Gangemi, Sebastiano

    2017-01-01

    Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.

  20. Olfactory disfunction and its relation olfactory bulb volume in Parkinson's disease.

    Science.gov (United States)

    Altinayar, S; Oner, S; Can, S; Kizilay, A; Kamisli, S; Sarac, K

    2014-01-01

    Olfactory dysfunction is the most frequently seen non-motor symptom of Idiopathic Parkinson's disease (IPD). The aim of this study is to analyze selective olfactory dysfunction, and olfactory bulb volume (OBV) in subtypes of IPD, and compare them with those of the healthy controls. Our study included 41 patients with IPD and age and gender matched 19 healthy controls. IPD patients were either tremor dominant (65.9%; TDPD) or non-tremor dominant (34.1%; NTDPD) type. All patients underwent neurological, ear, nose, and throat examinations, and orthonasal olfaction testing. Magnetic resonance imaging (MRI) technique was used to measure the volume of the olfactory bulb. A significant decrease in olfactory identification scores was found in the patient group. The patients had difficulty in discriminating between odors of mothballs, chocolate, Turkish coffee and soap. OBV did not differ between the patient, and the control groups. In the TDPD group, odor identification ability was decreased when compared to the control group. However, odor test results of NTDPD, control and TDPD groups were similar. OBV estimates of the TDPD group were not different from those of the control group, while in the NTDPD group OBVs were found to be decreased. In all patients with Parkinson's disease OBV values did not vary with age of the patients, duration of the disease, age at onset of the disease, and Unified Parkinson's Disease Rating Scale motor scores (UPDRS-m). Olfactory function is a complex process involving olfactory, and cortical structures as well. In Idiopathic Parkinson's disease, changes in OBV do not seem to be directly related to olfactory dysfunction.

  1. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory.

    Science.gov (United States)

    Sultan, S; Mandairon, N; Kermen, F; Garcia, S; Sacquet, J; Didier, A

    2010-07-01

    Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.

  2. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.

  3. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  5. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  6. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    Science.gov (United States)

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  7. Olfactory receptors in non-chemosensory tissues

    Directory of Open Access Journals (Sweden)

    NaNa Kang & JaeHyung Koo*

    2012-11-01

    Full Text Available Olfactory receptors (ORs detect volatile chemicals that lead tothe initial perception of smell in the brain. The olfactory receptor(OR is the first protein that recognizes odorants in theolfactory signal pathway and it is present in over 1,000 genesin mice. It is also the largest member of the G protein-coupledreceptors (GPCRs. Most ORs are extensively expressed in thenasal olfactory epithelium where they perform the appropriatephysiological functions that fit their location. However, recentwhole-genome sequencing shows that ORs have been foundoutside of the olfactory system, suggesting that ORs may playan important role in the ectopic expression of non-chemosensorytissues. The ectopic expressions of ORs and their physiologicalfunctions have attracted more attention recently sinceMOR23 and testicular hOR17-4 have been found to be involvedin skeletal muscle development, regeneration, and humansperm chemotaxis, respectively. When identifying additionalexpression profiles and functions of ORs in non-olfactorytissues, there are limitations posed by the small number ofantibodies available for similar OR genes. This review presentsthe results of a research series that identifies ectopic expressionsand functions of ORs in non-chemosensory tissues toprovide insight into future research directions.

  8. Magnetic resonance imaging of olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Iio, Mitsuhiro; Homma, Akihiro; Furuta, Yasushi; Fukuda, Satoshi

    2006-01-01

    Olfactory neuroblastoma is an uncommon intranasal tumor originating from olfactory neuroepithelium. Despite the development of electron microscopy and immunohistochemical testing, the pathological diagnosis of this tumor is still difficult because of the wide range of histological features. Magnetic resonance imaging (MR) of this tumor and the pattern of contrast enhancement have not been well described. The purpose of this report was to analyze the MR characteristics of olfactory neuroblastomas. The MR signal, pattern of contrast enhancement, and correlation with high-resolution computed tomography (CT) imaging were examined. Seventeen patients with olfactory neuroblastoma were treated at Hokkaido University Hospital and a related hospital during the past 25 years. MR images taken in 12 patients and CT images taken in 9 patients with histologically confirmed olfactory neuroblastoma were retrospectively reviewed. Compared with brain gray matter, 11 tumors were hypointense on T1-weighted images, 9 homogeneously and 2 heterogeneously. Eight tumors were hyperintense on T2-weighted images, 3 homogeneously and 5 heterogeneously, although their appearance was less intense than that of sinusitis. Gadolinium enhancement was moderate in one case and marked in 10 of the 11 cases, 9 homogeneously and 2 heterogeneously. Nine of the 11 tumors showed smooth regular shaped margins; 2 of these tumors exhibited irregular infiltrating margins on gadolinium-enhanced images, compared to the pre-contrast T1-weighted images. Eight of the 11 tumors had clearly demarcated margins, while 3 of the 11 tumors did not exhibit gadolinium enhancement. Six of the 12 cases (50%) exhibited intracranial cysts on the gadolinium-enhanced images. T2-weighted or gadolinium-enhanced images successfully distinguished sinusitis from tumors in 4 cases whereas the CT images failed. Gadolinium enhancement, particularly in the tangential plane, demonstrated intracranial extension not apparent on the CT images

  9. Age-related distance esotropia: Clinical features and therapeutic outcomes.

    Science.gov (United States)

    Gómez de Liaño Sánchez, P; Olavarri González, G; Merino Sanz, P; Escribano Villafruela, J C

    2016-12-01

    To describe the clinical characteristics and surgical outcomes of a group of patients with age-related distance esotropia (ARDE). A retrospective study was conducted on a consecutive case series of 16 adult patients diagnosed with ARDE between 2008 and 2015. The clinical features evaluated included mean age and gender, primary position deviations at distance and near, measured in prism dioptres (pd), treatment offered in each case, and post-surgical deviations. Ductions and versions were full, with no evidence of lateral rectus paresis. None of these patients had any obvious underlying neurological disorder, such as, high myopia or thyroid disease. A good result is considered to be the disappearance of diplopia in all positions of gaze. A total of 16 patients (11 females [68.8%]) were identified. The mean age at diagnosis was 78.19±6.77 years. The mean initial esodeviation was 2.25±3.08 pd at near (-4 to +8 pd) and 9.5±4.18 pd at distance (2 to 18 pd). Treatment was not necessary in 5 cases because the symptoms were intermittent or well-tolerated. Of the 11 patients with symptoms, one was corrected with an external base therapeutic prism. Botulinum toxin was administered in another patient, without satisfactory results. Unilateral medial rectus muscle recession was performed on one patient, and unilateral lateral rectus plication on 7 patients, indicating prisms before surgery. One patient refused surgery despite continuous diplopia in far vision. After a mean follow-up of 16.5 months, all operated patients were asymptomatic. Not all patients with ARDE require treatment, as the tolerance to diplopia varies from one subject to another. Both medial rectus weakening and lateral rectus strengthening provides excellent results. Crown Copyright © 2016. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Age-related changes in factor VII proteolysis in vivo.

    Science.gov (United States)

    Ofosu, F A; Craven, S; Dewar, L; Anvari, N; Andrew, M; Blajchman, M A

    1996-08-01

    Previous studies have reported that pre-operative plasmas of patients over the age of 40 years who developed post-operative deep vein thrombosis (DVT) had approximately twice the amount of proteolysed factor VII found in plasmas of patients in whom prophylaxis with heparin or low M(r) heparin was successful. These and other studies also reported higher concentrations of thrombin-antithrombin III in pre- and post-operative plasmas of patients who developed post-operative thrombosis than in plasmas of patients in whom prophylaxis was successful. Whether the extent of factor VII proteolysis seen in the patients who developed post-operative DVT is related to the severity of their disease or age is not known. This report investigated age-related changes in the concentrations of total factor VII protein, factor VII zymogen, factor VIIa, tissue factor pathway inhibitor, thrombin-antithrombin III, and prothrombin fragment 1 + 2 in normal plasmas and the relationships between these parameters. With the exception of thrombin-antithrombin III, statistically significant increases in the concentrations of these parameters with age were found. Additionally, the differences between the concentrations of total factor VII protein and factor VII zymogen, an index factor VII proteolysis in vivo, were statistically significant only for individuals over age 40. Using linear regression analysis, a significant correlation was found to exist between the concentrations of plasma factor VIIa and prothrombin fragment 1 + 2. Since factor VIIa-tissue factor probably initiates coagulation in vivo, we hypothesize that the elevated plasma factor VIIa (reflecting a less tightly regulated tissue factor activity and therefore increased thrombin production in vivo) accounts for the high risk for post-operative thrombosis seen in individuals over the age of 40.

  11. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    Science.gov (United States)

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  12. Individual and age-related variation in chromatic contrast adaptation

    Science.gov (United States)

    Elliott, Sarah L.; Werner, John S.; Webster, Michael A.

    2012-01-01

    Precortical color channels are tuned primarily to the LvsM (stimulation of L and M cones varied, but S cone stimulation held constant) or SvsLM (stimulation of S cones varied, but L and M cone stimulation held constant) cone-opponent (cardinal) axes, but appear elaborated in the cortex to form higher-order mechanisms tuned to both cardinal and intermediate directions. One source of evidence for these higher-order mechanisms has been the selectivity of color contrast adaptation for noncardinal directions, yet the degree of this selectivity has varied widely across the small sample of observers tested in previous studies. This study explored the possible bases for this variation, and in particular tested whether it reflected age-related changes in the distribution or tuning of color mechanisms. Observers included 15 younger (18–22 years of age) and 15 older individuals (66–82), who adapted to temporal modulations along one of four chromatic axes (two cardinal and two intermediate axes) and then matched the hue and contrast of test stimuli lying along eight different directions in the equiluminant plane. All observers exhibited aftereffects that were selective for both the cardinal and intermediate directions, although selectivity was weaker for the intermediate axes. The degree of selectivity increased with the magnitude of adaptation for all axes, and thus adaptation strength alone may account for much of the variance in selectivity among observers. Older observers showed a stronger magnitude of adaptation thus, surprisingly, more conspicuous evidence for higher-order mechanisms. For both age groups the aftereffects were well predicted by response changes in chromatic channels with linear spectral sensitivities, and there was no evidence for weakened channel tuning with aging. The results suggest that higher-order mechanisms may become more exposed in observers or conditions in which the strength of adaptation is greater, and that both chromatic contrast

  13. Age-related changes in oscillatory power affect motor action.

    Directory of Open Access Journals (Sweden)

    Liqing Liu

    Full Text Available With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC. This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  14. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  15. Tremor in the Elderly: Essential and Aging-Related Tremor

    Science.gov (United States)

    Deuschl, Günthe; Petersen, Inge; Lorenz, Delia; Christensen, Kaare

    2016-01-01

    Isolated tremor in the elderly is commonly diagnosed as essential tremor (ET). The prevalence of tremor increases steeply with increasing age, whereas hereditary tremor is becoming less common. Moreover, late-manifesting tremor seems to be associated with dementia and earlier mortality. We hypothesize that different entities underlie tremor in the elderly. Two thousand four hundred forty-eight subjects from the Longitudinal Study of Aging Danish Twins older than 70 y answered screening questions for ET in 2001. Two thousan fifty-six (84%) participants drew Archimedes spirals to measure their tremor severity, and classical aging phenotypes were assessed. A subgroup of 276 individuals fulfilling either screening criteria for ET or being controls were personally assessed. Medications and mortality data are available. The spiral score increased with age. The spiral score correlated with tremor severity. For the whole cohort, mortality was significantly correlated with the spiral score, and higher spiral scores were associated with lower physical and cognitive functioning. Multivariate analysis identified higher spiral scores as an independent risk factor for mortality. In contrast, the ET patients did not show an increased but rather a lower mortality rate although it was not statistically significant. Consistent with a slower than normal aging, they were also physically and cognitively better functioning than controls. Because incident tremors beyond 70 y of age show worse aging parameters and mortality than controls and ET, we propose to label it ‘aging-related tremor’ (ART). This tremor starts later in life and is accompanied by subtle signs of aging both cognitively and physically. More detailed clinical features and pathogenesis warrant further assessment. PMID:26095699

  16. Tear film proteome in age-related macular degeneration.

    Science.gov (United States)

    Winiarczyk, Mateusz; Kaarniranta, Kai; Winiarczyk, Stanisław; Adaszek, Łukasz; Winiarczyk, Dagmara; Mackiewicz, Jerzy

    2018-06-01

    Age-related macular degeneration (AMD) is the main reason for blindness in elderly people in the developed countries. Current screening protocols have limitations in detecting the early signs of retinal degeneration. Therefore, it would be desirable to find novel biomarkers for early detection of AMD. Development of novel biomarkers would help in the prevention, diagnostics, and treatment of AMD. Proteomic analysis of tear film has shown promise in this research area. If an optimal set of biomarkers could be obtained from accessible body fluids, it would represent a reliable way to monitor disease progression and response to novel therapies. Tear films were collected on Schirmer strips from a total of 22 patients (8 with wet AMD, 6 with dry AMD, and 8 control individuals). 2D electrophoresis was used to separate tear film proteins prior to their identification with matrix-assisted laser desorption/ionization time of flight spectrometer (MALDI-TOF/TOF) and matching with functional databases. A total of 342 proteins were identified. Most of them were previously described in various proteomic studies concerning AMD. Shootin-1, histatin-3, fidgetin-like protein 1, SRC kinase signaling inhibitor, Graves disease carrier protein, actin cytoplasmic 1, prolactin-inducible protein 1, and protein S100-A7A were upregulated in the tear film samples isolated from AMD patients and were not previously linked with this disease in any proteomic analysis. The upregulated proteins supplement our current knowledge of AMD pathogenesis, providing evidence that certain specific proteins are expressed into the tear film in AMD. As far we are aware, this is the first study to have undertaken a comprehensive in-depth analysis of the human tear film proteome in AMD patients.

  17. Modelling the genetic risk in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Felix Grassmann

    Full Text Available Late-stage age-related macular degeneration (AMD is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05 than patients aged 75 and above (1.45, 95% CI: 1.36-1.54. Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96 for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population. The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

  18. DNA damage and repair in age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Janik-Papis, Katarzyna; Synowiec, Ewelina; Ksiazek, Dominika [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Zaras, Magdalena [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Wozniak, Katarzyna [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Szaflik, Jerzy [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Blasiak, Janusz, E-mail: januszb@biol.uni.lodz.pl [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2009-10-02

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  19. Age-related macular degeneration: prevention and treatment. A review

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2014-07-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease. Age, light exposure, smoking, melanin levels and low-antioxidant diet are contributed to AMD development and progression. Cardiovascular disorders are of considerable importance as well. In macula, photoreceptor outer segments that are rich in polyunsaturated fatty acids (FA, particularly, docosahexaenoic acid (DHA, are susceptible to free radicals damage. High blood flow velocity and oxygen partial pressure as well as direct sunlight exposure induce oxidative processes. The source of free radicals in photoreceptor cells and retinal pigment epithelium (RPE is an extensive mitochondrial metabolism, photoreceptor outer segments phagocytosis, lipofuscin phototoxic activity and hemoglobin or protoporphyrin precursors photosensitization. Oxidative stress is considered as an universal component of cell depth in necrosis, apoptosis and toxic damage. Antioxidant protective system consists of enzymes (superoxide dismutase, glutathione peroxidase and catalase and non-enzymatic factors (ascorbic acid, alpha tocopherol, retinol, carotenoids. Specific antioxidant food supplement containing ascorbic acid (500 mg, vitamin E (400 IU and beta carotene (15 mg coupled with zinc (80 mg of zinc oxide and copper (2 mg of copper oxide results in 25 % decrease in late-stage AMD development rate. Amongst the agents that can protect retina from oxidative stress and AMD development, carotenoids are of special importance. Lutein and zeaxanthin containing in retina and lens screen blue light from central area of the retina. They also absorb blue light and inhibit free radicals generation thus preventing polyunsaturated FA light destruction. Association between lutein and zeaxanthin intake and late-stage AMD risk was revealed. Amongst the most important factors which deficiency favors macular degeneration are omega-3 FAs, i.e., DHA. DHA is the key component of visual pigment rhodopsin transformation. It

  20. Age-related macular degeneration: prevention and treatment. A review

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease. Age, light exposure, smoking, melanin levels and low-antioxidant diet are contributed to AMD development and progression. Cardiovascular disorders are of considerable importance as well. In macula, photoreceptor outer segments that are rich in polyunsaturated fatty acids (FA, particularly, docosahexaenoic acid (DHA, are susceptible to free radicals damage. High blood flow velocity and oxygen partial pressure as well as direct sunlight exposure induce oxidative processes. The source of free radicals in photoreceptor cells and retinal pigment epithelium (RPE is an extensive mitochondrial metabolism, photoreceptor outer segments phagocytosis, lipofuscin phototoxic activity and hemoglobin or protoporphyrin precursors photosensitization. Oxidative stress is considered as an universal component of cell depth in necrosis, apoptosis and toxic damage. Antioxidant protective system consists of enzymes (superoxide dismutase, glutathione peroxidase and catalase and non-enzymatic factors (ascorbic acid, alpha tocopherol, retinol, carotenoids. Specific antioxidant food supplement containing ascorbic acid (500 mg, vitamin E (400 IU and beta carotene (15 mg coupled with zinc (80 mg of zinc oxide and copper (2 mg of copper oxide results in 25 % decrease in late-stage AMD development rate. Amongst the agents that can protect retina from oxidative stress and AMD development, carotenoids are of special importance. Lutein and zeaxanthin containing in retina and lens screen blue light from central area of the retina. They also absorb blue light and inhibit free radicals generation thus preventing polyunsaturated FA light destruction. Association between lutein and zeaxanthin intake and late-stage AMD risk was revealed. Amongst the most important factors which deficiency favors macular degeneration are omega-3 FAs, i.e., DHA. DHA is the key component of visual pigment rhodopsin transformation. It

  1. Age-related distribution of vertebral bone-marrow diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Jochen, E-mail: j.herrmann@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Department of Pediatric Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Krstin, Nina, E-mail: ninakrstin@web.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Schoennagel, Bjoern P., E-mail: b.schoennagel@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Sornsakrin, Marjike, E-mail: m.sornsakrin@uke.de [Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg (Germany); Derlin, Thorsten, E-mail: t.derlin@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Busch, Jasmin D., E-mail: jd.busch@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Petersen, Kay Uwe, E-mail: Kay.Petersen@med.uni-tuebingen.de [Department of Psychiatry, University Clinic Tübingen, Calwerstraße 14 Tübingen 72076 (Germany); Graessner, Joachim, E-mail: joachim.graessner@siemens.com [Siemens AG Healthcare, Lindenplatz 2, 20099 Hamburg (Germany); Adam, Gerhard, E-mail: g.adam@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany); Habermann, Christian R., E-mail: c.habermann@uke.de [Department of Diagnostic and Interventional Radiology, Martinistraße 52, D-20246 Hamburg (Germany)

    2012-12-15

    Purpose: To determine age-related diffusivity changes of the lumbar bone marrow by measurement of apparent diffusion coefficient (ADC) values. Materials and methods: The local ethics committee approved this study and written informed consent was obtained. The study group comprised 88 individuals including 75 healthy volunteers and 13 patients (48 female, 40 male; mean age 36 years, range 0–84 years). The pediatric cases were recruited from patients. Echo-planar diffusion weighted imaging (DWI) was performed with b-values of 50, 400 and 800 s/mm{sup 2}. ADC-values were calculated and measured in the 1st and 2nd vertebral body of the lumbar spine. Correlation between age and ADC-values was analyzed with Spearman's rho test. Results: The ADC values of the vertebral bone marrow of the lumbar spine showed a significant negative correlation with age (rho = −0.398, p = 0.001). The mean ADC values (×10{sup −3} mm{sup 2}/s) in the age groups 0–29 years (mean age 18.0 years, n = 42) and 30–88 years (mean age 51.6 years, n = 46) were 0.54 ± 0.07 and 0.47 ± 0.08, respectively (p < 0.001, T-test). No significant differences were found between children and young adults. Conclusion: Bone marrow ADC values of the lumbar spine show a linear decrease with growing age and thereby reflect the gradual changes of cell composition occurring during marrow conversion.

  2. DNA damage and repair in age-related macular degeneration

    International Nuclear Information System (INIS)

    Szaflik, Jacek P.; Janik-Papis, Katarzyna; Synowiec, Ewelina; Ksiazek, Dominika; Zaras, Magdalena; Wozniak, Katarzyna; Szaflik, Jerzy; Blasiak, Janusz

    2009-01-01

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  3. A four-component model of age-related memory change.

    Science.gov (United States)

    Healey, M Karl; Kahana, Michael J

    2016-01-01

    We develop a novel, computationally explicit, theory of age-related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that include aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates 4 components: (a) the ability to sustain attention across an encoding episode, (b) the ability to retrieve contextual representations for use as retrieval cues, (c) the ability to monitor retrievals and reject intrusions, and (d) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the 4-component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus, we provide a 4-component theory of a complex pattern of age differences across 2 key laboratory tasks. (c) 2015 APA, all rights reserved).

  4. Decline traffic information system

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, K [Computer Sciences Corporation (CSC), Sydney (Australia)

    2007-09-06

    BHP Billion (BHPB) Cannington has experienced problems in regards to their traffic flow in the decline at the mine. The problems related to reports on near misses of vehicles moving towards each other in the decline. The decline is also to narrow for trucks to pass each other and the operators need to be aware of oncoming traffic in the decline to ensure they could take early evasive steps to ensure the rules of right of way in the decline are adhered to. BHPB Cannington requested CSC to conduct a problem analysis and to provide a solutions proposal to Cannington. The solution was put forward as an augmentation of their current safety procedures used with in the decline. During this phase of the project CSC developed a solutions architecture which involved the use of Active (Radio Frequency Identification) RFID tagging which will enable vehicle movement tracking on a real time basis after which the appropriate traffic movement can be relayed to the operators in the decline. The primary objective of the DTIS is to provide accurate information of traffic movement in the decline and present that information to the operators of the decline IN THE DECLINE upon which they would make their decisions. (orig.)

  5. Age-Related Change in Visual Working Memory: A study of 55,753 Participants Aged 8 to 75

    Directory of Open Access Journals (Sweden)

    James R. Brockmole

    2013-01-01

    Full Text Available Visual working memory abilities of 55,753 individuals between the ages of 8 and 75 were assessed to provide the most fine-grain analysis of age-related change in visual working memory to date. Results showed that visual working memory changes throughout the lifespan, peaking at age 20. A sharp linear decline follows that is so severe that by age 55, adults possess poorer immediate visual memory than 8 and 9 year olds. These developmental changes were largely explained by changing visual working memory capacity coupled with small short-term visual feature binding difficulties among children and older adults.

  6. Diastolic pressure underestimates age-related hemodynamic impairment.

    Science.gov (United States)

    Galarza, C R; Alfie, J; Waisman, G D; Mayorga, L M; Cámera, L A; del Río, M; Vasvari, F; Limansky, R; Farías, J; Tessler, J; Cámera, M I

    1997-10-01

    It has been hypothesized that as large arteries become more rigid with age, the pattern of hypertension changes from diastolic to systolic. Thus, diastolic blood pressure (DBP) may lose its ability to reflect the increase in vascular resistance with age. To assess this, we studied the age-related changes in blood pressure pattern and its steady-state and pulsatile determinants. We performed an epidemiological analysis based on a national survey of 10,462 subjects from Argentina. A hemodynamic analysis (impedance cardiography) was then carried out in 636 consecutive hypertensive patients (age, 25 to 74 years). Whereas the rate of increment in the prevalence of mild to moderate hypertension (MMH) reached a plateau after the sixth decade, isolated and borderline systolic forms of hypertension began a steep and sustained rise. Among patients with MMH, DBP remained stable from the third to the seventh decade, whereas SBP maintained a sustained increase. Despite similar DBP, the systemic vascular resistance index increased 47% (P<.01) and the cardiac index decreased 27% (P<.01), whereas the ratio of stroke volume to pulse pressure, an index of arterial compliance, decreased 45% (P<.01). However, there were no significant differences between older patients with MMH and those with isolated systolic hypertension in the level of SBP, vascular resistance, stroke volume, and cardiac index. Compared with age-matched normotensive control subjects, the ratio of stroke volume to pulse pressure was much more reduced in isolated systolic hypertension (48%) than in MMH (30%). In summary, the present study, carried out in a large sample of hypertensive subjects with a wide age range, showed a simultaneous impairment in vascular resistance and arterial compliance associated with aging in different patterns of hypertension. The magnitude of these changes, with opposite effects on DBP but additive effects on SBP, suggests that a hemodynamic mechanism could determine the transition in the

  7. Interleukin-13 and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2017-04-01

    Full Text Available AIM: To identify the effects of interleukin (IL-13 on retinal pigment epithelial (RPE cells and the IL-13 level in aqueous humor of age-related macular degeneration (AMD patients. METHODS: IL-13 levels in aqueous humor specimens from AMD patients were detected with enzyme-linked immunosorbent assay (ELISA. ARPE-19 cells were treated with 10 ng/mL IL-13 for 12, 24, and 48h. The cell proliferaton was evaluated by the MTS method. The mRNA and protein levels of α-SMA and ZO-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR and Western blot respectively. The expression of tumor necrosis factor-α (TNF-α, transforming growth factor-β (TGF-β and vascular endothelial growth factor (VEGF were assessed by ELISA. RESULTS: IL-13 levels in the aqueous humor of patients with AMD were significantly higher than those in the control (167.33±17.64 vs 27.12±5.65 pg/mL; P<0.01. In vitro, IL-13 of high concentrations (10, 15, and 20 ng/mL inhibited ARPE-19 cell proliferation. α-SMA mRNA in ARPE-19 cell were increased (1.017±0.112 vs 1.476±0.168; P<0.001 and ZO-1 decreased (1.051±0.136 vs 0.702±0.069; P<0.001 after treated with 10 ng/mL IL-13 for 48h. The protein expression of α-SMA and ZO-1 also showed the same tendency (α-SMA: P=0.038; ZO-1: P=0.008. IL-13 significantly reduced the level of TNF-α (44.70±1.67 vs 31.79±3.53 pg/mL; P=0.005 at 48h, but the level of TGF-β2 was significantly increased from 34.44±2.92 to 57.61±6.31 pg/mL at 24h (P=0.004 and from 61.26±1.11 to 86.91±3.59 pg/mL at 48h (P<0.001. While expressions of VEGF didn’t change after IL-13 treatment. CONCLUSION: IL-13 in vitro inhibit ARPE-19 cell proliferation and expression in the aqueous may be associated with AMD.

  8. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  9. Complement inhibitors for age-related macular degeneration.

    Science.gov (United States)

    Williams, Michael A; McKay, Gareth J; Chakravarthy, Usha

    2014-01-15

    Given the relatively high prevalence of age-related macular degeneration (AMD) and the increased incidence of AMD as populations age, the results of trials of novel treatments are awaited with much anticipation. The complement cascade describes a series of proteolytic reactions occurring throughout the body that generate proteins with a variety of roles including the initiation and promotion of immune reactions against foreign materials or micro-organisms. The complement cascade is normally tightly regulated, but much evidence implicates complement overactivity in AMD and so it is a logical therapeutic target in the treatment of AMD. To assess the effects and safety of complement inhibitors in the prevention or treatment of advanced AMD. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 11), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2013), EMBASE (January 1980 to November 2013), Allied and Complementary Medicine Database (AMED) (January 1985 to November 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to November 2013), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), Web of Science Conference Proceedings Citation Index - Science (CPCI-S) (January 1990 to November 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 21 November 2013. We also performed handsearching of proceedings, from 2012 onwards, of meetings and conferences of specific professional organisations. We planned to include randomised controlled trials (RCTs) with

  10. Phylogenic aspects of the amphibian dual olfactory system.

    Science.gov (United States)

    Taniguchi, Kazumi; Saito, Shouichiro; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2008-01-01

    The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

  11. Sevoflurane impairs post-operative olfactory memory but preserves olfactory function.

    Science.gov (United States)

    Kostopanagiotou, Georgia; Kalimeris, Konstantinos; Kesidis, Kyriakos; Matsota, Paraskevi; Dima, Cleanthi; Economou, Maria; Papageorgiou, Charalambos

    2011-01-01

    The effect of anaesthesia on olfaction has not been systematically studied. Our aim is to compare the effects of general and regional anaesthesia on olfactory acuity and memory in the immediate post-operative period. Sixty adult patients with the American Society of Anesthesiologists I and II status scheduled for elective minor surgery were included. Exclusion criteria were smoking, alcoholism, psychiatric disease and recent or past airway infection with resulting hyposmia. Patients were randomly allocated to one of three groups (in the analysis, n = 16 in each group): epidural anaesthesia (group E), general anaesthesia with propofol (group P) and general anaesthesia with sevoflurane (group S) of 40-120 min duration. The evening before surgery, at 0.5 and at 3 h post-operatively olfactory acuity and memory were tested, along with blood sampling to measure plasma melatonin and oxytocin levels. Olfactory acuity was tested with successive dilutions of n-butyl-alcohol, and olfactory memory (interpretation of odours) with the University of Pennsylvania Smell Identification Test. Patient characteristics did not differ between groups. Olfactory acuity was intact in all patients, before and after anaesthesia. Olfactory memory deteriorated in group S compared to groups P and E at both post-operative time-points. This was accompanied by a significant post-operative reduction of plasma melatonin levels in group S. Oxytocin levels remained constant in all groups. Our results manifest a specific effect of sevoflurane on olfactory memory, not observed with neuraxial or total intravenous anaesthesia. The misinterpretation of odours in the immediate post-operative period by sevoflurane could be mediated by the decreased levels of melatonin.

  12. Age-Related Evolution Patterns in Online Handwriting

    Science.gov (United States)

    2016-01-01

    Characterizing age from handwriting (HW) has important applications, as it is key to distinguishing normal HW evolution with age from abnormal HW change, potentially triggered by neurodegenerative decline. We propose, in this work, an original approach for online HW style characterization based on a two-level clustering scheme. The first level generates writer-independent word clusters from raw spatial-dynamic HW information. At the second level, each writer's words are converted into a Bag of Prototype Words that is augmented by an interword stability measure. This two-level HW style representation is input to an unsupervised learning technique, aiming at uncovering HW style categories and their correlation with age. To assess the effectiveness of our approach, we propose information theoretic measures to quantify the gain on age information from each clustering layer. We have carried out extensive experiments on a large public online HW database, augmented by HW samples acquired at Broca Hospital in Paris from people mostly between 60 and 85 years old. Unlike previous works claiming that there is only one pattern of HW change with age, our study reveals three major aging HW styles, one specific to aged people and the two others shared by other age groups. PMID:27752277

  13. Age related changes in erythrocyte A and B antigen strength

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J W; Hamilton, H B; Ishii, Goro

    1961-11-01

    The strength of A and B antigens of the erythrocyte, as indicated by agglutinability with dilutions of specific antibody, has been investigated in a group of subjects in Hiroshima. Antigen strength was found to rise to maximal levels at age 25 to 29, and decline with advancing years. Degree of irradiation from the Hiroshima atomic bomb in 1945 did not appear in the limited sample to affect this age-dependent structural property of erythrocytes. Antigen strength of females was somewhat less than that of males for those individuals from 20 to 40 years of age. When compared with group A or B subjects, individuals of group AB demonstrated full strength of both A and B antigens. Since Rh antigenicity also has been reported to change with age, it seems probable that multiple changes in the erythrocyte membrane occur with age. Further investigation into the nature of these changes may be fruitful to an understanding of aging processes at the cellular level. 13 references, 1 figure, 6 tables.

  14. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and

  15. Risk factors for age-related maculopathy in a 14-year follow-up study

    DEFF Research Database (Denmark)

    Buch, Helena; Vinding, Troels; la Cour, Morten

    2005-01-01

    To examine the association between potential risk factors and the 14-year incidence of age-related maculopathy (ARM).......To examine the association between potential risk factors and the 14-year incidence of age-related maculopathy (ARM)....

  16. Age-Related Racial Disparity in Suicide Rates Among U.S. Youth

    Science.gov (United States)

    ... May 30, 2018 Age-Related Racial Disparity in Youth Suicide Rates May 21, 2018 News by Year 2018 ... May 30, 2018 Age-Related Racial Disparity in Youth Suicide Rates May 21, 2018 News by Year 2018 ...

  17. Three Studies Point to Same Risk Gene for Age-Related Macular Degeneration

    Science.gov (United States)

    ... point to same risk gene for age-related macular degeneration NIH-funded research helps unravel the biology of ... rare, but powerful risk factor for age-related macular degeneration (AMD), a common cause of vision loss in ...

  18. Does eating particular diets alter risk of age-related macular degeneration in users of the Age-Related Eye Disease Study supplements?

    Science.gov (United States)

    Background: Recent information suggests that the Age-Related Eye Disease Study (AREDS) supplement, enhanced intake of omega-3 fatty acids, and diminishing dietary glycemic index (dGI) are protective against advanced age-related macular degeneration (AMD). Methods: Dietary information was collected a...

  19. Olfactory bulb proteins linked to olfactory memory in C57BL/6J mice.

    Science.gov (United States)

    Li, Lin; Mauric, Veronika; Zheng, Jun-Fang; Kang, Sung Ung; Patil, Sudarshan; Höger, Harald; Lubec, Gert

    2010-08-01

    Information on systematic analysis of olfactory memory-related proteins is poor. In this study, the odor discrimination task to investigate olfactory recognition memory of adult male C57BL/6J mice was used. Subsequently, olfactory bulbs (OBs) were taken, proteins extracted, and run on two-dimensional gel electrophoresis with in-gel-protein digestion, followed by mass spectrometry and quantification of differentially expressed proteins. Dual specificity mitogen-activated protein kinase kinase 1 (MEK1), dihydropyrimidinase-related protein 1 (DRP1), and fascin are related with Lemon odor memory. Microtubule-associated protein RP/EB family member 3 is related to Rose odor memory. Hypoxanthine-guanine phosphoribosyltransferase is related with both Lemon and Rose odors memory. MEK1 and DRP1 levels were increased, while microtubule-associated protein RP/EB family member 3, fascin and hypoxanthine-guanine phosphoribosyltransferase levels were decreased during olfactory memory. In summary, neurogenesis, signal transduction, cytoskeleton, and nucleotide metabolism are involved in olfactory memory formation and storage of C57BL/6J mice.

  20. Olfactory memory: a bridge between humans and animals in models of cognitive aging.

    Science.gov (United States)

    Eichenbaum, Howard; Robitsek, R Jonathan

    2009-07-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electrophysiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory.

  1. The Association between Plasma 25-Hydroxyvitamin D and Subgroups in Age-Related Macular Degeneration

    DEFF Research Database (Denmark)

    Singh, Amardeep; Falk, Mads Krüger; Subhi, Yousif

    2013-01-01

    To evaluate potential differences in plasma 25-hydroxyvitamin in subtypes of age-related macular degeneration (AMD), and in patients in Clinical Age-Related Maculopathy Staging (CARMS) group 5 with or without subretinal fibrosis.......To evaluate potential differences in plasma 25-hydroxyvitamin in subtypes of age-related macular degeneration (AMD), and in patients in Clinical Age-Related Maculopathy Staging (CARMS) group 5 with or without subretinal fibrosis....

  2. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  3. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  4. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  5. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  6. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  7. Olfactory neuroblastoma complicated by postirradiation pneumocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Fusejima, Toru; Matsumura, Kenichirou; Hayano, Makoto [Mito Saiseikai Hospital (Japan)

    1990-11-01

    A 56-year-old male was admitted with the complaints of nasal bleeding, gait disturbance, and disturbance of consciousness. Neurological examination revealed drowsiness, right hemiparesis, and choked discs. Computed tomography scan showed an enhanced mass at the frontal base, which extended to the left nasal and paranasal cavities. Angiography showed a tumor stain with a mass sign. The intracranial part of the tumor was removed completely and he was discharged ambulatorily. Two months after surgery, however, he was admitted again for the regrowth of the tumor. Ventriculoperitoneal shunting was emplaced and radiation therapy was given to the brain and nasal cavity. After 3000 rad irradiation the clinical condition suddenly became worse because of pneumocephalus. The cranial tumor disappeared after irradiation but he died of metastases and general prostration. Clinically this case was diagnosed as an olfactory groove meningioma at first, but immunohistochemical diagnosis was olfactory neuroblastoma. (author).

  8. Age-Related Differences in Quality of Standing Balance Using a Composite Score

    NARCIS (Netherlands)

    Pasma, J.H.; Bijlsma, A.Y.; van der Bij, M.D.W.; Arendzen, J.H.; Meskers, C.G.M.; Maier, A.B.

    2014-01-01

    Background: Age-related differences in standing balance are not detected by testing the ability to maintain balance. Quality of standing balance might be more sensitive to detect age-related differences. Objective: To study age-related differences in quality of standing balance, center of pressure

  9. Age related prevalence of hand osteoarthritis diagnosed by photography (HOASCORE).

    Science.gov (United States)

    Jonsson, Helgi

    2017-12-02

    Hand photography has been used in a number of studies to determine the presence and severity of hand osteoarthritis (HOA). The aim of this study was to present age and gender specific prevalences of HOA diagnosed by this method. Six thousand three hundred forty three photographs (from 3676 females and 2667 males aged 40-96) were scored for hand osteoarthritis by a 0-3 grade (0 = no evidence of OA, 1 = possible OA, 2 = definite OA and 3 = severe OA) for each of the three main sites, distal interphalangeal joints (DIP), proximal interphalangeal joints (PIP) and thumb base (CMC1). An aggregate score of 0-9 was thus obtained (HOASCORE) to reflect the severity of HOA in each case. DIP joints were most commonly affected, followed by the thumb base and the PIP joints. Having definite DIP joint OA starts at a younger age compared with the other two sites, and there is a marked female preponderance in the age groups from 55 to 69, but after 70 the gender differences are less marked and the prevalence is fairly stable. PIP joint prevalence also indicates a female preponderance from 60 to 79. Thumb base OA has a more marked female preponderance and a rising prevalence thoughout life. The prevalence of individuals with no evidence of photographic OA (HOASCORE = 0) drops from 88% to 57% between the age categories 40-49 and 50-54 and decreased to 33% in the 70-74 age group with a slower decline after that age. DIP and PIP prevalence were strongly associated with each other with an OR of 16.6(12.8-21.5),p < 0.001 of having definite OA at the other site. This was less marked for the thumb base with an OR of 2.2(1.8-2.7, p < 0.001), and 2.7(2.0-3.5, p < 0.001) of having definite DIP or PIP HOA respectively. The prevalence of hand OA in DIP, PIP and thumb base joints obtained by the photographic HOASCORE method is higher in women and increases after the age of fifty. These results are in line with those obtained by clinical examination and radiography

  10. Age-related changes in visual temporal order judgment performance: Relation to sensory and cognitive capacities.

    Science.gov (United States)

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-08-06

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Age-related quantitative and qualitative changes in decision making ability.

    Science.gov (United States)

    Isella, Valeria; Mapelli, Cristina; Morielli, Nadia; Pelati, Oriana; Franceschi, Massimo; Appollonio, Ildebrando Marco

    2008-01-01

    The "frontal aging hypothesis" predicts that brain senescence affects predominantly the prefrontal regions. Preliminary evidence has recently been gathered in favour of an age-related change in a typically frontal process, i.e. decision making, using the Iowa Gambling Task (IGT), but overall findings have been conflicting. Following the traditional scoring method, coupled with a qualitative analysis, in the present study we compared IGT performance of 40 young (mean age: 27.9+/-4.7) and 40 old (mean age: 65.4+/-8.6) healthy adults and of 18 patients affected by frontal lobe dementia of mild severity (mean age: 65.1+/-7.4, mean MMSE score: 24.1+/-3.9). Quantitative findings support the notion that decision making ability declines with age; moreover, it approximates the impairment observed in executive dysfunction due to neurodegeneration. Results of the qualitative analysis did not reach statistical significance for the motivational and learning decision making components considered, but approached significance for the attentional component for elderly versus young normals, suggesting a possible decrease in the ability to maintain sustained attention during complex and prolonged tasks as the putative deficit underlying impaired decision making in normal aging.

  12. The Age-Related Association of Movement in Irish Adolescent Youth

    Directory of Open Access Journals (Sweden)

    Diarmuid Lester

    2017-10-01

    Full Text Available (1 Background: Research has shown that post-primary Irish youth are insufficiently active and fail to reach a level of proficiency across basic movement skills. The purpose of the current research was to gather cross-sectional baseline data on Irish adolescent youth, specifically the prevalence of movement skills and patterns, in order to generate an overall perspective of movement within the first three years (Junior Certificate level of post-primary education. (2 Methods: Data were collected on adolescents (N = 181; mean age: 14.42 ± 0.98 years, attending two, mixed-gender schools. Data collection included 10 fundamental movement skills (FMS and the seven tests within the Functional Movement Screen (FMS™. The data set was analysed using the Statistical Package for Social Sciences (SPSS version 20.0 for Windows. (3 Results: Overall, levels of actual mastery within fundamental and functional movement were low. There were statistically significant age-related differences observed, with a progressive decline as age increased in both the object control (p = 0.002 FMS sub-domain, and the in-line lunge (p = 0.048 test of the FMS™. (4 Conclusion: In summary, we found emerging evidence that school year group is significantly associated with mastery of movement skills and patterns. Results from the current study suggest that developing a specifically tailored movement-oriented intervention would be a strategic step towards improving the low levels of adolescent fundamental and functional movement proficiency.

  13. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  14. An examination of black/white differences in the rate of age-related mortality increase

    Directory of Open Access Journals (Sweden)

    Andrew Fenelon

    2013-09-01

    Full Text Available BACKGROUND The rate of mortality increase with age among adults is typically used as a measure of the rate of functional decline associated with aging or senescence. While black and white populations differ in the level of mortality, mortality also rises less rapidly with age for blacks than for whites, leading to the well-known black/white mortality "crossover". OBJECTIVE This paper investigates black/white differences in the rate of mortality increase with age for major causes of death in order to examine the factors responsible for the black/white crossover. METHODS The analysis considers two explanations for the crossover: selective survival and age misreporting. Mortality is modeled using a Gompertz model for 11 causes of death from ages 50-84 among blacks and whites by sex. RESULTS Mortality increases more rapidly with age for whites than for blacks for nearly all causes of death considered. The all-cause mortality rate of mortality increase is nearly two percentage points higher for whites. The analysis finds evidence for both selective survival and age misreporting, although age misreporting is a more prominent explanation among women. CONCLUSIONS The black/white mortality crossover reflects large differences in the rate of age-related mortality increase. Instead of reflecting the impact of specific causes of death, this pattern exists across many disparate disease conditions, indicating the need for a broad explanation.

  15. [Potential of melatonin for prevention of age-related macular degeneration: experimental study].

    Science.gov (United States)

    Stefanova, N A; Zhdankina, A A; Fursova, A Zh; Kolosova, N G

    2013-01-01

    Decline with age of the content of melatonin is considered as one of the leading mechanisms of aging and development of associated diseases, including age-related macular degeneration (AMD)--the disease, which becomes the most common cause of blindness and acuity of vision deterioration in elderly. The prospects of the use of melatonin in the prevention of AMD is being actively discussed, but as a rule on the basis of the results of the experiments on cells in retinal pigment epithelium (RPE). We showed previously that the senescence-accelerated OXYS rat is an adequate animal model of AMD, already used for identifying the relevant therapeutic targets. Here we have investigated the effect of Melatonin (Melaksen, 0,004 mg per kg--a dose equivalent to the recommended one for people) on the development of retinopathy similar to AMD in OXYS rats. Ophthalmoscopic examinations show that Melatonin supplementation decreased the incidence and severity of retinopathy and improved some (but not all) histological abnormalities associated with retinopathy. Thus, melatonin prevented the structural and functional changes in RPE cells, reduced the severity of microcirculatory disorders. Importantly, Melatonin prevented destruction of neurosensory cells, associative and gangliolar neurons in the retina. Taken together, our data suggest the therapeutic potential of Melatonin for treatment and prevention of AMD.

  16. The Impact of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins

    Science.gov (United States)

    Park, Yong-Moon Mark; Sui, Xuemei; Liu, Junxiu; Zhou, Haiming; Kokkinos, Peter F.; Lavie, Carl J.; Hardin, James W.; Blair, Steven N.

    2015-01-01

    Background Evidence on the effect of cardiorespiratory fitness (CRF) on age-related longitudinal changes of lipids and lipoproteins is scarce. Objectives This study sought to assess the longitudinal, aging trajectory of lipids and lipoproteins for the life course in adults, and to determine whether CRF modifies the age-associated trajectory of lipids and lipoproteins. Methods Data came from 11,418 men, 20 to 90 years of age, without known high cholesterol, high triglycerides, cardiovascular disease, and cancer at baseline and during follow-up from the Aerobics Center Longitudinal Study. There were 43,821 observations spanning 2 to 25 (mean 3.5) health examinations between 1970 and 2006. CRF was quantified by a maximal treadmill exercise test. Marginal models using generalized estimating equations were applied. Results Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and non-high-density lipoprotein cholesterol (non-HDL-C) presented similar inverted U-shaped quadratic trajectories with aging: gradual increases were noted until the mid-40s to early 50s, with subsequent declines (all p lipoproteins in young to middle-aged men than in older men. Conclusions Our investigation reveals a differential trajectory of lipids and lipoproteins with aging according to CRF in healthy men, and suggests that promoting increased CRF levels may help delay the development of dyslipidemia. PMID:25975472

  17. The effect of cardiorespiratory fitness on age-related lipids and lipoproteins.

    Science.gov (United States)

    Park, Yong-Moon Mark; Sui, Xuemei; Liu, Junxiu; Zhou, Haiming; Kokkinos, Peter F; Lavie, Carl J; Hardin, James W; Blair, Steven N

    2015-05-19

    Evidence on the effect of cardiorespiratory fitness (CRF) on age-related longitudinal changes of lipids and lipoproteins is scarce. This study sought to assess the longitudinal aging trajectory of lipids and lipoproteins for the life course in adults and to determine whether CRF modifies the age-associated trajectory of lipids and lipoproteins. Data came from 11,418 men, 20 to 90 years of age, without known high cholesterol, high triglycerides, cardiovascular disease, and cancer at baseline and during follow-up from the Aerobics Center Longitudinal Study. There were 43,821 observations spanning 2 to 25 health examinations (mean 3.5 examinations) between 1970 and 2006. CRF was quantified by a maximal treadmill exercise test. Marginal models using generalized estimating equations were applied. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides, and non-high-density lipoprotein cholesterol (non-HDL-C) presented similar inverted U-shaped quadratic trajectories with aging: gradual increases were noted until age mid-40s to early 50s, with subsequent declines (all p lipoproteins in young to middle-age men than in older men. Our investigation reveals a differential trajectory of lipids and lipoproteins with aging according to CRF in healthy men and suggests that promoting increased CRF levels may help delay the development of dyslipidemia. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. MRI of the olfactory bulbs and sulci in human fetuses

    International Nuclear Information System (INIS)

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine; Fallet-Bianco, Catherine; Garel, Catherine

    2006-01-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  19. Olfactory Information Processing in the Drosophila Antennal Lobe : Anything Goes?

    OpenAIRE

    Silbering, Ana F.; Okada, Ryuichi; Ito, Kei; Galizia, Cosmas Giovanni

    2008-01-01

    When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons-insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the ro...

  20. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...