WorldWideScience

Sample records for age-dependent voxel phantoms

  1. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  2. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  3. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  4. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  5. Construction of average adult Japanese voxel phantoms for dose assessment

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira

    2011-12-01

    The International Commission on Radiological Protection (ICRP) adopted the adult reference voxel phantoms based on the physiological and anatomical reference data of Caucasian on October, 2007. The organs and tissues of these phantoms were segmented on the basis of ICRP Publication 103. In future, the dose coefficients for internal dose and dose conversion coefficients for external dose calculated using the adult reference voxel phantoms will be widely used for the radiation protection fields. On the other hand, the body sizes and organ masses of adult Japanese are generally smaller than those of adult Caucasian. In addition, there are some cases that the anatomical characteristics such as body sizes, organ masses and postures of subjects influence the organ doses in dose assessment for medical treatments and radiation accident. Therefore, it was needed to use human phantoms with average anatomical characteristics of Japanese. The authors constructed the averaged adult Japanese male and female voxel phantoms by modifying the previously developed high-resolution adult male (JM) and female (JF) voxel phantoms. It has been modified in the following three aspects: (1) The heights and weights were agreed with the Japanese averages; (2) The masses of organs and tissues were adjusted to the Japanese averages within 10%; (3) The organs and tissues, which were newly added for evaluation of the effective dose in ICRP Publication 103, were modeled. In this study, the organ masses, distances between organs, specific absorbed fractions (SAFs) and dose conversion coefficients of these phantoms were compared with those evaluated using the ICRP adult reference voxel phantoms. This report provides valuable information on the anatomical and dosimetric characteristics of the averaged adult Japanese male and female voxel phantoms developed as reference phantoms of adult Japanese. (author)

  6. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  7. Development of the Reference Korean Female Voxel Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Bo Kyoung; Cho, Kun Woo [University of Science and Technology, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol [Hanyang University, Seoul (Korea, Republic of)

    2012-03-15

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm{sup 3} and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm{sup 3} for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  8. Preparing a voxel-simulator of Alderson Rando physical phantom

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X.; Salmon Junior, Helio A.; Soares, Alessandro F.N.S.

    2011-01-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  9. Preparing a voxel-simulator of Alderson Rando physical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X., E-mail: lboia@con.ufrj.br, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear (PEN/COPPE/UFRJ). Universidade Federal do Rio de Janeiro, RJ (Brazil); Salmon Junior, Helio A., E-mail: heliosalmon@coinet.com.br [COI - Clinicas Oncologicas Integradas, MD.X Barra Medical Center, Rio de Janeiro, RJ (Brazil); Soares, Alessandro F.N.S., E-mail: afacure@cnen.gov.br [Comissao Nacional de Engenharia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  10. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  11. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    International Nuclear Information System (INIS)

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131 Iodine, 123 Iodine and 99m Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99m Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123 I and 99m Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99m Tc incorporation. (author)

  12. Alderson-Rando phantom 'voxelization' for use in numerical dosimetry

    International Nuclear Information System (INIS)

    Santos, A.M.; Vieira, J.W.

    2008-01-01

    This paper presents the methodology used for creating a voxel phantom from the tomographic physical Alderson-Rando phantom images (HR) and to develop a computer model formed by exposure of the resulting phantom 'voxelization' of AR coupled to the Monte Carlo code EGS4 plus algorithms to simulate radioactive sources in internal dosimetry

  13. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  14. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  15. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  16. Development and application of a set of mesh-based and age-dependent Chinese family phantoms for radiation protection dosimetry: Preliminary Data for external photon beams

    Science.gov (United States)

    Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George

    2017-09-01

    A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.

  17. Creation of a voxel phantom of the ICRP reference crab.

    Science.gov (United States)

    Caffrey, E A; Higley, K A

    2013-06-01

    The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  19. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  20. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  1. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  2. Dose conversion coefficients calculated using a series of adult Japanese voxel phantoms against external photon exposure

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2008-10-01

    This report presents a complete set of conversion coefficients of organ doses and effective doses calculated for external photon exposure using five Japanese adult voxel phantoms developed at the Japan Atomic Energy Agency (JAEA). At the JAEA, high-resolution Japanese voxel phantoms have been developed to clarify the variation of organ doses due to the anatomical characteristics of Japanese, and three male phantoms (JM, JM2 and Otoko) and two female phantoms (JF and Onago) have been constructed up to now. The conversion coefficients of organ doses and effective doses for the five voxel phantoms have been calculated for six kinds of idealized irradiation geometries from monoenergetic photons ranging from 0.01 to 10 MeV using EGS4, a Monte Carlo code for the simulation of coupled electron-photon transport. The dose conversion coefficients are given as absorbed dose and effective dose per unit air-kerma free-in-air, and are presented in tables and figures. The calculated dose conversion coefficients are compared with those of voxel phantoms based on the Caucasian and the recommended values in ICRP74 in order to discuss (1) variation of organ dose due to the body size and individual anatomy, such as position and shape of organs, and (2) effect of posture on organ doses. The present report provides valuable data to study the influence of the body characteristics of Japanese upon the organ doses and to discuss developing reference Japanese and Asian phantoms. (author)

  3. Construction of Korean adult voxel phantoms for radiation dosimetry and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik

    2002-08-15

    Although contribution of the MIRD-type mathematical anthropomorphic phantoms to computational radiation dosimetry, especially in determining the effective dose to the exposed personnel, is very significant, there remain some questions on possible deviation in the resulting dosimetric quantities from the true values. This is particularly the case for those organ or tissues having complicated geometry difficult to model with simple geometrical body elements. As an alternative approach to resolve the problem, there have been efforts to use voxel phantoms, which can very precisely describe both the external shape and the internal organs by virtue of fast advances in medical imaging technology as well as in computing power. In this study, Korean adult male and female voxel phantoms were constructed by processing whole-body MR images of healthy volunteers who belong to middle group of Korean in height and weight. Organs and tissues on tomographic images were manually segmented and indexed using the graphic software PL-400 . Due to limited resolution of the raw MR images, voxels of rather large size, 2 mmx2 mmx8 mm for the woman and 2mmx2mmx10mm for the man, were used. The resulting male and female voxel phantoms were named KRMAN and KRWOMAN, respectively. To assess utility of the voxel phatoms, calculations were carried out with the Monte Carlo code MCNP4B for two illustrative problems. A program VOXELMAKER1.0 was developed to convert the voxel phantom data into MCNP geometry input format. In the first example, organ equivalent doses and effective doses were evaluated for phantoms in broad parallel photon fields of different energies and directions and were compared to corresponding values given in ICRP 74 which were derived with the MIRD-type phantoms. No significant deviations between MIRD and voxel phantoms were found in the effective doses. Significant differences up to around factor of 2, however, were observed in organ equivalent doses for some organs including

  4. Construction of Korean female voxel phantom and its application to dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Ik

    2001-08-15

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established.

  5. Construction of Korean female voxel phantom and its application to dosimetry

    International Nuclear Information System (INIS)

    Lee, Choon Ik

    2001-08-01

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established

  6. Synthetic digital radiographs using exposure computer models of Voxels / EGS4 Phantoms

    International Nuclear Information System (INIS)

    Kenned, Roberto; Vieira, Jose W.; Lima, Fernando R.A.; Loureiro, Eduardo

    2008-01-01

    The objective of this work is to produce synthetic digital radiographs from synthetic phantoms with the use of a Computational Model of Exposition (MCE). The literature explains a model consisted on a phantom, a Monte Carlo code and an algorithm of a radioactive source. In this work it was used the FAX phantom (Female Adult voXel), besides the EGS4 system code Eletron Shower-range version 4) and an external source, similar to that used in diagnostic radiology. The implementation of MCE creates files with information on external energy deposited in the voxels of fantoma used, here called EnergiaPorVoxel.dat. These files along with the targeted phantom (fax.sgi) worked as data entry for the DIP software (Digital Imaging Processing) to build the synthetic phantoms based on energy and the effective dose. This way you can save each slice that is the stack of pictures of these phantoms synthetics, which have been called synthetic digital radiography. Using this, it is possible to use techniques of emphasis in space to increase the contrast or elineate contours between organs and tissues. The practical use of these images is not only to allow a planning of examinations performed in clinics and hospitals and reducing unnecessary exposure to patients by error of radiographic techniques. (author)

  7. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  8. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  9. Monte Carlo simulation of dose calculation in voxel and geometric phantoms using GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Silva, Rosana de S. e; Begalli, Marcia

    2009-01-01

    Monte Carlo simulation techniques have become a valuable tool for scientific purposes. In radiation protection many quantities are obtained by means of the simulation of particles passing through human body models, also known as phantoms, allowing the calculation of doses deposited in an individual's organs exposed to ionizing radiation. These information are very useful from the medical viewpoint, as they are used in the planning of external beam radiotherapy and brachytherapy treatments. The goal of this work is the implementation of a voxel phantom and a geometrical phantom in the framework of the Geant4 tool kit, aiming at a future use of this code by professionals in the medical area. (author)

  10. Chinese reference human voxel phantoms for radiation protection: development, application and recent progress

    International Nuclear Information System (INIS)

    Pan Yuxi; Qiu Rui; Ren Li; Zhu Huanjun; Li Junli; Liu Liye

    2014-01-01

    This paper presents the work of constructing Chinese reference human voxel phantoms, taking Chinese reference adult female voxel model for example. In this study, a site-specific skeleton structure was built, some radiation sensitive organs were supplemented. Organ sub-segmentation was taken into account. The constructed phantoms include almost all radiation sensitive organs required by ICRP new recommendation. Masses of the organs are almost consistent with the Chinese reference data within 5%. The Chinese reference human phantoms have been applied both in internal dosimetry and external dosimetry. The results provide fundamental data for Chinese radiation dosimetry. In addition, the newly established detailed breast model and micro-bone model were introduced. (authors)

  11. Application of Electron Dose Kernels to account for heterogeneities in voxelized phantoms

    International Nuclear Information System (INIS)

    Al-Basheer, A. K.; Sjoden, G. E.; Ghita, M.; Bolch, W.

    2009-01-01

    In this paper, we present work on the application of the Electron Dose Kernel discrete ordinates method (EDK-S N ) to compute doses and account for material heterogeneities using high energy external photon beam irradiations in voxelized human phantoms. EDKs are pre-computed using photon pencil 'beamlets' that lead to dose delivery in tissue using highly converged Monte Carlo. Coupling the EDKs to accumulate dose scaled by integral photon fluences computed using S N methods in dose driving voxels (DDVs) allows for the full charged particle physics computed dose to be accumulated throughout the voxelized phantom, and is the basis of the EDK-S N method, which is fully parallelized. For material heterogeneities, a density scaling correction factor is required to yield good agreement. In a fully voxelized phantom, all doses were in agreement with those determined by independent Monte Carlo computations. We are continuing to expand upon the development of this robust approach for rapid and accurate determination of whole body and out of field organ doses due to high energy x-ray beams. (authors)

  12. An eye model for computational dosimetry using a multi-scale voxel phantom

    International Nuclear Information System (INIS)

    Caracappa, P.F.; Rhodes, A.; Fiedler, D.

    2013-01-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. When the Lattice Overlay method, the simpler of the two to define, is utilized, the computational penalty in terms of speed is noticeable and the figure of merit for the eye dose tally decreases by as much as a factor of two. When the Voxel Substitution method is applied, the penalty in speed is nearly trivial and the impact on the tally figure of merit is comparatively smaller. The origin of this difference in the code behavior may warrant further investigation

  13. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  14. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    Science.gov (United States)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  15. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  16. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-01

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for 124I and 18F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  17. Whole-body voxel phantoms of paediatric patients—UF Series B

    Science.gov (United States)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  18. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    Science.gov (United States)

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  19. Application of voxel phantoms and Monte Carlo methods to internal and external dosimetry

    International Nuclear Information System (INIS)

    Hunt, J.G.; Santos, D. de S.; Silva, F.C. da; Dantas, B.M.; Azeredo, A.; Malatova, I.; Foltanova, S.

    2000-01-01

    Voxel phantoms and the Monte Carlo technique are applied to the areas of calibration of in vivo measurement systems, Specific Effective Energy calculations, and dose calculations due to external sources of radiation. The main advantages of the use of voxel phantoms is their high level of detail of body structures, and the ease with which their physical dimensions can be changed. For the simulation of in vivo measurement systems for calibration purposes, a voxel phantom with a format of 871 'slices' each of 277 x 148 picture elements was used. The Monte Carlo technique is used to simulate the tissue contamination, to transport the photons through the tissues and to simulate the detection of the radiation. For benchmarking, the program was applied to obtain calibration factors for the in vivo measurement of 241 Am, U nat and 137 Cs deposited in various tissues or in the whole body, as measured with a NaI or Gernlanium detector. The calculated and real activities in all cases were found to be in good agreement. For the calculation of Specific Effective Energies (SEEs) and the calculation of dose received from external sources, the Yale voxel phantom with a format of 493 slices' each of 87 x 147 picture elements was used. The Monte Carlo program was developed to calculate external doses due to environmental, occupational or accidental exposures. The program calculates tissue and effective dose for the following geometries: cloud immersion, ground contamination, X-ray irradiation, point source irradiation or others. The benchmarking results for the external source are in good agreement with the measured values. The results obtained for the SEEs are compatible with the ICRP values. (author)

  20. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    Science.gov (United States)

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  1. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  2. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  3. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy

    International Nuclear Information System (INIS)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de

    2005-01-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  4. Development of a voxel phantom specific for simulation of eye brachytherapy

    International Nuclear Information System (INIS)

    Santos, Marcilio S.; Lima, Fernando R.A.

    2013-01-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range

  5. Application of average adult Japanese voxel phantoms to evaluation of photon specific absorbed fractions

    International Nuclear Information System (INIS)

    Sato, Kaoru; Manabe, Kentaro; Endo, Akira

    2012-01-01

    Average adult Japanese male (JM-103) and female (JF-103) voxel (volume pixel) phantoms newly constructed at the Japan Atomic Energy Agency (JAEA) have average characteristics of body sizes and organ masses in adult Japanese. In JM-103 and JF-103, several organs and tissues were newly modeled for dose assessments based on tissue weighting factors of the 2007 Recommendations of the International Commission on Radiological Protection(ICRP). In this study, SAFs for thyroid, stomach, lungs and lymphatic nodes of JM-103 and JF-103 phantoms were calculated, and were compared with those of other adult Japanese phantoms based on individual medical images. In most cases, differences in SAFs between JM-103, JF-103 and other phantoms were about several tens percent, and was mainly attributed to mass differences of organs, tissues and contents. Therefore, it was concluded that SAFs of JM-103 and JF-103 represent those of average adult Japanese and that the two phantoms are applied to dose assessment for average adult Japanese on the basis of the 2007 Recommendations. (author)

  6. Optimization of digital chest radiography using computer modeling and voxels phantoms

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    The purpose of this work is to use the Monte Carlo code MCNPX and the Female Adult voxel (FAX) and Male Adult voxel (MAX) phantoms to investigate how the dose and image quality in digital chest radiography vary with tube voltage (70-150 kV), anti-scatter methods (grid and air gap) and gender of the patient. The effective dose was calculated by ICRP60 and image quality was quantified by calculating the signal-difference-to-noise ratio for pathological details (calcifications) positioned at different locations in the anatomy. Calculated quantities were normalized to a fixed value of air kerma (5 μGy) at the automatic exposure control chambers. The results obtained in this work show that the air gap technique and lower tube voltages provide an increase in the digital image quality. Furthermore, this study has also shown that the detection of pathological details vary with the gender of the patient. (author)

  7. Optimisation of radioprotection of patients in nuclear medicine: assessment of doses for the new ICRP's reference voxelized phantoms

    International Nuclear Information System (INIS)

    Hadid, L.; Blanchardon, E.; Desbree, A.; Makovicka, L.; Zankl, M.

    2010-01-01

    As the ICPR (International Commission on Radiological Protection) decided to adopt voxelized phantoms to emulate a reference adult, the authors report the validation of calculations of the SFAs (specific absorbed fractions) for the new ICPR's reference phantoms. After a presentation of these phantoms, the authors briefly present the OEDIPE software which is used to compute the SAFs and notably the absorbed doses. They discuss the results obtained for the SAFs (for photons and for electrons) and for the doses

  8. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da, E-mail: jjunior@con.ufrj.b, E-mail: Ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Facure, Alessandro N.S., E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    This paper presents the modeling of 80, 88 and 100 of {sup 125}I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = {infinity} corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  9. Prostate dose calculations for permanent implants using the MCNPX code and the Voxels phantom MAX

    International Nuclear Information System (INIS)

    Reis Junior, Juraci Passos dos; Silva, Ademir Xavier da

    2010-01-01

    This paper presents the modeling of 80, 88 and 100 of 125 I seeds, punctual and volumetric inserted into the phantom spherical volume representing the prostate and prostate phantom voxels MAX. Starting values of minimum and maximum activity, 0.27 mCi and 0.38 mCi, respectively, were simulated in the Monte Carlo code MCNPX in order to determine whether the final dose, according to the integration of the equation of decay at time t = 0 to t = ∞ corresponds to the default value set by the AAPM 64 which is 144 Gy. The results showed that consider sources results in doses exceeding the percentage discrepancy of the default value of 200%, while volumetric consider sources result in doses close to 144 Gy. (author)

  10. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  11. The creation of voxel phantoms for the purpose of environmental dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, E.; Higley, K. [Oregon State University (United States)

    2014-07-01

    Basic geometric shapes have long been used as the standard for calculating radiation dose rates in non-human biota (NHB). Regulation standards have seen a shift recently, towards protection of NHB as its own endpoint. As such, there has been a growing interest in improving the calculations for NHB dose rates. To address calls for additional data, the development of voxelized models for the International Commission on Radiological Protection's (ICRP) twelve reference animal and plants (RAP) has been undertaken. Voxel models of a crab (Metacarcinus magister), flatfish (Pleuronectiformes), trout (Oncorhynchus mykiss), worm (Lumbricina), honey bee (Apis), frog (Anura), and rat, (Rattus) have been created to date. The purpose of this submission is to describe the processes of creating these voxel phantoms from radiological imaging data (i.e., Computed Tomography (CT), Magnetic Resonance Imaging (MRI), etc.). CT/MRI images of the organism are obtained and uploaded into a software package capable of segmenting the images (3D Doctor was used for the crab, flatfish, trout, worm, and honey bee). On each image slice, individual organs and other relevant anatomical features (e.g. bones or other structural tissues) are identified and segmented. Once segmentation is complete, a boundary file that describes the positioning of the organs and tissues in lattice geometry format is exported into software called Voxelizer, created by the Human Monitoring Laboratory of Canada. This software writes the boundary file geometry into an input file for Monte Carlo N-Particle (MCNP) based simulations. The user can then add appropriate materials, densities, and a desired source term. These simulations yield absorbed fraction (AF) values that are used in subsequent dose calculations with environmental concentration data. AFs are now available for the crab, flatfish, trout, worm, and honey bee at twelve photon and nine electron energies, consistent with ICRP AFs for human dosimetry

  12. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  13. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  14. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    Science.gov (United States)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  15. New format for storage of voxel phantom, and exposure computer model EGS4/MAX to EGSnrc/MASH update

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose W.; Lima, Fernando R.A.; Lima, Lindeval F.

    2011-01-01

    In order to estimate the dosage absorbed by those subjected to ionizing radiation, it is necessary to perform simulations using the exposure computational model (ECM). Such models are consists essentially of an anthropomorphic phantom and a Monte Carlo code (MC). The conjunction of a voxel phantom of the MC code is a complex process and often results in solving a specific problem. This is partly due to the way the phantom voxel is stored on a computer. It is usually required a substantial amount of space to store a static representation of the human body and also a significant amount of memory for reading and processing a given simulation. This paper presents a new way to store data concerning the geometry irradiated (similar to the technique of repeated structures used in the geometry of MCNP code), reducing by 52% the disk space required for storage when compared to the previous format applied by Grupo de Dosimetria Numerica (GDN/CNPq). On the other hand, research in numerical dosimetry leads to a constant improvement on the resolution of voxel phantoms leading thus to a new requirement, namely, to develop new estimates of dose. Therefore, this work also performs an update of the MAX (Male Adult voXel)/EGS4 ECM for the MASH (Adult MaleMeSH)/EGSnrc ECM and presents instances of dosimetric evaluations using the new ECM. Besides the update of the phantom and the MC code, the algorithm of the source used has also been improved in contrast to previous publications. (author)

  16. Development of a voxel phantom specific for simulation of eye brachytherapy; Desenvolvimeto de um fantoma de voxel especifico para simulacao de braquiterapia ocular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcilio S.; Lima, Fernando R.A., E-mail: msilveira.fisica@gmail.com, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Vieira, Jose W., E-mail: jose-wilson59@live.com [lnstituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2013-11-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range.

  17. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  18. The construction of trunk voxel phantom by using CT images and application to 3 dimensional radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    2001-10-01

    Trunk voxel phantom was constructed by using whole body CT images and tumor doses were calculated by using Monte Carlo method after simulating situation of radiotheraphy treatment planning. The whole body CT images of VHP (Visual Human Project) man were acquired from National Library of Medicine of USA. 153 slices of trunk part were extracted from whole body CT images and MCNP4B, a general purpose Monte Carlo code, was used for dose calculation. Gray scale of CT images were converted into density of medium and processed into trunk voxel phantom ported to MCNP4B input deck. The conversion method was verified by comparing cross sectional images of voxel phantom with original CT images. Tumor volumes with diameter of 3 cm were defined in liver, stomach and right lung and irradiated with 5, 10 and 15 MeV gamma beam with diameter of 6 cm. The technical basis for 3D dose calculation was established through this study for localization of 3D RTP system.

  19. A software to digital image processing to be used in the voxel phantom development.

    Science.gov (United States)

    Vieira, J W; Lima, F R A

    2009-11-15

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image

  20. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  1. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources.

    Science.gov (United States)

    Hunt, J G; da Silva, F C A; Mauricio, C L P; dos Santos, D S

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature.

  2. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources

    International Nuclear Information System (INIS)

    Hunt, J. G.; Da Silva, F. C. A.; Mauricio, C. L. P.; Dos Santos, D. S.

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137 Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature. (authors)

  3. Study of the influence of radionuclide biokinetics on in vivo counting using voxel phantoms

    International Nuclear Information System (INIS)

    Lamart, St.

    2008-10-01

    The in vivo measurement is an efficient method to estimate the retention of activity in case of internal contamination. However, it is currently limited by the use of physical phantoms for the calibration, not enabling to reproduce neither the morphology of the measured person nor the actual distribution of the contamination. The current method of calibration therefore leads to significant systematic uncertainties on the quantification of the contamination. To improve the in vivo measurement, the Laboratory of Internal Dose Assessment (LEDI, IRSN) has developed an original numerical calibration method with the OEDIPE software. It is based on voxel phantoms created from the medical images of persons, and associated with the MCNPX Monte Carlo code of particle transport. The first version of this software enabled to model simple homogeneous sources and to better estimate the systematic uncertainties in the lung counting of actinides due to the detector position and to the heterogeneous distribution of activity inside the lungs. However, it was not possible to take into account the dynamic feature, and often heterogeneous distribution between body organs and tissues of the activity. Still, the efficiency of the detection system depends on the distribution of the source of activity. The main purpose of the thesis work is to answer to the question: what is the influence of the biokinetics of the radionuclides on the in vivo counting? To answer it, it was necessary to deeply modify OEDIPE. This new development enabled to model the source of activity more realistically from the reference biokinetic models defined by the ICRP. The first part of the work consisted in developing the numerical tools needed to integrate the biokinetics in OEDIPE. Then, a methodology was developed to quantify its influence on the in vivo counting from the results of simulations. This method was carried out and validated on the model of the in vivo counting system of the LEDI. Finally, the

  4. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  5. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Badal, A [U.S. Food ' Drug Administration (CDRH/OSEL), Silver Spring, MD (United States)

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  6. Calculation of conversion coefficients for effective dose by using voxel phantoms with defined genus for radiodiagnostic common examinations

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Vieira, J.W.; Loureiro, E.C.M.; Hoff, G.

    2004-01-01

    Patient exposure from radiological examinations is usually quantified in terms of average absorbed dose or equivalent dose to certain radiosensitive organs of the human body. As these quantities cannot be measured in vivo, it is common practice to use physical or computational exposure models, which simulate the exposure to the patient in order to determine not only the quantities of interest (absorbed or equivalent dose), but also at the same time measurable quantities for the exposure conditions given. The ratio between a quantity of interest and a measurable quantity is called a conversion coefficient (CC), which is a function of the source and field parameters (tube voltage, filtration, field size, field position, focus-to-skin distance, etc.), the anatomical properties of the phantom, the elemental composition of relevant body tissues, and the radiation transport method applied. As the effective dose represents a sum over 23 risk-weighted organ and tissue equivalent doses, its determination practically implies the measurement or calculation of a complete distribution of equivalent doses throughout the human body. This task can be resolved most efficiently by means of computational exposure models, which consist of a virtual representation of the human body, also called phantom, connected to a Monte Carlo radiation transport computer code. The recently introduced MAX (Male Adult voXel) and FAXht (Female Adult voXel) head+trunk phantoms have been chosen for this task. With respect to their anatomical properties these phantoms correspond fairly well to the data recommended by the ICRP for the Reference Adult Male and Female. (author)

  7. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy; Fantoma computacional de voxel, associado a fantoma real antropomorfico antropometrico, para dosimetria em radioterapia de pelve masculina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  8. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    Science.gov (United States)

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels

  9. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  10. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  11. A software for digital image processing used in constructions of voxels phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson; Fernando Roberto de Andrade

    2008-01-01

    This paper presents, based on menus and menu items, the second version of software DIP-Digital Image Processing, that reads, edits and writes binary files containing the matrix 3D corresponding to a transversal voxels images of a certain geometry that may be a human body or other volume of interest

  12. Development and application of anthropomorphic voxel phantom of the head for in vivo measurement.

    Science.gov (United States)

    Vrba, T

    2007-01-01

    The in vivo measurement of the activity deposited in the skeleton is a very useful source of information on human internal contaminations with transuranic elements, e.g. americium 241, especially for long time periods after intake. Measurements are performed on the skull or the larger joints such as the knee or elbow. The paper deals with the construction of an anthropomorphic numerical phantom based on CT scans, its potential for calibration and the estimation of the uncertainties of the detection system. The density of bones, activity distribution and position of the detectors were changed in individual simulations in order to estimate their effects on the result of the measurement. The results from simulations with the numerical phantom were compared with the results of physical phantoms.

  13. A software to edit voxel phantoms and to calculate conversion coefficients for radiation protection

    International Nuclear Information System (INIS)

    Vieira, J.W.; Stosic, B.; Lima, F.R.A.; Kramer, R.; Santos, A.M.; Lima, V.J.M.

    2005-01-01

    The MAX and FAX phantoms have been developed based on a male and female, respectively, adult body from ICRP and coupled to the Monte Carlo code (EGS4). These phantoms permit the calculating of the equivalent dose in organs and tissues of the human body for the radiation protection purposes . In the constructing of these anthropomorphic models, the software developed called FANTOMAS, which performs tasks as file format conversion, filtering 2D and 3D images, exchange of identifying numbers of organs, body mass adjustments based in volume, resampling of 2D and 3D images, resize images, preview consecutive slices of the phantom, running computational models of exposure FANTOMA/EGS4 and viewing graphics of conversion factors between equivalent dose and a measurable dosimetric quantity. This paper presents the main abilities of FANTOMAS and uses the MAX and/or FAX to exemplify some procedures

  14. SU-E-T-169: Evaluation of Oncentra TPS for Nasopharynx Brachy Using Patient Specific Voxel Phantom and EGSnrc

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, K; Zoherhvand, M; Faghihi, R [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: Nasopharnx carcinoma (NPC) treatment is being carried out using Ir-192 HDR seeds in Mehdieh Hospital in Hamadan, Iran. The Oncentra™ TPS is based on optimized TG-43 formalism which disregards heterogeneity in the treatment area. Due to abundant heterogeneity in head and neck, comparison of the Oncentra™ TPS dose evaluation and an accurate dose calculation method in NPC brachytherapy is the objective of this study. Methods: CT DICOMs of a patient with NPC obtained from Mehdieh Hospital used to create 3D voxel phantom with CTCREATE utility of EGSnrc code package. The voxel phantom together with Ir-192 HDR brachytherapy source were the input to DOSXYZnrc to calculate the 3D dose distribution. The sources were incorporate with type 6 source in DOSXYZnrc and their dwell times were taken into account in final dose calculations. Results: The direct comparison between isodoses as well as DVHs for the GTV, PTV and CTV obtained by Oncentra™ and EGSnrc Monte Carlo code are made. EGSnrc results are obtained using 5×10{sup 9} histories to reduce the statistical error below 1% in GTV and 5% in 5% dose areas. The standard ICRP700 cross section library is employed in DOSXYZnrc dose calculation. Conclusion: A direct relationship between increased dose differences and increased material density (hence heterogeneity) is observed when isodoses contours of the TPS and DOSXYZnrc are compared. Regarding the point dose calculations, the differences range from 1.2% in PTV to 5.6% for cavity region and 7.8% for bone regions. While Oncentra™ TPS overestimates the dose in cavities, it tends to underestimate dose depositions within bones.

  15. SU-E-T-169: Evaluation of Oncentra TPS for Nasopharynx Brachy Using Patient Specific Voxel Phantom and EGSnrc

    International Nuclear Information System (INIS)

    Hadad, K; Zoherhvand, M; Faghihi, R

    2014-01-01

    Purpose: Nasopharnx carcinoma (NPC) treatment is being carried out using Ir-192 HDR seeds in Mehdieh Hospital in Hamadan, Iran. The Oncentra™ TPS is based on optimized TG-43 formalism which disregards heterogeneity in the treatment area. Due to abundant heterogeneity in head and neck, comparison of the Oncentra™ TPS dose evaluation and an accurate dose calculation method in NPC brachytherapy is the objective of this study. Methods: CT DICOMs of a patient with NPC obtained from Mehdieh Hospital used to create 3D voxel phantom with CTCREATE utility of EGSnrc code package. The voxel phantom together with Ir-192 HDR brachytherapy source were the input to DOSXYZnrc to calculate the 3D dose distribution. The sources were incorporate with type 6 source in DOSXYZnrc and their dwell times were taken into account in final dose calculations. Results: The direct comparison between isodoses as well as DVHs for the GTV, PTV and CTV obtained by Oncentra™ and EGSnrc Monte Carlo code are made. EGSnrc results are obtained using 5×10 9 histories to reduce the statistical error below 1% in GTV and 5% in 5% dose areas. The standard ICRP700 cross section library is employed in DOSXYZnrc dose calculation. Conclusion: A direct relationship between increased dose differences and increased material density (hence heterogeneity) is observed when isodoses contours of the TPS and DOSXYZnrc are compared. Regarding the point dose calculations, the differences range from 1.2% in PTV to 5.6% for cavity region and 7.8% for bone regions. While Oncentra™ TPS overestimates the dose in cavities, it tends to underestimate dose depositions within bones

  16. Using case-based reasoning for the reconstitution and manipulation of voxelized phantoms

    International Nuclear Information System (INIS)

    Henriet, J.; Fontaine, E.; Bopp, M.; Makovicka, L.; Farah, J.; Broggio, D.; Franck, D.; Chebel-Morello, B.

    2010-01-01

    The authors reports the development of the EquiVox platform, the aim of which is to allow a radioprotection expert (physician, biologist or other) to work with a phantom which will be the closest possible to the examined person in order to make an as precise as possible dosimetric assessment. The objective is to help to select the best phantom among those the expert knows depending on the assessment type he wants to make. First, they present the general principles of the case-based reasoning, and then the EquiVox platform which proposes all the steps: formalization, elaboration, comparison, and so on. Based on typical numerical values associated with different morphological characteristics, they present and discuss graphical results obtained by the platform. They also discuss their validity and reliability

  17. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    International Nuclear Information System (INIS)

    Dimbylow, Peter J; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-01-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  18. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  19. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q [Institute of Radiation Medicine Fudan University, Shanghai (China); Shanghai General Hospital, Shanghai, Shanghai (China); Zhuo, W; Liu, H [Institute of Radiation Medicine Fudan University, Shanghai (China); Liu, Y; Chen, T [Shanghai General Hospital, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  20. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    International Nuclear Information System (INIS)

    Liu, Q; Zhuo, W; Liu, H; Liu, Y; Chen, T

    2016-01-01

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  1. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    Science.gov (United States)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  2. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    Science.gov (United States)

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Calibration Human Voxel Phantoms for In Vivo Measurement of ''2 sup 4 sup 1 Am in Bone at the Whole Body Counter Facility of CIEMAT

    CERN Document Server

    Moraleda, M; Navarro, J F; Navarro, T

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in det...

  4. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    International Nuclear Information System (INIS)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best counting geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs

  5. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts

    Science.gov (United States)

    Sikaria, Dhiraj; Musinsky, Stephanie; Sturgeon, Gregory M.; Solomon, Justin; Diao, Andrew; Gehm, Michael E.; Samei, Ehsan; Glick, Stephen J.; Lo, Joseph Y.

    2016-03-01

    Physical phantoms are needed for the evaluation and optimization of new digital breast tomosynthesis (DBT) systems. Previously, we developed an anthropomorphic phantom based on human subject breast CT data and fabricated using commercial 3D printing. We now present three key advancements: voxelized 3D printing, photopolymer material doping, and 2D inkjet printing of lesion inserts. First, we bypassed the printer's control software in order to print in voxelized form instead of conventional STL surfaces, thus improving resolution and allowing dithering to mix the two photopolymer materials into arbitrary proportions. We demonstrated ability to print details as small as 150μm, and dithering to combine VeroWhitePlus and TangoPlus in 10% increments. Second, to address the limited attenuation difference among commercial photopolymers, we evaluated a beta sample from Stratasys with increased TiO2 doping concentration up to 2.5%, which corresponded to 98% breast density. By spanning 36% to 98% breast density, this doubles our previous contrast. Third, using inkjet printers modified to print with iopamidol, we created 2D lesion patterns on paper that can be sandwiched into the phantom. Inkjet printing has advantages of being inexpensive and easy, and more contrast can be delivered through overprinting. Printing resolution was maintained at 210 μm horizontally and 330 μm vertically even after 10 overprints. Contrast increased linearly with overprinting at 0.7% per overprint. Together, these three new features provide the basis for creating a new anthropomorphic physical breast phantom with improved resolution and contrast, as well as the ability to insert 2D lesions for task-based assessment of performance.

  6. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-07-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best countring geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs.

  7. Development of an improved approach to radiation treatment therapy using high-definition patient-specific voxel phantoms

    International Nuclear Information System (INIS)

    Ward, R.C.; Ryman, J.C.; Worley, B.A.; Stallings, D.C.

    1998-01-01

    Through an internally funded project at Oak Ridge National Laboratory, a high-resolution phantom was developed based on the National Library of Medicine's Visible Human Data. Special software was written using the interactive data language (IDL) visualization language to automatically segment and classify some of the organs and the skeleton of the Visible Male. A high definition phantom consisting of nine hundred 512 x 512 slices was constructed of the entire torso. Computed tomography (CT) images of a patient's tumor near the spine were scaled and morphed into the phantom model to create a patient-specific phantom. Calculations of dose to the tumor and surrounding tissue were then performed using the patient-specific phantom

  8. Application of Voxel Phantoms to Study the Influence of Heterogeneous Distribution of Actinides in Lungs on In Vivo Counting Calibration Factors Using Animal Experimentations

    Energy Technology Data Exchange (ETDEWEB)

    Lamart, S.; Pierrat, N.; De Carlan, L.; Franck, D. [IRSN/DRPH/SDI/LEDI, BP 17, F-92 262 Fontenay-aux-Roses (France); Dudoignon, N. [IRSN/DRPH/SRBE/LRPAT, BP 17, F-92 262 Fontenay-aux-Roses (France); Rateau, S.; Van der Meeren, A.; Rouit, E. [CEA/DSV/DRR/SRCA/LRT BP no 12, F-91680 Bruyeres-le-Chatel (France); Bottlaender, M. [CEA/SHFJ, 4, place du General Leclerc F-91400 Orsay (France)

    2006-07-01

    Calibration of lung counting system dedicated to retention assessment of actinides in the lungs remains critical due to large uncertainties in calibration factors. Among them, the detector positioning, the chest wall thickness and composition (muscle/fat) assessment, and the distribution of the contamination are the main parameters influencing the detector response. In order to reduce these uncertainties, a numerical approach based on the application of voxel phantoms (numerical phantoms based on tomographic images, CT or MRI) associated to a Monte-Carlo code (namely M.C.N.P.) was developed. It led to the development of a dedicated tool, called O.E.D.I.P.E., that allows to easily handle realistic voxel phantoms for the simulation of in vivo measurement (or dose calculation, application that will not be presented in this paper). The goal of this paper is to present our study of the influence of the lung distribution on calibration factors using both animal experimentations and our numerical method. Indeed, physical anthropomorphic phantoms used for calibration always consider a uniform distribution of the source in the lungs, which is not true in many contamination conditions. The purpose of the study is to compare the response of the measurement detectors using a real distribution of actinide particles in the lungs, obtained from animal experimentations, with the homogeneous one considered as the reference. This comparison was performed using O.E.D.I.P.E. that can almost simulate any source distribution. A non human primate was contaminated heterogeneously by intra-tracheal administration of actinide oxide. After euthanasia, gamma spectrometry measurements were performed on the pulmonary lobes to obtain the distribution of the contamination in the lungs. This realistic distribution was used to simulate an heterogeneous contamination in the numerical phantom of the non human primate, which was compared with a simulation of an homogeneous contamination presenting the

  9. Application of Voxel Phantoms to Study the Influence of Heterogeneous Distribution of Actinides in Lungs on In Vivo Counting Calibration Factors Using Animal Experimentations

    International Nuclear Information System (INIS)

    Lamart, S.; Pierrat, N.; De Carlan, L.; Franck, D.; Dudoignon, N.; Rateau, S.; Van der Meeren, A.; Rouit, E.; Bottlaender, M.

    2006-01-01

    Calibration of lung counting system dedicated to retention assessment of actinides in the lungs remains critical due to large uncertainties in calibration factors. Among them, the detector positioning, the chest wall thickness and composition (muscle/fat) assessment, and the distribution of the contamination are the main parameters influencing the detector response. In order to reduce these uncertainties, a numerical approach based on the application of voxel phantoms (numerical phantoms based on tomographic images, CT or MRI) associated to a Monte-Carlo code (namely M.C.N.P.) was developed. It led to the development of a dedicated tool, called O.E.D.I.P.E., that allows to easily handle realistic voxel phantoms for the simulation of in vivo measurement (or dose calculation, application that will not be presented in this paper). The goal of this paper is to present our study of the influence of the lung distribution on calibration factors using both animal experimentations and our numerical method. Indeed, physical anthropomorphic phantoms used for calibration always consider a uniform distribution of the source in the lungs, which is not true in many contamination conditions. The purpose of the study is to compare the response of the measurement detectors using a real distribution of actinide particles in the lungs, obtained from animal experimentations, with the homogeneous one considered as the reference. This comparison was performed using O.E.D.I.P.E. that can almost simulate any source distribution. A non human primate was contaminated heterogeneously by intra-tracheal administration of actinide oxide. After euthanasia, gamma spectrometry measurements were performed on the pulmonary lobes to obtain the distribution of the contamination in the lungs. This realistic distribution was used to simulate an heterogeneous contamination in the numerical phantom of the non human primate, which was compared with a simulation of an homogeneous contamination presenting the

  10. Construction of a computational exposure model for dosimetric calculations using the EGS4 Monte Carlo code and voxel phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson

    2004-07-01

    The MAX phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. In computational dosimetry, MAX can simulate the geometry of a human body under exposure to ionizing radiations, internal or external, with the objective of calculating the equivalent dose in organs and tissues for occupational, medical or environmental purposes of the radiation protection. This study presents a methodology used to build a new computational exposure model MAX/EGS4: the geometric construction of the phantom; the development of the algorithm of one-directional, divergent, and isotropic radioactive sources; new methods for calculating the equivalent dose in the red bone marrow and in the skin, and the coupling of the MAX phantom with the EGS4 Monte Carlo code. Finally, some results of radiation protection, in the form of conversion coefficients between equivalent dose (or effective dose) and free air-kerma for external photon irradiation are presented and discussed. Comparing the results presented with similar data from other human phantoms it is possible to conclude that the coupling MAX/EGS4 is satisfactory for the calculation of the equivalent dose in radiation protection. (author)

  11. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  12. Periodic additive noises reduction in 3D images used in building of voxel phantoms through an efficient implementation of the 3D FFT: zipper artifacts filtering

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H. de; Lima, Fernando R.A.; Vieira, Jose W.; Leal Neto, Viriato

    2009-01-01

    The anthropomorphic models used in computational dosimetry are predominantly build from scanning CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) image stacks obtained of patients or volunteers. The building of these stacks (usually called of voxel phantoms or tomography phantoms) requires computer processing to be used in an exposure computational model. Noises present in these stacks can be confused with significant structures. In a 3D image with periodic additive noise in the frequency domain, the noise is fully added to its central slice. The discrete Fourier transform is the fundamental mathematical tool that allows the switch of the spatial domain for the frequency domain, and vice versa. The FFT (fast Fourier transform) algorithm is an ideal computational tool for this switch in domain with efficiency. This paper presents a new methodology for implementation in managed C++ language (Microsoft Visual Studio R .NET) of the fast Fourier transform of 3D digital images (FFT3D) using, essentially, the trigonometric recombination. The reduction of periodic additive noise consists in filtering only the central slice of 3D image in the frequency domain and transforms it back into the spatial domain through the inverse FFT3D. An example of application of this method it is the zipper artifacts filtering in images of MRI. These processes were implemented in the software DIP (Digital Image Processing). (author)

  13. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    International Nuclear Information System (INIS)

    Moraleda, M.; Gomez-Ros, J.M.; Lopez, M.A.; Navarro, T.; Navarro, J.F.

    2004-01-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241 Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241 Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors

  14. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the

  15. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Jing, J; Xie, C [Hefei University of Technology, Hefei (China); Lu, Y [Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results: The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.

  16. New quantitative and multi-modal approach for in-vivo studies of small animals: coupling of the β-microprobe with magnetic techniques and development of voxelized rat and mouse phantoms

    International Nuclear Information System (INIS)

    Desbree, A.

    2005-09-01

    For the last 15 years, animal models that mimic human disorders have become ubiquitous participants to understand biological mechanisms and human disorders and to evaluate new therapeutic approaches. The necessity to study these models in the course of time has stimulated the development of instruments dedicated to in vivo small animal studies. To further understand physiopathological processes, the current challenge is to couple simultaneously several of these methods. Given this context, the combination of the magnetic and radioactive techniques remains an exciting challenge since it is still limited by strict technical constraints. Therefore we propose to couple the magnetic techniques with the radiosensitive Beta-Microprobe, developed in the IPB group and which shown to be an elegant alternative to PET measurements. In this context, the thesis was dedicated to the study of the coupling feasibility from a physical point of view, by simulation and experimental characterizations. Then, the determination of a biological protocol was carried out on the basis of pharmacokinetic studies. The experiments have shown the possibility to use the probe for radioactive measurements under intense magnetic field simultaneously to anatomical images acquisitions. Simultaneously, we have sought to improve the quantification of the radioactive signal using a voxelized phantom of a rat brain. Finally, the emergence of transgenic models led us to reproduce pharmacokinetic studies for the mouse and to develop voxelized mouse phantoms. (author)

  17. Construction of a computational exposure model for dosimetric calculations using the EGS4 Monte Carlo code and voxel phantoms; Construcao de um modelo computacional de exposicao para calculos dosimetricos utilizando o codigo Monte Carlo EGS4 e fantomas de voxels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jose Wilson

    2004-07-15

    The MAX phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. In computational dosimetry, MAX can simulate the geometry of a human body under exposure to ionizing radiations, internal or external, with the objective of calculating the equivalent dose in organs and tissues for occupational, medical or environmental purposes of the radiation protection. This study presents a methodology used to build a new computational exposure model MAX/EGS4: the geometric construction of the phantom; the development of the algorithm of one-directional, divergent, and isotropic radioactive sources; new methods for calculating the equivalent dose in the red bone marrow and in the skin, and the coupling of the MAX phantom with the EGS4 Monte Carlo code. Finally, some results of radiation protection, in the form of conversion coefficients between equivalent dose (or effective dose) and free air-kerma for external photon irradiation are presented and discussed. Comparing the results presented with similar data from other human phantoms it is possible to conclude that the coupling MAX/EGS4 is satisfactory for the calculation of the equivalent dose in radiation protection. (author)

  18. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    Science.gov (United States)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  19. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

    Science.gov (United States)

    Yu, Dong; Zhang, Ruoyu; Liu, Qian

    2012-09-01

    To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. Copyright © 2012 Wiley Periodicals, Inc.

  20. Development of internal dosimetry protocols using the code MCNPx and voxelized phantoms of Reference of ICRP 110; Desenvolvimento de protocolos de dosimetria interna empregando o codigo MCNPx e fantomas voxelizados de referencia da ICRP 110

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M.; Fonseca, T.C.F., E-mail: bmm@cdtn.br [Centro de esenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, B.M.; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-04-01

    The objective of this work was to perform internal dosimetry calculations for {sup 18}F-FDG employing the MCNPx code and ICRP 110 voxelized reference phantoms (RCP{sub A}F and RCP{sub A}M). The methodologies developed and validated here represent protocols of internal dosimetry holding a better anthropomorphic and anthropometric representation of the human model in which heterogeneous distributions of the emissions can be adopted, useful in the study of new radiopharmaceuticals and internal contamination cases. The reference phantoms were implemented to run on MCNPx. Biodistribution data of {sup 18}F-FDG radiopharmaceutical provided in ICRP 128 were used in the simulations. The organs average absorbed doses and the effective doses were calculated for each model. The values obtained were compared with two reference works available in the literature for validation purposes. The means of the difference of our values and Zankl et al., 2012 reference values were -0.3% for RCP{sub A}M and -0.4% for RCP{sub A}F. Considering Hadid et al., 2013 reference values, the means of the deviation were -2.9% and -2.2% for RCP{sub A}M and RCP{sub A}F respectively. No statistically significant differences were observed (p <0.01) between the reference values and the values calculated by the internal dosimetry protocols developed by our group. Considering the {sup 18}F-FDG validation study performed in this work, the internal dosimetry protocols developed by our group have produced suitable dosimetry data. (author)

  1. Age dependence of tritium metabolism

    International Nuclear Information System (INIS)

    Inaba, Jiro

    1983-01-01

    3 H metabolism in vivo was studied by HTO administration to rats of varying ages for examination of the age dependence of 3 H metabolism in humans. When 1 μCi/g body weight of HTO was administered, the time-course changes of urine 3 H showed definite age dependence; the younger the rat, more rapidly did the 3 H concentration decrease. The biological half-life of whole body residues was about 2 days in nursing offsprings and about 4 days in mature rats. Tissue-bound 3 H showed high and rapid distribution to the liver, whereas it was slow in the brain and muscle, and this tendency was more prominent in younger rats. Compared with 3 H in tissue water, the concentration of bound 3 H was relatively high, being prominent in younger rats. The time-course changes of 3 H concentration from both origins also showed age dependence. The in vivo exposure dose after administration of 1 μCi/g body weight of HTO- 3 H was generally smaller in younger rats, the exposure at ages 10 and 25 days being about a half of that of mature rats. Supposing that human metabolism is similar, the estimated dose in one-year-olds after ingestion of 1 μCi/kg body weight of 3 H in the form of HTO is about 3 times that in adults, and that after 1 μCi/kg body weight of 3 H in infants, about a half of that in adults. (Chiba, N.)

  2. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts. Pt. 1. A Urals-based series of fetal computational phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R.; Bolch, Wesley E. [University of Florida, Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL (United States); Shagina, Natalia B.; Tolstykh, Evgenia I.; Degteva, Marina O. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Fell, Tim P. [Public Health England, Centre for Radiation, Chemical and Environmental Health, Didcot, Chilton, Oxon (United Kingdom)

    2015-03-15

    The European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) project aims to improve understanding of cancer risks associated with chronic in utero radiation exposure. A comprehensive series of hybrid computational fetal phantoms was previously developed at the University of Florida in order to provide the SOLO project with the capability of computationally simulating and quantifying radiation exposures to individual fetal bones and soft tissue organs. To improve harmonization between the SOLO fetal biokinetic models and the computational phantoms, a subset of those phantoms was systematically modified to create a novel series of phantoms matching anatomical data representing Russian fetal biometry in the Southern Urals. Using previously established modeling techniques, eight computational Urals-based phantoms aged 8, 12, 18, 22, 26, 30, 34, and 38 weeks post-conception were constructed to match appropriate age-dependent femur lengths, biparietal diameters, individual bone masses and whole-body masses. Bone and soft tissue organ mass differences between the common ages of the subset of UF phantom series and the Urals-based phantom series illustrated the need for improved understanding of fetal bone densities as a critical parameter of computational phantom development. In anticipation for SOLO radiation dosimetry studies involving the developing fetus and pregnant female, the completed phantom series was successfully converted to a cuboidal voxel format easily interpreted by radiation transport software. (orig.)

  3. Development of Japanese voxel models and their application to organ dose calculation

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2007-01-01

    Three Japanese voxel (volume pixel) phantoms in supine and upright postures, which are consisted of about 1 mm 3 size voxels, have been developed on the basis of computed tomography (CT) images of healthy Japanese adult male and female volunteers. Their body structures are reproduced more realistically in comparison with most existing voxel phantoms. Organ doses due to internal or external exposures were calculated using the developed phantoms. In estimation of radiation dose from radionuclides incorporated into body, specific absorbed fractions (SAFs) for low energy photon were significantly influenced by the changes in postures. In estimation of organ doses due to external exposures, the doses of some organs of the developed phantom were calculated and were compared with those of a previous Japanese voxel phantom (voxel size: 0.98x0.98x10 mm 3 ) and the reference values of ICRP Publication 74. (author)

  4. Construction of Chinese reference female phantom

    International Nuclear Information System (INIS)

    Sheng Yinxiangzi; Liu Lixing; Xia Xiaobin

    2013-01-01

    In this study, a Voxel-based Chinese Reference female Phantom (VCRP-woman) is developed from an individual female phantom which was based on high resolution cross-sectional color photographs. An in-house C ++ program was developed to adjust the phantom. Finally, a reference female phantom with have the same height, weighte and similar organs masses with the Chinese reference adult female data. The adjusted phantom is then imported to MCNPX to calculate the organs absorbed dose and effective dose conversion coefficients. Results are compared between VCRP-woman and the ICRP adult reference female phantom. (authors)

  5. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  6. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  7. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  8. Using case-based reasoning for the reconstitution and manipulation of voxelized phantoms; Utilisation du raisonnement a partir de cas pour la reconstitution et la manipulation de fantomes voxelises

    Energy Technology Data Exchange (ETDEWEB)

    Henriet, J.; Fontaine, E.; Bopp, M.; Makovicka, L. [IRMAIENISYSI Institut FEMTO - UMR CNRS 6174, Pole Universitaire des Portes du Jura, 4 Place Tharradin - BP 71427, 25211 - Montbeliard (France); Farah, J.; Broggio, D.; Franck, D. [CEA Fontenay-aux-Roses, LEDIISDIIDPRH, IRSN, 92 (France); Chebel-Morello, B. [COSMI/AS2M/Institut FEMTO - UMR CNRS 6174, 24 Rue Alain Savary, 25000 - Besaneon (France)

    2010-07-01

    The authors reports the development of the EquiVox platform, the aim of which is to allow a radioprotection expert (physician, biologist or other) to work with a phantom which will be the closest possible to the examined person in order to make an as precise as possible dosimetric assessment. The objective is to help to select the best phantom among those the expert knows depending on the assessment type he wants to make. First, they present the general principles of the case-based reasoning, and then the EquiVox platform which proposes all the steps: formalization, elaboration, comparison, and so on. Based on typical numerical values associated with different morphological characteristics, they present and discuss graphical results obtained by the platform. They also discuss their validity and reliability

  9. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  10. A review of age dependent radioiodine dosimetry

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1987-01-01

    Age dependent models of radioiodine metabolism in humans have been described. These models have been used to calculate age dependent committed doses to the thyroid from intakes of radioiodines. A model of fetal iodine metabolism is also described and used to calculate fetal thyroid doses from intakes of radioiodines by the mother. These doses are calculated using model parameter values thought to be representative of average for North American/European populations. Considerable variability from these results can be expected for individuals. In addition, population with significant differences in stable iodine intake, and in body parameters, will have model parameters somewhat different than the ones described in this paper. These different model parameters will result in different doses from intakes of radioiodines, but it is doubtful if the differences in population would be as large as the variation between individuals. 25 refs.; 11 figs.; 1 table

  11. Preliminary Study on Hybrid Computational Phantom for Radiation Dosimetry Based on Subdivision Surface

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Choi, Sang Hyoun; Cho, Sung Koo; Kim, Chan Hyeong

    2007-01-01

    The anthropomorphic computational phantoms are classified into two groups. One group is the stylized phantoms, or MIRD phantoms, which are based on mathematical representations of the anatomical structures. The shapes and positions of the organs and tissues in these phantoms can be adjusted by changing the coefficients of the equations in use. The other group is the voxel phantoms, which are based on tomographic images of a real person such as CT, MR and serially sectioned color slice images from a cadaver. Obviously, the voxel phantoms represent the anatomical structures of a human body much more realistically than the stylized phantoms. A realistic representation of anatomical structure is very important for an accurate calculation of radiation dose in the human body. Consequently, the ICRP recently has decided to use the voxel phantoms for the forthcoming update of the dose conversion coefficients. However, the voxel phantoms also have some limitations: (1) The topology and dimensions of the organs and tissues in a voxel model are extremely difficult to change, and (2) The thin organs, such as oral mucosa and skin, cannot be realistically modeled unless the voxel resolution is prohibitively high. Recently, a new approach has been implemented by several investigators. The investigators converted their voxel phantoms to hybrid computational phantoms based on NURBS (Non-Uniform Rational B-Splines) surface, which is smooth and deformable. It is claimed that these new phantoms have the flexibility of the stylized phantom along with the realistic representations of the anatomical structures. The topology and dimensions of the anatomical structures can be easily changed as necessary. Thin organs can be modeled without affecting computational speed or memory requirement. The hybrid phantoms can be also used for 4-D Monte Carlo simulations. In this preliminary study, the external shape of a voxel phantom (i.e., skin), HDRK-Man, was converted to a hybrid computational

  12. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  13. Age-dependent dosimetry and metabolism

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1992-01-01

    The release of radionuclides into the environment following the Chernobyl disaster in 1986 created an urgent need for internationally acceptable dose coefficients for calculating the doses delivered to all members of the public, from conception to old age. Organ masses and the kinetics of distribution and retention of elements in humans generally vary with age and often not in simple linear relationship to body weight. Unless variations are considered calculated radiation doses to children may be seriously underestimated. The International Commission on Radiological Protection created in 1987 a Task Group on Age-dependent Doses to Members of the Public from Intake of Radionuclides (AGDOS). The work of AGDOS and the general problems encountered in deriving age-dependent dose coefficients will be discussed in this paper. The first two AGDOS reports, ICRP Publication 56 Parts 1 and 2, provide dose coefficients for the ages 3 months, 1, 5, 10, 15 years and for adults for the 21 elements considered to be of most immediate importance for radiation protection. To develop these dose coefficients, the ICRP Publication 30 dosimetric and biokinetic models were reevaluated and extended. The basic dosimetric model is retained but equivalent dose is now integrated from age at intake to 70 years and the new ICRP Publication 60 tissue weighting factors are incorporated. The development of age-dependent biokinetic models is complicated by the lack of age-related human, or even animal data for the majority of the elements. Thus in formulating the models it has been necessary to use all the available information, biokinetic, physiological chemical and biochemical, and to adopt a number of new approaches including the development of generic biokinetic models for chemically related families of elements such as the actinides and the alkaline earth elements. (author)

  14. Mathematical human phantoms and their application to radiation protection

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    This review described the characteristics of mathematical phantoms, their history over 30 years and their application. Mathematical phantoms are classified into two models of formula and voxel types. In the former, human body and organs are described by 2- and/or 3-D mathematical formula and can be seen as a combination of solid bodies like spheres, cubes and ovals. The phantom is composed from three tissue components (bone, lung and soft tissue) and made on data on Reference Man in ICRP Publ. 23. The latter voxel (volume pixel) phantom consists from a number of small cubes based on CT and MRI images of a certain man. For instance, the phantom CHILD, 1.54 x 1.54 x 8.00 mm 3 in size, is based on a 7-year old child, which consisting from about one million voxels. The mathematical phantom was first made in Oak Ridge National Laboratory in the middle of the nineteen-sixties, which have undergone various improvements to reach MIRD-5 phantom. Thereafter, many similitude phantoms have been made as a variation of MIRD-5, depending on age and sex (e.g., ADAM and EVA). Voxel phantom was made in the middle of nineteen-eighties and have undergone improvements which are continued even currently in Japan, U.S. etc. The mathematical phantoms are used for calculation of radiation transport program by Monte Carlo method in the field of radiation protection. Also in the field of medicine, the phantom is used for calculation of internal and external exposure doses, of correction constants of externally measuring instruments, of doses for neutron capture therapy and of A-bomb exposure doses in Hiroshima and Nagasaki for reevaluation. Recently, the development of phantom is in the current from formula phantom to voxel one due to the purpose of precision and standardization. (K.H.)

  15. New quantitative and multi-modal approach for in-vivo studies of small animals: coupling of the {beta}-microprobe with magnetic techniques and development of voxelized rat and mouse phantoms; Nouvelle approche multimodale et quantitative pour les etudes in vivo chez le petit animal: couplage de la {beta}-MicroProbe aux techniques magnetiques et developpement de fantomes de rat et de souris voxelises

    Energy Technology Data Exchange (ETDEWEB)

    Desbree, A

    2005-09-15

    For the last 15 years, animal models that mimic human disorders have become ubiquitous participants to understand biological mechanisms and human disorders and to evaluate new therapeutic approaches. The necessity to study these models in the course of time has stimulated the development of instruments dedicated to in vivo small animal studies. To further understand physiopathological processes, the current challenge is to couple simultaneously several of these methods. Given this context, the combination of the magnetic and radioactive techniques remains an exciting challenge since it is still limited by strict technical constraints. Therefore we propose to couple the magnetic techniques with the radiosensitive Beta-Microprobe, developed in the IPB group and which shown to be an elegant alternative to PET measurements. In this context, the thesis was dedicated to the study of the coupling feasibility from a physical point of view, by simulation and experimental characterizations. Then, the determination of a biological protocol was carried out on the basis of pharmacokinetic studies. The experiments have shown the possibility to use the probe for radioactive measurements under intense magnetic field simultaneously to anatomical images acquisitions. Simultaneously, we have sought to improve the quantification of the radioactive signal using a voxelized phantom of a rat brain. Finally, the emergence of transgenic models led us to reproduce pharmacokinetic studies for the mouse and to develop voxelized mouse phantoms. (author)

  16. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  17. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  18. Age-dependent decay in the landscape

    International Nuclear Information System (INIS)

    Winitzki, Sergei

    2008-01-01

    The picture of the 'multiverse' arising in diverse cosmological scenarios involves transitions between metastable vacuum states. It was pointed out by Krauss and Dent that the transition rates decrease at very late times, leading to a dependence of the transition probability between vacua on the age of each vacuum region. I investigate the implications of this non-Markovian, age-dependent decay on the global structure of the spacetime in landscape scenarios. I show that the fractal dimension of the eternally inflating domain is precisely equal to 3, instead of being slightly below 3, which is the case in scenarios with purely Markovian, age-independent decay. I develop a complete description of a non-Markovian landscape in terms of a nonlocal master equation. Using this description I demonstrate by an explicit calculation that, under some technical assumptions about the landscape, the probabilistic predictions of our position in the landscape are essentially unchanged, regardless of the measure used to extract these predictions. I briefly discuss the physical plausibility of realizing non-Markovian vacuum decay in cosmology in view of the possible decoherence of the metastable quantum state.

  19. Age-dependent tissue-specific exposure of cell phone users

    International Nuclear Information System (INIS)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels; Christopoulou, Maria

    2010-01-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  20. Age-dependent tissue-specific exposure of cell phone users

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Christopoulou, Maria [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Polytechniou Str., 15780 Athens (Greece)], E-mail: christ@itis.ethz.ch

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  1. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Hyeong; Jeong, Jong Hwi [Department of Nuclear Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Cho, Kun-Woo [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Hwang, Sung Bae, E-mail: chkim@hanyang.ac.kr [Department of Physical Therapy, Kyungbuk College, Hyucheon 2-dong, Yeongju-si, Gyeongbuk 750-712 (Korea, Republic of)

    2011-05-21

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  2. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Chan Hyeong; Jeong, Jong Hwi; Bolch, Wesley E; Cho, Kun-Woo; Hwang, Sung Bae

    2011-01-01

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming.

  3. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  4. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  5. Critical Age-Dependent Branching Markov Processes and their ...

    Indian Academy of Sciences (India)

    This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.

  6. The UF family of reference hybrid phantoms for computational radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  7. A statistically defined anthropomorphic software breast phantom

    International Nuclear Information System (INIS)

    Lau, Beverly A.; Reiser, Ingrid; Nishikawa, Robert M.; Bakic, Predrag R.

    2012-01-01

    Purpose: Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Methods: Phantoms with (0.5 mm) 3 voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm) 3 voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm 2 regions of interest. Results: Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Conclusions: Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable

  8. Development of a physical 3D anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  9. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  10. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  11. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Lima, Fernando R.A.

    2011-01-01

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  12. Age-dependent increase in green autofluorescence of blood ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Protective enzymes against oxidative ... School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India ... provide evidence for an age dependent increase in the GAF of blood erythrocytes that is accentuated by depletion of.

  13. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  14. Computational anthropomorphic phantoms for radiation protection dosimetry: evolution and prospects

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Jaiki

    2006-01-01

    Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as Magnetic Resonance (MR) imaging and Computed Tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed

  15. A Chinese Visible Human-based computational female pelvic phantom for radiation dosimetry simulation

    International Nuclear Information System (INIS)

    Nan, H.; Jinlu, S.; Shaoxiang, Z.; Qing, H.; Li-wen, T.; Chengjun, G.; Tang, X.; Jiang, S. B.; Xiano-lin, Z.

    2010-01-01

    Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed based on Chinese Visible Human datasets. First, several organs within pelvic region were segmented from Chinese Visible Human datasets. Then, polygonization and voxelization were performed based on the segmented organs and a 3D computational phantom is built in the form of a set of voxel arrays. Results: The generated phantom can be converted and loaded into treatment planning system for radiation dosimetry calculation. From the observed dosimetric results of those organs and structures, we can evaluate their absorbed dose and implement some simulation studies. Conclusion: A voxel female pelvic phantom was developed from Chinese Visible Human datasets. It can be utilized for dosimetry evaluation and planning simulation, which would be very helpful to improve the clinical performance and reduce the radiation toxicity on organ at risk.

  16. NURBS-based 3-d anthropomorphic computational phantoms for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Lee, Choonik; Bolch, Wesley E.

    2007-01-01

    Computational anthropomorphic phantoms are computer models used in the evaluation of absorbed dose distributions within the human body. Currently, two classes of the computational phantoms have been developed and widely utilised for dosimetry calculation: (1) stylized (equation-based) and (2) voxel (image-based) phantoms describing human anatomy through the use of mathematical surface equations and 3-D voxel matrices, respectively. However, stylized phantoms have limitations in defining realistic organ contours and positioning as compared to voxel phantoms, which are themselves based on medical images of human subjects. In turn, voxel phantoms that have been developed through medical image segmentation have limitations in describing organs that are presented in low contrast within either magnetic resonance or computed tomography image. The present paper reviews the advantages and disadvantages of these existing classes of computational phantoms and introduces a hybrid approach to a computational phantom construction based on non-uniform rational B-Spline (NURBS) surface animation technology that takes advantage of the most desirable features of the former two phantom types. (authors)

  17. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

    International Nuclear Information System (INIS)

    Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

    2013-01-01

    Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

  18. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  19. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency

    International Nuclear Information System (INIS)

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, Rene; Beaulieu, Luc

    2006-01-01

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation

  20. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    Science.gov (United States)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  1. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    International Nuclear Information System (INIS)

    Fonseca, T C Ferreira; Vanhavere, F; Bogaerts, R; Hunt, John

    2014-01-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. (paper)

  2. Age-Dependence and Aging-Dependence: Neuronal Loss and Lifespan in a C. elegans Model of Parkinson's Disease.

    Science.gov (United States)

    Apfeld, Javier; Fontana, Walter

    2017-12-23

    It is often assumed, but not established, that the major neurodegenerative diseases, such as Parkinson's disease, are not just age-dependent (their incidence changes with time) but actually aging-dependent (their incidence is coupled to the process that determines lifespan). To determine a dependence on the aging process requires the joint probability distribution of disease onset and lifespan. For human Parkinson's disease, such a joint distribution is not available, because the disease cuts lifespan short. To acquire a joint distribution, we resorted to an established C. elegans model of Parkinson's disease in which the loss of dopaminergic neurons is not fatal. We find that lifespan is not correlated with the loss of individual neurons. Therefore, neuronal loss is age-dependent and aging-independent. We also find that a lifespan-extending intervention into insulin/IGF1 signaling accelerates the loss of specific dopaminergic neurons, while leaving death and neuronal loss times uncorrelated. This suggests that distinct and compartmentalized instances of the same genetically encoded insulin/IGF1 signaling machinery act independently to control neurodegeneration and lifespan in C. elegans . Although the human context might well be different, our study calls attention to the need to maintain a rigorous distinction between age-dependence and aging-dependence.

  3. The acoustical significance of age-dependent ear elongation

    DEFF Research Database (Denmark)

    Christensen, Flemming

    2015-01-01

    , corresponding to what is reported in the literature. For female ears, virtually no acoustical effect was found. For male ears directional dependent effects in the range up to 5 dB on average was found for certain directions and frequencies. Implications on age dependent hearing loss (presbycusis...

  4. Stability analysis for a general age-dependent vaccination model

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    An SIR epidemic model of a general age-dependent vaccination model is investigated when the fertility, mortality and removal rates depends on age. We give threshold criteria of the existence of equilibriums and perform stability analysis. Furthermore a critical vaccination coverage that is sufficient to eradicate the disease is determined. (author). 12 refs

  5. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  6. Calibration of lung counter using a CT model of Torso phantom and Monte Carlo method

    International Nuclear Information System (INIS)

    Zhang Binquan; Ma Jizeng; Yang Duanjie; Liu Liye; Cheng Jianping

    2006-01-01

    Tomography image of a Torso phantom was obtained from CT-Scan. The Torso phantom represents the trunk of an adult man that is 170 cm high and weight of 65 kg. After these images were segmented, cropped, and resized, a 3-dimension voxel phantom was created. The voxel phantom includes more than 2 million voxels, which size was 2.73 mm x 2.73 mm x 3 mm. This model could be used for the calibration of lung counter with Monte Carlo method. On the assumption that radioactive material was homogeneously distributed throughout the lung, counting efficiencies of a HPGe detector in different positions were calculated as Adipose Mass fraction (AMF) was different in the soft tissue in chest. The results showed that counting efficiencies of the lung counter changed up to 67% for 17.5 keV γ ray and 20% for 25 keV γ ray when AMF changed from 0 to 40%. (authors)

  7. Phantom position dependence

    International Nuclear Information System (INIS)

    Thorson, M.R.; Endres, G.W.R.

    1981-01-01

    Sensitivity of the Hanford dosimeter response to its position relative to the phantom and the neutron source has always been recognized. A thorough investigation was performed to quantify dosimeter response according to: (a) dosimeter position on phantom, (b) dosimeter distance from phantom, and (c) angular relationship of dosimeter relative to neutron source and phantom. Results were obtained for neutron irradiation at several different energies

  8. An age dependent model for radium metabolism in man.

    Science.gov (United States)

    Johnson, J R

    1983-01-01

    The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.

  9. Age-dependent complex noise fluctuations in the brain

    International Nuclear Information System (INIS)

    Mareš, Jan; Vyšata, Oldřich; Procházka, Aleš; Vališ, Martin

    2013-01-01

    We investigated the parameters of colored noise in EEG data of 17 722 professional drivers aged 18–70. The whole study is based upon experiments showing that biological neural networks may operate in the vicinity of the critical point and that the balance between excitation and inhibition in the human brain is important for the transfer of information. This paper is devoted to the study of EEG power spectrum which can be described best by a power function with 1/f λ distribution and colored noise corresponding to the critical point in the EEG signal has the value of λ = 1 (purple noise). The slow accumulation of energy and its quick release is a universal property of the 1/f distribution. The physiological mechanism causing energy dissipation in the brain seems to depend on the number and strength of the connections between clusters of neurons. With ageing, the number of connections between the neurons decreases. Learning ability and intellectual performance also decrease. Therefore, age-related changes in the λ coefficient can be anticipated. We found that absolute values of λ coefficients decrease significantly with increasing age. Deviations from this rule are related to age-dependent slowing of the dominant frequency in the alpha band. Age-dependent change in the parameter and colored noise may be indicative of age-related changes in the self-organization of brain activity. Results obtained include (i) the age-dependent decrease of the absolute values of the average λ coefficient with the regression coefficient 0.005 1/year, (ii) distribution of λ value changes related to EEG frequency bands and to localization of electrodes on the scalp, and (iii) relation of age-dependent changes of colored noise and EEG energy in separate frequency bands. (paper)

  10. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  11. Age-dependent metabolic model of radionuclides in Human body

    International Nuclear Information System (INIS)

    Ye Changqing

    1986-01-01

    Age-dependent metabolic model of radionuclides in human body was introduced briefly. These data are necessary in setting up the secondary dose limit of internal exposure of the general public. For the gastro-intestinal tract model, it was shown that the dose of various sections of GI tract caused by unsoluble radioactive materials were influenced by the mass of section and mean residence time, both of which are age-dependent, but the absorption fraction f 1 through gastro-intestinal tract should be corrected only for the infant less than 1 year of age. For the lung model, it was indicated that the fraction of deposition or clearance of particles in the different compartments of lung were related to age. The doses of tracheobronchial and pulmonary compartment of adult for 222 Rn or 220 Rn with their decay products were one third of that of 6-years old child who received the maximum dose in comparison with other ages. The age-dependent metabolic models in organ and/or body of Tritium, Iodine-131, Caesium-137, radioactive Strontium, Radium and Plutonium were reported. A generalized approach for estimating the effect of age on deposition fractions and retention half-time were presented. Calculated results indicated that younger ages were characterized by increased deposition fraction and decreased half-time for retention. Representative examples were provided for 21 elements of current interest in health physics

  12. Voxel-based model construction from colored tomographic images

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  13. DTI analysis methods : Voxel-based analysis

    NARCIS (Netherlands)

    Van Hecke, Wim; Leemans, Alexander; Emsell, Louise

    2016-01-01

    Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does

  14. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  15. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    Science.gov (United States)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  16. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-01-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  17. Assessing age-dependent susceptibility to measles in Japan.

    Science.gov (United States)

    Kinoshita, Ryo; Nishiura, Hiroshi

    2017-06-05

    Routine vaccination against measles in Japan started in 1978. Whereas measles elimination was verified in 2015, multiple chains of measles transmission were observed in 2016. We aimed to reconstruct the age-dependent susceptibility to measles in Japan so that future vaccination strategies can be elucidated. An epidemiological model was used to quantify the age-dependent immune fraction using datasets of vaccination coverage and seroepidemiological survey. The second dose was interpreted in two different scenarios, i.e., booster and random shots. The effective reproduction number, the average number of secondary cases generated by a single infected individual, and the age at infection were explored using the age-dependent transmission model and the next generation matrix. While the herd immunity threshold of measles likely ranges from 90% to 95%, assuming that the basic reproductive number ranges from 10 to 20, the estimated immune fraction in Japan was below those thresholds in 2016, despite the fact that the estimates were above 80% for all ages. If the second dose completely acted as the booster shot, a proportion immune above 90% was achieved only among those aged 5years or below in 2016. Alternatively, if the second dose was randomly distributed regardless of primary vaccination status, a proportion immune over 90% was achieved among those aged below 25years. The effective reproduction number was estimated to range from 1.50 to 3.01 and from 1.50 to 3.00, respectively, for scenarios 1 and 2 in 2016; if the current vaccination schedule were continued, the reproduction number is projected to range from 1.50 to 3.01 and 1.39 to 2.78, respectively, in 2025. Japan continues to be prone to imported cases of measles. Supplementary vaccination among adults aged 20-49years would be effective if the chains of transmission continue to be observed in that age group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anomalous scaling in an age-dependent branching model.

    Science.gov (United States)

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

  19. Computer tomographic phantom

    International Nuclear Information System (INIS)

    Lonn, A.H.R.; Jacobsen, D.R.; Zech, D.J.

    1988-01-01

    A reference phantom for computer tomography employs a flexible member with means for urging the flexible member into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom in a slot in a resilient cushion is also contemplated. (author)

  20. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  1. Automatic calibration method of voxel size for cone-beam 3D-CT scanning system

    International Nuclear Information System (INIS)

    Yang Min; Wang Xiaolong; Wei Dongbo; Liu Yipeng; Meng Fanyong; Li Xingdong; Liu Wenli

    2014-01-01

    For a cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary stage along X-ray direction. In order to realize the automatic calibration of the voxel size, a new and easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least-square fitting. Through these interpolation values, a linear equation is obtained that reflects the relationship between the voxel size and the rotary stage translation distance from its nominal zero position. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system. When the rotary stage is moving along X-ray direction, the accurate value of the voxel size is dynamically exported. The experimental results prove that this method meets the requirements of the actual CT scanning system, and has virtues of easy implementation and high accuracy. (authors)

  2. Role of Mitochondrial Complex IV in Age-Dependent Obesity

    Directory of Open Access Journals (Sweden)

    Ines Soro-Arnaiz

    2016-09-01

    Full Text Available Aging is associated with progressive white adipose tissue (WAT enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion.

  3. PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry

    International Nuclear Information System (INIS)

    Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade

    2009-01-01

    The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)

  4. Age dependencies in the modelling of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kellerer, A.M.; GSF, Neuherberg; Barclay, D.

    1992-01-01

    Models for the dose and age dependence of radiation induced cancer have been based primarily on the follow-up of the atomic bomb survivors. Two different concepts have been deduced for leukaemias and for other cancers. The excess leukaemias appear in a distinct temporal wave with a maximum 5 to 10 years after radiation exposure; the distribution is more narrow for younger ages, but there is little dependence of the total attributable risk on age at exposure. For other cancers the latent periods are longer and, according to the current interpretation, the excess rates are then proportional to the age specific spontaneous rates, so that most excess cases would arise at old age. The factors of proportionality, and thus the attributable risks, are assumed to be markedly higher for young ages at exposure. It is argued here, that there is no firm support for this interpretation. (author)

  5. Age-dependent dose coefficients for tritium in Asian populations

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    The International Commission on Radiological Protection (ICRP) Publications 56 (1989) and 67 (1993) have prescribed the biokinetic models and age-dependent dose coefficients for tritiated water and organically bound tritium. The dose coefficients are computed from values selected to specify the anatomical, morphological and physiological characteristics of a three-month-old, one-year-old, five-year-old, 10-year-old, 15-year-old and adult (Reference Man) Caucasian living in North America and Western Europe. However, values for Reference Man and other age groups are not directly applicable to Asians, because of differences in race, custom, dietary habits and climatic conditions. An Asian Man model, including five age groups, has been proposed by Tanaka and Kawamura (1996, 1998) for use in internal dosimetry. The basic concept of the ICRP Reference Man and the system describing body composition in ICRP Publication 23 (1975) were used. Reference values for Asians were given for the body weight and height, the mass of soft tissue, the mass of body water and the daily fluid balance, and are used to compute the dose coefficients for tritium. The age-dependent dose coefficients for Asians for tritiated water intakes are smaller by 20 to 30% of the currently prescribed values (Trivedi, 1998). The reduction in the dose coefficient values is caused by the increased daily fluid balance among Asians. The dose coefficient for tritiated water is 1.4 x 10 -11 Sv Bq -1 for Asian Man compared to 2.0 x 10 -11 Sv Bq -1 for Reference Man. The dose coefficients for organically bound tritium are only marginally different from those of the ICRP values. The dose coefficient for organically bound tritium for Asian Man is 4.0 x 10 -11 Sv Bq -11 compared to 4.6 x 10 -11 Sv Bq -1 for Reference Man. (author)

  6. Age-dependent dose coefficients for tritium in Asian populations

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1999-10-01

    The International Commission on Radiological Protection (ICRP) Publications 56 (1989) and 67 (1993) have prescribed the biokinetic models and age-dependent dose coefficients for tritiated water and organically bound tritium. The dose coefficients are computed from values selected to specify the anatomical, morphological and physiological characteristics of a three-month-old, one-year-old, five-year-old, 10-year-old, 15-year-old and adult (Reference Man) Caucasian living in North America and Western Europe. However, values for Reference Man and other age groups are not directly applicable to Asians, because of differences in race, custom, dietary habits and climatic conditions. An Asian Man model, including five age groups, has been proposed by Tanaka and Kawamura (1996, 1998) for use in internal dosimetry. The basic concept of the ICRP Reference Man and the system describing body composition in ICRP Publication 23 (1975) were used. Reference values for Asians were given for the body weight and height, the mass of soft tissue, the mass of body water and the daily fluid balance, and are used to compute the dose coefficients for tritium. The age-dependent dose coefficients for Asians for tritiated water intakes are smaller by 20 to 30% of the currently prescribed values (Trivedi, 1998). The reduction in the dose coefficient values is caused by the increased daily fluid balance among Asians. The dose coefficient for tritiated water is 1.4 x 10{sup -11} Sv Bq{sup -1} for Asian Man compared to 2.0 x 10{sup -11} Sv Bq{sup -1} for Reference Man. The dose coefficients for organically bound tritium are only marginally different from those of the ICRP values. The dose coefficient for organically bound tritium for Asian Man is 4.0 x 10{sup -11} Sv Bq{sup -11} compared to 4.6 x 10{sup -11} Sv Bq{sup -1} for Reference Man. (author)

  7. Peripheral surgical wounding and age-dependent neuroinflammation in mice.

    Directory of Open Access Journals (Sweden)

    Zhipeng Xu

    Full Text Available Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, Iba1 positive cells (the marker of microglia activation, CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.

  8. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    International Nuclear Information System (INIS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-01-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes. (paper)

  9. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.

    Science.gov (United States)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-07

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  10. The Improved Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

    The concept of sparse Bayesian learning has received much attention in the machine learning literature as a means of achieving parsimonious representations of features used in regression and classification. It is an important family of algorithms for sparse signal recovery and compressed sensing....... Hence in its current form it is reminiscent of a greedy forward feature selection algorithm. In this report, we aim to solve the problems of the original RVoxM algorithm in the spirit of [7] (FastRVM).We call the new algorithm Improved Relevance Voxel Machine (IRVoxM). Our contributions...... and enables basis selection from overcomplete dictionaries. One of the trailblazers of Bayesian learning is MacKay who already worked on the topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the concept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector...

  11. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  12. Age dependent mortality in the pilocarpine model of status epilepticus

    Science.gov (United States)

    Blair, Robert E.; Deshpande, Laxmikant S.; Holbert, William H.; Churn, Severn B.; DeLorenzo, Robert J.

    2010-01-01

    Status epilepticus (SE) is an acute neurological emergency associated with significant morbidity and mortality. Age has been shown to be a critical factor in determining outcome after SE. Understanding the causes of this increased mortality with aging by developing an animal model to study this condition would play a major role in studying mechanisms to limit the mortality due to SE. Here we employed pilocarpine to induce SE in rats aged between 5 to 28 weeks. Similar to clinical studies in man, we observed that age was a significant predictor of mortality following SE. While no deaths were observed in 5-week old animals, mortality due to SE increased progressively with age and reached 90% in 28-week old animals. There was no correlation between the age of animals and severity of SE. With increasing age mortality occurred earlier after the onset of SE. These results indicate that pilocarpine-induced SE in the rat provides a useful model to study age-dependent SE-induced mortality and indicates the importance of using animal models to elucidate the mechanisms contributing to SE-induced mortality and the development of novel therapeutic interventions to prevent SE-induced death. PMID:19429042

  13. Targeted Local Support Vector Machine for Age-Dependent Classification.

    Science.gov (United States)

    Chen, Tianle; Wang, Yuanjia; Chen, Huaihou; Marder, Karen; Zeng, Donglin

    2014-09-01

    We develop methods to accurately predict whether pre-symptomatic individuals are at risk of a disease based on their various marker profiles, which offers an opportunity for early intervention well before definitive clinical diagnosis. For many diseases, existing clinical literature may suggest the risk of disease varies with some markers of biological and etiological importance, for example age. To identify effective prediction rules using nonparametric decision functions, standard statistical learning approaches treat markers with clear biological importance (e.g., age) and other markers without prior knowledge on disease etiology interchangeably as input variables. Therefore, these approaches may be inadequate in singling out and preserving the effects from the biologically important variables, especially in the presence of potential noise markers. Using age as an example of a salient marker to receive special care in the analysis, we propose a local smoothing large margin classifier implemented with support vector machine (SVM) to construct effective age-dependent classification rules. The method adaptively adjusts age effect and separately tunes age and other markers to achieve optimal performance. We derive the asymptotic risk bound of the local smoothing SVM, and perform extensive simulation studies to compare with standard approaches. We apply the proposed method to two studies of premanifest Huntington's disease (HD) subjects and controls to construct age-sensitive predictive scores for the risk of HD and risk of receiving HD diagnosis during the study period.

  14. A comprehensive approach to age-dependent dosimetric modeling

    International Nuclear Information System (INIS)

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks

  15. A comprehensive approach to age-dependent dosimetric modeling

    International Nuclear Information System (INIS)

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1987-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission of Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper a comprehensive approach to age-dependent dosimetric modeling is discussed in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates of risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks. 16 refs.; 3 figs.; 1 table

  16. AGE-DEPENDENT FEATURES OF EVOLVING HUMORAL IMMUNITY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A. P. Toptygina

    2012-01-01

    Full Text Available Abstract. Age dynamics of humoral immunity was studied in healthy children, i.e., 11 newborns, 33 infants of 4 to 8 months, 32 children of 1 to 2 years old,, 17 children of 4 to 5 years old, 25 children of 6 to 8 years old, 15 children of 9 to 11 years old, and 28 adolescents of 14 to 16 years old. Evaluation of membrane receptors on B cells was performed by means of three-colour fluorescent label and allowed of characterizing B1 subpopulations (CD19+CD5+CD27-, naпve B2 cells (CD19+CD5-CD27-, and B2 memory cells (CD19+CD5-CD27+. B1 cells have been shown to dominate in blood of newborns and younger children (up to 5 years old. By the contrary, B2 memory cells were nearly undetectable in newborns, and exceeded 20% in adolescents (by 15 years old. Meanwhile, it has been revealed that the amounts of IgG1 and IgG3 subclasses did progressively increase with age, whereas IgG2 remained decreased to 50% of adult values for a long time, and reached them by 11 years and later. We suggest that the age dynamics of IgG subclasses is connected with age-dependent changes in B cell subpopulations.

  17. Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study

    Science.gov (United States)

    Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.

    2016-12-01

    In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60  ×  60 mm2 and 80  ×  80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100  ×  90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from  -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.

  18. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    Science.gov (United States)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  19. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  20. Age-dependent male mating investment in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Sumit Dhole

    Full Text Available Male mating investment can strongly influence fitness gained from a mating. Yet, male mating investment often changes with age. Life history theory predicts that mating investment should increase with age, and males should become less discriminatory about their mate as they age. Understanding age-dependent changes in male behavior and their effects on fitness is important for understanding how selection acts in age-structured populations. Although the independent effects of male or female age have been studied in many species, how these interact to influence male mating investment and fitness is less well understood. We mated Drosophila pseudoobscura males of five different age classes (4-, 8-, 11-, 15-, 19-day old to either young (4-day or old (11-day females, and measured copulation duration and early post-mating fecundity. Along with their independent effects, we found a strong interaction between the effects of male and female ages on male mating investment and fitness from individual matings. Male mating investment increased with male age, but this increase was more prominent in matings with young females. Male D. pseudoobscura made smaller investments when mating with old females. The level of such discrimination based on female age, however, also changed with male age. Intermediate aged males were most discriminatory, while the youngest and the oldest males did not discriminate between females of different ages. We also found that larger male mating investments resulted in higher fitness payoffs. Our results show that male and female ages interact to form a complex pattern of age-specific male mating investment and fitness.

  1. Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling

    Science.gov (United States)

    Silpanisong, Jinjutha; Pearce, William J.

    2015-01-01

    Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation. PMID:24063376

  2. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Science.gov (United States)

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  3. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  4. 21. Phantom pain.

    NARCIS (Netherlands)

    Wolff, A.P.; Vanduynhoven, E.; Kleef, M. van; Huygen, F.; Pope, J.E.; Mekhail, N.

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the

  5. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  6. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-01-01

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1–1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90° (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC

  7. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  8. Creation of voxel-based models for paediatric dosimetry from automatic segmentation methods

    International Nuclear Information System (INIS)

    Acosta, O.; Li, R.; Ourselin, S.; Caon, M.

    2006-01-01

    Full text: The first computational models representing human anatomy were mathematical phantoms, but still far from accurate representations of human body. These models have been used with radiation transport codes (Monte Carlo) to estimate organ doses from radiological procedures. Although new medical imaging techniques have recently allowed the construction of voxel-based models based on the real anatomy, few children models from individual CT or MRI data have been reported [1,3]. For pediatric dosimetry purposes, a large range of voxel models by ages is required since scaling the anatomy from existing models is not sufficiently accurate. The small number of models available arises from the small number of CT or MRI data sets of children available and the long amount of time required to segment the data sets. The existing models have been constructed by manual segmentation slice by slice and using simple thresholding techniques. In medical image segmentation, considerable difficulties appear when applying classical techniques like thresholding or simple edge detection. Until now, any evidence of more accurate or near-automatic methods used in construction of child voxel models exists. We aim to construct a range of pediatric voxel models, integrating automatic or semi-automatic 3D segmentation techniques. In this paper we present the first stage of this work using pediatric CT data.

  9. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    International Nuclear Information System (INIS)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-01-01

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc

  10. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J [Brigham and Women’s Hospital, Boston, MA (United States); Hurwitz, M [Newton, MA (United States)

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  11. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  12. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations; Uso do software VAP3D na construcao de fantomas antropomorficos patologicos para avaliacoes dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lindeval Fernandes de [Universidade Federal de Pernambuco (DEM/UFPE), Recife, PE (Brazil). Dept. de Engenharia Mecanica; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-10-26

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  13. Segmented phantoms reconstruction for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Furnari, Laura; Reis, Gabriela S.

    2009-01-01

    There are several radio-sensitive skin diseases. Skin dosimetry is a difficult task to be properly performed, not only due to skin extension and small thickness, but also because it is usually submitted to high dose gradients. High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic computational anatomical models, which after being coupled to these codes, retrieve reliable dosimetric assessments. However, present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of current medical images, once its thickness stands below image resolution, i.e. pixel characteristic sizes are larger than skin thickness. This paper proposes a methodology of voxelized phantom reconstruction and segmentation, by subdividing their basic elements - voxels. It is done in order to better discriminate the skin by assigning more adequate value for skin thickness and its actual localization. Aiming at a more realistic skin modeling one is expected to get more accurate skin dose evaluations. This task is an important issue in many radiotherapy procedures. A particular interest lays in Total Skin Electron Therapy (TSET), which highlights the treatment of the whole body irradiation, a radiotherapy procedure under implementation in the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  14. Study on the Construction of a High-definition Whole-body Voxel Model based on Cadaver's Color Photographic Anatomical Slice Images and Monte Carlo Dose Calculations

    International Nuclear Information System (INIS)

    Choi, Sang Hyoun

    2007-08-01

    Ajou University School of Medicine made the serially sectioned anatomical images from the Visible Korean Human (VKH) Project in Korea. The VKH images, which are the high-resolution color photographic images, show the organs and tissues in the human body very clearly at 0.2 mm intervals. In this study, we constructed a high-quality voxel model (VKH-Man) with a total of 30 organs and tissues by manual and automatic segmentation method using the serially sectioned anatomical image data from the Visible Korean Human (VKH) project in Korea. The height and weight of VKH-Man voxel model is 164 cm and 57.6 kg, respectively, and the voxel resolution is 1.875 x 1.875 x 2 mm 3 . However, this voxel phantom can be used to calculate the organ and tissue doses of only one person. Therefore, in this study, we adjusted the voxel phantom to the 'Reference Korean' data to construct the voxel phantom that represents the radiation workers in Korea. The height and weight of the voxel model (HDRK-Man) that is finally developed are 171 cm and 68 kg, respectively, and the voxel resolution is 1.981 x 1.981 x 2.0854 mm 3 . VKH-Man and HDRK-Man voxel model were implemented in a Monte Carlo particle transport simulation code for calculation of the organ and tissue doses in various irradiation geometries. The calculated values were compared with each other to see the effect of the adjustment and also compared with other computational models (KTMAN-2, ICRP-74 and VIP-Man). According to the results, the adjustment of the voxel model was found hardly affect the dose calculations and most of the organ and tissue equivalent doses showed some differences among the models. These results shows that the difference in figure, and organ topology affects the organ doses more than the organ size. The calculated values of the effective dose from VKH-Man and HDRK-Man according to the ICRP-60 and upcoming ICRP recommendation were compared. For the other radiation geometries (AP, LLAT, RLAT) except for PA

  15. VOXEL-BASED APPROACH FOR ESTIMATING URBAN TREE VOLUME FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    C. Vonderach

    2012-07-01

    Full Text Available The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance, climate (increased temperature, reduced humidity and species composition and arrangement (habitus and health status and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height and height of single trees from point clouds of terrestrial laser scanning (TLS. For data acquisition, the trees were scanned with highest scan resolution from several (up to five positions located around the tree. The resulting point clouds (20 to 60 million points are analysed with an algorithm based on voxel (volume elements structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the

  16. Development of a hybrid multi-scale phantom for Monte-Carlo based internal dosimetry

    International Nuclear Information System (INIS)

    Marcatili, S.; Villoing, D.; Bardies, M.

    2015-01-01

    Full text of publication follows. Aim: in recent years several phantoms were developed for radiopharmaceutical dosimetry in clinical and preclinical settings. Voxel-based models (Zubal, Max/Fax, ICRP110) were developed to reach a level of realism that could not be achieved by mathematical models. In turn, 'hybrid' models (XCAT, MOBY/ROBY, Mash/Fash) allow a further degree of versatility by offering the possibility to finely tune each model according to various parameters. However, even 'hybrid' models require the generation of a voxel version for Monte-Carlo modeling of radiation transport. Since absorbed dose simulation time is strictly related to geometry spatial sampling, a compromise should be made between phantom realism and simulation speed. This trade-off leads on one side in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs' walls, and on the other hand to unnecessarily detailed voxellization of large, homogeneous structures. The Aim of this work is to develop a hybrid multi-resolution phantom model for Geant4 and Gate, to better characterize energy deposition in small structures while preserving reasonable computation times. Materials and Methods: we have developed a pipeline for the conversion of preexisting phantoms into a multi-scale Geant4 model. Meshes of each organ are created from raw binary images of a phantom and then voxellized to the smallest spatial sampling required by the user. The user can then decide to re-sample the internal part of each organ, while leaving a layer of smallest voxels at the edge of the organ. In this way, the realistic shape of the organ is maintained while reducing the voxel number in the inner part. For hollow organs, the wall is always modeled using the smallest voxel sampling. This approach allows choosing different voxel resolutions for each organ according to a specific application. Results: preliminary results show that it is possible to

  17. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  18. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.

    Science.gov (United States)

    Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P

    2016-05-01

    The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging

  19. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  20. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2012-05-01

    Full Text Available Abstract The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.

  1. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  2. Averaged head phantoms from magnetic resonance images of Korean children and young adults

    Science.gov (United States)

    Han, Miran; Lee, Ae-Kyoung; Choi, Hyung-Do; Jung, Yong Wook; Park, Jin Seo

    2018-02-01

    Increased use of mobile phones raises concerns about the health risks of electromagnetic radiation. Phantom heads are routinely used for radiofrequency dosimetry simulations, and the purpose of this study was to construct averaged phantom heads for children and young adults. Using magnetic resonance images (MRI), sectioned cadaver images, and a hybrid approach, we initially built template phantoms representing 6-, 9-, 12-, 15-year-old children and young adults. Our subsequent approach revised the template phantoms using 29 averaged items that were identified by averaging the MRI data from 500 children and young adults. In females, the brain size and cranium thickness peaked in the early teens and then decreased. This is contrary to what was observed in males, where brain size and cranium thicknesses either plateaued or grew continuously. The overall shape of brains was spherical in children and became ellipsoidal by adulthood. In this study, we devised a method to build averaged phantom heads by constructing surface and voxel models. The surface model could be used for phantom manipulation, whereas the voxel model could be used for compliance test of specific absorption rate (SAR) for users of mobile phones or other electronic devices.

  3. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  4. The Phantom Menace

    DEFF Research Database (Denmark)

    Vium, Christian

    2013-01-01

    as a phantom menace, which asserts itself through a form of omnipresent fear, nurtured by an inherent opaqueness. As this fundamental fear progressively permeates the nomadic landscape, it engenders a recasting of mobile strategies among the nomadic pastoralist groups who inhabit the interstitial desert spaces....

  5. Phantom crash confirms models

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To test computer models of how a nuclear reactor's containment building would fare if an airplane crashed into it, the Muto Institute in Tokyo sponsored a 3.2 million dollar project at Sandia National Laboratory to slam an F-4 Phantom jet into a 500 ton concrete wall. The results showed that the computer calculations were accurate

  6. Implementation of Japanese male and female tomographic phantoms to multi-particle Monte Carlo code for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Nagaoka, Tomoaki; Lee, Jai-Ki

    2006-01-01

    Japanese male and female tomographic phantoms, which have been developed for radio-frequency electromagnetic-field dosimetry, were implemented into multi-particle Monte Carlo transport code to evaluate realistic dose distribution in human body exposed to radiation field. Japanese tomographic phantoms, which were developed from the whole body magnetic resonance images of Japanese average adult male and female, were processed as follows to be implemented into general purpose multi-particle Monte Carlo code, MCNPX2.5. Original array size of Japanese male and female phantoms, 320 x 160 x 866 voxels and 320 x 160 x 804 voxels, respectively, were reduced into 320 x 160 x 433 voxels and 320 x 160 x 402 voxels due to the limitation of memory use in MCNPX2.5. The 3D voxel array of the phantoms were processed by using the built-in repeated structure algorithm, where the human anatomy was described by the repeated lattice of tiny cube containing the information of material composition and organ index number. Original phantom data were converted into ASCII file, which can be directly ported into the lattice card of MCNPX2.5 input deck by using in-house code. A total of 30 material compositions obtained from International Commission on Radiation Units and Measurement (ICRU) report 46 were assigned to 54 and 55 organs and tissues in the male and female phantoms, respectively, and imported into the material card of MCNPX2.5 along with the corresponding cross section data. Illustrative calculation of absorbed doses for 26 internal organs and effective dose were performed for idealized broad parallel photon and neutron beams in anterior-posterior irradiation geometry, which is typical for workers at nuclear power plant. The results were compared with the data from other Japanese and Caucasian tomographic phantom, and International Commission on Radiological Protection (ICRP) report 74. The further investigation of the difference in organ dose and effective dose among tomographic

  7. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    International Nuclear Information System (INIS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-01-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM-S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM-S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom. (paper)

  8. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    Science.gov (United States)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  9. Placement of HPGE detectors for whole body counting applications using simulations of voxel phantoms

    International Nuclear Information System (INIS)

    Marzocchi, O.; Breustedt, B.; Zankl, M.

    2010-01-01

    The partial body counter at KIT is going to be rebuilt in order to replace the old Ge detectors with four new HPGe detectors. The new installation will also add whole body capabilities to the system, thanks to an improved mechanics able to position the detectors with a high degree of freedom in the chamber. During the definition of the position of the detectors a compromise between the opposite goals of high efficiency and small dependence of the detection efficiency on the position of the source had to be sought. High detection efficiency involves placing the detector near the skin, where the photon flux is maximal, while the second goal involves placing the detectors at a greater distance from the body. The same concept was applied during the definition of the partial body measurement configurations, but the goal was the increase of the specificity of the measurement. In addition, the mechanical installation poses some constraints: two detectors are mounted on carts and therefore can be placed independently around the subjects, but not in front of it, while the other two detectors are mounted on carts hanging from the same rail on the ceiling, therefore their distance from the subject is constrained by the maximum offset between them. (orig.)

  10. Anthropomorphic phantom materials

    International Nuclear Information System (INIS)

    White, D.R.; Constantinou, C.

    1982-01-01

    The need, terminology and history of tissue substitutes are outlined. Radiation properties of real tissues are described and simulation procedures are outlined. Recent tissue substitutes are described and charted, as are calculated radiation classifications. Manufacturing procedures and quality control are presented. Recent phantom studies are reviewed and a discussion recorded. Elemental compositions of the recommended tissue substitutes are charted with elemental composition given for each tissue substitute

  11. Solid water phantom

    International Nuclear Information System (INIS)

    Arguiropulo, M.Y.; Ghilardi Neto, T.; Pela, C.A.; Ghilardi, A.J.P.

    1992-01-01

    A phantom were developed for simulating water, based in plastics. The material was evaluated for different energies, and the measures of relative transmission showed that the transmission and the water were inside of 0,6% for gamma rays. The results of this new material were presented, showing that it could be used in photon beam calibration with energies on radiotherapy range. (C.G.C.)

  12. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    Science.gov (United States)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  13. Phantom pain after eye amputation

    DEFF Research Database (Denmark)

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-01-01

    Purpose: To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. Methods: The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation...... was conducted by a trained interviewer. Results: Of the 173 patients in the study, 39 experienced phantom pain. The median age of patients who had experienced phantom pain was 45 years (range: 19–88). Follow-up time from eye amputation to participation in the investigation was 4 years (range: 2–46). Phantom...... scale, ranging from 0 to 100, was 36 (range: 1–89). One-third of the patients experienced phantom pain every day. Chilliness, windy weather and psychological stress/fatigue were the most commonly reported triggers for pain. Conclusions: Phantom pain after eye amputation is relatively common. The pain...

  14. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil)

    2015-10-15

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM{sub B}RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM{sub B}RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse

  15. Development and tests of a mouse voxel model dor MCNPX based on Digimouse images

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, C.; Garcia de A, I.; Machado T, B.; Passos Ribeiro de C, T.

    2015-10-01

    Mice have been widely used in experimental protocols involving ionizing radiation. Biological effects (Be) induced by radiation can compromise studies results. Good estimates of mouse whole body and organs absorbed dose could provide valuable information to researchers. The aim of this study was to create and test a new voxel phantom for mice dosimetry from -Digimouse- project images. Micro CT images from Digimouse project were used in this work. Corel PHOTOPAINT software was utilized in segmentation process. The three-dimensional (3-D) model assembly and its voxel size manipulation were performed by Image J. SISCODES was used to adapt the model to run in MCNPX Monte Carlo code. The resulting model was called DM B RA. The volume and mass of segmented organs were compared with data available in literature. For the preliminary tests the heart was considered the source organ. Photons of diverse energies were simulated and Saf values obtained through F6:p and + F6 MCNPX tallies. The results were compared with reference data. 3-D picturing of absorbed doses patterns and relative errors distribution were generated by a C++ -in house- made program and visualized through Amide software. The organ masses of DM B RA correlated well with two models that were based on same set of images. However some organs, like eyes and adrenals, skeleton and brain showed large discrepancies. Segmentation of an identical image set by different persons and/or methods can result significant organ masses variations. We believe that the main causes of these differences were: i) operator dependent subjectivity in the definition of organ limits during the segmentation processes; and i i) distinct voxel dimensions between evaluated models. Lack of reference data for mice models construction and dosimetry was detected. Comparison with other models originated from different mice strains also demonstrated that the anatomical and size variability can be significant. Use of + F6 tally for mouse phantoms

  16. Voxel-based models representing the male and female ICRP reference adult - the skeleton

    International Nuclear Information System (INIS)

    Zankl, M.; Eckerman, K.F.; Bolch, W.E.

    2007-01-01

    For the forthcoming update of organ dose conversion coefficients, the International Commission on Radiological Protection (ICRP) will use voxel-based computational phantoms due to their improved anatomical realism compared with the class of mathematical or stylized phantoms used previously. According to the ICRP philosophy, these phantoms should be representative of the male and female reference adults with respect to their external dimensions, their organ topology and their organ masses. To meet these requirements, reference models of an adult male and adult female have been constructed at the GSF, based on existing voxel models segmented from tomographic images of two individuals whose body height and weight closely resemble the ICRP Publication 89 reference values. The skeleton is a highly complex structure of the body, composed of cortical bone, trabecular bone, red and yellow bone marrow and endosteum ('bone surfaces' in their older terminology). The skeleton of the reference phantoms consists of 19 individually segmented bones and bone groups. Sub-division of these bones into the above-mentioned constituents would be necessary in order to allow a direct calculation of dose to red bone marrow and endosteum. However, the dimensions of the trabeculae, the cavities containing bone marrow and the endosteum layer lining these cavities are clearly smaller than the resolution of a normal CT scan and, thus, these volumes could not be segmented in the tomographic images. As an attempt to represent the gross spatial distribution of these regions as realistically as possible at the given voxel resolution, 48 individual organ identification numbers were assigned to various parts of the skeleton: every segmented bone was subdivided into an outer shell of cortical bone and a spongious core; in the shafts of the long bones, a medullary cavity was additionally segmented. Using the data from ICRP Publication 89 on elemental tissue composition, from ICRU Report 46 on material

  17. Interactive voxel graphics in virtual reality

    Science.gov (United States)

    Brody, Bill; Chappell, Glenn G.; Hartman, Chris

    2002-06-01

    Interactive voxel graphics in virtual reality poses significant research challenges in terms of interface, file I/O, and real-time algorithms. Voxel graphics is not so new, as it is the focus of a good deal of scientific visualization. Interactive voxel creation and manipulation is a more innovative concept. Scientists are understandably reluctant to manipulate data. They collect or model data. A scientific analogy to interactive graphics is the generation of initial conditions for some model. It is used as a method to test those models. We, however, are in the business of creating new data in the form of graphical imagery. In our endeavor, science is a tool and not an end. Nevertheless, there is a whole class of interactions and associated data generation scenarios that are natural to our way of working and that are also appropriate to scientific inquiry. Annotation by sketching or painting to point to and distinguish interesting and important information is very significant for science as well as art. Annotation in 3D is difficult without a good 3D interface. Interactive graphics in virtual reality is an appropriate approach to this problem.

  18. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  19. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  20. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    International Nuclear Information System (INIS)

    Yang, F; Byrd, D; Bowen, S; Kinahan, P; Sandison, G

    2015-01-01

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolution of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter

  1. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    Directory of Open Access Journals (Sweden)

    Céline Christiansen-Jucht

    2015-05-01

    Full Text Available Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors.

  2. State-age-dependent maintenance policies for deteriorating systems with Erlang sojourn time distributions

    International Nuclear Information System (INIS)

    Yeh, R.H.

    1997-01-01

    This paper investigates state-age-dependent maintenance policies for multistate deteriorating systems with Erlang sojourn time distributions. Since Erlang distributions are serial combinations of exponential phases, the deteriorating process can be modeled by a multi-phase Markovian model and hence easily analyzed. Based on the Markovian model, the optimal phase-dependent inspection and replacement policy can be obtained by using a policy improvement algorithm. However, since phases are fictitious and can not be identified by inspections, two procedures are developed to construct state-age-dependent policies based on the optimal phase-dependent policy. The properties of the constructed state-age-dependent policies are further investigated and the performance of the policy is evaluated through a numerical example

  3. Studies on the age-dependent proliferation kinetics of the epithelium of the rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Dietze, F.; Laue, R.; Fuhrmann, I.

    1980-01-01

    The small intestine of 244 Wistar rats, aged 6 days, 6 weeks, 6, 12, 23, and 28 months, respectively. were investigated autoradiographically as to their age-dependent cell proliferation kinetics of the mucosal epithelial cells. There were age-dependent differences concerning the hourly regeneration ratio of the crypt cells and the migration velocity of the enterocytes. Both parameters became greater while the existing non growth fraction became smaller with increasing age. The non growth fraction seems to be a reserve being involved into the proliferating pool if required

  4. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Prof. Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); De Melo Lima, V J [Department of Anatomy, Federal University of Pernambuco, Recife (Brazil); Robson Brown, K [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)], E-mail: rkramer@uol.com.br

    2010-01-07

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  5. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  6. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  7. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV

    International Nuclear Information System (INIS)

    Ma, Andy K; Hussein, Mohammed Adel; Altaher, Khalid Mohammed; Farid, Khalid Yousif; Amer, Mamun; Aldhafery, Bander Fuhaid; Alghamdi, Ali A

    2015-01-01

    Fluence-to-dose conversion coefficients are important quantities for radiation protection, derived from Monte Carlo simulations of the radiation particles through a stylised phantom or voxel based phantoms. The voxel phantoms have been developed for many ethnic groups for their accurate reflection of the anatomy. In this study, we used the Monte Carlo code MCNPX to calculate the photon fluence-to-effective dose conversion coefficients with a voxel phantom based on the Saudi Arabian male population. Six irradiation geometries, anterior–posterior (AP), posterior–anterior (PA), left lateral (LLAT), right lateral (RLAT), rotational (ROT) and isotropic (ISO) were simulated for monoenergetic photon beams from 10 keV to 20 MeV. We compared the coefficients with the reference values in ICRP Publication 116. The coefficients in the AP and PA geometries match the reference values to 9% and 12% on average as measured by root mean square while those in the LLAT, RLAT ROT and ISO geometries differ, mostly below, from the reference by 23, 22, 15 and 16%, respectively. The torso of the Saudi phantom is wider than the ICRP reference male phantom and likely to cause more attenuation to the lateral beam. The ICRP reference coefficients serve well for the Saudi male population as conservative estimations for the purpose of radiation protection. (paper)

  8. The influence of HIV infection on the age dependence of squamous ...

    African Journals Online (AJOL)

    diminishes with ageing, which may contribute to the age-related increase in cancer incidence. In the present analysis, the age dependence of squamous cell carcinoma of the skin (SCC) in the black African, coloured and white population groups of South. Africa (SA) was examined. The evidence that exposure to sunlight is ...

  9. Age-Dependent Cellular and Behavioral Deficits Induced by Molecularly Targeted Drugs Are Reversible.

    Science.gov (United States)

    Scafidi, Joseph; Ritter, Jonathan; Talbot, Brooke M; Edwards, Jorge; Chew, Li-Jin; Gallo, Vittorio

    2018-04-15

    Newly developed targeted anticancer drugs inhibit signaling pathways commonly altered in adult and pediatric cancers. However, as these pathways are also essential for normal brain development, concerns have emerged of neurologic sequelae resulting specifically from their application in pediatric cancers. The neural substrates and age dependency of these drug-induced effects in vivo are unknown, and their long-term behavioral consequences have not been characterized. This study defines the age-dependent cellular and behavioral effects of these drugs on normally developing brains and determines their reversibility with post-drug intervention. Mice at different postnatal ages received short courses of molecularly targeted drugs in regimens analagous to clinical treatment. Analysis of rapidly developing brain structures important for sensorimotor and cognitive function showed that, while adult administration was without effect, earlier neonatal administration of targeted therapies attenuated white matter oligodendroglia and hippocampal neuronal development more profoundly than later administration, leading to long-lasting behavioral deficits. This functional impairment was reversed by rehabilitation with physical and cognitive enrichment. Our findings demonstrate age-dependent, reversible effects of these drugs on brain development, which are important considerations as treatment options expand for pediatric cancers. Significance: Targeted therapeutics elicit age-dependent long-term consequences on the developing brain that can be ameliorated with environmental enrichment. Cancer Res; 78(8); 2081-95. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Age-dependent attractivity of males’ sexual pheromones in Bombus terrestris (L.) [Hymenoptera, Apidae

    Czech Academy of Sciences Publication Activity Database

    Coppée, Audrey; Mathy, T.; Cammaerts, M.; Verheggen, F. J.; Terzo, M.; Iserbyt, S.; Valterová, Irena; Rasmont, P.

    2011-01-01

    Roč. 21, č. 2 (2011), s. 75-82 ISSN 0937-7409 R&D Projects: GA ČR GA203/09/1446 Institutional research plan: CEZ:AV0Z40550506 Keywords : Bombus terrestris * sexual pheromones * age-dependent variation * behavioural tests Subject RIV: CC - Organic Chemistry Impact factor: 1.556, year: 2011

  11. Stability analysis of a general age-dependent vaccination model of a vertically transmitted disease

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-07-01

    An SIR epidemic model of a general age-dependent vaccination of a vertically as well as horizontally transmitted disease is investigated when the population is in steady state and the fertility, mortality and removal rates depends on age. We determine the steady states and examine their stabilities. (author). 24 refs

  12. Age-dependent trends in postoperative mortality and preoperative comorbidity in isolated coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Thorsteinsson, Kristinn; Fonager, Kirsten; Mérie, Charlotte

    2016-01-01

    OBJECTIVES: An increasing number of octogenarians are being subjected to coronary artery bypass grafting (CABG). The purpose of this study was to examine age-dependent trends in postoperative mortality and preoperative comorbidity over time following CABG. METHODS: All patients who underwent isol...

  13. Parent perceived quality of life is age-dependent in children with food allergy

    NARCIS (Netherlands)

    Wassenberg, Jacqueline; Cochard, Marie-Madeleine; DunnGalvin, Audrey; Ballabeni, Pierluigi; Flokstra-de Blok, Bertine M. J.; Newman, Christopher J.; Hofer, Michael; Eigenmann, Philippe A.

    To cite this article: Wassenberg J, Cochard M-M, DunnGalvin A, Ballabeni P, Flokstra-de Blok BMJ, Newman CJ, Hofer M, Eigenmann PA. Parent perceived quality of life is age-dependent in children with food allergy. Pediatr Allergy Immunol 2012: 23: 412419. Abstract Background: Food allergy in children

  14. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)

    2017-05-15

    The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.

  15. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens.

    Science.gov (United States)

    Urs, Raksha; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2010-06-01

    To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Profiles of whole isolated human lenses (n=30) aged 20-69, were measured from shadow-photogrammetric images. The profiles were fit to a 10th-order Fourier series consisting of cosine functions in polar-co-ordinate system that included terms for tilt and decentration. The profiles were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10th-order Fourier series to obtain thickness and diameter, while in the second, all lenses were simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop an age-dependent mathematical model for the whole lens shape. Thickness and diameter obtained from Fourier series fits exhibited high correlation with manual measurements made from shadow-photogrammetric images. The root-mean-squared-error of the age-dependent fit was 205 microm. The age-dependent equations provide a reliable lens model for ages 20-60 years. The contour of the whole human crystalline lens can be modeled with a Fourier series. Shape obtained from the age-dependent model described in this paper can be used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Sex differences in the effects of juvenile and adult diet on age-dependent reproductive effort.

    Science.gov (United States)

    Houslay, T M; Hunt, J; Tinsley, M C; Bussière, L F

    2015-05-01

    Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age-dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age-dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex-specific allocation to age-dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age-dependent reproductive effort diverged substantially across treatments, with resource-limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long-lived males always signalled more than short-lived males, and male age-dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex-specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary

  17. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C; Zhong, Y; Wang, T; Shaw, C [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), defined as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.

  18. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    International Nuclear Information System (INIS)

    Lai, C; Zhong, Y; Wang, T; Shaw, C

    2015-01-01

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), defined as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor

  19. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  20. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  1. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  2. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  3. Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies.

    Science.gov (United States)

    Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde

    2018-01-01

    This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.

  4. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    International Nuclear Information System (INIS)

    Sun Wenjuan; Xie Tianwu; Liu Qian; Jia Xianghong; Xu Feng

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 x 2 x 4 mm 3 for radioactive particle transport simulations from isotropic protons with energies of 5000 - 10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). (author)

  5. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    International Nuclear Information System (INIS)

    Lamart, Stephanie; Simon, Steven L; Lee, Choonsik; Bouville, Andre; Eckerman, Keith F; Melo, Dunstana

    2011-01-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  6. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    Science.gov (United States)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  7. Multi Voxel Descriptor for 3D Texture Retrieval

    Directory of Open Access Journals (Sweden)

    Hero Yudo Martono

    2016-08-01

    Full Text Available In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.

  8. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  9. Population Consequences of Age-Dependent Maternal Effects in Rockfish (Sebastes spp.)

    OpenAIRE

    Lucero, Yasmin

    2007-01-01

    I present a model of the early life history of a rockfish that includes an age-dependent maternal effect. The model is designed to accurately reflect the diverse uncertainties we have about early life history processes. The first portion of this thesis is devoted to an analytical treatment of the deterministic early life history model. I emphasize uncertainty about the functional form of density-dependent processes in the juvenile stage. The remainder of the thesis is devoted to demonstrating...

  10. [Occlusion treatment for amblyopia. Age dependence and dose-response relationship].

    Science.gov (United States)

    Fronius, M

    2016-04-01

    Based on clinical experience and studies on animal models the age of 6-7 years was regarded as the limit for treatment of amblyopia, although functional improvement was also occasionally reported in older patients. New technical developments as well as insights from clinical studies and the neurosciences have attracted considerable attention to this topic. Various aspects of the age dependence of amblyopia treatment are discussed in this article, e. g. prescription, electronic monitoring of occlusion dosage, calculation of indicators for age-dependent plasticity of the visual system, and novel, alternative treatment approaches. Besides a discussion of the recent literature, results of studies by our "Child Vision Research Unit" in Frankfurt are presented: results of a questionnaire about prescription habits concerning age limits of patching, electronic recording of occlusion in patients beyond the conventional treatment age, calculation of dose-response function and efficiency of patching and their age dependence. The results of the questionnaire illustrate the uncertainty about age limits of prescription with significant deviations from the guideline of the German Ophthalmological Society (DOG). Electronic recording of occlusion allowed the quantification of declining dose-response function and treatment efficiency between 5 and 16 years of age. Reports about successful treatment with conventional and novel methods in adults are at variance with the notion of a rigid adult visual system lacking plasticity. Electronic recording of patching allowed new insights into the age-dependent susceptibility of the visual system and contributes to a more evidence-based treatment of amblyopia. Alternative approaches for adults challenge established notions about age limits of amblyopia therapy. Further studies comparing different treatment options are urgently needed.

  11. Analysis of a general age-dependent vaccination model for a vertically transmitted disease

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    A SIR epidemic model of a general age-dependent vaccination for a vertically as well as horizontally transmitted disease is investigated when the total population is time dependent, and fertility, mortality and removal rates depend on age. We establish the existence and the uniqueness of the solution and obtain the asymptotic behaviour for the solution. For the steady state solution a critical vaccination coverage which will eventually eradicate the disease is determined. (author). 18 refs

  12. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based...... on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null...

  13. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  14. Maternal care, mother-offspring aggregation and age-dependent coadaptation in the European earwig.

    Science.gov (United States)

    Gómez, Y; Kölliker, M

    2013-09-01

    Benefits and costs of parental care are expected to change with offspring development and lead to age-dependent coadaptation expressed as phenotypic (behavioural) matches between offspring age and parental reproductive stage. Parents and offspring interact repeatedly over time for the provision of parental care. Their behaviours should be accordingly adjusted to each other dynamically and adaptively, and the phenotypic match between offspring age and parental stage should stabilize the repeated behavioural interactions. In the European earwig (Forficula auricularia), maternal care is beneficial for offspring survival, but not vital, allowing us to investigate the extent to which the stability of mother-offspring aggregation is shaped by age-dependent coadaptation. In this study, we experimentally cross-fostered nymphs of different age classes (younger or older) between females in early or late reproductive stage to disrupt age-dependent coadaptation, thereby generating female-nymph dyads that were phenotypically matched or mismatched. The results revealed a higher stability in aggregation during the first larval instar when care is most intense, a steeper decline in aggregation tendency over developmental time and a reduced developmental rate in matched compared with mismatched families. Furthermore, nymph survival was positively correlated with female-nymph aggregation stability during the early stages when maternal care is most prevalent. These results support the hypothesis that age-related phenotypically plastic coadaptation affects family dynamics and offspring developmental rate. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. Impact of radiobiological considerations on epidemiological inferences of age-dependent radiosensitivity

    International Nuclear Information System (INIS)

    Crawford-Brown, D.J.

    1983-01-01

    Current epidemiological studies of the age-dependent risk of radiogenic carcinomas are based on populations still in the early stages of cancer expression. The result is a set of logical uncertainties concerning the manner in which inferences may be drawn from the existing data. These uncertainties may be formalized and examined through the application of various radiobiological principles developed from more fundamental experimental data. Chief amongst these considerations are the time course of tumor expression, the role of relative and absolute risk models, the distribution of effects between initiation and promotion, the age-dependent fraction of time a critical cell remains in radiosensitive stages and the combinatorics of the critical cellular subpopulations. Each of these and the combinatorics of the critical cellular subpopulations. Each of these principles are examined in light of their impact on the structuring of epidemiologic data and the drawing of inferences concerning age-dependent radiogenic risk. The data on atomic bomb survivors are employed as a relevant example

  16. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes.

    Science.gov (United States)

    Singh, Abhishek Kumar; Garg, Geetika; Singh, Sandeep; Rizvi, Syed Ibrahim

    2017-10-01

    Erythrocytes are particularly vulnerable toward age-dependent oxidative stress-mediated damage. Caloric restriction mimetics (CRMs) may provide a novel strategy for the maintenance of redox balance as well as effective treatment of age-associated diseases. Herein, we have investigated the beneficial effect of cotreatment with CRM-candidate drugs, rapamycin (an immunosuppressant drug and inhibitor of mammalian target of rapamycin) and metformin (an antidiabetic biguanide and activator of adenosine monophosphate kinase), against aging-induced oxidative stress in erythrocytes and plasma of aging rats. Male Wistar rats of age 4 (young) and 24 months (old) were coexposed to rapamycin (0.5 mg/kg body weight [b.w.]) and metformin (300 mg/kg b.w.), and data were compared with the response of rats receiving an independent exposure to these chemicals at similar doses. The exposure of individual candidate drugs significantly reversed the age-dependent alterations in the endpoints associated with oxidative stress such as reactive oxygen species, ferric reducing ability of plasma, malondialdehyde, reduced glutathione, plasma membrane redox system, plasma protein carbonyl, and acetyl cholinesterase in erythrocytes and plasma of aging rats. However, the cotreatment with rapamycin and metformin showed a significant augmented effect compared with individual drug interventions on reversal of these age-dependent biomarkers of oxidative stress, suggesting a synergistic response. Thus, the findings open up further possibilities for the design of new combinatorial therapies to prevent oxidative stress- and age-associated health problems.

  17. Atypical Odontalgia (Phantom Tooth Pain)

    Science.gov (United States)

    ... atypical facial pain, phantom tooth pain, or neuropathic orofacial pain, is characterized by chronic pain in a tooth ... such as a specialist in oral medicine or orofacial pain. The information contained in this monograph is for ...

  18. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun; Lee, Jai-Ki

    2006-01-01

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, and manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm 3 for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and

  19. Calculation of normalised organ and effective doses to adult reference computational phantoms from contemporary computed tomography scanners

    International Nuclear Information System (INIS)

    Jansen, Jan T.M.; Shrimpton, Paul C.

    2010-01-01

    The general-purpose Monte Carlo radiation transport code MCNPX has been used to simulate photon transport and energy deposition in anthropomorphic phantoms due to the x-ray exposure from the Philips iCT 256 and Siemens Definition CT scanners, together with the previously studied General Electric 9800. The MCNPX code was compiled with the Intel FORTRAN compiler and run on a Linux PC cluster. A patch has been successfully applied to reduce computing times by about 4%. The International Commission on Radiological Protection (ICRP) has recently published the Adult Male (AM) and Adult Female (AF) reference computational voxel phantoms as successors to the Medical Internal Radiation Dose (MIRD) stylised hermaphrodite mathematical phantoms that form the basis for the widely-used ImPACT CT dosimetry tool. Comparisons of normalised organ and effective doses calculated for a range of scanner operating conditions have demonstrated significant differences in results (in excess of 30%) between the voxel and mathematical phantoms as a result of variations in anatomy. These analyses illustrate the significant influence of choice of phantom on normalised organ doses and the need for standardisation to facilitate comparisons of dose. Further such dose simulations are needed in order to update the ImPACT CT Patient Dosimetry spreadsheet for contemporary CT practice. (author)

  20. An improved Virtual Torso phantom

    International Nuclear Information System (INIS)

    Kramer, Gary H; Crowley, Paul

    2000-01-01

    The virtual phantom that was previously designed by the Human Monitoring Laboratory had some limitations. It contained no sternum and the ribs extended all the way round the torso, whereas in reality the central part of the chest is covered with a mixture of cartilage (ribs) and bone (sternum). The ribs were located below the chest wall which added to the thickness of the chest wall. The lungs did not touch the inner surface of the chest wall along their length due to the differences in curvature between the ellipsoidal lungs and the ellipsoidal cylinder that defined the torso. As a result there was extra intervening tissue between the lungs and the chest wall. This was shown to have a noticeable effect on the simulation of low energy photons. The virtual phantom has been redesigned and comparison of measured and calculated counting efficiencies shows that it is a good representation of both of LLNL or JAERI at all photon energies measured. The redesigned virtual phantom agrees to within 11% of the torsos' counting efficiency over the energy range 17 - 240 keV. Before modification, the virtual phantom's counting efficiency was a of factor three lower at 17 keV and a factor of two lower at 20 keV; now it is within 5% at 17 keV and within 10% at 20 keV. This phantom can now be reliably used to simulate lung counting. The virtual phantom still contains no sternum and the ribs extend all the way round the torso, whereas in reality the central part of the chest is covered with cartilage (ribs) and bone (sternum). However, the above results indicate that this is not a major flaw in the design of the virtual phantom, as agreement between the Monte Carlo results and experimental data is good. (author)

  1. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E

    2013-01-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  2. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Niboyet, Jean; Mundler, Olivier

    2007-01-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  3. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)]. E-mail: eric.guedj@ap-hm.fr; Taieb, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Cammilleri, Serge [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Lussato, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Laforte, Catherine de [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Niboyet, Jean [Unite d' Etude et de Traitement de la Douleur, Clinique La Phoceanne, Marseille (France); Mundler, Olivier [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  4. Age-dependent terminal declines in reproductive output in a wild bird.

    Directory of Open Access Journals (Sweden)

    Martijn Hammers

    Full Text Available In many iteroparous species individual fitness components, such as reproductive output, first increase with age and then decline during late-life. However, individuals differ greatly in reproductive lifespan, but reproductive declines may only occur in the period just before their death as a result of an age-independent decline in physiological condition. To fully understand reproductive senescence it is important to investigate to what extent declines in late-life reproduction can be explained by age, time until death, or both. However, the study of late-life fitness performance in natural populations is challenging as the exact birth and death dates of individuals are often not known, and most individuals succumb to extrinsic mortality before reaching old age. Here, we used an exceptional long-term longitudinal dataset of individuals from a natural, closed, and predator-free population of the Seychelles warbler (Acrocephalus sechellensis to investigate reproductive output, both in relation to age and to the time until the death of an individual (reverse-age approach. We observed an initial age-dependent increase in reproductive output that was followed by a decline in old age. However, we found no significant decline in reproductive output in the years directly preceding death. Although post-peak reproductive output declined with age, this pattern differed between terminal and non-terminal reproductive attempts, and the age-dependence of the terminal breeding attempt explained much of the variation in age-specific reproductive output. In fact, terminal declines in reproductive output were steeper in very old individuals. These results indicate that not only age-dependent, but also age-independent factors, such as physiological condition, need to be considered to understand reproductive senescence in wild-living animals.

  5. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain.

    Science.gov (United States)

    Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua; Li, Xiao-Jiang

    2015-05-27

    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. Copyright © 2015 the authors 0270-6474/15/358345-14$15.00/0.

  6. The role of HSP70 in mediating age-dependent mortality in sepsis

    Science.gov (United States)

    McConnell, Kevin W.; Fox, Amy C.; Clark, Andrew T.; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A.; Farris, Alton B.; Buchman, Timothy G.; Hunt, Clayton R.; Coopersmith, Craig M.

    2011-01-01

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6–12week old) and aged (16–17 month old) HSP70−/− and wild type (WT) mice to determine if HSP70 modulated outcome in an age-dependent fashion. Young HSP70−/− and WT mice subjected to cecal ligation and puncture (CLP), Pseudomonas aeruginosa pneumonia or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70−/− mice than aged WT mice subjected to CLP (p=0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared to WT mice, aged septic HSP70−/− mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70−/−mice had increased systemic levels of TNF-α, IL-6, IL-10 and IL-1β compared to WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  7. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.

  8. Voxel-based morphometry and voxel-based diffusion tensor analysis in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin; Lou Xin; Wang Yan

    2010-01-01

    Objective: To evaluate gray matter volume, white matter volume and FA value changes in amyatrophic lateral sclerosis (ALS) patients by voxel-based morphometry (VBM) and voxel-based diffusion tensor analysis (VBDTA). Methods: Thirty-nine definite or probable ALS patients diagnosed by El Escorial standard and 39 healthy controls were recruited and underwent conventional MR scans and the neuropsychological evaluation. The 3D FSPGR T 1 WI and DTI data were collected on GE Medical 3.0 T MRI system. The 3DT 1 structural images were normalized, segmented and smoothed, and then VBM analysis was performed. DTI data were acquired from 76 healthy controls, and FA map template was made. FA maps generated from the DTI data of ALS patients and healthy controls were normalized to the FA map template for voxel-based analysis. ANCOVA was applied, controlling with age and total intracranial volume for VBM and age for VBDDTA. A statistical threshold of P<0.01 (uncorrected) and cluster level of more than continuous 20 voxels determined significance. Results: Statistical results showed no significant difference in the global volumes of gray matter and white matter, total intracranial volumes and gray matter fraction between ALS patients and healthy controls, but the white matter fraction of ALS patients (0.29 ± 0.02) was significantly less than that of healthy controls (0.30 ± 0.02) statistically (P=0.003). There was significant reduction of gray matter volumes in bilateral superior frontal gyri and precentral gyri, right middle frontal gyrus, right middle and inferior temporal gyrus, left superior occipital gyrus and cuneus and left insula in ALS patients when compared with healthy controls; and the regional reduction of white matter volumes in ALS patients mainly located in genu of corpus callosum, bilateral medial frontal gyri, paracentral lobule and insula, right superior and middle frontal gyrus and left postcentral gyrus. VBDTA showed decrease in FA values in bilateral

  9. SU-E-T-13: A Feasibility Study of the Use of Hybrid Computational Phantoms for Improved Historical Dose Reconstruction in the Study of Late Radiation Effects for Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Petroccia, H; O' Reilly, S; Bolch, W [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL (United States); Mendenhall, N; Li, Z; Slopsema, R [Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2014-06-01

    Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs). Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show

  10. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  11. The work of the task group of committee 2 of ICRP on age-dependent dosimetry

    International Nuclear Information System (INIS)

    Stather, J.W.; Kaul, A.; Metivier, H.

    1996-01-01

    With the accident at Chernobyl and developing concern in regard to the consequences of discharging radionuclides into the environment has come increasing awareness of the need to assess radiation doses to all age groups in the population. In 1987, ICRP set up a Task Group of Committee 2 on Age-dependent Dosimetry with the responsibility for calculating internationally agreed dose coefficients for members of the public. This covered the calculation and ingestion, as well as doses to the embryo and fetus from intakes of radionuclides by the mother. This paper reviews the programme of work.(authors). 17 refs., 6 tabs

  12. Age-dependent effective doses for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2014-01-01

    Age-dependent effective doses for external exposure to photons emitted by radionuclides uniformly distributed in air are reported. The calculations were performed for 160 radionuclides, which are important for safety assessment of nuclear facilities. The energies and intensities of photons emitted from radionuclides were taken from the decay data DECDC used for dose calculations. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ) for 6 age groups: newborn, 1, 5, 10 and 15 years-old and adult. The effective doses for the adult are also compared to values given in the literature.

  13. Development of a pregnant woman phantom using polygonal mesh, for dosimetric evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Manuela O.M.; Vieira, Jose W., E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    Due to the embryo/fetus radiosensitivity the accurate estimation of the absorbed dose distribution in the abdominal area is an additional problem caused by the exposure of pregnant women to ionizing radiation in medical applications. This paper reports the construction and insertion of a fetal representation in a female geometry by means of 3D modeling techniques. In order to characterize an ECM the Grupo de Dosimetria Numerica (GDN) is using, mainly, simulators emitting gamma sources and voxel phantoms coupled to a MC code. The phantoms are predominantly constructed from stacks of magnetic resonance images (MRI), computed tomography (CT) (obtained from scans of real patients) or from 3D modeling techniques. Due to the difficulty of obtaining medical images of pregnant women, 3D objects in several formats (.obj, .max, .blend, etc.) were acquired for anatomical representation of a non-pregnant adult. To construct a fetal representation, the 3D modeling technique called Poly Modeling (polygon mesh) was used inside of the software Autodesk 3ds Max 2014 (free student version). Information about the radiosensibility of organs included in the abdominal area will be used to fit and use the pregnant phantom in numerical dosimetry. For this, the phantom will be voxelized and the masses of organs of interest will be adjusted according to data provided by International Commission on Radiological Protection (ICRP). Finally, the phantom will be coupled to a MC code creating a MCE that will serve as base for the construction of several other models involving pregnant women submitted to ionizing radiation. (author)

  14. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom

    International Nuclear Information System (INIS)

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad Mehdi; Davenport, David

    2015-01-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm 3 ). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of 99m Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r 2 ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14 % for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  15. Development of a pregnant woman phantom using polygonal mesh, for dosimetric evaluations

    International Nuclear Information System (INIS)

    Cabral, Manuela O.M.; Vieira, Jose W.; Lima, Fernando R.A.

    2014-01-01

    Due to the embryo/fetus radiosensitivity the accurate estimation of the absorbed dose distribution in the abdominal area is an additional problem caused by the exposure of pregnant women to ionizing radiation in medical applications. This paper reports the construction and insertion of a fetal representation in a female geometry by means of 3D modeling techniques. In order to characterize an ECM the Grupo de Dosimetria Numerica (GDN) is using, mainly, simulators emitting gamma sources and voxel phantoms coupled to a MC code. The phantoms are predominantly constructed from stacks of magnetic resonance images (MRI), computed tomography (CT) (obtained from scans of real patients) or from 3D modeling techniques. Due to the difficulty of obtaining medical images of pregnant women, 3D objects in several formats (.obj, .max, .blend, etc.) were acquired for anatomical representation of a non-pregnant adult. To construct a fetal representation, the 3D modeling technique called Poly Modeling (polygon mesh) was used inside of the software Autodesk 3ds Max 2014 (free student version). Information about the radiosensibility of organs included in the abdominal area will be used to fit and use the pregnant phantom in numerical dosimetry. For this, the phantom will be voxelized and the masses of organs of interest will be adjusted according to data provided by International Commission on Radiological Protection (ICRP). Finally, the phantom will be coupled to a MC code creating a MCE that will serve as base for the construction of several other models involving pregnant women submitted to ionizing radiation. (author)

  16. Determination of dose correction factor for energy and directional dependence of the MOSFET dosimeter in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho

    2006-01-01

    In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom

  17. Determination of the distal dose edge in a human phantom by measuring the prompt gamma distribution: a Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Hee; Lee, Han Rim; Yeom, Yeon Su; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of)

    2010-06-15

    The close relationship between the proton dose distribution and the distribution of prompt gammas generated by proton-induced nuclear interactions along the path of protons in a water phantom was demonstrated by means of both Monte Carlo simulations and limited experiments. In order to test the clinical applicability of the method for determining the distal dose edge in a human body, a human voxel model, constructed based on a body-composition-approximated physical phantom, was used, after which the MCNPX code was used to analyze the energy spectra and the prompt gamma yields from the major elements composing the human voxel model; finally, the prompt gamma distribution, generated from the voxel model and measured by using an array-type prompt gamma detection system, was calculated and compared with the proton dose distribution. According to the results, effective prompt gammas were produced mainly by oxygen, and the specific energy of the prompt gammas, allowing for selective measurement, was found to be 4.44 MeV. The results also show that the distal dose edge in the human phantom, despite the heterogeneous composition and the complicated shape, can be determined by measuring the prompt gamma distribution with an array-type detection system.

  18. Total deposition of inhaled particles related to age: comparison with age-dependent model calculations

    International Nuclear Information System (INIS)

    Becquemin, M.H.; Bouchikhi, A.; Yu, C.P.; Roy, M.

    1991-01-01

    To compare experimental data with age-dependent model calculations, total airway deposition of polystyrene aerosols (1, 2.05 and 2.8 μm aerodynamic diameter) was measured in ten adults, twenty children aged 12 to 15 years, ten children aged 8 to 12, and eleven under 8 years old. Ventilation was controlled, and breathing patterns were appropriate for each age, either at rest or at light exercise. Individually, deposition percentages increased with particle size and also from rest to exercise, except in children under 12 years, in whom they decreased from 20-21.5 to 14-14.5 for 1 μm particles and from 36.8-36.9 to 32.2-33.1 for 2.05 μm particles. Comparisons with the age-dependent model showed that, at rest, the observed data concerning children agreed with those predicted and were close to the adults' values, when the latter were higher than predicted. At exercise, child data were lower than predicted and lower than adult experimental data, when the latter agreed fairly well with the model. (author)

  19. Age-Dependent Fecal Bacterial Correlation to Inflammatory Bowel Disease for Newly Diagnosed Untreated Children

    Directory of Open Access Journals (Sweden)

    Felix Chinweije Nwosu

    2013-01-01

    Full Text Available The knowledge about correlation patterns between the fecal microbiota and inflammatory bowel diseases (IBD—comprising the two subforms Crohn's disease (CD and ulcerative colitis (UC—for newly diagnosed untreated children is limited. To address this knowledge gap, a selection of faecal specimens (CD, n=27 and UC, n=16 and non-IBD controls (n=30 children (age < 18 years was analysed utilising bacterial small subunit (SSU rRNA. We found, surprising age dependence for the fecal microbiota correlating to IBD. The most pronounced patterns were that E. coli was positively (R2=0.16, P=0.05 and Bacteroidetes, negatively (R2=0.15, P=0.05 correlated to age for CD patients. For UC, we found an apparent opposite age-related disease correlation for both Bacteroides and Escherichia. In addition, there was an overrepresentation of Haemophilus for the UC children. From our, results we propose a model where the aetiology of IBD is related to an on-going immunological development in children requiring different age-dependent bacterial stimuli. The impact of our findings could be a better age stratification for understanding and treating IBD in children.

  20. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  1. Age-Dependent and Lineage-Dependent Speciation and Extinction in the Imbalance of Phylogenetic Trees.

    Science.gov (United States)

    Holman, Eric W

    2017-11-01

    It is known that phylogenetic trees are more imbalanced than expected from a birth-death model with constant rates of speciation and extinction, and also that imbalance can be better fit by allowing the rate of speciation to decrease as the age of the parent species increases. If imbalance is measured in more detail, at nodes within trees as a function of the number of species descended from the nodes, age-dependent models predict levels of imbalance comparable to real trees for small numbers of descendent species, but predicted imbalance approaches an asymptote not found in real trees as the number of descendent species becomes large. Age-dependence must therefore be complemented by another process such as inheritance of different rates along different lineages, which is known to predict insufficient imbalance at nodes with few descendent species, but can predict increasing imbalance with increasing numbers of descendent species. [Crump-Mode-Jagers process; diversification; macroevolution; taxon sampling; tree of life.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Games of age-dependent prevention of chronic infections by social distancing.

    Science.gov (United States)

    Reluga, Timothy C; Li, Jing

    2013-06-01

    Epidemiological games combine epidemic modelling with game theory to assess strategic choices in response to risks from infectious diseases. In most epidemiological games studied thus-far, the strategies of an individual are represented with a single choice parameter. There are many natural situations where strategies can not be represented by a single dimension, including situations where individuals can change their behavior as they age. To better understand how age-dependent variations in behavior can help individuals deal with infection risks, we study an epidemiological game in an SI model with two life-history stages where social distancing behaviors that reduce exposure rates are age-dependent. When considering a special case of the general model, we show that there is a unique Nash equilibrium when the infection pressure is a monotone function of aggregate exposure rates, but non-monotone effects can appear even in our special case. The non-monotone effects sometimes result in three Nash equilibria, two of which have local invasion potential simultaneously. Returning to a general case, we also describe a game with continuous age-structure using partial-differential equations, numerically identify some Nash equilibria, and conjecture about uniqueness.

  3. The association between etanercept serum concentration and psoriasis severity is highly age-dependent.

    Science.gov (United States)

    Detrez, Iris; Van Steen, Kristel; Segaert, Siegfried; Gils, Ann

    2017-06-01

    The association between etanercept serum concentration and psoriasis disease severity is poorly investigated, and currently etanercept serum concentration monitoring that is aiming to optimize the psoriasis treatment lacks evidence. In this prospective study, we investigated the relation between etanercept exposure and disease severity via measuring etanercept concentrations at five consecutive time points in 56 psoriasis patients. Disease severity assessments included the Psoriasis Area and Severity Index (PASI), body surface area (BSA) and Physician Global Assessment (PGA), and etanercept and anti-etanercept antibody concentrations were determined every 3 months for a period of 1 year. The present study demonstrated that the association between etanercept concentration and psoriasis severity is age-dependent: when patients were stratified into three groups, patients in the youngest age group (-50 years) showed a lower PASI at a higher etanercept concentration (β = -0.26), whereas patients in the oldest age group (+59 years) showed the opposite trend (β =0.22). Similar age effects were observed in the relation of etanercept concentration with BSA ( P =0.02) and PGA ( P =0.02). The influence of age and length of time in therapy on the etanercept concentration-disease severity relation was unaffected by body mass index (BMI) or any other possible confounder. Incidence of anti-etanercept antibodies was low (2%). The age-dependent relation between etanercept serum concentrations is both unexpected and intriguing and needs further investigation. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Age-dependent reliability model considering effects of maintenance and working conditions

    International Nuclear Information System (INIS)

    Martorell, Sebastian; Sanchez, Ana; Serradell, Vicente

    1999-01-01

    Nowadays, there is some doubt about building new nuclear power plants (NPPs). Instead, there is a growing interest in analyzing the possibility to extend current NPP operation, where life management programs play an important role. The evolution of the NPP safety depends on the evolution of the reliability of its safety components, which, in turn, is a function of their age along the NPP operational life. In this paper, a new age-dependent reliability model is presented, which includes parameters related to surveillance and maintenance effectiveness and working conditions of the equipment, both environmental and operational. This model may be used to support NPP life management and life extension programs, by improving or optimizing surveillance and maintenance tasks using risk and cost models based on such an age-dependent reliability model. The results of the sensitivity study in the example application show that the selection of the most appropriate maintenance strategy would directly depend on the previous parameters. Then, very important differences are expected to appear under certain circumstances, particularly, in comparison with other models that do not consider maintenance effectiveness and working conditions simultaneously

  5. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    Science.gov (United States)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  6. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    International Nuclear Information System (INIS)

    Cassola, V F; Kramer, R; Khoury, H J; De Melo Lima, V J

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI A M and female RPI A F phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  7. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  8. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  9. Laser-induced forward transfer (LIFT) of congruent voxels

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Alberto, E-mail: pique@nrl.navy.mil [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, Eric [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-06-30

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  10. Laser-induced forward transfer (LIFT) of congruent voxels

    International Nuclear Information System (INIS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-01-01

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  11. Contrast detail phantom for SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejas, M.L. de; Arashiro, J G; Giannone, C. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Camuyrano, M; Nohara, G [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad Ciencias Exactas

    1996-06-01

    A new low variable contrast phantom for single photon emission computed tomography (SPECT) was constructed, tested and compared with other existing phantoms. It contains simulated cylindrical lesions of four different diameters (D{sub i}), embedded in a cylindrical scattering medium and a uniform section to evaluate tomographic uniformity. The concentration of tracer in the simulated lesions and the scattering medium (background) can be varied to simulate hot and cold lesions. Different applications of the phantom were tested, including determination of the minimum object contrast (OCm) necessary to detect lesions as a function of lesion size, lesion type (hot or cold) and acquisition and processing protocols by visual inspection. This parameter allows categorization of instruments comparing an `image quality index` (IQI). Preliminary comparison with the Britten contrast processing method showed that the detectable OCm was of the same order of magnitude, but the presented device seems more suitable for training and intercomparison purposes. The constructed phantom, of simple design, has proved to be useful for acquisition and processing condition evaluation, OCm estimation and external quality control. (author). 11 refs, 4 figs.

  12. Autoradiographic investigation of age-dependent proliferation kinetics in the mucosa of rat small intestine

    International Nuclear Information System (INIS)

    Kranz, D.; Laue, R.; Fuhrmann, I.

    1980-01-01

    Aging of cells depends on mitotic activity which is particularly evident in multicellular organisms. The cell kinetics of the mucosa of the small intestine in a total of 244 Wistar rats aged 6 days, 6 weeks, 6, 12, 23 and 28 months, resp., were studied histoautoradiographically. It could be demonstrated that the regeneration rate of cells per hour in the crypts of the small intestine and the migration velocity of the enterocytes differ in young and old individuals, and that the intermitotic cells have age-dependent properties as well. In addition, it could be proved that intermitotic cells have a non growth fraction, too, which, at an advanced age, decreases only slightly although significantly in terms of statistics. For the easily vulnerable crypt epithelium it is a reserve capacity and ban be included in the proliferating pool if necessary. (author)

  13. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    Science.gov (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  14. Assessment of 226Ra age-dependent dose from water intake

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Srisuksawad, Kanitha

    2008-01-01

    The radioactivity in canal and ground waters collected in a 2-year long observation from the vicinity of the Rare Earth Research and Development Center (RRDC), Phathumthani Province, Thailand, was measured in order to determine the concentration of 226 Ra and to estimate the age-dependent effective dose to humans due to consumption. 226 Ra activities in both canal and ground waters were well below the WHO guidance level for drinking water quality of 1 Bq L -1 . The highest 226 Ra effective doses per year were found for infants and teens. However, the observed levels of calculated 226 Ra effective doses for all age groups in both canal and ground waters show satisfactory low values (less than 15 μSv yr -1 ). These values are acceptable in accordance with the WHO recommended reference dose level of 100 μSv yr -1 from water intake of 2 L day -1

  15. Age-dependent branching processes for surveillance of vaccine-preventable diseases with incubation period

    Directory of Open Access Journals (Sweden)

    Marusia N Bojkova

    2010-10-01

    Full Text Available The purpose of this paper is to review the recent results of the authors in the area of infectious disease modelling by means of branching stochastic processes. This is a new approach involving age-dependent branching models, which turned out to be more appropriate and flexible for describing the spread of an infection in a given population, than discrete time ones. Concretely, Bellman-Harris and Sevast’yanov’s branching processes are investigated. It is justified that the proposed models are proper candidates as models of infectious diseases with incubation period like measles, mumps, avian flu, etc. It is worth to notice that in general the developed methodology is applicable to the diseases that follow the so-called SIR (susceptible- infected-removed scheme in terms of epidemiological models. Two policies of extra-vaccination level are proposed and compared on the ground of simulation examples.

  16. Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    Science.gov (United States)

    Homberg, Judith R.; Olivier, Jocelien D. A.; Blom, Tom; Arentsen, Tim; van Brunschot, Chantal; Schipper, Pieter; Korte-Bouws, Gerdien; van Luijtelaar, Gilles; Reneman, Liesbeth

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine

  17. Age dependent in vitro metabolism of bifenthrin in rat and human hepatic microsomes.

    Science.gov (United States)

    Nallani, Gopinath C; Chandrasekaran, Appavu; Kassahun, Kelem; Shen, Li; ElNaggar, Shaaban F; Liu, Zhiwei

    2018-01-01

    Bifenthrin, a pyrethroid insecticide, undergoes oxidative metabolism leading to the formation of 4'-hydroxy-bifenthrin (4'-OH-BIF) and hydrolysis leading to the formation of TFP acid in rat and human hepatic microsomes. In this study, age-dependent metabolism of bifenthrin in rats and humans were determined via the rates of formation of 4'-OH-BIF and TFP acid following incubation of bifenthrin in juvenile and adult rat (PND 15 and PND 90) and human (18years) liver microsomes. Furthermore, in vitro hepatic intrinsic clearance (CL int ) of bifenthrin was determined by substrate consumption method in a separate experiment. The mean V max (±SD) for the formation of 4'-OH-BIF in juvenile rat hepatic microsomes was 25.0±1.5pmol/min/mg which was significantly lower (pbifenthrin occurs primarily via oxidative pathway with relatively lesser contribution (~30%) from hydrolytic pathway in both rat and human liver microsomes. The CL int values for bifenthrin, determined by monitoring the consumption of substrate, in juvenile and adult rat liver microsomes fortified with NADPH were 42.0±7.2 and 166.7±20.5μl/min/mg, respectively, and the corresponding values for human liver microsomes were 76.0±4.0 and 21.3±1.2μl/min/mg, respectively. The data suggest a major species difference in the age dependent metabolism of bifenthrin. In human liver microsomes, bifenthrin is metabolized at a much higher rate in juveniles than in adults, while the opposite appears to be true in rat liver microsomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Age-dependent male mating tactics in a spider mite-A life-history perspective.

    Science.gov (United States)

    Sato, Yukie; Rühr, Peter T; Schmitz, Helmut; Egas, Martijn; Blanke, Alexander

    2016-10-01

    Males often fight with rival males for access to females. However, some males display nonfighting tactics such as sneaking, satellite behavior, or female mimicking. When these mating tactics comprise a conditional strategy, they are often thought to be explained by resource holding potential (RHP), that is, nonfighting tactics are displayed by less competitive males who are more likely to lose a fight. The alternative mating tactics, however, can also be explained by life-history theory, which predicts that young males avoid fighting, regardless of their RHP, if it pays off to wait for future reproduction. Here, we test whether the sneaking tactic displayed by young males of the two-spotted spider mite can be explained by life-history theory. We tested whether young sneaker males survive longer than young fighter males after a bout of mild or strong competition with old fighter males. We also investigated whether old males have a more protective outer skin-a possible proxy for RHP-by measuring cuticle hardness and elasticity using nanoindentation. We found that young sneaker males survived longer than young fighter males after mild male competition. This difference was not found after strong male competition, which suggests that induction of sneaking tactic is affected by male density. Hardness and elasticity of the skin did not vary with male age. Given that earlier work could also not detect morphometric differences between fighter and sneaker males, we conclude that there is no apparent increase in RHP with age in the mite and age-dependent male mating tactics in the mite can be explained only by life-history theory. Because it is likely that fighting incurs a survival cost, age-dependent alternative mating tactics may be explained by life-history theory in many species when reproduction of old males is a significant factor in fitness.

  19. A Prospective Study of Age-dependent Changes in Propofol-induced Electroencephalogram Oscillations in Children.

    Science.gov (United States)

    Lee, Johanna M; Akeju, Oluwaseun; Terzakis, Kristina; Pavone, Kara J; Deng, Hao; Houle, Timothy T; Firth, Paul G; Shank, Erik S; Brown, Emery N; Purdon, Patrick L

    2017-08-01

    In adults, frontal electroencephalogram patterns observed during propofol-induced unconsciousness consist of slow oscillations (0.1 to 1 Hz) and coherent alpha oscillations (8 to 13 Hz). Given that the nervous system undergoes significant changes during development, anesthesia-induced electroencephalogram oscillations in children may differ from those observed in adults. Therefore, we investigated age-related changes in frontal electroencephalogram power spectra and coherence during propofol-induced unconsciousness. We analyzed electroencephalogram data recorded during propofol-induced unconsciousness in patients between 0 and 21 yr of age (n = 97), using multitaper spectral and coherence methods. We characterized power and coherence as a function of age using multiple linear regression analysis and within four age groups: 4 months to 1 yr old (n = 4), greater than 1 to 7 yr old (n = 16), greater than 7 to 14 yr old (n = 30), and greater than 14 to 21 yr old (n = 47). Total electroencephalogram power (0.1 to 40 Hz) peaked at approximately 8 yr old and subsequently declined with increasing age. For patients greater than 1 yr old, the propofol-induced electroencephalogram structure was qualitatively similar regardless of age, featuring slow and coherent alpha oscillations. For patients under 1 yr of age, frontal alpha oscillations were not coherent. Neurodevelopmental processes that occur throughout childhood, including thalamocortical development, may underlie age-dependent changes in electroencephalogram power and coherence during anesthesia. These age-dependent anesthesia-induced electroencephalogram oscillations suggest a more principled approach to monitoring brain states in pediatric patients.

  20. Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat.

    Directory of Open Access Journals (Sweden)

    Judith R Homberg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI Prozac® (fluoxetine is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg at postnatal day (PND 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7-14 days after the last injection when (norfluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (norfluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT(1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential

  1. Cerebellum-specific and age-dependent expression of an endogenous retrovirus with intact coding potential

    Directory of Open Access Journals (Sweden)

    Itoh Takayuki

    2011-10-01

    Full Text Available Abstract Background Endogenous retroviruses (ERVs, including murine leukemia virus (MuLV type-ERVs (MuLV-ERVs, are presumed to occupy ~10% of the mouse genome. In this study, following the identification of a full-length MuLV-ERV by in silico survey of the C57BL/6J mouse genome, its distribution in different mouse strains and expression characteristics were investigated. Results Application of a set of ERV mining protocols identified a MuLV-ERV locus with full coding potential on chromosome 8 (named ERVmch8. It appears that ERVmch8 shares the same genomic locus with a replication-incompetent MuLV-ERV, called Emv2; however, it was not confirmed due to a lack of relevant annotation and Emv2 sequence information. The ERVmch8 sequence was more prevalent in laboratory strains compared to wild-derived strains. Among 16 different tissues of ~12 week-old female C57BL/6J mice, brain homogenate was the only tissue with evident expression of ERVmch8. Further ERVmch8 expression analysis in six different brain compartments and four peripheral neuronal tissues of C57BL/6J mice revealed no significant expression except for the cerebellum in which the ERVmch8 locus' low methylation status was unique compared to the other brain compartments. The ERVmch8 locus was found to be surrounded by genes associated with neuronal development and/or inflammation. Interestingly, cerebellum-specific ERVmch8 expression was age-dependent with almost no expression at 2 weeks and a plateau at 6 weeks. Conclusions The ecotropic ERVmch8 locus on the C57BL/6J mouse genome was relatively undermethylated in the cerebellum, and its expression was cerebellum-specific and age-dependent.

  2. Age-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    Directory of Open Access Journals (Sweden)

    Seok Kyu eKang

    2015-05-01

    Full Text Available Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB, with NKCC1 antagonist bumetanide (BTN as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in postnatal day 7, 10 and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  3. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  4. The Effects of Antioxidants and Experience on the Development of Age Dependent Cognitive Dysfunction and Neuropathology in Canines

    National Research Council Canada - National Science Library

    Muggenburg, Bruce

    2001-01-01

    Progression of individual rates of age-dependent cognitive dysfunction and the potential for antioxidants and environmental enrichment to slow the rate of decline are being evaluated over a 3-year span in beagle dogs...

  5. The Effects of Antioxidants and Experience on the Development of Age Dependent Cognitive Dysfunction and Neuropathology in Canines

    National Research Council Canada - National Science Library

    Muggenburg, Bruce

    2002-01-01

    Progression of individual rates of age-dependent cognitive dysfunction and the potential for antioxidants and environmental enrichment to slow the rate of decline are being evaluated over a 3-year span in beagle dogs...

  6. The Effects of Antioxidants and Experience on the Development of Age Dependent Cognitive Dysfunction and Neuropathology in Canines

    National Research Council Canada - National Science Library

    Muggenburg, Bruce

    2003-01-01

    Progression of individual rates of age-dependent cognitive dysfunction and the potential for antioxidants and environmental enrichment to slow the rate of decline are being evaluated over a 3-year span in beagle dogs...

  7. Towards a real time computation of the dose in a phantom segmented into homogeneous meshes

    International Nuclear Information System (INIS)

    Blanpain, B.

    2009-10-01

    Automatic radiation therapy treatment planning necessitates a very fast computation of the dose delivered to the patient. We propose to compute the dose by segmenting the patient's phantom into homogeneous meshes, and by associating, to the meshes, projections to dose distributions pre-computed in homogeneous phantoms, along with weights managing heterogeneities. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. This method is very fast, in particular when there are few points of interest (several hundreds). In this case, results are obtained in less than one second. With such performances, practical realization of automatic treatment planning becomes practically feasible. (author)

  8. Voxel inversion of airborne electromagnetic data for improved model integration

    Science.gov (United States)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054

  9. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  10. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    Science.gov (United States)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  11. Laser-induced forward transfer (LIFT) of congruent voxels

    Science.gov (United States)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  12. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    Science.gov (United States)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  13. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    Science.gov (United States)

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p Wilcoxon signed-rank test, p test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors

  14. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  15. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  16. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Centro Federal de Educacao Tecnologica de Pernambuco, Avenida Professor Luiz Freire 500, CEP 50740-540, Recife, Pernambuco, Brazil and Escola Politecnica, UPE, Rua Benfica 455, CEP 50751-460, Recife, Pernambuco (Brazil); Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU (United Kingdom)

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  17. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  18. 3D Printing Openable Imaging Phantom Design

    International Nuclear Information System (INIS)

    Kim, Myoung Keun; Won, Jun Hyeok; Lee, Seung Wook

    2017-01-01

    The purpose of this study is to design an openable phantom that can replace the internal measurement bar used for contrast comparison in order to increase the efficiency of manufacturing imaging phantom used in the medical industry and to improve convenience using 3D printer. Phantom concept design, 3D printing, and Image reconstruction were defined as the scope of the thesis. Also, we study metal artifact reduction with openable phantom. We have designed a Openable phantom using 3D printing, and have investigated metal artifact reduction after inserting a metallic material inside the phantom. The openable phantom can be adjusted at any time to suit the user's experiment and can be easily replaced and useful.

  19. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    International Nuclear Information System (INIS)

    Wang Wen; Hu Liqin; Cheng Mengyun; Long Pengcheng

    2015-01-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. (authors)

  20. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Science.gov (United States)

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  1. Self-motivated and stress-response performance assays in mice are age-dependent.

    Science.gov (United States)

    Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina; Goh, Jorming; Rabinovitch, Peter; Ladiges, Warren

    2017-05-01

    Chronic health conditions of the elderly lead to limitations in physical activity with disability, anxiety, and increased need for medical care and assisted living conditions. Physical performance tests are used to screen for pending loss of mobility and can serve as endpoints to monitor the effectiveness of intervention measures. Since limited mobility is associated with the physical and mental health of a person, evaluation of this in preclinical aging studies in mice will provide a translational approach for testing new intervention strategies. We assessed physiological parameters in 4, 12, 20 and 28month old C57BL/6 and CB6F1 male mice using a rotating rod, a free running wheel, and a photo beam activity field, designed to determine changes in coordinated walking ability, self-motivated running distance, and anxiety response to a novel environment, respectively. Older mice showed decreased coordinated walking times and decreased running distances, predictive of physical performance ability and motivation in the elderly. Changes in both lateral and vertical movements were observed in a novel cage environment suggesting different levels of anxiety. Because the genetic background of the two mouse strains influenced test results in an age-dependent manner, it is imperative to recognize that diverse genetic backgrounds in mice may yield different data in preclinical studies and would need to be interpreted individually for translational applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Age-dependent mortality in the pilocarpine model of status epilepticus.

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; Holbert, William H; Churn, Severn B; DeLorenzo, Robert J

    2009-04-10

    Status epilepticus (SE) is an acute neurological emergency associated with significant morbidity and mortality. Age has been shown to be a critical factor in determining outcome after SE. Understanding the causes of this increased mortality with aging by developing an animal model to study this condition would play a major role in studying mechanisms to limit the mortality due to SE. Here we employed pilocarpine to induce SE in rats aged between 5 and 28 weeks. Similar to clinical studies in man, we observed that age was a significant predictor of mortality following SE. While no deaths were observed in 5-week-old animals, mortality due to SE increased progressively with age and reached 90% in 28-week-old animals. There was no correlation between the age of animals and severity of SE. With increasing age mortality occurred earlier after the onset of SE. These results indicate that pilocarpine-induced SE in the rat provides a useful model to study age-dependent SE-induced mortality and indicates the importance of using animal models to elucidate the mechanisms contributing to SE-induced mortality and the development of novel therapeutic interventions to prevent SE-induced death.

  3. Storytelling as an age-dependent skill: oral recall of orally presented stories.

    Science.gov (United States)

    Mergler, N L; Faust, M; Goldstein, M D

    During experiment 1, three taped prose passages read by college student, middle-aged, or old tellers were orally recalled by college students in an incidental memory paradigm. More story units were remembered as the age of the teller increased (r = +.642, p less than .05). Comparison of these results, with prior research using written, as opposed to oral, presentation and recall of these stories, showed no differences in specific story units remembered. Teller age predicted recall on the two "storied" passages. These passages elicited more favorable comments from listeners when read by older tellers. The third, descriptive passage was less favorably regarded by listeners hearing older tellers. During experiment 2, taped storied passages read by middle-aged tellers were falsely attributed to young, middle-aged, or old persons before the college students listened. Incidental recall did not show an age of teller effect in this case, but the listener's evaluation of the speaker exhibited age-dependent stereotypes. It was concluded that 1) physical qualities of older voices lead to more effective oral transmission; 2) that one expects to receive certain types of oral information from older persons; and 3) that a mismatch between physical vocal quality and age attribution effects evaluation of the speaker, not recall of the information.

  4. Consideration of age-dependent radium retention in people on the basis of the beagle model

    International Nuclear Information System (INIS)

    Parks, N.J.; Keane, A.T.

    1981-01-01

    This paper examines in humans the proposition emanating from studies in beagles that long-term retention of radium varies in proportion to the calcium addition rate at the time of intake. Because data on the calcium addition rate in younger humans were fragmentary, human calcium-addition rates were scaled from those in beagles, the relative calcium accretion rates in the two species at equivalent stages of skeletal growth providing the scaling factor. The variation of radium retention with age was determined by fitting a modified power function to data on the retention of radium from about 30 to 15,000 days following a series of therapeutic injections of 226 Ra in humans ranging in age from 18 to 63 yr. The fractional retention R at t days following a single injection of 226 Ra was described by R = (1 + t/d) - 0 44 . The age-dependent time constant d in the retention function was found to be proportional to the calcium addition rate at the time of injection in subjects receiving 226 Ra

  5. Age-dependent difference in the computed tomography numbers of the normal parotid gland of Koreans

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Lee, Eun Sook; Kim, Kee Deog; Park, Chang Seo

    1999-01-01

    To determine normal CT number range of parotid gland by analyzing the change by age increase and the difference among individuals and between both sexes in CT number of normal parotid gland. 134 subjects who took the CT scan between the period of Jan. 1996 and Dec. 1997 at Yonsei University, Dental Hospital were selected. Criteria for selection were that the patients must be within the normal range clinically and radiologically, and the entire parotid gland on the axial view must be shown. Among the axial views, the one showing the greatest parotid gland size was selected and its CT number was recorded. Also, CT numbers from both masseter muscle were recorded as its control. There was statistically significant correlation between CT number of right and left of parotid glands and masseter muscles. With the increase of age, there is a significant decrease in the CT number of parotid gland (p 0.05). As age increases, CT number of parotid gland has a tendency to decrease, and there is no significant difference in the CT numbers between left and right parotid gland. Therefore in the CT scan of patients suspected of having an salivary gland disease of the parotid gland, to consider normal range of the age-dependent CT numbers of parotid gland and compare the CT numbers of the right and left parotid gland might be useful in diagnosing the disease.

  6. Determination of Age-Dependent Reference Ranges for Coagulation Tests Performed Using Destiny Plus.

    Science.gov (United States)

    Arslan, Fatma Demet; Serdar, Muhittin; Merve Ari, Elif; Onur Oztan, Mustafa; Hikmet Kozcu, Sureyya; Tarhan, Huseyin; Cakmak, Ozgur; Zeytinli, Merve; Yasar Ellidag, Hamit

    2016-06-01

    In order to apply the right treatment for hemostatic disorders in pediatric patients, laboratory data should be interpreted with age-appropriate reference ranges. The purpose of this study was to determining age-dependent reference range values for prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen tests, and D-dimer tests. A total of 320 volunteers were included in the study with the following ages: 1 month - 1 year (n = 52), 2 - 5 years (n = 50), 6 - 10 years (n = 48), 11 - 17 years (n = 38), and 18 - 65 years (n = 132). Each volunteer completed a survey to exclude hemostatic system disorder. Using a nonparametric method, the lower and upper limits, including 95% distribution and 90% confidence intervals, were calculated. No statistically significant differences were found between PT and aPTT values in the groups consisting of children. Thus, the reference ranges were separated into child and adult age groups. PT and aPTT values were significantly higher in the children than in the adults. Fibrinogen values in the 6 - 10 age group and the adult age group were significantly higher than in the other groups. D-dimer levels were significantly lower in those aged 2 - 17; thus, a separate reference range was established. These results support other findings related to developmental hemostasis, confirming that adult and pediatric age groups should be evaluated using different reference ranges.

  7. The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ayden Gouveia

    2016-10-01

    Full Text Available While epigenetic modifications have emerged as attractive substrates to integrate environmental changes into the determination of cell identity and function, specific signals that directly activate these epigenetic modifications remain unknown. Here, we examine the role of atypical protein kinase C (aPKC-mediated Ser436 phosphorylation of CBP, a histone acetyltransferase, in adult hippocampal neurogenesis and memory. Using a knockin mouse strain (CbpS436A in which the aPKC-CBP pathway is deficient, we observe impaired hippocampal neuronal differentiation, maturation, and memory and diminished binding of CBP to CREB in 6-month-old CbpS436A mice, but not at 3 months of age. Importantly, elevation of CREB activity rescues these deficits, and CREB activity is reduced whereas aPKC activity is increased in the murine hippocampus as they age from 3 to 6 months regardless of genotype. Thus, the aPKC-CBP pathway is a homeostatic compensatory mechanism that modulates hippocampal neurogenesis and memory in an age-dependent manner in response to reduced CREB activity.

  8. Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities.

    Science.gov (United States)

    Mary, Alison; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe

    2017-10-01

    This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

    Energy Technology Data Exchange (ETDEWEB)

    Matoori, Simon [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Froehlich, Johannes M. [Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Breitenstein, Stefan [Cantonal Hospital Winterthur, Department of Surgery, Clinic for Visceral and Thoracic Surgery, Winterthur (Switzerland); Doert, Aleksis [Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Pozdniakova, Viktoria [Stavanger University Hospital, Department of Radiology, Stavanger (Norway); Koh, Dow-Mu [Royal Marsden Hospital, Department of Radiology, Surrey, England (United Kingdom); Gutzeit, Andreas [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland)

    2016-06-15

    To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. (orig.)

  10. Collagene order of articular cartilage by clinical magnetic resonance images and its age dependency

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Gruender, W. [Inst. of Medical Physics and Biophysics, Univ. of Leipzig (Germany)

    2005-07-01

    The present papers describes a novel method to obtain information on the degree of order of the collagen network of the knee meniscal cartilage by means of a single clinical MRI. Images were obtained from 34 healthy volunteers aged between 6 and 76 years as well as from one patient with clinically-diagnosed arthrosis at the age of 32 and 37 years. A siemens vision (1.5 T) MRT with TR = 750 ms, TE = 50 ms, FoV = 160 mm, and Matrix 512 x 512 was used for this purpose. The MR signal intensities of the cartilage were read out along slices with constant height above the subchondral bone and plotted versus the actual angle to the external magnetic field. The obtained intensity curves were fitted by a model distribution, and the degree of order of the collagen fibers was calculated. For the knee meniscal cartilage, there was an age-dependency of the degree of order and a significant deviation of the volunteer with arthrosis from the normal curve. The results are discussed in view of the arcade model and of a possible use of non-invasive clinical MRT for the detection of early arthrotic changes of cartilage. (orig.)

  11. Penetration of radionuclides across the skin. Rat age dependent promethium permeation through skin in vitro

    International Nuclear Information System (INIS)

    Kassai, Z.; Kassai, A.; Bauerova, K.; Koprda, V.; Harangozo, M.; Bendova, P.; Bujnova, A.

    2003-01-01

    The composition and the permeation properties of the skin are dependent on age. In the animal models for permation studies, age affects the mechanical as well as the permeation properties significantly. The time dependence of permeation of 147 Pm 3+ from aqueous solution was established by the animal skin model and the age dependence of promethium permeation through the skin was examined. The aim was to find the optimum rat skin age model for radionuclide permeation studies and to assess the relative importance of the main permeation pathways: transepidermal and transfollicular permeation. The skin from 5-day-old rats (5DR) was found to represent the optimum animal model to study transepidermal permeation of ions. The skin from 9-day-old rats (9DR) was selected to study transfollicular permeation of ions. Comparison of the permeated amounts of promethium through the skin without hairs (3 DR to 6 DR) and with hairs (7DR to 12DR) showed that the additional permation mode via follicles significantly contributed to the permeation rate and extent. (author)

  12. ‘Developmental Delay’ Reconsidered: The Critical Role of Age-Dependent, Co-variant Development

    Directory of Open Access Journals (Sweden)

    Yonata Levy

    2018-04-01

    Full Text Available In memory of Annette Karmiloff-Smith.This paper reviews recent neurobiological research reporting structural co-variance and temporal dependencies in age-dependent gene expression, parameters of cortical maturation, long range connectivity and interaction of the biological network with the environment. This research suggests that age by size trajectories of brain structures relate to functional properties more than absolute sizes. In line with these findings, recent behavioral studies of typically developing children whose language development was delayed reported long term consequences of such delays. As for neurodevelopmental disorders, disrupted developmental timing and slow acquisitional pace are hallmarks of these populations. It is argued that these behavioral and neuro-biological results highlight the need to commit to a developmental model which will reflect the fact that temporal dependencies overseeing structural co-variance among developmental components are major regulatory factors of typical development of the brain/mind network. Consequently, the concept of ‘developmental delay’ in developmental theorizing needs to be reconsidered.

  13. Accelerated Age-Dependent Hippocampal Volume Loss in Parkinson Disease With Mild Cognitive Impairment.

    Science.gov (United States)

    Schneider, Christine B; Donix, Markus; Linse, Katharina; Werner, Annett; Fauser, Mareike; Klingelhoefer, Lisa; Löhle, Matthias; von Kummer, Rüdiger; Reichmann, Heinz; Storch, Alexander

    2017-09-01

    Patients with Parkinson disease are at high risk of developing dementia. During the course of the disease, a substantial number of patients will experience a cognitive decline, indicating the dynamics of the underlying neuropathology. Magnetic resonance imaging (MRI) has become increasingly useful for identifying structural characteristics in radiological brain anatomy existing prior to clinical symptoms. Whether these changes reflect pathology, whether they are aging related, or both often remains unclear. We hypothesized that aging-associated brain structural changes would be more pronounced in the hippocampal region among patients with Parkinson disease having mild cognitive deficits relative to cognitively unimpaired patients. Using MRI, we investigated 30 cognitively healthy patients with Parkinson disease and 33 patients with nondemented Parkinson disease having mild cognitive impairment. All participants underwent structural MRI scanning and extensive clinical and neuropsychological assessments. Irrespective of the study participants' cognitive status, older age was associated with reduced cortical thickness in various neocortical regions. Having mild cognitive impairment was not associated with an increased rate of cortical thinning or volume loss in these regions, except in the hippocampus bilaterally. Patients with Parkinson disease having mild cognitive impairment show an accelerated age-dependent hippocampal volume loss when compared with cognitively healthy patients with Parkinson disease. This may indicate pathological processes in a key region for memory functioning in patients with Parkinson disease at risk of developing dementia. Structural MRI of the hippocampal region could potentially contribute to identifying patients who should receive early treatment aimed at delaying the clinical onset of dementia.

  14. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity.

    Science.gov (United States)

    Hamidouche, Zahia; Rother, Karen; Przybilla, Jens; Krinner, Axel; Clay, Denis; Hopp, Lydia; Fabian, Claire; Stolzing, Alexandra; Binder, Hans; Charbord, Pierre; Galle, Joerg

    2017-03-01

    The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704. © The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.

  16. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

    International Nuclear Information System (INIS)

    Matoori, Simon; Froehlich, Johannes M.; Breitenstein, Stefan; Doert, Aleksis; Pozdniakova, Viktoria; Koh, Dow-Mu; Gutzeit, Andreas

    2016-01-01

    To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. (orig.)

  17. Age-dependent variations of zinc-65 metabolism in LACA mice

    International Nuclear Information System (INIS)

    He Liusheng; Yan Xiaoshan; Wu Dechang

    1991-01-01

    Mice were gavaged with zinc-65 solution, 8.6-19.3 kBq per mouse, and the whole-body retention and organ content of zinc-65 measured at diffe-rent times afterwards. The age-dependence of the fractional absorption of zinc-65 from the gastrointestinal tract (f 1 ) endogenous faecal excretion fraction of zinc-65 (EFEF), tissue distribution and whole-body retention were determined. f 1 values obtained were 0.86 ±0.15, 0.64±0.11, 0.52±0.07 and 0.39±0.02 in suckling, adolescent, young adult and older mice, respectively. The EFEF values determined were 0.083±0.008, 0.099±0.004, 0.122±0.018 and 0.144±0.005 of intraperitoneally injected zinc-65 was in suckling, adolescent, young adult and older mice at administration. Zinc-65 mainly distributed in the liver, muscle, lung, kidney and bone. In some tissues, there was an inverse relationship between relative content of gavaged zinc-65 and animal's age at administration. The whole-body biological half-lives of zinc-65 increased with animal age. (author)

  18. Practical applications of age-dependent reliability models and analysis of operational data

    International Nuclear Information System (INIS)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L.

    2005-01-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems

  19. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    Science.gov (United States)

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  20. Risk evaluations of aging: Procedures guide for an age-dependent PSA with emphasis on prioritization and sensitivity studies

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1991-01-01

    Based on the previous work which has been performed in the project, a procedures guide is being developed for carrying out an age-dependent probabilistic safety assessment (PSA) for evaluating the core damage frequency with aging effects explicitly treated. A PSA is basically a Level 1 Probabilistic Risk Assessment (PRA). The emphasis of the guide is on prioritization and sensitivity studies. Focus is also on active components although consideration of aging effects in passive components is also treated. The guide is intended to become a NUREG/CR and is the first of three volumes which are being developed. The following topics with demonstrations and applications are described in the presentation: (1) the age-dependent PSA versus the standard PSA; (2) component reliability models used in an age-dependent PSA; (3) approaches for transforming a PSA into an age-dependent PSA; (4) application of an age-dependent PSA; (5) using a PSA to evaluate the risk effects from aging passive components; (6) evaluation of the risk importance of passive components; (7) prioritizations of aging contributors; (8) evaluations of test and maintenance effectiveness; and (9) sensitivity studies and uncertainty analyses of aging effects

  1. Aging-dependent changes in rat heart mitochondrial glutaredoxins—Implications for redox regulation

    Directory of Open Access Journals (Sweden)

    Xing-Huang Gao

    2013-01-01

    Full Text Available Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1 and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS. In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50–60% in the IMS, but Grx2 is increased by 1.4–2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM and interfibrillar (IFM mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron–sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron–sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ.

  2. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence.

    Science.gov (United States)

    Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C

    2018-04-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.

  3. Age-Dependent Pleiotropy Between General Cognitive Function and Major Psychiatric Disorders.

    Science.gov (United States)

    Hill, W David; Davies, Gail; Liewald, David C; McIntosh, Andrew M; Deary, Ian J

    2016-08-15

    General cognitive function predicts psychiatric illness across the life course. This study examines the role of pleiotropy in explaining the link between cognitive function and psychiatric disorder. We used two large genome-wide association study data sets on cognitive function-one from older age, n = 53,949, and one from childhood, n = 12,441. We also used genome-wide association study data on educational attainment, n = 95,427, to examine the validity of its use as a proxy phenotype for cognitive function. Using a new method, linkage disequilibrium regression, we derived genetic correlations, free from the confounding of clinical state between psychiatric illness and cognitive function. We found a genetic correlation of .711 (p = 2.26e-12) across the life course for general cognitive function. We also showed a positive genetic correlation between autism spectrum disorder and cognitive function in childhood (rg = .360, p = .0009) and for educational attainment (rg = .322, p = 1.37e-5) but not in older age. In schizophrenia, we found a negative genetic correlation between older age cognitive function (rg = -.231, p = 3.81e-12) but not in childhood or for educational attainment. For Alzheimer's disease, we found negative genetic correlations with childhood cognitive function (rg = -.341, p = .001), educational attainment (rg = -.324, p = 1.15e-5), and with older age cognitive function (rg = -.324, p = 1.78e-5). The pleiotropy exhibited between cognitive function and psychiatric disorders changed across the life course. These age-dependent associations might explain why negative selection has not removed variants causally associated with autism spectrum disorder or schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Age-dependent salt hypertension in Dahl rats: fifty years of research.

    Science.gov (United States)

    Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J

    2012-01-01

    Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is

  5. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  6. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  7. Age-dependent trade-offs between immunity and male, but not female, reproduction.

    Science.gov (United States)

    McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W

    2013-01-01

    Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the

  8. Age-Dependent Effects of Topiramate on the Acquisition and the Retention of Rapid Kindling

    Science.gov (United States)

    Mazarati, Andréy; Shin, Don; Auvin, Stéphane; Sankar, Raman

    2008-01-01

    Summary Purpose To examine antiepileptogenic, disease-modifying, and anticonvulsant effects of topiramate under conditions of rapid kindling at different stages of development. Methods Afterdischarge threshold (ADT) and duration (ADD) were examined in two-, three-, and five-week old Wistar rats before and after administration of topiramate (200 mg/kg). Animals underwent a rapid kindling protocol (sixty 10 second trains, bipolar 20 Hz square wave pulses delivered every five minutes). The progression of behavioral and electrographic seizures, and responses to test stimulations 24 hours after the protocol were compared between topiramate and vehicle treated control rats. In addition, rats that were previously given vehicle only prior to kindling, were then given topiramate to examine the effect on established kindled seizures. Results In two-week old animals, topiramate affected neither the baseline afterdischarge, nor the progression of kindled seizures. In three-week old rats, topiramate did not modify the baseline afterdischarge, but significantly delayed the occurrence of full motor seizures in response to repeated stimulations. Topiramate treatment of five-week old rats increased baseline ADT, shortened ADD, and delayed the progression of kindled seizures. Twenty four hours after the last kindling stimulation, animals of all ages exhibited a decreased ADT, an increase ADD, and developed behavioral seizures in response to threshold stimulation. Vehicle treated kindled rats that were then given topiramate displayed significantly attenuated behavioral seizures induced by the threshold stimulation. Conclusions Topiramate exhibited age-dependent disease-modifying effects under conditions of rapid kindling, but failed to block epileptogenesis. Topiramate also inhibited kindled seizures with equal efficacy across the three ages. PMID:17319916

  9. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    Science.gov (United States)

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  10. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence

    Science.gov (United States)

    Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.

    2018-01-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663

  11. [Investigation of the age-dependent development of brachygnathia inferior in the East Friesian milk sheep].

    Science.gov (United States)

    Pielmeier, Ricarda; Kerkmann, Andrea; Distl, Ottmar

    2012-01-01

    Shortness of the lower jaw (brachygnathia inferior, underbite) is a common anomaly in sheep. In order to study the age-dependent development of brachygnathia inferior, data of 73 East Friesian milk sheep from a breeding experiment over six generations were analysed. Data were recorded in regular intervals of four weeks from birth up to an age of at least 25 weeks. Brachygnathia inferior was determined by the distance between the edge of the central incisor of the lower jaw and the anterior surrounding of the upper jaw (DIFF-UK) using a measuring tape. Four main types of brachygnathia inferior were distinguished using means, standard deviations and maximum values of the individual animals.The thresholds were a maximum and mean DIFF-UK of 0.5 cm and a standard deviation of 0.266 cm. A total of 14 sheep (main types 3 and 4) showed an obvious brachygnathia inferior with mean DIFF-UK larger than 0.5 cm whereof ten animals showed a large variation of DIFF-UK values (standard deviation > 0.226 cm). Mean DIFF-UK values of 59 sheep were smaller than 0.5 cm (main types 1 and 2). One of these 59 animals had during the first four weeks of life DIFF-UK values of 1 cm and than decreasing values reaching zero within the next nine months (main type 2). Five of the 58 animals with main type 1 had a perfect occlusion of jaws, all with DIFF-UK values at zero during the whole recording period. Parents with severe or mild brachygnathia inferior had severely affected progeny. Selection of sheep for breeding with a perfect occlusion of jaws decreases the risk to pass on the hereditary disposition for brachygnathia inferior. An early inspection of potential breeding animals is advisable to detect all cases of brachygnathia inferior even if the underbite decreases in the first year of life.

  12. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Mark Asquith

    2012-06-01

    Full Text Available Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i innate immune cell frequencies; (ii expression of pattern recognition receptors (PRRs and innate signaling molecules; (iii cytokine responses of monocytes and dendritic cells (DC following stimulation with PRR agonists; and (iv plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC. Moreover, we found toll-like receptor (TLR agonists lipopolysaccharide (TLR4, fibroblast stimulating ligand-1 (TLR2/6, and ODN2006 (TLR7/9 induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM, were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.

  13. Accommodation and age-dependent eye model based on in vivo measurements.

    Science.gov (United States)

    Zapata-Díaz, Juan F; Radhakrishnan, Hema; Charman, W Neil; López-Gil, Norberto

    2018-03-21

    To develop a flexible model of the average eye that incorporates changes with age and accommodation in all optical parameters, including entrance pupil diameter, under photopic, natural, environmental conditions. We collated retrospective in vivo measurements of all optical parameters, including entrance pupil diameter. Ray-tracing was used to calculate the wavefront aberrations of the eye model as a function of age, stimulus vergence and pupil diameter. These aberrations were used to calculate objective refraction using paraxial curvature matching. This was also done for several stimulus positions to calculate the accommodation response/stimulus curve. The model predicts a hyperopic change in distance refraction as the eye ages (+0.22D every 10 years) between 20 and 65 years. The slope of the accommodation response/stimulus curve was 0.72 for a 25 years-old subject, with little change between 20 and 45 years. A trend to a more negative value of primary spherical aberration as the eye accommodates is predicted for all ages (20-50 years). When accommodation is relaxed, a slight increase in primary spherical aberration (0.008μm every 10 years) between 20 and 65 years is predicted, for an age-dependent entrance pupil diameter ranging between 3.58mm (20 years) and 3.05mm (65 years). Results match reasonably well with studies performed in real eyes, except that spherical aberration is systematically slightly negative as compared with the practical data. The proposed eye model is able to predict changes in objective refraction and accommodation response. It has the potential to be a useful design and testing tool for devices (e.g. intraocular lenses or contact lenses) designed to correct the eye's optical errors. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  14. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human

    International Nuclear Information System (INIS)

    Vidair, Charles A.

    2004-01-01

    One important aspect of risk assessment for the organophosphate and carbamate pesticides is to determine whether their neurotoxicity occurs at lower dose levels in human infants compared to adults. Because these compounds probably exert their neurotoxic effects through the inhibition of acetylcholinesterase (AChE), the above question can be narrowed to whether the cholinesterase inhibition and neurotoxicity they produce is age-dependent, both in terms of the effects produced and potency. The rat is the animal model system most commonly used to address these issues. This paper first discusses the adequacy of the postnatal rat to serve as a model for neurodevelopment in the postnatal human, concluding that the two species share numerous pathways of postnatal neurodevelopment, and that the rat in the third postnatal week is the neurodevelopmental equivalent of the newborn human. Then, studies are discussed in which young and adult rats were dosed by identical routes with organophosphates or carbamates. Four pesticides were tested in rat pups in their third postnatal week: aldicarb, chlorpyrifos, malathion, and methamidophos. The first three, but not methamidophos, caused neurotoxicity at dose levels that ranged from 1.8- to 5.1-fold lower (mean 2.6-fold lower) in the 2- to 3-week-old rat compared to the adult. This estimate in the rat, based on a limited data set of three organophosphates and a single carbamate, probably represents the minimum difference in the neurotoxicity of an untested cholinesterase-inhibiting pesticide that should be expected between the human neonate and adult. For the organophosphates, the greater sensitivity of postnatal rats, and, by analogy, that expected for human neonates, is correlated with generally lower levels of the enzymes involved in organophosphate deactivation

  15. Age-dependent Hepatic UDP-glucuronosyltransferase Gene Expression and Activity in Children

    Directory of Open Access Journals (Sweden)

    Elizabeth Neumann

    2016-11-01

    Full Text Available ABSTRACTUDP-glucuronosyltransferases (UGTs are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17 and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3 in liver tissue of donors (n = 38 ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19 of children donors. We found a statistically significant increase (nominal p < 0.05 in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7 and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 (ESR1 and pregnane X receptor (PXR, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05. These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children.

  16. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects?

    Science.gov (United States)

    Harper, Shavonn C; Brack, Andrew; MacDonnell, Scott; Franti, Michael; Olwin, Bradley B; Bailey, Beth A; Rudnicki, Michael A; Houser, Steven R

    2016-04-01

    This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good. © 2016 American Heart Association, Inc.

  17. Impact on Dose Coefficients Calculated with ICRP Adult Mesh-type Reference Computational Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Yeon Soo; Nguyen, Thang Tat; Choi, Chan Soo; Lee, Han Jin; Han, Hae Gin; Han, Min Cheol; Shin, Bang Ho; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    In 2016, the International Commission on Radiological Protection (ICRP) formulated a new Task Group (TG) (i.e., TG 103) within Committee 2. The ultimate aim of the TG 103 is to develop the mesh-type reference computational phantoms (MRCPs) that can address dosimetric limitations of the currently used voxel-type reference computational phantoms (VRCPs) due to their limited voxel resolutions. The objective of the present study is to investigate dosimetric impact of the adult MRCPs by comparing dose coefficients (DCs) calculated with the MRCPs for some external and internal exposure cases and the reference DCs in ICRP Publications 116 and 133 that were produced with the adult VRCPs. In the present study, the DCs calculated with the adult MRCPs for some exposure cases were compared with the values in ICRP Publications 116 and 133. This comparison shows that in general the MRCPs provide very similar DCs for uncharged particles, but for charged particles provide significantly different DCs due to the improvement of the MRCPs.

  18. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    International Nuclear Information System (INIS)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.

    2013-01-01

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT

  19. An Improved Optimization Method for the Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, M. R.; Van Leemput, Koen

    2013-01-01

    In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the ...

  20. Quality control of geological voxel models using experts' gaze

    NARCIS (Netherlands)

    Maanen, P.P. van; Busschers, F.S.; Brouwer, A.M.; Meulen, M.J. van der; Erp, J.B.F. van

    2015-01-01

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  1. Quality Control of Geological Voxel Models using Experts' Gaze

    NARCIS (Netherlands)

    van Maanen, Peter-Paul; Busschers, Freek S.; Brouwer, Anne-Marie; van der Meulendijk, Michiel J.; van Erp, Johannes Bernardus Fransiscus

    Due to an expected increase in geological voxel model data-flow and user demands, the development of improved quality control for such models is crucial. This study explores the potential of a new type of quality control that improves the detection of errors by just using gaze behavior of 12

  2. Voxel Advanced Digital-manufacturing for Earth & Regolith in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will...

  3. A Morphological Approach to the Voxelization of Solids

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Sramek, Milos; Christensen, Niels Jørgen

    2000-01-01

    In this paper we present a new, morphological criterion for determining whether a geometric solid is suitable for voxelization at a given resolution. The criterion embodies two conditions, namely that the curvature of the solid must be bounded and the critical points of the distance field must be...

  4. Change in Image Quality According to the 3D Locations of a CBCT Phantom.

    Directory of Open Access Journals (Sweden)

    Jae Joon Hwang

    Full Text Available A patient's position changes in every CBCT scan despite patient alignment protocols. However, there have been studies to determine image quality differences when an object is located at the center of the field of view (FOV. To evaluate changes in the image quality of the CBCT scan according to different object positions, the image quality indexes of the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan and the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea were measured using the Quart DVT_AP phantom at the center of the FOV and 6 peripheral positions under four types of exposure conditions. Anterior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV were used for the peripheral positions. We evaluated and compared the voxel size, homogeneity, contrast to noise ratio (CNR, and the 10% point of the modulation transfer function (MTF10% of the center and periphery. Because the voxel size, which is determined by the Nyquist frequency, was within tolerance, other image quality indexes were not influenced by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions which showed considerable differences with statistical significance. The average difference between the center and periphery was up to 31.27% (CNR, 70.49% (homogeneity, and 13.64% (MTF10%. Homogeneity was under tolerance at some of the peripheral locations. Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes of the phantom, an object's position can influence the interpretation of follow up CBCT images. Therefore, efforts to locate the object in the same position are important.

  5. Uncertainty and sensitivity analyses for age-dependent unavailability model integrating test and maintenance

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Highlights: ► Application of analytical unavailability model integrating T and M, ageing, and test strategy. ► Ageing data uncertainty propagation on system level assessed via Monte Carlo simulation. ► Uncertainty impact is growing with the extension of the surveillance test interval. ► Calculated system unavailability dependence on two different sensitivity study ageing databases. ► System unavailability sensitivity insights regarding specific groups of BEs as test intervals extend. - Abstract: The interest in operational lifetime extension of the existing nuclear power plants is growing. Consequently, plants life management programs, considering safety components ageing, are being developed and employed. Ageing represents a gradual degradation of the physical properties and functional performance of different components consequently implying their reduced availability. Analyses, which are being made in the direction of nuclear power plants lifetime extension are based upon components ageing management programs. On the other side, the large uncertainties of the ageing parameters as well as the uncertainties associated with most of the reliability data collections are widely acknowledged. This paper addresses the uncertainty and sensitivity analyses conducted utilizing a previously developed age-dependent unavailability model, integrating effects of test and maintenance activities, for a selected stand-by safety system in a nuclear power plant. The most important problem is the lack of data concerning the effects of ageing as well as the relatively high uncertainty associated to these data, which would correspond to more detailed modelling of ageing. A standard Monte Carlo simulation was coded for the purpose of this paper and utilized in the process of assessment of the component ageing parameters uncertainty propagation on system level. The obtained results from the uncertainty analysis indicate the extent to which the uncertainty of the selected

  6. Estimating Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies.

    Science.gov (United States)

    Hagen, Oskar; Andermann, Tobias; Quental, Tiago B; Antonelli, Alexandre; Silvestro, Daniele

    2018-05-01

    The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level. Here, we present a Bayesian framework to estimate extinction rates from the fossil record accounting for age-dependent extinction (ADE). Our approach, unlike previous implementations, explicitly models unobserved species and accounts for the effects of fossil preservation on the observed longevity of sampled lineages. We assess the performance and robustness of our method through extensive simulations and apply it to a fossil data set of terrestrial Carnivora spanning the past 40 myr. We find strong evidence of ADE, as we detect the extinction rate to be highest in young species and declining with increasing species age. For comparison, we apply a recently developed analogous ADE model to a dated phylogeny of extant Carnivora. Although the phylogeny-based analysis also infers ADE, it indicates that the extinction rate, instead, increases with increasing taxon age. The estimated mean species longevity also differs substantially, with the fossil-based analyses estimating 2.0 myr, in contrast to 9.8 myr derived from the phylogeny-based inference. Scrutinizing these discrepancies, we find that both fossil and phylogeny-based ADE models are prone to high error rates when speciation and extinction rates increase or decrease through time. However, analyses of simulated and empirical data show that fossil-based inferences are more

  7. Meniscus matrix morphological composition: age-dependent evaluation in a swine model

    Directory of Open Access Journals (Sweden)

    Umberto Polito

    2017-06-01

    observed the correlation between biochemical and phenotype properties of swine menisci follow age-dependent changes during growth: starting with an immature cellular and fiber pattern to the mature organised and differentiated adult menisci. Acknowledgments: This work was funded by the “Finanziamento Piano Sviluppo Ateneo - Linea 2A”

  8. Age-dependent risk factors for malnutrition in traumatology and orthopedic patients.

    Science.gov (United States)

    Lambert, Christine; Nüssler, Andreas; Biesalski, Hans Konrad; Freude, Thomas; Bahrs, Christian; Ochs, Gunnar; Flesch, Ingo; Stöckle, Ulrich; Ihle, Christoph

    2017-05-01

    The aim of this study was to investigate the prevalence of risk of malnutrition (RoM) in an orthopedic and traumatology patient cohort with a broad range of ages. In addition to the classical indicators for risk assessment (low body mass index, weight loss, and comorbidity), this study aimed to analyze the effects of lifestyle factors (eating pattern, smoking, physical activity) on RoM. The prospective cohort study included 1053 patients in a level 1 trauma center in Germany. RoM was assessed by Nutritional Risk Screening (NRS) 2002 and for the elderly additionally by Mini Nutritional Assessment (MNA). Age-dependent risk factors identified in univariate statistical analysis were used for multivariate logistic regression models. The prevalence of patients at RoM (NRS ≥3) was 22%. In the three age categories (<50 y, 50-69 y, and ≥70 y), loss of appetite, weight loss, number of comorbidities, drugs and gastrointestinal symptoms significantly increased RoM in univariate statistical analysis. In patients ages ≥70 y, several disease- and lifestyle-related factors (not living at home, less frequent consumption of vegetables and whole meal bread, low physical activity, and smoking) were associated with RoM. Multivariate logistic regression model for the total study population identified weight loss (odds ratio [OR], 6.09; 95% confidence interval [CI], 4.14-8.83), loss of appetite (OR, 3.81; 95% CI, 2.52-5.78), age-specific low BMI (OR, 1.87; 95% CI, 1.18-2.97), number of drugs taken (OR, 1.19; 95% CI, 1.12-1.26), age (OR, 1.03; 95% CI, 1.02-1.04), and days per week with vegetable consumption (OR, 0.938; 95% CI, 0.89-0.99) as risk factors. Malnutrition in trauma and orthopedic patients is not only a problem related to age. Lifestyle-related factors also contribute significantly to malnutrition in geriatric patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko; Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H.

    2003-01-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of ∼4 days. After puberty, the doubling time lengthened to ∼30 days. The total number of clonogens in abdominal and inguinal mammary glands was ∼200 in 2-week-old rats, while it was ∼5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics underlie the age-dependent

  10. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    underlie the age-dependent susceptibility to radiation-induced breast cancer. (author)

  11. Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats

    Directory of Open Access Journals (Sweden)

    Sandy Koenig

    2018-03-01

    Full Text Available Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS-induced and psychological novel environment stress (NES in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch or LPS (100 μg/kg in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME, NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary

  12. Age dependent T2 changes of bone marrow in pediatric wrist MRI

    International Nuclear Information System (INIS)

    Shabshin, Nogah; Schweitzer, Mark E.

    2009-01-01

    Hyperintensity of the bone marrow on fluid-sensitive sequences can be seen on magnetic resonance imaging (MRI) during childhood, even in the absence of bone pathology. They can be related to hematopoietic marrow, normal and abnormal bone remodeling. We sought to investigate whether hyper intensity of the bone marrow on MRI of the wrist is age-dependent and to evaluate if this signal follows a consistent age-related pattern. Thirty-one wrist 1.5 T MR images of children (7-18 years) without suspected bone pathology were evaluated for foci of hyperintense bone marrow seen on fluid-sensitive coronal sequences using a scale of 1-3. Correlation of frequency, location and intensity of these foci with age was obtained. Results were analyzed for distribution in single bones and in the following regions: distal forearm, first/second carpal rows, and metacarpal bases. A total of 448 bones were evaluated. Eighty-eight out of 448 (21 out of 31 wrists) showed hyperintense bone marrow seen on fluid-sensitive sequences. The distribution was: radius in 19, ulna in 19, first metacarpal base in 11, scaphoid in 9, lunate in 6, pisiform in 6, and fifth metacarpal base in 1. The involvement of the first and second carpal rows and the metacarpal bases was almost similar (13, 12, and 12 respectively). In the distal forearm, the intensity was similar to or higher than that in the wrist (2.2 vs. 2.0). Frequency decreased with age (100% at 7-9 and 25% at 16-18 years). Foci of hyperintense bone marrow seen on fluid-sensitive sequences can be seen on MRI of the wrist during childhood even without apparent symptoms. It shows a consistent pattern with maturation: frequency and intensity decrease and there is distal-to-proximal resolution. This may be a normal finding that may represent normal bone remodeling or decreasing hematopoietic marrow and should not be confused with pathological bone marrow edema. (orig.)

  13. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry.

    Science.gov (United States)

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-04-05

    The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.

  14. Do you believe in phantoms?

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    “Phantoms” are tools that simulate a therapy’s response by mimicking the conditions of the human body. They are required in hadron therapy in order to optimise and verify the therapy before performing it on the patient. The better the phantom, the more accurate the treatment plan and the more effective the therapy. In the framework of the EU-funded project ENTERVISION*, a team of CERN researchers has designed an innovative piece of equipment able to evaluate radiobiology-related parameters in a very accurate way.   The ENTERVISION phantom being tested at HIT. A key challenge in hadron therapy – i.e. the medical use of hadrons to treat cancer – is to evaluate the biological effect of the delivered radiation. This can be achieved by using accurate dosimetry techniques to study the biological response in terms of the dose deposited and other physical parameters of the beam, such as the Linear Energy Transfer (LET). The job of the “phan...

  15. Transorbital therapy delivery: phantom testing

    Science.gov (United States)

    Ingram, Martha-Conley; Atuegwu, Nkiruka; Mawn, Louise; Galloway, Robert L.

    2011-03-01

    We have developed a combined image-guided and minimally invasive system for the delivery of therapy to the back of the eye. It is composed of a short 4.5 mm diameter endoscope with a magnetic tracker embedded in the tip. In previous work we have defined an optimized fiducial placement for accurate guidance to the back of the eye and are now moving to system testing. The fundamental difficulty in testing performance is establishing a target in a manner which closely mimics the physiological task. We have to have a penetrable material which obscures line of sight, similar to the orbital fat. In addition we need to have some independent measure of knowing when a target has been reached to compare to the ideal performance. Lastly, the target cannot be rigidly attached to the skull phantom since the optic nerve lies buried in the orbital fat. We have developed a skull phantom with white cloth stellate balls supporting a correctly sized globe. Placed in the white balls are red, blue, orange and yellow balls. One of the colored balls has been soaked in barium to make it bright on CT. The user guides the tracked endoscope to the target as defined by the images and tells us its color. We record task accuracy and time to target. We have tested this with 28 residents, fellows and attending physicians. Each physician performs the task twice guided and twice unguided. Results will be presented.

  16. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.eus [Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden and Department of Medical Physics, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Flux, Glenn [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Genollá, José; Delgado, Alejandro; Rodeño, Emilia [Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903 (Spain); Sjögreen Gleisner, Katarina [Department of Medical Radiation Physics, Lund University, Lund 22185 (Sweden)

    2016-10-15

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimated using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the

  17. Assessment of diffusion tensor image quality across sites and vendors using the American College of Radiology head phantom.

    Science.gov (United States)

    Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K

    2016-05-08

    The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.

  18. Age-dependent alterations of glucose clearance and homeostasis are temporally separated and modulated by dietary fat

    DEFF Research Database (Denmark)

    Damgaard, Mads Thue Fejerskov; Pærregaard, Simone I.; Søgaard, Ida

    2018-01-01

    Diet- and age-dependent changes in glucose regulation in mice occur, but the temporal development, mechanisms and influence of dietary fat source remain to be defined. We followed metabolic changes in three groups of mice including a low-fat diet (LFD) reference group and two high-fat, high-sucro...

  19. Segmentation and quantification of materials with energy discriminating computed tomography: A phantom study

    International Nuclear Information System (INIS)

    Le, Huy Q.; Molloi, Sabee

    2011-01-01

    Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8x0.8x3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22-32, 33-39, 40-46, 47-56, and 57-80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg/ml) and iodine (4, 8, 12, and 16 mg/ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg/ml) and iodine (8 and 16 mg/ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg/ml) or iodine (5, 15, 25, 35, and 45 mg/ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite/iodine were 9.26/7.13%, 7.73/5.58%, and 12.93/8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The average errors for the four

  20. Phantom pain and phantom sensations in upper limb amputees : an epidemiological study

    NARCIS (Netherlands)

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; van der Schans, CP

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time

  1. Voxel-based model construction from colored tomographic images; Construcao de simuladores baseados em elementos de volume a partir de imagens tomograficas coloridas

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  2. Assessment of specific absorbed fractions for photons and electrons using average adult Japanese female phantom

    International Nuclear Information System (INIS)

    Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

    2016-12-01

    In the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), the procedure for calculating effective doses was modified as follows. Equivalent doses are evaluated using the male and female voxel phantoms on the basis of reference anatomical data of Caucasians, and effective doses are calculated using sex-averaged equivalent doses in applying tissue weighting factors. Specific absorbed fractions (SAFs), which are essential data for calculating internal doses, depend on the body weights, organ masses, and positional relations of organs of the phantoms. Then, the dose coefficients, which are committed effective doses per unit intake of radionuclides, developed by ICRP on the basis of the 2007 Recommendations reflect the physical characteristics of Caucasians and are averaged over the sexes. Meanwhile, the physiques of adult Japanese are generally smaller than those of adult Caucasians, and organ masses are also different from each other. Therefore, dose coefficients reflecting Japanese physical characteristics are different from those of ICRP. Knowledge of the influence of race differences on dose coefficients is important to apply the sex averaged dose coefficients of ICRP to the Japanese system of radiation protection. SAF data based on phantoms which have Japanese physical characteristics is essential for assessment of the dose coefficients reflecting Japanese physical characteristics. The Japan Atomic Energy Agency constructed average adult Japanese phantoms, JM-103 (male) and JF-103 (female), and is developing a dose estimation method for internal exposure using these phantoms. This report provides photon and electron SAFs of JF-103. The data of this report and the previously published data of JM-103 are applicable to evaluate sex-specific and sex-averaged dose coefficients reflecting the physical characteristics of the average adult Japanese for intakes of radionuclides emitting photons and electrons. Appendix as CD-ROM. (J.P.N.)

  3. A three-dimensional breast software phantom for mammography simulation

    International Nuclear Information System (INIS)

    Bliznakova, K; Bliznakov, Z; Bravou, V; Kolitsi, Z; Pallikarakis, N

    2003-01-01

    This paper presents a methodology for three-dimensional (3D) computer modelling of the breast, using a combination of 3D geometrical primitives and voxel matrices that can be further subjected to simulated x-ray imaging, to produce synthetic mammograms. The breast phantom is a composite model of the breast and includes the breast surface, the duct system and terminal ductal lobular units, Cooper's ligaments, the pectoral muscle, the 3D mammographic background and breast abnormalities. A second analytical x-ray matter interaction modelling module is used to generate synthetic images from monoenergetic fan beams. Mammographic images of various synthesized breast models differing in size, shape and composition were produced. A preliminary qualitative assessment performed by three radiologists and a quantitative evaluation study using fractal and grey-level histogram analysis were conducted. A comparative study of extracted features with published data has also been performed. The evaluation results indicated good correlation of characteristics between synthetic and actual radiographs. Applications foreseen are not only in the area of breast imaging experimentation but also in education and training

  4. B16 melanoma tumor growth is delayed in mice in an age-dependent manner

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2012-08-01

    tumor volumes of 417.62 and 216.34 mm3 in the 16- and 24-month age groups, respectively (p≤0.005. Histologically, implanted tumors in young mice exhibited characteristics of aggressive, rapidly growing tumor cells including high vascularity, mitosis, and invasiveness compared to tumors in old mice. We contend that the decrease in B16 melanoma tumor growth seen with increasing age in B6 and CB6 F1 mice represents a biological process, which we are calling age-dependent cancer resistance (ADCR. Our data provide a detailed description of conditions necessary to use the model to investigate the mechanisms of ADCR and determine its biological and clinical relevance.

  5. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    Science.gov (United States)

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  6. The Japanese adult, child and infant phantoms

    International Nuclear Information System (INIS)

    Cristy, Mark; Egbert, Stephen D.

    1987-01-01

    The mathematical phantom for adult Japanese atomic-bomb survivors is a modification of the 57-kg ORNL (Oak Ridge National Laboratory) phantom for Western 15-year-old males and adult females. For younger Japanese survivors mathematical phantoms were similarly modified from the 18 and 9 kg ORNL phantoms for Western 5- and 1-year-olds, respectively. To make the phantom correspond more closely with dimensions and organ sizes recommended for Japanese adults by Maruyama and coworkers (cf E184), changes were made in the size of the lungs, the pancreas, the thyroid, and the testes and in the length of the legs. Also, the head-and-neck region was modified to improve the dose estimates for the thyroid from external radiation, after the ideas of Nagarajan et al. The arms were separated from the trunk to represent more accurately the shielding by the phantom in external exposures. Furthermore, provisions were made to provide a phantom in a kneeling posture. The elemental composition of the tissues was changed to that given by Kerr. The resulting phantom is slightly smaller in mass (55 kg). Details of these changes are given

  7. Enceladus' 101 Geysers: Phantoms? Hardly

    Science.gov (United States)

    Porco, C.; Nimmo, F.; DiNino, D.

    2015-12-01

    The discovery by the Cassini mission of present-day geysering activity capping the southern hemisphere of Saturn's moon Enceladus (eg, Porco, C. C. et al. Science 311, 1393, 2006) and sourced within a subsurface body of liquid water (eg, Postberg, F. et al. Nature 459, 1098, 2009; Porco, C.C. et al. AJ 148, 45, 2014, hereafter PEA], laced with organic compounds (eg, Waite, J.H. et al. Science 311, 1419, 2006), has been a significant one, with far-reaching astrobiological implications. In an extensive Cassini imaging survey of the moon's south polar terrain (SPT), PEA identified 101 distinct, narrow jets of small icy particles erupting, with varying strengths, from the four major fractures crossing the SPT. A sufficient spread in stereo angles of the 107 images used in that work allowed (in some cases, many) pair-wise triangulations to be computed; precise surface locations were derived for 98 jets. Recently, it has been claimed (Spitale, J.N. et al. Nature 521, 57, 2015) that the majority of the geysers are not true discrete jets, but are "phantoms" that appear in shallow-angle views of a dense continuous curtain of material with acute bends in it. These authors also concluded that the majority of the eruptive material is not in the form of jets but in the form of fissure-style 'curtain' eruptions. We argue below the contrary, that because almost all the moon's geysers were identified by PEA using multiple images with favorable viewing geometries, the vast majority of them, and likely all, are discrete jets. Specifically, out of 98 jets, no fewer than 90 to 95 were identified with viewing geometries that preclude the appearance of phantoms. How the erupting solids (i.e., icy particles) that are seen in Cassini images are partitioned between jets and inter-jet curtains is still an open question.

  8. Rapid Assemblers for Voxel-Based VLSI Robotics

    Science.gov (United States)

    2014-02-12

    flux vector given by the Nernst -Planck equation ( equation ), where the partial derivative of the concentration of ions with respect to time plus the...species i given by the Nernst -Einstein equation . The boundary conditions are that the diffusive and convective contribu- tions to the flux are zero at...dependent partial differential equations . SIAM Journal of Numerical Analysis, 32(3):797-823, 1995. Task 2: cm-scale voxels for prototypes Task

  9. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  10. Ratios between the effective doses for tomographic phantoms MAX and FAX

    International Nuclear Information System (INIS)

    Kramer, R.; Khoury, H.J.

    2005-01-01

    In the last two decades, the coefficients for the equivalent dose in organs and tissues, as well as to the effective dose, recommended by the International Commission on Radiological Protection (ICRP) were determined using exposure models based on stylized phantoms type MIRD, representing the human body with its radiosensitive organs and tissues according to the ICRP 23 Reference Man, Monte Carlo codes that simulate in a simplified way radiation physics, fabric compositions from different sources, and sometimes applied in a no realistic way, and by the list of organs and tissues at risk with their corresponding weight factors, published in ICRP 60. In the meantime, the International Commission on radiation units and Measurements (ICRU) published reference data to human tissue compositions in ICRU 44 and ICRP launched new anatomical and physiological data of reference in the report number 89. In addition a draft report with recommendations to be released in 2005 (http://icrp.org/) advances significant changes in the list of radiosensitive organs and tissues as well as their corresponding weight factors. As a practical consequence, all components of the traditional stylized models of exposure should be replaced: Monte Carlo codes, human phantoms, the compositions of the fabric and the selection of the organs and tissues at risk with their respective weight factors to determine the effective dose. This article presents the results of comprehensive research into the dosimetric consequences of replacing the stylized models of exposure. The calculations were done using the EGS4 Monte Carlo and MCNP4C codes for external and internal exposure to photons and electrons with phantoms ADAM and EVA, as well as with tomographic phantoms MAX and FAX, for different compositions and tissue distributions. The ratios between effective doses for models of exposure based on phantoms of voxels and effective doses for the stylized models for external and internal exposure to photons and

  11. A phantom for quality control in mammography

    International Nuclear Information System (INIS)

    Gambaccini, M.; Rimondi, O.; Marziani, M.; Toti, A.

    1989-01-01

    A phantom for evaluating image quality in mammography has been designed and will be used in the Italian national programme ''Dose and Quality in Mammography''. The characteristics of the phantom are (a) about the same X-ray transmission as a 5 cm 50% fat and 50% water breast for energies between 15 and 50 keV and (b) optimum energies for imaging of the test objects (included in the phantom) in very close agreement with the optimum energies for imaging of calcifications and tumours in a 5 cm 50% fat and 50% water breast. An experimental comparison between the prototype and some commercial phantoms was carried out. Measurements are in progress to test the phantom's ability to evaluate the performances of mammographic systems quantitatively. (author)

  12. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    Science.gov (United States)

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  13. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Aris, John P [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shifrin, Roger Y, E-mail: wbolch@ufl.edu [Department of Radiology, University of Florida, Gainesville, FL (United States)

    2011-08-07

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations

  14. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    International Nuclear Information System (INIS)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley; Aris, John P; Shifrin, Roger Y

    2011-01-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  15. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  16. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  17. A voxel visualization and analysis system based on AutoCAD

    Science.gov (United States)

    Marschallinger, Robert

    1996-05-01

    A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.

  18. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures

    Science.gov (United States)

    Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.

    2018-03-01

    Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient

  19. Growth activity in human septal cartilage: age-dependent incorporation of labeled sulfate in different anatomic locations

    International Nuclear Information System (INIS)

    Vetter, U.; Pirsig, W.; Heinze, E.

    1983-01-01

    Growth activity in different areas of human septal cartilage was measured by the in vitro incorporation of 35 S-labeled NaSO 4 into chondroitin sulfate. Septal cartilage without perichondrium was obtained during rhinoplasty from 36 patients aged 6 to 35 years. It could be shown that the anterior free end of the septum displays high growth activity in all age groups. The supra-premaxillary area displayed its highest growth activity during prepuberty, showing thereafter a continuous decline during puberty and adulthood. A similar age-dependent pattern in growth activity was found in the caudal prolongation of the septal cartilage. No age-dependent variations could be detected in the posterior area of the septal cartilage

  20. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    International Nuclear Information System (INIS)

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-01-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177 Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177 Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  1. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  2. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 2

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de

  3. Age dependent food consumption data provided for the computation of the radiological impact via the ingestion pathway

    International Nuclear Information System (INIS)

    Kalckbrenner, R.; Bayer, A.

    1979-08-01

    Averaged age dependent food consumption data are compiled and evaluated to provide input data for the computation of the radiological impact via the ingestion pathway. For special population groups (self-suppliers e.g.) factors are provided, by which the consumption for special foods may be exceeded. The evaluated data are compared with those of the 'USNRC-Regulatory Guide 1.109 (revised 1977)' and those of the 'Recommendation of the German Commission on Radiological Protection (Draft 1977)'. (orig.) [de

  4. A recalculation of the age dependent dose-effect-relationship of the life span study of Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Kottbauer, M.M.; Fleck, C.M.; Schoellnberger, H.

    1996-01-01

    The basis of the presented model is the multistage process of carcinogenesis as a biological effect. It provides simultaneously the age-dependent mortality of spontaneous and radiation induced solid tumors and dose-effect relationships at any age after exposure. The model has been used to describe the solid cancer mortality rates of the atomic bomb survivors of Hiroshima and Nagasaki. It has characteristics of both relative and absolute risk projections depending on the age of exposure. (author)

  5. Development of digital phantom for DRR evaluation

    International Nuclear Information System (INIS)

    Ikeda, Tsuyoshi; Katsuta, Shoichi; Oyama, Masaya; Ogino, Takashi

    2009-01-01

    Generally, digitally reconstructed radiograph (DRR) is evaluated by physical phantom. The CT image is camouflaged by the performance of the radiation treatment planning system and contains a variety of error factors. The CT image (as follows the digital phantom), where an arbitrary CT value is arranged in the matrix, is necessary to evaluate the pure performance of the radiation treatment planning system. In this study, the development of a digital phantom is described, and the utility is discussed. CTport and the radiation treatment planning system are evaluated with the use of a digital phantom as follows: geometrical accuracy evaluation of DRR, consisting of the center position, size of irradiation field, distortion, extension of X-ray, and beam axis, and the image quality evaluation of DRR, which consists of the contrast resolution. As for DRR made with CTport and the treatment planning system, the part that shifted geometrically was confirmed. In the image quality evaluation, there was a remarkable difference. Because the making accuracy and the installation accuracy of the phantom do not influence the digital phantom, the geometrical accuracy of the DRR is reliable. Because the CT conditions and the phantom factor have no influence, the peculiar DRR image quality can be evaluated and used to evaluate the best image processing parameters. (author)

  6. Age-Dependent Cancer Risk Is not Different in between MSH2 and MLH1 Mutation Carriers

    International Nuclear Information System (INIS)

    Olschwang, S.; Olschwang, S.; Yu, K.

    2009-01-01

    Lynch syndrome is mostly characterized by early-onset colorectal and endometrial adenocarcinomas. Over 90% of the causal mutations occur in two mismatch repair genes, MSH2 and MLH1. The aim of this study was to evaluate the age-dependent cancer risk in MSH2 or MLH1 mutation carriers from data of DNA diagnostic laboratories. To avoid overestimation, evaluation was based on the age-dependent proportion of mutation carriers in asymptomatic first-degree relatives of identified mutation carriers. Data from 859 such eligible relatives were collected from 8 centers; 387 were found to have inherited the mutation from their relatives. Age-dependent risks were calculated either using a nonparametric approach for four discrete age groups or assuming a modified Weibull distribution for the dependence of risk on age. Cancer risk was estimated starting at 28 (25-32 0.68 confidence interval) and to reach near 0.70 at 70 years. The risks were very similar for MSH2 and MLH1 mutation carriers. Although not statistically significant, the risk in males appeared to precede that for females by ten years. This difference needs to be investigated on a larger dataset. If confirmed, this would indicate that the onset of the colonoscopic surveillance may be different in male and female mutation carriers.

  7. SU-F-I-01: Normalized Mean Glandular Dose Values for Dedicated Breast CT Using Realistic Breast-Shaped Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A [Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA (United States); Boone, J [Departments of Radiology and Biomedical Engineering, Biomedical Engeering Graduate Group, University of California Davis, Sacramento, CA (United States)

    2016-06-15

    Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dose coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered

  8. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  9. TU-H-207A-03: CT Hounsfield Unit Accuracy: Effect of Beam Hardening On Phantom and Clinical Whole-Body CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Ai, H; Wendt, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To assess the effect of beam hardening on measured CT HU values. Methods: An anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 690 PET/CT scanner (120kVp, 300mAs, 40?0.625mm collimation, pitch=0.984, FOV=500mm, matrix=512?512) with four different scan setups, each of which induces different degrees of beam hardening by introducing additional attenuation media into the field of view. Homogeneous voxels representing “soft tissue” and “bone” were segmented by HU thresholding followed by a 3D morphological erosion operation which removes the non-homogenous voxels located on the interface of thresholded tissue mask. HU values of segmented “soft tissue” and “bone” were compared.Additionally, whole-body CT data with coverage from the skull apex to the end of toes were retrospectively retrieved from seven PET/CT exams to evaluate the effect of beam hardening in vivo. Homogeneous bone voxels were segmented with the same method previously described. Total In-Slice Attenuation (TISA) for each CT slice, defined as the summation of HU values over all voxels within a CT slice, was calculated for all slices of the seven whole-body CT datasets and evaluated against the mean HU values of homogeneous bone voxels within that slice. Results: HU values measured from the phantom showed that while “soft tissue” HU values were unaffected, added attenuation within the FOV caused noticeable decreases in the measured HU values of “bone” voxels. A linear relationship was observed between bone HU and TISA for slices of the torso and legs, but not of the skull. Conclusion: Beam hardening effect is not an issue of concern for voxels with HU in the soft tissue range, but should not be neglected for bone voxels. A linear relationship exists between bone HU and the associated TISA in non-skull CT slices, which can be exploited to develop a correction strategy.

  10. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  11. Wormholes supported by phantom energy

    International Nuclear Information System (INIS)

    Gonzalez, J. A.; Guzman, F. S.; Montelongo-Garcia, N.; Zannias, T.

    2009-01-01

    By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ=λρc 2 , P=μρc 2 . We show that there exists a four parameter family of asymptotically flat spherical wormholes parametrized by the area of the throat A(0), the gradient Λ(0) of the red shift factor evaluated on the throat as well as the values of (λ,μ). The latter are subject to restrictions: λ>1 and 2μ>λ or λ<0 and 2μ<-|λ|. For particular values of (λ,μ), the stress tensor may be interpreted as representing a phantom configuration, while for other values represents exotic matter. All solutions have the property that the two asymptotically flat ends possess finite Arnowitt-Deser-Misner mass.

  12. Age-dependent Characteristics in Women with Breast Cancer: Mastectomy and Reconstructive Trends at an Urban Academic Institution.

    Science.gov (United States)

    Rodby, Katherine A; Robinson, Emilie; Danielson, Kirstie K; Quinn, Karina P; Antony, Anuja K

    2016-03-01

    Breast reconstruction is an important aspect of treatment after breast cancer. Postmastectomy reconstruction bears a significant impact on a woman's postsurgical confidence, sexuality, and overall well-being. Previous studies have inferred that women under age 40 years have unique characteristics that distinguish them from an older cohort. Identifying age-dependent trends will assist with counseling women on mastectomy and reconstruction. To identify age-dependent trends, 100 consecutive women were sampled from a prospectively maintained breast reconstruction database at an urban academic institution from June 2010 through June 2013. Women were placed into two cohorts mastectomy, reconstructive and symmetry procedures were evaluated. Statistical analysis was performed using SAS software. In 100 patients of the sample study cohort, 151 reconstructions were performed. Increasing age was associated with one or more comorbidities [odds ratio (OR) = 1.07, P = 0.005], whereas younger age was associated with metastatic disease (OR = 0.88, P = 0.006), chemotherapy (OR = 0.94, P = 0.01), and radiation (OR = 0.94, P = 0.006); split cohorts demonstrated similar trends (P Mastectomy and reconstructive characteristics associated with younger age included bilateral mastectomy (OR = 0.94, P = 0.004), tissue expander (versus autologous flap) (OR = 0.94, P = 0.009), extra high implant type (OR = 0.94, P = 0.049), whereas increasing use of autologous flaps and contralateral mastopexy symmetry procedures (OR = 1.09, P = 0.02) were associated with an aging cohort. Increasing age was not associated with an increasing likelihood of complications (P = 0.75). Age-related factors play a role in the treatment of patients with breast cancer. Younger women typically present with more aggressive features requiring oncologic treatment including chemotherapy and radiation. Mastectomy and reconstructive choices also demonstrate age-dependent characteristics. Women in younger age groups are more

  13. A voxel-based approach to gray matter asymmetries.

    Science.gov (United States)

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  14. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    OpenAIRE

    Koush, Yury; Elliott, Mark A.; Mathiak, Klaus

    2011-01-01

    Echo-planar imaging (EPI) in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI). The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS) for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repet...

  15. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  16. Phantom inflation and the 'Big Trip'

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, Pedro F.; Jimenez-Madrid, Jose A.

    2004-01-01

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p=ωρ, with ω-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition

  17. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  18. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    International Nuclear Information System (INIS)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia

    2016-01-01

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  19. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia [University of British Columbia, University of Victoria, University of British Columbia, University of British Columbia, University of British Columbia, TRIUMF (Canada)

    2016-08-15

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  20. A custom-built PET phantom design for quantitative imaging of printed distributions

    International Nuclear Information System (INIS)

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Matthews, J C; Lionheart, W R; Reader, A J

    2011-01-01

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction. (note)

  1. Pediatric phantoms for use in dosimetric calculations

    International Nuclear Information System (INIS)

    Shoup, R.L.; Hwang, J.L.; Poston, J.W.; Warner, G.G.

    1976-01-01

    Estimating absorbed doses to children from external and internal radiation sources has become important to the nuclear industry and pediatric nuclear medicine. The Medical Physics and Internal Dosimetry Section at ORNL has recently completed the design of mathematical representations of children of ages newborn, 1 year, and 5 years old. These mathematical representations will be referred to as pediatric phantoms. Using these phantoms, relevant energy deposition data have been developed which establish a meaningful model for use in estimating radiation dose to children

  2. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  3. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  4. Performance of a coumarin-based liquid dosimeter for phantom evaluations of internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States)]. E-mail: miaepark@bwh.Harvard.edu; Moore, Stephen C. [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Limpa-Amara, Naengnoi [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Kang Zhuang [Department of Physics, University of Massachusettes at Lowell, Lowell, MA 01854 (United States); Makrigiorgos, G. Mike [Dana Faber-Brigham and Women' s Cancer Center, Boston, MA 01225 (United States): Harvard Medical School, Boston, MA 02115 (United States)

    2006-12-20

    Targeted radionuclide therapy (TRT) requires accurate absorbed dose estimation in individual patients. It has been shown that a coumarin-based liquid dosimeter is useful for various phantom geometries of relevance to patient-specific internal dosimetry. The purpose of this study was to refine the performance limits of the coumarin-3-carboxylic acid (CCA) dosimeter using the high-energy {beta}-emitter, Y-90, by measuring the dosimeter's dependence on dose rate, by finding the maximum dose limit, and by comparing measured dose values to those from Monte Carlo (MC) simulation. Non-fluorescent CCA is converted to highly fluorescent 7-hydroxyl-coumarin-3-carboxylic acid (7-OH-CCA) upon irradiation. We measured the Y-90-induced fluorescence from 7-OH-CCA under different conditions. Fluorescence was measured using activity concentrations from 1.1 to 181 MBq/cc, providing initial dose rates from 0.7 to 117 cGy/min. To determine the maximum dose limit, fluorescence was measured for different elapsed times from 4 to 150 h, using a fixed activity concentration, 3.7 MBq/cc. A Cs-137 irradiator was used for calibration, to convert fluorescence measurements to absorbed dose. We calculated absorbed dose using the DOSXYZnrc MC program. We modeled the geometry of cuvettes realistically, including plastic walls, surrounding air, and Y-90 in liquid. S-values of Y-90 in water were calculated using 1-mm cubic voxels. A linear dependence of fluorescence on dose rate was observed up to 80 cGy/min, and the dependence on total dose was linear up to {approx}20 Gy The average difference between calculated and measured dose values over 9 samples was 3.6{+-}2%. For our geometry, the dose based on voxel S-values was within 1% of that calculated using MC simulation of the phantom. We refined the performance limits of a CCA-based dosimeter for phantom studies of TRT using Y-90, and confirmed a close agreement between measured and calculated dose values. CCA dosimetry is a promising technique

  5. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults—application to CT dosimetry

    International Nuclear Information System (INIS)

    Geyer, Amy M; O'Reilly, Shannon; Long, Daniel J; Bolch, Wesley E; Lee, Choonsik

    2014-01-01

    Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999–2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking. (paper)

  6. A radioactive seed implant on a rabbit's liver following a voxel model representation for dosimetric proposals

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio P.R.; Andrade, Joao Paulo Lopes de; Costa, Igor Temponi; Teixeira, Cleuza H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg

    2005-07-01

    Animal models have been used in experimentation with ionizing radiation. The evaluation of the energy absorbed per unit tissue mass in vivo transported by nuclear particles is a task to be performed before experimentation. Stochastic or deterministic methodology can be applied, however the dosimetric protocols applied in radiotherapy center cannot be applied directly due to the inherent small geometry and chemical composition of the animal distinct from human. The present article addresses a method in development that will predict the dose distribution into the rabbit thorax based on the solution of the transport phenomena in a voxel model. The model will be applied to simulate a seed implant experiment on a rabbit. Herein, the construction of the three-dimensional voxel model anthropomorphic -anthropometrics to the rabbit is presented. The model is assembling from a set of computer tomography of the rabbit. The computational phantom of the thorax starts at the digitalisation of the CT images, tissue definition, and color image representation of each tissue and organ. The chemical composition and mass density of each tissue is evaluated as similar date presented by ICRU-44. To treat the images, a code namely SISCODES, developed in house, was used. The in vivo experiment that will be simulated is also described. That is a implant of five seeds of 1.6x2 mm performed in a rabbit's liver. The perspective of this work is the application of the model in dosimetric studies predicting the dose distribution around the seed's implanted in vivo experiments. (author)

  7. Mister Voxel: 3D internal dosimetry software for nuclear medicine

    International Nuclear Information System (INIS)

    McKay, E.

    1998-01-01

    Full text: Calculation of individual internal dosimetry in nuclear medicine is a complex, multi-stage process. Most often, calculations are biased on the MIRD methodology, which assumes uniform distribution of cumulated activity inside a set of mathematically described internal organs. The MIRD 'reference man' geometry is highly simplified and the dosimetry estimates generated by this method were originally only intended to predict the average dose expected in an exposed population. We have developed a software package for the Macintosh computer ('Mister Voxel') that uses a fast Fourier transform to calculate the 3D distribution of absorbed dose by convolving a 3D dose kernel with a 3D distribution of cumulated activity. This makes it possible to generate dose volume histograms and isodose contours for organs or tumours treated with radiopharmaceuticals, a task not possible using the MIRD technique. In addition to providing 3D convolution, Mister Voxel performs basic image processing functions (image math, filters, cut and paste) and provides a collection of painting tools and simple morphological operators to facilitate the delineation of regions of interest (ROIs) along anatomical boundaries. The package also includes an image registration module with tools for automated or manual registration of 3D data sets. The structure of the package allows ROIs drawn on CT or MRI data to be easily transferred to registered SPECT data. Dose kernels are implemented by plug-in code modules, allowing the user to extend the system's capabilities if required. File import and export capabilities are also extensible

  8. Single Voxel Proton Spectroscopy for Neurofeedback at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Mark A. Elliott

    2011-09-01

    Full Text Available Echo-planar imaging (EPI in fMRI is regularly used to reveal BOLD activation in presubscribed regions of interest (ROI. The response is mediated by relative changes in T2* which appear as changes in the image pixel intensities. We have proposed an application of functional single-voxel proton spectroscopy (fSVPS for real-time studies at ultra-high MR field which can be comparable to the EPI BOLD fMRI technique. A spin-echo SVPS protocol without water suppression was acquired with 310 repetitions on a 7T Siemens MR scanner (TE/TR = 20/1000 ms, flip angle α = 90°, voxel size 10 × 10 × 10 mm3. Transmitter reference voltage was optimized for the voxel location. Spectral processing of the water signal free induction decay (FID using log-linear regression was used to estimate the T2* change between rest and activation of a functional task. The FID spectrum was filtered with a Gaussian window around the water peak, and log-linear regression was optimized for the particular ROI by adoption of the linearization length. The spectroscopic voxel was positioned on an ROI defined from a real-time fMRI EPI BOLD localizer. Additional online signal processing algorithms performed signal drift removal (exponential moving average, despiking and low-pass filtering (modified Kalman filter and, finally, the dynamic feedback signal normalization. Two functional tasks were used to estimate the sensitivity of the SVPS method compared to BOLD signal changes, namely the primary motor cortex (PMC, left hand finger tapping and visual cortex (VC, blinking checkerboard. Four healthy volunteers performed these tasks and an additional session using real-time signal feedback modulating their activation level of the PMC. Results show that single voxel spectroscopy is able to provide a good and reliable estimation of the BOLD signal changes. Small data size and FID signal processing instead of processing entire brain volumes as well as more information revealed from the

  9. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  10. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  11. WE-D-BRE-06: Quantification of Dose-Response for High Grade Esophagtis Patients Using a Novel Voxel-To-Voxel Method

    International Nuclear Information System (INIS)

    Niedzielski, J; Martel, M; Tucker, S; Gomez, D; Court, L; Yang, J; Briere, T

    2014-01-01

    Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring. Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms

  12. A dynamic phantom for radionuclide renography

    International Nuclear Information System (INIS)

    Heikkinen, J.O.

    1999-01-01

    The aim of the study was to develop and test a dynamic phantom simulating radionuclide renography. The phantom consisted of five partly lead covered plastic containers simulating kidneys, heart, bladder and background (soft tissues, liver and spleen). Dynamics were performed with multiple movable steel plates between containers and a gamma camera. Control of the plates is performed manually with a stopwatch following exact time schedules. The containers were filled with activities ( 99m Tc) which produce count rates close to clinical situations. Count rates produced by the phantom were compared with ten clinical renography cases: five 99m Tc MAG3 and five 99m Tc DTPA examinations. Two phantom simulations were repeated three times with separate fillings, acquisitions and analyses. Precision errors as a coefficient of variation (CV) of repeated measurements were calculated and theoretical values were compared with the corresponding measured ones. A multicentre comparison was made between 19 nuclear medicine laboratories and three clinical cases were simulated with the phantom. Correlations between count rates produced by the phantom and clinical studies were r=0.964 for 99m Tc MAG3 (p 99m Tc DTPA (p max was 4.0±1.6%. Images and curves of the scanned phantom were close to a real patient in all 19 laboratories but calculated parameters varied: the difference between theoretical and measured values for T max was 6.8±6.2%. The difference between laboratories is most probably due to variations in acquisition protocols and analysis programs: 19 laboratories with 18 different protocols and 8 different programs. The dynamics were found to be repeatable and suitable for calibration purposes for radionuclide renography programs and protocols as well as for multicentre comparisons. (author)

  13. Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

    International Nuclear Information System (INIS)

    Babapour Mofrad, F.; Aghaeizadeh Zoroofi, R.; Abbaspour Tehran Fard, A.; Akhlaghpoor, Sh.; Chen, Y. W.; Sato, Y.

    2010-01-01

    In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo Simulation and phantoms have been used in many works before. The shape, size and volume In organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framework for constructing individual phantom for dosimetry was performed on five liver CT scan data sets of Japanese normal individuals. The Zubal phantom was used as an original phantom to be adjusted by each individual data set. This registration was done by Spherical Harmonics and Thin-Plate Spline methods. Hausdorff distance was calculated for each case. Results: Result of Hausdorff distance for five lndividual phantoms showed that before registration ranged from 140.9 to 192.1, and after registration it changed to 52.5 to 76.7. This was caused by Index similarity ranged from %56.4 to %70.3. Conclusion: A new and automatic three-dimensional (3D) phantom construction approach was-suggested for individual internal dosimetry simulation via Spherical Harmonics and Thin-Plate Spline methods. The results showed that the Individual comparable phantom can be calculated with acceptable accuracy using geometric registration. This method could be used for race-specific statistical phantom modeling with major application in nuclear medicine for absorbed dose calculation.

  14. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  15. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  16. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G 2 . The sensitivity of Chinese hamster ovary cells to G 2 arrest induction by X r