WorldWideScience

Sample records for age fracture mechanics

  1. Early Age Fracture Mechanics and Cracking of Concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart

    2003-01-01

    Modern high performance concretes have low water cement ratios and do often include silica fume. Also early age high strength cements are often applied and when all these factors sum up, it turns out that the cracking sensibility is dramatically increased in com- parison with ordinary concrete...... if applied in early age. The results are only valid after 24 hours for fast and normal hardening cements and after 48 hours for slow hardening cements. This is con¯rmed in a finite element model. The fracture properties of early age concrete have been determined. The framework of the investigations has been...

  2. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  3. Effect of aging on the fracture mechanics of unsaturated polyester based on recycled PET polymer concrete

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.M.L., E-mail: jreis@mec.uff.br [Theoretical and Applied Mechanics Laboratory - LMTA, Mechanical Engineering Post Graduate Program - PGMEC, Universidade Federal Fluminense - UFF, Rua Passo da Patria, 156 Bl. E Sala 216, Niteroi, RJ (Brazil)

    2011-03-15

    This research investigates, the fracture mechanics (toughness and energy), at early ages, of polymer concrete made with unsaturated polyester resin as binder. The results indicate that the fracture parameters (toughness and energy) decrease and the brittleness increases with the age of the polymer concrete.

  4. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  5. Influence of ageing, inclusions and voids on ductile fracture mechanism in commercial Al-alloys

    Indian Academy of Sciences (India)

    A Chennakesava Reddy; S Sundar Rajan

    2005-02-01

    The objective of the paper is to study the effect of ageing, inclusions and voids on the mechanism of fracture and resultant toughness. It has been found that the voids are initiated at only a fraction of the larger inclusions present. The initiation of voids at small particles in the ductile fracture process appears to have little effect on fracture toughness. The strain hardening capacity has a marked effect on void size, and is an indicator of fracture toughness in the commercial Al alloy.

  6. Fracture mechanics

    Science.gov (United States)

    Shannon, John L., Jr.

    1986-01-01

    The application of fracture mechanics to the design of ceramic structures will require the precise measurement of crack growth and fracture resistance of these materials over their entire range of anticipated service temperatures and standardized test methods for making such measurements. The development of a standard test for measuring the plane strain fracture toughness is sought. Stress intensity factor coefficients were determined for three varieties of chevron-notch specimens, and fracture toughness measurements were made on silicon nitrides, silicon carbides, and aluminum oxides to assess the performance of each specimen variety. It was determined that silicon nitride and silicon carbides have flat crack growth resistance curves, but aluminum oxide does not. Additionally, batch-to-batch differences were noticed for the aluminum oxide. Experiments are continuing to explain the rising crack growth resistance and batch-to-batch variations for the aluminum oxide.

  7. Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuxiao; Zhang, Hailong; Li, Shilei; Wang, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Wang, Xitao, E-mail: xtwang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-12-15

    Highlights: • Thermal aging embrittlement was considered in the PFM analysis of nuclear pipe. • Predicting program for pipe failure probability was developed based on thermal aging. • Cumulative failure probability is significantly affected by fracture toughness. • Cumulative failure probability is slightly affected by fatigue crack growth rate. • Tensile strength increase due to thermal aging slightly reduces pipe failure risk. - Abstract: A predicting program for pipe break probability based on thermal aging embrittlement was developed. In order for life prediction, evolutions of fracture toughness and tensile strength were estimated for a Z3CN20-09M piping steel using the Argonne National Laboratory (ANL) procedure. To understand the influence of thermal aging on failure probability, different evolutions of fracture toughness, tensile strength and fatigue crack growth rate were employed in the prediction of cumulative failure probability. The results show that the cumulative failure probability for 40-year thermal aging increases by almost four times compared to without consideration of fracture toughness degradation. The cumulative failure probability is slightly affected by fatigue crack growth rate. The increase of tensile strength due to thermal aging reduces the risk of pipe failure. This work demonstrates that the degradation of fracture toughness due to thermal aging should be fully considered in the probabilistic fracture mechanics analysis of nuclear pressure pipes.

  8. Fracture mechanics safety approaches

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Schuler, X.; Eisele, U. [Materials Testing Inst. (MPA), Univ. of Stuttgart (Germany)

    2004-07-01

    Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)

  9. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat.

    Directory of Open Access Journals (Sweden)

    Andrea Ode

    Full Text Available Among other stressors, age and mechanical constraints significantly influence regeneration cascades in bone healing. Here, our aim was to identify genes and, through their functional annotation, related biological processes that are influenced by an interaction between the effects of mechanical fixation stability and age. Therefore, at day three post-osteotomy, chip-based whole-genome gene expression analyses of fracture hematoma tissue were performed for four groups of Sprague-Dawley rats with a 1.5-mm osteotomy gap in the femora with varying age (12 vs. 52 weeks - biologically challenging and external fixator stiffness (mechanically challenging. From 31099 analysed genes, 1103 genes were differentially expressed between the six possible combinations of the four groups and from those 144 genes were identified as statistically significantly influenced by the interaction between age and fixation stability. Functional annotation of these differentially expressed genes revealed an association with extracellular space, cell migration or vasculature development. The chip-based whole-genome gene expression data was validated by q-RT-PCR at days three and seven post-osteotomy for MMP-9 and MMP-13, members of the mechanosensitive matrix metalloproteinase family and key players in cell migration and angiogenesis. Furthermore, we observed an interaction of age and mechanical stimuli in vitro on cell migration of mesenchymal stromal cells. These cells are a subpopulation of the fracture hematoma and are known to be key players in bone regeneration. In summary, these data correspond to and might explain our previously described biomechanical healing outcome after six weeks in response to fixation stiffness variation. In conclusion, our data highlight the importance of analysing the influence of risk factors of fracture healing (e.g. advanced age, suboptimal fixator stability in combination rather than alone.

  10. Fracture Criterion for Fracture Mechanics of Magnets

    Institute of Scientific and Technical Information of China (English)

    潘灏; 杨文涛

    2003-01-01

    The applicability and limitation of some fracture criteria in the fracture mechanics of magnets are studied.It is shown that the magnetic field intensity factor can be used as a fracture criterion when the crack in a magnet is only affected by a magnetic field. For some magnetostrictive materials in which the components of magnetostriction strain do not satisfy the compatibility equation of deformation, the stress intensity factor can no longer be effectively applicable as a fracture criterion when the crack in a magnet is affected by a magnetic field and mechanical loads simultaneously.

  11. Phase Field Fracture Mechanics.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brett Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  12. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...

  13. Effect of the aging treatment in the fractures mechanics of welded joints of steel 316L

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luisa Lima Silveira; Carneiro, Joao Pedro Santiago; Vilela, Jerfferson Jose, E-mail: luisa_lima11@yahoo.com.br, E-mail: jsantiagocarneiro@gmail.com, E-mail: jjv@cdtn.br [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The austenitic stainless steel 316L is widely used in nuclear industry because of its excellent mechanical properties and corrosion resistance. These properties must be evaluated in order to prevent failure and extend the life of equipment. The microstructure in the weld fusion zone consists on an austenite matrix with 5-12% of delta ferrite met stable at room temperature. However the pressurized water reactors operate at temperatures in the range 290-325 deg C, thus welds may be susceptible to thermal aging embrittlement after long service life. According to the literature, this occurs due to the spinodal decomposition. Therefore, the purpose of this study was to evaluate the mechanical properties of 316L stainless steel welds by hardness and tensile tests before and after heat treatment. In this regard, two steel plates were welded and part of the material was heat treated at 335 deg C for 1000 hours. The tests after heat treatment showed an increase of only 4% in ultimate tensile strength and an increase of 28% in hardness. No changes were observed in the material microstructure, however according to literature changes can be identified by transmission electron microscopy. The curves of impact energy vs. temperature showed little change but, it was not able to observe a ductile-brittle transition and images of microstructure from scanning electronic microscopy (SEM) did not show fragile behavior. (author)

  14. Mechanisms of intergranular fracture

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1999-08-01

    The authors present a study of the atomistic mechanisms of crack propagation along grain boundaries in metals and alloys. The failure behavior showing cleavage crack growth and/or crack-tip dislocation emission is demonstrated using atomistic simulations for an embedded-atom model. The simulations follow the quasi-equilibrium growth of a crack as the stress intensity applied increases. Dislocations emitted from crack tips normally blunt the crack and inhibit cleavage, inducing ductile behavior. When the emitted dislocations stay near the crack tip (sessile dislocations), they do blunt the crack but brittle cleavage can occur after the emission of a sufficient number of dislocations. The fracture process occurs as a combination of dislocation emission/micro-cleavage portions that are controlled by the local atomistic structure of the grain boundary. The grain boundary is shown to be a region where dislocation emission is easier, a mechanism that competes with the lower cohesive strength of the boundary region.

  15. Fracture mechanics in pavement design

    CSIR Research Space (South Africa)

    Denneman, E

    2009-07-01

    Full Text Available effects. Examples of the use of fracture mechanics providing an alternative to these conventional design parameters are given in the paper. The paper shows that although much further development is required before fracture mechanics can be relied upon...

  16. Dynamic fracture mechanics

    Science.gov (United States)

    Kobayashi, A. S.; Ramulu, M.

    1985-01-01

    Dynamic fracture and crack propagation concepts for ductile materials are reviewed. The equations for calculating dynamic stress integrity and the dynamic energy release rate in order to study dynamic crack propagation are provided. The stress intensity factor versus crack velocity relation is investigated. The uses of optical experimental techniques and finite element methods for fracture analyses are described. The fracture criteria for a rapidly propagating crack under mixed mode conditions are discussed; crack extension and fracture criteria under combined tension and shear loading are based on maximum circumferential stress or energy criteria such as strain energy density. The development and use of a Dugdale model and finite element models to represent crack and fracture dynamics are examined.

  17. Fracture, aging and disease in bone

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-02-01

    From a public health perspective, developing a detailed mechanistic understanding of the well-known increase in fracture risk of human bone with age is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nano-structural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nanodimensions using pico-force atomic-force microscopy, nanoindentation and vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size-scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its

  18. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications:Effect of Accelerated Ageing

    Institute of Scientific and Technical Information of China (English)

    H.Fouad; R.Elleithy; Othman Y.Alothman

    2013-01-01

    The objective of this work is to demonstrate how the viscoelastic,thermal,rheological,hardness,wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles.Also the effects of accelerated thermal ageing on the composite properties have been investigated.Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder.The fracture toughness results showed a remarkable decrease in proportion to the HAP content.The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix.The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility.The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa).Finally,the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles.The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its hang composites crystallinity increased while the fracture toughness,hardness,wear resistance,storage and loss modulus decreased.

  19. Fracture mechanics of PGX graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ho, F.H.; Vollman, R.E.; Cull, A.D.

    1981-03-01

    Fracture mechanics tests were performed on grade PGX graphite. A compact tension specimen configuration which yields consistent values of the opening mode critical stress intensity factor K/sub IC/, was designed. For the calculation of the fracture toughness and crack growth rate the concept of the effective crack length is used. It corresponds to the crack length of a machined notched specimen with the same compliance. Fracture toughness testing was performed in two environments, air and helium, both at room temperature. The critical stress intensity factor, K/sub IC/, is calculated based on the maximum load and the effective crack length. The fatigue crack growth test was performed in air only. A break-in period was observed for the machined notch to develop into a naturally occurring crack path. Half of the fatigue life was spent in this period.

  20. Continuum damage and fracture mechanics

    CERN Document Server

    Öchsner, Andreas

    2016-01-01

    This textbook offers readers an introduction to damage and fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics. In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics. Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum.   Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplem...

  1. Fracture mechanics of protein materials

    Directory of Open Access Journals (Sweden)

    Markus J. Buehler

    2007-09-01

    Full Text Available Proteins are the fundamental building blocks of a vast array of biological materials involved in critical functions of life, many of which are based on highly characteristic nanostructured arrangements of protein components that include collagen, alpha helices, or beta sheets. Bone, providing structure to our body, or spider silk, used for prey procurement, are examples of materials that have incredible elasticity, strength, and robustness unmatched by many synthetic materials. This is mainly attributed to their structural formation with molecular precision. We review recent advances in using large-scale atomistic and molecular modeling to elucidate the deformation and fracture mechanics of vimentin intermediate filaments (IFs, which are hierarchical self-assembled protein networks that provide structure and stability to eukaryotic cells. We compare the fracture and failure mechanisms of biological protein materials (BPMs with those observed in brittle and ductile crystalline materials such as metals or ceramics. Our studies illustrate how atomistic-based multiscale modeling can be employed to provide a first principles based material description of deformation and fracture, linking nano- to macroscales.

  2. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Albiter, A.; Garcia-Vazquez, F.; Mendoza-Camargo, O.; Hallen, J. M.

    2014-07-01

    A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ), weld bead and base metal for pipe naturally aged for 21 years at 30 degree centigrade. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discontinuous yield. Higher tensile strength was obtained for weld bead, which exhibited a lower impact energy in comparison to that of HAZ and base metal associated with brittle fracture by trans-granular cleavage. The degradation of properties was associated with the coarsening of nano-carbides observed through TEM images analysis, which was confirmed by SEM fractography of tensile and impact fracture surfaces. The weld bead reached the largest void density and highest susceptibility to corrosion in H{sub 2}S media when compared to those of the HAZ and base metal. (Author)

  3. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  4. Recent trends in fracture and damage mechanics

    CERN Document Server

    Zybell, Lutz

    2016-01-01

    This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors.  The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.

  5. Local Approach to Fracture of an Aged Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Alfredo Hazarabedian

    2002-06-01

    Full Text Available The local approach to fracture (LAF is a methodology aimed to calculate macroscopic fracture properties of a body, from the knowledge of the local stress - strain field at the fracture site, and the modeling of the acting fracture mechanisms. In the present work, this method was applied to a CF8M steel, aged 30000h at 325 °C, in order to elucidate if LAF could be able to describe the measured fracture toughness data. We have simulated the elastoplastic behavior using the Gurson model and the general methodology of Joly. The required parameters were obtained from the stress strain curve and from the damage progression study by quantitative metallography. We extended the validity of that methodology for a material aged in a more realistic condition, i.e. at a relatively lower temperature and for a longer time. The model was found satisfactory because it was able to describe the experimental distribution of the fracture probability vs. fracture strain of notched axisymmetric specimens, without any parameter fitting. The model also predicted the lower bound of the experimental distribution of the crack resistance at 0.2 mm of crack extension (J02.

  6. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  7. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, Benjamín

    2014-09-01

    Full Text Available A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ, weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discontinuous yield. Higher tensile strength was obtained for weld bead, which exhibited a lower impact energy in comparison to that of HAZ and base metal associated with brittle fracture by trans-granular cleavage. The degradation of properties was associated with the coarsening of nano-carbides observed through TEM images analysis, which was confirmed by SEM fractography of tensile and impact fracture surfaces. The weld bead reached the largest void density and highest susceptibility to corrosion in H2S media when compared to those of the HAZ and base metal.Se realizó un estudio de caracterización para analizar cómo la microestructura afecta a las propiedades mecánicas, corrosión y fractura de la zona afectada por calor (ZAC, soldadura y metal base para tubería envejecida naturalmente durante 21 años a 30 °C. Los resultados indicaron que las microestructuras presentaron daño y consecuentemente reducción en propiedades mecánicas, como consecuencia del envejecimiento por servicio. El estudio mediante MEB mostró que el metal base presenta grano ferrítico grueso. La prueba de tensión indicó que las microestructuras mostraron fluencia discontinua. La mayor resistencia a la tracción se presentó en la soldadura, la cual alcanzó menor energía de impacto en comparación con la ZAC y metal base asociado con fractura frágil por clivaje transgranular. La degradación de las propriedades está en relación con el engrosamiento de nanocarburos observados a

  8. Fracture mechanism of a thermal barrier coating

    Science.gov (United States)

    Samoilenko, V. M.; Ravilov, R. G.; Drevnyak, V. V.; Petrova, M. A.

    2016-06-01

    The fracture mechanism of the thermal barrier coating of gas turbine blades is studied. The causes of the fracture of the ceramic layer are discussed and the possible ways to increase the fatigue life of the thermal barrier coating are considered.

  9. Fractures and rock mechanics, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Knowledge of fracture occurrence and orientation in chalk is important for optimum field development planning and evaluation of well-bore stability. The combined geological and geotechnical studies carried out under the EFP-96 and EFP-98 programmes have investigated the influence of fractures on rock mechanics properties for chalk. Data for quantifying the effect of natural fractures in chalk have been supplied by triaxial testing in normal scale and large scale on samples from three chalk types, namely from Valhall Tor and Tyra Maastrichtian and an outcrop locality at Hillerslev. >From the latter locality special big cylindrical specimens were sampled for the large scale triaxial testing (500x500 mm) in order to get at true representation of the natural fracturing in the Hillerslev chalk. By comparing test results from normal scale to large scale on fractured and non fractured specimens it was found that the stiffness of the chalk is dependent on scale while the shear strength generally seems to depend on fractures and not on scale. Furthermore the studies revealed, that fractures have a significant reducing effect on the shear strength, that characterisation by the Geological Strength Index, GSI, on fractured test specimens igve a very good prediction of shear, that shear failure and yield surface characteristics for fractued and intact chalk can be provided using GSI, that up-scaling influence the elastic deformation properties in the low stress regime and that fractures influence the compressibility in the elastic stress regime, but not in the plastic stress regime. Finally, the practical application of some of the results on reservoir chalk has been addressed, especially the up-scaling of strength and deformation properties from normal scale tests to reservoir conditions. The up-scaling laws are relevant for borehole stability problems but not for compaction. Generally, the observations in the study are relevant for quantifying the effect of fracturing and

  10. Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage

    CERN Document Server

    François, Dominique; Zaoui, André

    2013-01-01

    Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...

  11. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  12. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  13. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  14. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns and Hillers......The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...

  15. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns and Hillers......The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...... and Hillerslev, and three reservoir zones: Tyra Maastrictian, Valhall Tor and Valhall Hod are investigated. Different test types are applied in small and large scale in order to investigate the influence on stiffness and strength from natural and induced fractures, stylolites, bedding planes and healed fractures....... The main conclusions are: that Hillerslev and Stevns can be regarded as close analogues to the Valhall Tor formation, but neither to Valhall Hod nor to Tyra formations; and that compressive strength is reduced by initial fractures, whereas stifness seems to be unaffected; and that large test specimens have...

  16. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena

    1997-01-01

    The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality...

  17. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena

    1997-01-01

    The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality...

  18. Mechanisms of lung aging.

    Science.gov (United States)

    Brandenberger, Christina; Mühlfeld, Christian

    2017-03-01

    Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell-cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.

  19. Size Effects in Linear Elastic Fracture Mechanics

    Science.gov (United States)

    1988-01-01

    Recent Theoretical and Experimental Developments in Fracture Mechanics", Fracture 1977, 1 (1977) 695-723. 40 S. Mindess and J. S. Nadeau," Effect of Notch...0.4 1.42 b 2.0 0.80 b Mindess and Nadeau [40], 1.0 3.98 0.86 b Mortar, 3PB 8.03 0.80 b 12.0 0.82 b 16.0 0.84 b 20.0 0.83 b Concrete, 3PB 1.0 3.54 1.08

  20. Crack branching in carbon steel. Fracture mechanisms

    Science.gov (United States)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  1. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...

  2. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2013-07-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  3. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  4. Fracture mechanics safety assessment based on mechanics of materials

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Demler, T.; Eisele, U.; Gillot, R. (Stuttgart Univ. (Germany, F.R.). Staatliche Materialpruefungsanstalt)

    1990-01-01

    In order to determine the influence of the test temperature on the fracture mechanics characteristics for static and dynamic initiation, crack growth, and arrest, investigations were carried out on pressure vessel and piping steels of different toughness and strength (22 NiMoCr 37; 15 NiCuMoNb 5; 20 MnMoNi 55; 15 MnNi 63). The selected temperature range allowed both linear-elastic and elastic-plastic material behaviour to be examined. In the regime of linear-elastic fracture mechanics (LEFM) the conservatism of the reference curves of American and German guidelines could be demonstrated. In the upper shelf, where elastic-plastic, fracture mechanics (EPFM) parameters have to be applied, toughness-dependent overestimations of the real material properties result from the application of the reference curves. (orig./MM).

  5. Crack propagation in fracture mechanical graded structures

    Directory of Open Access Journals (Sweden)

    B. Schramm

    2015-10-01

    Full Text Available The focus of manufacturing is more and more on innovative and application-oriented products considering lightweight construction. Hence, especially functional graded materials come to the fore. Due to the application-matched functional material gradation different local demands such as absorbability, abrasion and fatigue of structures are met. However, the material gradation can also have a remarkable influence on the crack propagation behavior. Therefore, this paper examines how the crack propagation behavior changes when a crack grows through regions which are characterized by different fracture mechanical material properties (e.g. different threshold values KI,th, different fracture toughness KIC. In particular, the emphasis of this paper is on the beginning of stable crack propagation, the crack velocity, the crack propagation direction as well as on the occurrence of unstable crack growth under static as well as cyclic loading. In this context, the developed TSSR-concept is presented which allows the prediction of crack propagation in fracture mechanical graded structures considering the loading situation (Mode I, Mode II and plane Mixed Mode and the material gradation. In addition, results of experimental investigations for a mode I loading situation and numerical simulations of crack growth in such graded structures confirm the theoretical findings and clarify the influence of the material gradation on the crack propagation behavior.

  6. Mechanic behavior of unloading fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    YIN Ke; ZHANG Yongxing; WU Hanhui

    2003-01-01

    Under tension and shear conditions related to unloading of rock mass, a jointed rock mass model of linear elastic fracture mechanics is established. According to the model, the equations of stresses, strains and displacements of the region influenced by the crack but relatively faraway the crack (the distance between the research point and the center of the crack is longer than the length of crack) are derived. They are important for evaluating the deformation of cracked rock. It is demonstrated by the comparison between computational results of these theoretical equations and the observed data from unloading test that they are applicable for actual engineering.

  7. Analogy between fluid cavitation and fracture mechanics

    Science.gov (United States)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  8. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality.

    Science.gov (United States)

    van der Meulen, Marjolein C H; Boskey, Adele L

    2012-08-29

    Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.

  9. [Fall risk and fracture. Aging and fall/fracture].

    Science.gov (United States)

    Kozaki, Koichi

    2013-05-01

    Fall deteriorates QOL and ADL of elderly people, especially when they suffer from hip and vertebral fractures. It is not easy to identify the cause of falling, because falling usually result from multiple factors. Among various potential causes, osteoporosis, osteoarthritis, medication of hypnotic drugs, and environmental factors are important, because they are frequent and can be modifiable. When evaluating fall risks, grasping power, one-leg standing time, timed up&go test, are useful. On the other hand, fall risk index, 22-item self-assessment test, is easy and even better in predicting future falls. In the Cochrane systematic review article 2009, exercise such as Tai-Chi, withdrawal of hypnotic drugs, and vitamin D supplementation are shown to prevent falls in community-dwelling elderly.

  10. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  11. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    Science.gov (United States)

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  12. Mechanical stratigraphic controls on natural fracture spacing and penetration

    Science.gov (United States)

    McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel

    2017-02-01

    Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.

  13. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  14. Physical activity in middle-aged women and hip fracture risk: the UFO study.

    Science.gov (United States)

    Englund, U; Nordström, P; Nilsson, J; Bucht, G; Björnstig, U; Hallmans, G; Svensson, O; Pettersson, U

    2011-02-01

    In a population-based case-control study, we demonstrate that middle-aged women who were active with walking or in different physical spare time activities were at lower risk of later sustaining a hip fracture compared to more sedentary women. In middle-aged women participating in the Umeå Fracture and Osteoporosis (UFO) study, we investigated whether physical activity is associated with a subsequent decreased risk of sustaining a hip fracture. The UFO study is a nested case-control study investigating associations between bone markers, lifestyle, and osteoporotic fractures. We identified 81 female hip fracture cases that had reported lifestyle data before they sustained their fracture. Each case was compared with two female controls who were identified from the same cohort and matched for age and week of reporting data, yielding a total cohort of 237 subjects. Mean age at baseline was 57.2 ± 5.0 years, and mean age at fracture was 65.4 ± 6.4 years. Conditional logistic regression analysis with adjustments for height, weight, smoking, and menopausal status showed that subjects who were regularly active with walking or had a moderate or high frequency of physical spare time activities (i.e. berry/mushroom picking and snow shovelling) were at reduced risk of sustaining a hip fracture (OR 0.14; 95% CI; 0.05-0.53 for walking and OR 0.19; 95% CI; 0.08-0.46, OR 0.17, 95% CI; 0.05-0.64 for moderate and high frequency of spare time activities, respectively) compared to more sedentary women. An active lifestyle in middle age seems to reduce the risk of future hip fracture. Possible mechanisms may include improved muscle strength, coordination, and balance resulting in a decreased risk of falling and perhaps also direct skeletal benefits.

  15. Experimental and finite element analysis of fracture criterion in general yielding fracture mechanics

    Indian Academy of Sciences (India)

    D M Kulkarni; Ravi Prakash; A N Kumar

    2002-12-01

    Efforts made over the last three decades to understand the fracture behaviour of structural materials in elastic and elasto-plastic fracture mechanics are numerous, whereas investigations related to fracture behaviour of materials in thin sheets or general yielding fracture regimes are limited in number. Engineering simulative tests are being used to characterize formability and drawability of sheet metals. However, these tests do not assure consistency in quality of sheet metal products. The prevention of failure in stressed structural components currently requires fracture mechanics based design parameters like critical load, critical crack-tip opening displacement or fracture toughness. The present attempt would aim to fulfill this gap and generate more information thereby increased understanding on fracture behaviour of sheet metals. In the present investigation, using a recently developed technique for determining fracture criteria in sheet metals, results are generated on critical CTOD and fracture toughness. Finite element analysis was performed to support the results on various fracture parameters. The differences are within 1 to 4%. At the end it is concluded that magnitude of critical CTOD and/or critical load can be used as a fracture criterion for thin sheets.

  16. Finnie's notes on fracture mechanics fundamental and practical lessons

    CERN Document Server

    Dharan, C K H; Finnie, Iain

    2016-01-01

    This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical. This book also: Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of f...

  17. Fracture mechanics of concrete: Will applications start to emerge?

    NARCIS (Netherlands)

    Van Mier, J.G.M.

    1995-01-01

    Fracture mechanics of concrete has developed into an active field of research in the past decades. It promises a rational solution technique to structural problems in reinforced concrete in the limit state. Numerical tools have been developed on the basis of fracture mechanics theories. The question

  18. Polypropylene–rubber blends: 5. Deformation mechanism during fracture

    NARCIS (Netherlands)

    Wal, van der A.; Gaymans, R.J.

    1999-01-01

    The deformation mechanism of polypropylene–EPDM rubber blends during fracture was studied by post-mortem SEM fractography. The deformation mechanism was determined for various blend morphologies and test conditions. Brittle fracture merely gives rise to voids, which are caused by voiding of the rubb

  19. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  20. Complexity: a new paradigm for fracture mechanics

    Directory of Open Access Journals (Sweden)

    S. Puzzi

    2009-10-01

    Full Text Available The so-called Complexity Sciences are a topic of fast growing interest inside the scientific community. Actually, researchers did not come to a definition of complexity, since it manifests itself in so many different ways [1]. This field itself is not a single discipline, but rather a heterogeneous amalgam of different techniques of mathematics and science. In fact, under the label of Complexity Sciences we comprehend a large variety of approaches: nonlinear dynamics, deterministic chaos theory, nonequilibrium thermodynamics, fractal geometry, intermediate asymptotics, complete and incomplete similarity, renormalization group theory, catastrophe theory, self-organized criticality, neural networks, cellular automata, fuzzy logic, etc. Aim of this paper is at providing insight into the role of complexity in the field of Materials Science and Fracture Mechanics [2-3]. The presented examples will be concerned with the snap-back instabilities in the structural behaviour of composite structures (Carpinteri [4-6], the occurrence of fractal patterns and selfsimilarity in material damage and deformation of heterogeneous materials, and the apparent scaling on the nominal mechanical properties of disordered materials (Carpinteri [7,8]. Further examples will deal with criticality in the acoustic emissions of damaged structures and with scaling in the time-to-failure (Carpinteri et al. [9]. Eventually, results on the transition towards chaos in the dynamics of cracked beams will be reported (Carpinteri and Pugno [10,11].

  1. Biomechanical Properties of Bone and Biomechanics of Age - Related Fractures - Review

    Directory of Open Access Journals (Sweden)

    Rezzan Günaydın

    2007-06-01

    Full Text Available From a biomechanical viewpoint, fractures are due to a structural failure of the bone. This failure occurs when the forces applied to the bone exceed its load – bearing capacity. The load – bearing capacity of a bone depends on the geometry (its size, shape and distribution of bone mass, and the material properties of a bone as well as the direction and magnitude of applied load. Bone fragility can be defined by biomechanical parameters such as strength, brittleness and work to failure. Strategies to reduce fracture risk must be based on a sound understanding of the cellular, molecular and biomechanical mechanisms that underlie the increased risk of fractures while aging. In this review biomechanics of bone and the etiology of age – related fractures from a biomechanical viewpoint have been discussed in the view of current literature. (From the World of Osteoporosis 2007;13:44-8

  2. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone.

    Science.gov (United States)

    Augat, Peter; Simon, Ulrich; Liedert, Astrid; Claes, Lutz

    2005-03-01

    Fracture repair, which aims at regaining the functional competence of a bone, is a complex and multifactorial process. For the success of fracture repair biology and mechanics are of immense importance. The biological and mechanical environments must be compatible with the processes of cell and tissue proliferation and differentiation. The biological environment is characterized by the vascular supply and by many biochemical components, the biochemical milieu. A good vascular supply is a prerequisite for the initiation of the fracture repair process. The biochemical milieu involves complex interactions among local and systemic regulatory factors such as growth factors or cytokines. The mechanical environment is determined by the local stress and strain within the fracture. However, the local stress and strain is not accessible, and the mechanical environment, therefore, is described by global mechanical factors, e.g., gap size or interfragmentary movement. The relationship between local stress and strain and the global mechanical factors can be obtained by numerical models (Finite Element Model). Moreover, there is considerable interaction between biological factors and mechanical factors, creating a biomechanical environment for the fracture healing process. The biomechanical environment is characterized by osteoblasts and osteocytes that sense the mechanical signal and express biological markers, which effect the repair process. This review will focus on the effects of biomechanical factors on fracture repair as well as the effects of age and osteoporosis.

  3. Fracture mechanics solution of confined water progressive intrusion height of mining fracture floor

    Institute of Scientific and Technical Information of China (English)

    Lu Haifeng; Yao Duoxi; Shen Dan; Cao Jiyang

    2015-01-01

    In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further-more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac-ture under the same conditions. When floor fracture dip angle is less than 90?, tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90?, it occurs more easily on the right edge of the goaf. The longer the advancing distance of working face is, the greater initial frac-ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result.

  4. Fracture mechanics and statistical mechanics of reinforced elastomeric blends

    CERN Document Server

    Heinrich, Gert; Kaliske, Michael; Klüppel, Manfred; Schneider, Konrad; Vilgis, Thomas

    2013-01-01

    Elastomers are found in many applications ranging from technology to daily life applications for example in tires, drive systems, sealings and print rollers. Dynamical operation conditions put extremely high demands on the performance and stability of these materials and their elastic and flow properties can be easily adjusted by simple manipulations on their elastic and viscous properties. However, the required service life suffers often from material damage as a result of wear processes such as abrasion and wear fatigue, mostly caused by crack formation and propagation. This book covers interdisciplinary research between physics, physical chemistry, material sciences and engineering of elastomers within the range from nanometres to millimetres and connects these aspects with the constitutive material properties. The different chapters describe reliable lifetime and durability predictions based on new fracture mechanical testing concepts and advanced material-theoretical methods which are finally implemented...

  5. Fracture Mechanics Prediction of Fatigue Life of Aluminum Highway Bridges

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2015-01-01

    Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations. The fati......Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations...... against fatigue in aluminum bridges, may give results which are unconservative. Furthermore, it was in both investigations found that the validity of the results obtained from Miner's rule will depend on the distribution of the load history in tension and compression....

  6. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive......The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...

  7. Fracture mechanics parameters of multilayer pipes

    Directory of Open Access Journals (Sweden)

    Šestáková L.

    2007-10-01

    Full Text Available Multilayer pipes consisting of different materials are frequently used in praxis because of partial improvement of the properties of pipe systems. To estimate lifetime of these pipes the basic fracture parameters have to be determined. In this work finite element calculations are applied in order to estimate the stress intensity factor K and T-stress values for a new type of non-homogenous C-shape specimen. The application of calculated K and T values to laboratory estimation of fracture toughness and its transferability to real pipe system is discussed.

  8. Aging mechanisms in fruit files.

    Science.gov (United States)

    Tower, J

    1996-10-01

    Genetic analysis of Drosophila has provided evidence in support of two proposed evolutionary genetic mechanisms of aging: mutation accumulation and antagonistic pleiotropy. Both mechanisms result from the lack of natural selection acting on old organisms. Analyses of large numbers of files have revealed that mortality rates do not continue to rise with age as previously thought, but plateau at advanced ages. This phenomenon has implications both for models and for definitions of aging, and may be explained by the evolutionary theories. The physiological processes and genes most relevant to aging are being identified using Drosophila lines selected in the laboratory for postponed senescence. Oxidative stress and insufficient metabolic reserves/capacity may be particularly important factors in limiting the fruitfly lifespan. Genes which exhibit aging-related changes in expression are now being identified. Transgenic files are being used to analyze the mechanisms of such aging-related gene expression, and to test the effects of specific genes on aging and aging-related deterioration.

  9. Research advances in fracturing mechanism of amorphous materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The fracture behavior of brittle materials is a timehonored problem. Archeologists discover that prehistoric people created their primitive tools using this behavior. During the Stone Age, for example, they made simple wooden butchery implements by taking advantage of a sharp edge caused by the brittle fracture on flint. According to archeologists, the application of brittle fracture to the tool-making was one of monumental inventions to mark the very beginning of human civilization.Afterwards, ancient potters succeeded in decorating their works by having the surface of pottery inlaid with cracks and fissures.

  10. Colloid retention mechanisms in single, saturated, variable-aperture fractures.

    Science.gov (United States)

    Rodrigues, S N; Dickson, S E; Qu, J

    2013-01-01

    The characterization of fractured aquifers is commonly limited to the methodologies developed for unconsolidated porous media aquifers, which results in many uncertainties. Recent work indicates that fractured rocks remove more particulates than they are conventionally credited for. This research was designed to quantify the number of Escherichia coli RS2-GFP retained in single, saturated, variable-aperture fractures extracted from the natural environment. Conservative solute and E. coli RS2-GFP tracer experiments were used to elucidate the relationships between dominant retention mechanisms, aperture field characteristics, and flow rate. A non-destructive method of determining a surrogate measure of a coefficient of variation (COV(S)) for each fracture was used to better understand the transport behaviour of E. coli RS2-GFP. The results from this research all point to the importance of aperture field characterization in understanding the fate and transport of contaminants in fractured aquifers. The mean aperture was a very important characteristic in determining particulate recovery, so were matrix properties, COV(s), and flow rate. It was also determined that attachment is a much more significant retention mechanism than straining under the conditions employed in this research. Finally, it was demonstrated that the dominant retention mechanism in a fracture varies depending on the specific discharge. An improved understanding of the mechanisms that influence the fate and transport of contaminants through fractures will lead to the development of better tools and methodologies for the characterization of fractured aquifers, as well as the ability to manipulate the relevant mechanisms to increase or decrease retention, depending on the application.

  11. Age Related Incidence and Early Outcomes of Hip Fractures: A Prospective Cohort Study of 1177 patients

    OpenAIRE

    Shenoy Ravikiran; Eranki Vivek; Pillai Anand; Hadidi Mahar

    2011-01-01

    Abstract Introduction Associated with the increase in the aging population, there is an increase in the incidence of hip fractures worldwide. Outcome following such fractures is affected by age of the patient. This study aims to assess the incidence and early outcome of hip fractures, comparing between different age groups. Methods Data of hip fractures collected over a period of five years was analysed. Patients were divided into three groups, group A (patients under the age of 64), group B ...

  12. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    Science.gov (United States)

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  13. Modeling elastic tensile fractures in snow using nonlocal damage mechanics

    Science.gov (United States)

    Borstad, C. P.; McClung, D. M.

    2011-12-01

    The initiation and propagation of tensile fractures in snow and ice are fundamental to numerous important physical processes in the cryosphere, from iceberg calving to ice shelf rift propagation to slab avalanche release. The heterogeneous nature of snow and ice, their proximity to the melting temperature, and the varied governing timescales typically lead to nonlinear fracture behavior which does not follow the predictions of Linear Elastic Fracture Mechanics (LEFM). Furthermore, traditional fracture mechanics is formally inapplicable for predicting crack initiation in the absence of a pre-existing flaw or stress concentration. An alternative to fracture mechanics is continuum damage mechanics, which accounts for the material degradation associated with cracking in a numerically efficient framework. However, damage models which are formulated locally (e.g. stress and strain are defined as point properties) suffer from mesh-sensitive crack trajectories, spurious localization of damage and improper fracture energy dissipation with mesh refinement. Nonlocal formulations of damage, which smear the effects of the material heterogeneity over an intrinsic length scale related to the material microstructure, overcome these difficulties and lead to numerically efficient and mesh-objective simulations of the tensile failure of heterogeneous materials. We present the results of numerical simulations of tensile fracture initiation and propagation in cohesive snow using a nonlocal damage model. Seventeen beam bending experiments, both notched and unnotched, were conducted using blocks of cohesive dry snow extracted from an alpine snowpack. Material properties and fracture parameters were calculated from the experimental data using beam theory and quasi-brittle fracture mechanics. Using these parameters, a nonlocal isotropic damage model was applied to two-dimensional finite element meshes of the same scale as the experiments. The model was capable of simulating the propagation

  14. Toughness of carbon nanotubes conforms to classic fracture mechanics.

    Science.gov (United States)

    Yang, Lin; Greenfeld, Israel; Wagner, H Daniel

    2016-02-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene.

  15. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV Fracturing in Tight Oil Reservoirs.

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    Full Text Available Stimulated reservoir volume (SRV fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM, mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  16. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    Science.gov (United States)

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  17. The hydro-mechanical modeling of the fractured media; Modelisation hydromecanique des milieux fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kadiri, I

    2002-10-15

    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  18. Facial fractures with concomitant open globe injury: mechanisms and fracture patterns associated with blindness.

    Science.gov (United States)

    Vaca, Elbert E; Mundinger, Gerhard S; Kelamis, Joseph A; Dorafshar, Amir H; Christy, Michael R; Manson, Paul N; Rodriguez, Eduardo D

    2013-06-01

    Treatment of facial fractures in the setting of open-globe injuries poses a management dilemma because of the often disparate treatment priorities of multidisciplinary trauma teams and the lack of prognostic data regarding visual outcomes. Patients in the University of Maryland Shock Trauma Registry sustaining facial fractures with concomitant open-globe injuries from January of 1998 to August of 2010 were identified. Odds ratios were calculated to identify demographic and clinical variables associated with blindness, and multivariate regression analysis was performed. A total of 99 patients were identified with 105 open-globe injuries. Seventy-nine percent of injuries were blinding, whereas 4.8 percent of globes achieved a final visual acuity greater than or equal to 20/400. Blindness was associated with penetrating injury, increasing number of facial fractures, zygomaticomaxillary complex fracture, admission Glasgow Coma Scale score less than or equal to 8, and globe injury spanning all three eye zones. Fracture repair was performed more frequently (62.5 percent) and more quickly (average time to fracture repair, 4.5 days) in cases of primary globe enucleation/evisceration when compared with complete (21.2 percent; 8 days; p=0.35) or incomplete (42.9 percent; 11 days; p=0.058) primary globe repair. Penetrating injury mechanism and zone of eye injury appear to be better indicators of visual prognosis than facial fracture patterns. Given the high rates of blindness, secondary enucleation, and delay of fracture repair in patients that were not primarily enucleated, the authors recommend that orbital fracture repair not be delayed in the hopes of eventual visual recovery in cases of high-velocity projectile trauma. Risk, III.

  19. A Fracture Mechanical Model and a Cohesive Zone Model of Interface Fracture

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2006-01-01

    A comparison between the prediction of crack propagation through an adhesive interface based on a fracture mechanics approach and a cohesive zone approach is presented. Attention is focussed on predicting the shape of the crack front and the critical stress required to propagate the crack under...... quasi-static conditions. The cohesive zone model has several advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model to take into account effects such as plastic deformation in the adherends, and to take into account effects of large local curvatures...... of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics approach in the limit where the size of the cohesive zone becomes smaller than other relevant geometrical lengths for the problem....

  20. Fracture mechanics life analytical methods verification testing

    Science.gov (United States)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  1. Fracture mechanisms in biopolymer films using coupling of mechanical analysis and high speed visualization technique

    NARCIS (Netherlands)

    Paes, S.S.; Yakimets, I.; Wellner, N.; Hill, S.E.; Wilson, R.H.; Mitchell, J.R.

    2010-01-01

    The aim of this study was to provide a detailed description of the fracture mechanisms in three different biopolymer thin materials: gelatin, hydroxypropyl cellulose (HPC) and cassava starch films. That was achieved by using a combination of fracture mechanics methodology and in situ visualization w

  2. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  3. Mechanical transport in two-dimensional networks of fractures

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables.

  4. Mechanical Properties and Fracture Behavior of Cu-Co-Be Alloy after Plastic Deformation and Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHOU; Ke-xing SONG; Jian-dong XING; Zhou LI; Xiu-hua GUO

    2016-01-01

    Mechanical properties and fracture behavior of Cu-0.84Co-0.23Be alloy after plastic deformation and heat treatment were comparatively investigated.Severe plastic deformation by hot extrusion and cold drawing was adopted to induce large plastic strain of Cu-0.84Co-0.23Be alloy.The tensile strength and elongation are up to 476.6 MPa and 1 8%,respectively.The fractured surface consists of deep dimples and micro-voids.Due to the formation of su-persaturated solid solution on the Cu matrix by solution treatment at 950 ℃ for 1 h,the tensile strength decreased to 271.9 MPa,while the elongation increased to 42%.The fracture morphology is parabolic dimple.Furthermore,the tensile strength increased significantly to 580.2 MPa after aging at 480 ℃ for 4 h.During the aging process,a large number of precipitates formed and distributed on the Cu matrix.The fracture feature of aged specimens with low elongation (4.6%)exhibits an obvious brittle intergranular fracture.It is confirmed that the mechanical properties and fracture behavior are dominated by the microstructure characteristics of Cu-0.84Co-0.23Be alloy after plastic de-formation and heat treatment.In addition,the fracture behavior at 450 ℃ of aged Cu-0.84Co-0.23Be alloy was also studied.The tensile strength and elongation are 383.6 MPa and 11.2%,respectively.The fractured morphologies are mainly candy-shaped with partial parabolic dimples and equiaxed dimples.The fracture mode is multi-mixed mechanism that brittle intergranular fracture plays a dominant role and ductile fracture is secondary.

  5. Finite elements in fracture mechanics theory, numerics, applications

    CERN Document Server

    Kuna, Meinhard

    2013-01-01

    Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.

  6. Comparative study of fracture mechanical test methods for concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Olesen, John Forbes

    2004-01-01

    and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test....

  7. Measurements of residual stress in fracture mechanics coupons

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Hill, Michael R [U.C. DAVIS; Nav Dalen, John E [HILL ENGINEERING

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  8. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanbin [Tsinghua University, Advanced Materials Institute, Graduate School at Shenzhen, Shenzhen (China); City University of Hong Kong, Department of Physics and Materials Science, Kowloon Tong (China); Tang, Guoyi [Tsinghua University, Advanced Materials Institute, Graduate School at Shenzhen, Shenzhen (China); Shek, Chanhung [City University of Hong Kong, Department of Physics and Materials Science, Kowloon Tong (China); Zhu, Yaohua [Hong Kong Polytechnic University, Department of Industrial and Systems Engineering, Kowloon (China)

    2009-11-15

    The effect of electropulsing treatment (EPT) on the microstructure, mechanical properties, and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip at room temperature was investigated. The results indicated that EPT accelerated the spheroidizing and dissolution of {beta} phase tremendously in the aged Mg-9Al-1Zn alloy strip. The EPT-induced microstructural change resulted in remarkably increasing elongation to failure, remained tensile strength unchanged. A mechanism for rapid spheroidizing and dissolution process of {beta} phase during EPT was proposed based on the reduction of nucleation thermodynamic barrier and enhancement of atomic diffusion. Fracture analysis showed that with increase in frequency of EPT transgranular dimple fracture becomes predominant instead of the quasicleavage fracture. (orig.)

  9. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip

    Science.gov (United States)

    Jiang, Yanbin; Tang, Guoyi; Shek, Chanhung; Zhu, Yaohua

    2009-11-01

    The effect of electropulsing treatment (EPT) on the microstructure, mechanical properties, and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip at room temperature was investigated. The results indicated that EPT accelerated the spheroidizing and dissolution of β phase tremendously in the aged Mg-9Al-1Zn alloy strip. The EPT-induced microstructural change resulted in remarkably increasing elongation to failure, remained tensile strength unchanged. A mechanism for rapid spheroidizing and dissolution process of β phase during EPT was proposed based on the reduction of nucleation thermodynamic barrier and enhancement of atomic diffusion. Fracture analysis showed that with increase in frequency of EPT transgranular dimple fracture becomes predominant instead of the quasicleavage fracture.

  10. Rheology and Fracture Mechanics of Foods

    NARCIS (Netherlands)

    Vliet, van T.

    2013-01-01

    The mechanical properties of food play an important role during manufacturing, storage, handling, and last but not least, during consumption. For an adequate understanding of the mechanical properties of liquid, liquid-like, soft solid, and solid foods, a basic understanding of relevant aspects of r

  11. A Fracture Probability Competition Mechanism of Stress Corrosion Cracking

    Institute of Scientific and Technical Information of China (English)

    Yanliang HUANG

    2001-01-01

    The stress corrosion cracking (SCC) of austenitic stainless steel was studied via polarization,slow strain rate and scanning electron microscope (SEM) techniques. Many SCC mechanisms have been proposed in which hydrogen embrittlement and passive film rupture-repassivation theories are generally accepted, but they can hardly explain the SCC mechanism of austenitic stainless steel in acidic chloride solution adequately, because the steel is in active dissolution state and cathodic polarization can prevent it from occurring. Our experiment shows that the anodic current increases the creep rate and decreases the plastic strength of the material on single smooth specimen as well as at the SCC crack tip. The fractured surface was characterized as brittle cleavage, while the surface crack of smooth specimen was almost vertical to the tensile strength, which can confirm that the cracks were caused by tensile stresses. A fracture probability competition mechanism of SCC was proposed on the basis of the experimental results combined with the viewpoint of ductile-brittle fracture competition. When the anodic dissolution current is increased to a certain degree, the probability of fracture by tensile stress will exceed that by shear stress, and the brittle fracture will occur. The proposed SCC mechanism can not only explain the propagation of SCC cracks but can explain the crack initiation as well. The strain on the surface distributes unevenly when a smooth specimen is deformed, so does the anodic current distribution. The crack will initiate at a point where the anodic current density is large enough to cause the material at a specific point to fracture in brittle manner.

  12. Effects of thermal aging on fracture toughness and Charpy-impact strength of stainless steel pipe welds

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, D.J.; Michaud, W.F.; Galvin, T.M.; Burke, W.F.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1996-05-01

    Degradation of fracture toughness, tensile, and Charpy-impact properties of Type 304 and 304/308 SS pipe welds due to thermal aging was studied at room temperature and 290 C. Thermal aging of SS welds results in moderate decreases in charpy-impact strength and fracture toughness. Upper-shelf energy decreased by 50-80 J/cm{sup 2}. Decrease in fracture toughness J-R curve or J{sub IC} is relatively small. Thermal aging had no or little effect on tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

  13. Hydrogen Embrittlement - Loading Rate Effects in Fracture Mechanics Testing

    NARCIS (Netherlands)

    Koers, R.W.J.; Krom, A.H.M.; Bakker, A.

    2001-01-01

    The fitness for purpose methodology is more and more used in the oil and gas industry to evaluate the significance of pre-existing flaws and material deficiencies with regard to the suitability of continued operation of equipment. In this methodology, traditional fracture mechanics is integrated wit

  14. Fracture Mechanics of an Elastic Softening Material like Concrete

    NARCIS (Netherlands)

    Reinhardt, H.W.

    1984-01-01

    Concrete is modelled as a linear elastic softening material and introduced into fracture mechanics. A discrete crack is considered with softening zones at the crack tips. Following the approach of Dugdale/Barenblatt, closing stresses are applied to the crack faces in the softening zone. The stresses

  15. Fracture mechanics applied to the machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  16. Coupled phenomenological and fracture mechanics approach to assess the fracture behaviour of TWC piping component

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Sanjeev, E-mail: san_bpl@yahoo.co [Advanced Materials and Processes Research Institute (AMPRI), CSIR Concern, Hoshangabad Road, Bhopal 462026 (India); Ramakrishnan, N. [Advanced Materials and Processes Research Institute (AMPRI), CSIR Concern, Hoshangabad Road, Bhopal 462026 (India); Chouhan, J.S. [Civil Engineering Department, Samrat Ashok Technological Institute, Vidisha (India)

    2010-04-15

    The present study demonstrates the numerical prediction of experimental specimen J-R curve using Gurson-Tvergaard-Needleman phenomenologically based material model. The predicted specimen J-R curve is used to determine the geometric independent initiation fracture toughness (J{sub SZWc}) value that compares well with experimental result. Using the experimentally determined and numerically predicted J{sub SZWc} values and specimen J-R curves, the accuracy of predicting the fracture behaviour of the cracked component is judged. Thus the present study proposed a coupled phenomenological and fracture mechanics approach to predict the crack initiation and instability stages in cracked piping components using numerically predicted specimen J-R curve obtained from tensile specimens testing data.

  17. Draft fracture mechanics code case for American Society of Mechanical Engineers NUPACK rules

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, P.; Sorenson, K. [Sandia National Labs., Albuquerque (United States); Nickell, R. [Applied Science and Technology, Poway (United States); Saegusa, T. [Central Research Inst. for Electric Power Industry, Abiko (Japan)

    2004-07-01

    The containment boundaries of most spent-fuel casks certified for use in the United States by the Nuclear Regulatory Commission are constructed with stainless steel, a material that is ductile in an engineering sense at all temperatures and for which, therefore, fracture mechanics principles are not relevant for the containment application. Ferritic materials may fail in a nonductile manner at sufficiently low temperatures, so fracture mechanics principles may be applied to preclude nonductile fracture. Because of the need to transport and store spent nuclear fuel safely in all types of climatic conditions, these vessels have regulatory lowest service temperatures that range down to -40 C (-40 F) for transport application. Such low service temperatures represent a severe challenge in terms of fracture toughness to many ferritic materials. Linear-elastic and elastic-plastic fracture mechanics principles provide a methodology for evaluating ferritic materials under such conditions.

  18. Application of fracture mechanics to materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Sih, G.C.; Sommer, E.; Dahl, W.

    1984-01-01

    The general theme is the interplay between material and design requirements, and this was underlined in many of the technical presentations. A panel discussion further clarified the objectives of fracture mechanics as a discipline and tool to guard structural and machine components against premature failure. Numerical and experimental techniques were shown to be essential in compiling laboratory data on fracture testing, and the need for the development of rational procedures to ensure safety and reliability in the design of modern structures was very strongly emphasized.

  19. Unique Mechanism of Chance Fracture in a Young Adult Male

    Directory of Open Access Journals (Sweden)

    Aaron Birch

    2013-03-01

    Full Text Available Since the first description of the Chance fracture in 1948, there have been few case reports ofunique mechanisms causing this classical flexion-extension injury to the spine in motor vehicleaccidents, sports injury, and falls. To our knowledge, this injury has not been reported from a fall withthe mechanistic forces acting laterally on the spine and with spinal support in place. We present a21-year-old male who slid down a flight of stairs onto his side wearing a heavy mountaineering stylebackpack, subsequently sustaining a Chance fracture of his first lumbar vertebrae.

  20. Unique mechanism of chance fracture in a young adult male.

    Science.gov (United States)

    Birch, Aaron; Walsh, Ryan; Devita, Diane

    2013-03-01

    Since the first description of the Chance fracture in 1948, there have been few case reports of unique mechanisms causing this classical flexion-extension injury to the spine in motor vehicle accidents, sports injury, and falls. To our knowledge, this injury has not been reported from a fall with the mechanistic forces acting laterally on the spine and with spinal support in place. We present a 21-year-old male who slid down a flight of stairs onto his side wearing a heavy mountaineering style backpack, subsequently sustaining a Chance fracture of his first lumbar vertebrae.

  1. Summary of fracture mechanics problems analysis method in ABAQUS

    Directory of Open Access Journals (Sweden)

    Duan Hongjun

    2015-07-01

    Full Text Available Fracture mechanics is the study of the strength of the materials or structures with crack and crack propagation regularity of a discipline. There are a lot of analysis function of ABAQUS, including fracture analysis. ABAQUS is very easy to use and easy to establish a model of the complicated problem. In order to effectively study of strong discontinuity problems such as crack, provides two methods of simulating the problem of cracks of ABAQUS. This paper describes the two methods respectively, and compare two methods.

  2. Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Saifi, Qais [VTT Technical Research Centre of Finland, Espoo (Finland)

    2016-11-15

    Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.

  3. Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, R.A. [Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123 (Oman); Abdul-Wahab, S.A. [Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123 (Oman)], E-mail: sabah1@squ.edu.om; Pervez, T. [Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123 (Oman)

    2008-07-01

    This paper describes experimentally the effect of seawater corrosion, aging time, and aging temperature on the fatigue resistance property of 6063 aluminum alloy. The 6063 aluminum alloy that was used for the study was heat treated and soaked in seawater for different intervals of time between 2 and 30 weeks. It was found that the maximum fatigue resistance property in the 6063 aluminum alloy was observed when aged between 7 and 9 h and heat treated at temperatures between 160 {sup o}C and 200 {sup o}C. Generally at constant load, the results indicated that the number of cycles to fail the 6063 aluminum alloy decreased with increasing the soaking time in seawater. Moreover, fracture surfaces were considered and studied under a scanning electron microscope (SEM). The results showed that the brittle fracture pattern tended to occur with the increase in aging time and temperature. The fatigue striations were observed very clearly at low and peak aging temperature. The increase in the fatigue resistance property with aging time was linked with the vacancies assisted diffusion mechanism and also by the hindering of dislocation movement by impure atoms.

  4. Formative mechanism of intracanal fracture fragments in thoracolumbar burst fractures: a finite element study

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhi-li; ZHU Rui; LI Shan-zhu; YU Yan; WANG Jian-jie; JIA Yong-wei; CHEN Bo

    2013-01-01

    Background Thoracolumbar burst fracture is a common clinical injury,and the fracture mechanism is still controversial.The aim of this research was to study the formation of intracanal fracture fragments in thoracolumbar burst fractures and to provide information for the prevention of thoracolumbar bursts fractures and reduction of damage to the nervous system.Methods A nonlinear three-dimensional finite element model of T11-L3 segments was established,and the injury processes of thoracolumbar bursts were simulated.The intact finite element model and the finite element model after the superior articular were impacted by 100 J of energy in different directions.The distribution and variation of stress in the superior posterior region of the L1 vertebral body were analyzed.Abaqus 6.9 explicit dynamic solver was used as finite element software in calculations.Results A three-dimensional nonlinear finite element model of the thoracolumbar spine was created.In the intact model,stress was concentrated in the superior posterior region of the L1 vertebral body.The stress peak was a maximum for the extension impact load and a minimum for the flexion impact load.The stress peak and contact force in the facet joint had close correlation with time.The stress peak disappeared after excision of the superior articular process.Conclusions The three-dimensional nonlinear finite element model was suitable for dynamic analysis.The contact force in the facet joint,which can be transferred to the superior posterior vertebral body,may explain the spinal canal fragment in thoracolumbar burst fractures.

  5. Fracture mechanics safety assessment based on mechanics of materials. Werkstoffmechanische Grundlagen bruchmechanischer Sicherheitsanalysen

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Demler, T.; Eisele, U.; Gillot, R. (Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt)

    1990-01-01

    Investigations are reported of pressure vessel and piping steels (22 NiMoCr 3 7) of various toughness and strength, for determining the influence of the testing temperature on fracture-mechanical characteristics with regard to static and dynamic crack initiation, crack growth and crack stop. The tests have been made in a temperature range where both linear-elastic and elastic-plastic materials behaviour is possible. Within the linear-elastic fracture-mechanical regime, the conservativity of the limiting curves given in American and German technical codes and standards have been confirmed. Within the regime of upper-shelf toughness, where characteristics of elastic-plastic fracture-mechanical behaviour are to be used for analysis, application of the limiting curves given in standards leads to an overassessment of real fracture-mechanical characteristics. (orig./DG).

  6. The Relationship Between DP, Fracture Degree and Mechanical Strength of Cellulose Iβ in Insulation Paper by Molecular Dynamic Simulations

    Science.gov (United States)

    Wang, You-Yuan; Yang, Tao; Tian, Miao; Liao, Rui-Jin

    2013-09-01

    The degree of polymerization (DP) has been regarded as an important symbol of mechanical strength, reflecting the aging condition of transformer insulation paper. In this article, a new concept called fracture degree is proposed on the basis of DP. First, nine cellulose Iβ crystal models with different fracture degrees were built. Then relevant mechanical parameters and hydrogen bond numbers were calculated by molecular dynamics (MD) simulation. Results showed that during the aging process of insulation paper with fracture of cellulose chain, the elastic constant C33 produces appreciable impact on the Young's modulus (E). With the decrease of DP and increase of fracture degree, the Young's modulus step decreases. To the 50% and 100% fracture degree models respectively, the relationship between their different degrees of polymerization and Young's modulus is subjected to similar exponential distributions. With the increase of the fracture degree, the average hydrogen bond number drops, and the change rules apply to the Young's modulus. Since hydrogen bond is the main factor of mechanical strength, it can be inferred that the fracture degree influences mechanical strength seriously.

  7. Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture

    Directory of Open Access Journals (Sweden)

    Sorochak Andriy

    2015-06-01

    Full Text Available The main regularities in fatigue fracture of the railway axle material - the OSL steel - are found in this paper. Micromechanisms of fatigue crack propagation are described and systematized, and a physical-mechanical interpretation of the relief morphology at different stages of crack propagation is proposed for fatigue cracks in specimens cut out of the surface, internal and central layers of the axle.

  8. Photoelastic stress analysis assisted evaluation of fracture toughness in hydrothermally aged epoxies

    Directory of Open Access Journals (Sweden)

    G. Pitarresi

    2014-10-01

    Full Text Available The present work has investigated the fracture toughness of a model DGEBA epoxy system subject to Hidro-Thermal aging. A Photoelastic Stress Analysis technique has been implemented, showing the evolution of stresses arising throughout the water uptake process due to the non-uniform swelling of the material. Gravimetric and Dynamic Mechanical Thermal Analyses have further complemented the characterization, showing the onset of plasticization effects with aging. The correlation of all previous characterizations has allowed to conclude that an increase of KIC fracture toughness is obtained at the fully saturated condition. In particular Photoelasticity has also revealed the onset of relevant swelling induced stresses during the first stages of water absorption, leading to an increase of fracture toughness due to compressive stresses settling near the crack tip. A stress free condition is instead reestablished at the later stages of absorption, suggesting that the increased toughness of the saturated material is an effect of the modifications induced by aging on the polymer structure.

  9. Therapeutic ultrasound in fracture healing: The mechanism of osteoinduction

    Directory of Open Access Journals (Sweden)

    John P

    2008-01-01

    Full Text Available Background: Ultrasound has been used therapeutically for accelerating fracture healing since many years. However, the controversy on the exact mechanism of osteoinduction still continues. In this study, we try to bring out the exact biomolecular mechanism by which ultrasound induces fracture healing. Materials and Methods: The study was conducted in two phases: animal experiments and clinical study. In the first phase, we induced fractures on the left tibia of Wistar strain rats under anaesthesia. They were divided into two groups. One of the groups was given low-intensity, pulsed ultrasound (30 MW/cm 2 20 min a day for 10 days. Tissue samples and radiographs were taken weekly for 3 weeks from both the groups. In the second phase of our study, ten patients with fractures of the distal end of the radius (ten fractures were included. Five of these were treated as cases, and five were treated as controls. Ultrasound was given 30 MW/cm 2 for 20 min every day for 2 weeks. The patients were assessed radiologically and sonologically before and after ultrasound therapy. Tissue samples were studied with thymidine incorporation test with and without adding various neurotransmitter combinations. Results: Radiological findings revealed that there was an increased callus formation in the ultrasound group. At the cellular level, there was an increased thymidine incorporation in the ultrasound group. When various neurotransmitters were added to the cells, there was an increased thymidine incorporation in the ultrasound group. In the second phase of the study, radiological and sonological assessments showed that there was an increased callus formation in the ultrasound group. In cytological study, thymidine incorporation was found to be increased in the ultrasound group. Conclusions: The results of animal and clinical studies demonstrated an early and increased callus formation in the ultrasound group. Cytological studies revealed increased thymidine

  10. Mechanics of materials: Top-down approaches to fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, J.W.; Evans, A.G.

    2000-01-01

    The utility and robustness of the mechanics of materials is illustrated through a review of several recent applications to fracture phenomena, including adhesive failures, the role of plasticity in enhancing toughness in films and multilayers, and crack growth resistance in ductile structural alloys. The commonalty among the approaches rests in a reliance on experiments to provide calibration of the failure process at the smallest scale.

  11. Quantitative NDI integration with probabilistic fracture mechanics for the assessment of fracture risk in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Jochen H.; Cioclov, Dragos; Dobmann, Gerd; Boiler, Christian [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren (IZFP), Saarbruecken (Germany)

    2009-07-01

    In the context of probabilistic paradigm of fracture risk assessment in structural components a computer simulation rationale is presented which has at the base the integration of Quantitative Non-destructive Inspection and Probabilistic Fracture Mechanics. In this study the static failure under static loading is assessed in the format known as Failure Assessment Diagram (FAD). The key concept in the analysis is the stress intensity factor (SIF) which accounts on the geometry of the component and the size of a pre-existent defect of a crack nature. FAD assessments can be made in deterministic sense, which yields the end result in dual terms of fail/not-fail. The fracture risk is evaluated in probabilistic terms. The superposed probabilistic pattern over the deterministic one (in mean sense) is implemented via Monte-Carlo sampling. The probabilistic fracture simulation yields a more informative analysis in terms of probability of failure. An important feature of the PVrisk software is the ability to simulate the influence of the quality and reliability of non-destructive inspection (NDI). It is achieved by integrating, algorithmically. probabilistic FAD analysis and the Probability of Detection (POD). The POD information can only be applied in a probabilistic analysis and leads to a refinement of the assessment. By this means, it can be ascertained the decrease of probability of failure (increase of reliability) when POD-characterized NDI is applied. Therefore, this procedure can be used as a tool for inspection based life time conceptions. In this paper results of sensitivity analyses of the fracture toughness are presented with the aim to outline, in terms of non-failure probabilities, the benefits of applying NDI, in various qualities, in comparison with the situation when NDI is lacking. (orig.)

  12. Results of fracture mechanics tests on PNC SUS 304 plate

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; James, L.A.; Blackburn, L.D.

    1985-08-01

    PNC provided SUS 304 plate to be irradiated in FFTF at about 400/sup 0/C to a target fluence of 5 x 10/sup 21/ n/cm/sup 2/ (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel.

  13. Water coning mechanism in Tarim fractured sandstone gas reservoirs

    Institute of Scientific and Technical Information of China (English)

    沈伟军; 刘晓华; 李熙喆; 陆家亮

    2015-01-01

    The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields. The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration (especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.

  14. Wide-range displacement expressions for standard fracture mechanics specimens

    Science.gov (United States)

    Kapp, J. A.; Gross, B.; Leger, G. S.

    1985-01-01

    Wide-range algebraic expressions for the displacement of cracked fracture mechanics specimens are developed. For each specimen two equations are given: one for the displacement as a function of crack length, the other for crack length as a function of displacement. All the specimens that appear in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399) are represented in addition to the crack mouth displacement for a pure bending specimen. For the compact tension sample and the disk-shaped compact tension sample, the displacement at the crack mouth and at the load line are both considered. Only the crack mouth displacements for the arc-shaped tension samples are presented. The agreement between the displacements or crack lengths predicted by the various equations and the corresponding numerical data from which they were developed are nominally about 3 percent or better. These expressions should be useful in all types of fracture testing including fracture toughness, K-resistance, and fatigue crack growth.

  15. State-of-the-art report on piping fracture mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M. [Battelle, Columbus, OH (United States)

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  16. Thermal-mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone

    Institute of Scientific and Technical Information of China (English)

    ZUO; JianPing; XIE; HePing; ZHOU; HongWei; PENG; SuPing

    2007-01-01

    Scanning electronic microscopy (SEM) was employed to investigate fractographs of sandstone in mine roof strata under thermal-mechanical coupled effect. Based on the evolution of sandstone surface morphology in the failure process and fractography, the fracture mechanism was studied and classified under meso and micro scales, respectively. The differences between fractographs under different temperatures were examined in detail. Under high temperature, fatigue fracture and plastic deformation occurred in the fracture surface. Therefore, the temperature was manifested by these phenomena to influence strongly on micro failure mechanism of sandstone. In addition, the failure mechanism would transit from brittle failure mechanism at low temperature to coupled brittle-ductile failure mechanism at high temperature. The variation of sandstone strength under different temperature can be attributed to the occurrence of plastic deformation, fatigue fracture, and microcracking. The fatigue striations in the fracture surfaces under high temperature may be interpreted as micro fold. And the coupled effect of temperature and tensile stress may be another formation mechanism of micro fold in geology.

  17. Mechanical and fracture behavior of calcium phosphate cements

    Science.gov (United States)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  18. [Is Mapuche ethnicity a risk factor for hip fracture in aged?].

    Science.gov (United States)

    Sapunar, Jorge; Bravo, Paulina; Schneider, Hermann; Jiménez, Marcela

    2003-10-01

    Ethnic factors are involved in the risk for osteoporosis and hip fracture. To assess the effect of Mapuche ethnicity on the risk of hip fracture. A case control study. Cases were subjects over 55 years of age admitted, during one year, for hip fracture not associated to major trauma or tumors. Controls were randomly chosen from other hospital services and paired for age with cases. The magnitude of the association between ethnicity and hip fracture was expressed as odds ratio in a logistic regression model. In the study period, 156 cases with hip fracture were admitted. The proportion of subjects with Mapuche origin was significantly lower among cases than controls (11.8 and 26.5% respectively, p Mapuche ethnicity was associated with hip fracture with an odds radio of 0.14 (p = 0.03, 95% CI 0.03-0.8). In this sample, Mapuche ethnicity is a protective factor for hip fracture.

  19. Humeral fracture in non-ambulant infants - a possible accidental mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Somers, John M.; Halliday, Katharine E. [Nottingham University Hospitals, Radiology Department, Nottingham (United Kingdom); Chapman, Stephen [Birmingham Children' s Hospital, Birmingham (United Kingdom)

    2014-10-15

    Humeral fracture in a non-ambulant infant younger than 1 year is suspicious for a non-accidental injury unless there is a credible accidental explanation. A previously unrecognised accidental mechanism was described in 1996 whereby a 5-month-old infant was rolled by a 3-year-old sibling from a prone to a supine position. To investigate the widely accepted view that an infant with limited mobility cannot sustain a fracture of the humerus by his or her own actions in the absence of the intervention of an external party. We present seven cases of non-ambulant infants between 4 and 7 months of age in whom an isolated humeral fracture was the only injury present. In each case the caregiver described the fracture occurring when the child rolled over, trapping the dependent arm, without the intervention of another party. There is no proof for this mechanism in the form of an independent witness or video recording. However, we propose that this mechanism is worthy of further consideration as a rare and unusual cause for the injury. Further study is required. (orig.)

  20. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-08-01

    Full Text Available The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  1. Measurement of residual stresses using fracture mechanics weight functions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y. [Bettis Atomic Power Laboratory, West Mifflin, PA (United States)

    2001-07-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  2. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-04-15

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be

  3. [Bone fracture and the healing mechanisms. Fragility fracture and bone quality].

    Science.gov (United States)

    Mawatari, Taro; Iwamoto, Yukihide

    2009-05-01

    Fracture occurs in bone having less than normal elastic resistance without any violence. Numerous terms have been used to classify various types of fractures from low trauma events; "fragility fracture", "stress fracture", "insufficiency fracture", "fatigue fracture", "pathologic fracture", etc. The definitions of these terms and clinical characteristics of these fractures are discussed. Also state-of-the-art bone quality assessments; Finite element analysis of clinical CT scans, assessments of the Microdamage, and the Cross-links of Collagen are introduced in this review.

  4. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.

    Science.gov (United States)

    Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret

    2009-03-01

    Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.

  5. The Effect of Creep Aging on the Fatigue Fracture Behavior of 2524 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Wenke Li

    2016-09-01

    Full Text Available Normal temperature tensile and fatigue tests were adopted to test the mechanical performance and fatigue life of 2524 aluminum alloy under the three states of T3, artificial aging, and creep aging, and scanning electron microscope and transmission electron microscope were also used to observe the fatigue fracture morphology and aging precipitation features of the alloy under the above three states. Results showed that the alloy treated by creep aging can obtain higher fatigue life, but that treated by artificial aging is lower than T3; T3 alloy is mainly dominated by GPB region. Meanwhile, the crystal boundary displays continuously distributed fine precipitated phases; after artificial aging and creep aging treatment, a large amount of needle-shaped S′ phases precipitate inside the alloy, while there are wide precipitated phases at the crystal boundary. Wide precipitation free zones appear at the crystal boundary of artificial-aging samples, but precipitation free zones at the alloy crystal boundary of creep aging become narrower and even disappear. It can be seen that creep aging can change the precipitation features of the alloy and improve its fatigue life.

  6. Theories and mechanisms of aging.

    Science.gov (United States)

    Cefalu, Charles A

    2011-11-01

    This article discusses various theories of aging and their relative plausibility related to the human aging process. Structural and physiologic changes of aging are discussed in detail by organ system. Each of the organ systems is discussed when applicable to the various theories of aging. Normal versus abnormal aging is discussed in the context of specific aging processes, with atypical presentations of disease and general links to life expectancy. Life expectancy and lifespan are discussed in the context of advances in medical science and the potential ultimate link to human life span.

  7. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  8. Mechanical Properties, Damage and Fracture Mechanisms of Bulk Metallic Glass Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension,and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.

  9. Early age fracture properties of microstructurally-designed mortars

    DEFF Research Database (Denmark)

    Di Bella, Carmelo; Michel, Alexander; Stang, Henrik;

    2017-01-01

    This paper compares the fracture properties as well as crack initiation and propagation of real and equivalent mortars. The development of the elastic modulus, tensile strength, and fracture energy at different hydration stages were determined by inverse analysis of load-displacement curves obtai...

  10. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics.

    Science.gov (United States)

    Nasrin, S; Katsube, N; Seghi, R R; Rokhlin, S I

    2017-01-01

    This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics-based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the

  11. Fractures of the acetabulum in patients aged 60 years and older: an epidemiological and radiological study.

    Science.gov (United States)

    Ferguson, T A; Patel, R; Bhandari, M; Matta, J M

    2010-02-01

    Using a prospective database of 1309 displaced acetabular fractures gathered between 1980 and 2007, we calculated the annual mean age and annual incidence of elderly patients > 60 years of age presenting with these injuries. We compared the clinical details and patterns of fracture between patients > 60 years of age (study group) with those 60 years of age and the remaining 1074 were fractures increased by 2.4-fold between the first half of the study period and the second half (10% (62) vs 24% (174), p Fractures characterised by displacement of the anterior column were significantly more common in the elderly compared with the younger patients (64% (150) vs 43% (462), respectively, p fractures in the study group included a separate quadrilateral-plate component (50.8% (58)) and roof impaction (40% (46)) in the anterior fractures, and comminution (44% (30)) and marginal impaction (38% (26)) in posterior-wall fractures. The proportion of elderly patients presenting with acetabular fractures increased during the 27-year period. The older patients had a different distribution of fracture pattern than the younger patients, and often had radiological features which have been shown in other studies to be predictive of a poor outcome.

  12. Age-specific incidence of hip fracture in the elderly: a healthy decline.

    LENUS (Irish Health Repository)

    Green, C

    2012-02-01

    Hip fractures in the elderly are an important source of morbidity and mortality. The predicted increase in the number of hip fractures due to the increasing elderly population has not been universally observed. The purpose of this study was to examine the incidence of hip fractures over a twenty year period to determine if this rise is occurring in our region. All hip fractures from the unit over 20 years were identified. Population data for those over 65 in the catchment area of our hospital was acquired. The rate of fractures occurring each year relative to the population was determined. The results were split into age groups. There was a strong correlation between the population rise and number of fractures (p = 0.77). But there was no significant difference in the rate of fracture over time (p = 0.41). However, the average age at which fracture occurred increased by two years. In addition we show the overall trend in the rate of fractures decreases in the younger age groups and increases in the older age groups. Therefore, the predicted rapid increase in rate is not occurring. This probably reflects the strengthening of the economy in Ireland from the 1930\\'s onwards, leading to a healthier population.

  13. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  14. Elastic, plastic, and fracture mechanisms in graphene materials.

    Science.gov (United States)

    Daniels, Colin; Horning, Andrew; Phillips, Anthony; Massote, Daniel V P; Liang, Liangbo; Bullard, Zachary; Sumpter, Bobby G; Meunier, Vincent

    2015-09-23

    In both research and industry, materials will be exposed to stresses, be it during fabrication, normal use, or mechanical failure. The response to external stress will have an important impact on properties, especially when atomic details govern the functionalities of the materials. This review aims at summarizing current research involving the responses of graphene and graphene materials to applied stress at the nanoscale, and to categorize them by stress-strain behavior. In particular, we consider the reversible functionalization of graphene and graphene materials by way of elastic deformation and strain engineering, the plastic deformation of graphene oxide and the emergence of such in normally brittle graphene, the formation of defects as a response to stress under high temperature annealing or irradiation conditions, and the properties that affect how, and mechanisms by which, pristine, defective, and polycrystalline graphene fail catastrophically during fracture. Overall we find that there is significant potential for the use of existing knowledge, especially that of strain engineering, as well as potential for additional research into the fracture mechanics of polycrystalline graphene and device functionalization by way of controllable plastic deformation of graphene.

  15. CT for diagnosing fractures of the undersurface of the talus and mechanism of injury

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Hideaki; Shibata, Yoshimori; Nishi, Genzaburo; Tago, Kyoji; Tsuchiya, Daiji; Chiba, Takehiro; Okumura, Hisashi [Aichiken Koseiren Kainan Hospital, Yatomi (Japan); Ikeda, Takeshi; Wada, Ikuo

    2000-02-01

    Talus fractures whose fracture lines extend to the subtalar joint, except fractures of the neck and the body of the talus, are defined as fractures of the lower portion of the talus. It is difficult to make a correctly diagnosis of inferior fractures of the talus by plain radiography or tomography alone. The author encountered 12 cases of inferior fractures of the talus between 1989 and 1997, and CT imaging in 2 directions, in the horizontal and frontal plane, was useful in making the diagnosis. The correct diagnosis rate was 100%, and differentiation of the site and extent of the fractures was possible. Based on the CT findings, the fractures were classified into 8 types (fractures of the lateral process of the talus, fractures of the medial tubercle, fractures of the posterior process, and combinations of the above, and comminuted fractures). The mechanism of the injuries was also investigated, and the fractures of the lateral process of the talus seemed to have been caused by excessive eversion force on the ankle joint, with the lateral process becoming trapped between the fibula and the calcaneus. Medial tubercle fractures also seemed to be caused by forcible inversion of the ankle, with the tip of the medial malleous impacting and the medial tubercle being trapped between it and the sustentaculum tali. The comminuted fractures seem to have been caused by axial compression added to various of external forces. (K.H.)

  16. Season of birth and the risk of hip fracture in Danish men and women aged 65+

    Directory of Open Access Journals (Sweden)

    Bo eAbrahamsen

    2012-01-01

    Full Text Available Vitamin D status in pregnant women has been linked to childhood bone mineral density in their offspring but it is unclear if effects extend to fracture risk in adulthood or even old age. As vitamin D levels in the population show pronounced seasonal variation in Denmark, we performed an epidemiological analysis of hip fracture rates as a function of season of birth, age and sex. We retrieved information on all hip fractures in the nine-year period between 1997-2005 in all men and women aged 65-95, excluded hip fractures that occurred in current and recent prednisolone users, and subsequently calculated fracture rates and relative risks. The analysis covered 541,109 men and 691,522 women.In women, we observed a small but statistically significant difference between fracture rates by season of birth for all age intervals expect the youngest (age 65-69. A similar pattern was seen in men, but this was only statistically significant in the two oldest age groups (age 85-89 and 90-95. These findings suggest that vitamin D availability in the first and second trimester of intrauterine life could have a small but lasting impact on bone health and the risk of osteoporotic fractures

  17. [Biology of aging: theories, mechanisms, and perspectives].

    Science.gov (United States)

    Teixeira, Ilka Nicéia D'Aquino Oliveira; Guariento, Maria Elena

    2010-09-01

    Abstract The article reviews the major biological theories of aging, and discusses the most relevant mechanisms to explain the aging process. It begins with the evolutionary theories, explores the molecular-cellular mechanisms, and presents the perspective of the systemic theories. The complex etiology of aging is a challenge to the researchers. The knowledge on that phenomenon develops towards an integrative approach.

  18. The use of locking plates in proximal humeral fractures: Comparison of outcome by patient age and fracture pattern

    Directory of Open Access Journals (Sweden)

    Leonard Michael

    2009-01-01

    Full Text Available Purpose: This study was undertaken to evaluate the efficacy of a proximal humeral locking plate, and to specifically study the effect of patient age and fracture type on the outcome. Materials and Methods: Thirty-one cases of proximal humeral fractures fixed by using the proximal humeral interlocking (PHILOS plate were reviewed. Results: Average functional scores (minimum 18 months post operation per AO / ASIF fracture type were 25.3 for type A, 21.4 for type B, and 22.7 for type C. There was no statistically significant difference between the groups. The functional scores for patients over 65 years of age were significantly inferior (P = 0.03. At a final radiological review (mean 12 months post operation, 30 (96% of the patients demonstrated fracture union. Seven patients (22.5% required a second surgical procedure. Conclusion: We obtained both good functional results and bone healing with the PHILOS plate, irrespective of fracture type; the older patients had a poorer outcome. We caution the surgeons on the high potential for reoperations with its use.

  19. Age Related Incidence and Early Outcomes of Hip Fractures: A Prospective Cohort Study of 1177 patients

    Directory of Open Access Journals (Sweden)

    Shenoy Ravikiran

    2011-01-01

    Full Text Available Abstract Introduction Associated with the increase in the aging population, there is an increase in the incidence of hip fractures worldwide. Outcome following such fractures is affected by age of the patient. This study aims to assess the incidence and early outcome of hip fractures, comparing between different age groups. Methods Data of hip fractures collected over a period of five years was analysed. Patients were divided into three groups, group A (patients under the age of 64, group B (patients between 65 and 84 years of age, and group C (patients over the age of 85. Results Of the 1177 patients included in the study, there were 90 patients in group A, 702 patients in group B and 385 patients in group C. There was a female preponderance across all age groups, and this increased as age advanced (p Conclusions Hip fractures are more common among females irrespective of age group. Older patients have a higher mortality and a greater deterioration of walking ability after such injuries. Internal fixation of intracapsular fractures have demonstrated satisfactory early outcome in the immediate period. This could be attributed to retention of native bone, better propioception and shorter operation time.

  20. Epidemiology of fractures in 15,000 adults: the influence of age and gender.

    Science.gov (United States)

    Singer, B R; McLauchlan, G J; Robinson, C M; Christie, J

    1998-03-01

    We report a prospective study of the incidence of fractures in the adult population of Edinburgh, related to age and gender. Over a two-year period, 15,293 adults, 7428 males and 7865 females, sustained a fracture, and 5208 (34.0%) required admission. Between 15 and 49 years of age, males were 2.9 times more likely to sustain a fracture than females (95% CI 2.7 to 3.1). Over the age of 60 years, females were 2.3 times more likely to sustain a fracture than males (95% CI 2.1 to 2.4). There were three main peaks of fracture distribution: the first was in young adult males, the second was in elderly patients of both genders, mainly in metaphyseal bone such as the proximal femur, although diaphyseal fractures also showed an increase in incidence. The third increase in the incidence of fractures, especially of the wrist, was seen to start at 40 years of age in women. Our study has also shown that 'osteoporotic' fractures became evident in women earlier than expected, and that they were not entirely a postmenopausal phenomenon.

  1. Optimal age of commencing and discontinuing thiazide therapy to protect against fractures

    DEFF Research Database (Denmark)

    Kruse, C; Eiken, P; Vestergaard, P

    2016-01-01

    A study of national Danish patient data with regard to thiazide diuretics vs. non-treatment. We find that after age 83 years, thiazides increase the 10-year risk of major fractures. We also find that thiazides can be stopped after 63 years old to possibly protect against fracture occurrence. INTR...

  2. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  3. Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Liang Song

    2015-01-01

    Full Text Available The effects of silicon (Si on the mechanical properties and fracture toughness of heavy-section ductile cast iron were investigated to develop material for spent-nuclear-fuel containers. Two castings with different Si contents of 1.78 wt.% and 2.74 wt.% were prepared. Four positions in the castings from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties’ testing. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings decrease with the decrease in cooling rate. With an increase in Si content, the graphite morphology and the mechanical properties at the same position deteriorate. Decreasing cooling rate changes the impact fracture morphology from a mixed ductile-brittle fracture to a brittle fracture. The fracture morphology of fracture toughness is changed from ductile to brittle fracture. When the Si content exceeds 1.78 wt.%, the impact and fracture toughness fracture morphology transforms from ductile to brittle fracture. The in-situ scanning electronic microscope (SEM tensile experiments were first used to observe the dynamic tensile process. The influence of the vermicular and temper graphite on fracture formation of heavy section ductile iron was investigated.

  4. Probabilistic Fracture Mechanics and Optimum Fracture Control Analytical Procedures for a Reusable Solid Rocket Motor Case

    Science.gov (United States)

    Hanagud, S.; Uppaluri, B.

    1977-01-01

    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis is used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects of failure prevention plans such as nondestructive inspection and the material erosion between missions are also considered in the developed procedure for selection of design variables. The reliability-based procedure can be modified to consider other similar structures of reusable space vehicle systems with different failure prevention plans.

  5. The Schwickerath adhesion test: A fracture mechanics analysis.

    Science.gov (United States)

    Schneider, G A; Swain, M V

    2015-08-01

    The Schwickerath three point bending adhesion test is the basis of the International Standard ISO 9693:1999 procedure for assessing porcelain bonding to metals [1]. It has also been used to evaluate the adhesion of porcelain to zirconia. The purpose of this paper is a fracture mechanics analysis of this test, which allows determination of the crack-length load-displacement and toughness dependence of cracks extending along or near the interface. Linear elastic mechanics is used to develop expressions for the strain energy and compliance of Schwickerath geometry specimens as a function of crack extension along or near the interface. From the derivative of the compliance as a function of crack growth the strain energy release rate (G, N/m) is determined. The energy release rate for interface crack extension of Schwickerath geometry specimens is determined. It is found that a simple relationship between the minima of the force-displacement response and the strain energy release rate G exists. Further development enables the predicted force-displacement response as a function of crack length to be derived for different values of G. Experimental results of porcelain bonded to zirconia with and without notches of various lengths machined along the interface verify the expressions and analysis developed. With the fracture mechanics analysis developed in this paper it is possible to determine the quality of adhesion in Schwickerath specimens by the interface toughness in addition to the nominal interface shear bond strength. As the toughness of brittle materials has much less scatter than its strength, the interface toughness characterization of the adhesion should allow for a better distinction between the adhesion quality of bonding. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Fracture mechanisms of glass particles under dynamic compression

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, M.; Claus, Benjamin; Fezzaa, Kamel; Sun, Tao; Chen, Weinong W.

    2017-08-01

    In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles. The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.

  7. C2 Fracture Subtypes, Incidence, and Treatment Allocation Change with Age: A Retrospective Cohort Study of 233 Consecutive Cases.

    Science.gov (United States)

    Robinson, Anna-Lena; Möller, Anders; Robinson, Yohan; Olerud, Claes

    2017-01-01

    The currently available data on the distribution of C2 fracture subtypes is sparse. This study was designed to identify the proportions of the second cervical vertebra (C2) fracture subtypes and to present age and gender specific incidences of subgroups. A dataset of all patients treated between 2002 and 2014 for C2 fractures was extracted from the regional hospital information system. C2 fractures were classified into odontoid fractures types 1, 2, and 3, Hangman's fractures types 1, 2, and 3, and atypical C2 fractures. 233 patients (female 51%, age 72 ± 19 years) were treated for a C2 fracture. Odontoid fractures were found in 183 patients, of which 2 were type 1, 127 type 2, and 54 type 3, while 26 of C2 fractures were Hangman's fractures and 24 were atypical C2 fractures. In the geriatric subgroup 89% of all C2 fractures were odontoid, of which 71% were type 2 and 29% type 3. There was an increasing incidence of odontoid fractures types 2 and 3 from 2002 to 2014. 40% of C2 fractures were treated surgically. This study presents reliable subset proportions of C2 fractures in a prospectively collected regional cohort. Knowledge of these proportions facilitates future epidemiological studies of C2 fractures.

  8. C2 Fracture Subtypes, Incidence, and Treatment Allocation Change with Age: A Retrospective Cohort Study of 233 Consecutive Cases

    Directory of Open Access Journals (Sweden)

    Anna-Lena Robinson

    2017-01-01

    Full Text Available The currently available data on the distribution of C2 fracture subtypes is sparse. This study was designed to identify the proportions of the second cervical vertebra (C2 fracture subtypes and to present age and gender specific incidences of subgroups. A dataset of all patients treated between 2002 and 2014 for C2 fractures was extracted from the regional hospital information system. C2 fractures were classified into odontoid fractures types 1, 2, and 3, Hangman’s fractures types 1, 2, and 3, and atypical C2 fractures. 233 patients (female 51%, age 72±19 years were treated for a C2 fracture. Odontoid fractures were found in 183 patients, of which 2 were type 1, 127 type 2, and 54 type 3, while 26 of C2 fractures were Hangman’s fractures and 24 were atypical C2 fractures. In the geriatric subgroup 89% of all C2 fractures were odontoid, of which 71% were type 2 and 29% type 3. There was an increasing incidence of odontoid fractures types 2 and 3 from 2002 to 2014. 40% of C2 fractures were treated surgically. This study presents reliable subset proportions of C2 fractures in a prospectively collected regional cohort. Knowledge of these proportions facilitates future epidemiological studies of C2 fractures.

  9. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    Science.gov (United States)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    Fractures are often the main pathways for subsurface fluid flow especially in rocks with low matrix porosity. Therefore, the hydro-mechanical properties of fractures are of fundamental concern for subsurface CO2 sequestration, enhanced geothermal energy production, enhanced oil recovery, and nuclear waste disposal. Chemical and mechanical stresses induced during these applications may lead to significant alteration of the hydro-mechanical properties of fractures. Laboratory experiments aimed at understanding the chemo-hydro-mechanical response of fractures have shown a range of results that contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability and fracture aperture, permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, it remains difficult to directly measure the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, which challenges our ability to predict the long-term evolution of the hydro-mechanical properties of fractures. Here, we present a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. Chemical alteration of the fracture surfaces is modeled using a depth-averaged algorithm of fracture flow and reactive transport. Then, we deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. Nonuniform dissolution may cause the location of the resultant force between the two contacting

  10. Epithermal Ageing Mechanism of Gussasphalt

    Institute of Scientific and Technical Information of China (English)

    HAO Zengheng; TAN Yiqiu; ZHANG Xiaoning; ZHANG Feng

    2009-01-01

    The normal asphalt index test,DSR test,FTIR and the GPC distribution analysis of molecular weight on the extraction and recovery of asphalt of the gussasphalt,SMA extraction and recovery of asphalt and the rotary-thin-film-oven-aged asphalt above 240℃were introduced.The results indicate the rutting factor and fatigue factor of the extraction and recovery of asphalt of the gussasphalt are greatly improved,and an obvious absorption peak of carbonyl and a further decrease of the SBS molecular weight of the gussasphalt are found.

  11. Diameter of basalt columns derived from fracture mechanics bifurcation analysis.

    Science.gov (United States)

    Bahr, H-A; Hofmann, M; Weiss, H-J; Bahr, U; Fischer, G; Balke, H

    2009-05-01

    The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns, the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent heat released at the solidification front, the results agree fairly well with observed column diameters.

  12. Tensile Fracture Mechanism of Claviform Hybrid Composite Rebar

    Institute of Scientific and Technical Information of China (English)

    CAI Lurong; ZENG Qingdun; WANG Ronghui

    2012-01-01

    Based on the shear-lag theory,a hexagonal model of fiber bundles was established to study the tensile fracture mechanism of a claviform hybrid composite rebar.Firstly,the stress redistributions are investigated on two conditions:one condition is that interfacial damage is taken into accotmt and the other is not.Then,a micro-statistical analysis of the multiple tensile failures of the rebar was performed by using the random critical-core theory.The results indicate that the predictions of the tensile failure strains of the rebar,in which the interracial damage is taken into account,are in better agreement with the existing experimental results than those when only elastic case is considered.Through the comparison between the theoretical and experimental results,the shear-lag theory and the model are verified feasibly in studying the claviform hybrid composite rebar.

  13. A mechanism-based approach to modeling ductile fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.

    2004-01-01

    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  14. Fracture propagation in sandstone and slate e Laboratory experiments, acoustic emissions and fracture mechanics

    Institute of Scientific and Technical Information of China (English)

    Ferdinand Stoeckhert; Michael Molenda; Sebastian Brenne; Michael Alber

    2015-01-01

    abstract Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconven-tional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading mag-nitudes to stress-dominated fracture propagation at high loading magnitudes.

  15. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  16. Thermal-Hydrologic-Mechanical Behavior of Single Fractures in EGS Reservoirs

    Science.gov (United States)

    Zyvoloski, G.; Kelkar, S.; Yoshioka, K.; Rapaka, S.

    2010-12-01

    Enhanced Geothermal Systems (EGS) rely on the creation a connected fracture system or the enhancement of existing (natural) fractures by hydraulic and chemical treatments. EGS studies at Fenton Hill (New Mexico, USA) and Hijiori (Japan) have revealed that only a limited number of fractures contribute to the effective heat transfer surface area. Thus, the economic viability of EGS depends strongly on the creation and spacing of single fractures in order to efficiently mine heat from given volume of rock. Though there are many similarities between EGS and natural geothermal reservoirs, a major difference between the reservoir types is the (typically) high pumping pressures and induced thermal stresses at the injection wells of an EGS reservoir. These factors can be responsible for fracture dilation/extension and thermal short circuiting and depend strongly on the surrounding state of stress in the reservoir and mechanical properties. We will present results from our study of the thermal-hydrologic-mechanical (THM) behavior of a single fracture in a realistic subsurface stress field. We will show that fracture orientation, the stress environment, fracture permeability structure, and the relationship between permeability changes in a fracture resulting from mechanical displacement are all important when designing and managing an EGS reservoir. Lastly, we present a sensitivity analysis of the important parameters that govern fracture behavior with respect to field measurements. Temperature in high permeability fracture in an EGS reservoir

  17. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    OpenAIRE

    Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin

    2015-01-01

    Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...

  18. Combined Isolated Laugier's Fracture and Distal Radial Fracture: Management and Literature Review on the Mechanism of Injury

    Science.gov (United States)

    Osman, Walid; Alaya, Zeineb; Naouar, Nader; Ben Ayeche, Mohamed

    2016-01-01

    Introduction. Isolated fracture of the trochlea is an uncommon condition requiring a particular mechanism of injury. Its association with a distal radial fracture is rare. We aimed through this case report to identify the injury mechanism and to assess surgical outcomes. Case Presentation. We report a 26-year-old female who was admitted to our department for elbow trauma following an accidental fall on her outstretched right hand with her elbow extended and supinated. On examination, the right elbow was swollen with tenderness over the anteromedial aspect of the distal humerus. The elbow range was restricted. Standard radiographs showed an intra-articular half-moon-shaped fragment lying proximal and anterior to the distal humerus. There was a comminuted articular fracture of the distal radius with an anterior displacement. A computed tomography revealed an isolated shear fracture of the trochlea without any associated lesion of the elbow. The patient was surgically managed. Anatomical reduction was achieved and the fracture was fixed with 2 Kirschner wires. The distal radial fracture was treated by open reduction and plate fixation. The postoperative course was uneventful with a good recovery. Conclusion. Knowledge of such entity would be useful to indicate the suitable surgical management and eventually to obtain good functional outcomes. PMID:28070435

  19. Combined Isolated Laugier’s Fracture and Distal Radial Fracture: Management and Literature Review on the Mechanism of Injury

    Directory of Open Access Journals (Sweden)

    Walid Osman

    2016-01-01

    Full Text Available Introduction. Isolated fracture of the trochlea is an uncommon condition requiring a particular mechanism of injury. Its association with a distal radial fracture is rare. We aimed through this case report to identify the injury mechanism and to assess surgical outcomes. Case Presentation. We report a 26-year-old female who was admitted to our department for elbow trauma following an accidental fall on her outstretched right hand with her elbow extended and supinated. On examination, the right elbow was swollen with tenderness over the anteromedial aspect of the distal humerus. The elbow range was restricted. Standard radiographs showed an intra-articular half-moon-shaped fragment lying proximal and anterior to the distal humerus. There was a comminuted articular fracture of the distal radius with an anterior displacement. A computed tomography revealed an isolated shear fracture of the trochlea without any associated lesion of the elbow. The patient was surgically managed. Anatomical reduction was achieved and the fracture was fixed with 2 Kirschner wires. The distal radial fracture was treated by open reduction and plate fixation. The postoperative course was uneventful with a good recovery. Conclusion. Knowledge of such entity would be useful to indicate the suitable surgical management and eventually to obtain good functional outcomes.

  20. Modelling the molecular mechanisms of aging

    Science.gov (United States)

    Mc Auley, Mark T.; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M.; Morgan, Amy E.

    2017-01-01

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field. PMID:28096317

  1. Modelling the molecular mechanisms of aging.

    Science.gov (United States)

    Mc Auley, Mark T; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M; Morgan, Amy E; Proctor, Carole J

    2017-02-28

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field.

  2. Expression and Role of Sonic Hedgehog in the Process of Fracture Healing with Aging.

    Science.gov (United States)

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Obata, Kyoichi; Masui, Masanori; Pang, Pai; Horikiri, Yuu; Sasaki, Akira

    2016-01-01

    Aging is one of the risk factors for delayed fracture healing. Sonic hedgehog (SHH) protein, an inducer of embryonic development, has been demonstrated to be activated in osteoblasts at the dynamic remodeling site of a bone fracture. Herein, we compared and examined the distribution patterns of SHH and the functional effect of SHH signaling on osteogenesis and osteoclastogenesis between young (5-week-old) and aged (60-week-old) mice during fracture healing. We found that SHH was expressed in bone marrow cells from the fractured site of the rib of young mice on day 5, but was barely detectable in the corresponding cells from the rib of aged mice. SHH was also detected in osteoblasts and bone marrow cells at the callus remodeling stage on days 14 and 28 in both young and aged mice. The number of alkaline phosphatase (ALP)-positive osteoblasts was significantly higher in young mice on days 5 and 14, whereas the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts was significantly higher in aged mice. SHH stimulated significantly more osteoblast formation in the young compared to old mice. SHH stimulated the osteoclast formation directly in the aged mice and suppressed the formation indirectly through osteoprotegerin expression in the young mice. Results indicate that an aged-related delay of fracture healing may contribute to the unbalanced bone formation and resorption, regulated by hedgehog signaling.

  3. Constraint corrected fracture mechanics in structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, A.; Wallin, K. [VTT Industrial Systems, Espoo (Finland)

    2004-07-01

    Specimen size, crack depth and loading conditions may affect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the Master Curve standard ASTM E1921, which is based on technology developed at VTT Industrial Systems. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases this may lead to unnecessary repairs or even to an early 'retirement' of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J-small scale yielding correction (SSYC), Q-parameter and the T{sub stress}. (orig.)

  4. Study on mechanical parameters of fractured rock masses

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The equivalent strength parameters of fractured rock masses are prerequisite for stability analysis of geotechnical engineering projects constructed in fractured rock masses which are encountered frequently in western china.Based on generated mesh of fractured rock masses,combined with statistic damage constitutive model of intact rock and damage model of structural plane,progressive failure of fractured rock masses is studied using finite element method(FEM) .Furthermore,Scale effect and anisotropy of compressive strength of fractured rock masses are studied.Study results show that the strength decreases and tend towards stability rapidly from intact rock to fractured rock masses,and the anisotropy of strength of fractured rock masses is not significant.At last,based on numerical simulation conducted on 10 m scale rock masses under different confining pressures,the equivalent strength parameters of fractured rock masses are gained and the results are compared with Hoek-Brown criteria.The method developed is helpful for determination of strength parameters of fractured rock masses.

  5. Treatment for osteoporosis in Australian residential aged care facilities: consensus recommendations for fracture prevention.

    Science.gov (United States)

    Duque, Gustavo; Close, Jacqueline J; de Jager, Julien P; Ebeling, Peter R; Inderjeeth, Charles; Lord, Stephen; McLachlan, Andrew J; Reid, Ian R; Troen, Bruce R; Sambrook, Philip N

    2010-08-02

    Older people living in residential aged care facilities (RACFs) are at considerably higher risk of suffering fractures than older people living in the community. When admitted to RACFs, patients should be assessed for fracture risk to ensure early implementation of effective fracture prevention measures. Routine or regular determination of calcium and phosphate serum levels in institutionalised older people is not indicated. Opinion is divided about the value of routine measurements of serum concentrations of 25-hydroxyvitamin D, parathyroid hormone and bone turnover markers. The non-pharmacological approach to fracture prevention includes multifactorial programs of falls prevention and the use of hip protectors. Vitamin D supplementation is recommended for all patients in RACFs. Dietary calcium intake should be optimised (1200-1500 mg per day is recommended) and supplementation offered to those with inadequate intake. The decision to prescribe calcium supplements should be guided by patients' tolerance, whether or not they have a history of kidney stones, and emerging data about its cardiovascular safety. Bisphosphonates are the first-choice pharmacological agents for fracture prevention in older persons at high risk. Intravenous administration is as efficient as oral and has the significant advantage of better adherence. Use of strontium ranelate has not been tested on people in RACFs, but evidence in the "old-old" (those aged 75 years and older) suggests it could be a therapeutic option for fracture prevention in this setting. In general, teriparatide should not be considered as a first-line treatment for fracture prevention, particularly for people in RACFs.

  6. Morphology Evolution on the Fracture Surface and Fracture Mechanisms of Multiphase Nanostructured ZrCu-Base Alloys

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-03-01

    Full Text Available A multiphase nanostructured ZrCu-base bulk alloy which showed a unique microstructure consisting of sub-micrometer scale Zr2Cu solid solution, nano-sized twinned plate-like ZrCu martensite (ZrCu (M, and retained ZrCu (B2 austenite was fabricated by copper mold casting. The observation of periodic morphology evolution on the fracture surface of the multiphase nanostructured ZrCu-base alloys has been reported, which suggested a fluctuant local stress intensity along the crack propagation. It is necessary to investigate the compressive deformation behavior and the fracture mechanism of the multiphase alloy and the relation to the unique microstructures. The results obtained in this study provide a better understanding of the deformation and fracture mechanisms of multiphase hybrid nanostructured ZrCu-based alloys and give guidance on how to improve the ductility/toughness of bulk ZrCu-based alloys.

  7. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    OpenAIRE

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the f...

  8. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-06-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  9. Ageing mechanisms and associated lipid changes.

    Science.gov (United States)

    Kolovou, Genovefa; Katsiki, Niki; Pavlidis, Antonis; Bilianou, Helen; Goumas, George; Mikhailidis, Dimitri P

    2014-01-01

    Ageing is related to slowdown/breakdown of the somatotropic axis (i.e. the somatopause) leading to many physiological changes. The somatopause is accompanied by DNA and other macromolecule damage, and is characterized by a progressive decline in vitality and tissue function. We still do not have a definitive understanding of the mechanism( s) of ageing. Several overlapping theories have been proposed such as: 1) The free radical theory, 2) Mitochondrial Ageing, 3) The Glycation Theory, 4) Protein Damage and Maintenance in Ageing, and, 5) DNA Damage and Repair. Furthermore, several models of ageing were introduced such as genetically programmed senescence, telomere shortening, genomic instability, heterochromatin loss, altered epigenetic patterns and long lived cells. There are certain lipid modifications associated with the somatopause, characterized mainly by an increase in total cholesterol and triglyceride levels in both genders. In this review we consider the mechanisms of ageing and the associated changes in lipid metabolism according to gender.

  10. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  11. Comparison of GTN Model and XFEM for Fracture Mechanics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Jun; Chang, Yoon Suk [Kyung Hee University, Youngin (Korea, Republic of)

    2014-10-15

    The simulation of discontinuities such as stationary and growing cracks by conventional finite element(FE) method is limited for bulk materials due to the necessity of computationally expensive remeshing process and high mesh densities. Accordingly, several advanced finite element techniques have been introduced to model crack propagation without remeshing. However, there are still many modeling uncertainties relating to arbitrary discontinuities in respect of accuracy and efficiency. In order to overcome this problem, eXtended Finite Element Method(XFEM) which allows the presence of discontinuities in elements by enriching degrees of freedom(DOF) with special displacement function was developed by Belytschko and Black. In this paper, the XFEM was applied to tensile tests for API X65 steel to implement crack simulation based on fracture mechanics analyses and verify through the comparison with the preceding study using Gurson-Tvergaard-Needleman (GTN) model. In this paper, a comprehensive numerical analyses were carried out to verify an adequacy of the XFEM by comparing its results with those obtained from experiments and GTN model. The XFEM has an efficiency due to the accessibility to the corresponding parameters such as cohesive strength, cohesive energy and critical separation. Also, visualization of crack simulation has an advantage compared to the GTN model. In these respects, the XFEM can be widely used in industrial fields and further analyses for bulk materials are needed.

  12. Fracture Mechanics Analyses for Interface Crack Problems - A Review

    Science.gov (United States)

    Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.

    2013-01-01

    Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

  13. Probabilistic prediction of fatigue damage based on linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    M. Krejsa

    2017-01-01

    Full Text Available Paper describes in detail and gives example of the probabilistic assessment of a steel structural element subject to fatigue load, particular attention being paid to cracks from the edge and those from surface. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks - the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods - the Direct Optimized Probabilistic Calculation (“DOProC”, which is based on optimized numerical integration. The algorithm of the probabilistic calculation was applied in the FCProbCalc code (“Fatigue Crack Probabilistic Calculation”, using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.

  14. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  15. Lithium Ion Battery Anode Aging Mechanisms

    OpenAIRE

    Victor Agubra; Jeffrey Fergus

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  16. C2 Fracture Subtypes, Incidence, and Treatment Allocation Change with Age: A Retrospective Cohort Study of 233 Consecutive Cases

    OpenAIRE

    Anna-Lena Robinson; Anders Möller; Yohan Robinson; Claes Olerud

    2017-01-01

    The currently available data on the distribution of C2 fracture subtypes is sparse. This study was designed to identify the proportions of the second cervical vertebra (C2) fracture subtypes and to present age and gender specific incidences of subgroups. A dataset of all patients treated between 2002 and 2014 for C2 fractures was extracted from the regional hospital information system. C2 fractures were classified into odontoid fractures types 1, 2, and 3, Hangman’s fractures types 1, 2, and ...

  17. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related.

    Science.gov (United States)

    Brüggenwirth, Martin; Knoche, Moritz

    2017-04-01

    Cell wall swelling, fracture mode (along the middle lamellae vs. across cell walls), stiffness, and pressure at fracture of the sweet cherry fruit skin are closely related. Skin cracking is a common phenomenon in many crops bearing fleshy fruit. The objectives were to investigate relationships between the mode of fracture, the extent of cell wall swelling, and the mechanical properties of the fruit skin using sweet cherry (Prunus avium) as a model. Cracking was induced by incubating whole fruit in deionised water or by fracturing exocarp segments (ESs) in biaxial tensile tests. The fracture mode of epidermal cells was investigated by light microscopy. In biaxial tensile tests, the anticlinal cell walls of the ES fractured predominantly across the cell walls (rather than along) and showed no cell wall swelling. In contrast, fruit incubated in water fractured predominantly along the anticlinal epidermal cell walls and the cell walls were swollen. Swelling of cell walls also occurred when ESs were incubated in malic acid, in hypertonic solutions of sucrose, or in water. Compared to the untreated controls, these treatments resulted in more frequent fractures along the cell walls, lower pressures at fracture (p fracture), and lower moduli of elasticity (E, i.e., less stiff). Conversely, compared to the untreated controls, incubating the ES in CaCl2 and in high concentrations of ethanol resulted in thinner cell walls, in less frequent fractures along the cell walls, higher E and p fracture. Our study demonstrates that fracture mode, stiffness, and pressure at fracture are closely related to cell wall swelling. A number of other factors, including cultivar, ripening stage, turgor, CaCl2, and malic acid, exert their effects only indirectly, i.e., by affecting cell wall swelling.

  18. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns.

    Science.gov (United States)

    Lameira, Deborah Pacheco; Buarque e Silva, Wilkens Aurélio; Andrade e Silva, Frederico; De Souza, Grace M

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed monolithic zirconia crowns (GM); Bi-layer crowns (BL). Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37 °C), and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey's test (P = .05) indicated that monolithic zirconia crowns presented similar fracture strength (PM = 3476.2 N ± 791.7; GM = 3561.5 N ± 991.6), which was higher than bilayer crowns (2060.4 N ± 810.6). There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  19. Research progress in mechanism of traumatic brain injury affecting speed of fracture healing

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-gang; ZHAO Guang-feng; MA Yue-feng; JIANG Guan-yu

    2007-01-01

    @@ In patients who have sustained traumatic brain injury with associated extremity fracture, there is often a clinical perception that the rate of new bone formation around the fracture site increases. 1 An overgrowth of callus is observed and ectopic ossification even occurs in the muscle,2 but the mechanism remains unclear.

  20. Diplopia of pediatric orbital blowout fractures: a retrospective study of 83 patients classified by age groups.

    Science.gov (United States)

    Su, Yun; Shen, Qin; Lin, Ming; Fan, Xianqun

    2015-01-01

    Orbital blowout fractures are relatively rare in patients under 18 years of age, but may lead to serious complications. We conducted this retrospective study to evaluate diplopia, clinical characteristics, and postoperative results in cases of orbital blowout fractures in the pediatric population. Eighty-three patients, all less than 18 years old, with orbital blowout fractures, were divided into 3 groups by age: 0 to 6 years old, 7 to 12 years old, and 13 to 18 years old. The cause of injury, fracture locations, diplopia grades, ocular motility restrictions, enophthalmos, and postoperative results were reviewed from their records. Chi-square tests, Fisher's exact analyses, analyses of variance, and logistic regressions were performed to determine characteristics associated with diplopia, and to identify factors related to residual diplopia in pediatric patients. The most common causes of injuries were traffic accidents in the 0 to 6 years old group, normal daily activities in the 7 to 12 years old group, and assaults in the 13 to 18 years old group. Floor fractures were the most common location in both the 0 to 6- and 7 to 12 years old groups, and medial-floor fractures were the most common location in the 13 to 18 years old group. The occurrence of preoperative diplopia was related to ocular motility restriction and enophthalmos, but not with the age group, the gender, the cause of injury, or the fracture locations. The time interval from injury to surgery was significant in the outcome of postoperative diplopia (P diplopia among the 3 age groups (P diplopia after surgery.

  1. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Bower, K.M.

    1996-06-01

    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  2. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  3. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Duchkov, A. A., E-mail: DuchkovAA@ipgg.sbras.ru [Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); Stefanov, Yu. P., E-mail: stefanov@ispms.tsc.ru [Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. In particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)

  4. Psychotropic drugs and the risk of fractures in old age: a prospective population-based study

    Directory of Open Access Journals (Sweden)

    Piirtola Maarit

    2010-07-01

    Full Text Available Abstract Background There is evidence that the use of any psychotropic and the concomitant use of two or more benzodiazepines are related to an increased risk of fractures in old age. However, also controversial results exist. The aim was to describe associations between the use of a psychotropic drug, or the concomitant use of two or more of these drugs and the risk of fractures in a population aged 65 years or over. Methods This study was a part of a prospective longitudinal population-based study carried out in the municipality of Lieto, South-Western Finland. The objective was to describe gender-specific associations between the use of one psychotropic drug [benzodiazepine (BZD, antipsychotic (AP or antidepressant (AD] or the concomitant use of two or more psychotropic drugs and the risk of fractures in a population 65 years or over. Subjects were participants in the first wave of the Lieto study in 1990-1991, and they were followed up until the end of 1996. Information about fractures confirmed with radiology reports in 1,177 subjects (482 men and 695 women during the follow-up was collected from medical records. Two follow-up periods (three and six years were used, and previously found risk factors of fractures were adjusted as confounding factors separately for men and women. The Poisson regression model was used in the analyses. Results The concomitant use of two or more BZDs and the concomitant use of two or more APs were related to an increased risk of fractures during both follow-up periods after adjusting for confounding factors in men. No similar associations were found in women. Conclusions The concomitant use of several BZDs and that of several APs are associated with an increase in the risk of fractures in older men. Our findings show only risk relations. We cannot draw the conclusion that these drug combinations are causes of fractures.

  5. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Science.gov (United States)

    Margolin, B.; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-01

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  6. Applicability of Fracture Mechanics Methodology to Cracking and Fracture of Concrete.

    Science.gov (United States)

    1986-02-01

    cracking and fracture. The publicized, annotated bibliography was the one by S. Mindess entitled "The Cracking and Fracture of Concrete: An Annotated...7 --- 109 157.0 Mindess , S.. J. S. Nadeau and J. M. Hay, Effects of Different Curing Conditions on Slow Crack Growth in Cement Paste, Cement and...Concrete Research. Vol. 4, 1974, pp. 953-965 158.0 Nadeau, J3. S.. S. Mindess and J3. MI. Hay, Slow Crack Growth in Cement Paste, Journal of the

  7. Antioxidative defense mechanisms in the aging brain

    Directory of Open Access Journals (Sweden)

    Jovanović Zorica

    2014-01-01

    Full Text Available Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a high consumption rate of oxygen throughout an individual’s lifetime, the brain may be especially vulnerable to oxidative damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsaturated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments reduces oxidative stress and improves cognitive function in aging and age-related diseases. The present review discusses the neuroprotective effects of antioxidants in the aging brain.

  8. Hip Fracture

    Science.gov (United States)

    Diseases and Conditions Hip fracture By Mayo Clinic Staff A hip fracture is a serious injury, with complications that can be life-threatening. The risk of hip fracture rises with age. Older people are at a ...

  9. The WST method, a fracture mechanics test method for FRC

    DEFF Research Database (Denmark)

    Lofgren, I.; Stang, Henrik; Olesen, John Forbes

    2008-01-01

    FRC compositions. Furthermore, for the WST method, two different specimen sizes have been investigated. Results from this investigation demonstrate the applicability of the WST method and show that the scatter of the test results is lower than for the 3PBT. Through inverse analysis, stress......The applicability of the wedge-splitting test method (WST), for determining fracture properties of fibre-reinforced concrete, is discussed. Experimental results, using the WST method, are compared with results from uniaxial tension tests (UTT) and three-point bending tests (3PBT) for five different......-crack opening (sigma-w) relationships have been determined for each mix and test method. For the two WST specimen sizes, there is no apparent difference either in the number of fibres (per cm(2)) crossing the fracture plane or in the fracture properties. The major factor contributing to the scatter in the test...

  10. Fracture mechanics analyses of the slip-side joggle regions of wing-leading-edge panels

    Directory of Open Access Journals (Sweden)

    Kyongchan Song

    2011-01-01

    Full Text Available The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  11. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  12. Effect of optimal aging treatment on magnetic performance and mechanical properties of sintered Nd-Fe-B permanent magnets

    Institute of Scientific and Technical Information of China (English)

    DING Xia; DING Kai-hong; CUI Sheng-li; SUN Yong-cong; LI Mu-sen

    2016-01-01

    The magnetic performance and mechanical properties including hardness, brittleness, fracture toughness and strength characteristics of the as-sintered and the optimal aged Nd-Fe-B magnets were examined in this work. A new method of Vickers hardness indentation combined with acoustic emission was used to test the brittleness of the magnets.The results show that the magnetic properties of the magnets could be improved through aging treatment, especially the intrinsic coercive force. But it is accompanied by a decrease of strength and fracture toughness. Theoretical calculation confirms that acoustic emission energy accumulated count value could be used to characterize the material brittleness. The bending fracture morphologies of the as-sintered and the optimal aged NdFeB magnets were investigated with the emphasis on the relationship between mechanical properties and microstructure using a field emission scanning electron microscopy (FE-SEM). The research results indicate that the intergranular fracture is the primary fracture mechanism for both as-sintered and optimal aged NdFeB magnets. Aging treatment changes the morphology and distribution of the Nd-rich phases, reducing the sliding resistance between Nd2Fe14B main crystal grains and lowers the grain boundary strength, which is the main reason for the strength and fracture toughness decrease of the aged Nd-Fe-B magnets.

  13. Research on the Fracture Properties and Modification Mechanism of Polyester Fiber and SBR Latex Modified Cement Concrete

    Directory of Open Access Journals (Sweden)

    Mingkai Zhou

    2016-01-01

    Full Text Available Polyester fiber and SBR latex cement concrete is prepared as pavement surface material; its fracture properties including fracture toughness, fracture energy, CMOD, and flexural strength are studied comparing with those of normal concrete (NC, polyester fiber modified concrete (FMC, SBR polymer modified concrete (SMC, and the combination of polyester fiber and SBR polymer modified concrete (FSMC. The modification mechanism of the latex and fiber on the concrete was also studied by the methods including X-ray test, chemically combined water, heat of hydration, water loss, and scanning electron microscope. Results indicated that the concrete modified by latex and polyester fiber has flexural strength, fracture toughness, and fracture energy of 44.4%, 397.0%, and 462.8% higher than the reference normal concrete, the polymer retarded the hydration process and reduced the hydration degree of cement at early age, while the hydration degree is promoted by the polymer film for its excellent water resistance after 28 d, and the bond between the fiber and cement paste is improved by the latex.

  14. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  15. Quality in rehabilitation after a working age person has sustained a fracture

    DEFF Research Database (Denmark)

    Lindahl, Marianne; Hvalsoe, Berit; Poulsen, Jeppe Rosengaard

    2013-01-01

    Research in quality of rehabilitation has mostly concerned patients with chronic diseases, but the aim of the present study was to investigate what constitutes good quality in rehabilitation after a person has sustained a fracture at working age, from both patients' and therapists' perspectives....

  16. Protein intake and risk of hip fractures in postmenopausal women and men age 50 and older.

    Science.gov (United States)

    Fung, T T; Meyer, H E; Willett, W C; Feskanich, D

    2017-04-01

    In this study, we followed postmenopausal women and men aged 50 and above for up to 32 years and found no evidence that higher protein intake increased the risk of hip fracture. Protein intake from specific sources was inversely associated with risk, but these associations appeared to differ by gender.

  17. On the Role of Dimensionless Elastic Fracture Mechanics.

    Science.gov (United States)

    1985-07-03

    S. Mindess and J.S. Nadeau, Effect of notch width on K c for mortar and concrete. Cem. Concr. Res. 6, 529-534 (1976). * T. Nakazawa, S. Suzuki, T...Plastic Fracture, ASTM STP 668, 358-377 (1979). S. Mindess and J.S. Nadeau, Effect of notch width on K c for mortar and concrete. Cem. Concr. Res. 6

  18. Development of Fracture Mechanics Maps for Composite Materials. Volume 4.

    Science.gov (United States)

    1985-12-01

    Garber. "Tensile Stress-Strain Behavior oi Graphite/Epoxy Laminates", NASA CR 3592, 1982. 42. G. Caprino , J.C. Halpin and L. Nicolais, "Fracture...2336. 84. C. Caprino , "On the Prediction of Residual Strength for Notched Laminate". Journal Materials Science, Vol. 18, 1983, pp. 2269-2273. 8j. D.L

  19. Fracture Mechanics Analysis of a Modified TSD Specimen

    DEFF Research Database (Denmark)

    Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    The Tilted Sandwich Debond (TSD) specimen has been recognized as a viable candidate for characterization of the face/core fracture resistance. Analysis, however, shows that the range of phase angles that can be realized by altering the tilt angle is quite limited. A parametric study however shows...

  20. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  1. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  2. Mode Ⅱ fracture mechanism of direct shearing specimen with guiding grooves of rock

    Institute of Scientific and Technical Information of China (English)

    饶秋华; 孙宗颀; 王桂尧; 徐纪成; 张静宜

    2001-01-01

    Fracture mechanism of direct shear specimen with guiding grooves of rock was investigated experimentally and numerically in order to explore a favorable stress condition for creating Mode Ⅱ fracture and guide design of specimen configuration for determining Mode Ⅱ fracture toughness of rock, KⅡC. The experimental and numerical results demonstrate that Mode Ⅱ fracture can be successfully achieved in the direct shearing specimen with guiding groove because the guiding grooves added in the notch plane can generate a favorable stress condition for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is completely depressed and shear stress at the notch tip is very high in the notch plane. The optimum design of the specimen configuration for KⅡC testing should aim to reduce tensile stress to be compressive stress or be lower than tensile strength and greatly increase shear stress at crack tip.

  3. Fracture behaviour of aged polymers; Comportamiento a fractura de polimeros envejecidos

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles, A.; Canteli, A. F.; Vina, J.; Lin, T.

    2001-07-01

    The dynamic fracture behaviour of three types of composite materials was studied. Two of the composites were manufactured from the same thermoplastic resin, reinforced with glass or carbon fibre fabric, respectively; the other one, was manufactured with an epoxy resin, reinforced with carbon fibre fabric. The composites were subjected to accelerated ageing effect on a climatic test chamber, under humidity and temperature control, for different notch-width ratios. The dynamic fracture behaviour was analysed by applying the ASTM E 24.03.03 Standard proposal to Charpy instrumented test results with the goal of validating this testing procedure for composite materials. (Author) 7 refs.

  4. Different effects of age, adiposity and physical activity on the risk of ankle, wrist and hip fractures in postmenopausal women.

    Science.gov (United States)

    Armstrong, Miranda E G; Cairns, Benjamin J; Banks, Emily; Green, Jane; Reeves, Gillian K; Beral, Valerie

    2012-06-01

    While increasing age, decreasing body mass index (BMI), and physical inactivity are known to increase hip fracture risk, whether these factors have similar effects on other common fractures is not well established. We used prospectively-collected data from a large cohort to examine the role of these factors on the risk of incident ankle, wrist and hip fractures in postmenopausal women. 1,155,304 postmenopausal participants in the Million Women Study with a mean age of 56.0 (SD 4.8) years, provided information about lifestyle, anthropometric, and reproductive factors at recruitment in 1996-2001. All participants were linked to National Health Service cause-specific hospital records for day-case or overnight admissions. During follow-up for an average of 8.3 years per woman, 6807 women had an incident ankle fracture, 9733 an incident wrist fracture, and 5267 an incident hip fracture. Adjusted absolute and relative risks (RRs) for incident ankle, wrist, and hip fractures were calculated using Cox regression models. Age-specific rates for wrist and hip fractures increased sharply with age, whereas rates for ankle fracture did not. Cumulative absolute risks from ages 50 to 84 years per 100 women were 2.5 (95%CI 2.2-2.8) for ankle fracture, 5.0 (95%CI 4.4-5.5) for wrist fracture, and 6.2 (95%CI 5.5-7.0) for hip fracture. Compared with lean women (BMIfracture (RR=3.07; 95%CI 2.53-3.74), but a substantially reduced risk of wrist fracture and especially of hip fracture (RR=0.57; 0.51-0.64 and 0.23; 0.21-0.27, respectively). Physical activity was associated with a reduced risk of hip fracture but was not associated with ankle or wrist fracture risk. Ankle, wrist and hip fractures are extremely common in postmenopausal women, but the associations with age, adiposity, and physical activity differ substantially between the three fracture sites. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Active commuting reduces the risk of wrist fractures in middle-aged women-the UFO study.

    Science.gov (United States)

    Englund, U; Nordström, P; Nilsson, J; Hallmans, G; Svensson, O; Bergström, U; Pettersson-Kymmer, U

    2013-02-01

    Middle-aged women with active commuting had significantly lower risk for wrist fracture than women commuting by car/bus. Our purpose was to investigate whether a physically active lifestyle in middle-aged women was associated with a reduced risk of later sustaining a low-trauma wrist fracture. The Umeå Fracture and Osteoporosis (UFO) study is a population-based nested case-control study investigating associations between lifestyle and fragility fractures. From a cohort of ~35,000 subjects, we identified 376 female wrist fracture cases who had reported data regarding their commuting habits, occupational, and leisure physical activity, before they sustained their fracture. Each fracture case was compared with at least one control drawn from the same cohort and matched for age and week of reporting data, yielding a total of 778 subjects. Mean age at baseline was 54.3 ± 5.8 years, and mean age at fracture was 60.3 ± 5.8 years. Conditional logistic regression analysis with adjustments for height, body mass index, smoking, and menopausal status showed that subjects with active commuting (especially walking) were at significantly lower risk of sustaining a wrist fracture (OR 0.48; 95 % CI 0.27-0.88) compared with those who commuted by car or bus. Leisure time activities such as dancing and snow shoveling were also associated with a lower fracture risk, whereas occupational activity, training, and leisure walking or cycling were unrelated to fracture risk. This study suggests that active commuting is associated with a lower wrist fracture risk, in middle-aged women.

  6. Potential impact of enhanced fracture-toughness data on fracture mechanics assessment of PWR vessel integrity for pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, T.L.; Theiss, T.J.

    1991-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of enhanced fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. A series of large-scale fracture-mechanics experiments have produced crack-arrest (K{sub Ia}) data with the distinguishing characteristic that the values are considerably above 220 MPA {center dot} {radical}m. The implicit limit of the ASME Code and the limit used in the Integrated Pressurized Thermal Shock (IPTS) studies. Currently, the HSST Program is planning experiments to verify and quantify for A533B steel the distinguishing characteristic of elevated the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. The results of the analyses indicated that application of the enhanced K{sub Ia} data does reduce the conditional probability of failure P(F{vert bar}E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F{vert bar}E), and does appear to have a potential for significantly affecting the results of PTS analyses. 19 refs., 11 figs., 1 tab.

  7. Fracture resistance of zirconia-based implant abutments after artificial long-term aging.

    Science.gov (United States)

    Alsahhaf, Abdulaziz; Spies, Benedikt Christopher; Vach, Kirstin; Kohal, Ralf-Joachim

    2017-02-01

    To investigate the survival rate, fracture strength, bending moments, loading to fracture and fracture modes of different designs of zirconia abutments after dynamic loading with thermocycling, and compare these values to titanium abutments. A total of 80 abutment samples were divided into 5 test groups of 16 samples in each group. The study included the following groups, "Group 1" CAD/CAM produced all-zirconia abutments, "Group 2" titanium abutments, "Group 3" zirconia-abutments adhesively luted to a titanium base, "Group 4" prefabricated all-zirconia abutments and "Group 5" zirconia-abutments glass soldered to a titanium base. Half the number of samples in each group was exposed to 1.2 million loading cycles (5-years simulation) in the chewing simulator. The samples that survived the artificial aging were later tested for fracture strength in a universal testing machine. The remaining 8 samples of the group were directly tested for fracture strength. All samples exposed to the 5-years artificial aging survived except of six samples in one group (Group 1). The surviving samples were later fracture tested in the universal testing machine. The bending moments (Ncm) values were as follow: Exposed groups: "Group 1" 94.5Ncm; "Group 2" 599.2Ncm; "Group 3" 477.5Ncm; "Group 4" 314.4Ncm; "Group 5" 509.4Ncm. Non-exposed groups: "Group 1" 269.3Ncm; "Group 2" 474.2Ncm; "Group 3" 377.6Ncm; "Group 4" 265.4Ncm; "Group 5" 372.4Ncm. Except in Group 1, the values were higher in the exposed groups, although, statistically there was no difference (p>0.05). The one-piece ZrO2-abutment group (Group 1 and Group 4) exhibited lower values, while the two-piece ZrO2-abutment groups (Group 3 and Group 5) showed similar values and fracture modes like the titanium abutment group. The titanium abutment group showed the highest values of bending moments among all groups. The implant-abutment connection area appeared to influence the bending moment value and the fracture mode of the tested

  8. Geoid height-age relation from Seasat altimeter profiles across the Mendocino Fracture Zone

    Science.gov (United States)

    Sandwell, D. T.; Schubert, G.

    1982-01-01

    Twenty-eight Seasat altimeter profiles crossing the Mendocino Fracture Zone are used together with seafloor ages determined from magnetic lineations to estimate the change in oceanic geoid height with age, between ages of 15 and 135 m.y. An unbiased estimate of the overall geoid offset along each profile is determined from a least-squares fit of the along-track derivative of the geoid to the geoid slope predicted from a simple two-layer gravitational edge effect model. Uncertainties based upon the statistical properties of each profile are also determined. A geoid slope-age relation is constructed by normalizing the geoid offsets and uncertainties by the age offsets. The results are in agreement with geoid slope-age relations determined from symmetrically spreading ridges (Sandwell and Schubert, 1980). However, the fracture zone estimates have smaller uncertainties and show less scatter. A comparison of these results with the geoid slope-age prediction of the boundary layer cooling model shows that the thermal structure begins to deviate from this model at an early age (20-40 m.y.). A plate cooling model with a thickness of 125 km is most compatible with the geoid slope-age estimates, although significant deviations occur; these may indicate that the lithospheric thermal structure is not entirely age dependent.

  9. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  10. Evolution of Stiffness and Permeability in Fractures Subject to - and Mechanically-Activated Dissolution

    Science.gov (United States)

    Faoro, I.; Elsworth, D.; Candela, T.

    2013-12-01

    Strong feedbacks link thermal gradients (T), hydrologic flow (H), chemical alteration (C) and mechanical deformation (M) in fractured rock. These processes are strongly interconnected since one process effects the initiation and progress of another. Dissolution and precipitation of minerals are affected by temperature and stress, and can result in significant changes in permeability and solute transport characteristics. Understanding these couplings is important for oil, gas, and geothermal reservoir engineering and for waste disposal in underground repositories and reservoirs. In order to experimentally investigate the interactions between THCM processes in a natural stressed fracture, we report on heated ( up to 150C) flow-through experiments on fractured core samples of Westerly granite. These experiments are performed to examine the influence of thermally and mechanically activated dissolution on the mechanical (stress/strain) and transport (permeability) characteristics of fractures. The evolutions of both the permeability and stiffness of the sample are recorded as the experimental thermal conditions change and chemical alteration progresses. Furthermore efflux of dissolved mineral mass is measured periodically to provide a record of the net mass removal, to correlate this with observed changes in fracture aperture, defined by the flow test. During the experiments the fracture shows high hydraulic sensitivity to the changing conditions of stress and temperature. Significant variation of the effluent fluid chemistry is observed. We argue that the formation of clay (Kaolinite) is the main mechanism responsible for the permanent change in permeability recorded at higher confining stresses (40 MPa).

  11. Mechanical Properties and Fracture Behaviour of Multilayer Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xinguo; ZHAO Fei; ZHANG Jinyong

    2015-01-01

    Adopting a ceramic/polymer multilayer structure design to simulate the structure of nacre is usually believed to be an effective way to increase the toughness of ceramic composites at the expense of the material's bending strength. However, in this study, we found that both the bending strength and the toughness could be improved simultaneously when using a certain Al2O3/Kevlar multilayer composite design compared to pure alumina samples with the same dimensions. The fracture behaviour of the Al2O3/Kevlar multilayer composite was studied to ifnd a reason for this improvement. The results showed that the complex and asymmetrical stresses occurring in the Kevlar-reinforced layers were the main reason for the differences in fracture behaviour. We expect our results to open up new ways for the design of future high performance ceramic composites.

  12. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  13. Pseudoarthrosis following proximal humeral fractures: A possible mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, P.J.; Cockshott, W.P.

    1986-01-01

    A small series of four patients with pseudarthrosis of the proximal humeral shaft is reported. These patients all had restricted movement of the shoulder joint prior to the trauma, three as a result of rheumatoid arthritis and one due a surgical fusion of the glenohumeral joint. It is suggested that pseudarthrosis is more likely under these circumstances and that pursuit of union of the fracture in such patients may not always be necessary.

  14. Investigation of the fracture mechanics of boride composites

    Science.gov (United States)

    Kaufman, L.; Clougherty, E. V.; Nesor, H.

    1971-01-01

    Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.

  15. Fracture mechanical analysis of strengthened concrete tension members with one crack

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2012-01-01

    A concrete tension member strengthened 2 with fiber reinforced polymer plates on two sides 3 is analyzed with non-linear fracture mechanics. The 4 analysis of the strengthened tension member incorpo5 rates cohesive properties for both concrete and inter6 face between concrete and strengthening...... the structural classification parameters, is inves13 tigated in a non-dimensional analysis, and found to 14 depend strongly on the ratio between interfacial and 15 concrete fracture energies....

  16. Fracture Mechanisms of Layer-By-Layer Polyurethane/Poly(Acrylic Acid) Nanocomposite

    Science.gov (United States)

    Kheng, Eugene R.

    A layer-by-layer(LBL) manufactured material is examined in detail in this thesis. Improvements are made to the method of its manufacture. Efforts are made to understand its fracture mechanisms and take advantage of these fracture mechanisms in the absorption of impact energy. A novel series of experiments has been performed on LBL manufactured thin films to demonstrate their unique fracture mechanisms. Polyurethane/Poly(Acrylic Acid) (PU/PAA) and PU/PAA/(PU/Clay)5 nanocomposite films readily undergo Interlaminar mode II fracture, because of the relatively weak elctrostatic bonds between monolayers. Tensile tests performed while under observation by a scanning electron microscope demonstrate the tendency of these nanocomposite films to undergo interlaminar mode II fracture even when loads are applied in the plane of nanocomposite film. It is concluded that these mechanisms of energy dissipation are responsible for the enhanced toughness of these films when used as layers between glass blocks in the prevention of impact damage to the glass. A novel automated manufacturing facility has been designed and built to deposit large sheets of Layer-by-Layer nanocomposite film. These large sheets are incorporated into a borosillicate glass composite in order to compare the ballistic characteristics of LBL PU based nanocomposite films to a single cast layer of polyurethane. It is demonstrated that shear fracture is the mode of failure in the blocks containing the nanocomposite film. The shear fracture surface in the nanocomposite after it has undergone a ballistic impact is characterized. Additional experiments are performed to characterize the interlaminar fracture stresses and toughnesses of the nanocomposite LBL layers, to assist in the implementation of a numerical crack band model that describes the nanocomposite film. The computational model predicts the failure of the ballistic nanocomposite samples, and the predicted V50 velocity is found to be in good agreement with

  17. Fracture Resistance Measurement Method for in situ Observation of Crack Mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, A.; Jørgensen, O.

    1998-01-01

    observation and acoustic emission, As an example, crack growth in a cubic-phase yttria-stabilized zirconia is detected easily by in situ observation of the crack-tip region, Many fracture toughness measurements are obtained for each specimen, giving high confidence in the measured fracture toughness value......, In situ observation is useful for the study of toughening mechanisms and subcritical crack-growth behavior and to sort out erroneous measurements (e.g., due to crack branching)....

  18. Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy

    Science.gov (United States)

    Denda, Takeshi; Bretz, Perter L.; Tien, John K.

    1992-02-01

    Low cycle fatigue life of nickel-base superalloys is enhanced as a consequence of inclusion reduction in the melt process; however, the functional dependencies between fatigue characteristics and inclusions have not been well investigated. In this study, the propagation mechanism of the fatigue crack initiated from inclusions is examined in fine-grained IN718, which is a representative turbine disc material for jet engines. There is a faceted-striated crack transition on the fracture surfaces. This faceted-striated transition also appears in the da/dN vs crack length curves. It is observed that the faceted crack propagation time can be more than 50 pct of total lifetime in the low cycle fatigue test. The significance of inclusion size effect is explained on the premise that the faceted fatigue crack propagation time scales with the inclusion size, which is taken as the initial crack length. A predictive protocol for determining inclusion size effect is given.

  19. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  20. Three- to nine-year survival estimates and fracture mechanisms of zirconia- and alumina-based restorations using standardized criteria to distinguish the severity of ceramic fractures

    OpenAIRE

    Moraguez, Osvaldo; Wiskott, Anselm; Scherrer, Susanne

    2015-01-01

    The aims of this study were set as follows: 1. To provide verifiable criteria to categorize the ceramic fractures into non-critical (i.e., amenable to polishing) or critical (i.e., in need of replacement) 2. To establish the corresponding survival rates for alumina and zirconia restorations 3. To establish the mechanism of fracture using fractography

  1. Fracto-mechanoluminescence and mechanics of fracture of solids

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [Department of Applied Physics, Ashoka Institute of Technology and Management, Torankatta, G.E. Road, Rajnandgaon, 491441 (C.G.) (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001 (C.G.) (India); Jha, P.; Patel, Rashmi; Shende, S.K. [Department of Postgraduate Studies and Research in Physics, Rani Durgavati, University, Jabalpur 482001 (India); Thaker, S. [Department of Physics and Computer Science, Government Model Science College, Raipur, 492010 (C.G.) (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.) (India)

    2012-08-15

    The present paper explores the correlation between fracto-mechanoluminescence and fracture of solids and thereby provides a clear understanding of the physics of fracto-mechanoluminescence. When a fluorescent or non-photoluminescent crystal is fractured impulsively by dropping a load on it, then initially the mechanoluminescence (ML) intensity increases linearly with time, attains a maximum value I{sub m} at a particular time t{sub m} and later on it decreases exponentially with time. However, when a phosphorescent crystal is fractured impulsively by dropping a load on it, then initially the ML intensity increases linearly with time, attains a maximum value I{sub m} at a particular time t{sub m} and later on it decreases initially at a fast rate and then at a slow rate. For low impact velocity the value of t{sub m} is constant, however, for higher impact velocity t{sub m} decreases logarithmally with the increasing impact velocity. Whereas the peak ML intensity I{sub m} increases linearly with the impact velocity, the total ML intensity I{sub T}, initially increases linearly with the impact velocity and then it tends to attain a saturation value for higher values of the impact velocity. The value of t{sub m} increases logarithmally with the thickness of crystals, I{sub m} increases linearly with the area of cross-section of crystals and I{sub T} increases linearly with the volume of crystals. Generally, the ML of non-irradiated crystals decreases with increasing temperature of crystals. Depending on the prevailing conditions the ML spectra consist of either gas discharge spectra or solid state luminescence spectra or combination of the both. On the basis of the rate of generation of cracks and the rate of creation of new surface area of crystals, expressions are derived for the ML intensity and they are found to explain satisfactorily the temporal, spectral, thermal, crystal-size, impact velocity, surface area, and other characteristics of ML. The present

  2. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes

  3. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  4. Numerical Analysis and Experimental Study of Hard Roofs in Fully Mechanized Mining Faces under Sleeve Fracturing

    Directory of Open Access Journals (Sweden)

    Zhitao Zheng

    2015-11-01

    Full Text Available Sudden falls of large-area hard roofs in a mined area release a large amount of elastic energy, generate dynamic loads, and cause disasters such as impact ground pressure and gas outbursts. To address these problems, in this study, the sleeve fracturing method (SFM was applied to weaken a hard roof. The numerical simulation software FLAC3D was used to develop three models based on an analysis of the SFM working mechanism. These models were applied to an analysis of the fracturing effects of various factors such as the borehole diameter, hole spacing, and sleeve pressure. Finally, the results of a simulation were validated using experiments with similar models. Our research indicated the following: (1 The crack propagation directions in the models were affected by the maximum principal stress and hole spacing. When the borehole diameter was fixed, the fracturing pressure increased with increasing hole spacing. In contrast, when the fracturing pressure was fixed, the fracturing range increased with increasing borehole diameter; (2 The most ideal fracturing effect was found at a fracturing pressure of 17.6 MPa in the model with a borehole diameter of 40 mm and hole spacing of 400 mm. The results showed that it is possible to regulate the falls of hard roofs using the SFM. This research may provide a theoretical basis for controlling hard roofs in mining.

  5. Modelling of Debond and Crack Propagation in Sandwich Structures Using Fracture and Damage Mechanics

    DEFF Research Database (Denmark)

    Berggreen, C.; Simonsen, Bo Cerup; Toernqvist, Rikard

    2003-01-01

    Skin-core de-bonding or core crack propagation will often be dominating mechanisms in the collapse modes of sandwich structures. This paper presents two different methods for prediction of crack propagation in a sandwich structure: a fracture mechanics approach, where a new mode-mix method...

  6. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    Science.gov (United States)

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  7. Quality in rehabilitation after a working age person has sustained a fracture: Partnership contributes to continuity

    DEFF Research Database (Denmark)

    Lindahl, Marianne Pia; Hvalsøe*, Berit; Rosengaard, Jeppe;

    2013-01-01

    OBJECTIVE: Research in quality of rehabilitation has mostly concerned patients with chronic diseases, but the aim of the present study was to investigate what constitutes good quality in rehabilitation after a person has sustained a fracture at working age, from both patients' and therapists...... need partnership, respect, and understanding through the rehabilitation course. Personal relations were important for continuity of rehabilitation (i.e. that organizational quality depended more on therapists' efforts to promote continuity for the patient than organizational tools)....

  8. Natural hydraulic fractures and the mechanical stratigraphy of shale-dominated strata

    Science.gov (United States)

    Imber, Jonathan; Armstrong, Howard; Atar, Elizabeth; Clancy, Sarah; Daniels, Susan; Grattage, Joshua; Herringshaw, Liam; Trabucho-Alexandre, João; Warren, Cassandra; Wille, Jascha; Yahaya, Liyana

    2016-04-01

    .2-4.3 fractures per m, consistent with field observations that this formation is more highly fractured than the Cleveland Ironstone Formation. Semi-quantitative estimates of the mineralogical "brittleness index" suggest the highly fractured, clay-rich Mulgrave Shale Member of the Whitby Mudstone Formation has a low brittleness. Our results are therefore inconsistent with the widely held assumption that natural fracture density is greatest within units characterised by a high brittleness index. We propose that stratigraphic variations in fracture densities are more likely to result from the different distributions of crack driving stresses; formations containing decimetre-scale, and most likely stiff, carbonate layers (such as the Cleveland Ironstone Formation) will have differing crack driving stresses compared with silt- and mudstone dominated successions (such as the Whitby Mudstone Formation). The high fracture density observed within the Mulgrave Shale Member is also consistent with propagation of natural hydraulic fractures driven by fluid overpressure caused by maturation of organic matter concentrated within this unit. The next step is to investigate the relative importance of maturation-driven overpressure v. mechanical heterogeneity by analysing the stratigraphic variations in fracture density within the underlying, organic-matter lean Redcar Mudstone Formation.

  9. Vertebroplasty and Kyphoplasty Can Restore Normal Spine Mechanics following Osteoporotic Vertebral Fracture

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2010-01-01

    Full Text Available Osteoporotic vertebral fractures often lead to pain and disability. They can be successfully treated, and possibly prevented, by injecting cement into the vertebral body, a procedure known as vertebroplasty. Kyphoplasty is similar, except that an inflatable balloon is used to restore vertebral body height before cement is injected. These techniques are growing rapidly in popularity, and a great deal of recent research, reviewed in this paper, has examined their ability to restore normal mechanical function to fractured vertebrae. Fracture reduces the height and stiffness of a vertebral body, causing the spine to assume a kyphotic deformity, and transferring load bearing to the neural arch. Vertebroplasty and kyphoplasty are equally able to restore vertebral stiffness, and restore load sharing towards normal values, although kyphoplasty is better at restoring vertebral body height. Future research should optimise these techniques to individual patients in order to maximise their beneficial effects, while minimising the problems of cement leakage and adjacent level fracture.

  10. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    Science.gov (United States)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  11. Mechanical interactions between proppants and rock and their effect on hydraulic fracture performance

    Energy Technology Data Exchange (ETDEWEB)

    Legarth, B.A.; Raab, S.; Huenges, E. [GeoForschungsZentrum Potsdam (Germany)

    2005-07-01

    Proppants interact mechanically with the rock matrix. This causes damage to the fracture face and influences propped fracture performance. Therefore, proppant embedment and proppant crushing phenomena were analysed in laboratory under simulated in situ conditions. The embedment tests were performed in a conductivity cell using reassembled core halves. Embedment features in the rock matrix were optically analyzed. In a separate unit single grain strength tests were performed on a wide range of ceramic proppant types (AI203-based, coated/uncoated) and sizes (diameter 0,2-1,6 mm). The experiment showed that areas in the fracture with low proppant concentration revealed severe proppant crushing and embedment that occurred already at low effective stress. Punctual loading was identified as reason for premature proppant failure. Grain strength testing showed that compressive fracture force increases with grain diameter, is influenced by the presence of a coating and might be additionally controlled by grain surface structure. Compressive fracture strength is largely independent from size for same proppant types. A contact model introduced by Hertz was applied to retrieve the stress magnitudes at grain failure. Proppant crushing leads to generation of fines in the matrix and the proppant pack. These fines can be transported and plug pore-throats and flow channels. Dependent on completion type and expected fracture widths proppant grain size should be maximized for higher fracture conductivity. Proppant crushing and embedment processes are enforced by decreasing proppant concentration. Considering natural conditions in a fracture - rough surfaces, tortuous-twisted paths that hinder even proppant distribution - low proppant concentrations appear to be very real, maybe even the normal case in nature. Thus, high proppant concentration is the key issue to mitigate fracture impairment. (orig.)

  12. The mechanical benefit of medial support screws in locking plating of proximal humerus fractures.

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    Full Text Available BACKGROUND: The purpose of this study was to evaluate the biomechanical advantages of medial support screws (MSSs in the locking proximal humeral plate for treating proximal humerus fractures. METHODS: Thirty synthetic left humeri were randomly divided into 3 subgroups to establish two-part surgical neck fracture models of proximal humerus. All fractures were fixed with a locking proximal humerus plate. Group A was fixed with medial cortical support and no MSSs; Group B was fixed with 3 MSSs but without medial cortical support; Group C was fixed with neither medial cortical support nor MSSs. Axial compression, torsional stiffness, shear stiffness, and failure tests were performed. RESULTS: Constructs with medial support from cortical bone showed statistically higher axial and shear stiffness than other subgroups examined (P<0.0001. When the proximal humerus was not supported by medial cortical bone, locking plating with medial support screws exhibited higher axial and torsional stiffness than locking plating without medial support screws (P ≤ 0.0207. Specimens with medial cortical bone failed primarily by fracture of the humeral shaft or humeral head. Specimens without medial cortical bone support failed primarily by significant plate bending at the fracture site followed by humeral head collapse or humeral head fracture. CONCLUSIONS: Anatomic reduction with medial cortical support was the stiffest construct after a simulated two-part fracture. Significant biomechanical benefits of MSSs in locking plating of proximal humerus fractures were identified. The reconstruction of the medial column support for proximal humerus fractures helps to enhance mechanical stability of the humeral head and prevent implant failure.

  13. Notch Fracture Toughness of Glasses: Dependence on Rate, Age, and Geometry

    Science.gov (United States)

    Vasoya, Manish; Rycroft, Chris H.; Bouchbinder, Eran

    2016-08-01

    Understanding the fracture toughness (resistance) of glasses is a fundamental problem of prime theoretical and practical importance. Here we theoretically study its dependence on the loading rate, the age (history) of the glass, and the notch radius ρ . Reduced-dimensionality analysis suggests that the notch fracture toughness results from a competition between the initial, age- and history-dependent, plastic relaxation time scale τ0pl and an effective loading time scale τext(K˙ I,ρ ) , where K˙ I is the tensile stress-intensity-factor rate. The toughness is predicted to scale with √{ρ } independently of ξ ≡τext/τ0pl for ξ ≪1 , to scale as T √{ρ }log (ξ ) for ξ ≫1 (related to thermal activation, where T is the temperature), and to feature a nonmonotonic behavior in the crossover region ξ ˜O (1 ) (related to plastic yielding dynamics). These predictions are verified using 2D computations, providing a unified picture of the notch fracture toughness of glasses. The theory highlights the importance of time-scale competition and far-from-steady-state elasto-viscoplastic dynamics for understanding the toughness and shows that the latter varies quite significantly with the glass age (history) and applied loading rate. Experimental support for bulk metallic glasses is presented, and possible implications for applications are discussed.

  14. Relationship between microstructure, material distribution, and mechanical properties of sheep tibia during fracture healing process.

    Science.gov (United States)

    Gao, Jiazi; Gong, He; Huang, Xing; Fang, Juan; Zhu, Dong; Fan, Yubo

    2013-01-01

    The aim of this study was to investigate the relationship between microstructural parameters, material distribution, and mechanical properties of sheep tibia at the apparent and tissue levels during the fracture healing process. Eighteen sheep underwent tibial osteotomy and were sacrificed at 4, 8, and 12 weeks. Radiographs and micro-computed tomography (micro-CT) scanning were taken for microstructural assessment, material distribution evaluation, and micro-finite element analysis. A displacement of 5% compressive strain on the longitudinal direction was applied to the micro-finite element model, and apparent and tissue-level mechanical properties were calculated. Principle component analysis and linear regression were used to establish the relationship between principle components (PCs) and mechanical parameters. Visible bony callus formation was observed throughout the healing process from radiographic assessment. Apparent mechanical property increased at 8 weeks, but tissue-level mechanical property did not increase significantly until 12 weeks. Three PCs were extracted from microstructural parameters and material distribution, which accounted for 87.592% of the total variation. The regression results showed a significant relationship between PCs and mechanical parameters (R>0.8, PCT imaging could efficiently predict bone strength and reflect the bone remodeling process during fracture healing, which provides a basis for exploring the fracture healing mechanism and may be used as an approach for fractured bone strength assessment.

  15. Delayed Fracture Resistance and Mechanical Properties of 30MnSi High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Gui-zhi; DI Hong-shuang

    2009-01-01

    To investigate the effect of heat treatment on mechanical properties and delayed fracture resistance of high strength steel,30MnSi prestressed concrete (PC) steel bars are quenched and tempered.Tensile results show that,after 950 ℃ quenching and about 430 ℃ tempering,30MnSi PC steel bars have superior mechanical properties and delayed fracture resistance.Microstructursl observation shows that 30MnSi steel bar is mainly composed of fine tempered sorbite (troostite) with carbide distributed along the lath martensite boundaries.It can be concluded that thermal refining is an effective way to improve mechanical properties and delayed fracture resistance of 30MnSi PC steel bar.

  16. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    Science.gov (United States)

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; Tang, Simon; Amling, Michael; Ritchie, Robert O.; Busse, Björn

    2016-02-01

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.

  17. Mode I fracture toughness behavior of hydro-thermally aged carbon fibre reinforced DGEBA-HHPA-PES systems

    Science.gov (United States)

    Alessi, Sabina; Pitarresi, Giuseppe; Spadaro, Giuseppe; Tumino, Davide

    2012-07-01

    In this work the Mode I fracture toughness behavior of unidirectional CFRP laminates is investigated by means of Double Cantilever Beam (DCB) tests. The composite samples were manufactured by thermal curing after impregnation of a Carbon fabric with a DGEBA epoxy and anhydride HHPA curing agent. One resin batch was also mixed with a PES thermoplastic monomer to enhance the matrix toughness. Two lots of samples, toughened and untoughened, were then left to soak in hot water to achieve various degrees of aging. The influence of matrix toughening and hydrothermal aging on the delamination behavior of the composite have then been assessed and correlated with characterization data from Dynamic Mechanical Thermal Analysis (DMTA) and Scanning Electron Microscopy (SEM).

  18. Fracture mechanics of polymer mortar made with recycled raw materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Godoy Jurumenha

    2010-12-01

    Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.

  19. Elastic-plastic fracture mechanics of strength-mismatching

    Energy Technology Data Exchange (ETDEWEB)

    Parks, D.M.; Ganti, S.; McClintock, F.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-12-31

    Approximate solutions to stress-fields are provided for a strength-mismatched interface crack in small-scale yielding (SSY) for non-hardening and low hardening materials. Variations of local deformation intensities, characterized by a J-type contour integral, are proposed. The softer material experiences a higher deformation intensity level, J{sub S}, while the harder material sees a much lower deformation intensity level, J{sub H}, compared to that obtained from the applied J near the respective homogeneous crack-tips. For a low hardening material, the stress fields are obtained by scaling from an elastic/perfectly-plastic problem, based on an effective mismatch, M{sub eff}, which is a function of mismatch, M, and the hardening exponent, n. Triaxial stress build-up is discussed quantitatively in terms of M. The influence of strength-mismatch on cleavage fracture is discussed using Weibull statistics.

  20. Deformation Mechanisms and Fracture of Ni-Based Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Lesz S.

    2016-06-01

    Full Text Available The cracking of materials and fracture surface is of great practical and academic importance. Over the last few years the development of the fractography of crystalline alloys resulted in a useful tool for the prediction or failure analysis. Many attempts have been made to observe cracks using optical microscopy, X-ray topography and transmission electron microscopy (TEM. Of these techniques, the resolution of optical microscopy and X-ray topography is too poor. By contrast, the resolution of TEM is high enough for detailed information to be obtained. However, in order to apply TEM observations, a thin foil specimen must be prepared, and it is usually extremely difficult to prepare such a specimen from a pre-selected region containing a crack.

  1. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    Science.gov (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  2. Life Prediction of Ball Grid Array Soldered Joints under Thermal Cycling Loading by Fracture Mechanics Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fatigue crack propagation life of ball grid array (BGA) soldered joints during thermal cycling loading was investigated by fracture mechanics approach using finite element analysis. The relationships between the strain energy release rate (G) and crack size (α), thermal cycle numbers (N) can be derived. Based on the relationships, fatigue life of the soldered joints was determined. The results showed that crack propagation life was higher than crack initiation life. Therefore, it appears that it is more appropriate to predict the fatigue life of soldered joints using the fracture mechanics method.

  3. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    Science.gov (United States)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  4. The Tromsø Study: physical activity and the incidence of fractures in a middle-aged population.

    Science.gov (United States)

    Joakimsen, R M; Fønnebø, V; Magnus, J H; Størmer, J; Tollan, A; Søgaard, A J

    1998-07-01

    We have studied the relation of occupational and recreational physical activity to fractures at different locations. All men born between 1925 and 1959 and all women born between 1930 and 1959 in the city of Tromsø were invited to participate in surveys in 1979-1980 and 1986-1987 (The Tromsø Study). Of 16,676 invited persons, 12,270 (73.6%) attended both surveys. All nonvertebral fractures (n = 1435) sustained from 1988 to 1995 were registered in the only hospital in the area. Average age in the middle of the follow-up period (December 31, 1991) was 47.3 years among men and 4501 years among women, ranging from 32 to 66 years. Fracture incidence increased with age at all locations among women, but it decreased with or was independent of age among men. Low-energetic fractures constituted 74.4% of all fractures among women and 55.2% among men. When stratifying by fracture location, the most physically active persons among those 45 years or older suffered fewer fractures in the weight-bearing skeleton (relative risk [RR] 0.6, confidence interval [CI] 0.4-0.9, age-adjusted), but not in the non-weight-bearing skeleton (RR 1.0, CI 0.7-1.2, age-adjusted) compared with sedentary persons. The relative-risk of a low-energetic fracture in the weight-bearing skeleton among the most physically active middle-aged was 0.3 (CI 0.1-0.7) among men and 0.9 (CI 0.4-1.8) among women compared with the sedentary when adjusted for age, body mass index, body height, tobacco smoking, and alcohol and milk consumption. It seems that the beneficial effect on the skeleton of weight-bearing activity is reflected also in the incidence of fractures at different sites.

  5. Fatigue Performance of Microalloyed High-strength Rebar and Analysis of Fracture Mechanism

    Institute of Scientific and Technical Information of China (English)

    Peng-yan LU; Yu LIU; Hua-jie WU; Gang LIU; Xiang MENG; Yang XU

    2015-01-01

    Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500)was stud-ied with bend-rotating fatigue test at a stress ratio of R=-1 .It is determined by staircase method that its fatigue strength for 107 cycles is 451 MPa,which is higher than that of common carbon structural steel.This should be at-tributed to the fine-grain strengthening resulting from the high content of alloy element V and Thermo-Mechanical Control Process (TMCP).The S-N curve function is also obtained by nonlinear regression with three parameters power function.The fatigue fractures of the specimen were further analyzed with Scanning Electron Microscopy (SEM)and Energy Disperse Spectroscopy (EDS)to study the fracture mechanism.Taking into account microstruc-ture,hardness and cleanliness of the material,it implies that the fatigue fractures of HRB500 rebar all arise from surface substrates in which many brittle inclusions are contained,and that the fatigue crack propagation is principally based on the mechanism of quasi-cleavage fracture,because of the intracrystalline hard spots leading to stress con-centration and thus to the cracks.Moreover,the transient breaking area exhibits microvoid coalescence of ductile fracture due to the existing abundant inclusions.

  6. Three- to nine-year survival estimates and fracture mechanisms of zirconia- and alumina-based restorations using standardized criteria to distinguish the severity of ceramic fractures.

    Science.gov (United States)

    Moráguez, Osvaldo D; Wiskott, H W Anselm; Scherrer, Susanne S

    2015-12-01

    The aims of this study were set as follows: 1. To provide verifiable criteria to categorize the ceramic fractures into non-critical (i.e., amenable to polishing) or critical (i.e., in need of replacement) 2. To establish the corresponding survival rates for alumina and zirconia restorations 3. To establish the mechanism of fracture using fractography Fifty-eight patients restored with 115 alumina-/zirconia-based crowns and 26 zirconia-based fixed dental prostheses (FDPs) were included. Ceramic fractures were classified into four types and further subclassified into "critical" or "non-critical." Kaplan-Meier survival estimates were calculated for "critical fractures only" and "all fractures." Intra-oral replicas were taken for fractographic analyses. Kaplan-Meier survival estimates for "critical fractures only" and "all fractures" were respectively: Alumina single crowns: 90.9 and 68.3 % after 9.5 years (mean 5.71 ± 2.6 years). Zirconia single crowns: 89.4 and 80.9 % after 6.3 years (mean 3.88 ± 1.2 years). Zirconia FDPs: 68.6 % (critical fractures) and 24.6 % (all fractures) after 7.2 and 4.6 years respectively (FDP mean observation time 3.02 ± 1.4 years). No core/framework fractures were detected. Survival estimates varied significantly depending on whether "all" fractures were considered as failures or only those deemed as "critical". For all restorations, fractographic analyses of failed veneering ceramics systematically demonstrated heavy occlusal wear at the failure origin. Therefore, the relief of local contact pressures on unsupported ceramic is recommended. Occlusal contacts on mesial or distal ridges should systematically be eliminated. A classification standard for ceramic fractures into four categories with subtypes "critical" and "non-critical" provides a differentiated view of the survival of ceramic restorations.

  7. Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    Full Text Available In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

  8. Association of a Modified Frailty Index With Mortality After Femoral Neck Fracture in Patients Aged 60 Years and Older

    National Research Council Canada - National Science Library

    Patel, Kushal V; Brennan, Kindyle L; Brennan, Michael L; Jupiter, Daniel C; Shar, Adam; Davis, Matthew L

    2014-01-01

    .... Specifically we examined: (1) Is there an association of a modified frailty index with 1- and 2-year mortality rates in patients aged 60 years and older who sustain a low-energy femoral neck fracture? (2...

  9. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption in crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with

  10. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation.

    Science.gov (United States)

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Simon, Ulrich; Wehner, Tim

    2014-07-01

    The outcome of secondary fracture healing processes is strongly influenced by interfragmentary motion. Shear movement is assumed to be more disadvantageous than axial movement, however, experimental results are contradictory. Numerical fracture healing models allow simulation of the fracture healing process with variation of single input parameters and under comparable, normalized mechanical conditions. Thus, a comparison of the influence of different loading directions on the healing process is possible. In this study we simulated fracture healing under several axial compressive, and translational and torsional shear movement scenarios, and compared their respective healing times. Therefore, we used a calibrated numerical model for fracture healing in sheep. Numerous variations of movement amplitudes and musculoskeletal loads were simulated for the three loading directions. Our results show that isolated axial compression was more beneficial for the fracture healing success than both isolated shearing conditions for load and displacement magnitudes which were identical as well as physiological different, and even for strain-based normalized comparable conditions. Additionally, torsional shear movements had less impeding effects than translational shear movements. Therefore, our findings suggest that osteosynthesis implants can be optimized, in particular, to limit translational interfragmentary shear under musculoskeletal loading. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Effect of orientation on the in vitro fracture toughness ofdentin: The role of toughening mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R.K.; Kinney, J.H.; Ritchie, R.O.

    2003-01-28

    A micro-mechanistic understanding of bone fracture thatencompasses how cracks interact with the underlying microstructure anddefines their local failure mode is lacking, despite extensive research nthe response of bone to a variety of factors like aging, loading, and/ordisease.

  12. A comparison of electromigration failure of metal lines with fracture mechanics

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki Abé; Mikio Muraoka; Kazuhiko Sasagawa; Masumi Saka

    2012-01-01

    Atoms constructing an interconnecting metal line in a semiconductor device are transported by electron flow in high density.This phenomenon is called electromigration,which may cause the line failure.In order to characterize the electromigration failure,a comparison study is carried out with some typical phenomena treated by fracture mechanics for thin and large structures.An example of thin structures,which have been treated by fracture mechanics,is silica optical fibers for communication systems.The damage growth in a metal line by electromigration is characterized in comparison with the crack growth in a silica optical fiber subjected to static fatigue.Also a brief comparison is made between the electromigration failure and some fracture phenomena in large structures.

  13. Fracture Toughness Evaluation of Hybrid and Nano-hybrid Resin Composites after Ageing under Acidic Environment

    Directory of Open Access Journals (Sweden)

    Ferooz M

    2015-03-01

    Full Text Available Statement of Problem: Tooth-coloured restorative materials are brittle with the major shortcomings of sensitivity to flaws and defects. Although various mechanical properties of resin composites have been studied, no fracture toughness test data for nano-hybrid composites under acidic condition for a long period of time has been published. Objectives: To compare the fracture toughness (KIc of two types of resin composites under tensile loading and to assess the effect of distilled water and lactic acid on the resistance of the restoratives to fracture after three months of immersion. Materials and Methods: Four resin composites were used: three nanohybrids [EsteliteSigma Quick (Kuraray, Luna (SDI, Paradigm (3M/ESPE] and one hybrid, Rok (SDI. The specimens were prepared using a custom-made polytetrafluorethylene split mould, stored in distilled water (pH 6.8 or 0.01mol/L lactic acid (pH 4 and conditioned at 37°C for 24 hours, 1 or 3 months. They were loaded under tensile stress using a universal testing machine; the maximum load (N to the specimen failure was recorded and the fracture toughness (KIc was calculated. Data were analysed by ANOVA and Tukey’s test using SPSS, version 18. Results: The results of two-way ANOVA did not show a significant combined effect of material, time, and storage medium on fracture toughness (p= 0.056. However, there was a strong interaction between materials and time (p=0.001 when the storage medium were ignored. After 24 h of immersion in distilled water, Paradigm revealed the highest KIc values followed by Rok, Luna and Estelite. Immersion in either distilled water or lactic acid significantly decreased the fracture toughness of almost all materials as time interval increased. Conclusions: Paradigm showed the highest fracture toughness followed by Rok, Luna and Estelite respectively. As time increased, KIc significantly decreased for almost all resin composites except for Luna which showed a slight decrease

  14. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.J.

    1997-05-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85{degrees}F.

  15. Discrete fracture modeling of hydro-mechanical damage processes in geological systems

    Science.gov (United States)

    Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.

    2014-12-01

    This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively

  16. Epigenetic Mechanisms of the Aging Human Retina

    Science.gov (United States)

    Pennington, Katie L.; DeAngelis, Margaret M.

    2015-01-01

    Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions. PMID:26966390

  17. Physical aging and solvent effects on the fracture of LaRC-TPI adhesives

    Science.gov (United States)

    Dillard, David A.; St.clair, Terry L.; Johnson, W. Steven

    1992-01-01

    When amorphous materials are quenched below their glass transition temperature, excess enthalpy is trapped in the glassy material because the viscosity is too great to allow the material to remain in volumetric equilibrium. Over time, this excess free volume is reduced as the material slowly approaches its equilibrium configuration. This process, known as physical aging, leads to substantial changes in the constitutive behavior of polymers, as has been widely discussed in the literature. Less is known about the effects of this physical aging process on fracture and fatigue properties of aged materials. The original goal of the summer was to investigate the effects of physical aging on the fracture and fatigue behavior of LaRC-TPI, a thermoplastic polyimide developed at NASA-Langley. Preliminary results are reported, although a lack of equipment availability prevented completion of this task. In the process of making specimens, the current LaRC-TPI was observed to be extremely susceptible to environmental stress cracking. A study of the unique failure patterns resulting from this degradation process in bonded joints was conducted and is also reported herein.

  18. Correlation between mechanical and chemical degradation after outdoor and accelerated laboratory aging for multilayer photovoltaic backsheets

    Science.gov (United States)

    Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong

    2016-09-01

    Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.

  19. Three-Dimensional Problems in the Dynamic Fracture Mechanics of Materials with Interface Cracks (Review)

    Science.gov (United States)

    Guz, A. N.; Guz, I. A.; Men'shikov, A. V.; Men'shikov, V. A.

    2013-01-01

    Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks are considered as nonclassical problems of fracture mechanics. Physically correct results in fracture mechanics in the case where the interaction of the crack edges must be taken into account are analyzed. The linear (classical) and nonlinear (nonclassical) problems of dynamic fracture mechanics for materials with interface cracks are formulated using the above approaches. A method for solving three-dimensional linear dynamic problems based on boundary integral equations for piecewise-homogeneous materials and the boundary-element method is outlined. This method can be used for incremental solution of nonlinear problems. The method involves the regularization of hypersingular integrals. New classes of three-dimensional linear dynamic problems for circular and elliptic interface cracks are solved. Numerical values of stress intensity factors obtained with the linear problem formulation are the first step toward calculating them in the nonlinear formulation. The first results obtained in solving nonlinear dynamic problems for interface cracks with interacting faces are briefly analyzed

  20. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement

    NARCIS (Netherlands)

    Wolterbeek, T.K.T.; Hangx, S.J.T.; Spiers, C.J.

    2016-01-01

    Geomechanical damage, such as fracturing of wellbore cement, can severely impact well integrity in CO2 storage fields. Chemical reactions between the cement and CO2-bearing fluids may subsequently alter the cement’s mechanical properties, either enhancing or inhibiting damage accumulation during ong

  1. Experimental Investigation and Fracture Mechanical Modelling of Debonded Sandwich Panels Loaded with Lateral Pressure

    DEFF Research Database (Denmark)

    Jolma, Perttu; Segercrantz, Sebastian; Berggreen, Carl Christian

    2005-01-01

    For the determination of debonded sandwich panel residual strength with lateral loading a parametric finite element model is developed. The parametric model allows an arbitrary positioning of the debond within the panel and consists of both solid and shell elements. A fracture mechanical approach...

  2. Structural Reliability of Ceramics at High Temperature: Mechanisms of Fracture and Fatigue Crack Growth

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-01

    Final report of our DOE funded research program. Aim of the research program was to provide a fundamental basis from which the mechanical reliability of layered structures may be understood, and to provide guidelines for the development of technologically relevant layered material structures with optimum resistance to fracture and subcritical debonding. Progress in the program to achieve these goals is described.

  3. A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method

    Science.gov (United States)

    Laubie, Hadrien; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith's approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.

  4. MECHANISM ANALYSIS OF THICKNESS EFFECT ON MIXED MODE Ⅰ/Ⅱ FRACTURE OF LC4-CS ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.R. Dong; W.L. Guo

    2004-01-01

    Mixed mode Ⅰ/Ⅱ fracture experiments of LC4-CS aluminum alloy were conducted by using tension-shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracture mechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture were first examined from fracture surface morphology to correlate with the macroscopic fracture behavior and stress state. It is found that specimen thickness has a strong influence on mixed mode fracture. As thickness varies from thin to thick the macroscopic fracture surfaces appear the characteristics of plane stress state (2mm, 4mm-thick specimen), threedimensional stress state (8mm-thick specimens), and plane strain state (14mm-thick specimens), respectively. The specimens of all kinds of thicknesses are typical of tensile type failure under mode I loading condition and shear type failure under mode Ⅱloading condition. Two distinct features coexist on the fracture surfaces under mixed mode loading conditions, and the corresponding proportion varies with loading mixity. Void-growth processes are the failure mechanism in both predominately tensileand shear-type fractures. The size and depth of dimples on the fracture surface vary greatly with thickness. Therefore, it is extraordinary necessary to take into account the thickness effect when a mixed mode fracture criterion is being established.

  5. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  6. [Hip fracture as risk factor for mortality in patients over 65 years of age. Case-control study].

    Science.gov (United States)

    Negrete-Corona, J; Alvarado-Soriano, J C; Reyes-Santiago, L A

    2014-01-01

    Hip fracture among older patients is a devastating injury in most cases. It profoundly affects the physical, mental, functional and social balance that patients used to have and, beyond the orthopedic injury, it reflects the aging process and its dire consequences. Some reports show that up to 50% of patients with hip fracture die within six months and many of those who survive do not recover their baseline independence and function. In recent decades the increase in life expectancy after 60 years of age has led to an exponential growth in hip fractures. This is why it is essential to determine the patient-related and environmental factors leading to the increased mortality rates seen in patients with hip fracture, to improve the survival and quality of life of older adults. The objective was to determine the association between hip fracture and mortality in patients over 65 years of age. An observational, longitudinal, retrospective, descriptive, comparative case-control study was conducted. The clinical records of all patients over 65 years of age admitted to the Orthopedics Service, Hospital Regional , ISSSTE, with a diagnosis of hip fracture during the previous 12 months were analyzed, regardless of the type of fracture and treatment they received. A group of patients without hip fracture was used as control group. Total sample size was 50 patients with hip fracture and 50 patients without hip fracture. The following data were collected in data collection forms: age, sex, time elapsed since the fracture, survival at one year and, in the case of deceased patients, the cause of death (pneumonia, sepsis, arrhythmia, hydroelectrolytic imbalance, heart failure and others). The results obtained are shown as tables and charts to facilitate their visual understanding. Patient demographics show that there were 40 (80%) female patients and 10 (20%) male patients with a diagnosis of hip fracture. The control group included 35 (70%) females and 15 (30) males. An

  7. Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II

    Indian Academy of Sciences (India)

    B S AL-AZZAWI; B L KARIHALOO

    2017-05-01

    CARDIFRC is the trade name of two main groups of ultra-high performance fibre-reinforced concrete mixes – Mixes I and II – differing primarily in the maximum size of quartz sand used (0.6 mm in Mix I,and 2 mm in Mix II). In this paper, the conversion of CARDIFRC Mix II to a self-compacting and industrially competitive ultra-high performance fibre-reinforced concrete (UHPFRC) is described. A full mechanical and fracture characterisation (i.e. size-independent fracture energy and the corresponding bi-linear stress-crack opening relationship) of this UHPFRC is provided.

  8. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Univ. of Tennessee, Knoxville, TN (United States); Williams, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, B. Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klasky, Hilda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decision making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.

  9. Lithium Ion Storage Characteristics of Mechanically Fractured Titanate Nanotubes

    Directory of Open Access Journals (Sweden)

    Jeongeun Kim

    2012-01-01

    Full Text Available The effect of mechanical milling on the formation of short titanate nanotube and structural change induced is investigated. Mechanical milling produces the short nanotubes with the length of 30–160 nm. The lithium ion intercalation characteristics of the obtained short titanate nanotube were studied to verify the effect of the newly formed cross-sections of nanotubes. It was found that the protonated titanate nanotubes maintained long shapes until 30 min of mechanical milling and were transformed into agglomerated nanosheets and finally anatase granules depending on the treatment duration. Through galvanostatic investigation, the nanotubes with milling of 15 min exhibited the highest discharge capacity of 336 mAh·g−1 in first cycle, 12.4% larger than pristine.

  10. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    Science.gov (United States)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  11. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    OpenAIRE

    Deborah Pacheco Lameira; Silva, Wilkens Aurélio Buarque e; Silva, Frederico Andrade e; De Souza, Grace M.

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed mo...

  12. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  13. Focal mechanism caused by fracture or burst of a coal pillar

    Institute of Scientific and Technical Information of China (English)

    CAO An-ye; DOU Lin-ming; CHEN Guo-xiang; GONG Si-yuan; WANG Yu-gang; LI Zhi-hua

    2008-01-01

    As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.

  14. Critical Chemical-Mechanical Couplings that Define Permeability Modifications in Pressure-Sensitive Rock Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Derek Elsworth; Abraham Grader; Susan Brantley

    2007-04-25

    This work examined and quantified processes controlling changes in the transport characteristics of natural fractures, subjected to coupled thermal-mechanical-chemical (TMC) effects. Specifically, it examined the effects of mineral dissolution and precipitation mediated by mechanical effects, using laboratory through-flow experiments concurrently imaged by X-ray CT. These were conducted on natural and artificial fractures in cores using water as the permeant. Fluid and mineral mass balances are recorded and are correlated with in-sample saturation, porosity and fracture aperture maps, acquired in real-time by X-ray CT-imaging at a maximum spatial resolution of 15-50 microns per pixel. Post-test, the samples were resin-impregnated, thin-sectioned, and examined by microscopy to define the characteristics of dissolution and precipitation. The test-concurrent X-ray imaging, mass balances, and measurements of permeability, together with the post-test microscopy, were used to define dissolution/precipitation processes, and to constrain process-based models. These models define and quantify key processes of pressure solution, free-face dissolution, and shear-dilation, and the influence of temperature, stress level, and chemistry on the rate of dissolution, its distribution in space and time, and its influence on the mechanical and transport properties of the fracture.

  15. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel

    Science.gov (United States)

    Maier, G. G.; Astafurova, E. G.; Melnikov, E. V.; Moskvina, V. A.; Vojtsik, V. F.; Galchenko, N. K.; Zakharov, G. N.

    2016-07-01

    High-nitrogen austenitic steels are perspective materials for an electron-beam welding and for producing of wear-resistant coatings, which can be used for application in aggressive atmospheres. The tensile behavior and fracture mechanism of high-nitrogen austenitic steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt.%) after electrochemical hydrogen charging for 2, 10 and 40 hours have been investigated. Hydrogenation of steel provides a loss of yield strength, uniform elongation and tensile strength. The degradation of tensile properties becomes stronger with increase in charging duration - it occurs more intensive in specimens hydrogenated for 40 hours as compared to ones charged for 2-10 hours. Fracture analysis reveals a hydrogen-induced formation of brittle surface layers up to 6 μm thick after 40 hours of saturation. Hydrogenation changes fracture mode of steel from mixed intergranular-transgranular to mainly transgranular one.

  16. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center

    2009-12-19

    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  17. Fracture Resistance of Hybrid Glass Matrix Composite and Its Degradation Due to Thermal Ageing and Thermal Shock

    Science.gov (United States)

    Dlouhý, Ivo; Chlup, Zdenêk; Atiq, Shabbar; Boccaccini, Aldo R.

    In brittle matrix composites reinforced by continuous ceramic fibres, the favourable fracture behaviour is provided by the presence of weak fibre/matrix interfaces, which lead to the fibre pullout effect [1]. The thermal stability and high temperature mechanical properties of silicate matrix composites reinforced by carbon and SiC based fibres in oxidising environments have been investigated quite extensively in the past by conducting thermal aging and thermal cycling experiments over a wide range of temperatures [2-5]. A common result of investigations conducted at temperatures in the range 500-700°C is that there is a decrease of tensile and flexural strength of the composites. It has been shown that this is the consequence of oxidation of the fibres, in case of carbon fibre reinforced composites, or of degradation of the fibre/matrix interphase, which is in fact a carbon-rich nanometric interfacial layer, in SiC fibre reinforced composites [2-5].

  18. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    Science.gov (United States)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence

  19. Effect of Temperature-Force Factors and Concentrator Shape on Impact Fracture Mechanisms of 17Mn1Si Steel

    Directory of Open Access Journals (Sweden)

    S. V. Panin

    2017-01-01

    Full Text Available The influence of the notch shape on the impact fracture of 17Mn1Si steel is investigated at different temperatures with the focus placed on the low-temperature behavior. An approach towards fracture characterization has been suggested based on the description of elastic-plastic deformation of impact loaded specimens on the stage of crack initiation and growth at ambient and lower temperatures. The analysis of the impact loading diagrams and fracture energy values for the pipe steel 17Mn1Si revealed the fracture mechanisms depending on the notch shape. It was found that the testing temperature reduction played a decisive role in plastic strain localization followed by dynamic fracture of the specimens with differently shaped notches. A classification of fracture macro- and microscopic mechanisms for differently notched specimens tested at different temperatures was proposed which enabled a self-consistent interpretation of impact test results.

  20. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Simonelli, M., E-mail: M.Simonelli@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough LE11 3TU (United Kingdom); Tse, Y.Y. [Department of Materials, Loughborough University, Loughborough LE11 3TU (United Kingdom); Tuck, C. [Additive Manufacturing and 3D Printing Research Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-10-20

    Recent research on the additive manufacturing (AM) of Ti alloys has shown that the mechanical properties of the parts are affected by the characteristic microstructure that originates from the AM process. To understand the effect of the microstructure on the tensile properties, selective laser melted (SLM) Ti–6Al–4V samples built in three different orientations were tensile tested. The investigated samples were near fully dense, in two distinct conditions, as-built and stress relieved. It was found that the build orientation affects the tensile properties, and in particular the ductility of the samples. The mechanical anisotropy of the parts was discussed in relation to the crystallographic texture, phase composition and the predominant fracture mechanisms. Fractography and electron backscatter diffraction (EBSD) results indicate that the predominant fracture mechanism is intergranular fracture present along the grain boundaries and thus provide and explain the typical fracture surface features observed in fracture AM Ti–6Al–4V.

  1. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    Science.gov (United States)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  2. 3H/3He ages, CFC ages and He isotopes in the fractured bedrock of the Mirror Lake Basin, NH

    Science.gov (United States)

    Torgersen, T.; Stute, M.; Drenkard, S.; Schlosser, P.; Busenberg, E.; Plummer, N.; Shapiro, A.

    2001-05-01

    Tritium/3He and CFC (chlorofluorocarbon) analyses were conducted on groundwater samples from the fractured bedrock and the overlying drift of Mirror Lake watershed in central New Hampshire. These groundwaters have a significant terrigenic helium component that increases with depth. The 3He/4He ratio of the terrigenic helium indicates the presence of two groundwater types. Where terrigenic sources of 3He are no more than 10 times the 3He signal produced by 3H decay (tritiogenic 3He), 3H/3He ages can be calculated. However, drift age profiles cannot be interpreted as recharge rates because the 2D, 2-layer coupled bedrock/drift system violates the simple homogeneous 1D conditions necessary to interpret age profiles as recharge rates. Secondly, while some agreement is seen between 3H/3He ages and CFC ages, the reconstruction of the 1963 'bomb' 3H peak yields a maximum that is significantly less (1/10) than expected. This apparent loss of 3H is cannot be attributed to dispersion or dual hydraulic conductivity but is consistent with the models of dual porosity. The data also demonstrate that '3H/3Hetri calibrated 4He ages' are invalid and cannot be used to extend the 'age' information contained in He isotope analysis. The results of this study again demonstrate that tracers have an important role in the calibration and definition of flow models for complex groundwater systems. However, it is suggested that tracers should be routinely inserted into groundwater flow models to determine (I) which tracers are best suited to the problem and (ii) where to sample for tracers to best differentiate among model possibilities as well as which parameters constitute the best descriptions of the groundwater system. Such coupling of multiple tracers and flow models at the earliest stages will provide the highest probability for determining the best flow model.

  3. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  4. First-order Description of the Mechanical Fracture Behavior of Fine-Grained Surficial Marine Sediments During Gas Bubble Growth

    Science.gov (United States)

    2010-01-01

    10 F04O29 BARRY ET AL.: BUBBLE GROWTH BY FRACTURE P04029 Figure 3. Map of field site. Canard, Nova Scotia, Canada. appears to approximate the...Bottinger. and T. Dahm (2005), Buoyancy-driven fracture ascent: Experiments in layered gelatine. J. Volcano!. Geotherm . Res., 144. 273-285. doi...Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE First-order description of the mechanical fracture behavior of fine-grained

  5. Ipsilateral simultaneous fracture of the trochlea involving the lateral end clavicle and distal end radius: a rare combination and a unique mechanism of injury

    Directory of Open Access Journals (Sweden)

    Gupta RK

    2014-07-01

    Full Text Available 【Abstract】Isolated trochlea fracture in adults is a rare surgical entity as compared to its capitellar counterpart. It has been only mentioned sporadically in the literature as case reports. Fracture of the trochlea is accompanied by other elbow injuries like elbow dislocation, capitellum fracture, ulnar fracture and extraarticular condylar fracture. Here we report a unique case of isolated displaced trochlea fracture associated with fractures of the lateral end clavicle and the distal end radius. We propose a unique mechanism for this rare combination of injuries: typical triad of injury, i.e. fracture of the distal end radius with trochlea and fracture of the lateral end of the clavicle. Nonoperative treatment is recommended for undisplaced humeral trochlea fractures; but for displaced ones, anatomical reduction and internal fixation are essential to maintain the congruous trochleacoronoid articulation and hence to maintain the intrinsic stability of the elbow. Key words: Isolated trochlea fracture; Clavicle; Radius fractures

  6. Mechanical Models of Bed-Perpendicular Fractures in Layered Rocks Subjected to Extensional Strain

    Science.gov (United States)

    Sanz, P.; Pollard, D. D.; Borja, R. I.

    2010-12-01

    Natural fractures (joints) enhance permeability and therefore are important for the economical production of low-permeability hydrocarbon reservoirs and aquifers. In this work we investigate the formation of bed-perpendicular joints during extension in a stiff brittle layer surrounded by thick softer layers. The quasi-static finite element models consist of three elasto-plastic layers with frictional bedding interfaces and the middle layer contains layer-perpendicular fractures that can accommodate opening at the bedding surface accompanied by interface sliding. The upper and lower boundaries are subject to normal tractions appropriate for the depth of burial. Lateral boundaries are displaced horizontally to represent the extensional tectonic regime. We use an interface model that captures the most important mechanical features during sliding of bedding interfaces and opening of joints: unilateral contact, elastic and plastic relative deformation, tensile strength, cohesion, frictional sliding, and non-associative plastic flow. The constitutive law extends the Coulomb slip criterion to the tensile regime to capture opening of fractures in a quasi-brittle manner. The finite element implementation employs a penalty scheme to impose the contact constraints along the interfaces. The numerical simulations show the effects of mechanical properties of layers and interfaces in the development and spacing of bed-perpendicular joints. We evaluate the concepts of fracture saturation and sequential infilling, and the relationship between joint spacing and layer thickness in the context of the new modeling capabilities.

  7. Exploring particulate retention mechanisms through visualization of E. coli transport through a single, saturated fracture

    Science.gov (United States)

    Burke, M. G.; Dickson, S. E.; Schutten, M.

    2011-12-01

    Groundwater is an extremely valuable resource; a large body of work has been conducted towards remediating, tracking and reducing its contamination. Even so, there are large gaps within the current understanding of groundwater flow and contaminant transport, particularly within fractured media. Fractured media has the ability transport contaminants over longer distances in less time relative to porous media. Furthermore, colloids display unique transport characteristics in comparison to dissolved constituents, including the fact that they typically exhibit earlier initial arrival times. Of particular concern to human health are pathogenic microorganisms, which often originate from fecal contamination. Escherichia coli is a common indicator for fecal contamination; some strains are pathogenic, causing acute illness and sometimes death, in humans. A comprehensive understanding of the transport and retention of E. coli in fractured media will improve our ability to accurately assess whether a site is at risk of becoming contaminated by pathogenic microorganisms. Therefore, the goal of this work is to expand our mechanistic understanding particulate retention, specifically E. coli, in fractures, and the influence of flow rate on these mechanisms. In order to achieve this goal, clear epoxy casts were fabricated of two dolomitic limestone fractures retrieved from a quarry in Guelph, Ontario. Each aperture field was characterized through hydraulic and tracer tests, and measured directly using the light transmission technique. E. coli RS2-GFP, which is a non-pathogenic strain of E. coli that has been tagged with a green fluorescent protein, was injected into the cast under three separate specific discharges ranging from 5 - 30 m/d. These experiments were conducted on an ultraviolet light source, and a high resolution charged-couple device (CCD) camera was employed to take photos at regular intervals in order to capture the dominant flow paths and the areas of retention

  8. Fracture mechanics behaviour of ductile cast iron and martensitic steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Udoh, A.; Klenk, A.; Roos, E. [Stuttgart Univ. (Germany). MPA; Sasikala, G. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India)

    2010-07-01

    Ductile cast iron is employed increasingly due to the advantages regarding foundry practice, design as well as economic advantages in the thermal machinery and power plant construction. It is employed preferably where higher toughness is required, e.g. in valves or thickwalled components of thermal or nuclear power plants. For this reason the safety and availability criteria for fracture mechanics assessment of components are necessary in addition to the conventional strength design. Alloys with silicon and molybdenum are developed for the application at higher temperatures. The increase in the thermal efficiency of fossil fired steam power plant that can be achieved by increasing the steam temperature and pressure has provided the incentive for development of the 9% chromium steels towards improved creep rupture strength. During the last twenty years, three such steels, P91 (9Cr-1Mo-VNb), E911 (9Cr-1Mo-1W-V-Nb) and P92 (9Cr-0,5Mo-1,8W-V-Nb), have been developed for commercial production. For application in piping systems and boiler construction sufficient reliable information concerning the long-term behaviour are necessary as well as knowledge about fracture mechanical behaviour in order to ensure integrity of components. Different methods to characterize fracture behaviour of ductile cast iron and martensitic steel at elevated temperature have been employed. The RBR method is a novel and simple method developed at IGCAR for characterizing the ductile fracture behaviour of materials from tensile tests of cylindrical specimens. Using the data evaluated at both institutes, a fracture mechanics characterisation by determining crack initiation and crack resistance by J{sub R}-curves and RBR parameters is presented. (orig.)

  9. A damage-mechanics model for fracture nucleation and propagation

    CERN Document Server

    Yakovlev, G; Turcotte, D L; Rundle, J B; Klein, W; 10.1016/j.tafmec.2010.06.002.

    2010-01-01

    In this paper a composite model for earthquake rupture initiation and propagation is proposed. The model includes aspects of damage mechanics, fiber-bundle models, and slider-block models. An array of elements is introduced in analogy to the fibers of a fiber bundle. Time to failure for each element is specified from a Poisson distribution. The hazard rate is assumed to have a power-law dependence on stress. When an element fails it is removed, the stress on a failed element is redistributed uniformly to a specified number of neighboring elements in a given range of interaction. Damage is defined to be the fraction of elements that have failed. Time to failure and modes of rupture propagation are determined as a function of the hazard-rate exponent and the range of interaction.

  10. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  11. A mechanical model for predicting the probability of osteoporotic hip fractures based in DXA measurements and finite element simulation

    Directory of Open Access Journals (Sweden)

    López Enrique

    2012-11-01

    Full Text Available Abstract Background Osteoporotic hip fractures represent major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture, from BMD measurements. The combination of biomechanical models with clinical studies could better estimate bone strength and supporting the specialists in their decision. Methods A model to assess the probability of fracture, based on the Damage and Fracture Mechanics has been developed, evaluating the mechanical magnitudes involved in the fracture process from clinical BMD measurements. The model is intended for simulating the degenerative process in the skeleton, with the consequent lost of bone mass and hence the decrease of its mechanical resistance which enables the fracture due to different traumatisms. Clinical studies were chosen, both in non-treatment conditions and receiving drug therapy, and fitted to specific patients according their actual BMD measures. The predictive model is applied in a FE simulation of the proximal femur. The fracture zone would be determined according loading scenario (sideway fall, impact, accidental loads, etc., using the mechanical properties of bone obtained from the evolutionary model corresponding to the considered time. Results BMD evolution in untreated patients and in those under different treatments was analyzed. Evolutionary curves of fracture probability were obtained from the evolution of mechanical damage. The evolutionary curve of the untreated group of patients presented a marked increase of the fracture probability, while the curves of patients under drug treatment showed variable decreased risks, depending on the therapy type. Conclusion The FE model allowed to obtain detailed maps of damage and fracture probability, identifying high-risk local zones at femoral neck and intertrochanteric and subtrochanteric areas, which are the typical locations of

  12. Certain Discrete Element Methods in Problems of Fracture Mechanics

    Directory of Open Access Journals (Sweden)

    P. P. Procházka

    2002-01-01

    Full Text Available In this paper two discrete element methods (DEM are discussed. The free hexagon element method is considered a powerful discrete element method, which is broadly used in mechanics of granular media. It substitutes the methods for solving continuum problems. The great disadvantage of classical DEM, such as the particle flow code (material properties are characterized by spring stiffness, is that they have to be fed with material properties provided from laboratory tests (Young's modulus, Poisson's ratio, etc.. The problem consists in the fact that the material properties of continuum methods (FEM, BEM are not mutually consistent with DEM. This is why we utilize the principal idea of DEM, but cover the continuum by hexagonal elastic, or elastic-plastic, elements. In order to complete the study, another one DEM is discussed. The second method starts with the classical particle flow code (PFC - which uses dynamic equilibrium, but applies static equilibrium. The second method is called the static particle flow code (SPFC. The numerical experience and comparison numerical with experimental results from scaled models are discussed in forthcoming paper by both authors.

  13. Diaphyseal femoral fractures below the age of six years: Results of plaster application and long term followup

    Directory of Open Access Journals (Sweden)

    Nunzio Catena

    2014-01-01

    Full Text Available Background:In children less than 6 years, the treatment of femoral shaft fracture is often non surgical, using closed reduction and casting. The literature reports many experience about this type of trauma but none of these has a long term followup. We present a retrospective study on a group of femoral diaphyseal fractures treated nonsurgically in children up to 6 years of age, with a minimum of 10 year followup. Materials and Methods:48 cases (36 males/12 females with femoral diaphyseal fractures treated between January 1988 and December 1998 were reviewed. Patients with fractures due to obstetrical trauma and pathologic fractures were excluded. The mean age of the patients was 3.3 ± 1.1 years (range 5 months-6 years. Right side was involved in 21 cases (44%, and left side in 27 cases (56%. In 34 cases (71%, closed reduction was performed and hip spica was applied with the hip and knee flexed to 45΀. In 8 cases (17%, skeletal traction was applied to perform fracture reduction and the traction pin was embedded in plaster while in the remaining 6 cases (12%, the Delitala pressure apparatus was applied after casting. Results:All fractures healed in our study. There were no complications (infection or vascular nervous issues, axial deviations, consolidation delays, or pseudoarthrosis. In 13 cases (27%, followup examinations showed mean lengthening of 1.3 ± 0.75 (range 0.5-2.5 cm of the fractured lower limb. All these patients were treated with skin traction before treatment and presented with 2.08 ± 0.28 cm mean initial femoral shortening. In 1 case (2% with 2.5 cm lengthening, epiphysiodesis of the ipsilateral knee was performed. No patients showed prolonged difficulty with gait disorders. Conclusion:On the basis of our results conservative treatment of femoral shaft fractures in children can be considered less invasive and safe procedure.

  14. Prevalence of Fracture in Healthy Iranian Children Aged 9–18 Years and Associated Risk Factors; A Population Based Study

    Directory of Open Access Journals (Sweden)

    Marjan Jeddi

    2017-01-01

    Full Text Available Objective: To determine the prevalence of fractures and associated risk factors in healthy Iranian children and adolescents. Methods: In this cross sectional population based study, 478 healthy Iranian children and adolescents aged 9–18 years old participated. Baseline data and bone mineral content and density have been determined. One questionnaire was completed for all individuals including previous history of fracture, its location, and level of trauma. Albumin, calcium, phosphorus, alkaline phosphatase, and vitamin D levels were measured. Results: We found a prevalence of 12.9% for fracture. (34.5% for girls and 65.5% for boys; about 71% suffered long bone fracture with distal forearm as the most common site. Totally 58% of the boys and 54% of the girls had fracture with low-energy trauma. The fracture group had lower bone mineral apparent density in the lumbar spine (0.19±0.04 vs. 0.20±0.03, p=0.04, lower serum albumin (4.6±0.5 vs 4.8±0.4, p=0.02, and higher serum alkaline phosphatase level (446±174 vs. 361±188, p=0.02 compared with non-fracture subjects. By logistic regression analysis, we found a significant association for sex, and bone mineral content of the lumbar spine with fracture (p=0.003, p=0.039. Conclusion: Compared to other studies, our subjects had lower rate of fracture. We found an association between low bone density and fracture in children and adolescents. This finding has important implications for public health. Further research may contribute to recognition of preventive measures.

  15. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  16. Modelling of Debond and Crack Propagation in Sandwich Structures Using Fracture and Damage Mechanics

    DEFF Research Database (Denmark)

    Berggreen, C.; Simonsen, Bo Cerup; Toernqvist, Rikard

    2003-01-01

    Skin-core de-bonding or core crack propagation will often be dominating mechanisms in the collapse modes of sandwich structures. This paper presents two different methods for prediction of crack propagation in a sandwich structure: a fracture mechanics approach, where a new mode-mix method...... is presented, and a local damage mechanics approach. The paper presents a real-life application example, where the superstructure in a vessel pulls the skin off the sandwich deck. The calculations show almost unstable crack growth initially followed by a stabilization, and a nearly linear relation between...

  17. Association of polypharmacy with fall-related fractures in older Taiwanese people: age- and gender-specific analyses.

    Science.gov (United States)

    Pan, Hsueh-Hsing; Li, Chung-Yi; Chen, Tzeng-Ji; Su, Tung-Ping; Wang, Kwua-Yun

    2014-03-28

    To elucidate the associations between polypharmacy and age- and gender-specific risks of admission for fall-related fractures. Nested case-control study. This analysis was randomly selected from all elderly beneficiaries in 2007-2008, and represents some 30% of the whole older insurers using Taiwan's National Health Insurance Research Database. We identified 5933 cases newly admitted for fall-related fractures during 2007-2008, and 29 665 random controls free from fracture. Polypharmacy was defined as the use of fall-related drugs of four or more categories of medications and prescribed related to fall within a 1-year period. Logistic regression models were employed to estimate the ORs and related 95% CIs. The interaction of polypharmacy with age and sex was assessed separately. Compared with those who consumed no category of medication, older people who consumed 1, 2, 3 and ≥4 categories of medications were all at significantly increased odds of developing fall-related fractures, with a significant dose-gradient pattern (β=0.7953; p for trend polypharmacy and age, but no significant interactions between polypharmacy and gender. The dose-gradient relationship between number of medications category and risk of fall-related fractures was more obvious in women than in men (β=0.1962 vs β=0.1873). Additionally, it was most evident in older people aged 75-84 years (β=0.2338). This population-based study in Taiwan confirms the link between polypharmacy and increased risk of fall-related fractures in older people; and highlights that elderly women and older people aged 75-84 years will be the targeted participants for further prevention from fall-related fractures caused by polypharmacy.

  18. Effect laws and mechanisms of different temperatures on isothermal tensile fracture morphologies of high-strength boron steel

    Institute of Scientific and Technical Information of China (English)

    刘佳宁; 宋燕利; 路珏; 郭巍

    2015-01-01

    The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s−1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation (CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations;thus, to obtain full martensite, a higher cooling rate is needed;and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C.

  19. Fracture mechanics of materials under compression along cracks (survey). Structural materials

    Science.gov (United States)

    Guz', A. N.; Nazarenko, V. M.

    1989-10-01

    The results elucidated in this paper and in [A. N. Guz' and V. M. Nazarenko, "Fracture mechanics of materials under compression along cracks (Survey). Highly-elastic material," Prikl. Mekh., 25, No. 9, 3-32 (1989)] of investigations on compression of materials along defects of crack type are exact since they are obtained within the framework of rigorous three-dimensional linearized formulations. Let us note that the fact that the mentioned result are standards for approximate approaches is of independent value. The investigations performed whose survey is represented above should be considered the beginning of a study of problems of material fracture under compression along cracks in a rigorous formulation (within the framework of the linearized mechanics of deformable bodies).

  20. The Impact of Cracked Microparticles on the Mechanical and the Fracture Behavior of Particulate Composite

    Directory of Open Access Journals (Sweden)

    Waleed K. Ahmed

    2015-10-01

    Full Text Available In this investigation a metallic composite with a cracked micro has been investigated using finite element method. Particulate reinforced composite is one of the most favorite composite due to it quit isotopic properties. While being in metallic status, the micro particles may be subjected to deterioration which lead to crack embedded initiation within the micro particle. This crack lead to degradation in the mechanical as well as the fracture behavior in the composite. Mechanical characteristics through estimating the stiffness of the composite has been studied for intact and cracked particles as well as for the fractured particles. It has been found that as long as the crack propagates in the micro particle, there is reduction in the composite stiffness and increases in the stress intensity factor (SIF.

  1. A qualitative engineering analysis of occlusion effects on mandibular fracture repair mechanics.

    Science.gov (United States)

    Katona, Thomas R

    2011-01-01

    Objectives. The purpose of this analytical study was to examine and critique the engineering foundations of commonly accepted biomechanical principles of mandible fracture repair. Materials and Methods. Basic principles of static equilibrium were applied to intact and plated mandibles, but instead of the traditional lever forces, the mandibles were subjected to more realistic occlusal forces. Results. These loading conditions produced stress distributions within the intact mandible that were very different and more complex than the customary lever-based gradient. The analyses also demonstrated the entirely different mechanical environments within intact and plated mandibles. Conclusions. Because the loading and geometry of the lever-idealized mandible is incomplete, the associated widely accepted bone stress distribution (tension on top and compression on the bottom) should not be assumed. Furthermore, the stress gradients within the bone of an intact mandible should not be extrapolated to the mechanical environment within the plated regions of a fractured mandible.

  2. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    Fatigue in steel structures subjected to stochastic loading is studied. Of special interest is the problem of fatigue damage accumulation and in this connection, a comparison between experimental results and results obtained using fracture mechanics. Fatigue test results obtained for welded plate...... test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  3. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    Fatigue in steel structures subjected to stochastic loading is studied. Of special interest is the problem of fatigue damage accumulation and in this connection, a comparison between experimental results and results obtained using fracture mechanics. Fatigue test results obtained for welded plate...... test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  4. A fracture mechanics study of nodular iron; Estudio de una fundicion nodular mediante mecanica de la fractura

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carrasquilla, J. [Universidad Publica de Navarra. Pamplona (Spain); Rios, R. [Centro PolitecnicoSuperior. Zaragoza (Spain)

    1999-07-01

    In the present investigation, nodular graphite cast iron fracture toughness with different matrices and eutectic cell sizes is studied. Properties of tensile strength , hardness and impact toughness are also studied. The experimental data are compared to the same determined parameters in silicon steel with a chemical composition similar to that of the case iron matrix. A subsequent study of the crack surfaces enables us to establish fracture mechanisms. The joint analysis of the mechanical results and of the fractographic studies allows us to establish the influence of graphite on the different mechanical properties of cast iron and on fracture micromechanisms as well. (Author) 7 refs.

  5. Fracture mechanics of pseudoelastic NiTi alloys: review of the research activities carried out at University of Calabria

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2013-01-01

    Full Text Available This paper reports a brief review of the research activities on fracture mechanics of nickel-titanium based shape memory alloys carried out at University of Calabria. In fact, this class of metallic alloys show a unusual fracture response due to the reversible stress-induced and thermally phase transition mechanisms occurring in the crack tip region as a consequence of the highly localized stresses. The paper illustrates the main results concerning numerical, analytical and experimental research activities carried out by using commercial NiTi based pseudoelastic alloys. Furthermore, the effect of several thermo-mechanical loading conditions on the fracture properties of NiTi alloys are illustrated.

  6. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  7. Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests

    Science.gov (United States)

    2016-02-02

    connecting the CFRP ribs and metal claddings of wings. Therefore, there is still an urgent need to get better understanding of the mechanical behaviour of...structural integrity can be assured. This project aims to characterise the microstructures, the damage and fracture behaviour of CFRP using the state...load-displacement curves in excellent agreement with those from a full micro-scale simulation, but consuming considerably less computation time of the

  8. Hip fracture presenting as mechanical low back pain subsequent to a fall: a case study

    OpenAIRE

    Gleberzon, Brian; Hyde, David

    2006-01-01

    This case chronicles the assessment and clinical management of a 54 year old female patient who presented with post traumatic lower back, hip and lower extremity pain, initially attributed to mechanical low back pain but ultimately diagnosed as a hip fracture. This case study illustrates a number of important issues germane to chiropractic care. These are; the importance of using different assessment procedures, combined with clinical experience, in order to differentiate between those patien...

  9. Applications of FEM and BEM in two-dimensional fracture mechanics problems

    Science.gov (United States)

    Min, J. B.; Steeve, B. E.; Swanson, G. R.

    1992-08-01

    A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.

  10. The Fracture Mechanical Markov Chain Fatigue Model Compared with Empirical Data

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    The applicability of the FMF-model (Fracture Mechanical Markov Chain Fatigue Model) introduced in Gansted, L., R. Brincker and L. Pilegaard Hansen (1991) is tested by simulations and compared with empirical data. Two sets of data have been used, the Virkler data (aluminium alloy) and data...... that the FMF-model gives adequate description of the empirical data using model parameters characteristic of the material....

  11. SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR FICTITIOUS CRACK MODEL IN FRACTURE MECHANICS OF CONCRETE

    Institute of Scientific and Technical Information of China (English)

    王承强; 郑长良

    2004-01-01

    Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.

  12. Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan; Chakravartty, Jayanta Kumar [Bhabha Atomic Research Centre (Department of Atomic Energy), Trombay, Mumbai, Maharashtra (India). Mechanical Metallurgy Div.

    2016-02-15

    Two dimensional fracture features (i. e., dimple diameter, extent of tearing ridges etc.) quantified from the tensile fractographs are investigated to predict the nature of variation in mechanical properties with strain rates in zirconium alloys tested under ambient temperature where the initial inclusion or other second phase particle contents were kept unaltered. It has been possible to reasonably estimate the strength and ductility properties of an alloy from a systematic analysis of fractographic features.

  13. Mechanism of fracture in macro- and micro-scales in hollow centre cracked disc specimen

    Institute of Scientific and Technical Information of China (English)

    M. Eftekhari; A. Baghbanan; H. Hashemolhosseini; H. Amrollahi

    2015-01-01

    The hollow centre cracked disc (HCCD) specimen is one of the suggested alternative methods for determining the fracture toughness of rock. This work aims to investigate the fracture mechanism in HCCD in macro- and micro-scales using numerical methods, extended finite element method (X-FEM) and particle flow code (PFC) modeling, respectively. In the X-FEM, heaviside and near-tip enrichment functions are employed to consider the presence of the crack in the model. In PFC modeling the movement and interaction of stressed assemblies of rigid spherical particles are modeled using the distinct element method (DEM). A numerical code called MEX-FEM based on XFEM has been developed to simulate the problems involving crack. The models of pure modes I and II in macro-scale are simulated in micro-scale. The results show that dimensionless stress intensity factors (YI,YI) for pure modes I and II increase by increasing the crack length ratio. The angle at which the pure mode II occurs decreases by increasing the crack length ratio. In mixed mode I-II, The value ofYI decreases by increasing the crack angle, while the value ofYI increases to a given crack angle and then it decreases. Moreover, the fracture in micro-scale, unlike the macro-scale, includes a combination of different modes of fracturing.

  14. Evaluation of dynamic fracture mechanics in the AISI 316 stainless steel using instrumented Charpy impact testing

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Juliano Daniel de [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)]. E-mail: juliano.daniel@embraer.com.br; Rodrigues, Bruno Jardim Franca [Novo Nordisk, Montes Claros, MG (Brazil)]. E-mail: brro@novonordisk.com; Vilela, Jefferson Jose; Martins, Geraldo de Paula [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: gpm@cdtn.br; Carneiro, Jose Rubens Goncalves [Pontificia Universidade Catolica de Minas Gerais (PUC Minas), Belo Horizonte, MG (Brazil)]. E-mail: joserub@pucminas.br

    2007-07-01

    The nuclear power plant's surveillance program is based in Charpy test. But, this test could be used to evaluate integrity's secondary circuit. The steel similar to AISI 316 stainless steel could be used in this circuit. Some secondary circuit's components could be failed in dynamic condition. The dynamic fracture mechanics behavior of the AISI 316 was studied by using instrumented Charpy impact testing. The dynamic fracture toughness (J{sub ld}) could be evaluated by four different methods: compliance changing rate, stretching zone, energy revised and maximum load energy. The tests were made in temperature -196 deg C, room and 200 deg C. At each temperature two specimens were tested. The impact energy was 300 J and the impact velocity was 5.12 m/s. The Charpy specimens 10 x 10 x 50 mm were pre-cracked until 5 mm according to ASTM E-23. Stretching zone size was measured and analyzed by observing the fracture surfaces that were obtained in a scanning electron microscope. The dynamic fracture toughness calculated among four different methods showed a large difference. All studied methods did not agree ASTM E1820 (2001) standard that indicated to plane strain did not occurred in the tip crack. (author)

  15. Mechanism of fracture in macro- and micro-scales in hollow centre cracked disc specimen

    Institute of Scientific and Technical Information of China (English)

    M.Eftekhari; A.Baghbanan; H.Hashemolhosseini; H.Amrollahi

    2015-01-01

    The hollow centre cracked disc(HCCD) specimen is one of the suggested alternative methods for determining the fracture toughness of rock. This work aims to investigate the fracture mechanism in HCCD in macro- and micro-scales using numerical methods, extended finite element method(X-FEM) and particle flow code(PFC) modeling, respectively. In the X-FEM, heaviside and near-tip enrichment functions are employed to consider the presence of the crack in the model. In PFC modeling the movement and interaction of stressed assemblies of rigid spherical particles are modeled using the distinct element method(DEM). A numerical code called MEX-FEM based on XFEM has been developed to simulate the problems involving crack. The models of pure modes I and Ⅱ in macro-scale are simulated in micro-scale. The results show that dimensionless stress intensity factors(YI, YⅡ) for pure modes I and Ⅱ increase by increasing the crack length ratio. The angle at which the pure mode Ⅱ occurs decreases by increasing the crack length ratio. In mixed mode I-Ⅱ, The value of YI decreases by increasing the crack angle, while the value of YⅡ increases to a given crack angle and then it decreases. Moreover, the fracture in micro-scale, unlike the macro-scale, includes a combination of different modes of fracturing.

  16. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  17. Systemic Inflammatory Responses and Lung Injury following Hip Fracture Surgery Increases Susceptibility to Infection in Aged Rats

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2013-01-01

    Full Text Available Pulmonary infections frequently occur following hip fracture surgery in aged patients. However, the underlying reasons are not fully understood. The present study investigates the systemic inflammatory response and pulmonary conditions following hip fracture surgery as a means of identifying risk factors for lung infections using an aged rodent model. Aged, male Sprague-Dawley rats (8 animals per group underwent a sham procedure or hip fracture plus femoral intramedullary pinning. Animals were sacrificed 1, 3, and 7 days after the injury. Markers of systemic inflammation and pulmonary injury were analyzed. Both sham-operated and injured/surgical group animals underwent intratracheal inoculation with Pseudomonas aeruginosa 1, 3, and 7 days after surgery. P. aeruginosa counts in blood and bronchoalveolar lavage (BAL fluid and survival rates were recorded. Serum TNF-α, IL-6, IL-1β, and IL-10 levels and markers of pulmonary injury were significantly increased at 1 and 3 days following hip fracture and surgery. Animals challenged with P. aeruginosa at 1 and 3 days after injury had a significantly decreased survival rate and more P. aeruginosa recovered from blood and BAL fluid. This study shows that hip fracture and surgery in aged rats induced a systemic inflammatory response and lung injury associated with increased susceptibility to infection during the acute phase after injury and surgery.

  18. [Mechanisms of aging and its theories].

    Science.gov (United States)

    Tong, Tan-Jun; Zhang, Zong-Yu

    2007-01-01

    The velocity of aging is rather different in various species, and even in various tissues and cells of the same individual. Both genetic and environmental factors affect aging process. It is evident that life expectancy mainly relates to environment, while maximum life-span of a species more depends on its genetic background. Poor environment possibly affects genes or their products and then influences the process of human senescence. As aspect of genetic causes, aging is not totally depends on one gene, but rather on the interaction of networks of activated or repressed genes and their products. DNA (especially, mitochondrial DNA) is not as stable as previously conceived. The stability of genetic substance, including genes, could be affected by stresses from external or internal environment, which are particularly induced by harmful substances, such as reactive oxygen species, leading to accelerate aging process.

  19. Emerging programmed aging mechanisms and their medical implications.

    Science.gov (United States)

    Goldsmith, Theodore C

    2016-01-01

    For many generations programmed aging in humans was considered theoretically impossible and medical attempts to treat or delay age-related diseases were based on non-programmed aging theories. However, there is now an extensive theoretical basis for programmed mammal aging and substantially funded medical research efforts based on programmed aging theories are underway. This article describes the very different disease mechanism concepts that logically result from the theories and the impacts emerging programmed aging mechanisms will have on funding and performing medical research on age-related conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Relation of thromboelastography parameters to conventional coagulation tests used to evaluate the hypercoagulable state of aged fracture patients.

    Science.gov (United States)

    Liu, Chen; Guan, Zhao; Xu, Qinzhu; Zhao, Lei; Song, Ying; Wang, Hui

    2016-06-01

    Fractures are common among aged people, and rapid assessment of the coagulation status is important. The thromboelastography (TEG) test can give a series of coagulation parameters and has been widely used in clinics. In this research, we looked at fracture patients over 60 and compared their TEG results with those of healthy controls. Since there is a paucity of studies comparing TEG assessments with conventional coagulation tests, we aim to clarify the relationship between TEG values and the values given by conventional coagulation tests.Forty fracture patients (27 femur and 13 humerus) over 60 years old were included in the study. The change in their coagulation status was evaluated by TEG before surgery within 4 hours after the fracture. Changes in TEG parameters were analyzed compared with controls. Conventional coagulation test results for the patients, including activated partial thromboplastin time (APTT), international normalized ratio (INR), fibrinogen, and platelets, were also acquired, and correlation analysis was done with TEG parameters, measuring similar aspects of the coagulation cascade. In addition, the sensitivity and specificity of TEG parameters for detecting raised fibrinogen levels were also analyzed.The K (time to 20 mm clot amplitude) and R (reaction time) values of aged fracture patients were lower than controls. The values for angle, maximal amplitude (MA), and coagulation index (CI) were raised compared with controls, indicating a hypercoagulable state. Correlation analysis showed that there were significant positive correlations between fibrinogen and MA/angle, between platelets and MA, and between APTT and R as well. There was significant negative correlation between fibrinogen and K. In addition, K values have better sensitivity and specificity for detecting elevated fibrinogen concentration than angle and MA values.Aged fracture patients tend to be in a hypercoagulable state, and this could be effectively reflected by a TEG test

  1. Lysosomal cell death mechanisms in aging.

    Science.gov (United States)

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Damage and fracture mechanism of 6063 aluminum alloy under three kinds of stress states

    Institute of Scientific and Technical Information of China (English)

    ZHU Hao; ZHU Liang; CHEN Jianhong

    2008-01-01

    To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value (equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.

  3. Molecular Mechanisms of Learning, Memory and Aging

    NARCIS (Netherlands)

    C.H. Zuiderveen Borgesius (Nils)

    2011-01-01

    textabstractAging, or rather, how to avoid it, has intrigued mankind from the earliest times. It has been a quest comparable to the alchemists’ search for a way to turn lead into gold. Just as the alchemists spawned chemistry the quest for the fountain of youth has led to a large body of research in

  4. Dependence of the mechanical fracture energy of the polymeric composite material from the mixture of filler fractions

    National Research Council Canada - National Science Library

    E M Nurullaev; A S Ermilov

    2015-01-01

    ...) with regard to the basic formulation parameters. By means of the developed computer program the authors calculated the mechanical fracture energy of the polymer binder of the 3D cross-linked plasticized elastomer filled with multifractional silica...

  5. Computational implementation of the multi-mechanism deformation coupled fracture model for salt

    Energy Technology Data Exchange (ETDEWEB)

    Koteras, J.R.; Munson, D.E.

    1996-05-01

    The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation.

  6. Age Related Macular Degeneration and Total Hip Replacement Due to Osteoarthritis or Fracture: Melbourne Collaborative Cohort Study.

    Directory of Open Access Journals (Sweden)

    Elaine W Chong

    Full Text Available Osteoarthritis is the leading cause of total hip replacement, accounting for more than 80% of all total hip replacements. Emerging evidence suggests that osteoarthritis has a chronic inflammatory component to its pathogenesis similar to age-related macular degeneration. We evaluated the association between age-related macular degeneration and total hip replacement as proxy for severe osteoarthritis or fractured neck of femur in the Melbourne Collaborative Cohort Study. 20,744 participants had complete data on both age-related macular degeneration assessed from colour fundus photographs taken during 2003-2007 and total hip replacement. Total hip replacements due to hip osteoarthritis and fractured neck of femur during 2001-2011 were identified by linking the cohort records to the Australian Orthopedic Association National Joint Replacement Registry. Logistic regression was used to examine the association between age-related macular degeneration and risk of total hip replacement due to osteoarthritis and fracture separately, adjusted for confounders. There were 791 cases of total hip replacement for osteoarthritis and 102 cases of total hip replacement due to fractured neck of femur. After adjustment for age, sex, body mass index, smoking, and grouped country of birth, intermediate age-related macular degeneration was directly associated with total hip replacement for osteoarthritis (odds ratio 1.22, 95% CI 1.00-1.49. Late age-related macular degeneration was directly associated with total hip replacement due to fractured neck of femur (odds ratio 5.21, 95% CI2.25-12.02. The association between intermediate age-related macular degeneration and an increased 10-year incidence of total hip replacement due to osteoarthritis suggests the possibility of similar inflammatory processes underlying both chronic diseases. The association of late age-related macular degeneration with an increased 10-year incidence of total hip replacement due to fractured

  7. Age Related Macular Degeneration and Total Hip Replacement Due to Osteoarthritis or Fracture: Melbourne Collaborative Cohort Study.

    Science.gov (United States)

    Chong, Elaine W; Wang, Yuanyuan; Robman, Liubov D; Aung, Khin Zaw; Makeyeva, Galina A; Giles, Graham G; Graves, Stephen; Cicuttini, Flavia M; Guymer, Robyn H

    2015-01-01

    Osteoarthritis is the leading cause of total hip replacement, accounting for more than 80% of all total hip replacements. Emerging evidence suggests that osteoarthritis has a chronic inflammatory component to its pathogenesis similar to age-related macular degeneration. We evaluated the association between age-related macular degeneration and total hip replacement as proxy for severe osteoarthritis or fractured neck of femur in the Melbourne Collaborative Cohort Study. 20,744 participants had complete data on both age-related macular degeneration assessed from colour fundus photographs taken during 2003-2007 and total hip replacement. Total hip replacements due to hip osteoarthritis and fractured neck of femur during 2001-2011 were identified by linking the cohort records to the Australian Orthopedic Association National Joint Replacement Registry. Logistic regression was used to examine the association between age-related macular degeneration and risk of total hip replacement due to osteoarthritis and fracture separately, adjusted for confounders. There were 791 cases of total hip replacement for osteoarthritis and 102 cases of total hip replacement due to fractured neck of femur. After adjustment for age, sex, body mass index, smoking, and grouped country of birth, intermediate age-related macular degeneration was directly associated with total hip replacement for osteoarthritis (odds ratio 1.22, 95% CI 1.00-1.49). Late age-related macular degeneration was directly associated with total hip replacement due to fractured neck of femur (odds ratio 5.21, 95% CI2.25-12.02). The association between intermediate age-related macular degeneration and an increased 10-year incidence of total hip replacement due to osteoarthritis suggests the possibility of similar inflammatory processes underlying both chronic diseases. The association of late age-related macular degeneration with an increased 10-year incidence of total hip replacement due to fractured neck of femur may be

  8. Fracture mechanical investigation of a thermo shock scenario for a VVER-440 RPV

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, E.; Abendroth, Martin [Forschungszentrum Dresden-Rossendorf (Germany)

    2008-07-01

    The paper describes the modelling and evaluation of a pressurized thermal shock (PTS) scenario in a VVER-440 reactor pressure vessel due to an emergency cooling. An axially oriented semi-elliptical crack is assumed to be located in the core welding seam. Two variants of fracture mechanical evaluation are performed: the analysis of a sub-cladding crack and of a surface crack. Three-dimensional finite element (FE) models are used to compute the global transient temperature and stress-strain fields. By using a three-dimensional submodel, which includes the crack, the local crack stress-strain field is obtained. Within the subsequent postprocessing using the J-integral technique the stress intensity factors K{sub I} along the crack front are obtained. The FE results are compared to analytical calculations proposed in the VERLIFE code. The stress intensity factors are compared to the fracture toughness curve of the weld material. (orig.)

  9. STUDY OF DEFECT ADMISSIBILITY IN GAS PIPELINES BASED ON FRACTURE MECHANICS

    Directory of Open Access Journals (Sweden)

    N. ABDELBAKI

    2009-03-01

    Full Text Available Bearing in mind the considerable distances between natural gas fields and consumers’ appliances, transport by gas pipelines remains the most competitive means. These gas pipelines which are generally made of steel pipes may contain however several types of defects of various origins and which are susceptible to initiate cracks which may grow under some circumstances to such extent as to lead to fracture. Failures of gas pipelines may have serious consequences and may lead to catastrophes from ecological and financial viewpoints. It is therefore interesting to study the defect admissibility so as to maximize safety and minimize exploitation costs through a simplified method based on the Failure Assessment Diagram (FAD. The latter is used in conjunction with Finite Element Analysis (FEM applied to fracture mechanics to help decision making as to whether a given defect present in a pipe is acceptable or not.

  10. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    Science.gov (United States)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  11. Probabilistic Fatigue Life Prediction of Bridge Cables Based on Multiscaling and Mesoscopic Fracture Mechanics

    Directory of Open Access Journals (Sweden)

    Zhongxiang Liu

    2016-04-01

    Full Text Available Fatigue fracture of bridge stay-cables is usually a multiscale process as the crack grows from micro-scale to macro-scale. Such a process, however, is highly uncertain. In order to make a rational prediction of the residual life of bridge cables, a probabilistic fatigue approach is proposed, based on a comprehensive vehicle load model, finite element analysis and multiscaling and mesoscopic fracture mechanics. Uncertainties in both material properties and external loads are considered. The proposed method is demonstrated through the fatigue life prediction of cables of the Runyang Cable-Stayed Bridge in China, and it is found that cables along the bridge spans may have significantly different fatigue lives, and due to the variability, some of them may have shorter lives than those as expected from the design.

  12. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  13. Dyke propagation and tensile fracturing at high temperature and pressure, insights from experimental rock mechanics.

    Science.gov (United States)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2014-05-01

    It is well known that magma ascends trough the crust by the process of dyking. To enable dyke emplacement, basement rocks typically fail in a mode 1 fracture, which acts as conduits for magma transport. An overpressure of the ascending magma will further open/widen the fracture and permit the fracture to propagate. In order to further understand the emplacement and arrest of dykes in the subsurface, analogue and numerical studies have been conducted. However, a number of assumptions regarding rock mechanical behaviour frequently has to be made as such data are very hard to directly measure at the pressure/temperature conditions of interest: high temperatures at relatively shallow depths. Such data are key to simulating the magma intrusion dynamics through the lithologies that underlie the volcanic edifice. Here we present a new laboratory setup, which allows us to investigate the tensile fracturing properties under both temperature and confining pressure, and the emplacement of molten material within the newly formed fracture. We have modified a traditional tri-axial test assembly setup to be able to use a Paterson type High Pressure, High Temperature deformation apparatus. Sample setup consists of cylindrical rock samples with a 22 mm diameter and a 8 mm bore at their centre, filled with a material chosen as such that it's in a liquid state at the experimental temperature and solid at room temperature to enable post-experiment analysis. The top and lower parts of the rock sample are fitted with plugs, sealing in the melt. The assembly is then placed between ceramic pistons to ensure there are no thermal gradients across the sample. The assembly is jacketed to ensure the confining medium (Ar) cannot enter the assembly. A piston is driven into the sample such that the inner conduit materials pressure is slowly increased. At some point a sufficient pressure difference between the inner and outer surfaces causes the sample to deform and fail in the tensile regime

  14. Investigation of thermal aging damage mechanism of the Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhaoxi, E-mail: wangzx03@mails.tsinghua.edu.c [Applied Mechanics Laboratory, Tsinghua University, Beijing 100084 (China); Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue Fei; Guo Wenhai [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Shi Huiji [Applied Mechanics Laboratory, Tsinghua University, Beijing 100084 (China); Zhang Guodong [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Shu Guogang [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China)

    2010-10-15

    Besides the macro-mechanical properties for thermal aging effect published in 'Thermal aging effect on Z3CN20.09M Cast Duplex Stainless Steel' (Nuclear Engineering and Design 239(2009) 2217-2223), the thermal aging damage mechanism is investigated in this paper through nano-indentation tests and micro-structures evolution examination. Numerical simulations were carried out with GTN continuum damage model to investigate the different crack propagation process for aging. The nano-indentation hardness values increase with aging time for both phases while the hardness values of the ferrite phase are much higher and increase much more. The nano-indentation energy indicating the toughness decreases for both phases with aging time. TEM results show that the Cr-enriched {alpha}' phase precipitates in the ferrite phase which is considered as the critical reason making the dislocation slip difficult and causing the increase of the strength and reduction of the toughness. The crack initiates from the ferrite phase instead of the austenite phase from the SEM observation and FEA simulation results, which reflects the change of the fracture mechanism for thermal aging.

  15. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large...... and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Methods: Retrospective reviews of clinical and radiological records. Results: A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...

  16. THE STRESS IMPACT ON MECHANICAL PROPERTIES OF ROCKS IN HYDRO FRACTURING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B. GURUPRASAD

    2012-02-01

    Full Text Available Ground water is considered to be the best safe protected drinking water source and bore wells are drilled in hard crystalline rock terrains for drinking water, irrigation and industrial purposes. Even after scientific location, some bore wells yield inadequate quantity of water or fail to yield. The success of bore wells depend largely onnumber, length, dilation and interconnectivity of fractures encountered on drilling. Considering the cost factor involved in drilling a new bore well, rejuvenation of failed bore well through some technique is thought off. The innovative technology of ‘hydro fracturing’ is a new interdisciplinary approach of Hydro mechanical tostimulate the bore well to improve the yield by applying water pressure into bore well by using a heavy duty mechanical compressor. The hydro fracturing technique was first used in oil well to increase oil and gas production. In this research paper, the hydraulic pressure applied increases with depth reflecting the rigidness,toughness of rock. The fracture development, propagation of fracture and stress behavior depends on the physical and mechanical properties of rocks. The hydro fracturing process has been conducted in three depth zones ranging from 8 m to 45 m below ground level in Annavasal union of Pudukottai district, Tamil Nadu, India. The Pressure application varies depending on the geological formations. This study pertains to a part of research work. The minimum and maximum pressures applied are 1 and 10 N/mm2 respectively. The maximumpressure of 10 N/mm2 has been recorded in the third zone, where the country rock is charnockite which is generally massive, compact and dense rock. Generally for the igneous rock in the third zone in the depth range of 40 to 50 m, more than 7 N/mm2 of pressure has been applied indicating extremely strong nature with uniaxial compressive strength 100 – 300 N/mm2, tensile strength 7- 25 N/mm2. Out of 37 bore wells 32.4% of bore wells have shown

  17. Posterior periosteal disruption in Salter-Harris Type II fractures of the distal femur: evidence for a hyperextension mechanism.

    Science.gov (United States)

    Kritsaneepaiboon, Supika; Shah, Rajvee; Murray, Martha M; Kleinman, Paul K

    2009-12-01

    Patterns of periosteal disruption are important factors in assessing the mechanism of injury of radiologically evident Salter-Harris (SH) fractures. The purpose of this study is to assess the frequency of posterior periosteal disruption on MRI in radiographically occult or subtle SH type II fractures of the distal femur and to evaluate associated soft-tissue findings that support a hyperextension mechanism of injury. We found that all children in our experience with occult or subtle SH type II fractures of the distal femur have posterior periosteal disruption and other MRI findings to indicate a hyperextension mechanism of injury. Direct indicators of fracture may be inconspicuous, and the presence of posterior periosteal disruption is a clue that should prompt a search for other features of this serious pediatric injury, which may be followed by limb shortening or angular deformity.

  18. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok Woo; /Stanford U., Geballe Lab.; Lee, Hyun-Wook; /Stanford U., Materials Sci. Dept.; Ryu, Ill; /Brown U.; Nix, William D.; /Stanford U., Materials Sci. Dept.; Gao, Huajian; /Brown U.; Cui, Yi; /Stanford U., Materials Sci. Dept. /SLAC

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.

  19. Characterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures.

    Science.gov (United States)

    Henslee, Allan M; Yoon, Diana M; Lu, Benjamin Y; Yu, Joseph; Arango, Andrew A; Marruffo, Liann P; Seng, Luke; Anver, Tamir D; Ather, Hunaiza; Nair, Manitha B; Piper, Sean O; Demian, Nagi; Wong, Mark E K; Kasper, F Kurtis; Mikos, Antonios G

    2015-04-01

    This study investigated the use of injectable poly(propylene fumarate) (PPF) formulations for mandibular fracture stabilization applications. A full factorial design with main effects analysis was employed to evaluate the effects of the PPF:N-vinyl pyrrolidone (NVP, crosslinking agent) ratio and dimethyl toluidine (DMT, accelerator) concentration on key physicochemical properties including setting time, maximum temperature, mechanical properties, sol fraction, and swelling ratio. Additionally, the effects of formulation crosslinking time on the mechanical and swelling properties were investigated. The results showed that increasing the PPF:NVP ratio from 3:1 to 4:1 or decreasing the DMT concentration from 0.05 to 0.01 v/w % significantly decreased all mechanical properties as well as significantly increased the sol fraction and swelling ratio. Also, increasing the crosslinking time at 37°C from 1 to 7 days significantly increased all mechanical properties and decreased both the sol fraction and swelling ratio. This study further showed that the flexural stiffness of ex vivo stabilized rabbit mandibles increased from 1.7 ± 0.3 N/mm with a traditional mini-plate fixator to 14.5 ± 4.1 N/mm for the 4:1 (0.05 v/w % DMT) PPF formulation at day 1. Overall, the formulations tested in this study were found to have properties suitable for potential further consideration in mandibular fracture fixation applications. © 2014 Wiley Periodicals, Inc.

  20. A rare case of bicondylar Hoffa fracture associated with ipsilateral tibial spine avulsion and extensor mechanism disruption

    Institute of Scientific and Technical Information of China (English)

    Kamal Bali; Aditya Krishna Mootha; Vibhu Krishnan; Vishal Kumar; Saurabh Rawall

    2011-01-01

    Intra-articular coronal fractures (Hoffas fractures) of distal femur are rare. Although bicondylar involvement in these fractures has been reported in the literature in association with high velocity traumata, the occurrence of these fractures involving extensor mechanism rupture and avulsion of ipsilateral tibial spine is extremely rare. To our acquaintance, such a fracture pattern has not yet been reported in the literature so far. In this article, we report one such case and discuss the importance of early diagnosis and prompt internal fixation in the management of such cases. We believe that these rare combinations of injuries should be treated aggressively by early open reduction and anatomic rigid internal fixation in order toachieve good recovery of function.

  1. Fracture mechanisms in dual phase steels based on the acicular ferrite + martensite/austenite microstructure

    Science.gov (United States)

    Poruks, Peter

    The fracture mechanisms of low carbon microalloyed plate steels based on the acicular ferrite + marten site/austenite microstructure (AF + M/A) are investigated. The final microstructure consists of a dispersed phase of submicron equi-axed martensite particles with a bainitic ferrite matrix. A series of plates with M/A volume fractions of 0.076--0.179 are studied. Brittle fracture is investigated by Instrumented Charpy impact testing of samples at -196°C and subsequent metallography. The M/A particles are identified as the crack nucleation sites and the cleavage fracture stress calculated to be 2400 MPa in a complete AF microstrucuture. This value is significantly larger than in steels that contain significant proportions of conventional bainite. Standard Charpy and Instrumented Charpy impact testing is conducted through a temperature range from -80 to + 22°C to study ductile fracture behaviour. The total absorbed energy is separated into energies of crack nucleation and of crack propagation. It is found that the energy of crack nucleation is weakly dependent on the volume fraction of M/A and completely independent of temperature over the range studied. The crack propagation energy varies significantly with both variables, decreasing with increased volume fraction of M/A and with decreasing temperature. The peak load in the instrumented Charpy data is used to calculate the dynamic fracture toughness, KId, which is found to be 105--120 MPa-m1/2. The void nucleation and void growth stages of ductile fracture are studied by metallographic examination of tensile bars. The sites of void nucleation are identified as inclusions and M/A particles. Voids nucleate at the M/A particles by decohesion of the particle-matrix interface. A constant void nucleation strain of epsilon = 0.90 +/- 0.05 is measured for all of the samples independent of the volume fraction of M/A. A stress-based criterion is used to predict void nucleation and the interface strength is determined to be

  2. Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.B. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Conway, J.C. Jr. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Amateau, M.F. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Brezler, R.A. III [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.

    1996-12-15

    Tungsten carbide tools may exhibit sudden brittle fracture at high stresses such as are encountered in shear and slitter knives. This has limited the use of tungsten carbide tools to certain applications in spite of their high hardness and wear resistance. The objective of this investigation is to evaluate the tribological performance of selected cermets and develop a fracture mechanics wear model. Six compositions of WC-Co materials (Co ranging from 4 to 30% by weight) with or without TiC, NbC, TaC, or Mo{sub 2}C were selected for relating wear modes of these tool materials to pertinent mechanical properties such as fracture toughness and hardness. The influence of mechanical properties such as Young`s modulus, hardness, fracture toughness, modulus of rupture, and Weibull modulus on wear rates and wear modes of the selected materials is presented and discussed. The major mechanisms of wear in WC-Co materials are discussed as they apply to the development of suitable relationships between wear and mechanical properties. The wear process is by the transfer of steel from the ring to the cemented carbide block specimens, initiation of mode I cracks normal to the mating surface, propagation of mode II cracks parallel to the wear surfaces and the subsequent separation of platelets with adhered WC and Co particles through adhesive forces with the steel ring. The wear rates of the cermets do not show a consistent relationship with mode I or mode II fracture toughness, but a general trend of decreasing wear rate with hardness is seen. This suggests that the tribological performance of these cermets depends on certain specific functions of pertinent parameters including fracture toughness, hardness, applied load, coefficient of friction and microstructural characteristics. A fracture mechanics-based wear model has been developed to relate the steady state wear rate (W{sub ss}) to hardness, mode II fracture toughness, coefficient of friction, and applied load. (orig./MM)

  3. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  4. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    Science.gov (United States)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  5. Ultrasound Diagnosis of Either an Occult or Missed Fracture of an Extremity in Pediatric-Aged Children

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kil Ho [Yeungnam University, Daegu (Korea, Republic of); Lee, Sung Moon [Keimyung University Dongsan Hospital, Daegu (Korea, Republic of); Lee, Young Hwan [Daegu Catholic University, Daegu (Korea, Republic of); Suh, Kyung Jin [Dongkuk University, Kyungju (Korea, Republic of)

    2010-02-15

    To report and assess the usefulness of ultrasound (US) findings for occult fractures of growing bones. For six years, US scans were performed in children younger than 15 years who were referred with trauma-related local pain and swelling of the extremities. As a routine US examination, the soft tissue, bones, and adjacent joints were examined in the area of discomfort, in addition to the asymptomatic contralateral extremity for comparison. Twenty-five occult fractures in 25 children (age range, five months-15 years; average age, 7.7 years) were confirmed by initial and follow-up radiograms, additional imaging studies, and clinical observation longer than three weeks. The most common site of occult fractures was the elbow (n = 9, 36%), followed by the knee (n = 7, 28%), ischium (n = 4, 16%), distal fibula (n = 3, 12%), proximal femur (n = 1, 4%), and humeral shaft (n = 1, 4%). On the retrograde review of the routine radiographs, 13 out of the 25 cases showed no bone abnormalities except for various soft tissue swelling. For the US findings, cortical discontinuity (direct sign of a fracture) was clearly visualized in 23 cases (92%) and was questionable in two (8%). As auxiliary US findings (indirect signs of a fracture), step-off deformities, tiny avulsed bone fragments, double-line appearance of cortical margins, and diffuse irregularity of the bone surfaces were identified. Performing US for soft tissue and bone surfaces with pain and swelling, with or without trauma history in the extremities, is important for diagnosing occult or missed fractures of immature bones in pediatric-aged children.

  6. Salter-Harris I and II fractures of the distal tibia: does mechanism of injury relate to premature physeal closure?

    Science.gov (United States)

    Rohmiller, Michael T; Gaynor, Tracey P; Pawelek, Jeff; Mubarak, Scott J

    2006-01-01

    The distal tibial physis is the second most commonly injured physis in long bones. Recent reports demonstrate a high rate of premature physeal closure (PPC) in Salter-Harris (SH) type I or II fractures of the distal tibia. At our institution, 137 distal tibial SH type I or II fractures were treated from 1994 to 2002. Reviews were performed on all patients and 91 fractures met inclusion criteria. Patients were categorized according to treatment. We report a PPC rate of 39.6% in SH type I or II fractures of the distal tibial physis. We found a difference in PPC based on injury mechanism. The rate of PPC in patients with a supination-external-rotation-type injury was 35%, whereas patients with pronation-abduction-type injuries developed PPC in 54% of cases. Type of treatment may prevent PPC in some fractures. The most important determinant of PPC is the fracture displacement following reduction. PPC is a common problem following SH type I or II fractures of the distal tibia. Operative treatment may decrease the frequency of PPC in some fractures. Regardless of treatment method, we recommend anatomic reduction to decrease the risk of PPC.

  7. Molecular mechanisms for anti-aging by natural dietary compounds.

    Science.gov (United States)

    Pan, Min-Hsiung; Lai, Ching-Shu; Tsai, Mei-Ling; Wu, Jia-Ching; Ho, Chi-Tang

    2012-01-01

    Aging is defined as a normal decline in survival with advancing age; however, the recent researches have showed that physiological functions of the body change during the aging process. Majority of the changes are often subject to a higher risk of developing diseases, such as cardiovascular disease, type II diabetes, Alzheimer's disease, Parkinson's disease, as well as the dysregulated immune and inflammatory disorders. Aging process is controlled by a complicated and precise signaling network that involved in energy homeostasis, cellular metabolism and stress resistance. Over the past few decades, research in natural dietary compounds by various organism and animal models provides a new strategy for anti-aging. Natural dietary compounds act through a variety mechanisms to extend lifespan and prevent age-related diseases. This review summarizes the current understanding on signaling pathways of aging and knowledge and underlying mechanism of natural dietary compounds that provide potential application on anti-aging and improve heath in human.

  8. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    the mechanisms involved in the age-related defective bone formation. Evidence Acquisition: The mechanisms discussed in this review are based on a PubMed search and knowledge of the authors in the field. Evidence Synthesis: Available basic and clinical studies indicate that multiple mechanisms are involved...

  9. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    Science.gov (United States)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  10. Fracture mechanics analysis of damaged turbine rotor discs using finite element method

    Directory of Open Access Journals (Sweden)

    Vasović Ivana V.

    2014-01-01

    Full Text Available This paper presents evaluation fracture mechanics parameters in low pressure turbine components. Critical locations such as keyway and dovetail area are experiencing stress concentration leading to crack initiation. Stress intensity factors were evaluated using the J-Integral approach available within ANSYS software code. The finite element method allowed the prediction of the point of crack initiation and the crack propagation using the orientations of the maximum principal stresses. Special attention in this investigation is focused to develop analytic expressions for stress intensity factors at critical location of low pres-sure steam turbine disc. [Projekat Ministarstva nauke Republike Srbije, br. I-174001 i br. TR-35045

  11. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  12. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    Science.gov (United States)

    Dimas, Leon S; Buehler, Markus J

    2014-07-07

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness.

  13. Mechanical Behavior and Fracture Toughness Evaluation of Multiphase Polymer Nanocomposites Using Impact and J-Integral via Locus Method

    Directory of Open Access Journals (Sweden)

    Bishnu P. Panda

    2013-01-01

    Full Text Available Fracture behaviors of fibrillar silicate clay (MMT filled thermoplastic polyolefin (TPO containing polypropylene (PP blended with ethylene-propylene-diene monomer (EPDM were systematically investigated using impact test method and J-integral by locus method. Drastic increase in impact strength is observed for all developed compositions and generally shows higher value for the selected phases containing dispersed nanoclay in PP matrix. A fracture mechanics approach has been adopted by mode I test, and the effects of specimen geometry have been investigated. Increase in interlaminar fracture energy value, Gc, and J-integral value, Jc, is marked as the crack propagated through the composite; that is, a rising “R-curve” is observed. Toughness measurements revealed that the fracture toughness increased with increasing clay content reaching maximum at 3 wt% of clay than pure PP. Moreover, enhancement of fracture toughness was more remarkable than that of stiffness. The fracture surfaces taken from different specimens were observed for exploring the fracture mechanisms using transmission electron microscopy (TEM revealed a strong particle-matrix adhesion.

  14. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications

    Science.gov (United States)

    Webber, Kyle G.; Vögler, Malte; Khansur, Neamul H.; Kaeswurm, Barbara; Daniels, John E.; Schader, Florian H.

    2017-06-01

    There has been considerable progress in the development of large strain lead-free perovskite ferroelectrics over the past decade. Under certain conditions, the electromechanical properties of some compositions now match or even surpass commercially available lead-containing materials over a wide temperature range, making them potentially attractive for non-resonant displacement applications. However, the phenomena responsible for the large unipolar strains and piezoelectric responses can be markedly different to classical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3. Despite the promising electromechanical properties, there is little understanding of the mechanical properties and fracture behavior, which is crucial for their implementation into applications where they will be exposed to large electrical, mechanical, and thermal fields. This work discusses and reviews the current understanding of the mechanical behavior of large-strain perovskite lead-free ferroelectrics for use in actuators and provides recommendations for further work in this important field.

  15. A current genetic and epigenetic view on human aging mechanisms.

    Science.gov (United States)

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material.

  16. Alteration of Fractured Rocks Due to Coupled Chemical and Mechanical Processes: High-Resolution Simulations and Experimental Observations

    Science.gov (United States)

    Ameli, Pasha

    Engineering activities such as enhanced geothermal energy production and improved oil recovery techniques are heavily dependent on the permeability of the subsurface, while others such as CO2 sequestration and nuclear waste disposal rely on the efficiency of rock formations as transport barriers. In either case fractures provide the main pathways for fluid flow and transport, especially in rocks with lower matrix porosity. Laboratory experiments aimed at quantifying the chemo-mechanical responses of fractures have shown a range of results, some of which contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability, experiments show that permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, due to the lack of direct micro-scale measurements of the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, our ability to predict the long-term evolution of fractures is still limited. To explore the processes that control permeability evolution, I developed a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. A depth-averaged algorithm of fracture flow is used to model reactive transport and chemical alteration of the fracture surfaces. Then, I deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. The results of the model are compared with flow-through experiments conducted on fractured limestone. The

  17. Reliability of treating asymptomatic traumatic type II dens fractures in patients over age 80: A retrospective series

    Directory of Open Access Journals (Sweden)

    Eric Momin

    2015-01-01

    Full Text Available Background: Management of type II odontoid fractures in elderly remains controversial to whether surgical treatment is favored over conservative one. This is a study of geriatric patients with asymptomatic type II dens fractures who after sustaining a fall were initially evaluated at community hospitals. They were placed in a rigid collar and were followed up in a spine clinic. Purpose: To assess the reliability of treating very old patients with type II dens fracture conservatively and whether surgical intervention if needed would affect the clinical outcome. Study Design: Retrospective study with the literature review. Patient Sample: Consecutive patients above 80 years of age, who sustained a clinically asymptomatic type II dens fracture and were observed after a conservative treatment plan, was initiated. Outcome Measures: Outcome measures included self-reported worsening neck pain, neurological function, and radiographic measures over the follow-up period. Materials and Methods: A retrospective clinical analysis of 5 active geriatric patients with type II asymptomatic dens fracture. After evaluating them, treatment options were discussed with patients and their family members. The decision was to continue to follow them with a rigid collar very closely since they were reluctant to undergo any surgical procedure. Results: Patients were followed for an average of 29 months. They were observed for any worsening neck pain, neurological deficit, or deterioration of fracture on follow-up imaging studies. At last follow-up, 2 of 5 patients continued to be asymptomatic, the 3 rd died of unrelated causes while 2 others required surgeries at least 1-year post injury. Conclusions: Treatment of type II dens fractures in the elderly is controversial. Independent elderly patients who are asymptomatic at presentation may be safe to be followed up very closely with a neck brace and serial X-ray. Converting to surgical treatment can be done safely when

  18. Effect of cold work and aging on mechanical properties of a copper bearing microalloyed HSLA-100 (GPT) steel

    Indian Academy of Sciences (India)

    Sanjay Panwar; D B Goel; O P Pandey

    2007-04-01

    Investigations have been carried out on the effect of cold work and subsequent aging on mechanical properties of a Cu-bearing HSLA-100 steel microalloyed with Nb and Ti. Aging at 400°C after various degrees of cold work (25–70 pct) exhibits multiple hardness peaks. The treatments cause significant improvement in hardness and tensile strength, but at the cost of impact strength. Cold work also causes deterioration in ductility, which again improves on subsequent aging. The C70A treatment involving 70 pct deformation exhibits maximum response to age hardening giving a hardness of 465 VHN and a UTS of 1344 MPa, but with low values of ductility (5 pct) and impact energy (24 J). C50A treatment involving 50 pct cold work and aging results in an optimum combination of mechanical properties. This treatment in the second hardness peak stage yields a hardness of 373 VHN, UTS of 1186 MPa together with a ductility value of 11 pct and impact energy of 109 J. Scanning electron microscopic studies of fracture surfaces reveal that the impact fracture occurs by formation of dimples and nucleation and growth of voids and cracks. Fracture in tensile specimens is caused by formation of voids and cracks at high density striations. Formation of voids and cracks is also assisted by the presence of precipitated carbide particles.

  19. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection

    Science.gov (United States)

    Tu, Wenjuan; Rao, Sudha

    2016-01-01

    The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells. PMID:28082969

  20. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2014-12-01

    Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (Pceramics, however statistically significant was for the WI group (Pceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  2. Strain rate effects on the mechanical properties and fracture mode of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Michael; Tovar, Nick; Yoo, Daniel [Biomaterials and Biomimetics, New York University College of Dentistry (United States); Sobieraj, Micheal [Orthopedic Surgery, Hospital for Joint Diseases (United States); Gupta, Nikhil [Mechanical and Aerospace Engineering, NYU-Poly (United States); Branski, Ryan C. [Dept of Otolaryngology, New York University School of Medicine (United States); Coelho, Paulo G., E-mail: pc92@nyu.edu [Biomaterials and Biomimetics, New York University College of Dentistry (United States)

    2014-06-01

    The present study aimed to characterize the mechanical response of beagle sartorius muscle fibers under strain rates that increase logarithmically (0.1 mm/min, 1 mm/min and 10 mm/min), and provide an analysis of the fracture patterns of these tissues via scanning electron microscopy (SEM). Muscle tissue from dogs' sartorius was excised and test specimens were sectioned with a lancet into sections with nominal length, width, and thickness of 7, 2.5 and 0.6 mm, respectively. Trimming of the tissue was done so that the loading would be parallel to the direction of the muscle fiber. Samples were immediately tested following excision and failures were observed under the SEM. No statistically significant difference was observed in strength between the 0.1 mm/min (2.560 ± 0.37 MPa) and the 1 mm/min (2.702 ± 0.55 MPa) groups. However, the 10 mm/min group (1.545 ± 0.50 MPa) had a statistically significant lower strength than both the 1 mm/min group and the 0.1 mm/min group with p < 0.01 in both cases. At the 0.1 mm/min rate the primary fracture mechanism was that of a shear mode failure of the endomysium with a significant relative motion between fibers. At 1 mm/min this continues to be the predominant failure mode. At the 10 mm/min strain rate there is a significant change in the fracture pattern relative to other strain rates, where little to no evidence of endomysial shear failure nor of significant motion between fibers was detected.

  3. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites

    Science.gov (United States)

    Hamim, Salah U.; Singh, Raman P.

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface. PMID:27379285

  4. [Mechanism of anti-aging therapy on Parkinson's disease].

    Science.gov (United States)

    Wang, Hong-Yu; He, Shuai-Bing; Wang, Hui-Hui; Fu, Xu-Yan; Zhang, Yi; Zheng, Rao; Wang, Yun

    2016-07-01

    Many studies have shown that anti-aging treatment has value to prevention and treatment of some diseases. For the treatment of Parkinson' s disease, clinical and experimental researches have proved the potential value of anti-aging treatment, yet the mechanism remains unclear. For this reason, this work used the anti-aging prescriptions of Buyang Huanwu decoction in traditional Chinese medicines example to discover the anti-aging treatment mechanism on Parkinson's disease. The results showed that the mechanism of mitochondrial damage, apoptosis, free radicals and oxidative stress could contribute to the treatment of Parkinson' s disease. Buyang Huanwu decoction is more than as the carrier in this article, the discovered anti-aging treatment mechanism Parkinson's disease is not confined to Buyang Huanwu decoction, could also be used to understand the anti-aging treatment mechanism using other prescription. The main contribution of this paper is to clarify the mechanism of anti-aging treatment of Parkinson's disease, and provide a new strategy for the treatment and prevention of Parkinson's disease. Copyright© by the Chinese Pharmaceutical Association.

  5. Strontium Is Incorporated into the Fracture Callus but Does Not Influence the Mechanical Strength of Healing Rat Fractures

    DEFF Research Database (Denmark)

    Brüel, Annemarie; Olsen, Jakob; Birkedal, Henrik

    2011-01-01

    to study fracture healing in rats after 3 and 8 weeks of healing. Two groups of rats were treated with SrR (900 mg/kg/day) mixed into the food, while two groups served as control animals. The healing fractures were investigated by three-point bending, dual energy X-ray absorptiometry, energy-dispersive X......Strontium ranelate (SrR) is a new agent used in the treatment of osteoporosis and is suggested to reduce bone resorption and increase bone formation. We investigated whether SrR influences the macro- and nanomechnical properties of healing fractures in rats. A closed tibia fracture model was used......-ray spectroscopy (EDX), and nanoindentation. There was a 100-fold increase (P\\0.001) in serum Sr after 3 and 8 weeks of SrR treatment. The callus volume was significantly higher in the SrR-treated group than in control animals (P\\0.01) after 3 weeks of healing. This was accompanied by a significant increase...

  6. The application of fracture mechanics to the safety assessment of transport casks for radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Zencker, U.; Mueller, K.; Droste, B.; Roedel, R.; Voelzke, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2004-07-01

    BAM is the German responsible authority for the mechanical and thermal design safety assessment of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety proof of package components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new ''Guidelines for the Application of Ductile Cast Iron for Transport and Storage Casks for Radioactive Materials''. Based on these guidelines higher stresses than before can become permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof with the help of the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA Advisory Material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will be concluded.

  7. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL`s extensive research and development program, funded primarily by the U. S. Department of Energy`s Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed.

  8. Fracture mechanics models developed for piping reliability assessment in light water reactors: piping reliability project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.; Woo, H.H.; Chou, C.K.

    1982-06-01

    The efforts concentrated on modifications of the stratified Monte Carlo code called PRAISE (Piping Reliability Analysis Including Seismic Events) to make it more widely applicable to probabilistic fracture mechanics analysis of nuclear reactor piping. Pipe failures are considered to occur as the result of crack-like defects introduced during fabrication, that escape detection during inspections. The code modifications allow the following factors in addition to those considered in earlier work to be treated: other materials, failure criteria and subcritical crack growth characteristic; welding residual and vibratory stresses; and longitudinal welds (the original version considered only circumferential welds). The fracture mechanics background for the code modifications is included, and details of the modifications themselves provided. Additionally, an updated version of the PRAISE user's manual is included. The revised code, known as PRAISE-B was then applied to a variety of piping problems, including various size lines subject to stress corrosion cracking and vibratory stresses. Analyses including residual stresses and longitudinal welds were also performed.

  9. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  10. Mechanisms of fracture of the free surface of shock-compressed metals

    Energy Technology Data Exchange (ETDEWEB)

    Mokhova, V. V., E-mail: vvmokhova@yandex.ru; Mikhailov, A. L.; Til’kunov, A. V. [Russian Federal Nuclear Center–All-Russia Research Institute of Experimental Physics (Russian Federation); Orlov, N. I. [National Nuclear Research University MEPhI, Sarov State Physicotechnical Institute (Russian Federation); Kanunova, L. I.; Bragunets, V. A.; Tkachenko, M. I.; Simakov, V. G.; Sokolov, S. S.; Podurets, A. M. [Russian Federal Nuclear Center–All-Russia Research Institute of Experimental Physics (Russian Federation)

    2015-12-15

    The mechanisms of the ejection of aluminum and copper microparticles from the free surfaces of these metals have been studied under conditions of the escape of a moderate-intensity shock wave from a sample. The free surfaces of samples contained 0.7–0.9 mm deep artificial wells and protrusions simulating (on a greater scale of 10: 1) the natural surface roughness retained upon mechanical processing. The pressure in a shock-wave pulse at the base of a protrusion was controlled within P = 5–20 GPa (i.e., below the melting region), and the variable duration of pressure pulses was 0.02, 0.2, and 1 μs. Analysis of the free surfaces of postloaded samples showed that, for certain loading and roughness parameters, the ejection of metal from vertices of protruding ridges or pyramids (as a result of the longitudinal fracture) was about ten times greater than the amount of metal ejected in the form of cumulative jets from wells. The amount of ejected metal and the size distribution of metal microparticles were quantitatively characterized using “soft collecting targets” and by measuring mass losses of samples upon fracture.

  11. Standard guide for evaluating data acquisition systems used in cyclic fatigue and fracture mechanics testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers how to understand and minimize the errors associated with data acquisition in fatigue and fracture mechanics testing equipment. This guide is not intended to be used instead of certified traceable calibration or verification of data acquisition systems when such certification is required. It does not cover static load verification, for which the user is referred to the current revision of Practices E 4, or static extensometer verification, for which the user is referred to the current revision of Practice E 83. The user is also referred to Practice E 467. 1.2 The output of the fatigue and fracture mechanics data acquisition systems described in this guide is essentially a stream of digital data. Such digital data may be considered to be divided into two types- Basic Data, which are a sequence of digital samples of an equivalent analog waveform representing the output of transducers connected to the specimen under test, and Derived Data, which are digital values obtained from the Basic D...

  12. A mechanism for the production of ultrafine particles from concrete fracture.

    Science.gov (United States)

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Finite element analysis of surface cracks in the Wilkins Ice Shelf using fracture mechanics

    Science.gov (United States)

    Plate, Carolin; Müller, Ralf; Gross, Dietmar; Humbert, Angelika; Braun, Matthias

    2010-05-01

    Ice shelves, located between the warming atmosphere and the ocean, are sensitive elements of the climate system. The Wilkins Ice Shelf is situated in the south-western part of the Antarctic Peninsula, a well known hot spot of global warming. Recent break-up events exemplified the potential of disintegration of the ice shelf. A multi interdisciplinary project consisting of remote sensing, modeling of the ice dynamics and fracture mechanics intends to improve the understanding of the impacts of temperature increase on ice shelf stability. As a part of this project the aim of this presentation is to demonstrate the fracture mechanical approach using finite elements and configurational forces. For fracture mechanical purposes the material behavior of ice is treated as a brittle solid, and linear fracture mechanics is used. Crucial to all methods in linear fracture mechanics is the evaluation of the stress intensity factor K which is a measure for the load concentration at the crack tip and which depends on the geometry of the body and on the applied loading. The computed value of K can be compared to the critical stress intensity factor Kc, a material property obtained from experimental examinations, to judge whether a crack will propagate. One very effective procedure to obtain the stress intensity factor takes advantage of configurational forces, which can be easily obtained in the finite element analysis. An initial investigation is based on a 2-dimensional analysis of a single crack with a mode-I load type using a static plane strain model in the finite element analysis software COMSOL and additional routines to compute and evaluate the configurational forces. Analytical solutions of simple geometry and load cases are called on in comparison. The application to the Wilkins Ice Shelf follows by using material parameters, geometries and loading situations, which are obtained from literature values, remote sensing data analysis and modeling of the ice dynamics

  14. Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture

    CERN Document Server

    Murakami, Sumio

    2012-01-01

    Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry.  This, in turn, has caused more interest in continuum damage mechanics and its engineering applications.   This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook.   The book consists of two parts and an appendix.  Part I  is concerned with the foundation of continuum damage mechanics.  Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2.  In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...

  15. Hydrologic Mechanisms Governing Fluid Flow in a Partially Saturated, Fractured, Porous Medium

    Science.gov (United States)

    Wang, J. S. Y.; Narasimhan, T. N.

    1985-12-01

    In contrast to the saturated zone within which fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during the drainage process, and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force, in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. The effects of distortion of flow paths by the air pockets are taken into account by a phase-separation constriction factor in a generalized cubic law for fracture flow under a partially saturated condition. The reduction of matrix-fracture flow area is taken into account by summing the aperture distribution function to a saturation cutoff aperture, which is inversely proportional to the suction head. Drainage from a column of fractured tuff is simulated using available parameters for the densely welded tuff of the Topopah Spring Member at Yucca Mountain, southern Nevada. The column is bounded by discrete vertical fractures and dissected by horizontal fractures with the fracture spacings determined by the frequencies and orientations of fractured cores. The fraction of fracture surfaces with coatings is assumed to correspond to the fraction of in situ fracture contact area

  16. A predictive mechanical model for evaluating vertebral fracture probability in lumbar spine under different osteoporotic drug therapies.

    Science.gov (United States)

    López, E; Ibarz, E; Herrera, A; Puértolas, S; Gabarre, S; Más, Y; Mateo, J; Gil-Albarova, J; Gracia, L

    2016-07-01

    Osteoporotic vertebral fractures represent a major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture from bone mineral density (BMD) measurements. A previously developed model, based on the Damage and Fracture Mechanics, was applied for the evaluation of the mechanical magnitudes involved in the fracture process from clinical BMD measurements. BMD evolution in untreated patients and in patients with seven different treatments was analyzed from clinical studies in order to compare the variation in the risk of fracture. The predictive model was applied in a finite element simulation of the whole lumbar spine, obtaining detailed maps of damage and fracture probability, identifying high-risk local zones at vertebral body. For every vertebra, strontium ranelate exhibits the highest decrease, whereas minimum decrease is achieved with oral ibandronate. All the treatments manifest similar trends for every vertebra. Conversely, for the natural BMD evolution, as bone stiffness decreases, the mechanical damage and fracture probability show a significant increase (as it occurs in the natural history of BMD). Vertebral walls and external areas of vertebral end plates are the zones at greatest risk, in coincidence with the typical locations of osteoporotic fractures, characterized by a vertebral crushing due to the collapse of vertebral walls. This methodology could be applied for an individual patient, in order to obtain the trends corresponding to different treatments, in identifying at-risk individuals in early stages of osteoporosis and might be helpful for treatment decisions.

  17. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  18. Mechanisms of cardiovascular disease in accelerated aging syndromes.

    Science.gov (United States)

    Capell, Brian C; Collins, Francis S; Nabel, Elizabeth G

    2007-07-06

    In the past several years, remarkable progress has been made in the understanding of the mechanisms of premature aging. These rare, genetic conditions offer valuable insights into the normal aging process and the complex biology of cardiovascular disease. Many of these advances have been made in the most dramatic of these disorders, Hutchinson-Gilford progeria syndrome. Although characterized by features of normal aging such as alopecia, skin wrinkling, and osteoporosis, patients with Hutchinson-Gilford progeria syndrome are affected by accelerated, premature arteriosclerotic disease that leads to heart attacks and strokes at a mean age of 13 years. In this review, we highlight recent advances in the biology of premature aging uncovered in Hutchinson-Gilford progeria syndrome and other accelerated aging syndromes, advances that provide insight into the mechanisms of cardiovascular diseases ranging from atherosclerosis to arrhythmias.

  19. A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-component composite material composed of mortar matrix,aggregates and interfaces on the meso-scale.First,an efficient approach to the disposition of aggregates of concrete and a state matrix method to generate mesh coordinates for aggregates are proposed.Secondly,based on the nonlinear continuum damage mechanics,a meso-scale finite element model is presented with damage softening stress-strain relationship for describing the mechanical behavior of different components of concrete.In this method,heterogeneities of each component in the concrete are considered by assuming the material properties of three components conform to the Weibull distribution law.Finally,based on this multiphase meso-mechanics model,a simulation analysis of fracture behavior of a rock-fill concrete(RFC) beam is accomplished.The study includes experimental tests for determining basic mechanical parameters of three components of RFC and four-point flexural beam tests for verification of the model.It is preliminarily shown that the numerical model is applicable to studying failure mechanisms and process of concrete type material.

  20. Risk Factors for Osteoporosis and Fractures in Postmenopausal Women Between 50 and 65 Years of Age in a Primary Care Setting in Spain: A Questionnaire

    OpenAIRE

    2008-01-01

    Introduction Osteoporosis (OP) is a major, highly prevalent health problem and osteoporosis-related fractures account for high morbidity and mortality. Therefore, prevention and early detection of osteoporosis should strive to substantially reduce this risk of fracture. Objective The present observational, descriptive, cross-sectional study sought to assess the prevalence of risk factors for osteoporosis and fractures in a large sample of postmenopausal women aged 50 to 65 years attending Pri...

  1. Distinct Mechanisms of Impairment in Cognitive Ageing and Alzheimer's Disease

    Science.gov (United States)

    Mapstone, Mark; Dickerson, Kathryn; Duffy, Charles J.

    2008-01-01

    Similar manifestations of functional decline in ageing and Alzheimer's disease obscure differences in the underlying cognitive mechanisms of impairment. We sought to examine the contributions of top-down attentional and bottom-up perceptual factors to visual self-movement processing in ageing and Alzheimer's disease. We administered a novel…

  2. Distinct Mechanisms of Impairment in Cognitive Ageing and Alzheimer's Disease

    Science.gov (United States)

    Mapstone, Mark; Dickerson, Kathryn; Duffy, Charles J.

    2008-01-01

    Similar manifestations of functional decline in ageing and Alzheimer's disease obscure differences in the underlying cognitive mechanisms of impairment. We sought to examine the contributions of top-down attentional and bottom-up perceptual factors to visual self-movement processing in ageing and Alzheimer's disease. We administered a novel…

  3. Delayed and accelerated aging share common longevity assurance mechanisms

    NARCIS (Netherlands)

    Schumacher, B.; van der Pluijm, I.; Moorhouse, M.J.; Kosteas, T.; Robinson, A.R.; Suh, Y.; Breit, T.M.; van Steeg, H.; Niedernhofer, L.J.; van IJcken, W.; Bartke, A.; Spindler, S.R.; Hoeijmakers, J.H.J.; van der Horst, G.T.J.; Garinis, G.A.

    2008-01-01

    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wi

  4. Delayed and accelerated aging share common longevity assurance mechanisms

    NARCIS (Netherlands)

    Schumacher, B.; van der Pluijm, I.; Moorhouse, M.J.; Kosteas, T.; Robinson, A.R.; Suh, Y.; Breit, T.M.; van Steeg, H.; Niedernhofer, L.J.; van IJcken, W.; Bartke, A.; Spindler, S.R.; Hoeijmakers, J.H.J.; van der Horst, G.T.J.; Garinis, G.A.

    2008-01-01

    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the

  5. Neuronal mechanisms of motor learning are age dependent

    NARCIS (Netherlands)

    Berghuis, Kelly M. M.; De Rond, Veerle; Zijdewind, Inge; Koch, Giacomo; Veldman, Menno P.; Hortobagyi, Tibor

    2016-01-01

    There is controversy whether age-related neuroanatomical and neurophysiological changes in the central nervous system affect healthy old adults' abilities to acquire and retain motor skills. We examined the effects of age on motor skill acquisition and retention and potential underlying mechanisms b

  6. A Radiographic Study on the Associations of Age and Prevalence of Vertebral Fractures with Abdominal Aortic Calcification in Japanese Postmenopausal Women and Men

    Directory of Open Access Journals (Sweden)

    Jun Iwamoto

    2010-01-01

    Full Text Available The purpose of the present study was to determine the associations of age and history of non- and low-traumatic fractures with the severity of abdominal aortic calcification in Japanese postmenopausal women and men. Four hundred and one Japanese persons (24 men and 377 postmenopausal women, mean age: 73.8 years for whom thoracic and lumbar spine radiographs had been obtained to evaluate their posture prior to patient participation in a fall-prevention exercise program were enrolled. The associations of sex, age, history of hip fracture, prevalence of vertebral fracture, and spondylosis grade (the Nathan degree with the severity of abdominal aortic calcification (length of calcification, as evaluated according to the number of vertebral bodies were analyzed. Nine subjects (2.2% had a history of hip fracture, and 221 (55.1% had at least one prevalent vertebral fracture. Two hundred and sixty-seven subjects (66.6% had first-degree spondylosis. Age and the number of prevalent vertebral fractures, but not sex, history of hip fracture, or spondylosis grade, were significantly associated with the severity of abdominal aortic calcification. The present study confirmed that age and the number of vertebral fractures were associated with the severity of abdominal aortic calcification in Japanese postmenopausal women and men.

  7. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel; Degradacion de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-07-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs.

  8. A coupled thermo-poro-mechanical finite element analysis of fractured porous rocks using a cohesive interface element

    Science.gov (United States)

    Wang, W.; Regueiro, R. A.

    2014-12-01

    The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short

  9. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging.

    Science.gov (United States)

    Copray, Sjef; Huynh, Jimmy Long; Sher, Falak; Casaccia-Bonnefil, Patrizia; Boddeke, Erik

    2009-11-15

    The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodendrocyte development and aging. These results have generated new hypotheses regarding the mechanisms underlying the decreased efficiency of endogenous remyelination in response to demyelinating injuries with increasing age. In this review, we present an overview of the epigenetic mechanisms regulating gene expression at specific stages of oligodendrocyte differentiation and maturation as well as the changes that occur with aging.

  10. How vein sealing boosts fracture widening rates - The buckling-enhanced aperture growth mechanism for syn-tectonic veins

    Science.gov (United States)

    Nüchter, Jens-Alexander

    2017-01-01

    The paper introduces the mechanism of buckling-enhanced aperture growth for syn-tectonic veins that formed in simple-shear dominated kinematic frameworks in the middle or lower crust. Apart from the well understood concepts of fracture widening driven by effective tensile stresses, buckling-enhanced fracture aperture growth relates widening to active outward buckling of more viscous incipient cement layers precipitated as hydrothermal minerals for the pore fluid on the walls of juvenile syn-tectonic veins, driven by fracture-parallel compressive creep strain in the host rocks. Thus, the mechanism proposed here follows similar principles as tectonic folding, although important differences exist. Inspired by the structural record of low-aspect ratio veins exposed in HP/LT metamorphic rocks cropping out on south Evia island, Greece, generic numerical models are calculated to study development of buckling instabilities in such incompletely cemented veins and their impact on aperture growth rates. The models indicate (1) that aperture growth rates increase with increasing viscosity contrast between the host rocks and the cement layers, (2) an increase in the thickness of the cement layers cause acceleration of aperture growth, (3) that support of restraining forces at the vein tips offered by the host rocks against buckling of the cement layers cause fully compressive states of stress ahead the fracture tips, and (4) that fracture aperture growth is possible against fully compressive fracture-normal stresses. The buckling-enhanced vein aperture growth mechanism yields important implications for the maintenance and decay of fracture-bound permeability and for the mechanical state of the middle and lower crust in seismically active regions.

  11. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Science.gov (United States)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  12. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  13. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    Science.gov (United States)

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory.

  14. Assessment and management of rib fracture pain in geriatric population: an ode to old age.

    Science.gov (United States)

    Wardhan, Richa

    2013-10-01

    Pain management for traumatic rib fractures has been described in literature, but there is paucity of data when it comes to acute pain management in the elderly, let alone pain resulting from traumatic rib fractures. This article focuses on challenges of assessment of pain in elderly patients and the various options available for pain management including utilization of nerve blocks. Nerve blocks are instrumental in treating rib fracture pain along with utilization of opioids and nonopioids thus formulating a multimodal approach to pain management. The goal is to devise a proper pain management regimen for geriatric patients with rib fractures to decrease the morbidity and mortality associated with it. Developing institutional protocols is one step forward towards quality care for such patients.

  15. Mechanisms of the anorexia of aging-a review.

    Science.gov (United States)

    Wysokiński, Adam; Sobów, Tomasz; Kłoszewska, Iwona; Kostka, Tomasz

    2015-08-01

    Many, even healthy, older people fail to adequately regulate food intake and experience loss of weight. Aging-associated changes in the regulation of appetite and the lack of hunger have been termed as the anorexia of aging. The etiology of the anorexia of aging is multi-factorial and includes a combination of physiological changes associated with aging (decline in smell and taste, reduced central and peripheral drive to eat, delayed gastric emptying), pathological conditions (depression, dementia, somatic diseases, medications and iatrogenic interventions, oral-health status), and social factors (poverty, loneliness). However, exact mechanisms of the anorexia of aging remain to be elucidated. Many neurobiological mechanisms may be secondary to age-related changes in body composition and not associated with anorexia per se. Therefore, further studies on pathophysiological mechanisms of the anorexia of aging should employ accurate measurement of body fat and lean mass. The anorexia of aging is associated with protein-energy malnutrition, sarcopenia, frailty, functional deterioration, morbidity, and mortality. Since this symptom can lead to dramatic consequences, early identification and effective interventions are needed. One of the most important goals in the geriatric care is to optimize nutritional status of the elderly.

  16. Novel putative mechanisms to link circadian clocks to healthy aging.

    Science.gov (United States)

    Popa-Wagner, Aurel; Catalin, Bogdan; Buga, Ana-Maria

    2015-08-01

    The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms.

  17. Is groundwater age the main control for slow turnover of nitrate in a fractured groundwater system?

    Science.gov (United States)

    Osenbrück, Karsten; Schwientek, Marc; Rügner, Hermann; Grathwohl, Peter

    2015-04-01

    Slow transformation processes are known to control the chemical, isotopic, and redox evolution of large-scale aquifers (Edmunds et al., 1982; Katz et al., 1995). However, at the field scale some of the crucial biogeochemical processes governing pollutant turnover and their interrelations with hydrology are poorly understood. Particularly, only little is known about denitrification in fractured rock aquifers. Therefore, the main objective of the presented study is to assess where and how slow turnover of nitrate ans other pollutants in the deeper subsurface take place. The studied fractured and partly karstified aquifer consisting of Triassic black limestones and dolomites is located in the catchment of the Ammer river (ca. 350 km²) close to Tübingen in southern Germany. Near the recharge area, the aquifer is covered by loess allowing intensive agriculture. Further downgradient, the cover consist of a series of mudstones and sandstones of variable permeability. The aquifer is used for drinking water purposes by regional water suppliers. Land-use is dominated by agriculture with arable land covering nearly 50% of the catchment. Over the last years a variety of groundwater samples have been collected from the groundwater system including 6 water supply wells, 4 karstic springs, and 9 monitoring wells in the recharge area. This allowed to identify spatial and temporal patterns of water quality including concentrations of major ions, dissolved organic carbon (DOC), organic pollutants (e.g., pesticides), and environmental isotopes. Groundwater age distributions at most of these locations were derived from tritium, 3He, CFCs and SF6. Groundwaters in the recharge area show high concentrations of nutrients (e.g. 20-51 mg/L of nitrate and 0.2 to 0.05 µg/L of phosphate). Of special concern are disparate nitrate concentrations ranging from below 0.4 to 20 mg/L in water supply wells although screen depths of the production wells are similar. Concentrations of dissolved

  18. Risk factors for mortality after surgery of osteoporotic hip fracture in patients over 65 years of age.

    Science.gov (United States)

    Aranguren-Ruiz, M I; Acha-Arrieta, M V; Casas-Fernández de Tejerina, J M; Arteaga-Mazuelas, M; Jarne-Betrán, V; Arnáez-Solis, R

    To evaluate, from a clinical perspective, and with easily identifiable variables, those factors that influence the survival of patients admitted to a care unit designed for the comprehensive treatment of patients with hip fracture after being surgically treated. A prospective study was conducted on a cohort of patients (n=202) aged 65 years or older with a low impact hip fracture, who were surgically intervened in a tertiary hospital. An analysis was performed to determine mortality at 90 days, and at one and 2years after surgery using demographic, clinical, analytical, and functional variables. The independent risk factors of mortality in the 3periods analysed were age (P=.047, P=.016, and P=.000 at 90 days, 1, and 2 years, respectively) and a low Barthel index (P=.014, P=.005, and P=.004 to 90 days, 1, and 2 years, respectively). Male sex (P=.004) and a high risk for anaesthesia (P=.011) were only independent risk factors of mortality at 2years after surgery. Age and dependency were the major determining factors of mortality at 30 days, 1, and 2 years after surgery for hip fracture. Both are easily measurable to identify patients susceptible to poor outcomes, and could benefit from a more thorough care plan. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Teardrop fracture following head-first impact in an ice hockey player: Case report and analysis of injury mechanisms.

    Science.gov (United States)

    Yue, James J; Ivancic, Paul C; Scott, David L

    2016-01-01

    We report a case of a young male athlete who sustained a three column displaced teardrop fracture of the C5 vertebra due to a head-first impact in hockey, suffered neurapraxia, yet made full neurological recovery. This full recovery was in sharp contrast to multiple case series which reported permanent quadriplegia in the vast majority of teardrop fracture patients. We investigate the etiology and biomechanical mechanisms of injury. Admission imaging revealed the teardrop fracture which consisted of: a frontal plane fracture which separated an anterior quadrilateral-shaped fragment from the posterior vertebral body; a vertical fracture of the posterior vertebral body in the sagittal plane; and incomplete fractures of the neural arch that initiated superiorly at the anterior aspect of the spinous process and left lamina adjacent to the superior facet. Epidural hematoma in the region of the C5 vertebra was observed in addition to disc and ligamentous disruptions at C4-5 and C5-6. Our patient was ultimately treated surgically with anterior fusion from C4 through C6 and subsequently with bilateral posterior fusion at C5-6. The injuries were caused by high-energy axial compression with the neck in a pre-flexed posture. The first fracture event consisted of the anterior vertebral body fragment being sheared off of the posterior fragment under the compression load due in part to the sagittal plane concavity of the C5 inferior endplate. The etiology of the vertical fracture of the posterior vertebral body fragment in the sagittal plane was consistent with a previously described hypothesis of the mechanistic injury events. First, the C4-5 disc height decreased under load which increased its hoop stress. Next, this increased hoop stress transferred lateral forces to the C5 uncinate processes which caused their outward expansion. Finally, the outward expansion of the uncinate processes caused the left and right sides of the vertebral body to split and spread. Evidence in

  20. Spatial and temporal correlation of water quality parameters of produced waters from devonian-age shale following hydraulic fracturing.

    Science.gov (United States)

    Barbot, Elise; Vidic, Natasa S; Gregory, Kelvin B; Vidic, Radisav D

    2013-03-19

    The exponential increase in fossil energy production from Devonian-age shale in the Northeastern United States has highlighted the management challenges for produced waters from hydraulically fractured wells. Confounding these challenges is a scant availability of critical water quality parameters for this wastewater. Chemical analyses of 160 flowback and produced water samples collected from hydraulically fractured Marcellus Shale gas wells in Pennsylvania were correlated with spatial and temporal information to reveal underlying trends. Chloride was used as a reference for the comparison as its concentration varies with time of contact with the shale. Most major cations (i.e., Ca, Mg, Sr) were well-correlated with chloride concentration while barium exhibited strong influence of geographic location (i.e., higher levels in the northeast than in southwest). Comparisons against brines from adjacent formations provide insight into the origin of salinity in produced waters from Marcellus Shale. Major cations exhibited variations that cannot be explained by simple dilution of existing formation brine with the fracturing fluid, especially during the early flowback water production when the composition of the fracturing fluid and solid-liquid interactions influence the quality of the produced water. Water quality analysis in this study may help guide water management strategies for development of unconventional gas resources.

  1. Mechanics of tungsten blistering II: Analytical treatment and fracture mechanical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2015-10-15

    Since a decade the blistering of pure tungsten under hydrogen implantation has been one of the major research topics in relation to the plasma–wall interaction of tungsten-armored first wall. Overall blistering may reduce the erosion lifetime of the wall. Mature blisters grown by high internal pressure are likely to burst leading to exfoliation of the surface. Therefore, the control and suppression of blistering is an important concern for sustainable operation of the tungsten-armored plasma-facing components. In this context, a quantitative assessment of the mechanical conditions for blister bulging and growth is an important concern. In this article a theoretical framework is presented to describe the bulging deformation of tungsten blisters and to estimate the mechanical driving force of blister growth. The validity of the analytical formulations based on the theory of elastic plates is evaluated with the help of finite element analysis. Plastic strains and J-integral values at the blister boundary edge are assessed by means of numerical simulation. Extensive parametric studies were performed for a range of blister geometry (cap aspect ratio), gas pressure, yield stress and hardening rate. The characteristic features of the blistering mechanics are discussed and the cracking energy is quantitatively estimated for the various combinations of parameters.

  2. Mechanics of tungsten blistering II: Analytical treatment and fracture mechanical assessment

    Science.gov (United States)

    Li, Muyuan; You, Jeong-Ha

    2015-10-01

    Since a decade the blistering of pure tungsten under hydrogen implantation has been one of the major research topics in relation to the plasma-wall interaction of tungsten-armored first wall. Overall blistering may reduce the erosion lifetime of the wall. Mature blisters grown by high internal pressure are likely to burst leading to exfoliation of the surface. Therefore, the control and suppression of blistering is an important concern for sustainable operation of the tungsten-armored plasma-facing components. In this context, a quantitative assessment of the mechanical conditions for blister bulging and growth is an important concern. In this article a theoretical framework is presented to describe the bulging deformation of tungsten blisters and to estimate the mechanical driving force of blister growth. The validity of the analytical formulations based on the theory of elastic plates is evaluated with the help of finite element analysis. Plastic strains and J-integral values at the blister boundary edge are assessed by means of numerical simulation. Extensive parametric studies were performed for a range of blister geometry (cap aspect ratio), gas pressure, yield stress and hardening rate. The characteristic features of the blistering mechanics are discussed and the cracking energy is quantitatively estimated for the various combinations of parameters.

  3. Age and sex influences on running mechanics and coordination variability.

    Science.gov (United States)

    Boyer, Katherine A; Freedman Silvernail, Julia; Hamill, Joseph

    2017-11-01

    The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s(-1). A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex-age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh-shank transverse plane couple but greater coordination variability for the shank rotation-foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.

  4. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    Science.gov (United States)

    Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan

    2016-04-01

    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.

  5. A probabilistic fracture mechanics approach for structural reliability assessment of space flight systems

    Science.gov (United States)

    Sutharshana, S.; Creager, M.; Ebbeler, D.; Moore, N.

    1992-01-01

    A probabilistic fracture mechanics approach for predicting the failure life distribution due to subcritical crack growth is presented. A state-of-the-art crack propagation method is used in a Monte Carlo simulation to generate a distribution of failure lives. The crack growth failure model expresses failure life as a function of stochastic parameters including environment, loads, material properties, geometry, and model specification errors. A stochastic crack growth rate model that considers the uncertainties due to scatter in the data and mode misspecification is proposed. The rationale for choosing a particular type of probability distribution for each stochastic input parameter and for specifying the distribution parameters is presented. The approach is demonstrated through a probabilistic crack growth failure analysis of a welded tube in the Space Shuttle Main Engine. A discussion of the results from this application of the methodology is given.

  6. The industrial application of fracture mechanics concepts discussed at the background of international standards and guidelines; Die industrielle Anwendung bruchmechanischer Konzepte vor dem Hintergrund internationaler Bewertungsvorschriften und Regelwerke

    Energy Technology Data Exchange (ETDEWEB)

    Zerbst, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung; Langenberg, P. [Ingenieurbuero fuer Werkstofftechnik, Aachen (Germany)

    2000-07-01

    Many features from the background for an intensified application of fracture mechanics concepts in many industries world-wide. These include requirements for a permanent increase of the level of performance of technical components and structures by the introduction of new materials, joining technologies and design principles, the problem of ageing components and life extension, an increased emphasis on non-destructive in-service inspection combined with improved NDT techniques, and also a number of failure events caused by fatigue and fracture The aim of the present paper is to give a brief state-of-the-art review on how fracture mechanics is applied in different industrial branches today. This is based on standards and guidelines in the aerospace industry, in the nuclear and fossil power generation, in the chemical and petrochemical and the pipeline industry, in civil engineering, offshore technique and other fields. Based on the review an outlook is given on a future development that would be reasonable and desirable from the point of view of a basically unified philosophy of fracture mechanics application. (orig.) [German] Die Erhoehung der Leistungsparameter vieler Maschinen und Anlagen verbunden mit dem Einsatz neuer Werkstoffe, Fuegeverfahren und Konstruktionsprinzipien, der Betrieb vieler Strukturen ueber ihre projektierte Lebensdauer hinaus, technische Verbesserungen und ein durchgaengigerer Einsatz zerstoerungsfreier Defektpruefverfahren, aber auch immer wieder einmal auftretende Schadensfaelle bilden den Hintergrund fuer die zunehmende Nutzung bruchmechanischer Bewertungsvorschriften in der industriellen Praxis. Die vorliegende Studie zieht eine momentane Bilanz dieser Entwicklung am Beispiel von Fachbereichsstandards der Luft- und Raumfahrtindustrie, der konventionellen und Kernkrafttechnik, der Chemie und Petrochemie, der Pipelineindustrie, des Stahlbaus, der Offshore-Technik und anderer Bereiche. Ausgehend von dieser Bestandsaufnahme wird ein Ausblick

  7. Multiple bilateral lower limb fractures in a 2-year-old child: previously unreported injury with a unique mechanism

    Directory of Open Access Journals (Sweden)

    Anuj Jain

    2014-10-01

    Full Text Available 【Abstract】Fall from height is a common cause of unintentional injuries in children and accounts for 6% of all trauma-related childhood deaths, usually from head injury. We report a case of a 2-year-old child with multiple fractures of the bilateral lower limbs due to this reason. A child fell from a height of around 15 feet after toppling from a alcony. He developed multiple fractures involving the right femoral shaft, right distal femoral epiphysis (Salter Harris type 2, right distal metaphysis of the tibia and fi bula, and undisplaced Salter Harris type 2 epiphyseal injury of the left distal tibia. There were no head, abdominal or spinal injuries. The patient was taken into emergency operation theatre after initial management which consisted of intravenous fl uids, blood transfusion, and splintage of both lower limbs. Fracture of the femoral shaft was treated by closed reduction and fixation using two titanium elastic nails. Distal femoral physeal injury required open eduction and fixation with K wires. Distal tibia fractures were closely reduced and managed nonoperatively in both the lower limbs. All the fractures united in four weeks. At the last follow-up, the child had no disability and was able to perform daily ctivities comfortably. We also proposed the unique mechanism of injury in this report. Key words: Multiple bilateral lower limb fractures; Fall; Child

  8. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes

    KAUST Repository

    Almuhammadi, Khaled

    2014-01-01

    The present work is focused on the nanoreinforcement of prepreg based carbon fiber composite laminates to improve delamination resistance. Functionalized multi-walled carbon nanotubes (MWCNTs) were dispersed over the interface between prepreg layers through solvent spraying and the resulting mode I interlaminar fracture toughness was determined. For comparison, baseline samples with neat prepregs were also prepared. Results indicate that the introduction of functionalized MWCNTs can favorably affect the interlaminar fracture toughness, and the associated mechanisms of failure have been investigated. The manufacturing procedures and the interfacial reinforcing mechanism were explored by analyzing (i) the wettability between CNTs-solvent solution and prepreg surface, (ii) CNTs dispersion and (iii) the fractured surfaces through high resolution scanning electron microscopy and Raman mapping. © 2013 Elsevier Ltd.

  9. Effect of Aging on Microstructure and Mechanical Property of 1900 MPa Grade Maraging Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Kai LIU; Yiyin SHAN; Zhiyong YANG; Jianxiong LIANG; Lun LU; Ke YANG

    2007-01-01

    The 18%Ni alloy steels provide high strength and toughness, while age-hardenable or PH stainless steels also have good corrosion resistance. This paper focuses on an investigation of the heat treatment, mechanical properties and microstructural development of a new maraging stainless steel. It is reported that the heat treatment process should consist of solution treatment and cryogenic cooling to attain a fully martensitic structure, followed by aging at 813 K. This heat treatment resulted in an ultimate tensile strength of over 1900 MPa combined with good impact toughness. Transmission electron microscopy is used to show that,for the peak-aged condition (813 K/4 h), nano-sized precipitates, e.g. Ni3Mo and/or R-phase, and a high density of dislocations were uniformly dispersed in the lath martensite matrix. The calculated yield strength,based on a revised Orowan mechanism, is in good agreement with the test data. The steel studied has an ultimate tensile strength over 1900 MPa, excellent fracture toughness, and good resistance against over-aging and relatively good corrosion resistance as well.

  10. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  11. Association between Frailty, Osteoporosis, Falls and Hip Fractures among Community-Dwelling People Aged 50 Years and Older in Taiwan: Results from I-Lan Longitudinal Aging Study.

    Directory of Open Access Journals (Sweden)

    Li-Kuo Liu

    Full Text Available Association of frailty with adverse clinical outcomes has been reported in Western countries, but data from the Asian population are scarce. This study aimed to evaluate the epidemiology of frailty among community-dwelling middle-aged and elderly population and to explore its association with musculoskeletal health in Taiwan.I-Lan Longitudinal Aging Study (ILAS data were retrieved for this study. Frailty was defined by the Fried's criteria; a comparison of demographic characteristics, physical performance, and body composition, including skeletal muscle mass and bone mineral density (BMD, as well as recent falls, history of hip fractures and the functional status of subjects with different frailty statuses were accomplished.Overall, the data of 1,839 participants (mean age: 63.9±9.3 years, male 47.5% were obtained for analysis. The prevalence of pre-frailty was 42.3% in men and 38.8% in women, whereas the prevalence of frailty was 6.9% and 6.7% in men and women, respectively. Frailty was significantly associated with older age, the male gender, larger waist circumference, lower skeletal muscle index, lower hip BMD, poorer physical function, poorer nutritional status, and poorer cognitive function. Also, frailty was significantly associated with osteoporosis (OR: 7.73, 95% CI: 5.01-11.90, p<0.001, history of hip fractures (OR: 8.66, 95% CI: 2.47-30.40, p = 0.001, and recent falls (O.R: 2.53, 95% CI: 1.35-4.76, p = 0.004.Frailty and pre-frailty, in Taiwan, was closely associated with recent falls, history of hip fractures and osteoporosis among community-dwelling people 50 years of age and older. Furthermore, frailty intervention programs should take an integrated approach towards strengthening both and muscle mass, as well as prevention of falls.

  12. Morbidity and Mortality in Jeju Residents over 50-Years of Age with Hip Fracture with Mean 6-Year Follow-Up: A Prospective Cohort Study

    National Research Council Canada - National Science Library

    Lee, Sung-Rak; Ha, Yong-Chan; Kang, Hyun; Park, Yong-Geun; Nam, Kwang Woo; Kim, Sang-Rim

    2013-01-01

    This prospective cohort study was performed to estimate the morbidity and mortality with 790 patients over 50-yr of age that sustained a femoral neck or intertrochanteric fracture from 2002 to 2006...

  13. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters.

    Science.gov (United States)

    Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez

    2017-02-28

    Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10(-10) m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.

  14. Importance of fracture mechanics for materials development. Safety analysis of steel structures using fracture mechanics methods. Bedeutung der Bruchmechanik fuer die Werkstoffentwicklung. Sicherheitsanalyse von Bauwerken aus Stahl mit Hilfe bruchmechanischer Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, W. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl und Inst. fuer Eisenhuettenkunde)

    1991-01-01

    Following a brief description of the safety analysis procedure, the article deals with the fracture mechanics behaviour of cracked components and material test pieces. A component is assessed by comparing the loads (stress applied, maximum stress intensity, etc.) and the material characteristics (proof stress, fracture toughness, critical J-integral, etc.). Quantifying the toughness of materials is a particularly important aspect. It can be further improved by material development (increased purity, less segregation, finer grain). Generally valid equations cannot be expected but reliable estimates of the relationships are possible. (orig.).

  15. Influence of ion nitriding regime on mechanical properties and fracture mechanism of austenitic steel subjected to different thermomechanical treatments

    Science.gov (United States)

    Moskvina, Valentina; Astafurova, Elena; Ramazanov, Kamil; Melnikov, Eugene; Maier, Galina; Budilov, Vladimir

    2016-11-01

    The effect of thermomechanical treatments and low-temperature ion nitriding on mechanical properties and a fracture mechanism of stable austenitic stainless steel Fe-17Cr-13Ni-1.7Mn-2.7Mo-0.5Si-0.01C (in wt %, 316L-type) was investigated. Irrespective of initial heat treatments of steel and the regime of nitrogen saturation, traditional ion nitriding and nitriding with hollow cathode effect do not influence the stages of plastic flow and strain hardening; instead, they contribute to surface hardening of steel samples and reduce their plastic properties due to formation of a brittle surface layer. Ion nitriding leads to formation of a hardened surface layer with the microhardness of 12 GPa. Formation of a high-defective grain/subgrain structure with high dislocation density contributes to strengthening of steel samples under ion nitriding and formation of a thicker strengthened layer in comparison with fine-crystalline and coarse-crystalline samples.

  16. Mechanical properties and failure characteristics of fractured sandstone with grouting and anchorage

    Institute of Scientific and Technical Information of China (English)

    Zong Yijiang; Han Lijun; Qu Tao; Yang Shengqi

    2014-01-01

    Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are sig-nificantly lower than those of intact sandstone. Compared with the fractured samples without anchorage, the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5-320.0%, 62.8-493.0%, and 31.6-181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile-shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.

  17. Phosphodiesterase 1 regulation is a key mechanism in vascular aging

    DEFF Research Database (Denmark)

    Niño, Paula K Bautista; Durik, Matej; Danser, A H Jan

    2015-01-01

    Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role.......0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy....

  18. High incidence of osteoporosis and fractures in an aging post-polio population.

    LENUS (Irish Health Repository)

    Mohammad, Ausaf F

    2009-01-01

    Since the polio epidemic in Ireland in the 1950s, most polio survivors are approaching into the 6th and 7th decade of their lives. There is little data about bone density and risk of fractures in these patients. In 2006, we undertook an audit of post-polio patients attending rheumatology and neurology outpatient clinics in a university teaching hospital. Our aim was to determine the prevalence of osteoporosis (OP), falls and fractures and to evaluate the association of bone density with other potential contributing factors to OP.

  19. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jørgensen, K.; Jacobsen, T.K.;

    2004-01-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratiobetween the two applied moments, the full mode...

  20. Experimentation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures

    NARCIS (Netherlands)

    Mier, J.G.M. van; Vliet, M.R.A. van

    1999-01-01

    Fracture mechanics plays a role in both structural engineering and materials engineering. The aim here is to improve understanding of the behaviour of structures and materials in the limit state. The use of numerical models can help improve the accuracy of our designs, but only if the certainty

  1. Effect of cold work and aging on mechanical properties of a copper bearing HSLA-100 steel

    Indian Academy of Sciences (India)

    Sanjay Panwar; D B Goel; O P Pandey

    2005-06-01

    Influence of cold working and aging on the mechanical properties of a Cu-bearing HSLA-100 steel has been studied. The steel was given solution treatment at 1000°C, followed by cold rolling to 25, 50 and 80 pct deformations and aging at 600°C for various durations. Substantial improvement in hardness and UTS was observed in the peak aged condition of various treatments, but at the expense of ductility and impactenergy. Extensive scanning electron microscopic studies carried out on impact and tensile fracture surfaces suggest that poor impact energy and low ductility in peak aged condition could be associated with inhomogeneous deformation caused by the existence of coherent precipitates. Other parameters adversely affecting toughness and ductility in various stages of cold work and aging may include high stress concentration at high density dislocation network and dislocation–precipitate interface. Overaging in various treatments resulted in higher impact energy and ductility, presumably due to existence of incoherent precipitates and reduction in stress concentration at dislocation cell boundaries. It is observed that a good combination of high hardness and UTS with high impact energy and ductility could be obtained by a treatment suitable to cause coexistence of coherent and incoherent precipitates.

  2. [Acetabular fractures].

    Science.gov (United States)

    Gänsslen, A; Oestern, H J

    2011-12-01

    Treatment of acetabular fractures requires extensive knowledge of the bony anatomy, the amount of possible exposure of the bone with the selected approaches and fracture type-dependent indications of operative treatment. Classification of the fracture with detailed analysis of the fracture morphology is the basis for decision making and planning. The primary treatment aim is the anatomic reconstruction of the acetabulum which results in optimal long-term results.The basis of this overview is the presentation of standard treatment concepts in acetabular fracture surgery. Beside characteristics of the acetabular bony anatomy, biomechanical and pathomechanical principles and the relevant radiological anatomy, the treatment options, both conservative and operative and basic principles of the indications for standard surgical approaches will be discussed.The special fracture type is discussed in detail regarding incidence, injury mechanism, concomitant injuries, options for conservative and operative treatment, quality of operative reduction and long-term results.Furthermore, epidemiological data on typical postoperative complications are evaluated.

  3. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  4. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk

    Directory of Open Access Journals (Sweden)

    Ego Seeman

    2015-12-01

    Full Text Available Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.

  5. Stiffness and strength of fracture callus. Relative rates of mechanical maturation as evaluated by a uniaxial tensile test.

    Science.gov (United States)

    Black, J; Perdigon, P; Brown, N; Pollack, S R

    1984-01-01

    Mechanical evaluation of healing fractures in rabbits suggests that tensile testing both minimizes artifacts and permits direct intrinsic determinations of tissue quality. In healing osteotomies in the rabbit fibula, there is a rapid return of stiffness at 16 days, correlating with callus maturation. The failure mode proved to be a "delamination" fracture. Values for the strength of bone (3.3 N/m2) and fibrocartilage (0.2 N/m2) correlate well with the results of other studies but are probably values of maximum tissue adhesion strength.

  6. Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown ErAlO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in the load ranging from 10~100 g. The variation of microhardness with load which is best explained by Hays and Kendall's law leads to the load independent values of hardness. Classification of cracks is dealt with and it is reported that the transition from Palmqvist to median types of cracks occurs at higher loads. The values of fracture toughness (Kc), and brittleness index (Bi) are calculated using median types of cracks.

  7. Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels

    Science.gov (United States)

    Shtrombakh, Yaroslav I.; Gurovich, Boris A.; Kuleshova, Evgenia A.; Maltsev, Dmitry A.; Fedotova, Svetlana V.; Chernobaeva, Anna A.

    2014-09-01

    In this paper a complex of microstructural studies (TEM and SEM) and a comparative analysis of the results of these studies with the data of mechanical tests of temperature sets of VVER-1000 RPV surveillance specimens with exposure times up to ∼200,000 h were conducted. Special annealing of control and temperature sets of SS which provides the dissolution of grain boundary segregation was performed to clarify the mechanisms of thermal ageing. It was demonstrated that during long-term exposures up to 200,000 h at the operating temperature of about 310-320 °C thermal ageing effects reveal themselves only for the weld metal (Ni content ⩾ 1.35%) and are the result of grain boundary segregation accumulation (development of reversible temper brittleness). The obtained results improve the accuracy of prediction of the thermal ageing rate of VVER-1000 materials in case of RPV service life extension up to 60 years.

  8. Hot topics in epigenetic mechanisms of aging: 2011.

    Science.gov (United States)

    Berdasco, María; Esteller, Manel

    2012-04-01

    Aging is a complex process that results in compromised biological functions of the organism and increased susceptibility to disease and death. Although the molecular basis of aging is currently being investigated in many experimental contexts, there is no consensus theory to fully explain the aging process. Epigenetic factors, including DNA methylation, histone modifications, and microRNA expression, may play central roles in controlling changes in gene expression and genomic instability during aging. In this Hot Topic review, we first examine the mechanisms by which these epigenetic factors contribute to aging in diverse eukaryotic species including experimental models of yeasts, worms, and mammals. In a second section, we will emphasize in the mammalian epigenetic alterations and how they may affect human longevity by altering stem cell function and/or somatic cell decline. The field of aging epigenetics is ripe with potential, but is still in its infancy, as new layers of complexity are emerging in the epigenetic network. As an example, we are only beginning to understand the relevance of non-coding genome to organism aging or the existence of an epigenetic memory with transgenerational inheritance. Addressing these topics will be fundamental for exploiting epigenetics phenomena as markers of aging-related diseases or as therapeutic targets.

  9. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    Science.gov (United States)

    Kolluri, M.; Kryukov, A.; Magielsen, A. J.; Hähner, P.; Petrosyan, V.; Sevikyan, G.; Szaraz, Z.

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T41 value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high thermal stability.

  10. Fracture mechanics analysis on Smart-Cut technology. Part 2: Effect of bonding flaws

    Institute of Scientific and Technical Information of China (English)

    Bin Gu; Hongyuan Liu; Yiu-Wing Mai; Xi Qiao Feng; Shou Wen Yu

    2009-01-01

    In Part 2 of the paper on the Smart-Cut process,the effects of bonding flaws characterized by the size and internal pressure before and after splitting are studied by using fracture mechanics models. It is found that the bonding flaws with large size are prone to cause severe deviation of defect growth, leading to a non-transferred area of thin layer when splitting. In a practical Smart-Cut process where the internal pressure of bonding flaws is very small,large interfacial defects always promote defect growth in the splitting process. Meanwhile, increasing the internal pressure of the bonding flaws decreases the defect growth and its deviation before splitting. The mechanism of relaxation of stiffener constraint is proposed to clarify the effect of bonding flaws. Moreover, the progress of the splitting process is analyzed when bonding flaws are present. After splitting,those bonding flaws with large size and high internal pressure are vulnerable for the blistering of the thin film during high-temperature annealing.

  11. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  12. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  13. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model

    Directory of Open Access Journals (Sweden)

    Size Bi

    2016-01-01

    Full Text Available Word embedding, a lexical vector representation generated via the neural linguistic model (NLM, is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  14. Hygrothermal effects on dynamic mechanical snalysis and fracture behavior of polymeric composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa

    2005-09-01

    Full Text Available Polymer composites used above their glass transition temperatures Tg present a substantial degradation of physical properties; therefore a material's glass transition temperature and its change with moisture absorption are of practical importance. Little attention has been paid to the role of the adhesive bonding between the reinforcing fiber and matrix, particularly for BMI matrix. In this work the effect of moisture on the dynamic mechanical behavior and the fiber/matrix interface was investigated. Two systems were evaluated: carbon fabric/epoxy and carbon fabric/bismaleimide laminates. The results demonstrated that the moisture absorbed by the laminates causes either reversible or irreversible plasticization of the matrix. The humidity combined with the temperature effects may cause significant changes in the Tg matrix and toughness affecting the laminate strength. Moisture absorption was correlated to the fracture mode of the laminate demonstrating the deleterious effect of moisture on the interface. This leads to debonding between fiber and matrix. This behavior was investigated by scanning electron microscopy and dynamic mechanical analysis.

  15. A witnessed case of a classic metaphyseal fracture caused during IV line placement in a child: Insight into mechanism of injury.

    Science.gov (United States)

    Burrell, Tanya; Opfer, Erin; Berglund, Lisa; Lowe, Lisa H; Anderst, James

    2015-10-01

    Recent publications argue that classic metaphyseal fractures are caused by rickets as opposed to trauma. Previous case reports of accidental traumatic classic metaphyseal fractures have been discounted due to lack of identification of the fracture at the time of the traumatic event, and lack of an evaluation for boney metabolic disorders. We report a case of a 20 day old male with a diagnosis of congenital vertical talus who sustained a classic metaphyseal fracture of the distal tibia during manipulation in preparation for intravenous line placement. The mechanics of the event causing the classic metaphyseal fracture were witnessed and accompanied by an audible "pop". Prior x-rays of the tibia demonstrate normal osseous morphology, and an evaluation for boney metabolic disorders was normal. This case identifies a traumatic classic metaphyseal fracture and provides insight into the types of forces necessary to cause such a fracture.

  16. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates.

    Science.gov (United States)

    Manteghi, Saeed; Mahboob, Zia; Fawaz, Zouheir; Bougherara, Habiba

    2017-01-01

    The purpose of this study is to investigate the mechanical feasibility of a hybrid Glass/Flax/Epoxy composite material for bone fracture fixation such as fracture plates. These hybrid composite plates have a sandwich structure in which the outer layers are made of Glass/Epoxy and the core from Flax/Epoxy. This configuration resulted in a unique structure compared to prior composites proposed for similar clinical applications. In order to evaluate the mechanical properties of this hybrid composite, uniaxial tension, compression, three-point bending and Rockwell Hardness tests were conducted. In addition, water absorption tests were performed to investigate the rate of water absorption for the specimens. This study confirms that the proposed hybrid composite plates are significantly more flexible axially compared to conventional metallic plates. Furthermore, they have considerably higher ultimate strength in tension, compression and flexion. Such high strength will ensure good stability of bone-implant construct at the fracture site, immobilize adjacent bone fragments and carry clinical-type forces experienced during daily normal activities. Moreover, this sandwich structure with stronger and stiffer face sheets and more flexible core can result in a higher stiffness and strength in bending compared to tension and compression. These qualities make the proposed hybrid composite an ideal candidate for the design of an optimized fracture fixation system with much closer mechanical properties to human cortical bone.

  17. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Hong; Lee, Sung Hak [Pohang Univ. of Institute of Science and Technology, Pohang (Korea, Republic of); Kwon, Yong Nam [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-01-15

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process.

  18. Aging mechanisms and service life of lead-acid batteries

    Science.gov (United States)

    Ruetschi, Paul

    In lead-acid batteries, major aging processes, leading to gradual loss of performance, and eventually to the end of service life, are: Anodic corrosion (of grids, plate-lugs, straps or posts). Positive active mass degradation and loss of adherence to the grid (shedding, sludging). Irreversible formation of lead sulfate in the active mass (crystallization, sulfation). Short-circuits. Loss of water. Aging mechanisms are often inter-dependent. For example, corrosion of the grids will lead to increased resistance to current flow, which will in turn impede proper charge of certain parts of the active mass, resulting in sulfation. Active mass degradation may lead to short-circuits. Sulfation may be the result of a loss of water, and so forth. The rates of the different aging processes strongly depend on the type of use (or misuse) of the battery. Over-charge will lead to accelerated corrosion and also to accelerated loss of water. With increasing depth-of-discharge during cycling, positive active mass degradation is accelerated. Some aging mechanisms are occurring only upon misuse. Short-circuits across the separators, due to the formation of metallic lead dendrites, for example, are usually formed only after (excessively) deep discharge. Stationary batteries, operated under float-charge conditions, will age typically by corrosion of the positive grids. On the other hand, service life of batteries subject to cycling regimes, will typically age by degradation of the structure of the positive active mass. Starter batteries are usually aging by grid corrosion, for instance in normal passenger car use. However, starter batteries of city buses, making frequent stops, may age (prematurely) by positive active mass degradation, because the batteries are subject to numerous shallow discharge cycles. Valve-regulated batteries often fail as a result of negative active mass sulfation, or water loss. For each battery design, and type of use, there is usually a characteristic

  19. Rib stress fractures among rowers: definition, epidemiology, mechanisms, risk factors and effectiveness of injury prevention strategies.

    Science.gov (United States)

    McDonnell, Lisa K; Hume, Patria A; Nolte, Volker

    2011-11-01

    Rib stress fractures (RSFs) can have serious effects on rowing training and performance and accordingly represent an important topic for sports medicine practitioners. Therefore, the aim of this review is to outline the definition, epidemiology, mechanisms, intrinsic and extrinsic risk factors, injury management and injury prevention strategies for RSF in rowers. To this end, nine relevant books, 140 journal articles, the proceedings of five conferences and two unpublished presentations were reviewed after searches of electronic databases using the keywords 'rowing', 'rib', 'stress fracture', 'injury', 'mechanics' and 'kinetics'. The review showed that RSF is an incomplete fracture occurring from an imbalance between the rate of bone resorption and the rate of bone formation. RSF occurs in 8.1-16.4% of elite rowers, 2% of university rowers and 1% of junior elite rowers. Approximately 86% of rowing RSF cases with known locations occur in ribs four to eight, mostly along the anterolateral/lateral rib cage. Elite rowers are more likely to experience RSF than nonelite rowers. Injury occurrence is equal among sweep rowers and scullers, but the regional location of the injury differs. The mechanism of injury is multifactorial with numerous intrinsic and extrinsic risk factors contributing. Posterior-directed resultant forces arising from the forward directed force vector through the arms to the oar handle in combination with the force vector induced by the scapula retractors during mid-drive, or repetitive stress from the external obliques and rectus abdominis in the 'finish' position, may be responsible for RSF. Joint hypomobility, vertebral malalignment or low bone mineral density may be associated with RSF. Case studies have shown increased risk associated with amenorrhoea, low bone density or poor technique, in combination with increases in training volume. Training volume alone may have less effect on injury than other factors. Large differences in seat and handle

  20. Multiple bilateral lower limb fractures in a 2-year-old child: previously unreported injury with a unique mechanism

    Institute of Scientific and Technical Information of China (English)

    Basant Repswal; Anuj Jain; Sunil Gupta; Aditya Aggarwal; Tushar Kohli; Devendra Pathrot

    2014-01-01

    Fall from height is a common cause of unintentional injuries in children and accounts for 6% of all trauma-related childhood deaths,usually from head injury.We report a case of a 2-year-old child with multiple fractures of the bilateral lower limbs due to this reason.A child fell from a height of around 15 feet after toppling from a balcony.He developed multiple fractures involving the right femoral shaft,right distal femoral epiphysis (Salter Harris type 2),right distal metaphysis of the tibia and fibula,and undisplaced Salter Harris type 2 epiphyseal injury of the left distal tibia.There were no head,abdominal or spinal injuries.The patient was taken into emergency operation theatre after initial management which consisted of intravenous fluids,blood transfusion,and splintage of both lower limbs.Fracture of the femoral shaft was treated by closed reduction and fixation using two titanium elastic nails.Distal femoral physeal injury required open reduction and fixation with K wires.Distal tibia fractures were closely reduced and managed nonoperatively in both the lower limbs.All the fractures united in four weeks.At the last follow-up,the child had no disability and was able to perform daily activities comfortably.We also proposed the unique mechanism of injury in this report.

  1. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Vasile, E-mail: vasile.radu@nuclear.ro [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania); Roth, Maria [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania)

    2012-12-15

    For CANDU pressure tubes made from Zr-2.5%Nb alloy, the mechanism called delayed hydride cracking (DHC) is widely recognized as main mechanism responsible for crack initiation and propagation in the pipe wall. Generation of some blunt flaws at the inner pressure tube surface during refueling by fuel bundle bearing pad or by debris fretting, combined with hydrogen/deuterium up-take (20-40 ppm) from normal corrosion process with coolant, may lead to crack initiation and growth. The process is governed by hydrogen hysteresis of terminal solid solubility limits in Zirconium and the diffusion of hydrogen atoms in the stress gradient near to a stress spot (flaw). Creep and irradiation growth under normal operating conditions promote the specific mechanisms for Zirconium alloys, which result in circumferential expansion, accompanied by wall thinning and length increasing. These complicate damage mechanisms in the case of CANDU pressure tubes that are also are affected by irradiation environment in the reactor core. The structural integrity assessment of CANDU fuel channels is based on the technical requirements and methodology stated in the Canadian Standard N285.8. Usually it works with fracture mechanics principles in a deterministic manner. However, there are inherent uncertainties from the in-service inspection, which are associated with those from material properties determination; therefore a necessary conservatism in deterministic evaluation should be used. Probabilistic approach, based on fracture mechanics principle and appropriate limit state functions defined as fracture criteria, appears as a promising complementary way to evaluate structural integrity of CANDU pressure tubes. To perform this, one has to account for the uncertainties that are associated with the main parameters for pressure tube assessment, such as: flaws distribution and sizing, initial hydrogen concentration, fracture toughness, DHC rate and dimensional changes induced by long term

  2. Percutaneous Cement-Augmented Screws Fixation in the Fractures of the Aging Spine: Is It the Solution?

    Directory of Open Access Journals (Sweden)

    Sébastien Pesenti

    2014-01-01

    Full Text Available Introduction. Management of elderly patients with thoracolumbar fractures is still challenging due to frequent osteoporosis and risk of screws pull-out. The aim of this study was to evaluate results of a percutaneous-only procedure to treat these fragile patients using cement-augmented screws. Methods. 12 patients diagnosed with a thoracolumbar fracture associated with an important loss of bone stock were included in this prospective study. Surgical procedure included systematically a percutaneous osteosynthesis using cemented fenestrated screws. When necessary, additional anterior support was performed using a kyphoplasty procedure. Clinical and radiographic evaluations were performed using CT scan. Results. On the whole series, 15 fractures were diagnosed and 96 cemented screws were inserted. The difference between the pre- and postoperative vertebral kyphosis was statistically significant (12.9° versus 4.4°, P=0.0006. No extrapedicular screw was reported and one patient was diagnosed with a cement-related pulmonary embolism. During follow-up period, no infectious complications, implant failures, or pull-out screws were noticed. Discussion. Aging spine is becoming an increasing public health issue. Management of these patients requires specific attention due to the augmented risk of complications. Using percutaneous-only screws fixation with cemented screw provides satisfactory results. A rigorous technique is mandatory in order to achieve best outcomes.

  3. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2016-01-01

    Full Text Available The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS and/or Reactive Nitrosative Species (RNS. Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

  4. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  5. Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study

    DEFF Research Database (Denmark)

    Rubin, Katrine Hass; Abrahamsen, Bo; Friis-Holmberg, Teresa

    2013-01-01

    to use in clinical practice by the GP or the patient herself, could just as well as FRAX® be used to identify women with increased risk of fracture. SUMMARY: Comparison of FRAX® and simpler screening tools (OST, ORAI, OSIRIS, SCORE) in predicting fractures indicate that FRAX® did not perform better...... returned a questionnaire concerning items on risk factors for osteoporosis. Fracture risk was calculated using the different screening tools (FRAX®, OST, ORAI, OSIRIS and SCORE) for each woman. The women were followed using the Danish National Register registering new major osteoporotic fractures during 3...... 3years follow-up FRAX® did not perform better in the fracture risk prediction compared with simpler tools such as OST, ORAI, OSIRIS, SCORE or age alone in a screening scenario where BMD was not measured. These findings suggest that simpler models based on fewer risk factors, which would be easier...

  6. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  7. Effects of self-reported age at nonsurgical menopause on time to first fracture and bone mineral density in the Women's Health Initiative Observational Study.

    Science.gov (United States)

    Sullivan, Shannon D; Lehman, Amy; Thomas, Fridtjof; Johnson, Karen C; Jackson, Rebecca; Wactawski-Wende, Jean; Ko, Marcia; Chen, Zhao; Curb, J David; Howard, Barbara V

    2015-10-01

    Menopause is a risk factor for fracture; thus, menopause age may affect bone mass and fracture rates. We compared bone mineral density (BMD) and fracture rates among healthy postmenopausal women with varying ages at self-reported nonsurgical menopause. We compared hazard ratios for fractures and differences in BMD among 21,711 postmenopausal women from the Women's Health Initiative Observational Study cohort who had no prior hysterectomy, oophorectomy, or hormone therapy and had varying self-reported ages at menopause (menopause age groups. After multivariable adjustments for known risk factors for fracture, women who underwent menopause before age 40 years had a higher fracture risk at any site compared with women who underwent menopause at age 50 years or older (hazard ratio, 1.21; 95% CI, 1.02 to 1.44; P = 0.03). In a subset with BMD measurements (n = 1,351), whole-body BMD was lower in women who reported menopause before age 40 years than in women who reported menopause at ages 40 to 49 years (estimated difference, -0.034 g/cm; 95% CI, -0.07 to -0.004; P = 0.03) and women who reported menopause at age 50 years or older (estimated difference, -0.05 g/cm; 95% CI, -0.08 to -0.02; P menopause before age 40 years than in women who underwent menopause at age 50 years or older (estimated difference, -0.05 g/cm; 95% CI, -0.08 to -0.01; P = 0.01), and total spine BMD was lower in women who underwent menopause before age 40 years than in women who underwent menopause at age 50 years or older (estimated difference, -0.11 g/cm; 95% CI, -0.16 to -0.06; P menopause at ages 40 to 49 years (estimated difference, -0.09 g/cm; 95% CI, -0.15 to -0.04; P menopause may be a risk factor contributing to decreased BMD and increased fracture risk in healthy postmenopausal women. Our data suggest that menopause age should be taken into consideration, along with other osteoporotic risk factors, when estimating fracture risk in postmenopausal women.

  8. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D

  9. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus.

    Science.gov (United States)

    Shivarama Shetty, Mahesh; Sajikumar, Sreedharan

    2017-05-01

    Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging. Copyright © 2017 National University of Singapore. Published by Elsevier B.V. All rights reserved.

  10. A New Approach to the Modeling and Analysis of Fracture through Extension of Continuum Mechanics to the Nanoscale

    KAUST Repository

    Sendova, T.

    2010-02-15

    In this paper we focus on the analysis of the partial differential equations arising from a new approach to modeling brittle fracture based on an extension of continuum mechanics to the nanoscale. It is shown that ascribing constant surface tension to the fracture surfaces and using the appropriate crack surface boundary condition given by the jump momentum balance leads to a sharp crack opening profile at the crack tip but predicts logarithmically singular crack tip stress. However, a modified model, where the surface excess property is responsive to the curvature of the fracture surfaces, yields bounded stresses and a cusp-like opening profile at the crack tip. Further, two possible fracture criteria in the context of the new theory are discussed. The first is an energy-based crack growth condition, while the second employs the finite crack tip stress the model predicts. The classical notion of energy release rate is based upon the singular solution, whereas for the modeling approach adopted here, a notion analogous to the energy release rate arises through a different mechanism associated with the rate of working of the surface excess properties at the crack tip. © The Author(s), 2010.

  11. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.

    Directory of Open Access Journals (Sweden)

    Aviv Bergman

    2007-08-01

    Full Text Available An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the "oldest old" Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group, we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable genotype in neutralizing the deleterious effects of the lipoprotein(a (LPA gene

  12. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  13. Development of fracture mechanics data for two hydrazine APU turbine wheel materials

    Science.gov (United States)

    Curbishley, G.

    1975-01-01

    The effects of high temperature, high pressure ammonia were measured on the fracture mechanics and fatigue properties of Astroloy and Rene' 41 turbine wheel materials. Also, the influence of protective coatings on these properties was investigated. Specimens of forged bar stock were subjected to LCF and HCF tests at 950 K (1250 F) and 3.4 MN/sq m (500 psig) pressure, in ammonia containing about 1.5 percent H2O. Aluminized samples (Chromizing Company's Al-870) and gold plated test bars were compared with uncoated specimens. Comparison tests were also run in air at 950 K (1250 F), but at ambient pressures. K sub IE and K sub TH were determined on surface flawed specimens in both the air and ammonia in both uncoated and gold plated conditions. Gold plated specimens exhibited better properties than uncoated samples, and aluminized test bars generally had lower properties. The fatigue properties of specimens tested in ammonia were higher than those tested in air, yet the K sub TH values of ammonia tested samples were lower than those tested in air. However, insufficient specimens were tested to develop significant design data.

  14. NASCRAC - A computer code for fracture mechanics analysis of crack growth

    Science.gov (United States)

    Harris, D. O.; Eason, E. D.; Thomas, J. M.; Bianca, C. J.; Salter, L. D.

    1987-01-01

    NASCRAC - a computer code for fracture mechanics analysis of crack growth - is described in this paper. The need for such a code is increasing as requirements grow for high reliability and low weight in aerospace components. The code is comprehensive and versatile, as well as user friendly. The major purpose of the code is calculation of fatigue, corrosion fatigue, or stress corrosion crack growth, and a variety of crack growth relations can be selected by the user. Additionally, crack retardation models are included. A very wide variety of stress intensity factor solutions are contained in the code, and extensive use is made of influence functions. This allows complex stress gradients in three-dimensional crack problems to be treated easily and economically. In cases where previous stress intensity factor solutions are not adequate, new influence functions can be calculated by the code. Additional features include incorporation of J-integral solutions from the literature and a capability for estimating elastic-plastic stress redistribution from the results of a corresponding elastic analysis. An example problem is presented which shows typical outputs from the code.

  15. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  16. Pressure vessels design methods using the codes, fracture mechanics and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    Fatima Majid

    2016-10-01

    Full Text Available This paper gives a highlight about pressure vessel (PV methods of design to initiate new engineers and new researchers to understand the basics and to have a summary about the knowhow of PV design. This understanding will contribute to enhance their knowledge in the selection of the appropriate method. There are several types of tanks distinguished by the operating pressure, temperature and the safety system to predict. The selection of one or the other of these tanks depends on environmental regulations, the geographic location and the used materials. The design theory of PVs is very detailed in various codes and standards API, such as ASME, CODAP ... as well as the standards of material selection such as EN 10025 or EN 10028. While designing a PV, we must design the fatigue of its material through the different methods and theories, we can find in the literature, and specific codes. In this work, a focus on the fatigue lifetime calculation through fracture mechanics theory and the different methods found in the ASME VIII DIV 2, the API 579-1 and EN 13445-3, Annex B, will be detailed by giving a comparison between these methods. In many articles in the literature the uniaxial fatigue has been very detailed. Meanwhile, the multiaxial effect has not been considered as it must be. In this paper we will lead a discussion about the biaxial fatigue due to cyclic pressure in thick-walled PV. Besides, an overview of multiaxial fatigue in PVs is detailed

  17. Fatigue properties and fracture mechanism of load carrying type fillet joints with one-sided welding

    Directory of Open Access Journals (Sweden)

    Takamasa Abe

    2016-02-01

    Full Text Available The structures of the hydraulic excavator and the crane have numerous one-sided welded joints. However, attachments with box like structures are difficult to weld at both sides. Therefore, high accurate evaluation method is needed. In this study, the fatigue properties and the fracture mechanism of the load carrying type fillet joints with one-sided welding were investigated experimentally to evaluate its fatigue damage with high accuracy based on the experimental results. As the results, fatigue cracks in the test piece initiated from the tip of the unwelded portion and propagated into the welding materials. Multiple welding defects were observed in the unwelded portion, but did not appear to be crack origins. Although these welding defects affected the direction of crack propagation they exerted minimal influence. The three-dimensional observations revealed that fatigue cracks initiate at an early stage of the fatigue development. We infer that the fatigue lifetime is chiefly governed by the crack propagation lifetime. Cracks were initiated at multiple sites in the test piece. As the number of cycles increased, these cracks propagated and combined. So considering the combination of cracks from multiple crack origins is important for a precise evaluation of fatigue damage.

  18. Fatigue properties and fracture mechanism of load carrying type fillet joints with one-sided welding

    Directory of Open Access Journals (Sweden)

    Takamasa Abe

    2016-01-01

    Full Text Available The structures of the hydraulic excavator and the crane have numerous one-sided welded joints. However, attachments with box like structures are difficult to weld at both sides. Therefore, high accurate evaluation method is needed. In this study, the fatigue properties and the fracture mechanism of the load carrying type fillet joints with one-sided welding were investigated experimentally to evaluate its fatigue damage with high accuracy based on the experimental results. As the results, fatigue cracks in the test piece initiated from the tip of the unwelded portion and propagated into the welding materials. Multiple welding defects were observed in the unwelded portion, but did not appear to be crack origins. Although these welding defects affected the direction of crack propagation they exerted minimal influence. The three-dimensional observations revealed that fatigue cracks initiate at an early stage of the fatigue development. We infer that the fatigue lifetime is chiefly governed by the crack propagation lifetime. Cracks were initiated at multiple sites in the test piece. As the number of cycles increased, these cracks propagated and combined. So considering the combination of cracks from multiple crack origins is important for a precise evaluation of fatigue damage.

  19. Aging mechanisms of perfluorocarbon emulsions using image analysis.

    Science.gov (United States)

    Freire, Mara G; Dias, Ana M A; Coelho, Maria A Z; Coutinho, João A P; Marrucho, Isabel M

    2005-06-01

    The aging mechanisms of perfluorocarbon emulsions were investigated using image analysis. Oil-in-water emulsions of two perfluorocarbons, n-perfluorohexane and perfluorodecalin, were prepared with three emulsifiers, Lecithin, Span 20, and Pluronic F-68. The effect of the temperature and the replacement of water by an aqueous phase consisting of a microbial culture medium were also studied. The emulsions were prepared by sonication and their stability was followed through analysis of the evolution of mean droplet size. The results indicate that the stability of perfluorocarbon in water emulsions depends on all the parameters investigated and that two aging mechanisms, coalescence and molecular diffusion, may take place. Analysis of the evolution of the mean droplet size during long time periods indicate that coalescence is more common than previously reported for these systems and seems to be favored by a temperature increase.

  20. Age of acquisition: its neural and computational mechanisms.

    Science.gov (United States)

    Hernandez, Arturo E; Li, Ping

    2007-07-01

    The acquisition of new skills over a life span is a remarkable human ability. This ability, however, is constrained by age of acquisition (AoA); that is, the age at which learning occurs significantly affects the outcome. This is most clearly reflected in domains such as language, music, and athletics. This article provides a perspective on the neural and computational mechanisms underlying AoA in language acquisition. The authors show how AoA modulates both monolingual lexical processing and bilingual language acquisition. They consider the conditions under which syntactic processing and semantic processing may be differentially sensitive to AoA effects in second-language acquisition. The authors conclude that AoA effects are pervasive and that the neural and computational mechanisms underlying learning and sensorimotor integration provide a general account of these effects.

  1. The relationship between sports activities and permanent incisor crown fractures in a group of school children aged 7-9 and 11-13 in Ankara, Turkey.

    Science.gov (United States)

    Cetinbaş, Tuğba; Yildirim, Gözde; Sönmez, Hayriye

    2008-10-01

    The objective of the study was to determine the distribution, aetiology of the crown fractures of permanent anterior teeth in children aged 7-9 and 11-13 years and to identify the role of participation in sports associated with crown fractures. The study population comprised 2570 students from 10 primary schools randomly selected from five municipalities in Ankara, Turkey. Two paediatric dentists examined all permanent maxillary and mandibular incisors for evidence of fracture and completed a standardized examination form to obtain information on the age, gender, severity of incisor injury and frequency and type of sports participation for each child, as well as whether or not children used mouthguards during sports activities. Chi-square and z-tests were used to determine differences. A total of 191 (7.43%) of the 2570 subjects examined were affected by dental trauma. The proportion of fractured incisors was significantly higher in males than in females among older children (P < 0.01). Out of a total of 222 fractured teeth, 84% involved the maxillary central incisors. Bicycling caused significantly higher rates of crown fractures than other types of sports (P < 0.05). The percentage of incisal fractures caused by sports-related accidents was 14.14%. The number of children interested in sports is high, and the sports chosen are generally contact sports. The high rate (14.14%) of crown injuries caused by sports activities supports these findings.

  2. Engineering geological characteristics and the hydraulic fracture propagation mechanism of the sand-shale interbedded formation in the Xu5 reservoir

    Science.gov (United States)

    Lu, Cong; Li, Mei; Guo, Jian-Chun; Tang, Xu-Hai; Zhu, Hai-Yan; Yong-Hui, Wang; Liang, Hao

    2015-06-01

    In the Xu5 formation the sandstone reservoir and the shale reservoir are interbedded with each other. The average thickness of each formation is about 8 m, which increases the difficulty of the hydraulic fracturing treatment. The shale thickness ratio (the ratio of shale thickness to formation thickness) is 55-62.5%. The reservoir is characterized by ultra-low porosity and permeability. The brittleness index of sandstone is 0.5-0.8, and the brittleness index of shale is 0.3-0.8. Natural fractures are poorly developed and are mainly horizontal and at a low angle. The formation strength is medium and the reservoir is of the hybrid strike-slip fault and reverse fault stress regime. The difference between the minimum principal stress and the vertical stress is small, and the maximum horizontal principal stress is 20 MPa higher than the minimum horizontal principal stress and vertical stress. A mechanical model of a hydraulic fracture encountering natural fractures is built according to geological characteristics. Fracture mechanics theory is then used to establish a hydraulic fracturing model coupling the seepage-stress-damage model to simulate the initiation and propagation of a fracture. The hydraulic fracture geometry is mainly I-shaped and T-shaped, horizontal propagation dominates the extension, and vertical propagation is limited. There is a two to three meter stress diversion area around a single hydraulic fracture. The stress diversion between a hydraulic fracture and a natural fracture is advantageous in forming a complex fracture. The research results can provide theoretical guidance for tight reservoir fracturing design.

  3. Influence of welding parameters and post-weld aging on tensile properties and fracture location of AA2139-T351 friction-stir-welded joints

    Directory of Open Access Journals (Sweden)

    Umberto Prisco

    2013-01-01

    Full Text Available Tensile properties and fracture location of AA2139-T351 friction stir welded joints are studied in the as-welded and post-weld aged condition. The experimental results show that when the joints are free of welding defects, they fail on the advancing side of the HAZ exhibiting a large amount of plastic deformation. When the revolutionary pitch exceeds a threshold value, some micro-defects are formed in the weld nugget due to insufficient heat input. In this case, the joints fail near the weld center, and the fracture occurs in a mixed mode, both ductile and brittle. However, being less ductile, post-weld aged joints are less defect-tolerant and, then, they fracture closer to the weld center, showing a reduced elongation at fracture and an UTS within the order of magnitude of the as-welded joints.

  4. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    Science.gov (United States)

    Etube, Linus Sone

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast

  5. Fracture resistance curves and toughening mechanisms in polymer based dental composites

    DEFF Research Database (Denmark)

    De Souza, J.A.; Goutianos, Stergios; Skovgaard, M.

    2011-01-01

    The fracture resistance (R-curve behaviour) of two commercial dental composites (Filtek Z350® and Concept Advanced®) were studied using Double Cantilever Beam sandwich specimens loaded with pure bending moments to obtain stable crack growth. The experiments were conducted in an environmental...... significantly higher fracture resistance than the composite with the coarser microstructure. The fracture properties were related to the flexural strength of the dental composites. The method, thus, can provide useful insight into how the microstructure enhances toughness, which is necessary for the future...

  6. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms.

    Science.gov (United States)

    Lephart, Edwin D

    2016-11-01

    Oxygen in biology is essential for life. It comes at a cost during normal cellular function, where reactive oxygen species (ROS) are generated by oxidative metabolism. Human skin exposed to solar ultra-violet radiation (UVR) dramatically increases ROS production/oxidative stress. It is important to understand the characteristics of human skin and how chronological (intrinsic) aging and photo-aging (extrinsic aging) occur via the impact of ROS production by cascade signaling pathways. The goal is to oppose or neutralize ROS insults to maintain good dermal health. Botanicals, as active ingredients, represent one of the largest categories used in dermatology and cosmeceuticals to combat skin aging. An emerging botanical is equol, a polyphenolic/isoflavonoid molecule found in plants and food products and via gastrointestinal metabolism from precursor compounds. Introductory sections cover oxygen, free radicals (ROS), oxidative stress, antioxidants, human skin aging, cellular/molecular ROS events in skin, steroid enzymes/receptors/hormonal actions and genetic factors in aging skin. The main focus of this review covers the characteristics of equol (phytoestrogenic, antioxidant and enhancement of extracellular matrix properties) to reduce skin aging along with its anti-aging skin influences via reducing oxidative stress cascade events by a variety of biochemical/molecular actions and mechanisms to enhance human dermal health. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lifestyles and Ageing: Targeting Key Mechanisms to Shift the Balance from Unhealthy to Healthy Ageing.

    Science.gov (United States)

    Grassi, Claudio; Landi, Francesco; Delogu, Giovanni

    2014-01-01

    The increase in life expectancy has dramatically enhanced the prevalence of age-related chronic diseases resulting in growing costs for both society and individuals. Identification of strategies contributing to healthy ageing is thus one of the major challenges of the coming years. Lifestyle has a primary role among non-genetic factors affecting health and lifespan. In particular, nutrition, mental and physical activity impact the molecular and functional mechanisms whose alterations cause the major age-related diseases. A better understanding of mechanisms underlying the beneficial action of correct lifestyles is useful to develop interventions aimed at preventing and/or delaying the onset of chronic degenerative diseases, to identify high-risk populations who could be targeted in intervention trials as well as to identify novel biomarkers of healthy ageing. A multidisciplinary team of basic scientists and clinicians operating at the Catholic University Medical School in Rome is actively working on this topic to determine the ability of healthy lifestyles to promote active ageing and counteract the major age-related diseases affecting brain health, musculoskeletal function and gut microenvironment. This chapter summarizes our strategic approaches, the major results we obtained so far and the main experimental and translational perspectives.

  8. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    Science.gov (United States)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  9. Character, relative age and implications of fractures and other mesoscopic structures associated with detachment folds: an example from the Lisburne Group of the Northeastern Brooks Range, Alaska.

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, C.L. [Alaska Univ., Fairbanks, AK (United States). Geophysical Inst.; Wallace, W.K.; Atkinson, P.K.; Brinton, J. [Alaska Univ., Fairbanks, AK (United States). Dept. of Geology and Geophysics; Alaska Univ., Fairbanks, AK (United States). Geophysical Inst.; Bui, T.; Jensen, J. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering; Lorenz, J. [Sandia National Laboratory, Albuquerque, NM (United States)

    2004-06-01

    Hydrocarbon exploration can benefit enormously from a proper knowledge of the history and unique character of a fold-and-thrust belt. The study of fractures and other mesoscopic structures can help explain folding mechanisms. The northeastern Brooks Range of Alaska represents a fairly simple fold-and-thrust belt in which the history of fracture development can be studied. Deformed Lisburne Group carbonates preserve the character and sequence of fractures and suggest a variety of mechanisms for fracture formation before, during, and after folding. The earliest fractures were probably formed in the foreland basin and later incorporated into the thrust belt, then thrusted and folded. Later, carbonates that were previously lying flat were incorporated into the fold-and-thrust belt where they were deformed mainly by a detachment fold, as a result of flexural slip and homogeneous flattening. Early fractures such as these were commonly overprinted or destroyed by ductile strain as later homogeneous flattening allowed additional shortening. These were in turn overprinted by late extension fractures that formed during flexural slip in the last phases of folding or after folding due to unroofing of the orogenic wedge. This study thus highlights how multiple generations of mesoscopic structures may be related to the kinematics of a specific fold-and-thrust belt. 45 refs., 1 tab., 16 figs.

  10. Aging and Neurodegeneration: A Tangle of Models and Mechanisms

    Science.gov (United States)

    Chakrabarti, Sasanka; Mohanakumar, Kochupurackal P.

    2016-01-01

    The research on aging and age-related diseases, especially the neurodegenerative diseases, is on the fast track. However, the results have so far not been translated to actual benefit for the patients in terms of treatment or diagnosis of age-related degenerative diseases including those of the CNS. As far as the prevention of the cognitive decline during non-pathological aging is concerned, there is nothing much to offer other than calorie restriction and physical exercise. Needless to say, the benefits are not up to our expectations. However, over the years at the experimental level it has been possible to identify several cellular and molecular mechanisms that are intricately associated with aging in general and neurodegenerative diseases in particular. These include oxidative stress and altered redox-signaling, mitochondrial dysfunction, inflammation, proteotoxicity and altered gene expressions. These inter-dependent pathways mediate cellular senescence and often culminate in programmed cell death like apoptosis and autophagy, and in the context of brain these changes are manifested clinically as cognitive decline and pathologically as neurodegeneration. This special issue provides the readers with glimpses of this complex scenario from different angles primarily in the context of brain and also attempts to identify the potential drug targets against neurodegenerative diseases. PMID:27114843

  11. Fracture Mechanics Models for Brittle Failure of Bottom Rails due to Uplift in Timber Frame Shear Walls

    Directory of Open Access Journals (Sweden)

    Joergen L. Jensen

    2016-01-01

    Full Text Available In partially anchored timber frame shear walls, hold-down devices are not provided; hence the uplift forces are transferred by the fasteners of the sheathing-to-framing joints into the bottom rail and via anchor bolts from the bottom rail into the foundation. Since the force in the anchor bolts and the sheathing-to-framing joints do not act in the same vertical plane, the bottom rail is subjected to tensile stresses perpendicular to the grain and splitting of the bottom rail may occur. This paper presents simple analytical models based on fracture mechanics for the analysis of such bottom rails. An existing model is reviewed and several alternative models are derived and compared qualitatively and with experimental data. It is concluded that several of the fracture mechanics models lead to failure load predictions which seem in sufficiently good agreement with the experimental results to justify their application in practical design.

  12. Deformation mechanism under essential work of fracture process in polycyclo-olefin materials

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The fracture toughness of a glassy polycyclo-olefin (PCO was investigated by the essential work of fracture (EWF method using a double-edge notched specimens. It was shown that the PCO follows the EWF concept in the temperature range between room temperature and glass transition temperature Tg where the ligament yielding appear at a maximum point on the stress-displacement curves and subsequently the necking and tearing processes take place in the post yielding region. The essential work of fracture required for the ligament yielding drops as the temperature approaches Tg. The non-essential work of fracture attributed to tearing process after yielding is consumed to expand the plastic region and causes molecular chains to orient to the stretching direction.

  13. Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir

    Science.gov (United States)

    Ma, Xinfang; Zou, Yushi; Li, Ning; Chen, Ming; Zhang, Yinuo; Liu, Zizhong

    2017-04-01

    Glutenite reservoirs are frequently significantly heterogeneous because of their unique depositional environment. The presence of gravel in this type of formation complicates the growth path of hydraulic fracture (HF). In this study, laboratory fracturing experiments were conducted on six large natural glutenite specimens (300 mm × 300 mm × 300 mm) using a true triaxial hydraulic fracturing system to investigate the growth law of HF in glutenite reservoirs. Before the experiments were performed, the rock properties of the gravel particles and matrix in the glutenite specimens were determined using various apparatuses. The effects of gravel size, horizontal differential stress, fracturing fluid type (or viscosity), and flow rate on the HF growth pattern, fracture width, and injection pressure were examined in detail. Similar to previous studies, four types of HF intersections with gravel particles, namely, termination, penetration, deflection, and attraction, were observed. The HF growth path in the glutenite specimens with large gravel (40 mm-100 mm) is likely branched and tortuous even under high horizontal differential stress. The HF growth path in the glutenite specimens with small gravel (less than 20 mm) is simple, but a process zone with multiple thin fractures may be created. Breakdown pressure may increase significantly when HF initiates from high-strength gravel particles, which are mainly composed of quartz. HF propagation is likely limited within high-strength gravel particles, thereby resulting in narrow fractures and even termination. The use of low-viscosity fluids, such as slickwater, and the low injection rate can further limit HF growth, particularly its width. As a response, high extension pressure builds up during fracturing.

  14. Fracture properties of concrete specimens made from alkali activated binders

    Science.gov (United States)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties – effective fracture toughness and specific fracture energy – of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P–d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P–CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  15. Patients with rett syndrome sustain low-energy fractures

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    We present the first case-control study addressing both fracture occurrence and fracture mechanisms in Rett syndrome (RTT). Two previous studies have shown increased fracture risk in RTT. This was also our hypothesis regarding the Danish RTT population. Therefore, we investigated risk factors...... and x-ray evaluations. National register search on fracture diagnoses was done to obtain complete fracture histories. Our results showed that patients with RTT sustained significantly more low-energy fractures from early age compared with controls, even though overall fracture occurrence apparently...... was not increased. Low-energy fractures were significantly associated with less mobility and lack of ambulation. Associations with MECP2 mutations or epilepsy were not demonstrated, contrary to previous findings. Blood biochemistry indicated a possible need for D vitamin supplementation in RTT. Our study casts...

  16. Assessment of fracture risk

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, John A. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom)], E-mail: w.j.pontefract@sheffield.ac.uk; Johansson, Helena; Oden, Anders [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); McCloskey, Eugene V. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); Osteoporosis Centre, Northern General Hospital, Sheffield (United Kingdom)

    2009-09-15

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  17. Mechanism of Inflammation in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2012-01-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.

  18. Mechanism of inflammation in age-related macular degeneration.

    Science.gov (United States)

    Parmeggiani, Francesco; Romano, Mario R; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.

  19. Nonmonotonic Aging and Memory Retention in Disordered Mechanical Systems

    Science.gov (United States)

    Lahini, Yoav; Gottesman, Omer; Amir, Ariel; Rubinstein, Shmuel M.

    2017-02-01

    We observe nonmonotonic aging and memory effects, two hallmarks of glassy dynamics, in two disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression, both systems exhibit monotonic nonexponential relaxation. However, when after a certain waiting time the compression is partially reduced, both systems exhibit a nonmonotonic response: the normal force first increases over many minutes or even hours until reaching a peak value, and only then is relaxation resumed. The peak time scales linearly with the waiting time, indicating that these systems retain long-lasting memory of previous conditions. Our results and the measured scaling relations are in good agreement with a theoretical model recently used to describe observations of monotonic aging in several glassy systems, suggesting that the nonmonotonic behavior may be generic and that athermal systems can show genuine glassy behavior.

  20. Low bone mineral density is a significant risk factor for low-energy distal radius fractures in middle-aged and elderly men: A case-control study

    Directory of Open Access Journals (Sweden)

    Johnsen Villy

    2011-04-01

    Full Text Available Abstract Background In general there is a lack of data on osteoporosis and fracture in men; this also includes low-energy distal radius fractures. The objectives of this study were to examine BMD and identify factors associated with distal radius fractures in male patients compared with controls recruited from the background population. Methods In a 2-year period, 44 men 50 years or older were diagnosed with low-energy distal radius fractures, all recruited from one hospital. The 31 men who attended for osteoporosis assessment were age-matched with 35 controls. Demographic and clinical data were collected and BMD at femoral neck, total hip and spine L2-4 was assessed by dual energy X-ray absorptiometry. Results Apart from weight and living alone, no significant differences were found between patient and controls for demographic variables (e.g. height, smoking and clinical variables (e.g. co-morbidity, use of glucocorticoids, osteoporosis treatment, falls and previous history of fracture. However, BMD expressed as T-score was significant lower in patients than in controls at all measurement sites (femoral neck: -2.24 vs. -1.15, p Conclusion The results from our study indicate that reduced BMD is an important risk factor for low-energy distal radius fracture in men. This suggests that improvement of BMD by both pharmacological and non-pharmacological initiatives may be a strategy to reduce fracture risk in men.

  1. Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone

    Science.gov (United States)

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688

  2. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing.

    Science.gov (United States)

    Holstein, Joerg H; Menger, Michael D; Scheuer, Claudia; Meier, Christoph; Culemann, Ulf; Wirbel, Rainer J; Garcia, Patric; Pohlemann, Tim

    2007-02-13

    Beyond its role in the regulation of red blood cell proliferation, the glycoprotein erythropoietin (EPO) has been shown to promote cell regeneration and angiogenesis in a variety of different tissues. In addition, EPO has been indicated to share significant functional and structural homologies with the vascular endothelial growth factor (VEGF), a cytokine essential in the process of fracture healing. However, there is complete lack of information on the action of EPO in bone repair and fracture healing. Therefore, we investigated the effect of EPO treatment on bone healing in a murine closed femur fracture model using radiological, histomorphometric, immunohistochemical, biomechanical and protein biochemical analysis. Thirty-six SKH1-hr mice were treated with daily i.p. injections of 5000 U/kg EPO from day 1 before fracture until day 4 after fracture. Controls received equivalent amounts of the vehicle. After 2 weeks of fracture healing, we could demonstrate expression of the EPO-receptor (EPOR) in terminally differentiating chondrocytes within the callus. At this time point EPO-treated animals showed a higher torsional stiffness (biomechanical analysis: 39.6+/-19.4% of the contralateral unfractured femur) and an increased callus density (X-ray analysis (callus density/spongiosa density): 110.5+/-7.1%) when compared to vehicle-treated controls (14.3+/-8.2% and 105.9+/-6.6%; pEPO treatment had vanished at 5 weeks after fracture. We conclude that EPO-EPOR signaling is involved in the process of early endochondral ossification, enhancing the transition of soft callus to hard callus.

  3. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  4. Mechanical Reproduction in an Age of High Art

    Directory of Open Access Journals (Sweden)

    Chris Barker

    2014-01-01

    Full Text Available This paper reopens the question of the place of high art in the period identified by Walter Benjamin as the age of mechanical reproduction. Walter Benjamin, Bruno Latour, and Adam Lowe are wrong to think that mechanical reproduction has transformed the concept of art, destroying the aura of art or transmitting that aura from original to copy. The concept of art cannot be redefined by the modern change in the capacity to reproduce art unless art was initially defined primarily by its uniqueness/nonreproducibility. Photographic reproduction has caused major changes in the visual arts and in the way we consume art, but reproductive techniques have a long, continuous history that includes the production and reproduction of exact, artistic copies.