WorldWideScience

Sample records for agarose mold compliance

  1. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  2. The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis.

    OpenAIRE

    Griess, G A; Guiseley, K B; Serwer, P

    1993-01-01

    To understand the organization of fibers in an agarose gel, digitized electron micrographs are used here to determine the frequency distribution of interfiber distance (2Pc) in thin sections of agarose gels. For a preparation of underivatized agarose, a 1.5% gel has a Pc distribution that is indistinguishable from the Pc distribution of a computer-generated, random-fiber gel; the log of the occurrence frequency (F) decreases linearly as a function of Pc. As the agarose concentration decreases...

  3. Agarose Gel Electrophoresis for the Separation of DNA Fragments

    OpenAIRE

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-01-01

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA....

  4. Molds in the Environment

    Science.gov (United States)

    ... You Can Control Mold Program in Brief Related Issues Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's ... in the Environment What are molds? What are some of the ...

  5. Electron beam sterilization of the agarose gel used for electrophoresis

    International Nuclear Information System (INIS)

    The results obtained by electron beam (EB) sterilization of the plates with agarose gel used for human serum protein electrophoresis are presented. Also, the results obtained by human serum protein electrophoresis performed with agarose gel plates irradiated at different EB doses, from 4 kGy to 20 kGy, are presented. The microbiological results demonstrate that above 5 kGy the irradiated agarose plates are sterile. The EB irradiation of the agarose gel plates in the dose range of 7-9 kGy gives the best results for both, sterilization and protein fraction separation processes. (author)

  6. Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic time-lapse imaging in an agarose matrix.

    Science.gov (United States)

    Choi, Jungil; Yoo, Jungheon; Kim, Ki-Jung; Kim, Eun-Geun; Park, Kyung Ock; Kim, Hyejin; Kim, Haeun; Jung, Hyunju; Kim, Taeyoung; Choi, Myungjin; Kim, Hee Chan; Ryoo, Sungweon; Jung, Yong-Gyun; Kwon, Sunghoon

    2016-03-01

    Tuberculosis (TB) is a major global health problem, and multi-drug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) are spreading throughout the world. However, conventional drug susceptibility test (DST) methods, which rely on the detection of the colony formation on a solid medium, require 1-2 months to the result. A rapid and accurate DST is necessary to identify patients with drug-resistant TB and treat them with appropriate drugs. Here, we used microscopic imaging of Mycobacterium tuberculosis (MTB) immobilized in an agarose matrix for a rapid DST. The agarose matrix, which was molded in a microfluidic chip, was inoculated with MTB, and TB drugs in liquid culture medium diffused throughout the agarose to reach the MTB immobilized in the agarose matrix. After the responses of MTB to drugs were tracked with an automated microscopic system, an image-processing program automatically determined the susceptibility and resistance of MTB to specific doses of TB drugs. The automatic DST system was able to assess the drug susceptibility of various drug-resistant clinical TB strains within 9 days with an accuracy comparable to that of conventional method. Our rapid DST method based on microscopic time-lapse imaging greatly reduces the time required for a DST and can be used to rapidly and accurately treat TB patients. PMID:26754815

  7. Molding method and molding device for fuel molding material

    International Nuclear Information System (INIS)

    A powdery nuclear fuel is subjected to preliminary press under low pressure to compression mold into divided molding products of predetermined shapes. A plurality of the divided molding products are assembled to arrange them into a predetermined shape which forms a nuclear fuel molding product, then the plurality of arranged divided molding products are subjected to main press under a pressure higher than that upon preliminary press to form an integrated product. A plurality of divided molding products comprise preliminary pressed two semi-cylindrical divided molding products and one planar divided molding product. The planar divided molding product is inserted between the two semi-cylindrical divided products to form a cylindrical product. With such procedures, since grinding step for the outer side can be made unnecessary, maintenance, control for the grinding facilities to be used for grinding the outer side and labors required for the grinding thereof are eliminated. Further, since UO2 scraps and losses generated during the grinding step for the outer side are eliminated, the recovery and reprocessing of the UO2 scraps are no more necessary, as well as expensive U which was lost as wastes can be utilized thereby capable of drastically reducing the cost. (T.M.)

  8. Composition of agarose substrate affects behavioral output of Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi Aristomenis Apostolopoulou

    2014-01-01

    Full Text Available In the last decade the Drosophila larva has evolved into a simple model organism offering the opportunity to integrate molecular genetics with systems neuroscience. This led to a detailed understanding of the functional neuronal networks for a number of sensory functions and behaviors including olfaction, vision, gustation and learning and memory. Typically, behavioral assays in use exploit simple Petri dish setups with either agarose or agar as a substrate. However, neither the quality nor the concentration of the substrate is generally standardized across these experiments and there is no data available on how larval behavior is affected by such different substrates. Here, we have investigated the effects of different agarose concentrations on several larval behaviors. We demonstrate that agarose concentration is an important parameter, which affects all behaviors tested: preference, feeding, learning and locomotion. Larvae can discriminate between different agarose concentrations, they feed differently on them, they can learn to associate an agarose concentration with an odor stimulus and crawl faster on a substrate of higher agarose concentration. Additionally, we have investigated the effect of agarose concentration on three quinine based behaviors: preference, feeding and learning. We show that in all cases examined the behavioral output changes in an agarose concentration-dependent manner. Our results suggest that comparisons between experiments performed on substrates differing in agarose concentration should be done with caution. It should be taken into consideration that the agarose concentration can affect the behavioral output and thereby the experimental outcomes per se potentially due to an increased escape response on more rigid substrates.

  9. Thermoset matched die molding

    Science.gov (United States)

    Young, P. R.

    Reinforced molding compounds, mat molding, preform molding, cold press molding, and various other molding processes are discussed. Particular attention is given to the bulk molding compound (BMC) and the sheet molding compound (SMC) (both of which are reinforced molding compounds) as there is an increasing use of these compounds. SMC can employ a wider range of fiber lengths and fiber content than BMC, while preserving strength. The dimensional stability of BMC and SMC is unexcelled, and their corrosion resistance is generally excellent. Both compounds are composed of resins (10-2500 poises), reinforcements (BMC-glass, asbestos, sisal; SMC-soluble binder chopped strand mat), and fillers from four chemical groups (silica and silicates, carbonates, sulfates, and oxides). Molding press designs are included.

  10. Bleach Neutralizes Mold Allergens

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  11. Uptake and Recovery of Lead by Agarose Gel Polymers

    Directory of Open Access Journals (Sweden)

    Anurag Pandey

    2009-01-01

    Full Text Available Problem statement: The uptake and recovery of lead ions were investigated by using agarose gel polymers. Approach: The experimental results showed that the agarose gel were effective in removing Pb (II from solution. Biosorption equilibrium was approached within 4 h. Pseudo second-order was applicable to all the sorption data over the entire time range. Results: The sorption data conformed well to both the Langmuir and the Freundlich isotherm model. The maximum adsorption capacity (qmax onto agarose gel was 115 mg g-1 for Pb (II. The maximum uptake of metal ions was obtained at pH 2.0. At temperature 35°C, the biosorption of metal ions was found to be highest, with increase or decrease in temperature resulted in a decrease in the metal ions uptake capacity. Conclusion: Elution experiments were carried out to remove Pb (II ions from loaded agarose gel and the bound metal ions could be eluted successfully using 0.1 M EDTA solution. The results suggest that agarose gel can be used as a biosorbent for an efficient removal of Pb(II ions from aqueous solution.

  12. Recovery of uranium by tannin immobilized on agarose

    International Nuclear Information System (INIS)

    Tannin, which is a ubiquitous and inexpensive material, was immobilized on agarose gel to produce an excellent adsorbent for uranium recovery from seawater. Optimal conditions for the immobilization of tannin on agarose gel by both the epichlorohydrin and cyanuric chloride coupling procedures were examined in detail. The resulting immobilized tannin has a highly selective ability to adsorb uranium and applicability in both column and batch systems. This adsorbent can recover uranium from natural seawater with high efficiency. The maximum adsorption capacities were 1850 μg uranium g-1 adsorbent for the tannin immobilized on agarose gel by the epichlorohydrin coupling procedure and 1062 μg g-1 adsorbent for that produced by the cyanuric chloride coupling procedure. (author)

  13. Optical investigation of diffusion of levofloxacin mesylate in agarose hydrogel

    Science.gov (United States)

    Tan, Shuaixia; Dai, Hongjun; Wu, Juejie; Zhao, Ning; Zhang, Xiaoli; Xu, Jian

    2009-09-01

    Real-time electronic speckle pattern interferometry method has been applied to study the diffusion behavior of levofloxacin mesylate (MSALVFX) in agarose hydrogel. The results show that the diffusivity of solute decreases with the increase of concentration of agarose and adapts to Kohlrausch's law. Furthermore, Amsden's model, based on the retardance effect associated with polymer chain flexibility, was employed to simulate the diffusion behavior. The consistent results suggest that the retardance effect dominates the diffusion process of MSALFVX in hydrogel; moreover, polymer chain flexibility greatly affects drug transport within the polymer matrix.

  14. Purification of the Rous sarcoma virus src kinase by casein-agarose and tyrosine-agarose affinity chromatography.

    OpenAIRE

    Fukami, Y.; Lipmann, F

    1985-01-01

    A simple and effective purification method for the src kinase, the transforming gene product of Rous sarcoma virus, has been developed by using affinity chromatography on casein-agarose and tyrosine-agarose columns. NaDodSO4/polyacrylamide gel electrophoresis and silver staining analysis showed that the purified kinase preparation was composed of a predominant polypeptide of 60,000-Da. In most of the preparations, however, three minor proteins (54,000, 52,000, and 15,000 Da) were also detecte...

  15. NEUTROPHIL MIGRATION UNDER AGAROSE IS ALTERED BY COPPER DEFICIENCY

    Science.gov (United States)

    Dietary copper deficiency alters neutrophil sequestration and margination within the pulmonary microcirculation in rats. In the current study, the role of copper in CD1 lb/CD18-dependent an -independent migration of neutrophils under agarose was studied. Male, weanling Sprague-Dawley rats were fed p...

  16. Dusts and Molds

    Science.gov (United States)

    ... ABOUT DUSTS AND MOLDS? Tiny dust particles and mold spores can be inhaled into the lungs. Dusts that come from a living source (“organic dusts”) such as hair, bedding, hay, grain, silage, and dried urine and feces are most dangerous. ...

  17. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  18. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    OpenAIRE

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylami...

  19. Numerical Simulation of Phenolic Sheet Molding Compound in Compression Molding

    Institute of Scientific and Technical Information of China (English)

    MEI Qi-lin; YAN Shi-lin; HUANG Zhi-xiong

    2003-01-01

    Based on generalized Hele-Shaw (GHS) model, a numerical simulation of phenolic sheet molding compound (P-SMC) in compression molding is realized by finite element step-by-step computing method. Finite elemental computing and post analysis programs have been written. The compression mold filling process, time and pressure requirements of P-SMC in a closed mold are predicted, and a good agreement is shown when compared with experiments. It will be of theoretical significance for the mold design and the optimization of the technological parameters in the compression molding of sheet molding compound.

  20. Electrophoresis and orientation of F-actin in agarose gels.

    OpenAIRE

    Borejdo, J; Ortega, H.

    1989-01-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase...

  1. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    Science.gov (United States)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  2. Electrophoretic properties of the scrapie agent in agarose gels.

    OpenAIRE

    Prusiner, S B; Groth, D F; Bildstein, C; Masiarz, F R; McKinley, M P; Cochran, S P

    1980-01-01

    The molecular properties of the scrapie agent were investigated by subjecting partially purified preparations to electrophoresis on agarose gels. When electrophoresis was performed at room temperature in the presence of sodium dodecyl sulfate (NaDodSO4), most of the recoverable agent was found at the top of the gel, consistent with previous studies indicating aggregation of the agent upon exposure to elevated temperatures. In addition, less than 5% of the agent applied to the gel was found af...

  3. Separation of long RNA by agarose-formaldehyde gel electrophoresis

    OpenAIRE

    Mansour, Farrah H.; Pestov, Dimitri G.

    2013-01-01

    We describe a method to facilitate electrophoretic separation of high molecular weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative “pK-matched” buffer systems were substituted for the traditionally used MOPS-based conductive media. The key advantages include shortened run times, a five-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a...

  4. Purification of coated vesicles by agarose gel electrophoresis

    OpenAIRE

    1981-01-01

    We have applied agarose gel electrophoresis as a novel step in the purification of clathrin-coated vesicles. Preparations of coated vesicles obtained by sedimentation velocity and isopycnic centrifugation are resolved into two distinct fractions upon electrophoresis. The slower migrating fraction contains smooth vesicles, whereas the faster contains only coated vesicles and empty clathrin coats. The faster mobility of the coated vesicles is primarily caused by the acidic nature of clathrin. C...

  5. Mold Image Library

    Science.gov (United States)

    ... Terry Brennan Example of exhaust vent in a bathroom Photo courtesy of Terry Brennan Example of an ... led to mold on paneling behind mirror above bathroom sink. (The mirror has been removed in this ...

  6. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  7. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability

    Directory of Open Access Journals (Sweden)

    Yoshika Suzawa

    2015-06-01

    Full Text Available Hydroxyapatite (HA or calcium carbonate (CaCO3 formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects.

  8. Ion diffusion modelling of Fricke-agarose dosemeter gels

    International Nuclear Information System (INIS)

    In Fricke-agarose gels, an accurate determination of the spatial dose distribution is hindered by the diffusion of ferric ions. In this work, a model was developed to describe the diffusion process within gel samples of finite length and, thus, permit the reconstruction of the initial spatial distribution of the ferric ions. The temporal evolution of the ion concentration as a function of the initial concentration is derived by solving Fick's second law of diffusion in two dimensions with boundary reflections. The model was applied to magnetic resonance imaging data acquired at high spatial resolution (0.3 mm) and was found to describe accurately the observed diffusion effects. (authors)

  9. Orientation of the agarose gel matrix in pulsed electric fields.

    OpenAIRE

    Stellwagen, J; Stellwagen, N C

    1989-01-01

    The technique of transient electric birefringence was used to investigate the effect of pulsed electric fields on the orientation of the agarose gel matrix. Orientation of the gel was observed at all electric field strengths. Very slow, time-dependent effects were observed when pulses of 10-100 V/cm were applied to 1% gels for 0.5-2 seconds, indicating that domains of the matrix were being oriented by the electric field. The sign of the birefringence reversed when the direction of the applied...

  10. Immobilization of Candida cylindracea lipase on PVC, chitin and agarose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.C.; Shaw, J.F.

    1987-01-01

    Candida cylindracea lipase was covalently coupled to PVC, chitin and agarose, which are abundant in Taiwan by several different methods. The agarose-dodecylene-diamine-glutaraldehyde (A-DDA-GA) system showed the highest relative loading enzyme activity, 118 mg soluble lipase per gram support. The chitosan-carbodiimide glutaraldehyde (CN-EDC-GA) systems immobilized 67 mg soluble lipase per gram support. The optimal pH of immobilized lipase was 8.5, which was one pH unit higher than that of soluble lipase. The optimal temperatures were in the range between 52-64/sup 0/C. The CN-EDC-GA system was the highest (64/sup 0/C), which was 27/sup 0/C higher than soluble lipase. The CH-EDC-GA system also had the best thermal stability (the half life at 55/sup 0/C was 29 h.) and operational stability at higher temperature (the half life at 40/sup 0/C was 495 h). However, the PVC-ethylenediamine-GA system appeared to have the best stability at lower temperature, the projected half life at 20/sup 0/C from Arrhenius plot was 31,802 h.

  11. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard;

    and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These...... understand structure-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  12. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose.

    OpenAIRE

    Armstrong, G. D.; Peppler, M S

    1987-01-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin...

  13. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  14. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  15. Tax Compliance

    OpenAIRE

    James Andreoni; Brian Erard; Jonathan Feinstein

    1998-01-01

    This paper provides a review of the major findings in the economics literature on tax compliance. It focuses exclusively on the personal income tax, examining both the theory and the empirical work on enforcement and compliance with the tax laws.

  16. Polyvinylpyrrolidone-Agarose Gel Electrophoresis Purification of Polymerase Chain Reaction-Amplifiable DNA from Soils

    OpenAIRE

    Young, Charles C.; Burghoff, Robert L.; Keim, Lois G.; Minak-Bernero, Vera; Lute, James R.; Hinton, Stephen M.

    1993-01-01

    This communication describes a modification of agarose gel electrophoresis to provide a rapid and simple method for the purification of polymerase chain reaction-amplifiable DNA from soil. This modification is to add polyvinylpyrrolidone to the agarose gel. The polyvinylpyrrolidone addition retards the electrophoretic mobility of denaturing phenolic compounds so that they do not comigrate with nucleic acids.

  17. Characterization of agarose as an encapsulation medium for particulate specimens for transmission electron microscopy.

    Science.gov (United States)

    Wood, J I; Klomparens, K L

    1993-07-01

    Agarose, agar, and gelatin were initially compared as encapsulation media for 3 structurally diverse particulate specimens: bacteria, yeast, and mitochondria. Agarose proved superior to both gelatin and agar for ease of handling and overall image quality (minimum background). All sample types exhibited high quality fixation and structural detail with no heat damage from the agarose medium. Based on this finding, we further characterized agarose encapsulation as affected by post-fixation, en bloc staining and resin type. Osmium tetroxide post-fixation, followed by en bloc uranyl acetate staining, could be performed without an increase in the electron density of the encapsulation medium. Agarose proved successful as an encapsulation medium regardless of the resin type or preparation protocol, thus providing flexibility in experimental design and excellent results over a range of variables. PMID:8358076

  18. Nanofabrication with molds & stamps

    Directory of Open Access Journals (Sweden)

    Byron D. Gates

    2005-02-01

    Full Text Available A number of methods can be used to fabricate patterns with features having dimensions <100 nm. These techniques, however, can require specialized equipment and are often restricted to a cleanroom environment. Nanofabrication can be made accessible to multiple users by using elastomeric molds or stamps to transfer high-resolution patterns into other materials. These techniques are inexpensive and can transfer patterns into functional materials and onto a number of surfaces. This review describes recent advances in fabricating nanostructures using these techniques.

  19. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    OpenAIRE

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; De la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA ...

  20. Injection Compression Molding of Replica Molds for Nanoimprint Lithography

    Directory of Open Access Journals (Sweden)

    Keisuke Nagato

    2014-03-01

    Full Text Available As a breakthrough in the cost and durability of molds for nanoimprint lithography (NIL, replica molds are fabricated by injection compression molding (ICM. ICM is commonly used for optical disks such as DVDs or Blu-ray disks and is also a practical fabrication method for nanostructures. In this paper, I successfully demonstrated the fabrication of cycloolefin polymer replica molds with structures smaller than 60 nm by ICM. Furthermore, ultraviolet (UV-NIL using these replica molds was demonstrated. UV-cured resist was replicated over an area of 60 mm diameter. The degree of replication by UV-NIL in the first usage of each replica mold had good repeatability. Because ICM is a high-throughput, low-cost process, the replica mold can be disposed of after a certain time for UV-NIL. This method leads to a high-integrity UV-NIL process of patterned media because multiple large-area replica molds can be fabricated simultaneously.

  1. Improving the culture of cucumber protoplasts by using an agarose-disc procedure

    International Nuclear Information System (INIS)

    A method is described for the isolation of protoplasts from cotyledons of cucumber (Cucumis sativus L.). After isolation, protoplasts were embedded in a mixture of agarose and Murashige and Skoog medium supplemented with 250 mg/L trypton, 2% sucrose, 5 μM naphthaleneacetic acid and 15 μM 2iP. The culture of the protoplasts was improved by the application of an agarose-disc culture procedure. The embedded protoplasts were plated in small (100 μL) droplets in Petri dishes to which, after gelling of the agarose, liquid medium was added. For comparison, protoplasts were also cultured according to the agarose-bead procedure. The plating efficiency ranged from 50 to 80% if the protoplasts were plated at high density (105 protoplasts per mL). In agarose-bead culture, divisions were induced at a lower rate. At lower densities the plating efficiency was dramatically decreased. Growth of microcalli was determined by homogenizing culture samples and measuring their density spectrophotometrically. The growth rate of the developing cell clusters was much higher in agarose-disc cultures as compared with bead-type cultures. It is concluded that for cucumber protoplasts the agarose-disc culture procedure provided optimal conditions for both the initiation of cell division and the growth of microcalli. (author)

  2. Mold Materials For Permanent Molding of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  3. Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites

    Indian Academy of Sciences (India)

    K K R Datta; B Srinivasan; H Balaram; M Eswaramoorthy

    2008-11-01

    Agarose, a naturally occurring biopolymer is used for the stabilization of metal, semiconductor nanoparticles. Ag and Cu nanoparticles stabilized in agarose matrix show excellent antibacterial activity against E. coli bacteria. The well dispersed metal nanoparticles within the agarose composite films can be readily converted to carbon-metal composites of catalytic importance.

  4. A simple immunoblotting method after separation of proteins in agarose gel

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Laursen, I

    A simple and sensitive method for immunoblotting of proteins after separation in agarose gels is described. It involves transfer of proteins onto nitrocellulose paper simply by diffusion through pressure, a transfer which only takes about 10 min. By this method we have demonstrated the existence of...... multiple molecular forms of the complement factors C3 and factor B in serum from 2 species, man and chicken, after electrophoretic separation in agarose. We have also demonstrated the usefulness of the method for determining the isoelectric point of proteins after isoelectric focusing in agarose....

  5. Compliance status

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the activities conducted to ensure that the Hanford Site is in compliance with federal environmental protection statutes and related Washington State and local environmental protection regulations and the status of Hanford`s compliance with these requirements. Environmental permits required under the environmental protection regulations are discussed under the applicable statute.

  6. Investigation of physical-chemical properties of agarose hydrogels with embedded emulsions.

    Science.gov (United States)

    Komarova, Galina A; Starodubtsev, Sergey G; Khokhlov, Alexei R

    2009-11-12

    Composite agarose hydrogels with embedded tetradecane emulsions stabilized by cetylpyridinium chloride were studied. The absorption efficiency of 4-nitrophenyl ethers of carbonic acids by the composite agarose gels increases with the length of the hydrocarbon tail of the ester. The diffusion rate of amphiphilic substances in the composite gels was demonstrated to be much less that than in the standard agarose gels. The reaction kinetics between the esters and dodecylmercaptan dissolved in tetradecane droplets of composite hydrogel was studied. In the region of physiological pH, the reactivity of SH groups embedded in the composite agarose gel in the reaction with the esters is significantly higher than that in a homogeneous solution. Hydrogels with embedded emulsion droplets are of considerable practical importance as drug delivery systems, microreactors, and absorbers. Composite gels filled with emulsions incorporating lipophilic mercaptanes are effective absorbers of heavy metal ions. PMID:19835385

  7. Searching for the best agarose candidate from genusGracilaria,Eucheuma,Gelidium and local brands

    Institute of Scientific and Technical Information of China (English)

    Ferry Efendi; Retno Handajani; Nursalam Nursalam

    2015-01-01

    Objective:To explore the potential of local agar of genusGracilaria,Eucheuma,Gelidium and local brandsas an alternative for imported agarose forDNA electrophoresis, and to examine their ability related to separation and migration ofDNA fragments inDNA electrophoresis. Methods:Their performance at various concentrations were compared via an experimental study with a specific brand of imported commercial agarose used in molecular biology research. The measured variables were separation and migration during electrophoresis of a DNA fragment. Results: The local agar genusGracilaria gigas,Gelidium, brand "B" and brand "S" could separateDNA fragments at a concentration between 1% and 2%, with an optimum concentration of 2% w/v, as good as a specific brand of imported commercial agarose. Conclusions:Their performance were very close to that of commercial agarose and can still be improved by further agar purification as well as by pH and sulfur control.

  8. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution

    DEFF Research Database (Denmark)

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-01-01

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation......-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis....

  9. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    OpenAIRE

    1986-01-01

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis (Kedersha, N. L., and L. H. Rome, 1986, Anal. Biochem., in press), the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from different populat...

  10. Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli.

    OpenAIRE

    Schaberg, D.R.; Tompkins, L S; Falkow, S

    1981-01-01

    Agarose gel electrophoresis of the plasmid deoxyribonucleic acids from 60 gram-negative bacilli recovered during investigations of nosocomial epidemics was used to fingerprint the strains. This method was as specific at differentiating bacterial strains as more conventional phenotyping methods. In all cases, plasmid band fingerprints of epidermic strains isolates were identical whereas coisolate plasmid deoxyribonucleic acid patterns were different. Agarose gel electrophoresis of plasmid deox...

  11. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    Science.gov (United States)

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. PMID:24997975

  12. A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption.

    Science.gov (United States)

    Desbois, Linda; Padirac, Adrien; Kaneda, Shohei; Genot, Anthony J; Rondelez, Yannick; Hober, Didier; Collard, Dominique; Fujii, Teruo

    2012-01-01

    Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the "push-pull" method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications. PMID:24106525

  13. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  14. Compliance measurements.

    Science.gov (United States)

    Bubsey, R. T.; Fisher, D. M.; Jones, M. H.; Srawley, J. E.

    1973-01-01

    The uses of compliance measurements in linear fracture mechanics are discussed as a technique for determining the crack-extension force vs load, specimen dimensions, and elastic constants. Some practical examples of application are given, including specimen and transducer descriptions, experimental procedure, instrumentation, calculations, measurement precautions, friction effects, and data reduction. The limitations and advantages of compliance measurements are discussed. It is pointed out that good results can be obtained by the compliance method when its measurement precision is not lower than that required for Young's modulus.

  15. Microcellular Injection Molding Using Helium

    International Nuclear Information System (INIS)

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  16. Molding device for fuel pellet

    International Nuclear Information System (INIS)

    A punch for press-molding nuclear fuel powders comprises a hollow cylinder having a pressurizing medium sealed therein and a flexible bottom surface, and a driving portion for pressurizing the pressurizing mediums. A gas, such as air, or liquid, such as silicone oil is used as a pressurizing medium to be sealed in the hollow cylinder of the punch. Powders of nuclear fuels charged to a cylindrical through hole of a die are molded once by a preliminary pressing, thereafter, pressure is applied to the pressurizing medium in the hollow cylinder by the driving means, accordingly, density distribution of the molded material is made substantially uniformly. Accordingly, when the molded material taken out from the die is sintered into a sintering product, the scattering of the dimension and deformation are less caused, and a product having an accurate dimension is attained, thereby enabling to eliminate grinding step. (T.M.)

  17. White mold of Jerusalem artichoke

    Science.gov (United States)

    Jerusalem artichoke (Helianthus tuberosus) is a Native American food plant closely related to the common sunflower (Helianthus annuus). Tubers of Jerusalem artichoke are increasingly available in retail grocery outlets. White mold (Sclerotinia stem rot), caused by the fungus, Sclerotinia sclerotioru...

  18. Onychomycosis due to opportunistic molds*

    OpenAIRE

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a pos...

  19. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...... using native nickel molds only lead to slight improvements in replication quality. In contrast, a fluorocarbon based antistiction coating (FDTS) was found to improve the replication quality significantly....

  20. Two methods that facilitate autoradiography of small 32P-labeled DNA fragments following electrophoresis in agarose gels

    International Nuclear Information System (INIS)

    Two methods which permit detection by autoradiography of small 32P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes

  1. Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films

    Directory of Open Access Journals (Sweden)

    Ahmad Adlie Shamsuri

    2012-11-01

    Full Text Available Agarose films were formed with the addition of 30 to 70 wt% choline chloride/urea eutectic-based ionic liquid (ChCl/Urea. The ChCl/Urea was prepared through complexation at a 1:2 mole ratio. The films were prepared by dissolving ChCl/Urea in distilled water followed by dispersion of the agarose at 95 °C. The solution was gelled at room temperature, and the formed gel was dried in an oven overnight at 70 °C. Mechanical testing indicated that the agarose film containing 60 wt% ChCl/Urea had higher tensile extension and tensile strain at break compared to the pristine agarose film. The addition of ChCl/Urea also reduced the glass transition temperature (Tg of agarose films. Cross-section SEM images of the agarose films showed that surface roughness disappeared with the incorporation of ChCl/Urea. FTIR spectra confirmed the presence of intermolecular hydrogen bonding between agarose and ChCl/Urea. XRD patterns demonstrated that an amorphous phase was obtained when ChCl/Urea was added. Agarose films containing more ChCl/Urea exhibited higher transparency, as measured by a UV-Vis spectrometer. In summary, the physicochemical properties of agarose films were evidently affected by the incorporation of the ChCl/Urea as a plasticizing agent.

  2. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard;

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during the...... molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  3. Bridge DNA amplification of cancer-associated genes on cross-linked agarose microbeads

    International Nuclear Information System (INIS)

    A cross-linked agarose substrate was studied as a 3D support for bridge solid-phase DNA amplification (SPA). In this kind of SPA, primers are immobilized on agarose beads. Flow cell studies of SPA in real-time experiments showed that the amplification efficiency is strongly affected by (a) the presence of a linker between the primer and substrate, and (b) by the loading with primers. In fact, a high loading density may compromise SPA. The analysis of real time SPA curves using geometric growth model highlighted the advantage of 3D agarose support over the flat surfaces. The potential of bridge 3D SPA in DNA diagnostics was successfully demonstrated by on-chip analysis of mutations of the cancer-associated genes BRCA1/2 and CHEK2. (author)

  4. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    International Nuclear Information System (INIS)

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  5. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  6. Separation of 1–23-kb complementary DNA strands by urea–agarose gel electrophoresis

    OpenAIRE

    Hegedüs, Éva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor

    2009-01-01

    Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea–agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of ∼1–20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-depen...

  7. A new polymer gel dosimeter composed of methacrylic acid, agarose gel and THPC with gelatin

    International Nuclear Information System (INIS)

    In this paper, a new type of methacrylic acid based gel dosimeter is presented. This gel contains both agarose and gelatin with deferent roles respectively. The agarose conducts itself as a gelling agent, while the gelatin relates to the graft reaction of methacrylic acid. This new type of gel excels in the long-term stability of R2 after irradiation. The characteristics of this gel were studied by the measurements of R2 with MRI and the direct measurements of temperature in the gel during the irradiation.

  8. Dye-sensitized solar cells with ionic gel electrolytes prepared from imidazolium salts and agarose

    International Nuclear Information System (INIS)

    New ionic gel electrolytes, semi-solid state electrolytes comprised of ionic liquid and gelator were investigated in order to improve the durability of dye-sensitized solar cells (DSCs). The ionic gels were prepared from agarose, natural polysaccharide, and 1-alkyl-3-methyl-imidazolium salts. The gels showed sufficient mechanical strength even though a very small amount of agarose was added (1.0-1.5 wt%). The photon to electron conversion efficiency of the DSCs containing ionic gel electrolyte was 2.93% under simulated sunlight (air mass 1.5) with a light intensity of 100 mW cm-2. (authors)

  9. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Guarrotxena, Nekane, E-mail: nekane@ictp.csic.es [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Ciencia y Tecnologia de Polimeros (ICTP) (Spain); Braun, Gary [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States)

    2012-10-15

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  10. Facts about Stachybotrys chartarum and Other Molds

    Science.gov (United States)

    ... are toxigenic, meaning they can produce toxins (specifically mycotoxins), the molds themselves are not toxic, or poisonous. Hazards presented by molds that may produce mycotoxins should be considered the same as other common ...

  11. Molds on Food: Are They Dangerous?

    Science.gov (United States)

    ... What Are Some Common Foodborne Molds? What Are Mycotoxins? What is Aflatoxin? How Does the U.S. Government ... a few molds, in the right conditions, produce "mycotoxins," poisonous substances that can make people sick. When ...

  12. Injection Molding of Plastics from Agricultural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  13. Stochastic resin transfer molding process

    CERN Document Server

    Park, M

    2016-01-01

    We consider one-dimensional and two-dimensional models of stochastic resin transfer molding process, which are formulated as random moving boundary problems. We study their properties, analytically in the one-dimensional case and numerically in the two-dimensional case. We show how variability of time to fill depends on correlation lengths and smoothness of a random permeability field.

  14. Mold production for polymer optics

    Science.gov (United States)

    Boerret, Rainer; Raab, Jonas; Speich, Marco

    2014-09-01

    The fields of application for polymer optics are huge and thus the need for polymer optics is steadily growing. Most polymer optics are produced in high numbers by injection molding. Therefore molds and dies that fulfill special requirements are needed. Polishing is usually the last process in the common process chain for production of molds for polymer optics. Usually this process step is done manually by experienced polishers. Due to the small number of skilled professionals and health problems because of the monotonous work the idea was to support or probably supersede manual polishing. Polishing using an industrial robot as movement system enables totally new possibilities in automated polishing. This work focuses on the surface generation with a newly designed polishing setup and on the code generation for the robot movement. The process starts on ground surfaces and with different tools and polishing agents surfaces that fulfill the requirements for injection molding of optics can be achieved. To achieve this the attention has to be focused not only on the process itself but also on tool path generation. A proprietary software developed in the Centre for Optical Technologies in Aalen University allows the tool path generation on almost any surface. This allows the usage of the newly developed polishing processes on different surfaces and enables an easy adaption. Details of process and software development will be presented as well as results from different polishing tests on different surfaces.

  15. Effect of alternation of agar and agarose on the green plant differentiation frequency of calli from wild rice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In vitro culture of wild rice was difficult. Recently, we found that high agarose concentration of different media could improve the green plant differentiation frequency of calli from wild rice. We tested the effectiveness of alternation of agar and agarose in different media.

  16. In situ DNA extraction from bacterial spores distributed on agarose gel using atmospheric pressure cold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Tanino, Y.; Takashima, K.; Mizuno, A. [Toyohashi Univ. of Technology, Toyohashi (Japan). Dept. of Ecological Engineering

    2010-07-01

    This paper presented a newly proposed systematic method for high speed counting of airborne bioparticles (BPs) that can be used in different indoor environments such as hospitals, pharmaceutical or food processing companies. The method involves plasma lysis of the BPs and detection of DNA cells. In this study, BPs were distributed on the surface of agarose gel to destroy cell walls using dielectric barrier discharge (DBD). DNA cells were detected by electro-blotting onto a membrane filter. The use of DBD enabled the extraction of the chromosomal DNA in situ from many types of cells without resorting to cell wall digesting enzymes. Bacillus subtilis spores were used because they are highly resistant to harsh physical and chemical treatments. The Bacillus subtilis spores were placed at low density on an agarose gel. The application of DBD destroyed the spores, but the chromosome DNA remained without extensive degradation. The electrophoresis of the DNA through the agarose gel to a membrane filter was examined to separate the DNA from the other substances in the lysates. The study showed that sufficient DNA was transferred to the filter through the agarose gel layer without scattering, almost keeping the original shape of the bacteria. Nucleic acid biomarkers will be used for bacterial identification of the DNA immobilized filter.

  17. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression

    Directory of Open Access Journals (Sweden)

    Mallein-Gerin Frédéric

    2008-09-01

    Full Text Available Abstract Background Articular cartilage is exposed to high mechanical loads under normal physiological conditions and articular chondrocytes regulate the composition of cartilaginous matrix, in response to mechanical signals. However, the intracellular pathways involved in mechanotransduction are still being defined. Using the well-characterized chondrocyte/agarose model system and dynamic compression, we report protocols for preparing and characterizing constructs of murine chondrocytes and agarose, and analyzing the effect of compression on steady-state level of mRNA by RT-PCR, gene transcription by gene reporter assay, and phosphorylation state of signalling molecules by Western-blotting. The mouse model is of particular interest because of the availability of a large choice of bio-molecular tools suitable to study it, as well as genetically modified mice. Results Chondrocytes cultured in agarose for one week were surrounded by a newly synthesized pericellular matrix, as revealed by immunohistochemistry prior to compression experiments. This observation indicates that this model system is suitable to study the role of matrix molecules and trans-membrane receptors in cellular responsiveness to mechanical stress. The chondrocyte/agarose constructs were then submitted to dynamic compression with FX-4000C™ Flexercell® Compression Plus™ System (Flexcell. After clearing proteins off agarose, Western-blotting analysis showed transient activation of Mitogen-activated protein kinases (MAPK in response to dynamic compression. After assessment by capillary electrophoresis of the quality of RNA extracted from agarose, steady-state levels of mRNA expression was measured by real time PCR. We observed an up-regulation of cFos and cJun mRNA levels as a response to compression, in accordance with the mechanosensitive character observed for these two genes in other studies using cartilage explants submitted to compression. To explore further the

  18. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  19. Injection molding ceramics to high green densities

    Science.gov (United States)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  20. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding of...

  1. Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joon Tae; Lee, Bong-Kee [Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-15

    In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.

  2. Influence of mold length and mold heat transfer on horizontal continuous casting of nonferrous alloy rods

    Science.gov (United States)

    Verwijs, J. P.; Weckman, D. C.

    1988-04-01

    The influence of mold length and mold heat transfer on the conventional hot-top D.C. continuous casting process was studied through numerical simulations and experiments with horizontally cast 20 mm diameter lead and zinc rods. The minimum casting speed was found to be a nonlinear function of the mold length. For short molds, an inverse relationship between mold length and minimum casting speed was observed. However, the minimum casting speed for zinc cast from molds longer than 12 mm was constant at 2.5 mm/s. For lead cast in molds longer than 12 mm, the minimum observed casting speed was constant at 4.0 mm/s. The observed nonlinear relationship between minimum casting speed and mold length was predicted using a numerical model of the process. For this, an analytical expression for the mold boundary conditions was derived which included the influence of gas gap formation between the rod and the mold due to thermoelastic deformations of both the rod and the mold. Correlation between observed and predicted behavior was demonstrated for both the lead and zinc rods. Maximum casting speed was observed to increase with increased mold length; however, this speed was found to be critically dependent on process attributes such as mold and pinch wheel alignment and mold lubrication.

  3. Compression molding of aerogel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  4. Compression molding of aerogel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  5. Compression molding of aerogel microspheres

    International Nuclear Information System (INIS)

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m3 (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs

  6. High Temperature Transfer Molding Resins

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  7. Onychomycosis Due to Nondermatophytic Molds

    OpenAIRE

    Hwang, Sung Min; Suh, Moo Kyu; Ha, Gyoung Yim

    2012-01-01

    Background Although there have been many studies about onychomycosis due to nondermatophytic molds (NDM), few studies about etiologic agents including NDM in onychomycosis have been reported in Korea. Objective: This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Objective This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Methods In the 10-year period from 1999~2009, we reviewed 59 patients with onychomycosis due to NDM. The etiologic ...

  8. Onychomycosis due to opportunistic molds*

    Science.gov (United States)

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  9. Pulsatile dynamic stiffness of cartilage-like materials and use of agarose gels to validate mechanical methods and models.

    Science.gov (United States)

    Scandiucci de Freitas, P; Wirz, D; Stolz, M; Göpfert, B; Friederich, N-F; Daniels, A U

    2006-08-01

    Stiffness is a fundamental indicator of the functional state of articular cartilage. Reported test modes include compressive incremental strain to determine the equilibrium modulus, and sinusoidal strain to determine the dynamic modulus and stress/strain loss angle. Here, initial development is described for a method recognizing that gait is pulsatile. Agarose gels have been used by others for validation or comparison of mechanical test methods and models for cartilage and proteoglycan aggregate. Accordingly, gels ranging from 0.5 to 20% agarose were prepared. Pulsatile stiffness in both indentation and unconfined compression were closely reproducible. Stiffness as a function of agarose concentration rose exponentially, as found using other methods. Indentation stiffness was higher than for unconfined compression and ranged from approximately 2.0 kPa for 0.5% gel to approximately 3,800 kPa for 20% gel. Pulsatile dynamic stiffness appears to be a useful method, although further development is needed. Agarose gel stiffness values obtained by other methods were reviewed for comparison. Unfortunately, reported values for a given agarose concentration ranged widely (e.g. fourfold) even when test methods were similar. Causes appear to include differences in molecular weight and gel preparation time-temperature regimens. Also, agarose is hygroscopic, leading to unintended variations in gel composition. Agarose gels are problematic materials for validation or comparison of cartilage mechanical test methods and models. PMID:16470817

  10. Agarose functionalization: Synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime.

    Science.gov (United States)

    Chudasama, Nishith A; Prasad, Kamalesh; Siddhanta, Arup Kumar

    2016-10-20

    In a rapid one-step method protein-mimicking large agarose amino acid framework (AAE; GPC 156.7kDa) was conjugated with polyethylene glycol (PEG 9kDa) affording nano-sized PEGylated amphoteric agarose (PEG-AAE; amino, carboxyl and ester groups [overall degree of substitution (DS) 0.91]. The PEG groups were at the residual free carboxylic acid groups of succinate half-ester moiety at C-6 positions of the 1, 3 β-d-galactopyranose moieties of AAE. This new nano-sized PEG-AAE performed like a giant protein conjugate (GPC 331.2kDa) and exhibited pH-responsive interconversion between the triple helix and single-stranded random structures (optical rotatory dispersion) presenting a mixed solubility pattern like random coil (soluble), helical (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed its pH-dependent complexation and decomplexation with bovine serum albumin (BSA). Such pH-responsive PEG-conjugate may be of pronounced therapeutic potential in the area of pharmacology as well as in sensing applications. PMID:27474620

  11. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis

    Science.gov (United States)

    Tanaka, Takeshi; Jin, Hehua; Miyata, Yasumitsu; Kataura, Hiromichi

    2008-11-01

    We have developed a novel separation method of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel electrophoresis. When the SWCNTs were isolated with sodium dodecyl sulfate (SDS) and embedded in agarose gel, only the metallic SWCNTs separated from the starting gel by an electric field. After 20 min, almost all SWCNTs applied to gel electrophoresis were separated into two fractions, containing ˜95% semiconducting and ˜70% metallic nanotubes. The difference in the response to the electric field between metallic and semiconducting SWCNTs can be explained by the higher affinity of semiconducting SWCNTs to agarose than to SDS.

  12. Preparation of berbamine loaded chitosan-agarose microspheres and in vitro release study

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2012-01-01

    Full Text Available Berbamine loaded chitosan-agarose microspheres were prepared using a water-in-oil emulsion technique. Optimum preparing parameters were determined by orthogonal experiments as follows: ratio of berbamine to chitosan (w/w is 1:10; percentage of emulsifier (span 80, v/v is 6%; volume of glutaraldehyde is 2 mL; and reaction temperature is 70 ºC. Under these optimal conditions, the encapsulation efficiency and loading capacity of microspheres are 84.57% and 8.44%, respectively. The swelling tests showed that the microspheres possessed higher swelling ratio at pH 7.4 than at pH 1.2. FTIR indicated that berbamine had been successfully loaded in the chitosan-agarose microspheres by physical entrapment. In vitro release studies showed that berbamine was released from microspheres in a significantly sustained fashion.

  13. Recovery of DNA from Agarose Gel with Home-made Silica Milk

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An usefulness of silica milk made with waste ultraviolet light tube for recovery of DNA fragment from agarose gel was represented. The glass milk is a water suspension of 50% fine silica powder prepared by grinding the crushed waste ultraviolet light tube with a porcelain mortar.It was showed that one microliter of the glass milk could bind more than 1 μg of DNA fragment,and DNA fragment in length from 125 bp to 23 kb could be efficiently recovered from agarose gel. The bound DNA could be eluted from the particle of SiO2 in the glass milk with a yield of about 60%-80%.The eluted DNA could be used in all manipulations in molecular cloning.

  14. Preparation and structural characterization of O-acetyl agarose with low degree of substitution

    Directory of Open Access Journals (Sweden)

    Rosangela B. Garcia

    2000-09-01

    Full Text Available Among the biodegradable polymers, the polysaccharides have been found to be promising carriers for bioactive molecules. From a general standpoint, they present several reactive groups, such as hydroxyl, carboxyl and amine, that can be modified in a number of ways, giving rise to suitable devices for controlled release. In this paper, agarose was submitted to O-acetylation reactions under heterogeneous conditions, using acetic anhydride and pyridine, aiming to observe the effect of acetyl groups on the agarose properties. The products were characterized by Infrared and ¹H NMR spectroscopies. In the range of average acetylation degrees (DA 0.07-0.48, the polymers presented partial solubility in boiling water and in common organic solvents. The ¹H NMR spectra presented evidences of non-homogeneous acetyl group distribution along the chains, as concluded from the solubility of only one of the fractions with DA<0.09, in boiling water .

  15. Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles

    OpenAIRE

    Sousa Jr R.; Lopes G. P.; Tardioli P. W.; Giordano R.L.C.; Almeida P. I. F.; Giordano R. C.

    2004-01-01

    Partial hydrolysis of whey proteins by enzymes immobilized on an inert support can either change or evidence functional properties of the produced peptides, thereby increasing their applications. The hydrolysis of sweet cheese whey proteins by alcalase, which is multipoint-immobilized on agarose gel, is studied here. A Michaelis-Menten model that takes into account competitive inhibition by the product was fitted to experimental data. The influence of pH on the kinetic parameters in the range...

  16. Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis

    OpenAIRE

    Schvartzman, Jorge Bernardo; Martínez-Robles, María Luisa; Krimer, Dora B.

    2010-01-01

    During the last 20 years, two-dimensional agarose gel electrophoresis combined with other techniques such as Polymerase Chain Reaction, helicase assay and electron microscopy, helped to characterize plasmid DNA replication and topology. Here we describe some of the most important findings that were made using this method including the characterization of uni-directional replication, replication origin interference, DNA breakage at the forks, replication fork blockage, replication knotting, re...

  17. Trapping of megabase-sized DNA molecules during agarose gel electrophoresis

    OpenAIRE

    Gurrieri, Sergio; Smith, Steven B.; Bustamante, Carlos

    1999-01-01

    Megabase DNA molecules become trapped in agarose gels during electrophoresis if the electric field exceeds a few volts per cm. Fluorescence microscopy reveals that these molecules invariably arrest in U-shaped conformations. The field-vs.-size dependence for trapping indicates that a critical molecular tension is required for trapping. The size of unligated λ-ladders, sheared during gel electrophoresis at a given field, coincides with the size of molecules trapped at that field, suggesting th...

  18. An evaluation of cerebrospinal fluid oligoclonal banding confirmed by immunofixation on agarose gel.

    OpenAIRE

    George, P M; Lorier, M A; Donaldson, I M

    1983-01-01

    The cerebrospinal fluid (CSF) from 115 consecutive patients undergoing diagnostic lumbar puncture or myelography was examined to determine the usefulness of immunofixation, following agarose gel electrophoresis, in the detection of oligoclonal IgG. All electrophoretic patterns were evaluated with and without immunofixation, and the interpretation of 9% of specimens was altered by immunofixation. The demonstration of oligoclonal IgG was shown to be more reliable in the diagnosis of multiple sc...

  19. Mesoscopic gel at low agarose concentration in water: a dynamic light scattering study.

    OpenAIRE

    Bulone, D; San Biagio, P L

    1995-01-01

    Previous work in our laboratory has shown that at very low agarose concentration in water gelation still occurs within mutually disconnected, high concentration regions generated by spinodal demixing. The freely diffusing particles obtained in these conditions are studied in the present work by depolarized dynamic light scattering and probe diffusion experiments. These particles are found to behave as large (in fact, mesoscopic) polymer fibers entangled in a continuously rearranged mesh with ...

  20. A disposable bio-nano-chip using agarose beads for high performance immunoassays

    OpenAIRE

    Du, Nan; Chou, Jie; Kulla, Eliona; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2011-01-01

    This article reports on the fabrication of a disposable bio-nano-chip (BNC), a microfluidic device composed of polydimethylsiloxane (PDMS) and thiolene-based optical epoxy which is both cost-effective and suitable for high performance immunoassays. A novel room temperature (RT) bonding technique was utilized so as to achieve irreversible covalent bonding between PDMS and thiolene-based epoxy layers, while at the same time being compatible with the insertion of agarose bead sensors, selectivel...

  1. NUMERICAL SIMULATION OF CASTING'S MOLD FILLING PROCESS

    Institute of Scientific and Technical Information of China (English)

    J.X. Zhou; R.X. Liu; L.L. Chen; D.M. Liao; H.S. Wei

    2005-01-01

    Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.

  2. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  3. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture.

    Science.gov (United States)

    Dumpala, Pradeep R; Holdcraft, Robert W; Martis, Prithy C; Laramore, Melissa A; Parker, Thomas S; Levine, Daniel M; Smith, Barry H; Gazda, Lawrence S

    2016-08-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. PMID:27261433

  4. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique.

    Science.gov (United States)

    Zhou, Qing-Zhu; Wang, Lian-Yan; Ma, Guang-Hui; Su, Zhi-Guo

    2007-07-01

    Uniform-sized agarose beads were prepared by membrane emulsification technique in this study. Agarose was dissolved in boiling water (containing 0.9% sodium chloride) and used as water phase. A mixture of liquid paraffin and petroleum ether containing 4 wt% of hexaglycerin penta ester (PO-500) emulsifier was used as oil phase. At 55 degrees C, the water phase permeated through uniform pores of microporous membrane into the oil phase by a pressure of nitrogen gas to form uniform W/O emulsion. Then the emulsion was cooled down to room temperature under gentle agitation to form gel beads. The effect of oil phase, emulsifier, especially temperature on the uniformity of the beads were investigated and interpreted from interfacial tension between water phase and oil phase. Under optimized condition, the coefficient variation (C.V.) showing the size distribution of the beads was under 15%. This was the first report to prepare uniform agarose beads by membrane emulsification, and to investigate the effect of temperature on the size distribution of the droplets and beads. The beads with different size can be prepared by using membranes with different pore size, and the result showed that there was a linear relationship between the average diameter of beads and pore size of the membranes; beads with diameter from 15 to 60 microm were able to obtain in this study. PMID:17362974

  5. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection

    International Nuclear Information System (INIS)

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel–agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10–20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel–agarose–acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. - Highlights: • Acetylcholinesterase (AChE) dip-strip biosensor fabricated to detect carbamates. • AChE entrapped in fenugreek hydrogel–agarose matrix with gold nanoparticles (GNPs). • High enzyme retention efficiency (92%) and shelf life (half-life, 55 days). • Detection limits of carbofuran, oxamyl and methomyl: 2, 21 and 113 nM. • The biosensor had good testing capabilities to detect carbamates in food samples

  6. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection

    Energy Technology Data Exchange (ETDEWEB)

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang, E-mail: bhchiang@ntu.edu.tw

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel–agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10–20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel–agarose–acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. - Highlights: • Acetylcholinesterase (AChE) dip-strip biosensor fabricated to detect carbamates. • AChE entrapped in fenugreek hydrogel–agarose matrix with gold nanoparticles (GNPs). • High enzyme retention efficiency (92%) and shelf life (half-life, 55 days). • Detection limits of carbofuran, oxamyl and methomyl: 2, 21 and 113 nM. • The biosensor had good testing capabilities to detect carbamates in food samples.

  7. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    KAUST Repository

    Shi, Yang

    2013-02-28

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  8. A disposable bio-nano-chip using agarose beads for high performance immunoassays.

    Science.gov (United States)

    Du, Nan; Chou, Jie; Kulla, Eliona; Floriano, Pierre N; Christodoulides, Nicolaos; McDevitt, John T

    2011-10-15

    This article reports on the fabrication of a disposable bio-nano-chip (BNC), a microfluidic device composed of polydimethylsiloxane (PDMS) and thiolene-based optical epoxy which is both cost-effective and suitable for high performance immunoassays. A novel room temperature (RT) bonding technique was utilized so as to achieve irreversible covalent bonding between PDMS and thiolene-based epoxy layers, while at the same time being compatible with the insertion of agarose bead sensors, selectively arranged in an array of pyramidal microcavities replicated in the thiolene thin film layer. In the sealed device, the bead-supporting epoxy film is sandwiched between two PDMS layers comprising of fluidic injection and drain channels. The agarose bead sensors used in the device are sensitized with anti-C-reactive protein (CRP) antibody, and a fluorescent sandwich-type immunoassay was run to characterize the performance of this device. Computational fluid dynamics (CFD) was used based on the device specifications to model the bead penetration. Experimental data revealed analyte penetration of the immunocomplex to 100 μm into the 280 μm diameter agarose beads, which correlated well with the simulation. A dose-response curve was obtained and the linear dynamic range of the assay was established over 1 ng/mL to 50 ng/mL with a limit of detection less than 1 ng/mL. PMID:21852104

  9. Bubble growth in mold cavities during microcellular injection molding processes

    International Nuclear Information System (INIS)

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  10. Bubble growth in mold cavities during microcellular injection molding processes

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Yong Rak [University of Toronto, Toronto (Canada); Lee, Kyoung Soo; Cha, Sung W. [Yonsei University, Seoul (Korea, Republic of)

    2009-12-15

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  11. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    Science.gov (United States)

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an

  12. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.;

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  13. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan;

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At...... isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of...... replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical...

  14. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    International Nuclear Information System (INIS)

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes. (paper)

  15. Compliance with drug therapy.

    OpenAIRE

    Pullar, T

    1991-01-01

    Although no single method is ideal for measuring compliance the methods now available allow accurate assessment of compliance in most settings. Studies using new and more accurate methods of measuring compliance have shown poor compliance to be an even greater problem than was previously thought. Using these methods, efforts in the future should be directed at relating compliance to treatment outcome, and investigating whether manoeuvres aimed at improving compliance actually improve patient ...

  16. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  17. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  18. Indoor mold and Children's health

    Science.gov (United States)

    Etzel; Rylander

    1999-06-01

    Reactive airways disease in children is increasing in many countries around the world. The clinical diagnosis of asthma or reactive airways disease includes a variable airflow and an increased sensitivity in the airways. This condition can develop after an augmented reaction to a specific agent (allergen) and may cause a life-threatening situation within a very short period of exposure. It can also develop after a long-term exposure to irritating agents that cause an inflammation in the airways in the absence of an allergen. (paragraph) Several environmental agents have been shown to be associated with the increased incidence of childhood asthma. They include allergens, cat dander, outdoor as well as indoor air pollution, cooking fumes, and infections. There is, however, increasing evidence that mold growth indoors in damp buildings is an important risk factor. About 30 investigations from various countries around the world have demonstrated a close relationship between living in damp homes or homes with mold growth, and the extent of adverse respiratory symptoms in children. Some studies show a relation between dampness/mold and objective measures of lung function. Apart from airways symptoms, some studies demonstrate the presence of general symptoms that include fatigue and headache and symptoms from the central nervous system. At excessive exposures, an increased risk for hemorraghic pneumonia and death among infants has been reported. (paragraph) The described effects may have important consequences for children in the early years of life. A child's immune system is developing from birth to adolescence and requires a natural, physiologic stimulation with antigens as well as inflammatory agents. Any disturbances of this normal maturing process will increase the risk for abnormal reactions to inhaled antigens and inflammagenic agents in the environment. (paragraph) The knowledge about health risks due to mold exposure is not widespread and health authorities in

  19. Injection molding of metal powders

    International Nuclear Information System (INIS)

    The powder Injection Moulding (PIM) process is a viable and competitive commercial technique for producing complex-shaped parts of various materials in high volumes. PIM based on a new binder system and using a Co-Cr-Mo alloy powder as a test material, has been described. The binder comprises a major fraction of polyethylene glycols (PEGs) of various molecular weights and a minor fraction of very finely dispersed poly methyl methacrylate (PMMA) incorporated in the form of an emulsion. Various processing stages of the PIM process, i.e., feedstock preparation, injection molding, de binding and sintering have been discussed. (author)

  20. Mold

    Science.gov (United States)

    ... all, may produce toxins or poisonous substances called mycotoxins that may cause effects in humans. Although there are many types of mycotoxins, aflatoxins are probably the best known and most ...

  1. Nonlinear Modeling of a High Precision Servo Injection Molding Machine Including Novel Molding Approach

    Institute of Scientific and Technical Information of China (English)

    何雪松; 王旭永; 冯正进; 章志新; 杨钦廉

    2003-01-01

    A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.

  2. An emulsion lubricant for metallic molds

    Energy Technology Data Exchange (ETDEWEB)

    Dovzhik, O.I.; Cherkayev, V.G.; Min' kovskiy, M.M.; Romanyuk, V.G.; Shapiro, L.D.; Sokolov, V.A.

    1980-02-26

    An emulsion lubricant for metallic molds used in production of concrete products for eliminating adhesion of concrete with the metallic mold, and to eliminate potential for air pore formation on surface of product, contains lanolin production waste materials. Compos. of lubricant %: Synthetic emulsol oxide 5-10; wastes from lanolin production in conversion to wax 5-10; water the rest.

  3. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...

  4. Particle Image Velocimetry During Injection Molding

    Science.gov (United States)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  5. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  6. Affordable, Precision Reflector Mold Technology (PDRT08-029) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in replication mold technology that reduce material costs, grinding time, and polishing time would enable fabrication of large, precision molds and...

  7. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and...... ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are...

  8. Mold Simulator Study of the Initial Solidification of Molten Steel in Continuous Casting Mold: Part II. Effects of Mold Oscillation and Mold Level Fluctuation

    Science.gov (United States)

    Zhang, Haihui; Wang, Wanlin

    2016-04-01

    The surface quality of the continuous casting strands is closely related to the initial solidification of liquid steel in the vicinity of the mold meniscus, and thus the clear understanding of the behavior of molten steel initial solidification would be of great importance for the control of the quality of final slab. With the development of the mold simulator techniques, the complex interrelationship between the solidified shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film was well illustrated in our previous study. As the second part, this article investigated the effect of the mold oscillation frequency, stroke, and mold level fluctuation on the initial solidification of the molten steel through the conduction of five different experiments. Results suggested that in the case of the stable mold level, the oscillation marks (OMs) exhibit equally spaced horizon depressions on the shell surface, where the heat flux at the meniscus area raises rapidly during negative strip time (NST) period and the presence of each OMs on the shell surface is corresponding to a peak value of the heat flux variation rate. Otherwise, the shell surface is poorly defined by the existence of wave-type defects, such as ripples or deep depressions, and the heat flux variation is irregular during NST period. The rising of the mold level leads to the longer-pitch and deeper OMs formation; conversely, the falling of mold level introduces shorter-pitch and shallower OMs. With the increase of the mold oscillation frequency, the average value of the low-frequency heat flux at the meniscus increases; however, it decreases when the mold oscillation stroke increases. Additionally, the variation amplitude of the high-frequency temperature and the high-frequency heat flux decreases with the increase of the oscillation frequency and the reduction of the oscillation stroke.

  9. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study

    International Nuclear Information System (INIS)

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo ‘bioreactors’ for the screening of favorable cell vehicles for tumor engineering in vitro. (paper)

  10. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  11. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    International Nuclear Information System (INIS)

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis, the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from difference populations appeared identical on SDS PAGE, and triskelions stripped from the different populations showed the same mobility on the agarose gel, suggesting that the mobility differences observed in intact CVs were due to differences in the surface charge of underlying vesicles rather than to variations in their clathrin coats. Stripped CVs exhibited considerable heterogeneity when analyzed by Western blotting: the fast-migrating population was enriched in the mannose 6-phosphate receptor, secretory acetyl-choline esterase, and an M/sub r/ 195,000 glycoprotein. The slow-migrating population of CVs was enriched in the asialoglycoprotein receptor, and it appeared to contain all detectable concanavalin A-binding polypeptides as well as the bulk of detectable WGA-binding proteins. When CVs were prepared from 125I-asialoorosomucoid-perfused rat liver, ligand was found in the slow-migrating CVs, suggesting that these were endocytic in origin. Morphological differences were also observed: the fast-migrating population was enriched in smaller CVs, whereas the slow-migrating population exhibited an enrichment in larger CVs. As liver consists largely of hepatocytes, these subpopulations appear to originate from the same cell type and probably represent CVs of different intracellular origin and destination

  12. Studies of transferin polymorphism in Swedish cattle using agarose gel electrophoresis

    International Nuclear Information System (INIS)

    The polymorphic transferrin picture in the sera from 894 Swedish cattle was investigated with an agarose gel electrophoresis technique. The serum transferrin bands in the electrophoresis pattern were first identified by labelling with 59Fe. Six existing phenotypes based on the alleles Tf(supA), Tf(supD) and Tf(supE) could be detected. The frequencies of transferrin types and transferrin alleles are presented, and it is concluded that there are great differences in the frequencis between the Swedish Red and White and the Swedish Friesian. (author)

  13. Sizing of the Haemophilus influenzae Rd genome by pulsed-field agarose gel electrophoresis.

    OpenAIRE

    Lee, J J; Smith, H O

    1988-01-01

    The four restriction enzymes ApaI (5'-GGGCCC), EagI (5'-CGGCCG), NaeI (5'-GCCGGC), and SmaI (5'-CCCGGG) were found to produce distributions of DNA fragment sizes useful for mapping of the Haemophilus influenzae Rd genome by pulsed-field agarose gel electrophoresis. ApaI produced 21 fragments (range, 1.6 to 305 kilobases [kb]), EagI yielded 30 fragments (0.6 to 339 kb), NaeI produced 32 fragments (2.3 to 290 kb), and SmaI yielded 16 fragments (6.0 to 377 kb). Summation of the fragment lengths ...

  14. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent;

    2007-01-01

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  15. The preparation of low electroendosmosis agarose and its physico-chemical property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Studies on Gelidium amansii agar fractionations were carried out in this paper. Gelidium amansii agar was fractionated on DEAE-Cellulose, and four fractions were obtained sequentially. The fractions were analyzed on physical and chemical properties, and IR and 13C-NMR spectroscopy applied for elucidating the chemical structure. Among the four fractions obtained, water fraction measured up to the standard of low EEO agarose. The sulfate content, ash content, electroendosmosis and gel strength(1%) of water fraction were 0.16%, 0.34%, 0.12 and 1 130g/cm2 respectively, similar to those of the Sigma products.

  16. Dose response and fading characteristics of an alanine-agarose gel

    International Nuclear Information System (INIS)

    The dose response of an alanine-agarose gel, analyzed by ESR spectrometry, and the stability of the radiation-induced free radicals have been investigated. The stability of the ESR signal is higher for dosimeter samples analyzed at 77 K than for dried samples, analyzed at room-temperature. The dose response is linear to within ±2% in the absorbed dose interval 2-100 Gy. The variations in spectral line shape were analyzed at temperatures between 77 and 270 K. The experimental ESR spectrum at 77 K was compared with a simulated spectrum of polycrystals of L-α-alanine. (Author)

  17. Streptavidin Capture and Detection Using Individual Agarose Bead-based Microfluidic Immunoassay Devices

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Du

    2009-01-01

    @@ A single microwell on polycarbonate substratc was fabricated using hot embossing by silicon master.The silicon master (85 μm in top,100 μm in bottom,53 μm in height) and 0.25 mm-thick polycarbonate substrate were sandwiched between two glass plates in hot embossing system.The system was heated to 155-160℃ and pressed with a force of 300 psi for 10-30 s.The single microwell was stampted on polycarbonate substrate.Apply a~0.2 μL aliquot of agarose beads to the single microwell.

  18. Thermoplastic blow molding of metals

    Directory of Open Access Journals (Sweden)

    Jan Schroers

    2011-01-01

    Full Text Available While plastics have revolutionized industrial design due to their versatile processability, their relatively low strength has hampered their use in structural components. On the other hand, while metals are the basis for strong structural components, the geometries into which they can be processed are rather limited. The “ideal” material would offer a desirable combination of superior structural properties and the ability to be precision (net shaped into complex geometries. Here we show that bulk metallic glasses (BMGs, which have superior mechanical properties, can be blow molded like plastics. The key to the enhanced processability of BMG formers is their amenability to thermoplastic forming. This allows complex BMG structures, some of which cannot be produced using any other metal process, to be net shaped precisely.

  19. Characterization of fiberglass-filled diallyl phthalate plastic molding resins and molded parts

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, R.B.; Glaub, J.E.; Bonekowski, N.R.; Gillham, P.D.

    1980-12-01

    Characterization of diallyl phthalate (DAP) molding resins was undertaken by differential scanning calorimetry (DSC) and by combined size exclusion chromatography (SEC)/low angle laser light scattering (LALLS) in order to better predict moldability and storage life limits. Completeness of cure of molded parts, before and after any post-curing, was also determined by thermal analysis. Molecular weights and molecular weight distributions of the DAP molding resins by SEC/LALLS indicated that the better molding resins have lower M/sub w//M/sub n/ ratios. Association effects were observed, which could not be overcome by solvent modification alone. Determination of DAP molding resin heats of reaction by DSC indicated a linear relation between ..delta..H/sub R/ and weight percent filler for the good molding resins. DSC analyses of molded DAP parts showed that 95% cure was achieved in some as-molded parts, with a post-cure temperature of 165/sup 0/C being required to complete the cure to 100%. Thickness of the parts was a factor, with the thicker parts being 100% cured as molded. The glass transition temperature (T/sub g/) of the molded parts increased as cure was completed, to approx. 160 to 165/sup 0/C maximum. These results are consistent with a model of thermoset resin curing behavior which states that 100% cure can be achieved only if a post-curing operation is conducted above the T/sub g infinity/ (T/sub g/ at complete cure) of the polymer.

  20. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  1. Molded ultra-low density microcellular foams

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty ..mu..meters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters.

  2. Effects of surfactants on agarose-based magnetic polymer electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► A novel agarose magnetic polymer electrolyte for DSSC was investigated. ► Four surfactants were introduced to improve the dispersivity of Fe3O4 nanoparticle. ► Fe3O4 nanoparticles are well dispersed and the ionic conductivity was improved. ► TW-80 was selected as the proper surfactant for magnetic polymer electrolyte. -- Abstract: Four surfactants, sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG200) and polysorbate 80 (TW-80), were added to disperse Fe3O4 nanoparticles in agarose based magnetic polymer electrolyte, for the purpose of improving the performance of dye-sensitized solar cell (DSSC). Fourier transform infrared spectroscopy (FTIR) was employed to characterize the interactions between surfactants and magnetic polymer electrolyte. TW-80 and PEG200 showed good dispersion properties according to surface morphology tests. Through electrochemical impedance spectroscopy (EIS) study, the ionic conductivity, charge transfer resistance, charge recombination resistance and electron lifetime of polymer electrolytes were all improved by modification, while TW-80 modified electrolyte reached the highest ionic conductivity of 2.98 × 10−3 S/cm. Moreover, the photoelectric properties were also significantly enhanced and the best energy conversion efficiency achieved 1.83% with TW-80 modification

  3. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-07-01

    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound. PMID:27475127

  4. Pravastatin Improves Glucose Regulation and Biocompatibility of Agarose Encapsulated Porcine Islets following Transplantation into Pancreatectomized Dogs

    Directory of Open Access Journals (Sweden)

    Lawrence S. Gazda

    2014-01-01

    Full Text Available The encapsulation of porcine islets is an attractive methodology for the treatment of Type I diabetes. In the current study, the use of pravastatin as a mild anti-inflammatory agent was investigated in pancreatectomized diabetic canines transplanted with porcine islets encapsulated in agarose-agarose macrobeads and given 80 mg/day of pravastatin (n=3 while control animals did not receive pravastatin (n=3. Control animals reached preimplant insulin requirements on days 18, 19, and 32. Pravastatin-treated animals reached preimplant insulin requirements on days 22, 27, and 50. Two animals from each group received a second macrobead implant: control animals remained insulin-free for 15 and 21 days (AUC = 3003 and 5078 mg/dL/24 hr days 1 to 15 and reached preimplant insulin requirements on days 62 and 131. Pravastatin treated animals remained insulin-free for 21 and 34 days (AUC = 1559 and 1903 mg/dL/24 hr days 1 to 15 and reached preimplant insulin requirements on days 38 and 192. Total incidence (83.3% versus 64.3% and total severity (22.7 versus 18.3 of inflammation on tissue surfaces were higher in the control group at necropsy. These findings support pravastatin therapy in conjunction with the transplantation of encapsulated xenogeneic islets for the treatment of diabetes mellitus.

  5. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds

    International Nuclear Information System (INIS)

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT. (paper)

  6. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass.

    Science.gov (United States)

    Kim, Pung-Ho; Nam, Hee-Geun; Park, Chanhun; Wang, Nien-Hwa Linda; Chang, Yong Keun; Mun, Sungyong

    2015-08-01

    The economically-efficient separation of galactose, levulinic acid (LA), and 5-hydroxymethylfurfural (5-HMF) in acid hydrolyzate of agarose has been a key issue in the area of biofuel production from marine biomass. To address this issue, an optimal simulated moving bed (SMB) process for continuous separation of the three agarose-hydrolyzate components with high purities, high yields, and high throughput was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each component on the qualified adsorbent were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. Finally, the optimized SMB process was tested experimentally using a self-assembled SMB unit with four zones. The SMB experimental results and the relevant computer simulations verified that the developed process in this study was quite successful in the economically-efficient separation of galactose, LA, and 5-HMF in a continuous mode with high purities and high yields. It is thus expected that the developed SMB process in this study will be able to serve as one of the trustworthy ways of improving the economic feasibility of biofuel production from marine biomass. PMID:26141276

  7. Lithium iodide effect on the electrochemical behavior of agarose based polymer electrolyte for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: · Conduction behavior in agarose electrolyte system. · Charge recombination resistance is reduced with the increasing LiI concentration. · Charge transfer resistance is also reduced with the increasing LiI concentration. · Electron lifetime is shortened by increasing LiI concentrations. · LiI addition enhances the back reaction in DSSC. - Abstract: The effect of lithium iodide (LiI: 0-85 wt%) on the electrochemical behavior of agarose-based polymer electrolytes for dye-sensitized solar cells (DSSC) was investigated. Fourier Transform Infrared Spectroscopy (FTIR) and scanning electronic microscopy (SEM) were employed to characterize the interactions between polymer matrix and salt and the morphology of the agarose electrolytes, respectively. From the AC impedance spectra study, it was determined that the conduction behavior of the agarose-based polymer electrolyte matches the 'salt-in-polymer' like behavior of low LiI content (0-25 wt%) and 'polymer-in-salt' like behavior of high LiI content (25-85 wt%). Detailed analysis of characteristic electrochemical processes occurring in DSSC with these agarose electrolytes was also obtained by employing the EIS technique. The impedance spectra showed that the electron lifetime of DSSC was shortened with increasing LiI concentration, while the charge transfer resistance and charge recombination resistance were reduced when LiI concentration was increased.

  8. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.

    Science.gov (United States)

    Scionti, Giuseppe; Moral, Monica; Toledano, Manuel; Osorio, Raquel; Durán, Juan D G; Alaminos, Miguel; Campos, Antonio; López-López, Modesto T

    2014-08-01

    The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels were investigated by tensile, compressive, and shear tests. Experimental results indicate that nanostructuration enhances the biomechanical properties of the hydrogels. This improvement is due to the partial draining of the water that fills the porous network of fibers that the plastic compression generates, which produces a denser material, as confirmed by scanning electron microscopy. Results also indicate that the characteristic compressive and shear parameters increase with agarose concentration, very likely due to the high water holding capacity of agarose, which reduces the compressibility and gives consistency to the hydrogels. However, results of tensile tests indicate a weakening of the hydrogels as agarose concentration increases, which evidences the anisotropic nature of these biomaterials. Interestingly, we found that by adjusting the water and agarose contents it is possible to tune the biomechanical properties of FA hydrogels for a broad range, within which the properties of many native tissues fall. PMID:23963645

  9. Poly-lactic acid and agarose gelatin play an active role in the recovery of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the role of poly-lactic acid and agarose gelatin in promoting the functional recovery of the injured spinal cord. Methods Poly-lactic acid (PLA) or agarose was embedded in the space between two stumps of the hemisectioned spinal cord. Immunohistochemistry was used to show astroglia proliferation and the infiltration of RhoA-positive cells. Locomotor activity recovery was evaluated by testing the function of hindlimbs. Results Astroglias and RhoA labeled non-neuronal cells accumulated in the area adjacent to the implant, while the number of RhoA-positive cells was decreased dramatically in the absence of implant. Animals implanted with agarose gelatin recovered more quickly than those with PLA, concomitant with a higher survival rate of the neurons. Conclusion Both PLA and agarose gelatin benefited the recovery of spinal cord after injury by providing a scaffold for astroglia processes. Modulation of the rigidity, pore size and inner structure of PLA and agarose gelatin might make these biodegradable materials more effective in the regeneration of the central nervous system (CNS).

  10. Slimeware: engineering devices with slime mold.

    Science.gov (United States)

    Adamatzky, Andrew

    2013-01-01

    The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic. PMID:23834592

  11. Residual stresses in injection molded products

    Science.gov (United States)

    Jansen, K. M. B.

    2015-12-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature and pressure histories during molding. Precise excimer laser layer removal measurements were performed to verify the predicted residual stress distributions. In addition, detailed shrinkage and warpage measurements on a large series of polymers and for different molding conditions were performed and are shown to compare well with the model predictions.

  12. Cooling simulation of plastic injection molding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analyses the cooling of mold and plastic part during injectionmolding and the continued cooling of plastic part after being ejected from mold using the heat transfer theory and Boundary Element Method (BEM) to predict the temperature distribution in both mold and plastic part,and presents the experiments carried out with plates of ABS (Acrylonitrile-Butadiene-Styrene) to verify the validity of the cooling analysis software used to simulate the temperature distribution in ABS plate parts, and concludes that the analysis software agree qualitatively well with actual experimental findings.

  13. Application of MoldFlow in injection molding%MoldFlow在注塑成型中的应用

    Institute of Scientific and Technical Information of China (English)

    汤宏群; 苏广才

    2003-01-01

    利用MoldFlow对星型注塑件不同浇口位置进行流动模拟分析,预测可能存在的气泡位置和熔接痕位置,确定最佳浇口位置和数目.以此为例说明MoldFlow在注塑成型中应用的好处.

  14. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm...

  15. Secondary metabolites of slime molds (myxomycetes)

    Czech Academy of Sciences Publication Activity Database

    Dembitsky, V. M.; Řezanka, Tomáš; Spížek, Jaroslav; Hanuš, L. O.

    2005-01-01

    Roč. 66, - (2005), s. 747-769. ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50200510 Keywords : slime molds * myxomycetes * metabolites Subject RIV: EE - Microbiology, Virology Impact factor: 2.780, year: 2005

  16. Modelling and monitoring in injection molding

    DEFF Research Database (Denmark)

    Thyregod, Peter

    2001-01-01

    This thesis is concerned with the application of statistical methods in quality improvement of injection molded parts. The methods described are illustrated with data from the manufacturing of parts for a medical device. The emphasis has been on the variation between cavities in multi-cavity molds....... >From analysis of quality measurements from a longer period of manufacturing, it was found that differences in cavities was that source of variation with greatest influence on the lenght of the molded parts. The other large contribution to the lenght varation was the different machine settings. Samples...... taken within the same machine set-point did not cause great variation compared to the two preceding sources of variation. A simple graphical approach is suggested for finding patterns in the cavity differences. Applying this method to data from a 16 cavity mold, a clear connection was found between a...

  17. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    In recent years, polymer components with surface microstructures have been in rising demand for applications such as lab-on-a-chip and optical components. Injection molding has proven to be a feasible and efficient way to manufacture such components. In injection molding, the mold surface...... the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the...... topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...

  18. Femtosecond laser micromachining of fused silica molds.

    Science.gov (United States)

    Madani-Grasset, Frédéric; Bellouard, Yves

    2010-10-11

    The use of low-energy femtosecond laser beam combined with chemical etching has been proven to be an efficient method to fabricate three-dimensional structures in fused silica. For high-volume application, this technology--like other serial processes--suffers from a moderate production rate. Here, we show that femtosecond laser can also be employed to fabricate silica molds and other patterned surfaces, including surfaces with high aspect ratio features (> 10). Through appropriate tailoring of silica's surface property and subsequent creation of, for instance, simple elastomeric molding, new opportunities for the indirect 3D, multi-scale spatial characterization of deep laser-fabricated microstructures come along. We demonstrate that those moldings are characterized by a high fidelity (down to the nanometer scale) to the silica mold. These results further advance the applicability of femtosecond laser processing to glass. PMID:20941083

  19. Deadline Compliance Status Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These monthly Deadline Compliance Status Reports assist Participating Jurisdictions and HUD Field Offices in monitoring compliance with the 2-year commitment and...

  20. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  1. Fabrication and Optimization of a PAGATA gel dosimeter: increasing the melting point of the PAGAT gel dosimeter with agarose additive

    International Nuclear Information System (INIS)

    The PAGAT polymer gel dosimeter melts at 30degreeC and even at room temperature during the summer, so it needs to be kept in a cool place such as a refrigerator. To increase the stability of the PAGAT gel, different amounts of agarose were added to the PAGAT gel composition and the PAGATA gel was manufactured. Material and Methods: The PAGATA gel vials were irradiated using a CO-60 machine. Then, the samples were evaluated using a 1.5 T Siemens MRI scanner. The ingredients of the PAGATA normoxic gel dosimeter were 4.5% N-N' methylen-bis-acrylamide, 4.5% acrylamide, 4.5% gelatine, 5 m M tetrakis (THPC), 0.01 mM hydroquinone, 0.5% agarose and 86% de-ionized water (HPLC). Results: Melting point and sensitivity of the PAGAT gel dosimeter with addition of 0.0, 0.3, 0.5, 1.0, 1.5 and 2.0% of agarose were measured, in which the melting points Were increased to 30, 82, 86, 88, 89 and 90degreeC and their sensitivities found to be 0.113, 0.1059, 0.125, 0.122, 0.115 and 0.2 S-1Gy-1 respectively. Discussion and Conclusions: Adding agarose increased the sensitivity and background R2 of the evaluated samples. The optimum amount of agarose was found to be 0.5% regarding these parameters and also the melting point of the gel dosimeter. A value of 0.5% agarose was found to be an optimum value considering the increase of sensitivity to 0.125 and melting point to 86degreeC but at the expense of increasing the background R2 to 4.530.

  2. FACTORS ON VISCOSITY STABILITY OF MOLD FLUXES

    Institute of Scientific and Technical Information of China (English)

    C.Y.Zhu; C.J.Liu; M.F.Jiang; Z.D.Yang

    2004-01-01

    Viscosity stability indexes of mold flux at high temperature and low temperature have been introduced,and the effects of flux compositions on viscosity stability indexes have been studied.Two mold fluxes have been developed by analyzing the effects of flux viscosity stability on the process and the condition of continuous casting slab of medium carbon steel.The results show that the fluxes are suitable for the process.

  3. Polyamide 6 - long glass fiber injection moldings

    OpenAIRE

    Bijsterbosch, H.; Gaymans, R.J.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of impregnation and fiber concentration were studied. The injection molded samples were analyzed for fiber concentration, fiber length, and fiber orientation. Dumbbell-shaped tensile bars were made t...

  4. Optimization and simulation of reactive rotational molding

    OpenAIRE

    Riviere, Sylvain

    2012-01-01

    Reactive rotational molding is a process to manufacture hollow plastic parts where synthesis occurs during the shaping. This method has several advantages compared to traditional rotomolding using thermoplastic powders: shorter cycle time, possible use of high performance materials, and decrease of energy consumption and raw materials costs. However reactive rotational molding is more complex to implement mainly because of the important and quick change of viscosity occurring during polymeriz...

  5. Compliance in clinical trials.

    OpenAIRE

    Pullar, T; Kumar, S; Feely, M

    1989-01-01

    Compliance with treatment can be an important determinant of the outcome of clinical trials. To date there is no completely satisfactory method of measuring compliance and some of the most widely used methods are inadequate. The various methods of measuring compliance and how they have been applied to clinical trials are described, and improvements in the standard of the measurement and reporting of compliance in clinical trials are suggested.

  6. Tool steel quality and surface finishing of plastic molds

    OpenAIRE

    Rafael Agnelli Mesquita; Reinhold Schneider

    2010-01-01

    Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects) from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grin...

  7. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  8. Manufacturing method of powder molding product

    International Nuclear Information System (INIS)

    In manufacture of powder molded products such as nuclear fuel pellets by packing powders in a dye and applying press-molding, a first feeder which stores first UO2 powder and a second feeder which stores second UO2 powder are disposed in combination. The first UO2 powder and the second UO2 powder to be supplied to each of the feeders are weighed and dispensed by respective separate powder dispensing devices to provide the powders in an amount corresponding to one pellet at a predetermined ratio. Accordingly, since the powders are mixed at a predetermined ratio till they come to a position just before the pressing of the powders after supplied from the feeders to a die of a pressing machine, the degree of mixing of the powders for one molding product upon press-molding can be improved to improve packing performance of the powders to the die. With such procedures, uniformity of density distribution of the molded product is improved, the amount of grinding is reduced, defects such as cracks are prevented thereby enabling to improve the molding yield. (T.M.)

  9. Mold contamination and air handling units.

    Science.gov (United States)

    Wilson, Stephen C; Palmatier, Robert N; Andriychuk, Larysa A; Martin, Jared M; Jumper, Cynthia A; Holder, Homer W; Straus, David C

    2007-07-01

    An investigation was conducted on selected locations in air handling units (AHUs) to (a) identify common mold species found on these locations, (b) determine whether some locations (and subsets) featured mold growth sites more frequently than others, (c) ascertain whether the operating condition of AHUs is related to mold contamination, and (d) provide a basis for a microbial sampling protocol for AHUs. A total of 566 tape lifts and 570 swab samples were collected from the blower wheel fan blades, insulation, cooling coil fins, and ductwork from 25 AHUs. All AHU conditions were numerically rated using a heating, ventilation and air-conditioning (HVAC) survey. Results showed that Cladosporium sp. fungi were commonly recovered in terms of growth sites and deposited spores, and they were found mainly in the blower wheel fan blades, the ductwork, and the cooling coil fins. Subsections of the fan blades, insulation, and cooling coil fins showed no preferred area for mold growth sites. Other organisms such as Penicillium sp., Aspergillus sp., and Paecilomyces sp. were recovered from the cooling coil fins and insulation. Because of the widespread prevalence of Cladosporium sp., there was no relationship between mold growth and operating condition. However, the presence of different species of molds in locations other than the blower wheel blades may indicate that the AHU condition is not optimal. A suggested microbial sampling protocol including interpretations of sample results is presented. PMID:17487721

  10. Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases.

    OpenAIRE

    Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P

    1983-01-01

    Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observe...

  11. The MOLD expert of VAI - A mold monitoring system for best casting performance

    International Nuclear Information System (INIS)

    The increasing demand for higher quality products of the clients each year needs a better understanding of the continuous casting process to fulfill also in the future these requirements to be competitive on the steel market. Based on these strong economic boundary conditions the VAI MOLD EXPERT is able to cover these requirements. The VAI's MOLD EXPERT enables deep insight into the process behavior of the mold package and will be used in an advanced stage to partly control the casting machine with the goal of stable operation and high quality product. In the first step the MOLD EXPERT is a tool to acquire, store, compress and visualize measurement data of the mold/oscillator, with the advantage of gathering all data in one system. In the second step, these data are interpreted via mathematical models which are linked together to make comparisons to adaptive limits and setpoints. The benefit of the MOLD EXPERT is manifold. For the metallurgists new insight into the continuous casting process are given which results in a better interpretation of the whole casting process. New casting practices and alarm limits will be derived from the MOLD EXPERT. These results will increase the operational process stability and the product quality continuously. For the operators an on-line visualization is available to get a better support and to cast permanently with the optimal parameters. The modular hard- and software concept of MOLD EXPERT is shown and the different packages - mold thermic, mold oscillation, casting powder, mold level, steel flow, narrowface taper - including visualization monitors will be described in detail. (author)

  12. Comparison of several closure approximations for evaluating the thermoelastic properties of an injection molded short-fiber composite

    OpenAIRE

    DRAY, Delphine; Gilormini, Pierre; Regnier, Gilles

    2007-01-01

    The accurate prediction of both the elastic properties and the thermal expansion coefficients is very important for the precise simulation of such processes as injection molding of short-fiber polymer-matrix composites. In this work, a two-step homogenization procedure is applied and compared with experimental values obtained on a polyarylamide/glass fiber composite for a broad range of temperatures. It is observed that the stiffness averaging version of the model surpasses the compliance ave...

  13. Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles

    Directory of Open Access Journals (Sweden)

    Sousa Jr R.

    2004-01-01

    Full Text Available Partial hydrolysis of whey proteins by enzymes immobilized on an inert support can either change or evidence functional properties of the produced peptides, thereby increasing their applications. The hydrolysis of sweet cheese whey proteins by alcalase, which is multipoint-immobilized on agarose gel, is studied here. A Michaelis-Menten model that takes into account competitive inhibition by the product was fitted to experimental data. The influence of pH on the kinetic parameters in the range 6.0 to 11.0 was assessed, at 50ºC. Initial reaction-rate assays in a pHstat at different concentrations of substrate were used to estimate kinetic and Michaelis-Menten parameters, k and K M. Experimental data from long-term batch assays were used to quantify the inhibition parameter, K I. The fitting of the model to the experimental data was accurate in the entire pH range.

  14. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    International Nuclear Information System (INIS)

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique

  15. Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques

    International Nuclear Information System (INIS)

    The absorbance measurements in the wavelength range 700 nm to 800 nm were used to probe the agarose gel topology evolution and extract the pore size of the trapped solvent. By following the changes in absorbance and pore size, the gelation process could be clearly divided into three stages - induction stage, gelation stage and pseudo-equilibrium stage. The gelation mechanism is explained as a nucleation and growth process. Following the kinetics of gelation using dynamic light scattering is complicated by multiple scattering (for high concentrations) and large fluctuations in intensity and relaxation time. Comparatively, scanning the absorption spectrum is fast and the method is suitable for a wide range of concentrations and setting temperatures. Pore size determination using absorbance is a fast and non-invasive method when compared to the DNA electrophoresis measurements, which extend over several hours and use probe diffusion

  16. Fricke-agarose dosimeter gels: ion diffusion modelling and microdensitometry alternative to MRI

    International Nuclear Information System (INIS)

    Ferric ion diffusion is one of the main problems that still restrains the dosimetric application of Fricke-agarose gels. In this work, we model this process within finite length gel samples. The temporal evolution of the ion concentration as a function of the initial concentration is derived by solving Fick's second law in two dimensions with boundary reflections. The influence of ion concentration gradient, elapsed time, diffusion coefficient and spatial resolution is studied. Due to the main drawbacks of MRI for studying these systems, i.e. high cost and acquisition time often non-negligible compared to diffusion time, we also investigate the possibility of using a microdensitometer. The application of this technique for Fricke gel dosimetry is proposed here for the first time. The estimate of the ion diffusion coefficient is in a very agreement with those reported in literature

  17. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Vetcher, Alexandre A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Srinivasan, Srimeenakshi [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Vetcher, Ivan A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Abramov, Semen M [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Kozlov, Mikhail [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Baughman, Ray H [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Levene, Stephen D [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  18. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  19. Rapid control of mold temperature during injection molding process: Effect of packing pressure

    Science.gov (United States)

    Liparoti, Sara; Sorrentino, Andrea; Titomanlio, Giuseppe

    2015-12-01

    A thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained molded is performed, with particular reference to semi- crystalline polymers. In particular, fully characterized injection molding tests are presented using an isotactic polypropylene, previously carefully characterized as far as most of properties of interest. The effects of mold temperature and packing conditions are analyzed. The mold temperature was controlled by a thin heating device, composed by polyimide as insulating layer and polyimide loaded carbon black as electrical conductive layer, that is able to increase temperature on mold surface in few seconds (70°C/s) by joule effect and cool down soon after. The shear layer thickness in the molded is reduced in the samples produced at high mold temperatures, that means high electrical power and long heating time, and this reduction is more significant at lower packing pressures, indeed, at 360bar as packing pressure and 20s as heating time the shear layer disappear. The resulting morphology was analyzed by optical microscope.

  20. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality......-containing thin film (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the...... coating with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high...

  1. Method for low temperature molding of metal sheets

    International Nuclear Information System (INIS)

    It is known that for cubic face centered metals like aluminium, copper, nickel nd the like ductility generally increases of low temperatures. It is proposed to work sheets from cubic face centered metals, hardened by cold forming, by molding the metal sheets under tensile load at temperatures between -1000C and -2000C to get molded parts of desired shape. Preferably the sheets should have a maximum thickness of 1.3 mm and be hardened by cold forming up to at least 75% of the maximum hardness. Examples for molding under tensile load are stamp molding, stamp bending, shallow drawing, stretch forming, hydrostatic molding, explosion molding, electromagnetic expansion, contour molding and the like. According to the invention there are obtained molded parts that have got increased strength, resistance to scratching, buckling resistance and excellent surface properties, as at low temperatures the undesired discontinuous or corrugated molding, being characteristic for many cubic face centered metals and alloys at room temperature, is avoided. (orig.)

  2. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    Science.gov (United States)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  3. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  4. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    International Nuclear Information System (INIS)

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow

  5. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    Science.gov (United States)

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  6. No Evidence of Viral Transmission following Long-Term Implantation of Agarose Encapsulated Porcine Islets in Diabetic Dogs

    Directory of Open Access Journals (Sweden)

    Lawrence S. Gazda

    2014-01-01

    Full Text Available We have previously described the use of a double coated agarose-agarose porcine islet macrobead for the treatment of type I diabetes mellitus. In the current study, the long-term viral safety of macrobead implantation into pancreatectomized diabetic dogs treated with pravastatin (n=3 was assessed while 2 dogs served as nonimplanted controls. A more gradual return to preimplant insulin requirements occurred after a 2nd implant procedure (days 148, 189, and >652 when compared to a first macrobead implantation (days 9, 21, and 21 in all macrobead implanted animals. In all three implanted dogs, porcine C-peptide was detected in the blood for at least 10 days following the first implant and for at least 26 days following the second implant. C-peptide was also present in the peritoneal fluid of all three implanted dogs at 6 months after 2nd implant and in 2 of 3 dogs at necropsy. Prescreening results of islet macrobeads and culture media prior to transplantation were negative for 13 viruses. No evidence of PERV or other viral transmission was found throughout the study. This study demonstrates that the long-term (2.4 years implantation of agarose-agarose encapsulated porcine islets is a safe procedure in a large animal model of type I diabetes mellitus.

  7. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Science.gov (United States)

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  8. Powder Injection Molding of Titanium Components

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 – 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  9. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  10. High rate fabrication of compression molded components

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  11. Single gate optimization for plastic injection mold

    Institute of Scientific and Technical Information of China (English)

    LI Ji-quan; LI De-qun; GUO Zhi-ying; LV Hai-yuan

    2007-01-01

    This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.

  12. The Elastic Mold Deformation During the Filling and Packing Stage of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Stefan Kleindel

    2014-03-01

    Full Text Available The accurate numerical prediction of the mold filling process of long and thin walled parts is dependent on numerous factors. This paper investigates the effect of various influencing variables on the filling pattern by means of simulation and experimental validation. It was found that mold temperature, process settings and venting conditions have little effect on the predicted filling pattern. However, in the actual case study, the filling behavior observed during the experiments was significantly different compared to the numerical prediction. A structural finite element analysis of the moving mold half showed an unacceptable large deformation of the mold plates under injection pressure. A very good correlation between simulation and experiment was attained after improving the stiffness of the mold. Therefore it can be concluded, that the elasticity of the mold may have a significant influence on the filling pattern when long and thin walled products are considered. Furthermore, it was shown, that even an apparently stiff mold can exhibit a distinct deformation during filling and packing stage.

  13. Powder injection molding of pure titanium

    Institute of Scientific and Technical Information of China (English)

    GUO Shibo; DUAN Bohua; HE Xinbo; QU Xuanhui

    2009-01-01

    An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.

  14. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  15. Precision replication of co-molded meso and micro optics through injection molding

    Science.gov (United States)

    Gill, David Dennis

    The objective of the research is to extend the limits of current optical production techniques for complex, thermally-stable, precise optical components produced in large volume. Injection molding is a high volume process, but is not well understood on this scale. Additionally, polymer can be formed into complex and intricate shapes, but the high coefficient of thermal expansion has prevented the widespread use of polymer for precision optics. For injection molding to become a viable process for the production of meso and micro optics, it is necessary for these challenges to be addressed. The goals of this research address the aforementioned challenges on two fronts (1) injection molding of polymer lenses, and (2) molding of polymer elements directly onto stable substrates. The first is through an increased understanding of the injection molding process in the replication of micro optics. Precision molds were produced with optical features of varying size, shape, step height, and aspect ratio. These features included spherical and fresnel lenses, blaze diffraction grating, and wedding cake. The pitch of the features was as small as 10mum and step heights as small as 1.25mum. A screening design of experiment was performed to discover the molding factors (process variables) with the greatest effect on the replication of micro optics. These experiments showed mold temperature and screw rotation speed to have the greatest effects on the accurate replication of meso and micro optics. The second challenge, the thermal instability of polymer lenses, has been addressed through research of the co-molding these optics directly onto thermally stable substrates. Challenges included the modification of properties at the polymer-substrate interface, the large mismatch in coefficients of thermal expansion between the polymer and the substrate, and mold design factors for using a brittle substrate material in the mold. In the experiments, interface adhesion was found to be

  16. Molding of Aluminum Foams by Using Hot Powder Extrusion

    Directory of Open Access Journals (Sweden)

    Yoshitaka Tanino

    2012-06-01

    Full Text Available In order to form aluminum foams directly from powder, a combined process of hot powder extrusion and molding is proposed. Aluminum powder mixed with a foaming agent is extruded into the mold through the die heated to a temperature higher than the melting point, and the mold is filled with the aluminum foam. When a stainless steel pipe is used for a simple mold, an aluminum foam bar is obtained of which the relative density varies between 0.2 and 0.3. The molding of aluminum foam by using three types of mold shape shows the influence of gravity and friction. The effect of gravity is significant when a large step exists at the connection between the mold inlet and the die outlet, and friction is dominant in cases where foam is mold in a narrow space.

  17. Chemotaxis in the Plasmodial Slime Mold, Physarum polycephalum.

    Science.gov (United States)

    Bozzone, Donna M.; Martin, Denise A.

    1998-01-01

    Describes a biology unit designed so that students pose their own questions and perform experiments to answer these questions. Plasmodial slime mold is employed as the focus of the study with background information about the mold provided. (DDR)

  18. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  19. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    OpenAIRE

    Kerim ÇETİNKAYA; Hüdayim BAŞAK

    2000-01-01

    Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  20. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  1. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  2. Two-dimensional differential adherence of neuroblasts in laser micromachined CAD/CAM agarose channels

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, A. [Georgia Institute of Technology, School of Material Science and Engineering, Atlanta, GA 30332 (United States); Patz, T. [Georgia Institute of Technology, School of Material Science and Engineering, Atlanta, GA 30332 (United States); Narayan, R.J. [Georgia Institute of Technology, School of Material Science and Engineering, Atlanta, GA 30332 (United States); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-16 Magurele, 077125 Bucharest (Romania); Modi, R. [US Naval Research Laboratory, Washington, DC 20375-5345 (United States); Auyeung, R.C.Y. [US Naval Research Laboratory, Washington, DC 20375-5345 (United States); Chrisey, D.B. [US Naval Research Laboratory, Washington, DC 20375-5345 (United States)

    2006-04-30

    Laser micromachining of hydrophobic gels into CAD/CAM patterns was used to develop differentially adherent surfaces and induce the attachment of B35 rat neuroblasts that would later form engineered nerve bundles. Narrow channels, 60-400 {mu}m wide, were micromachined in a 2% agarose gel using an ArF laser, and subsequently filled with an extracellular matrix gel. Upon the addition of 1 ml of a 2 x 104 cells/ml neuroblast suspension, the cells selectively adhered to the ECM-lined channels in a non-confluent manner and we monitored their growth at various time points. The adherent neuroblasts were fluorescently imaged with a propidium iodide live/dead assay, which revealed that the cells were alive within the channels. After 72 h growth, the neuroblasts grew, proliferated, and differentiated into nerve bundles. The fully grown 1 cm long nerve bundle organoids maintained an aspect ratio on the order of 100. The results presented in this paper provide the foundation for laser micromachining technique to develop bioactive substrates for development of three-dimensional tissues. Laser micromachining offers rapid prototyping of substrates, excellent resolution, control of pattern depth and dimensions, and ease of fabrication.

  3. Two-dimensional differential adherence of neuroblasts in laser micromachined CAD/CAM agarose channels

    International Nuclear Information System (INIS)

    Laser micromachining of hydrophobic gels into CAD/CAM patterns was used to develop differentially adherent surfaces and induce the attachment of B35 rat neuroblasts that would later form engineered nerve bundles. Narrow channels, 60-400 μm wide, were micromachined in a 2% agarose gel using an ArF laser, and subsequently filled with an extracellular matrix gel. Upon the addition of 1 ml of a 2 x 104 cells/ml neuroblast suspension, the cells selectively adhered to the ECM-lined channels in a non-confluent manner and we monitored their growth at various time points. The adherent neuroblasts were fluorescently imaged with a propidium iodide live/dead assay, which revealed that the cells were alive within the channels. After 72 h growth, the neuroblasts grew, proliferated, and differentiated into nerve bundles. The fully grown 1 cm long nerve bundle organoids maintained an aspect ratio on the order of 100. The results presented in this paper provide the foundation for laser micromachining technique to develop bioactive substrates for development of three-dimensional tissues. Laser micromachining offers rapid prototyping of substrates, excellent resolution, control of pattern depth and dimensions, and ease of fabrication

  4. Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Anuj, E-mail: chianuj@gmail.com [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Melo, Jose Savio, E-mail: jsmelo@barc.gov.in [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); D' Souza, Stanislaus Francis, E-mail: sfdsouza@barc.gov.in [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2013-02-15

    Highlights: ► Designing of floating biopolymeric-magnetite cryobeads using cryotropic-gelation. ► Optimization of preparation process and their physico-chemical characterization. ► First study on the floating cryobeads for uranium recovery application. ► Cost effective synthesis and environment-friendly for environmental applications. -- Abstract: This study presents a novel development of a floating polymeric-magnetite cryobead for the recovery of hexavalent uranium from the aqueous sub-surfaces. The alginate-agarose-magnetite cryobeads were synthesized by the process of cryotropic-gelation at subzero-temperature. The physico-chemical properties of cryobeads showed high surface area and high interconnected porosity (∼90%). Low density of these cryobeads explains their floating property in the aqueous medium. The rheological analysis of cryobeads showed its stability and increased stiffness after uranium adsorption. The presence of magnetite nanoparticles in the porous cryobeads facilitates the recovery of these beads by applying an external magnetic field. Maximum uranium adsorption (97 ± 2%) was observed in the pH range of 4.5–5.5. The thermodynamic parameters suggest passive endothermic adsorption behaviour. HCl was found to be an efficient eluent for the uranium desorption. Five repeated cycles for the desorption of uranium from biosorbent showed 69 ± 3% of uranium recovery. These results suggest stability of these novel floating magnetite-cryobeads under environmetal conditions with potential for the recovery of uranium from contaminated aqueous subsurfaces.

  5. Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads.

    Science.gov (United States)

    Tripathi, Anuj; Melo, Jose Savio; D'Souza, Stanislaus Francis

    2013-02-15

    This study presents a novel development of a floating polymeric-magnetite cryobead for the recovery of hexavalent uranium from the aqueous sub-surfaces. The alginate-agarose-magnetite cryobeads were synthesized by the process of cryotropic-gelation at subzero-temperature. The physico-chemical properties of cryobeads showed high surface area and high interconnected porosity (≈ 90%). Low density of these cryobeads explains their floating property in the aqueous medium. The rheological analysis of cryobeads showed its stability and increased stiffness after uranium adsorption. The presence of magnetite nanoparticles in the porous cryobeads facilitates the recovery of these beads by applying an external magnetic field. Maximum uranium adsorption (97 ± 2%) was observed in the pH range of 4.5-5.5. The thermodynamic parameters suggest passive endothermic adsorption behaviour. HCl was found to be an efficient eluent for the uranium desorption. Five repeated cycles for the desorption of uranium from biosorbent showed 69 ± 3% of uranium recovery. These results suggest stability of these novel floating magnetite-cryobeads under environmental conditions with potential for the recovery of uranium from contaminated aqueous subsurfaces. PMID:23280054

  6. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    Science.gov (United States)

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE). PMID:26864499

  7. Isoelectric focusing of human von Willebrand factor in urea-agarose gels

    International Nuclear Information System (INIS)

    An analytical technique has been developed for the isoelectric focusing (IEF) of plasma von Willebrand factor (vWF) in agarose gels containing urea. Under these conditions, vWF freely enters the gel and focuses without artifact. The focused vWF is visualized by staining fixed gels with 125I-labeled affinity-purified heterologous antibody. Utilizing a pH gradient of 5.0-6.5, normal vWF in plasma or purified preparations focuses into at least three bands with apparent isoelectric points (pI) between pH 5.7 and 5.9. A reproducible difference in the IEF pattern of vWF has been established between normal plasmas and those of individuals with variant von Willebrand's disease (vWd) type IIA and type IIB. In type IIA, vWF has a distinctly lower pI than normal. This difference may be related to the presence of smaller vWF multimers in IIA plasma because forms of vWF of corresponding size contained in normal cryoprecipitate supernatant have a similar pI. Type IIB von Willebrand factor has a pI intermediate between normal and IIA. Neuraminidase treatment of plasma samples before IEF results in an increase in pI in normal, type IIA, and type IIB vWF. The data suggest that none of the 16 type IIA and 9 IIB plasmas studied here contain significantly decreased amounts of sialic acid

  8. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.

    Science.gov (United States)

    Wang, Jingjing; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N3) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400-800nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. PMID:26838864

  9. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    Science.gov (United States)

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films. PMID:26836479

  10. Stabilization of Candida antarctica Lipase B (CALB Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI

    Directory of Open Access Journals (Sweden)

    Sara Peirce

    2016-06-01

    Full Text Available Lipase B from Candida antarctica (CALB was immobilized on octyl agarose (OC and physically modified with polyethyleneimine (PEI in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release from the support by incubation in the non-ionic detergent Triton X-100 was more difficult after the PEI-coating, suggesting that some intermolecular physical crosslinking had occurred, making this desorption more difficult. Thermal stability was marginally improved, but the stability of the OCCALB-PEI was significantly better than that of OCCALB during inactivation in mixtures of aqueous buffer and organic cosolvents. SDS-PAGE analysis of the inactivated biocatalyst showed the OCCALB released some enzyme to the medium during inactivation, and this was partially prevented by coating with PEI. This effect was obtained without preventing the possibility of reuse of the support by incubation in 2% ionic detergents. That way, this modified CALB not only has a strong anion exchange nature, while maintaining the activity, but it also shows improved stability under diverse reaction conditions without affecting the reversibility of the immobilization.

  11. Dense Pellicular Agarose-Glass Beads for Expanded Bed Application: Flow Hydrodynamics and Solid Phase Classifications

    Institute of Scientific and Technical Information of China (English)

    周鑫; 史清洪; 白姝; 孙彦

    2004-01-01

    Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.

  12. Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads

    International Nuclear Information System (INIS)

    Highlights: ► Designing of floating biopolymeric-magnetite cryobeads using cryotropic-gelation. ► Optimization of preparation process and their physico-chemical characterization. ► First study on the floating cryobeads for uranium recovery application. ► Cost effective synthesis and environment-friendly for environmental applications. -- Abstract: This study presents a novel development of a floating polymeric-magnetite cryobead for the recovery of hexavalent uranium from the aqueous sub-surfaces. The alginate-agarose-magnetite cryobeads were synthesized by the process of cryotropic-gelation at subzero-temperature. The physico-chemical properties of cryobeads showed high surface area and high interconnected porosity (∼90%). Low density of these cryobeads explains their floating property in the aqueous medium. The rheological analysis of cryobeads showed its stability and increased stiffness after uranium adsorption. The presence of magnetite nanoparticles in the porous cryobeads facilitates the recovery of these beads by applying an external magnetic field. Maximum uranium adsorption (97 ± 2%) was observed in the pH range of 4.5–5.5. The thermodynamic parameters suggest passive endothermic adsorption behaviour. HCl was found to be an efficient eluent for the uranium desorption. Five repeated cycles for the desorption of uranium from biosorbent showed 69 ± 3% of uranium recovery. These results suggest stability of these novel floating magnetite-cryobeads under environmetal conditions with potential for the recovery of uranium from contaminated aqueous subsurfaces

  13. Injection molding of high aspect ratio sub-100 nm nanostructures

    International Nuclear Information System (INIS)

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual pillars. The poorly replicated structures on nickel molds with or without FDTS coatings all appeared fractured. We investigated the underlying mechanism in a macroscopic model system and found reduced wetting and strongly decreased adhesion of solidified COC droplets on nickel surfaces after coating with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect ratio >2.5) pillars on a 200 nm pitch. (paper)

  14. 21 CFR 874.3430 - Middle ear mold.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  15. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate

    International Nuclear Information System (INIS)

    The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation. (paper)

  16. Correlation between Molding Conditions and Foam Morphology in Microcellular Injection Molding

    Science.gov (United States)

    Yamada, Takehiro; Murata, Yasuhiko; Yokoi, Hidetoshi

    In this study, a quantitative analysis of foam cell distribution at the cross section of products in microcellular injection molding was conducted concerning the relationship between the mold conditions and laminar morphology. The following results were obtained; (1) The morphology consists of a surface layer (Skin layer I) with silver streaks, a layer (Skin layer II) with no cells inside, and a foam layer (Core layers I, II, III) with many cells of different size. (2) The morphology changes depending on the molding conditions and cavity position. (3) The core layer domain decreases from the gate to the distal end. (4) Injection conditions greatly affect the thickness of Skin layer II. (5) Maximum filling pressure in the mold affects mainly the core layer of the foam morphology.

  17. Streaming instability of aggregating slime mold amoebae

    Science.gov (United States)

    Levine, Herbert; Reynolds, William

    1991-05-01

    We propose a new model of aggregation in the cellular slime mold D. Discoideum. Our approach couples the excitable signaling system to amoeba chemotaxis; the resultant system of equations is tractable to analytical and numerical approaches. Using our model, we derive the existence of a streaming instability for the concentric target aggregation pattern.

  18. Polyamide 6 - long glass fiber injection moldings

    NARCIS (Netherlands)

    Bijsterbosch, H.; Gaymans, R.J.

    1995-01-01

    The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of

  19. Residual stresses in injection molded products

    NARCIS (Netherlands)

    Jansen, K.M.B.

    2015-01-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature

  20. Injection molding of micro patterned PMMA plate

    Institute of Scientific and Technical Information of China (English)

    Yeong-Eun YOO; Tae-Hoon KIM; Tae-Jin JE; Doo-Sun CHOI; Chang-Wan KIM; Sun-Kyung KIM

    2011-01-01

    A plastic plate with surface micro features was injection molded to investigate the effect of pressure rise of melt on the replication of the micro structures. Prism pattern, which is used in many optical applications, was selected as a model pattern. The prism pattern is 50 μm in pitch and 108° in the vertical angle. The overall size of the plate was 335 mm×213 mm and the thickness of the plate varied linearly from 2.6 mm to 0.7 mm. The prism pattern was firstly machined on the nickel plated core block using micro diamond tool and this machined pattern core was installed in a mold for injection molding of prism patterned plate. Polymethyl methacrylate (PMMA) was used as a molding material. The pressure and temperature of the melt in the cavity were measured at different positions in the cavity and the replication of the pattern was also measured at the same positions. The results show that the pressure or temperature profile through the process depends on the shape and the size of the plate. The replication is affected by the temperature and pressure profiles at the early stage of filling, which is right after the melt reaches the position to be measured.

  1. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  2. Solvent-assisted polymer micro-molding

    Institute of Scientific and Technical Information of China (English)

    HAN LuLu; ZHOU Jing; GONG Xiao; GAO ChangYou

    2009-01-01

    The micro-molding technology has played an important role in fabrication of polymer micro-patterns and development of functional devices.In such a process,suitable solvent can swell or dissolve the polymer films to decrease their glass transition temperature (Tg) and viscosity and thereby improve flowing ability.Consequently,it is easy to obtain the 2D and 3D patterns with high fidelity by the solvent-assisted micro-molding.Compared with the high temperature molding,this technology overcomes some shortcomings such as shrinking after cooling,degradation at high temperature,difficulty in processing some functional materials having high Tg,etc.It can be applied to making patterns not only on polymer monolayers but also on polyelectrolyte multilayers.Moreover,the compressioninduced patterns on the multilayers are chemically homogenous but physically heterogeneous.In this review,the controlling factors on the pattern quality are also discussed,including materials of the mold,solvent,pressure,temperature and pattern density.

  3. [Cutaneous mold fungus granuloma from Ulocladium chartarum].

    Science.gov (United States)

    Altmeyer, P; Schon, K

    1981-01-01

    Cutaneous granulomas due to the mold fungus Ulocladium chartarum (Preuss) are described in a 58 year old woman. This fungus is usually harmless for mammalian. It is thought that a consisting immunosuppression (Brill-Symmer's disease, therapy with corticosteroids) was a priming condition for the infection. The route of infection in this patient described is unknown. PMID:7194869

  4. Mapping Tax Compliance

    DEFF Research Database (Denmark)

    Boll, Karen

    2014-01-01

    Tax compliance denotes the act of reporting and paying taxes in accordance with the tax laws. Current social science scholarship on tax compliance can almost entirely be divided into behavioural psychology analyses and critical tax studies. This article, which presents two cases of how tax...... development of social science studies of taxation....

  5. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  6. Effect of mold treatment by solvent on PDMS molding into nanoholes

    OpenAIRE

    Con, Celal; Cui, Bo

    2013-01-01

    Polydimethylsiloxane (PDMS) is the most popular and versatile material for soft lithography due to its flexibility and easy fabrication by molding process. However, for nanoscale patterns, it is challenging to fill uncured PDMS into the holes or trenches on the master mold that is coated with a silane anti-adhesion layer needed for clean demolding. PDMS filling was previously found to be facilitated by diluting it with toluene or hexane, which was attributed to the great reduction of viscosit...

  7. Penetration Deep into Tissues of Reactive Oxygen Species Generated in Floating-Electrode Dielectric Barrier Discharge (FE-DBD): in Vitro Agarose Gel Model Mimicking an Open Wound

    CERN Document Server

    Dobrynin, Danil; Friedman, Gary; Fridman, Alexander

    2013-01-01

    In this manuscript we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this models effectiveness in simulating depth of penetration of reactive species generated in plasma deep into tissue of a rat and confirm the penetration depths with agarose gel model. We envision that in the future such a model could be used to study plasma discharges (and other modalities) and minimize the use of live animals: plasma can be optimized on the agarose gel wound model and then finally verified using an actual wound.

  8. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    Science.gov (United States)

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  9. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    Science.gov (United States)

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. PMID:26838857

  10. Single-Cell-Arrayed Agarose Chip for in Situ Analysis of Cytotoxicity and Genotoxicity of DNA Cross-Linking Agents.

    Science.gov (United States)

    Li, Lili; Wang, Weixing; Ding, Mingyu; Luo, Guoan; Liang, Qionglin

    2016-07-01

    Development of approach or device to allow continuous multiple measurements, such as integrating cytotoxic and genotoxic analysis, is quite appealing for study of the drug's activity and mechanism of action or resistance. In this study, a single-cell-arrayed agarose chip system was developed to combine cell cultivation with subsequent in situ analysis of cytotoxicity and genotoxicity of the chemotherapeutic agent. The modified alkaline comet assay coupled with the Live/Dead assay was used to monitor the interstrand cross-links (ICLs) formation and the cytotoxic effects in different glioma cell lines. In addition, the ICL-induced double strand breaks (DSBs) was measured on the chip to reflect the level of ICLs indirectly. Compared with the traditional methods, the microarray agarose device offers higher throughput, reproducibility, and robustness, exhibiting good potential for high-content drug screening. PMID:27269449

  11. Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis.

    Science.gov (United States)

    Kim, Jae Hyung; Na, Jeong-Geol; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    A two-stage membrane process for the separation of galactose, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) has been proposed. The first step of nanofiltration (NF) is to remove 5-HMF and LA from galactose solution obtained by the hydrolysis of agarose, the main component of red algal galactan for the reduction of its microbial toxicity. 5-HMF and LA are inhibitory to fermentation but at the same time useful compounds themselves with many applications. The second step of electrodialysis (ED) is to separate 5-HMF and LA in the permeate from NF. More than 91% of 5-HMF and up to 62% of LA could be removed from agarose hydrolysate, while galactose was almost completely retained by NF. Further removal of LA was expected to be possible with no loss of galactose by operating the NF process in a diafiltration mode. 5-HMF and LA could be effectively separated from each other by ED. PMID:23672940

  12. Detection of a single base exchange in PCR-amplified DNA fragments using agarose gel electrophoresis containing bisbenzimide-PEG.

    OpenAIRE

    Müller, M; Kruse, L; Tabrett, A M; Barbara, D.J.

    1997-01-01

    Using PCR fragments of known sequences derived from isolates of two related fungal species, simple submarine electrophoresis in agarose gels containing a bisbenzimide-PEG conjugate (H.A.-Yellow) has been shown to be capable of distinguishing DNA fragments 567 bp long which differ by as little as a single base change. However, only changes affecting bisbenzimide binding sites (which consist of at least four consecutive A/T bases) alter mobility; other changes are ineffective. A second ligand (...

  13. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis

    OpenAIRE

    Sanderson, Brian A.; Araki, Naoko; Lilley, Jennifer L.; Guerrero, Gilberto; Lewis, L. Kevin

    2014-01-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate and EDTA (TAE) or Tris, borate and EDTA (TBE). Gels are run at a low, constant voltage (~ 10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrop...

  14. Improved methods for the fluorographic detection of weak β-emitting radioisotopes in agarose and acrylamide gel electrophoresis media

    International Nuclear Information System (INIS)

    The use of acetic acid as a solvent for diphenyloxazole (PPO) in fluorographic procedures has been investigated. It is demonstrated to be superior to both dimethyl sulfoxide and methanol with respect to its suitability in both agarose and acrylamide gel electrophoresis systems. In addition, a method has been developed for impregnating fragile gels such as those used for immunodiffusion with PPO in preparation for fluorography. (Auth.)

  15. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis.

    OpenAIRE

    Itoh, G; Tamura, J; M. Suzuki; Suzuki, Y.; Ikeda, H; Koike, M; Nomura, M; Jie, T; Ito, K

    1995-01-01

    Myocardial tissue taken from 19 autopsy cases of myocardial infarction were examined both by the nick and labeling method (NELM) and by DNA agarose gel electrophoresis in order to demonstrate the localization of cells with fragmented DNA and to confirm the internucleosomal cleavage of DNA biochemically. The nuclei corresponding to those with the histological features of acute myocardial infarction in hematoxylin and eosin (H&E)-stained sections were stained strongly positive with the nick end...

  16. Pulse time and agarose concentration affect the electrophoretic mobility of cccDNA during PFGE and FIGE [corrected].

    OpenAIRE

    Sobral, B W; Atherly, A G

    1989-01-01

    Circular DNAs have been shown to migrate in an unusual manner during field inversion gel electrophoresis (FIGE) and orthogonal field alternating gel electrophoresis (OFAGE). We studied the effect of varying pulse time and agarose concentration on the electrophoretic mobility of supercoiled (ccc) DNAs ranging from 2 kbp to 16 kbp during FIGE and contoured homogeneous electric fields (CHEF). Both supercoiled and linear molecules display a minimum mobility as a function of pulse time in a CHEF a...

  17. Continuous Production of 6-amino Penicillanic Acid (6-APA) by Agarose Immobilized Penicillin Acylase in a Packed Column Reactor

    OpenAIRE

    Banerjee, S.; Debnath, M.

    2007-01-01

    Penicillin acylase, an industrially important biocatalyst catalyzes the conversion of penicillins to 6-amino penicillanic acid (6-APA) which is the main precursor for the production of semi-synthetic -lactam antibiotics. The present work involves the continuous production of 6-APA in a packed column reactor by using agarose immobilized penicillin acylase as a block polymer. The strain Escherichia coli ATCC 11105 was used as enzyme source and penicillin G as substrate. The acidic nature of 6-A...

  18. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface and...... especially suitable for rapid prototyping and mold geometry testing....

  19. The Facility and Process Technics of Polyethylene Rotational Molding

    Institute of Scientific and Technical Information of China (English)

    LI BaiShun

    2001-01-01

    @@ 1. Introduction Rotational molding is the process by which hollow plastic parts are formed. It mainly processes the product which Injection molding and Blow molding can not process medium-sized, large-sized and super large-sized plastic parts. The technics may turn out a tub, dustbin, stock tank, sailboat. The research institute of Lanzhou introduces a suit of RS-16 Rotational Molding Machine from Germany Reinhadt Co. on 1990. It mainly put up experiment and smallscale production. RS-16 rotational molding machine is a single arm and di-axial equipment. It is consisting of a gas heated sintering oven, cooling chamber, mouldcarrying carriage and a controlling unit.

  20. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Science.gov (United States)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  1. In vitro study of using calcium phosphate cement as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas.

    Science.gov (United States)

    Kai-Chiang, Yang; Ching-Yao, Yang; Chang-Chin, Wu; Tzong-Fu, Kuo; Feng-Huei, Lin

    2007-12-15

    In this study, the feasibility of using calcium phosphate cement (CPC) as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas was evaluated. We fabricated a chamber by CPC and utilized X-ray diffraction, Scanning electron microscope and Mercury intrusion porosimetry to identify the characters of the CPC chamber. The nominal molecular weight cut-off and cytotoxicity of CPC chamber were also evaluated. An insulinoma cell line (RIN-m5F) was chosen as insulin source and encapsulated in agarose microspheres and then enclosed in preformed CPC chamber. Insulin secretion was analyzed by Enzyme-linked immunosorbant assay to evaluate the function of insulinoma enclosed in CPC chamber. Results showed that the CPC chamber was non-cytotoxicity to insulinoma and can block the penetration of molecules which molecular weight larger than 12.4 kDa. Insulinoma inside the CPC chamber can secrete insulin in stable level for 30 days. This study indicated that we may use CPC as immunoisolative material to enclose insulinoma/agarose microspheres as bioartificial pancreas. PMID:17514757

  2. [Agarose gel isoelectric focusing: application to the study of abnormalities of immunoglobulin clonality in CSF and serum].

    Science.gov (United States)

    Lebrun-Fourcy, C; Rondot, J; Revol, C; Renversez, J C

    1996-01-01

    Since it is quite difficult to commonly use isoelectric focusing (IEF) of proteins in polyacrylamide gel for biological diagnosis, we have developed a method based on IEF in agarose gel, to split proteins from sera and cerebrospinal fluid (CSF). A prefocalisation at low voltage (250 V) is made on a custom thin gel of agarose (0.5 mm) containing some carrier ampholytes (pH 5-9). After deposition of biological samples, the gel is run at 500 V, thereafter at 1200 V. After focusing, the gel is fixed before being coloured by a simplified silver staining technique. In order to demonstrate the good resolution of the immunoglobulines (Ig) in the pH gradient, a transfer on a nitrocellulose membrane followed by an immunofixation was carried out from unstained gels after IEF. This separation on agarose gel shows several advantages, ie its speed (3H total), its lack of toxicity, its sensibility and its reproductibility. It is specially well suited for the diagnosis of diseases characterised by oligoclonal or monoclonal Ig, particularly those found in the CSF during neurologic diseases like multiple sclerosis. Several examples of focused sera and CSF are reviewed in the paper. PMID:8952725

  3. Wavelet Packet Decomposition to Characterize Injection Molding Tool Damage

    Directory of Open Access Journals (Sweden)

    Tomaž Kek

    2016-02-01

    Full Text Available This paper presents measurements of acoustic emission (AE signals during the injection molding of polypropylene with new and damaged mold. The damaged injection mold has cracks induced by laser surface heat treatment. Standard test specimens were injection molded, commonly used for examining the shrinkage behavior of various thermoplastic materials. The measured AE burst signals during injection molding cycle are presented. For injection molding tool integrity prediction, different AE burst signals’ descriptors are defined. To lower computational complexity and increase performance, the feature selection method was implemented to define a feature subset in an appropriate multidimensional space to characterize the integrity of the injection molding tool and the injection molding process steps. The feature subset was used for neural network pattern recognition of AE signals during the full time of the injection molding cycle. The results confirm that acoustic emission measurement during injection molding of polymer materials is a promising technique for characterizing the integrity of molds with respect to damage, even with resonant sensors.

  4. Mold temperature measurement for glass-pressing processes

    International Nuclear Information System (INIS)

    The largest use of radiation thermometers within Corning Glass Works is for mold temperature measurement for the glass-pressing process. Pressing television panels at today's high quality would be very difficult without a mold temperature measurement system and the computer manipulation of the quality control data to supervise the mold temperature control loop. The most critical part of a television panel is the inside surface curvature. The ideal surface is usually defined as a spherical surface. The tolerance for a normal TV panel is +-0.30 mm (+-0.012 in.). High resolution display panels are more critical, having a dimensional tolerance only one half as large as TV panels. Panel curvature is a direct (but negative) function of mold temperature. Every 10C increase in mold temperature results in the panel center being 0.025 mm (0.001 in.) shorter (flatter). Random dimensional variations within a panel take up most of the dimensional tolerance. The result is that each mold is controlled to its own individual temperature set point, +-10C. Hot panel and cold panel curvature measurements are correlated by a process computer and used to update the mold temperature set points. The same computer adjusts the mold cooling air to maintain the required mold temperatures. From the temperature measurement standpoint, the significant problem is the changing emissivity of the mold surface when the mold is new or reconditioned. The selection of a radiation thermometer with a short wavelength was an obvious choice to minimize the effect of emissivity variations

  5. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  6. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact. PMID:20070193

  7. Effect of saccharide additives on response of ferrous-agarose-xylenol orange radiotherapy gel dosimeters

    International Nuclear Information System (INIS)

    Glucose, sucrose, starch, and locust bean gum have been used as additives to the ferrous-agarose-xylenol orange (FAX) gel dosimeter. The saccharide enhanced dosimeters were found to have a higher dose sensitivity over a standard FAX gel as measured by both optical density change and magnetic resonance imaging (MRI). With optical density measurement, OD-dose sensitivity increases were up to 55% for glucose, 122% for sucrose and 43% for starch, while locust bean gum did not give a consistent response. With MRI, R1-dose sensitivity increases were up to 178% with sucrose addition. The FAX gel with sucrose was studied in greatest detail. The OD-dose sensitivity dependence on cooling rate was reduced for the sucrose FAX gel over the standard FAX gel, which has significant implications for uniform dose sensitivity in large gel phantoms. The thermal oxidation rate in the sucrose FAX gel was up to 2.3 times higher than in the standard gel. The OD-dose sensitivity of oxygenated sucrose FAX gels was 4.3 times greater than standard FAX gels, while continued enhancement in OD-dose sensitivity with increased sucrose concentrations beyond 2.0 g/l was found only for the oxygenated sucrose FAX gels. Both the molar absorption coefficient of the ferric ion-xylenol orange complex at 543 nm and gel pH were not affected by the presence of sucrose, with the implication that the higher OD-dose sensitivity of gels with saccharides is due to increased chain reaction production of ferric ions

  8. An education belief worth reflection: Molding intellectuals

    Institute of Scientific and Technical Information of China (English)

    Lu Jie

    2006-01-01

    Molding intellectuals is one of the expectations people have,which comes from a deep-rooted belief in education.The humanity hypothesis of this belief is to take knowledge and the pursuit of knowledge as the only prescription for human beings.This hypothesis overturns the relation of knowledge and life.Intellectuals make scientific paradigm as the limit of knowledge.Experience and consciousness outside the paradigm are ejected from the scope of knowledge.Accordingly,knowledge of intellectuals is broken away from a human being's life.Under the domination of this conception of knowledge,the world of intellectuals has become a world deficient of meaning.The belief that education molds intellectuals should be deconstructed gradually,with criticism in both practice and theory.

  9. Environmental Compliance Guide

    International Nuclear Information System (INIS)

    The Guide is intended to assist Department of Energy personnel by providing information on the NEPA process, the processes of other environmental statutes that bear on the NEPA process, the timing relationships between the NEPA process and these other processes, as well as timing relationships between the NEPA process and the development process for policies, programs, and projects. This information should be helpful not only in formulating environmental compliance plans but also in achieving compliance with NEPA and various other environmental statutes. The Guide is divided into three parts with related appendices: Part I provides guidance for developing environmental compliance plans for DOE actions; Part II is devoted to NEPA with detailed flowcharts depicting the compliance procedures required by CEQ regulations and Department of Energy NEPA Guidelines; and Part III contains a series of flowcharts for other Federal environmental requirements that may apply to DOE projects

  10. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  11. Environmental Compliance Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    The Guide is intended to assist Department of Energy personnel by providing information on the NEPA process, the processes of other environmental statutes that bear on the NEPA process, the timing relationships between the NEPA process and these other processes, as well as timing relationships between the NEPA process and the development process for policies, programs, and projects. This information should be helpful not only in formulating environmental compliance plans but also in achieving compliance with NEPA and various other environmental statutes. The Guide is divided into three parts with related appendices: Part I provides guidance for developing environmental compliance plans for DOE actions; Part II is devoted to NEPA with detailed flowcharts depicting the compliance procedures required by CEQ regulations and Department of Energy NEPA Guidelines; and Part III contains a series of flowcharts for other Federal environmental requirements that may apply to DOE projects.

  12. Compliance for Green IT

    CERN Document Server

    Calder, Alan

    2009-01-01

    The growing range of Green IT regulations are challenging more and more organisations to take specific steps to ensure they are in compliance with sometimes complex regulations, ranging from cap & trade requirements through to regulations concerning IT equipment disposal.

  13. Future Specialist’s Professional Position Molding

    OpenAIRE

    Irina A. Levitskaya

    2013-01-01

    The search of conditions for future specialist’s professional position molding is crucial nowadays. This article discloses the features of “position” notion essence in the context of professional self-determination, analyses the problems of future specialist’s professional development in terms of topical social and professional objectives solution, considers debatable issues of professional development as an integral continuous process of future specialist’s personality formation. The stages ...

  14. Implementing a compliance manager

    OpenAIRE

    Armitage, S; Stevens, R.; Finkelstein, A.

    1998-01-01

    Many companies claim to adhere to standards for software project development. This is often used as a marketing tool when eliciting business. But how does the customer or project manager know that these standards are being completely and consistently applied in their projects? In the paper 'Managing Standards Compliance', we identify this problem and describe a support environment to provide identification and correction of non-compliance to standards. This paper details the experiences gaine...

  15. Compliance with Antihypertensive Medication

    OpenAIRE

    Evans, C. Edward

    1985-01-01

    Although we have efficacious treatment for hypertension many patients do not take their medication or even follow through with their physician visits, thereby negating potential benefits. Detecting patients who do not take their medications is as important as diagnosing and treating the hypertension itself. This paper outlines methods of detecting and ‘treating’ non-compliance and discusses the role of the physician/patient relationship in compliance.

  16. Validating year 2000 compliance

    OpenAIRE

    Deursen, van, A; Klint, Paul; Sellink, M.P.A.

    1997-01-01

    Validating year 2000 compliance involves the assessment of the correctness and quality of a year 2000 conversion. This entails inspecting both the quality of the conversion emph{process followed, and of the emph{result obtained, i.e., the converted system. This document provides an overview of the techniques that can be used to validate year 2000 compliance. It includes typical code fragments, and a discussion of existing technology, impact analysis, solution strategies, code correction, test...

  17. Fractal phenomena in powder injection molding process

    Institute of Scientific and Technical Information of China (English)

    郑洲顺; 曲选辉; 李云平; 雷长明; 段柏华

    2003-01-01

    The complicated characteristics of the powder were studied by fractal theory. It is illustrated that powder shape, binder structure, feedstock and mold-filling flow in powder injection molding process possess obvious fractal characteristics. Based on the result of SEM, the fractal dimensions of the projected boundary of carbonylic iron and carbonylic nickel particles were determined to be 1.074±0.006 and 1.230±0.005 respectively by box counting measurement. The results show that the fractal dimension of the projected boundary of carbonylic iron particles is close to smooth curve of one-dimension, while the fractal dimension of the projected boundary of carbonylic nickel particle is close to that of trisection Koch curve, indicating that the shape characteristics of carbonylic nickel particles can be described and analyzed by the characteristics of trisection Koch curve. It is also proposed that the fractal theory can be applied in the research of powder injection molding in four aspects.

  18. Recording of radiation-induced optical density changes in doped agarose gels with a CCD camera

    International Nuclear Information System (INIS)

    Full text: Spatially resolved dose measurement with iron-doped agarose gels is continuing to be investigated for applications in radiotherapy dosimetry. It has previously been proposed to use optical methods, rather than MRI, for dose measurement with such gels and this has been investigated using a spectrophotometer (Appleby A and Leghrouz A, Med Phys, 18:309-312, 1991). We have previously studied the use of a pencil beam laser for such optical density measurement of gels and are currently investigating charge-coupled devices (CCD) camera imaging for the same purpose but with the advantages of higher data acquisition rates and potentially greater spatial resolution. The gels used in these studies were poured, irradiated and optically analysed in Perspex casts providing gel sections 1 cm thick and up to 20 cm x 30 cm in dimension. The gels were also infused with a metal indicator dye (xylenol orange) to render the radiation induced oxidation of the iron in the gel sensitive to optical radiation, specifically in the green spectral region. Data acquisition with the CCD camera involved illumination of the irradiated gel section with a diffuse white light source, with the light from the plane of the gel section focussed to the CCD array with a manual zoom lens. The light was also filtered with a green colour glass filter to maximise the contrast between unirradiated and irradiated gels. The CCD camera (EG and G Reticon MC4013) featured a 1024 x 1024 pixel array and was interfaced to a PC via a frame grabber acquisition board with 8 bit resolution. The performance of the gel dosimeter was appraised in mapping of physical and dynamic wedged 6 MV X-ray fields. The results from the CCD camera detection system were compared with both ionisation chamber data and laser based optical density measurements of the gels. Cross beam profiles were extracted from each measurement system at a particular depth (eg. 2.3 cm for the physical wedge field) for direct comparison. A

  19. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    Science.gov (United States)

    Giboz, Julien; Copponnex, Thierry; Mélé, Patrice

    2009-02-01

    The skin-core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin-core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities.

  20. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    Science.gov (United States)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  1. Mold deformation in soft UV-nanoimprint lithography

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during imprinting process which can cause serious consequences have to be understood for the practical application of the process. This paper investigated the deformation of the soft mold by theoretical analyses, numerical simulations, and experimental studies. We simulated the mold deformation using a simplified model and finite element method. The simulation and the related experimental results agree well with each other. Through the investigation, the mechanism and affected factors of the mold deformation are revealed, and some useful conclusions have been achieved. These results will be valuable in optimizing the imprinting process conditions and mold design for improving the quality of transferred patterns.

  2. Shape retention of injection molded stainless steel compacts

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; K.A.Khalil; HUANG Bai-yun

    2005-01-01

    The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120 MPa and molding temperature of 150 ℃. Under this process condition, the percentage of distorted compacts is the lowest.

  3. Replication of optical microlens arrays using photoresist coated molds

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen;

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating with...... the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after the...... photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...

  4. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  5. Complex Doping of Uranium under Centrifugal Casting in Zirconium Mold

    International Nuclear Information System (INIS)

    The paper presents the results of the investigation on the structure and distribution pattern of the doping elements in uranium casting, produced by the centrifugal casting in a sealed zirconium mold. It is investigated the possibility of complex zirconium and iron doping of uranium. The values of the zirconium mold dissolution rate against the centrifugal casting time are provided. The mechanism is suggested for doping uranium with the elements included in the mold material during the fuel rod fabrication by the centrifugal casting

  6. Invasive Mold Infections in Solid Organ Transplant Recipients

    OpenAIRE

    Yoann Crabol; Olivier Lortholary

    2014-01-01

    Invasive mold infections represent an increasing source of morbidity and mortality in solid organ transplant recipients. Whereas there is a large literature regarding invasive molds infections in hematopoietic stem cell transplants, data in solid organ transplants are scarcer. In this comprehensive review, we focused on invasive mold infection in the specific population of solid organ transplant. We highlighted epidemiology and specific risk factors for these infections and we assessed the ma...

  7. Comparative analysis of thyroid extract gel filtration by dextran gel (Sephadex G-200) and agarose (Sepharose 6-B)

    International Nuclear Information System (INIS)

    Separation of thyroglobulin and havier proteins from crude thyroid gland extracts using molecular through agarose gel (Sepharose-6B) is done. In order to compare the separation obtained on Sephadex wiht that on Sepharose, parallel filtrations are run with extratcts from two thyroid adenomas, one 'cold' and one 'hot' nodule, and their normal contralateral tissues. On Sephadex, good separation is ibtained between the heavy proteins and thyroglobulin, separation between thyroglobulin and proteins is better ou Sephacex than on Sepharose althrough, due to the smaller diluition which the lighter fraction suffers on Sephadex, an efficient qualitative analysis is possible

  8. Topological complexity of different populations of pBR322 as visualized by two-dimensional agarose gel electrophoresis

    OpenAIRE

    Martin-Parras, Luis; Lucas, Isabelle A.; Martínez-Robles, María Luisa; Hernandez, Pablo; Krimer, Dora B.; Hyrien, Olivier; Schvartzman, Jorge Bernardo

    1998-01-01

    Neutral/neutral two-dimensional (2D) agarose gel electrophoresis was used to investigate populations of the different topological conformations that pBR322 can adopt in vivo in bacterial cells as well as in Xenopus egg extracts. To help in interpretation and identification of all the different signals, undigested as well as DNA samples pretreated with DNase I, topoisomerase I and topoisomerase II were analyzed. The second dimension of the 2D gel system was run with or without ethidium bromide...

  9. The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis

    OpenAIRE

    Schvartzman, Jorge Bernardo; Martínez-Robles, María Luisa; Hernandez, Pablo

    1993-01-01

    Initiation of DNA replication in higher eukaryotes is still a matter of controversy. Some evidence suggests it occurs at specific sites. Data obtained using two-dimensional (2D) agarose gel electrophoresis, however, led to the notion that it may occur at random in broad zones. This hypothesis is primarily based on the observation that several contiguous DNA fragments generate a mixture of the so-called 'bubble' and 'simple Y' patterns in Neutral/neutral 2D gels. The interpretation that this m...

  10. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.;

    2011-01-01

    mounted inside the mold. The influence of four μIM parameters, melt temperature, mold temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidences about the......Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...

  11. Mold and human health: separating the wheat from the chaff.

    Science.gov (United States)

    Pettigrew, H David; Selmi, Carlo F; Teuber, Suzanne S; Gershwin, M Eric

    2010-04-01

    The term "mold" is utilized to define the ubiquitous fungal species commonly found in household dust and observed as visible multicellular filaments. Several well-defined human diseases are known to be caused or exacerbated by mold or by exposure to their byproducts. Among these, a solid connection has been established with infections, allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, hypersensitivity pneumonitis, and asthma. In the past decades, other less-defined and generally false conditions have also been ascribed to mold. We will herein review and critically discuss the available evidence on the influence of mold on human health. PMID:19714500

  12. Effect of mold rotation on the bifilar electroslag remelting process

    Institute of Scientific and Technical Information of China (English)

    Xiao-fang Shi; Li-zhong Chang; Jian-jun Wang

    2015-01-01

    A novel electroslag furnace with a rotating mold was fabricated, and the effects of mold rotational speed on the electroslag re-melting process were investigated. The results showed that the chemical element distribution in ingots became uniform and that their com-pact density increased when the mold rotational speed was increased from 0 to 28 r/min. These results were attributed to a reasonable mold speed, which resulted in a uniform temperature in the slag pool and scattered the metal droplets randomly in the metal pool. However, an ex-cessive rotational speed caused deterioration of the solidification structure. When the mold rotational speeds was increased from 0 to 28 r/min, the size of Al2O3 inclusions in the electroslag ingot decreased from 4.4 to 1.9μm. But the excessive mold rotational speed would de-crease the ability of the electroslag remelting to remove the inclusions. The remelting speed gradually increased, which resulted in reduced power consumption with increasing mold rotational speed. This effect was attributed to accelerated heat exchange between the consumable electrode and the molten slag, which resulted from mold rotation. Nevertheless, when the rotational speed reached 28 r/min, the remelting speed did not change because of limitations of metal heat conduction. Mold rotation also improved the surface quality of the ingots by pro-moting a uniform temperature distribution in the slag pool.

  13. Virtual Mold Technique in Thermal Stress Analysis during Casting Process

    Institute of Scientific and Technical Information of China (English)

    Si-Young Kwak; Jae-Wook Baek; Jeong-Ho Nam; Jeong-Kil Choi

    2008-01-01

    It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.

  14. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  15. ICIS FE&C Compliance Monitoring Screens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Web Based Training for Integrated Compliance Information System Updated Compliance Monitoring Training for ICIS Federal Enforcement and Compliance User. This...

  16. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue;

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  17. Mold Filling Analysis in Vacuum Infusion Molding Process Based on a High-Permeable Medium

    Institute of Scientific and Technical Information of China (English)

    Yingdan ZHU; Hua TAN; Jihui WANG

    2003-01-01

    The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulate the moldingprocess, and the simulation results show good agreement with experiments.

  18. Comparison of injection molding and injection/compression molding for the replication of microstructure

    Science.gov (United States)

    Hong, Seokkwan; Hwang, Jeongho; Kang, Jeongjin; Yoon, Kyunghwan

    2015-11-01

    Because of increasing interest in the functional surfaces including micro- or nano-patterns, the mass production of such surfaces has been actively researched. Both conventional injection molding (CIM) and injection/compression molding (ICM) of micro-patterns were investigated in the present study. The molding subject is a multi-scale structure that consists of a macro-scale thin plate and micro-scale patterns formed regularly on its surface. The transcription ratios of micro pattern made by CIM and ICM for different flow length were experimentally measured, and the origin of the obtained results was identified through numerical analysis. It was found that the cavity pressure and polymer temperature are the most important factors for micro-pattern filling; in particular, the polymer temperature is the key factor determining the transcription ratio. It was also found that the difference in CIM and ICM micro-pattern transcription ratios originates from the differences in the cavity pressure history if other molding conditions are the same.

  19. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......° for structured surfaces with a drop roll-off angle of less than 2°. Thereby, it is shown that an extremely water repellant surface can be injection molded directly with clear perspectives for more environmental and healthier plastic consumer products....

  20. Pathology-designed custom molded foot orthoses.

    Science.gov (United States)

    Rosenbloom, Kevin B

    2011-01-01

    Treating patients with custom foot orthoses for common pathologies is a rewarding experience when the proper steps are taken during foot casting and custom-orthosis prescription writing. This article describes successful methods for orthoses casting and prescription writing for custom-molded orthoses for Achilles tendonitis, pes planus, hallux limitus, plantar fasciitis/heel spurs, lateral ankle instability, metatarsalgia, and pes cavus. In addition, a summary of orthotic laboratory instructions for each pathology-designed custom orthosis is provided, which should be considered by orthotic laboratories. PMID:21276525

  1. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    Science.gov (United States)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  2. Silver nanoparticles doped agarose disk: highly sensitive surface-enhanced Raman scattering substrate for in situ analysis of ink dyes.

    Science.gov (United States)

    Raza, Ali; Saha, Basudeb

    2013-12-10

    Raman spectroscopy is a preferred analytical tool for forensic trace analysis due to its non-invasive nature. This technique has been utilized in examination of organic colorants present in fibers and ink, but high fluorescent nature of these compounds is a problem. In the present study, silver-doped agarose gel disk, having property of quenching fluorescence and enhancing Raman signals, is found to be effective as surface-enhanced Raman scattering (SERS) substrates for analysis of rhodamine 6G (Rh 6G) and crystal violet (CV) dyes. As-prepared and well characterized by UV, TEM-EDAX and XRD techniques, the investigated silver-doped agarose gel disk proves to have minimal invasive as confirmed by the ATR-FTIR method and effective for in situ SERS analysis of blue and red ballpoint ink. The disk is stable upon storage and hence can be re-used and re-examined. The present method offers new possibilities in trace forensic analysis with minimal destruction. PMID:24314497

  3. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

    Science.gov (United States)

    Shah, Rhythm R; Dombrowsky, Alexander R; Paulson, Abigail L; Johnson, Margaret P; Nikles, David E; Brazel, Christopher S

    2016-11-01

    Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor. PMID:27523991

  4. Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition

    International Nuclear Information System (INIS)

    We report a simple experimental approach to follow the transport of helium (He) plasma-generated reactive oxygen and nitrogen species (RONS) through millimetre thick agarose targets. These RONS may be either primary RONS, generated directly by the plasma jet, or secondary RONS generated for example at the surface of, or within, the material. Our experiment involves placing an agarose film over a quartz cuvette filled with deionized water. The agarose film is exposed to a He plasma jet and the UV absorption profile (of the deionized water) is recorded in real-time. Plasma exposure time, source-target distance and agarose film thickness and composition are varied to explore their effects on the depth of RONS delivery by the plasma jet. We conclude that plasma UV plays a minor role in the transport of RONS; whereas direct plasma contact and the He gas flow promote the transport of RONS into tissue. Our data indicate an accumulation of RONS within the agarose film (during plasma exposure) and a subsequent (time-lagged) release into the deionized water. Our approach can be readily adapted to other plasma sources; it can accommodate more complex biological materials, and has the potential to provide new insights into plasma-induced phenomena within real tissues. (fast track communication)

  5. Agency Assessments of Compliance Programs

    OpenAIRE

    Joseph Murphy

    2015-01-01

    No matter what an agency may say in speeches about the importance of compliance and ethics efforts, if it ignores good programs in practice, then businesses will correctly read the real message: programs do not count. Joe Murphy (Compliance Strategists)

  6. Effect of antioxidants of aflatoxigenic molds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.

    1986-01-01

    Growth and aflatoxin production by Aspergillus flavus and A. parasiticus were measured in synthetic media and chicken feed treated with butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ethoxyquin (EXQ), propyl gallate (PG) or t-butylhydroquinone (TBHQ) at 50-250 ..mu..g/g and 50-1000 ..mu..g/g, respectively. BHA at 50 ..mu..g/g in broth or agar inhibited growth and alfatoxin production by both molds. In poultry feeds, 1000 ..mu..g/g BHA was required to depress CO/sub 2/ production at day 5 of incubation, while 200 ..mu..g/g decreased aflatoxin B/sub 1/ 23.8%. BHT, EXQ, and PG had slight effects on mold growth while TBHQ enhanced growth on broth but reduced it on agar. Afaltoxin B/sub 1/ production was stimulated by EXQ, although G/sub 1/ production declines. Measurement of cellular constituents released from mycelia over 5 hours indicated that BHA doubled the release of UV-absorbing materials and increase by threefold the release of previously incorporated radiolabeled compounds. Furthermore, BHA inhibited the uptake of /sup 14/C-amino acids 8 and 44%, /sup 3/H-uridine 65 and 91%, and /sup 3/H-methyl thymidine 67 and 71%, for A. flavus and A. parasiticus, respectively, compared to untreated controls.

  7. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  8. Gravitational response of the slime mold Physarum

    Science.gov (United States)

    Block, I.; Wolke, A.; Briegleb, W.

    1994-08-01

    The acellular slime mold Physarum polycephalum is used as a model system to investigate the graviresponse of single cells which possess no receptors specialized for the perception of gravity. To obtain insights into the gravity-signal transduciton mechanism the light response of the cell is used: Macroplsmodia of the slime mold show clear geo- and phototaxes. Gravity increases and white light decreases transiently the concentration frequency of plasmodial strands whereby both responses follow the same time pattern. Since mitochodria play major role in changing the contraction rhythm in response to light and gravity stimuli, the simultaneous and subsequent inductions of the opposing light and gravity responses and their mutual influences on one another were investigated. The experiments were performed in weightlessness (0 g) - simulated on the fast-rotating clinostat as well as in actual weightlessness during the IML-1 Space-Shuttle mission. The results indicate that mitochondria (chondriome) are part of the acceleration-stimulus reaction chain in Physarum. Two models for a direct gravireceptor mechanism are discussed.

  9. Effect of antioxidants of aflatoxigenic molds

    International Nuclear Information System (INIS)

    Growth and aflatoxin production by Aspergillus flavus and A. parasiticus were measured in synthetic media and chicken feed treated with butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ethoxyquin (EXQ), propyl gallate (PG) or t-butylhydroquinone (TBHQ) at 50-250 μg/g and 50-1000 μg/g, respectively. BHA at 50 μg/g in broth or agar inhibited growth and alfatoxin production by both molds. In poultry feeds, 1000 μg/g BHA was required to depress CO2 production at day 5 of incubation, while 200 μg/g decreased aflatoxin B1 23.8%. BHT, EXQ, and PG had slight effects on mold growth while TBHQ enhanced growth on broth but reduced it on agar. Afaltoxin B1 production was stimulated by EXQ, although G1 production declines. Measurement of cellular constituents released from mycelia over 5 hours indicated that BHA doubled the release of UV-absorbing materials and increase by threefold the release of previously incorporated radiolabeled compounds. Furthermore, BHA inhibited the uptake of 14C-amino acids 8 and 44%, 3H-uridine 65 and 91%, and 3H-methyl thymidine 67 and 71%, for A. flavus and A. parasiticus, respectively, compared to untreated controls

  10. Lighting molded optics: Design and manufacturing

    Directory of Open Access Journals (Sweden)

    Kočárková H.

    2013-05-01

    Full Text Available Proper design and manufacturing of glass molded lenses need to be performed in several steps. The whole process from customer requirements to f nal functional product is shown on two examples - a lens for street light and a lens for spot light with narrow lighting angle. After discussing customer requirements, optical design is made. Thanks to various commercial softwares with optimization, manufacturer of the lens can work as well as a designer which enables simplif cation and acceleration of lens manufacturing, since limitations of the manufacturing process are considered during creation of the design. When the prototype is made, its functionality needs to be evaluated. This work shows measurement of light distribution for street light lens in a dark room using goniometer and measurement of light intensity for spot lens f xed on an optical bench. These measurements can reveal the root cause in case of lens malfunction, which enables to optimize manufacturing process or modify lens design accordingly. Designing, manufacturing and evaluation of molded optics under one roof enables creation of easily manufacturable design and fast solution of problems.

  11. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  12. Sinterability of Zirconia Top Coat of Investment Mold for Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, zirconia is used as top mold material for Ti investment casting. Top mold samples are made by proper mold building technology. The effect of different sintering temperature on chemical composition, microstructure and residual bending strength of the top mold sample is studied. The volume and homogeneity of the air holes in the top mold are determined by sintering temperature, and finally determined the residual bending strength of the mold sample was determined.

  13. Environmental compliance and cleanup

    International Nuclear Information System (INIS)

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed

  14. Interpersonal Communication and Compliance

    NARCIS (Netherlands)

    Fennis, Bob M.; Das, Enny; Pruyn, Ad Th.H.

    2006-01-01

    Two field experiments examined the impact of the Disrupt-Then-Reframe (DTR) technique on compliance. This recently identified technique consists of a subtle, odd element in a typical scripted request (the disruption) followed by a persuasive phrase (the reframing). The authors argued that its impact

  15. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  16. Environmental compliance and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  17. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles... articles intended for repeated use in contact with nonacid food (pH above 5.0), in accordance with...

  18. Using Cellular Slime Molds in the High School Laboratory

    Science.gov (United States)

    Haskins, P. B.

    1977-01-01

    Described is the life cycle of the cellular slime molds Acrasiales. Experiments that can be used to explore the aggregation, migration, and culmination activities of the organism are suggested. Laboratory procedures for culturing these slime molds and listings of biological supply houses and literature references are also given. (MA)

  19. Two Species of Myxomycetes Causing Slime Mold of Sweet Potato

    OpenAIRE

    Kim, Wan Gyu; Lee, Sang Yeob; Cho, Weon Dae

    2007-01-01

    Specimens collected from sweet potato plants with slime mold symptoms in fields in Daejeon, Korea were examined. Two species of Myxomycetes, Fuligo septica and Stemonitis herbatica were identified based on their morphological characteristics. This is the first report that the two species of Myxomycetes cause slime mold of sweet potato in Korea.

  20. Occurrence of Fuligo gyrosa Causing Slime Mold of Oriental Melon

    OpenAIRE

    Kim, Wan Gyu; Choi, Hyo Won; Hong, Sung Kee; Lee, Young Kee; Lee, Su Heon

    2009-01-01

    Recently, a severe slime mold infestation affected oriental melon plants in fields in Chilgok county, Gyeongbuk province, Korea. Specimens were collected from the fields and examined for identification. A species of Myxomycetes, Fuligo gyrosa, was identified based on its morphological characteristics. This is the first report that F. gyrosa causes slime mold of oriental melon.

  1. Physarum attraction: Why slime mold behaves as cats do?

    OpenAIRE

    Adamatzky, Andrew; Costello, Ben de Lacy

    2012-01-01

    We discuss potential chemical substances responsible for attracting acellular slime mold Physarun polycephalum to valerian root. The contributes toward fundamental research into pheromones and chemo-attracts of primitive organisms such as slime molds. The results show that significant information could be gained about the action of compounds on higher organisms.

  2. Grinding aspheric and freeform micro-optical molds

    Science.gov (United States)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  3. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen;

    2015-01-01

    etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  4. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    Science.gov (United States)

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-Min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  5. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...

  6. A fabrication method of microneedle molds with controlled microstructures.

    Science.gov (United States)

    Wang, Qi Lei; Zhu, Dan Dan; Chen, Yang; Guo, Xin Dong

    2016-08-01

    Microneedle (MN) offers an attractive, painless and minimally invasive approach for transdermal drug delivery. Polymer microneedles are normally fabricated by using the micromolding method employing a MN mold, which is suitable for mass production due to high production efficiency and repeat-using of the mold. Most of the MN molds are prepared by pouring sylgard polymer over a MN master to make an inverse one after curing, which is limited in optimizing or controlling the MN structures and failing to keep the sharpness of MNs. In this work we describe a fabrication method of MN mold with controlled microstructures, which is meaningful for the fabrication of polymer MNs with different geometries. Laser micro-machining method was employed to drill on the surface of PDMS sheets to obtain MN molds. In the fabrication process, the microstructures of MN molds are precisely controlled by changing laser parameters and imported patterns. The MNs prepared from these molds are sharp enough to penetrate the skin. This scalable MN mold fabrication method is helpful for future applications of MNs. PMID:27157736

  7. Injection molding of bushes made of tribological PEEK composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  8. Multi-height structures in injection molded polymer

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    We present the fabrication process for injection molded multi-height surface structures for studies of wetting behavior. We adapt the design of super hydrophobic structures to the fabrication constrictions imposed by industrial injection molding. This is important since many super hydrophobic...... surfaces are challenging to realize by injection molding due to overhanging structures and very high aspect ratios. In the fabrication process, we introduce several unconventional steps for producing the desired shapes, using a completely random mask pattern, exploiting the diffusion limited growth rates...... of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the...

  9. The Facility and Process Technics of Polyethylene Rotational Molding

    Institute of Scientific and Technical Information of China (English)

    LI; BaiShun

    2001-01-01

    1. Introduction Rotational molding is the process by which hollow plastic parts are formed. It mainly processes the product which Injection molding and Blow molding can not process medium-sized, large-sized and super large-sized plastic parts. The technics may turn out a tub, dustbin, stock tank, sailboat.  The research institute of Lanzhou introduces a suit of RS-16 Rotational Molding Machine from Germany Reinhadt Co. on 1990. It mainly put up experiment and smallscale production. RS-16 rotational molding machine is a single arm and di-axial equipment. It is consisting of a gas heated sintering oven, cooling chamber, mouldcarrying carriage and a controlling unit.  ……

  10. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed...... based on a test geometry integrating different aspect ratios of small structures. Acrylonitrile butadiene styrene (ABS) was used as material, and different mold temperatures were tested. The replicated test objects were measured by means of an optical coordinate measuring machine (CMM). On the basis of...

  11. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    simulation accuracy (i.e. decrease deviations from experimental values): injection speed profile, cavity injection pressure, melt and mold temperatures, three-dimensional mesh parameters, and material rheological characterization. Quality factors investigated for the quantitative comparisons were: short shot...... length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must be......Data analysis and simulations on micro-molding experiments have been conducted. Micro molding simulations have been executed taking into account actual processing conditions implementation in the software. Various aspects of the simulation set-up have been considered in order to improve the...

  12. Smart plastic functionalization by nanoimprint and injection molding

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian;

    2015-01-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution and...... high fidelity with truly freeform injection molding inserts. The link between the planar processes and the freeform shaped injection molding inserts is enabled by the use of nanoimprint with flexible molds for the pattern definition combined with unidirectional sputter etching for transferring the...... pattern. With this approach, we demonstrate the transfer of down to 140 nm wide holes on large areas with good structure fidelity on an injection molding steel insert. The durability of the sub-micrometer structures on the inserts have been investigated by running two production series of 102,000 and 73...

  13. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    Science.gov (United States)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  14. CENTRAL CONVEYING & AUTO FEEDING SYSTEMS FOR AN INJECTION MOLDING SHOP

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    2011-08-01

    Full Text Available Nowadays injection molding is probably the most important method of Processing of consumer and industrial goods, and is performed everywhere in the world. The developing of injection molding becomes a competition from day to day. This Process now integrated with computer control make the production better in quality and Better quantity. The trends of producing a plastics product in injection molding industries are recently changing from traditional method to using the FEA analysis. For injection molding industries, time and cost is very important aspects to consider because these two aspectswill directly related to the profits at a company. The next issue toconsider, to get the best parameter for the injection molding process, plastics has been waste. Through the experiment, operator will use large amount of plastics material to get the possibly parameters to setup the machine.To produce the parts with better quality and quantity these molding defects are the major obstacles in achieving the targets with quality & quantity. Various defects like Short shot, colour streaks and low productivity rates are associated with the material mixing and feeding as molded plastics are often a blend of two or more materials. Colors (master batch and other additives are often mixed (blended with the raw plastic material prior to the molding process in molding plants. So it is very necessary to work out auto blending and auto feeding of plasticgranules to the machine hopper. This paper will cover the studyof automatic blending unit & central conveying system for plasticgranule feeding to machine & will help in optimizing the injection molding process.

  15. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  16. Development of a Mold Cracking Simulator: The Study of Breakout and Crack Formation in Continuous Casting Mold

    Science.gov (United States)

    Zhang, Yexin; Wang, Wanlin; Zhang, Haihui

    2016-08-01

    Based on the mold simulator technology, a mold-cracking simulator has been successfully developed to study the process of breakout and the shell surface crack formation during the initial solidification of molten steel inside the continuous casting mold. First, a spheroidal protrusion was installed on the mold hot surface to mimic the abnormal force that generated by mold wall deformation, and then the external force was applied to the initial solidified shell, to facilitate the formation of breakout and shell surface cracks. Second, the responding temperature and heat flux across mold hot surface were recovered by an inverse heat conduction problem. The experimental results indicated that the mold breakout occurs around the shell tip by the combined efforts from external horizontal force, ferrostatic pressure, and thermal stresses during positive strip time. The breakout tends to introduce the peak of the responding temperature and heat flux across the mold hot surface. The vertical propagation velocity of the rupture point in the solidification shell has been calculated as 0.42 m/s in this study, which is in good agreement with industrial slabs. The paper also suggested that surface transverse crack formation is related to the segregation of sulfur during the initial solidification of molten steel.

  17. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  18. Mold Simulator Study of the Initial Solidification of Molten Steel in Continuous Casting Mold. Part I: Experiment Process and Measurement

    Science.gov (United States)

    Zhang, Haihui; Wang, Wanlin; Ma, Fanjun; Zhou, Lejn

    2015-10-01

    A mold simulator has been successfully used to study the initial solidification behavior of the molten low carbon steel. Coupled with 2D-IHCD calculation and PSD analysis, the variations of the responding temperatures and heat fluxes, as well as the relationship between shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film, were investigated in this article. The results suggested that the mold high-frequency temperatures and heat fluxes above liquid steel level vary with the oscillation of the mold, and show an opposite variation pattern as those below the shell tip. The formed shell surface profile is directly correlated to the variation of high-frequency heat fluxes, where the formation of oscillation mark is associated with a sudden increase of the heat flux during negative strip time. Mold level fluctuation contributes to the formation of the extra oscillation marks. The growth of shell thickness follows the square root law, and the instantaneous solidification factor is large near the shell tip and becomes small in the area where the deep shell surface depression is formed. The thickness of the slag film in between mold and shell is in the range of 1.4 to 2.46 mm, and the crystallization of mold flux in mold/shell gap is dynamic.

  19. Development of a Mold Cracking Simulator: The Study of Breakout and Crack Formation in Continuous Casting Mold

    Science.gov (United States)

    Zhang, Yexin; Wang, Wanlin; Zhang, Haihui

    2016-06-01

    Based on the mold simulator technology, a mold-cracking simulator has been successfully developed to study the process of breakout and the shell surface crack formation during the initial solidification of molten steel inside the continuous casting mold. First, a spheroidal protrusion was installed on the mold hot surface to mimic the abnormal force that generated by mold wall deformation, and then the external force was applied to the initial solidified shell, to facilitate the formation of breakout and shell surface cracks. Second, the responding temperature and heat flux across mold hot surface were recovered by an inverse heat conduction problem. The experimental results indicated that the mold breakout occurs around the shell tip by the combined efforts from external horizontal force, ferrostatic pressure, and thermal stresses during positive strip time. The breakout tends to introduce the peak of the responding temperature and heat flux across the mold hot surface. The vertical propagation velocity of the rupture point in the solidification shell has been calculated as 0.42 m/s in this study, which is in good agreement with industrial slabs. The paper also suggested that surface transverse crack formation is related to the segregation of sulfur during the initial solidification of molten steel.

  20. Penetration Deep into Tissues of Reactive Oxygen Species Generated in Floating-Electrode Dielectric Barrier Discharge (FE-DBD): in Vitro Agarose Gel Model Mimicking an Open Wound

    OpenAIRE

    Dobrynin, Danil; Fridman, Gregory; Friedman, Gary; Fridman, Alexander

    2013-01-01

    In this manuscript we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this models effectiveness in simulating depth of penetration of reactive species generated in plasma deep into tissue of a rat and confirm the penetration depths with agarose gel model. We envision that in the future such a model could be used to study plasma discharges (and other modalities) and mi...

  1. Observation of the polymer melt flow in injection molding process using co-injection molding technique

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.C.; Hsu, K.F.; Huang, J.S. (Chung Yuan Univ., Chung-Li (Taiwan, Province of China). Mechanical Engineering Dept.)

    Studies of the polymer melt flow in injection molding process have been carried out by co-injection molding technique using alternating sequence of transparent and colored PMMA resin. Simulations are also developed to predict the melt front advancements for both skin and core melts. Fountain flow effect is evident in all case studies. During the packing process, the polymer melt flows significantly with the increased packing pressure due to the compressible nature of the melt and the flow concentrates around cavity location near gate area. That the polymer melt flows across the weld line around the gap center in the packing stage was also observed. Although numerical simulations show fair consistence with experimental results in both skin and core material distribution, edge effect remains to be taken into account to improve the simulation accuracy.

  2. Star Mapping with Slime Mold Physarum Polycephalum

    Science.gov (United States)

    Mihklepp, M.; Domnitch, E.; Gelfand, D.; Foing, B. H.; van der Heide, E.

    2014-04-01

    Human curiosity and exploration towards outer space has led to many fantastic inventions and given way to alternative scenarios about the origins of life. In the Space Science in the Arts course together with ESTEC with support from ILEWG. I got interested about unicellular slime mold Physarum polycephalum. There has been and still is a lot of research on Physarum polycephalum. This brainless eucaryotic microbe has its smartness and external memory strategies. Physarum can navigate through a maze made of agar using the shortest route possible when two pieces of food are placed at two separate exits of the maze. It can build efficient networks - Physarum created network similar to the existing Tokyo train system. It is being used to control a robot, in USB-sensor and in sound synthesis. Right now there is a lot of research about using Physarum in bio-computing.

  3. Optomechanical details in injection-molded assemblies

    Science.gov (United States)

    Hebert, Raymond T.

    1995-12-01

    With the advent of low-cost electro-optic components such as LEDs, laser diodes and CCD imaging devices, the cost and performance demands now fall upon the optical subsystems in order to achieve realistic marketing targets for many emerging commercial and consumer products. One of the many benefits of injection-molded plastic optics is the diversity of features that are available to the design team. Once designed and incorporated into the tooling, many features are virtually free in high-volume production. These features can include mechanical details as well as optical functions. Registration features can be included for precisely positioning optical elements to one another or to other assemblies such as printed circuit boards or housings. Snaps, compression features, spring-loading elements, standoffs, self-tapping screws or ultrasonically weldable features can greatly facilitate ease of assembly.

  4. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F;

    2005-01-01

    The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees with a...... positive histamine release test to Penicillium chrysogenum were exposed double- blinded to either placebo, approximately 600,000 spores/m3 air of P. chrysogenum or approximately 350,000 spores/m3 of Trichoderma harzianum for 6 min on three separate days. A statistically significant rise in symptoms from...... mucous membranes appeared from the 9-graded symptom scale after exposure to T. harzianum or placebo. Dichotomizing the data, whether the participants experienced at least a two-step rise on the symptom scale or not, gave borderline increase in mucous membrane symptoms after exposure to P. chrysogenum. In...

  5. Checking Security Policy Compliance

    CERN Document Server

    Gowadia, Vaibhav; Kudo, Michiharu

    2008-01-01

    Ensuring compliance of organizations to federal regulations is a growing concern. This paper presents a framework and methods to verify whether an implemented low-level security policy is compliant to a high-level security policy. Our compliance checking framework is based on organizational and security metadata to support refinement of high-level concepts to implementation specific instances. Our work uses the results of refinement calculus to express valid refinement patterns and their properties. Intuitively, a low-level security policy is compliant to a high-level security policy if there is a valid refinement path from the high-level security policy to the low-level security policy. Our model is capable of detecting violations of security policies, failures to meet obligations, and capability and modal conflicts.

  6. Performing laboratory compliance audits.

    Science.gov (United States)

    Keoppel, P

    2001-01-01

    Billions of dollars are paid improperly each year because of laboratory service billing errors that include services not covered, incorrect coding, lack of medical necessity, and unsupported services. An important part of a laboratory compliance program is the compliance audit. This article discusses barriers to a successful audit, audit skills for the laboratory, areas to cover in an audit, and writing the audit report. Intermountain Health Care (IHC) is an integrated health-care system consisting of 20 hospitals in Utah and Idaho, health plans with 450,000 directly covered lives and contracts to third-party insurance companies covering 500,000 additional lives, and 75 other facilities with 400 employed physicians. Approximately 1,000 of IHC's 23,000 employees work in laboratories. PMID:11822264

  7. Effect of encephlitogenic protein. PPD and tetanus toxoid on leukocyte migration in agarose. A study of "cross-reactivity".

    Science.gov (United States)

    Källén, B; Nilsson, O

    1979-04-01

    The reactivity to three antigens: bovine encephalitogenic protein (EP), PPD, and tetanus toxoid, was studied with blood leukocytes from healthy humans using Clausen's (5) leukocyte migration in agarose technique. There is an obvious correlation between the reaction of EP (all concentrations studied) and to low concentrations of PPD; and between the reactivity to low concentrations of EP and low concentrations of tetanus toxoid. After vaccination with tetanus vaccine, a marked increase in reactivity to the toxoid sometimes occurred; at the same time, a marked reactivity to EP appeared. Various explanations are discussed: a true immunological cross-reactivity, that the correlations are due to a variability in individual response with respect to lymphokine production, and that BCG and tetanus vaccinations produce an adjuvant effect increasing a pre-existing low reactivity to EP. PMID:89821

  8. Detection of Lesch-Nyhan syndrome carriers: Analysis of hair roots for HPRT by agarose gel electrophoresis and autoradiography

    International Nuclear Information System (INIS)

    Flat agarose gel electrophoresis and autoradiography were used to analyze hypoxanthine phosphoribosyltransferase (HPRT) and adenine phosphoribosyltransferase (APRT) activity in individual hair roots collected from the scalps of females to determine the presence of HPRT-deficient cells. Autoradiographs of hair-root lysates of normal homozygous females contained two well-separated dark zones representing HPRT and APRT activities. In contrast, some hair roots from carriers of HPRT deficiency contained two zones of activity with the same relative proportion of APRT and HPRT as hair roots of normal homozygotes, while others contained decreased amounts of HPRT activity. These hair roots consisted of HPRT+ and HPRT- cells. In addition, some hair roots from heterozygous carriers contained APRT but no HPRT activity. Such hair roots consisted of HPRT- cells only. (author)

  9. Electron microscopic and agarose gel electrophoretic studies on apoptosis in immune cells induced by enriched 235U

    International Nuclear Information System (INIS)

    At present, the apoptosis in Molt-4 cell (a human acute lymphoblastic leukemia cell line) and Ana-1 cell (a macrophage cell line) were studied after internal irradiation with enriched 235U. The cumulative radiation absorption dose of 235U in cultural cells through different periods were estimated. The morphological changes, which observed by electron microscopy, indicated that Molt-4 and Ana-1 immune cells after incubation with 235U, displayed nuclear fragmentation, margination of condensed chromatin, as well as the membrane-bounded apoptotic bodies formation. The agarose gel electrophoretic observations showed the DNA ladder pattern formation in Molt-4 cell as well as in Ana-1 cell. The experimental results showed that apoptosis induced by 235U in immune cells, were dependent on the 235U-treated time and cumulative radiation absorption dose

  10. Development of a new method for the detection of vanadium complexes bound to DNA, using Agarose Gel Electrophoresis

    OpenAIRE

    Subedi, Prabal

    2012-01-01

    Existem apenas alguns métodos disponíveis para o estudo da ligação de metais ao ADN. Estes são baseados em técnicas espectroscópicas, que podem apenas ser utilizadas quando determinados cromóforos quer da molécula de ADN ou dos complexos metálicos estão directamente envolvidos na ligação de metais ao ADN. O objectivo deste projecto foi desenvolver um novo método que pode ser utilizado para detectar a ligação de um metal de transição ao ADN, utilizando Electroforese em gel de agarose (EGA)...

  11. Synthesis and characterization of macroporous alginate-agarose-magnetite cryobeads for their application in uranium sorption from aqueous medium

    International Nuclear Information System (INIS)

    Contamination of water by heavy metals and radionuclides has become an increasing problem to the environment, which affects the agricultural lands, environmental flora and fauna and importantly human health. There is an interest to develop a simple cost effective technology for the separation of heavy metals from aqueous sub-surfaces. We have developed a novel floating polymeric-magnetite cryobead for the sorption of hexavalent uranium from the aqueous medium. The covalently crosslinked alginate-agarose-magnetite (AAM) cryobeads were synthesized by the process of cryogelation at subzero temperature (i.e. -20 ℃). Alginate polymer was selected for the synthesis of cryobead due to the presence of natural ligand (carboxyl), which interacts with uranyl ions. Agarose was used to provide strength and stability to the cryobeads. Using the AAM cryobeads, we have observed upto 97 % uranium adsorption within 30 min at an initial concentration of 100 mg/L uranium. Due to the macroporous architecture of the cryobeads, the adsorption kinetics was increased 3 folds unlike what has been reported in earlier studies. The study on the effect of pH suggests maximum uranium adsorption (qmax) in the range of 4.5 to 5.5. The thermodynamic parameters i.e. variation in entropy (ΔS), enthalpy (ΔH) and Gibbs free energy (ΔG) were calculated which suggest passive endothermic adsorption behaviour up to 50℃. HCl was found to be an efficient eluent for the uranium desorption. Five repeated cycles for desorption of uranium from biosorbent showed 70 % of uranium recovery. These results suggest stability of novel floating magnetite-cryobeads under acidic conditions and reusability with potential for the recovery of uranium from contaminated aqueous subsurfaces

  12. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. PMID:26700572

  13. Injection molded dielectromagnets prepared from mixture of hard magnetic powders

    International Nuclear Information System (INIS)

    Dielectromagnets are permanent magnets prepared from a hard magnetic powder bonded by binder. These permanent magnets are termed also as bonded permanent magnets. There are two ways to prepare dielectromagnets: compression molding and injection molding. Dielectromagnets prepared by injection molding, from the same hard magnetic powders, have worse magnetic properties than dielectromagnets prepared by compression molding, but they are cheaper. Isotropic dielectromagnets prepared from ferrite powder have low value of magnetic properties, but their advantage is positive value of temperature coefficient of JHc. They are low in price. Dielectromagnets prepared from melt-spun Nd-Fe-B have high values of magnetic properties.Value of temperature coefficient of JHc is their weakness. They are more expensive than ferrite dielectromagnets. Comparison of advantages and disadvantages of dielectromagnets prepared from different kinds of hard magnetic powder has produced an idea of making dielectromagnets from the mixture of these powders prepared by compression molding have magnetic and thermal properties of values between values of dielectromagnets from Nd-Fe-B and ferrite powders. It was described elsewhere. The purpose of this investigation is to prepare injection molded dielectromagnets from mixture of powders of strontium ferrite and melt-spun ribbon Nd-Fe-B and to find correlation between the composition of the mixture and magnetic properties of dielectromagnets. A result of mixture composition on magnetic properties of injection molded dielectromagnets is shown. (author)

  14. Interface conditions of two-shot molded parts

    International Nuclear Information System (INIS)

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved

  15. Replication of optical microlens array using photoresist coated molds.

    Science.gov (United States)

    Chakrabarti, M; Dam-Hansen, C; Stubager, J; Pedersen, T F; Pedersen, H C

    2016-05-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after the coating process and the light scattering is reduced so that the molded microlens array can be used for the color mixing application. The measured accepted angle of the microlens array is 40° which is in agreement with simulations. PMID:27137566

  16. Thermomechanical Behavior in Continuous Bloom Casting with Different Mold Tapers

    Institute of Scientific and Technical Information of China (English)

    LUO Xin; CHEN Yong; SHEN Houfa

    2008-01-01

    A two-dimensional finite element model was used to analyze the thermal and mechanical behavior dunng solidification of the strand in a continuous bloom casting mold.The coupled heat transfer and defermation were analyzed to simulate the formation of the air gap between the mold and the strand.The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand.The results show that the air gap mainly forms around the strand corner,causing a hoRer and thinner solidifying shell in this region.The mold taper partially compensates for the strand shell shnnkage and reduces the infiuence of the air gap on the heat transfer.The mold taper compresses the shell and changes the stress state around the stmnd comer region.As the strand moves down into the mold,the mold constraint causes compressive stress beneath the comer surface.which reduces the hot tear that forms on the strand.

  17. Interface conditions of two-shot molded parts

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at [Polymer Competence Center Leoben GmbH, 8700 Leoben (Austria); Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, 8700 Leoben (Austria); Lucyshyn, Thomas, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Langecker, Guenter Ruediger, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Holzer, Clemens, E-mail: clemens.holzer@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Polymer Processing, Montanuniversitaet Leoben, 8700 Leoben (Austria)

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.

  18. Tax Compliance Inventory: TAX-I Voluntary tax compliance, enforced tax compliance, tax avoidance, and tax evasion

    OpenAIRE

    Kirchler, Erich; Wahl, Ingrid

    2010-01-01

    Surveys on tax compliance and non-compliance often rely on ad hoc formulated items which lack standardization and empirical validation. We present an inventory to assess tax compliance and distinguish between different forms of compliance and non-compliance: voluntary versus enforced compliance, tax avoidance, and tax evasion. First, items to measure voluntary and enforced compliance, avoidance, and evasion were drawn up (collected from past research and newly developed), and tested empirical...

  19. Fabrication of micro gear wheels by micropowder injection molding

    Institute of Scientific and Technical Information of China (English)

    Haiqing Yin; Xuanhui Qu; Chengchang Jia

    2008-01-01

    The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 m and with the center hole as small as 60 μtm.

  20. Fabrication of sinterable silicon nitride by injection molding

    Science.gov (United States)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  1. Development of Integrated Simulation System for Plastic Injection Molding

    Institute of Scientific and Technical Information of China (English)

    CHENGXue-wen; LIDe-qun; ZHOUHua-min

    2005-01-01

    Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing,cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.

  2. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector, but...... recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  3. A New Type Machine of Mixing-molding for Polyblends

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan-sheng; LI Li; BIAN Hui-guang

    2009-01-01

    This paper introduces a new type machine for polyblends with excellent mixing capabilities of internal mixer and continuous molding character of extruder. The machine includes two functions -- mixing and extrusion molding that have been composed together by rational design, so a tandem production mode -- "batch + continuous" are opened up. The mathematical model of continuous mixing molding was established and verified availably by experimental research. The main physical mechanical property of vuicanizate, which had met national waterproof material standard, verified the machine practicability. The essential difference from other similar type machines is that this machine is not only suitable in producing granular and powder rubbers but also lumpish tablets.

  4. SNOW MOLDS: HISTORY OF THE STUDY AND CONTROL (review)

    OpenAIRE

    O.B. TKACHENKO; A.V. OVSYANKINA; A.G. SHCHUKOVSKAYA

    2015-01-01

    Snow mold is caused by pathogenic low-temperature fungi and fungi-like pathogens which can attack grassy winter and perennial plants and even woody plants. Pathogens infect crops in autumn and develop under snow and early in spring at low temperatures. History of the emergence of the terminology for pathogenic low-temperature fungi, the appearance of the «snow mold» terms and domestic «vyprevaniye» (eng. «dumping-off») are represented, and various snow molds and their pathogens in Russia are ...

  5. Recent Developments and Trends in Powder Injection Molding

    Institute of Scientific and Technical Information of China (English)

    Hermina Wang

    2000-01-01

    Injection molding is a productive and widely used technology for shaping plastics. The use of this shaping technique to metal and ceramics powders is termed powder injection molding (PIM). This process combines a certain quantity of a polymer with a metallic or ceramic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered. When proper powder size or/and its distribution are used, sintered densities of 95% or more, often to near-theoretical densities, are reached and the mechanical properties are, therefore, generally superior to those of traditional PM parts.

  6. Bench mark test casting: Modeling of mold filling and solidification

    Energy Technology Data Exchange (ETDEWEB)

    Layton, M.A.; Wang, C.M.; Cheng, C.; Yu, K.O.; Paul, A.J. [Concurrent Technologies Corp., Johnstown, PA (United States)

    1995-12-31

    This paper presents the results of simulating the mold filling and solidification of an aluminum plate casting designed as the Bench Mark Test Casting for this conference. An in-house simulation software, RAPID/CAST{reg_sign}, has been used to conduct this simulation. The output of this simulation include flow front location during mold filling, cooling curves at various points in the casting, temperature distribution, and isochron plots of solidification times. The simulation results indicate that the mold filling time of the entire casting is 2.2 seconds and that the last region to solidify is located around the ingate.

  7. Automatic polishing process of plastic injection molds on a 5-axis milling center

    CERN Document Server

    Pessoles, Xavier; 10.1016/j.jmatprotec.2008.08.034

    2010-01-01

    The plastic injection mold manufacturing process includes polishing operations when surface roughness is critical or mirror effect is required to produce transparent parts. This polishing operation is mainly carried out manually by skilled workers of subcontractor companies. In this paper, we propose an automatic polishing technique on a 5-axis milling center in order to use the same means of production from machining to polishing and reduce the costs. We develop special algorithms to compute 5-axis cutter locations on free-form cavities in order to imitate the skills of the workers. These are based on both filling curves and trochoidal curves. The polishing force is ensured by the compliance of the passive tool itself and set-up by calibration between displacement and force based on a force sensor. The compliance of the tool helps to avoid kinematical error effects on the part during 5-axis tool movements. The effectiveness of the method in terms of the surface roughness quality and the simplicity of impleme...

  8. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    International Nuclear Information System (INIS)

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes. (topical review)

  9. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    Science.gov (United States)

    Saha, Biswajit; Toh, Wei Quan; Liu, Erjia; Beng Tor, Shu; Hardt, David E.; Lee, Junghoon

    2016-01-01

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.

  10. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    Science.gov (United States)

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  11. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography.

    Science.gov (United States)

    Mourão, Cecília Alves; Carmignotto, Gabriela Pannunzio; Bueno, Sonia Maria Alves

    2016-04-01

    This study evaluated the feasibility of using immobilized metal-ion affinity chromatography (IMAC) for separation of human Fab fragments using four different transition metal ions copper, nickel, zinc, and cobalt chelated to CM-Asp (carboxymethylaspartate) immobilized on the agarose gel. The Fab and Fc fragments (from human IgG digested with papain) interacted differently with the chelates studied, depending on the adsorption buffer system. The interaction between chelate and Fc fragment is predominantly based on the coordination bonds using adsorption buffer containing NaCl. Negative chromatography was performed on Cu(II)-CM-Asp-agarose obtaining 2.9mg of Fab per mL of adsorbent in nonretained fractions (Fc fragment-free without uncleaved IgG). The adsorption of Fab fragments is governed by electrostatic forces in the absence of NaCl in the adsorption buffer. High selectivity was achieved on Co(II)-CM-Asp-agarose and 5.7mg of Fab per mL of adsorbent was obtained in eluted fractions without Fc fragments, although having uncleaved IgG. The results showed that chromatography on transition metal ions chetated to CM-Asp-agarose is a promising approach to separation of Fab fragments from papain-digested human IgG solution. PMID:26974869

  12. Quantification of DNA by Agarose Gel Electrophoresis and Analysis of the Topoisomers of Plasmid and M13 DNA Following Treatment with a Restriction Endonuclease or DNA Topoisomerase I

    Science.gov (United States)

    Tweedie, John W.; Stowell, Kathryn M.

    2005-01-01

    A two-session laboratory exercise for advanced undergraduate students in biochemistry and molecular biology is described. The first session introduces students to DNA quantification by ultraviolet absorbance and agarose gel electrophoresis followed by ethidium bromide staining. The second session involves treatment of various topological forms of…

  13. Compliance. Regulatory policy P-211

    International Nuclear Information System (INIS)

    This regulatory policy describes the basic principles and directives for establishing and conducting the Canadian Nuclear Safety Commission (CNSC) Compliance Program. The program is aimed at securing compliance by regulated persons with regulatory requirements made under the Nuclear Safety and Control Act ('the Act'). The policy applies to persons who are regulated by the CNSC through the Act, regulations and licences, as well as by decisions and orders made under the Act. The policy applies to officers and employees of the CNSC, and its authorized representatives or agents, who are involved in developing and carrying out compliance activities. Compliance, in the context of this policy, means conformity by regulated persons with the legally binding requirements of the Act, and the CNSC regulations, licences, decisions, and orders made under the Act. Compliance activities are CNSC measures of promotion, verification and enforcement aimed at securing compliance by regulated person with the applicable legally binding requirements. (author)

  14. Compliance with endogenous audit probabilities

    OpenAIRE

    Konrad, Kai A.; Lohse, Tim; Qari, Salmai

    2015-01-01

    This paper studies the effect of endogenous audit probabilities on reporting behavior in a face-to-face compliance situation such as at customs. In an experimental setting in which underreporting has a higher expected payoff than truthful reporting we find an increase in compliance of about 80% if subjects have reason to believe that their behavior towards an officer influences their endogenous audit probability. Higher compliance is driven by considerations about how own appearance and perfo...

  15. Moldability Evaluation for Molded Parts Based on Fuzzy Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Moldability evaluation for molded parts, which is the basis of concurrent design, is a key design stage in injection molding design. By moldability evaluation the design problems can be found timely and an optimum plastic part design achieved. In this paper, a systematic methodology for moldability evaluation based on fuzzy logic is proposed. Firstly, fuzzy set modeling for six key design attributes of molded parts is carried out respectively. Secondly, on the basis of this, the relationship between fuzzy sets for design attributes and fuzzy sets for moldability is established by fuzzy rules that are based on domain experts' experience and knowledge. At last the integral moldability for molded parts is obtained through fuzzy reasoning. The neural network based fuzzy reasoning approach presented in this paper can improve fuzzy reasoning efficiency greatly, especially for system having a large number of rules and complicated membership functions. An example for moldability evaluation is given to show the feasibility of this proposed methodology.

  16. Residual stresses in injection molded shape memory polymer parts

    Science.gov (United States)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  17. Research on machine vision system of monitoring injection molding processing

    Science.gov (United States)

    Bai, Fan; Zheng, Huifeng; Wang, Yuebing; Wang, Cheng; Liao, Si'an

    2016-01-01

    With the wide development of injection molding process, the embedded monitoring system based on machine vision has been developed to automatically monitoring abnormality of injection molding processing. First, the construction of hardware system and embedded software system were designed. Then camera calibration was carried on to establish the accurate model of the camera to correct distortion. Next the segmentation algorithm was applied to extract the monitored objects of the injection molding process system. The realization procedure of system included the initialization, process monitoring and product detail detection. Finally the experiment results were analyzed including the detection rate of kinds of the abnormality. The system could realize the multi-zone monitoring and product detail detection of injection molding process with high accuracy and good stability.

  18. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  19. Microinjection molding of microsystem components: new aspects in improving performance

    International Nuclear Information System (INIS)

    Microinjection molding (µIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for µIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (topical review)

  20. Compliance to antihypertensive therapy

    International Nuclear Information System (INIS)

    Objective: To determine compliance, factors affecting compliance to antihypertensive therapy and to compare compliant and non-compliant groups, in a tertiary care setting. Study Design: Analytical (cross-sectional) study. Place and Duration of Study: The outpatient clinics at the Aga Khan University from May 2004 to February 2005. Patients and Methods: Two hundred patients presenting to the outpatients clinic were included. All patients 18 years and above, who had stage 1 and 2 hypertension, had one clinic visit to a medicine clinic, 6 months prior to presentation and started on antihypertensive medicines, were included. Results: Sixty-six percent were males and 33.5 % were females. Mean age was 58.1 ( +- 12) years and mean duration of hypertension was 7.2 (+- 6.7) years. Fifty-seven percent were compliant and 43% were noncompliant. In the noncompliant group, 53.4 % had mild noncompliance, 24.4 % had severe non-compliance, while 22% had moderate noncompliance. Factors of noncompliance were 56.8% missed doses due to forgetfulness, 12.7% deliberately missed their doses, 11.6% could not take the medicine due to side effects, 10.4% did not take the dose due to increased number of tablets, 4.6% were not properly counseled by the physician and 3.48% did not take medicines due to cost issues. The mean systolic blood pressure was 126 +- 19.2 mmHg in the compliant group while it was 133 +- 16.5 mmHg in the noncompliant group (p-value 0.004). The mean diastolic blood pressure in the compliant group was 76 +- 11.9 mmHg, while in the noncompliant group it was 81.9 +- 10.9 mmHg (p-value 0.001). Conclusion: Compliance to antihypertensive therapy in a tertiary care center is significantly good. Forgetfulness was the major reason for noncompliance. The mean blood pressure control was better in the compliant group. (author)

  1. Thermal Balance of PVC Skin Manufakturing VIA Slush Molding Technology

    Czech Academy of Sciences Publication Activity Database

    Hubáček, V.; Vít, Tomáš

    Vol. 10/2008. Bydgoszcz : Polish Society of Mechanical Engineers and Technicians, 2008 - (Peszynski, K.), s. 43-44 ISBN 978-83-87982-08-9. [International Conference on Developments in Machinery Design and Control /12./. Nowogród (PL), 09.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z20760514 Keywords : slush-molding * PVC * mold Subject RIV: BJ - Thermodynamics

  2. Diversity and Significance of Mold Species in Norwegian Drinking Water▿

    OpenAIRE

    Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G Sybren; Skaar, Ida

    2006-01-01

    In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each s...

  3. CAE for Injection Molding — Past, Present and the Future

    Science.gov (United States)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  4. The Simulation and Optimization of Aspheric Plastic Lens Injection Molding

    Institute of Scientific and Technical Information of China (English)

    WEN Jialing; WEN Pengfei

    2005-01-01

    For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pressure, melt temperature, mold temperature, fill time, holding pressure time and cooling time were optimized by using an orthogonal experimental design method. Finally, the optimum process parameters and the influence degree of process parameters on the average volumetric shrinkage and the volumetric shrinkage variation are obtained.

  5. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  6. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds

    OpenAIRE

    Márcia Maria Rosa-Magri; Sâmia Maria Tauk-Tornisielo; Sandra Regina Ceccato-Antonini

    2011-01-01

    Yeasts isolated from sugar cane and maize rhizosphere, leaves and stalks were screened against the phytopathogenic molds Colletotrichum sublineolum and Colletotrichum graminicola, both causal agents of the anthracnose disease in sorghum and maize, respectively. Strains identified as Torulaspora globosa and Candida intermedia were able to inhibit the mold growth, with the first species also exhibiting killer activity. No previous report on the application and potentiality of these yeasts as bi...

  7. Biological Control of Olive Green Mold in Agaricus bisporus Cultivation

    OpenAIRE

    Tautorus, T. E.; Townsley, P. M.

    1983-01-01

    Successful methods to control the damaging weed mold Chaetomium olivaceum (olive green mold) in mushroom beds are not presently known. An attempt was made to control C. olivaceum by biological means. A thermophilic Bacillus sp. which showed dramatic activity against C. olivaceum on Trypticase soy agar (BBL Microbiology Systems)-0.4% yeast extract agar plates was isolated from commercial mushroom compost (phase I). When inoculated into conventional and hydroponic mushroom beds, the bacillus no...

  8. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    OpenAIRE

    A. Alvarado-Iniesta; D.J. Valles-Rosales; J.L. García-Alcaraz; A. Maldonado-Macias

    2012-01-01

    Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in product...

  9. Fabrication and properties of binder for powder extrusion molding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By optimizing formulation and fabrication methods, a new binder for plasticizing powder extrusion molding ofhard metal, with excellent integrated properties and uniform distribution characters, has been developed. Thermal debond-ing mechanism and the extruding rheological behaviours have been studied. The technology of fabrication of binder andthermal debonding process have also been investigated. Using the novel binder, the hard-metal extrusion-molding rods withdiameter up to 25mm, have been manufactured.

  10. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    OpenAIRE

    Alexandre Royer; Thierry Barrière; Jean-Claude Gelin

    2016-01-01

    The binder plays the most important role in the metal injection molding (MIM) process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of...

  11. Dimensional Accuracy Optimization of the Micro-plastic Injection Molding Process Using the Taguchi Design Method

    OpenAIRE

    Chil-Chyuan KUO; Hsin-You LIAO

    2015-01-01

    Plastic injection molding is an important field in manufacturing industry because there are many plastic products that are produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses...

  12. Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers

    Directory of Open Access Journals (Sweden)

    Chinmay Naphade

    2015-01-01

    Full Text Available Mold spoilage was determined over 109 days on soy/PE fibers held under controlled temperatures (T ranging from 10°C to 40°C and water activities (aw from 0.11 to 0.98. Water activities were created in sealed containers using saturated salt solutions and placed in temperature-controlled incubators. Soy/PE fibers that were held at 0.823 aw or higher exhibited mold growth at all temperatures. As postulated, increased water activity (greater than 0.89 and temperature (higher than 25°C accelerated mold growth on soy/PE fibers. A slower mold growth was observed on soy/PE fibers that were held at 0.87 aw and 10°C. A Weibull model was employed to fit the observed logarithmic values of T, aw, and an interaction term log⁡T×log⁡aw and was chosen as the final model as it gave the best fit to the raw mold growth data. These growth models predict the expected mold-free storage period of soy/PE fibers when exposed to various environmental temperatures and humidities.

  13. Frequency of Mold Allergens in Allergic Rhinitis Patients

    Directory of Open Access Journals (Sweden)

    Bonyadi, MR. (PhD

    2014-06-01

    Full Text Available Background and Objective: Allergic rhinitis can be stimulated by several allergens. Molds are among these allergens and it is important to assess their frequency in different geographic area. Hence, we aimed at determining the frequency of mold allergens in allergic rhinitis patients referred to specialized clinics of Tabriz Imam Reza hospital, 2011. Material and Methods: This cross-sectional study was conducted on the serums of 90 rhinitis patients diagnosed by specialized physician. Using Immunoblotting method, the level of specific IgE against four molds including Penicillium, Aspergillus, Alternaria and Cladosporium were investigated. Results: Of 90 Patients, 40 were men (44.4% and 50 were women (55.6%. The participants were between 6 to 53 years and the most were 28-31years. The allergy was related to Penicillium (3.3%, Aspergillus (5.6%, Alternaria (13.3% and Cladosporium (4.4%. There was a significant statistical relation between age and allergic rhinitis to Alternaria (P=0.011. Conclusion: Molds can grow and proliferate in very humid environments. Because of low humidity climate in Tabriz (in the northwest of Iran, allergy to molds is relatively low in this region. Key words: Rhinitis Allergic; Mold; Allergy

  14. Numerical Simulation of Mold Filling in Resin Transfer Molding Using Isoparametric Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kaipeng; TAN Hua; WANG Jihui; ZHU Yingdan

    2005-01-01

    The mold filling of RTM was simulated based on the control volume finite element method (CV/FEM). The formulation using isoparametric transformation was discussed in detail and a computational code based on isoparametric technique was developed. The simulation results were compared with experimental data. Different isoparametric elements, quadrilateral and triangular, were compared in the simulation.It demonstrates that the use of bilinear quadrilateral isoparametric elements in simulating the process can produce a higher precision and cost a less time than the use of triangular ones.

  15. Infrared curing simulations of liquid composites molding

    International Nuclear Information System (INIS)

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  16. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  17. Degradation of Perfluorotrichlorosilane Antisticking Layers: The Impact on Mold Cleaning, Ultraviolet-Nanoimprinting, and Bonded Ultraviolet-Nanoimprint Molds

    Science.gov (United States)

    Kirchner, Robert; Teng, Lichao; Lu, Bo; Adolphi, Barbara; Fischer, Wolf-Joachim

    2011-06-01

    A reduction of the adhesion between imprint resist and mold is crucial for defect free imprints and is commonly achieved by silane based antisticking layers. Highly stable antisticking layers are required for high throughputs and long imprint mold lifetimes. Hybrid nanoimprint molds avoid the imprint inherent residual polymer layer in UV-assisted nanoimprinting. Such hybrid molds have chemically heterogeneous surfaces of silica and, e.g., chromium oxide regions. The chemical stability of vapor-coated 1H,1H,2H,2H-perfluorodecyltrichlorosilane antisticking layers against acetone, acidic piranha, reactive ion etching and UV-assisted nanoimprinting was investigated. To evaluate the behavior of hybrid mold surfaces, flat silica and antireflective chromium-oxynitride surfaces were used. The antisticking layer on both surfaces was highly chemical resistant against acetone. A continuous antisticking layer degradation with a surface free energy increase of 0.9 mN/m per 10 min piranha treatment and 1.2 mN/m per 10 subsequent UV-assisted imprints was found for silica surfaces. On the chromium surfaces, the antisticking layer quality was much lower than on fused silica and degraded much faster. The surface free energy of silane coated chromium surfaces was increased by 2.3 mN/m after 10 imprints and the antisticking layer was completely degraded after a single 10 min piranha cleaning step. The lower antisticking layer quality on antireflective chromium was attributed to the surface itself. Additionally, the high chemical resistance of the vapor coated silane was used to successfully protect the adhesive joints of cost-efficient, adhesively bonded nanoimprint molds from being degraded by acidic piranha during mold cleaning. This can significantly increase the life-time of such bonded molds.

  18. Foaming morphology control of microcellular injection molded parts with gas counter pressure and dynamic mold temperature control

    Science.gov (United States)

    Shiu, Tai-Yi; Huang, Chao-Tsai; Chang, Rong-Yu; Hwang, Shyh-Shin

    2014-05-01

    Microcellular injection molding process is a promising solution for products with special requirements such as weight reduction, extra thin wall, high dimensional stability, clamping force reduction, etc. Despite microcellular foaming application used in reciprocating screw injection molding machine was built more than a decade, some limitations, such as poor surface quality or poor foaming control, confine the usage of this technology. Earlier CAE simulation tool for microcellular injection molding was not successful due to insufficient physical and computational considerations, limited by complicated bubble growth mechanism; so that, an economic and efficient tool for examining foaming quality of injection foaming product was lack. In this study, a recent developed three-dimensional simulation tool is used to predict injection foaming process. Predictions are carried out with commodity polypropylene and polystyrene with nitrogen and carbon dioxide supercritical fluids (SCFs). Comparisons of simulations between microcellular injection molding with and without counter pressure are discussed to provide insights into the correlation of surface quality and cell size distribution near the surface of product. Furthermore, comparisons between simulation predictions and experimental results of molding process, which is featured with dynamic mold temperature and gas counter pressure, are given for understanding quality improvement by controlling foaming morphology, and benefit of industrial application.

  19. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    Science.gov (United States)

    Graf, Neil J; Bowser, Michael T

    2013-10-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  20. The Strategic Nature of Compliance

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2014-01-01

    ) is praised for exemplary effectiveness, but our findings reveal that the monitoring agency refrains from enforcing compliance when the probability of success is low, and the sanctioning costs are high. This results in a compliance deficit, even though the selective enforcement activities of the...

  1. 40 CFR 68.79 - Compliance audits.

    Science.gov (United States)

    2010-07-01

    ... are being followed. (b) The compliance audit shall be conducted by at least one person knowledgeable... compliance audit, and document that deficiencies have been corrected. (e) The owner or operator shall retain the two (2) most recent compliance audit reports....

  2. Analysis of Injection Molding Process Based on MoldFlow/MPI for Large Plastic Pallet%基于MoldFlow/MPI的大型塑料托盘注射成型分析

    Institute of Scientific and Technical Information of China (English)

    段贤勇

    2012-01-01

    运用MoldFlow/MPI模块对大型塑料托盘注射成型过程进行模流分析,预测了可能出现的注射短射等缺陷,根据分析结果,提出了工艺优化方案,从而缩短模具设计制造周期。%Used MoldFlow/MPI to analyze the mold flow for the large plastic pallet molding process, and predict the possible injection molding defects such as injection molding short shot. According to the analysis, it gives process optimization to reduce the mold design and manufacture cycle.

  3. Understanding Partners in Compliance (PIC)

    International Nuclear Information System (INIS)

    Partners in Compliance (PIC) is a motor carrier safety and compliance program that rewards carriers for their commitment to highway safety. Carriers voluntarily commit to a high level of compliance to eight benchmark criteria and monitor their operations. They submit reports on a monthly basis and understand that they can be subject to random government audits with respect to any of the benchmark areas. The eight benchmark criteria are: (1) safety and driver qualifications, (2) reportable collision data and analysis, (3) equipment inspection and repair, (4) driver's hours of service, (5) dangerous goods, (6) vehicle weight and dimensional management, (7) IFTA and Treasury compliance, and (8) pro-rate and registries compliance. It was emphasized that PIC is not a carrier self-regulation program, it is an investment in highway safety, a sharing in responsibility between regulators and carriers, a sign of a paradigm shift in thinking about transportation safety

  4. Residual stress distribution in injection molded parts

    Directory of Open Access Journals (Sweden)

    P. Postawa

    2006-08-01

    Full Text Available Purpose: The paper presents the results of the investigations of influence of the amorphous polystyrene (PSprocessing on the diversity of the internal stresses observed in the injection moulded piece.Design/methodology/approach: For the tests, the standardized mould piece designed for the investigations ofthe processing shrinkage of thermoplastics materials has been used. The samples have been prepared using theDesign of Experiment (DoE theory.The state of internal stresses has been analysed by means of photoelastic method (used stress viewer equipmenton the basis of the layout and size of the isochromatics (fields with the same colour, which determine the mouldpiece’s areas where the same value for the difference of main tensions. In the article the results of investigationsof influence of 5 chosen processing parameters such as injection temperature Tw, mould temperature Tf,clamping pressure pd, cooling time tch and the injection speed vw on the changes in isochromatics layout as adeterminant for diversity of internal stresses in injection moulded pieces have been presented.Findings: The performed investigations of the influence of injection conditions on the state of internal stressesreached for injection mould pieces were to determine the parameters of injection at which the achieved state ofthe stresses in the mould piece (described by the difference of main tensions will show the lowest values.Practical implications: Effects of examinations of influence of processing conditions on residual stress ininjection molded parts (presented in the article could find practical application in polymer industry, both smalland large enterprises.Originality/value: New approach to fast estimation of value of residual stresses were present in the paper.

  5. Molds and mycotoxins in freshly harvested maize

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna S.

    2013-01-01

    Full Text Available Incidence of toxigenic fungi (molds and concentration of mycotoxin aflatoxin B1 (AFB1, deoxynivalenol (DON, zearalenone (ZON and fumonisin (FB1 were studied in the maize grains collected immediately after harvesting in 2012. A total of 29 maize samples were analyzed and the highest incidence was determined for fungal species of Rhizopus (56.41%, Aspergillus (43.66% and Fusarium (14.97% genera. Significantly lower incidence was obtained for species of genus Penicillium (3.31%, and especially for species of genera Acremonium (1.38%, Alternaria (0.75% and Cladosporium (0.14%. Among toxigenic fungi Aspergillus flavus (36.69% was the most common species of As­pergillus genus, whereas the Fusarium verticillioides with 14.69% of incidence was the predominant species of Fusarium genus. In all studied maize samples, the presence of AFB1, ZON and FB1 mycotoxins was established, except for DON which was established in 75.86% samples. AFB1 was detected in average concentration of 13.95 μg kg-1 for 44.83% of samples, and average concentration higher than 40 μg kg-1 for 55.17% of samples. The average concentrations of DON which was detected was 235 μg kg-1, while it was 98.38 μg kg-1 and 3590 μg kg-1 for the presence of ZON and FB1, respectively. Moderate positive correla­tion was obtained between concentrations of AFB1 and FB1 (r=0.35, while weak positive correlation was established between concentrations ZON and DON (r=0.02. [Projekat Ministarstva nauke Republike Srbije, br. TR-31023, br. TR-31033 i br. TR-46010

  6. The use of nitrocellulose blotting for the study of hepatitis B surface antigen electrophoresed in agarose gels

    International Nuclear Information System (INIS)

    Nitrocellulose-protein blotting of serum electrophoresed in agarose gels has been adapted for the study of hepatitis B surface antigen (HBsAg). 125I-labeled anti-HBs was used as the antigen probe, and the electrophoretic migration was monitored by autoradiography. The method required 3 μl or less of serum and could detect as little as 1 pg of purified HBsAg. Typically, the authors observed two bands of HBsAg; a moving band which migrated about one-third the distance moved by human serum albumin and a non-migratory band which remained at the loading site. Some examples of the use of the method include: (1) empirical methods for correlating HBsAg concentration in serum to film darkness; (2) observations of mobility changes in serial sera from dialysis patients with chronic HBsAg antigenemia; and (3) detection of related antigens such as antigen from the PLC/PRF/5 hepatoma tissue culture line and the cross-reacting woodchuck hepatitis virus surface antigen (WHsAg). (Auth)

  7. Agarose cell block technique as a complementary method in the diagnosis of fungal osteomyelitis in a dog

    Directory of Open Access Journals (Sweden)

    N.S. Rocha

    2012-04-01

    Full Text Available A 7-year-old Labrador Retriever female dog presenting left forelimb lameness for one day was admitted to the Veterinary Hospital (UNESP-Botucatu for clinical evaluation. Several tests, including blood and image analysis, microbiological culture and cytology of lytic areas of affected bone were made in order to establish a diagnosis. Serum biochemical profile revealed increased levels of liver enzymes, plasma globulin, creatine kinase (CK and calcium. Hemogram revealed anemia and leukocytosis; left humerus image analysis revealed an osteolytic lesion and cytology revealed a suppurative periostitis. Differential diagnosis was a nonspecific infectious inflammatory process or osteosarcoma. Since it was not possible to achieve a definitive diagnosis and there was a highly suspicious for an infectious agent, an agarose cell block of the bone marrow fine-needle aspiration was made. The cytological examination of cell block presented similar findings as described previously. However, additional stains including periodic acid-Schiff (PAS were positive for fungal hyphae, which rendered a diagnosis of fungal osteomyelitis due to Aspergillus spp. This case report illustrates an uncommon cause of osteomyelitis for breed that was diagnosed by an underused method in veterinary medicine.

  8. Characterization of β -Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose.

    Science.gov (United States)

    Baraldo Junior, Anderson; Borges, Diogo G; Tardioli, Paulo W; Farinas, Cristiane S

    2014-01-01

    β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications. PMID:24940510

  9. A thin-layer multistrip agarose gel electrophoresis apparatus for Ferguson plot analysis at the sub-microgram load level.

    Science.gov (United States)

    Orbàn, L; Sullivan, J V; Chrambach, A

    1989-07-01

    A method for the simultaneous horizontal agarose gel electrophoresis on thin-layer strips of different gel concentrations was developed for the purpose of generating Ferguson plots at the sub-microgram load level. Seven independent gel strips on a common GelBond support were formed by filling channels created by a comb-shaped spacer (polycarbonate) in a vertical multistrip cassette. Electrophoresis on a horizontal Peltier-cooled surface employed commercial apparatus (E-C Apparatus Corp.) with a modified cover which is airtight and holds anodic and cathodic voltage measurement probes for each strip. The application of the apparatus to Ferguson plot analysis in a single experiment was exemplified on the RNA-containing turnip crinkle virus (TCV) at a load of 50 ng/gel strip, using an optimized silver staining method (a modification of a procedure of FMC Corp. BioProducts) for detection. Within the range of 3.5 to 12.5 V/cm, the plot was found to be independent of field strength. Mobility is also independent of the concentration of detergent (CHAPS) up to 10 mM. PMID:2809063

  10. Orientation of Carbon Fibers in Copper matrix Produced by Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Irfan Shirazi M.

    2014-07-01

    Full Text Available Fiber orientation is a big challenge in short fiber reinforced composites. Powder injection molding (PIM process has some intrinsic fiber alignment associated with it. During PIM process fibers in skin region of moldings are aligned as these regions experience higher shear flow caused by the mold walls. Fibers in the core region remain randomly aligned as these regions are far from mold walls and experience lesser shear flow. In this study short carbon fiber (CF reinforced copper matrix composite was developed by PIM process. Two copper composite feedstock formulations were prepared having 5 vol% and 10 vol% CFs and a wax based binder system. Fiber orientation was controlled during injection molding by using a modified mold that has a diverging sprue. The sprue creates converging flow when feedstock enters into the mold cavity. Fiber orientation was analysed after molding using FESEM. The orientation of fibers can be controlled by controlling flow of feedstock into the mold.

  11. Environmental compliance assessment review

    International Nuclear Information System (INIS)

    During the period 1972-1991, The United States Congress passed stringent environmental statues which the Environment Protection Agency implemented via regulations. The statues and regulations contain severe civil and criminal penalties. Civil violations resulted in fines, typically payable by the company. The act of willfully and knowingly violating the permit conditions or regulations can result in criminal charges being imposed upon the responsible part, i.e., either the company or individual. Criminal charges can include fines, lawyer fees, court costs and incarceration. This paper describes steps necessary to form an effective Environmental Compliance Assessment Review [CAR] program, train field and engineering personnel and perform a CAR audit. Additionally, the paper discusses the findings of a number of Exploration and Production [E and P] field audits

  12. Compliance with physical exercise

    DEFF Research Database (Denmark)

    Gram, Anne Sofie; Bønnelycke, Julie; Rosenkilde Larsen, Mads;

    2014-01-01

    , a moderate (MOD; 300 kcal/day) or a high-dose (HIGH; 600 kcal/day) endurance exercise group for 12 weeks. A sub-set of the subjects were interviewed using pre-determined, qualitative questions to elucidate physical activity and health behaviour. In combination with the Theory of Planned Behaviour (TPB......, and thereby may have increased physical activity levels in areas of their everyday lives that were not related to the intervention. Conclusions: A multidisciplinary approach provided explanations for similar effects of two different doses of exercise. This could not have been determined via either qualitative......Aims: Sixty-one healthy, sedentary, moderately overweight young men participated in a randomised controlled trial to examine the effects of two different doses of endurance exercise on health behaviour and exercise compliance. Methods: Participants were randomised to a sedentary control group...

  13. Technical specification compliance methodology

    International Nuclear Information System (INIS)

    The fundamental purpose of the plant technical specifications (tech specs) is to impose requirements on plant operations such that the evaluated safety analysis basis of the plant is maintained. As plants have become more complex and with an increased emphasis on plant and personnel safety, management of the tech specs requires significant time and resources on the part of nuclear utility organizations. Westinghouse Electric Corporation in conjunction with Union Electric Company has developed a computer-based methodology to help the plant operations staff maintain compliance with the tech specs. This system, called SPECAPPRAISAL which was recently implemented at the Callaway Plant site involves a combination of Fault Tree Analysis techniques, database management, Man-Machine Interface design, and computer software

  14. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  15. An in-mold packaging process for plastic fluidic devices.

    Science.gov (United States)

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes. PMID:21446432

  16. An investigation into the injection molding of PMR-15 polyimide

    Science.gov (United States)

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  17. Mold and mycotoxin problems encountered during malting and brewing.

    Science.gov (United States)

    Wolf-Hall, Charlene E

    2007-10-20

    Fusarium infections in grains can have severe effects on malt and beer. While some degree of Fusarium mycotoxins, such as deoxynivalenol, present in infected barley may be lost during steeping, the Fusarium mold is still capable of growth and mycotoxin production during steeping, germination and kilning. Therefore, detoxification of grain before malting may not be practical unless further growth of the mold is also prevented. Methods to reduce the amount of mold growth during malting are needed. Physical, chemical and biological methods are reviewed. Irradiation looks very promising as a means to prevent Fusarium growth during malting, but the effect on the surviving mold to produce mycotoxins and the effect on malt quality needs further study. Chemical treatments such as ozonation, which would not leave residual chemical in the beer also appear to be promising. Although biological control methods may be desirable, due to the use of "natural" inhibition, the effects of these inhibitors on malt and beer quality requires further investigation. It may also be possible to incorporate detoxifying genes into fermentation yeasts, which would result in detoxification of the wort when mold growth is no longer a problem. Development of these types of technological interventions should help improve the safety of products, such as beer, made from Fusarium infected grain. PMID:17727998

  18. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, F.; Funatsu, A.; Yazawa, H. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  19. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured by...

  20. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  1. Isolation of pregnancy-associated glycoproteins (PAG) from water buffalo (Bubalus bubalis) placenta by use of Vicia villosa bound agarose affinity chromatography

    OpenAIRE

    Beckers, J. F.; Malfatti, A.; V. Barile; Debenedetti, A.; Clerget, E.; K. Klisch; Sousa, N.M.; O. Barbato

    2010-01-01

    The present study describes the isolation and characterisation of new PAG molecules extracted from mid- and late-pregnancy placentas in the water buffalo (Bubalis bubalis). After extraction, acid and ammonium sulphate precipitation and DEAE chromatography water buffalo PAG (wbPAG) were enriched by Vicia villosa agarose (VVA) affininity chromatography. As determined by Western blotting with anti-PAG-sera, apparent molecular masses of immunoreactive bands from VVA peaks ranged from 59.5 to 75.8...

  2. Two-component co-injection and transfer molding and gas-assisted injection molding of polymers: Simulation and experiment

    Science.gov (United States)

    Li, Chengtao

    Two-component molding is a novel process for manufacturing polymer products with a sandwich structure or a hollow structure. Typically, two different materials are injected or transferred into a mold sequentially or simultaneously. The skin is generally a prime polymer with required surface and bulk properties for intended use. The core can be solid, foam or gas. Obtaining a uniform encapsulated structure is difficult and there are no science-based rules for optimization of process setup. Thus, a physical model and process simulations have been developed based on the kinematics and dynamics of a moving interface, and Hele-Shaw approximation. The model has incorporated temperature and shear rate dependences of viscosity of both skin and core component into the transient interface evolution. Based on the developed model, simulations have been carried out to study flow rate controlled simultaneous co-injection molding of thermoplastics, pressure-controlled sequential transfer molding of rubber compounds, and gas-assisted injection molding (GAIM). The simulation results were compared with the experimental data, and in general, good agreement was found between the predicted and experimentally measured interface distribution in moldings. For simultaneous co-injection molding, it is found that material pairs with a broad range of viscosities may be utilized. Breakthrough phenomena are mainly determined by the volume of melt of initial single phase injection and rheological properties of material combinations. When the core has a lower viscosity than the skin, or the volume of initial injection of skin melt is smaller, breakthrough is very likely. However, the breakthrough can be eliminated by controlling injection rate of the skin and core melts. For sequential transfer molding, it is found that the rubber distribution in moldings are dominated by the rheological properties of components and the volume fraction transferred, but independent of the gate pressure. When the

  3. 黄冶窑唐三彩制品的模具与模制成型工艺%Molds and Molding Technology for Tricolor Articles of the Tang Period Produced at the Huangye Kiln

    Institute of Scientific and Technical Information of China (English)

    刘洪淼; 廖永民

    2001-01-01

    The Dahuangye and Xiaohuangye villages in the northeast of Gongyi produced the tricolored ceramics during the Tang dynasty. These kilns had high productivity, and production was specialized. Different molds and molding methods were employed, various forms of artifats were made with different molds and molding methods. The mold froms had single and double molds; designs included plants, animals and humans; and production preeesses were regulated.

  4. Characterization of Eddy current sensor for measuring mold level

    International Nuclear Information System (INIS)

    In continuous steel billet casting, keeping the mold level steady is one of the most important technologies for maintaining steel quality. In this study, a eddy current level meter which measures the level of the continuous mold has been developed, based on the principle of electromagnetic induction. The measured error was minimized by the characterization of distance amplitude curve at 50 kHz, AC 12 Vpp. The use of the eddy current sensor with the correction of a log-amplifier showed that the resolution of the measurement was within 0.5mm on the period of level 0-100 mm and 1.0 mm on the period of level 100-250 mm. The eddy current level meter with associated the electronic device was installed in a continuous caster 1 M/C, Gwangyang, POSCO works and measured the level of the continuous mold.

  5. Injection molding tools with micro/nano-meter pattern

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure to the...... tool while the imprinting device is, at least partly, within a cavity of the injection molding tool. In a second main aspect, a base plate with a micro/nanometer structured pattern positioned on an upper part is positioned on the active surface within the tool, the lower part of the base plate facing...... the tool, the active surface receiving the base plate being non-planar on a macroscopic scale. Both aspects enable a simple and effective way of transferring the pattern, and the pattern may be transferred on the active working site of tool immediately prior to molding without the need for extensive...

  6. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D.; Irvine, Kevin; Berger, Paul; Comstock, Robert

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  7. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    Science.gov (United States)

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed. PMID:14051820

  8. Applications of thin carbon coatings and films in injection molding

    Science.gov (United States)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a

  9. Customized mold radiotherapy with prosthetic apparatus for oral cancers

    International Nuclear Information System (INIS)

    Eight patients (6 males, 2 females; median age, 78 years; age range, 31-94 years) were treated by mold radiotherapy with a prosthetic apparatus for oral cancers between October 2006 and March 2013. The primary sites were the tongue in 3 cases, hard palate and buccal mucosa in 2 cases each, and oral floor in 1 case. The type of treatment consisted of radical radiotherapy and palliative radiotherapy in 2 cases each, and preoperative radiotherapy, postoperative radiotherapy, additional radiotherapy after external beam radiotherapy and systemic chemotherapy in 1 case each. Patients received 40-50 Gy in 8-10 fractions with mold radiotherapy. Two patients who received radical radiotherapy showed no signs of recurrence or metastasis. The present therapy contributed to patients' palliative, postoperative, and preoperative therapy. Mold radiotherapy with a prosthetic appliance was performed safely and was a useful treatment for several types of oral cancer. (author)

  10. Mechanical Properties of Rotationally Molded PET Microfibril Reinforced Composites

    Science.gov (United States)

    Lin, R. J. T.; Bhattacharyya, D.; Fakirov, S.

    Being a fast growing plastic manufacturing industry, rotational molding has been using the linear polyethylenes extensively as the raw material. As these materials have shown insufficient mechanical properties for certain applications where strength and stiffness of the products are the main concerns, worldwide rotational molders have expressed a need for stronger and stiffer materials to be available for rotomolding. A possible attractive solution may be the recently developed microfibril reinforced composites (MFCs). Blends of linear medium density polyethylene/polyethylene terephthalate (LMDPE/PET) with an MFC structure are manufactured on a commercial-scale set-up and thereafter used in rotational molding. The samples are characterized morphologically and tested mechanically. The results obtained show that the MFC-concept has good application opportunities in the polymer processing including rotational molding.

  11. Application of Vacuum Drying to Silica Sol Ceramic Mold

    Institute of Scientific and Technical Information of China (English)

    Ming ZENG; Xinqiang YUAN; Baoluo SHEN; Yunqiu ZHENG

    2008-01-01

    Silica sol ceramic mold was made at room temperature with JN-30 silica sol, silica powder and NH4Cl. It is found that the harden time of silica sol ceramic mold is only 0.5 to 1.5 h under the amount of NH4CI solution of 7% to 8% with 15% concentration, and less surface cracks occur by using vacuum drying. The proper vacuum drying process parameters: vacuum drying temperature is 80 to 100℃, drying time is 5 h and vacuum is 0.06 to 0.07 MPa. The harden mechanics, vacuum drying mechanics and the reason of less surface cracks of silica sol ceramic mold by vacuum drying were also analyzed in this paper.

  12. Selection of thermotropic liquid crystalline polymers for rotational molding

    Science.gov (United States)

    Scribben, Eric

    Thermotropic liquid crystalline polymers (TLCPs) possess a number of physical and mechanical properties such as: excellent chemical resistance, low permeability, low coefficient of thermal expansion, high tensile strength and modulus, and good impact resistance, which make them desirable for use in the storage of cryogenic fluids. Rotational molding was selected as the processing method for these containers because it is convenient for manufacturing large storage vessels from thermoplastics. Unfortunately, there are no reports of successful TLCP rotational molding in the technical literature. The only related work reported involved the static coalescence of two TLCP powders, where three key results were reported that were expected to present problems that preclude the rotational molding process. The first result was that conventional grinding methods produced powders that were composed of high aspect ratio particles. Secondly, coalescence was observed to be either slow or incomplete and speculated that the observed difficulties with coalescence may be due to large values of the shear viscosity at low deformation rates. Finally, complete densification was not observed for the high aspect ratio particles. However, the nature of these problems were not evaluated to determine if they did, in fact, create processing difficulties for rotational molding or if it was possible to develop solutions to the problems to achieve successful rotational molding. This work is concerned with developing a resin selection method to identify viable TLCP candidates and establish processing conditions for successful rotational molding. This was accomplished by individually investigating each of the phenomenological steps of rotational molding to determine the requirements for acceptable performance in, or successful completion of, each step. The fundamental steps were: the characteristics and behavior of the powder in solids flow, the coalescence behavior of isolated particles, and the

  13. Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert

    International Nuclear Information System (INIS)

    The development of MEMS and microsystems needs a reliable mass production process to fabricate micro components with micro/nano-scale features. In our study, we used the micro injection molding process to replicate micro/nano-scale channels and ridges from a bulk metallic glass (BMG) cavity insert. High-density polyethylene was used as the molding material and the design of experiment approach was adopted to systematically and statistically investigate the relationship between machine parameters, real process conditions and replication quality. The peak cavity pressure and temperature were selected as process characteristic values to describe the real process conditions that the material experienced during the filling process. The experiments revealed that the replication of ridges, including feature edge, profile and filling height, was sensitive to the flow direction; cavity pressure and temperature both increased with holding pressure and mold temperature; replication quality can be improved by increasing cavity pressure and temperature within a certain range. The replication quality of micro/nano features is tightly related to the thermomechanical history of material experienced during the molding process. In addition, the longevity and roughness of the BMG insert were also evaluated based on the number of injection molding cycles. (paper)

  14. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    International Nuclear Information System (INIS)

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  15. CT use for nasopharingeal molds realization in endocavitary brachytherapy

    International Nuclear Information System (INIS)

    Purpose: We present the following procedure for the making of individual molds with dental silicone for endocavitary brachytherapy of nasopharingeal cancer aided by CT scan. Procedure: Head immobilization during the realization of nasopharynx CT. Planification of treatment using these CT images, to determine the optimum position of radioactive sources. Printing on paper CT images with the nasopharynx contoured walls and the radioactive sources position. Realization of the mold in plastiline with the aid of the cuts of printer paper cut out with the nasopharynx form. Obtaining of the negative of the mold of plastiline by means of the use of alginate. Placement of two number 20 rectal rigid catheters with metal malleable bars inside them, in order to give them an adequate form in relation to the previous carried out planning. Filling in of alginato negative, where rectal catheters were placed, with Provil MCD Bayer Dental, a silicone based material for precision impression. We recommend to crossing the catheters' end with a number 2 silk thread to secure the catheter. An end of the silk thread is left outside the mold in order to help the extraction at the end of application. We advise to carry out a neuroleptic anaesthesia for its insertion, for the purpose of achieving a soft palate suitable relaxation. It makes the insertion easier. Repeat CT with the mold and phantoms in position to know a definitive dose distribution calculation. Conclusion: This method avoids the necessity of general anaesthesia in the realization of individual molds of nasopharyx for endocavitary brachytherapy and it improves the implant dosimetry

  16. Oil Mist Compliance

    International Nuclear Information System (INIS)

    This report summarizes activities at the KCP related to evaluating and modifying machine tools in order to be in compliance with Section 23 of DOE 10 CFR 851, Worker Safety and Health Program. Section 851.23 (a) states that 'Contractors must comply with the following safety and health standards that are applicable to the hazards in their covered workplace', and subsection 9 contains the following applicable standard: 'American Congress of Governmental Industrial Hygienists (ACGIH), 'Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices,' (2005) (incorporated by reference, see (section)851.27) when the ACGIH Threshold Limit Values are lower (more protective) than permissible exposure limits in 29 CFR 1910'. In the 2005 ACGIH Threshold Limit Value book a Notice of Change was issued for exposure to mineral oil mist used in metalworking fluids (MWFs). The effects of planning for the new facility and which machine tools would be making the transition to the new facility affected which machine tools were modified

  17. Oil Mist Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Lloyd

    2009-02-02

    This report summarizes activities at the KCP related to evaluating and modifying machine tools in order to be in compliance with Section 23 of DOE 10 CFR 851, Worker Safety and Health Program. Section 851.23 (a) states that “Contractors must comply with the following safety and health standards that are applicable to the hazards in their covered workplace”, and subsection 9 contains the following applicable standard: “American Congress of Governmental Industrial Hygienists (ACGIH), ‘Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices,’ (2005) (incorporated by reference, see §851.27) when the ACGIH Threshold Limit Values are lower (more protective) than permissible exposure limits in 29 CFR 1910.” In the 2005 ACGIH – Threshold Limit Value book a Notice of Change was issued for exposure to mineral oil mist used in metalworking fluids (MWFs). The effects of planning for the new facility and which machine tools would be making the transition to the new facility affected which machine tools were modified.

  18. Environmental Compliance Management System

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy

  19. Radiation effects on extruded and compression molded UHMWPE

    International Nuclear Information System (INIS)

    Radiation sterilization of Ultra-high Molecular Weight Polyethylene (UHMWPE) has been shown to produce crystallinity changes in the resin. Previous studies have assumed material property changes to be isotropic. Two grades of UHMWPE (GUR 415 ampersand GUR 412) produced by two different processes (ram extrusion and compression molding) were evaluated for radiation sterilization induced property changes. At low radiation doses (2.8 Mrads) extruded GUR 415 property responses were isotropic. At higher doses (5.0 Mrad) an anisotropic response was observed. Property changes in compression molded GUR 412 were found to be anisotropic at both sterilization dose levels investigated

  20. Evaluation of Methods to Control Mold on Hardwood Pallets

    OpenAIRE

    Blount, Thomas Richard

    2013-01-01

    The objectives of this project were:1.����To compare the drying cost and drying time for oak and poplar pallets for the following mold mitigation strategies for hardwood pallets: air drying, forced air drying (fan shed), kiln drying to 25% moisture content and chemical treatment, and2.����Develop and evaluate a procedure for preventing and controlling mold growth on heat treated hardwood palletsTwenty red oak pallets and twenty yellow-poplar pallets were tested for each drying...

  1. Fiber-Based, Injection-Molded Optofluidic Systems

    DEFF Research Database (Denmark)

    Matteucci, Marco; Triches, Marco; Nava, Giovanni;

    2015-01-01

    We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow...... optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC) applications. We demonstrate the versatility of this technology by carrying...

  2. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard;

    2012-01-01

    In today´s industry, applications involving surface patterning of sub-μm to nanometer scale structures have shown a high growth potential. To investigate the injection molding capability of replicating sub-μm surface texture on a large scale area, a 30x80 mm2 tool insert with surface structures...... having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  3. Study on Antigravity Mold Filling by Conservative Scalar Method

    Institute of Scientific and Technical Information of China (English)

    李日; 王友序; 杨根仓; 毛协民

    2003-01-01

    By SIMPLE method and Van-Leer scheme, a program on numerical simulation for 3D mold filling has been developed. The fluid flow field of gas and liquid is calculated in couples by a single phase N-S equation using SIMPLE method, and free surface control equation is handied by Van-Leer scheme. Then it is verified by an anti-gravity mold filling of thin wall plate. In order to demonstrate its ability to simulate 3D casting, an anti-gravity mould filling of a cube is computed by the program.

  4. Force reflection with compliance control

    Science.gov (United States)

    Kim, Won S.

    1993-08-01

    Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.

  5. Permit Compliance System (PCS) Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Permit Compliance System (PCS) widget allows users to enter a specific geography and retrieve companies that have been issued permits to discharge waste water...

  6. Compliance with Segment Disclosure Initiatives

    DEFF Research Database (Denmark)

    Arya, Anil; Frimor, Hans; Mittendorf, Brian

    2013-01-01

    Regulatory oversight of capital markets has intensified in recent years, with a particular emphasis on expanding financial transparency. A notable instance is efforts by the Financial Accounting Standards Board that push firms to identify and report performance of individual business units...... compliance or mandates strict compliance from firms. Under voluntary compliance, a firm is able to credibly withhold individual segment information from its competitors by disclosing data only at the aggregate firm level. Consistent with regulatory hopes, we show that mandatory compliance enhances welfare...... by increasing transparency and leveling the playing field. However, our analysis also demonstrates that in the long run, if firms are unable to use discretion in reporting to maintain their competitive edge, they may seek more destructive alternatives. Accounting for such concerns, in the long run, voluntary...

  7. Air Compliance Complaint Database (ACCD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — THIS DATA ASSET NO LONGER ACTIVE: This is metadata documentation for the Region 7 Air Compliance Complaint Database (ACCD) which logs all air pollution complaints...

  8. Integrated Compliance Information System (ICIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The purpose of ICIS is to meet evolving Enforcement and Compliance business needs for EPA and State users by integrating information into a single integrated data...

  9. Compliance among Adolescents during Drug Treatment.

    Science.gov (United States)

    Wong, Mamie M.; Hser, Yih-Ing; Grella, Christine E.

    2002-01-01

    Compliance during drug treatment reflects treatment engagement. Examines self-assessed compliance, behavioral compliance, and their influences, among adolescents in treatment. Stepwise logistic regression showed that desire for help was significantly related to more compliance. Discusses the implications of these findings for adolescent treatment…

  10. 40 CFR 63.1002 - Compliance assessment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Compliance assessment. 63.1002 Section... Emission Standards for Equipment Leaks-Control Level 1 § 63.1002 Compliance assessment. (a) General procedures for compliance assessment. Compliance with this subpart will be determined by review of...

  11. Empathy, Sympathy, and Tax Compliance

    OpenAIRE

    Roberta Calvet; James Alm

    2013-01-01

    This paper examines the effect of "empathy" and "sympathy" on tax compliance. We run a series of laboratory experiments in which we observe the subjects' decisions in a series of one-shot tax compliance games presented at once and with no immediate feedback. Importantly, we employ methods to identify subjects' sympathy, such as the Davis Empathic Concern Scale and questions about frequency of prosocial behaviors; we also use priming in order to promote subjects' empathy. Our results suggest t...

  12. Attitudes, Incentives and Tax Compliance

    OpenAIRE

    V. Umashanker Trivedi; Mohamed Shehata; Stuart Mestelman

    2004-01-01

    Our study examines whether combining experimental economics and economics psychology techniques can provide a better understanding of individuals’ tax compliance decisions in the laboratory. We find that considering individuals’ attitudinal, personality and intention measures in addition to economic based variables provides a richer understanding of individuals’ actual tax compliance decisions in the laboratory in the face of monetary incentives. We also find that hypothetical and actual comp...

  13. Moldova; Taking Compliance Management Further

    OpenAIRE

    International Monetary Fund

    2012-01-01

    This report discusses implementation of the compliance risk model (CRM) by Moldova’s tax department. The CRM has shown encouraging results in 2011, in terms of extra revenue. However, the assessment reports that for long-lasting impact, the model requires further improvement in taxpayer services, audit, tax fraud investigations, information technology, and the value-added tax refund system. The compliance plan for 2012 involves implementing measures within the segment of wealthy individuals...

  14. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    Science.gov (United States)

    Köpf, Marius; Campos, Daniela F Duarte; Blaeser, Andreas; Sen, Kshama S; Fischer, Horst

    2016-01-01

    In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and optimal cytocompatibility. We hypothesise that blending of different hydrogels could lead to a novel material with favourable biological and printing properties. In our work, we combined agarose and type I collagen in order to develop a hydrogel blend capable of long-term cell encapsulation of human umbilical artery smooth muscle cells (HUASMCs) and 3D drop-on-demand printing. Different blends were prepared with 0.25%, 0.5%, 0.75%, and 1.5% agarose and 0.2% type I collagen. The cell morphology of HUASMCs and the printing accuracy were assessed for each agarose-collagen combination, keeping the content of collagen constant. The hydrogel blend which displayed sufficient cell spreading and printing accuracy (0.5% agarose, 0.2% type I collagen, AGR0.5COLL0.2) was then characterised based on swelling and degradation over 21 days and mechanical stiffness. The cellular response regarding cell attachment of HUASMCs embedded in the hydrogel blend was further studied using SEM, TEM, and TPLSM. Printing trials were fabricated in a drop-on-demand printing process. The swelling and degradation evaluation showed an average of 20% mass loss and less than 10% swelling. AGR0.5COLL0.2 exhibited significant increase in stiffness compared to pure agarose and type I collagen. In addition, columns of AGR0.5COLL0.2 three centimeters in height were successfully printed submerged in cooled perfluorocarbon, proving the intrinsic printability of the hydrogel blend. Ultimately, a promising novel hydrogel blend showing cell spreading and attachment as well as suitability for bioprinting was identified and could, for example, serve in the manufacture of in vitro 3D models to

  15. Quantifying mold biomass on gypsum board: Comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters

    DEFF Research Database (Denmark)

    Reeslev, M.; Miller, M.; Nielsen, Kristian Fog

    2003-01-01

    estimating biomass density from ergosterol content and beta-N-acetylhexosaminidase activity were determined. The CFs were used to estimate the biomass density of the molds grown on gypsum board. The biomass densities estimated from ergosterol content and beta-N-acetylhexosaminidase activity data gave similar......Two mold species, Stachybotrys chartarum and Aspergillus versicolor, were inoculated onto agar overlaid with cellophane, allowing determination of a direct measurement of biomass density by weighing. Biomass density, ergosterol content, and beta-N-acetylhexosaminidase (3.2.1.52) activity were...... monitored from inoculation to stationary phase. Regression analysis showed a good linear correlation to biomass density for both ergosterol content and beta-N-acetylhexosaminidase activity. The same two mold species were inoculated onto wallpapered gypsum board, from which a direct biomass measurement was...

  16. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  17. ENVIRONMENTALLY-BENIGN POLYTETRAFLUOROETHYLENE (PTFE) COATINGS FOR MOLD RELEASE - PHASE II

    Science.gov (United States)

    GVD proposes to develop high performance, volatile organic compound (VOC)-free and perfluorooctanoic acid (PFOA)-free, non-stick mold release coatings based on its novel polytetrafluoroethylene (PTFE) fluoropolymer technology. Most commercial mold release agents make use of...

  18. Injection molding of thermoplastic elastomers for microstructured substrates

    Science.gov (United States)

    Birkar, Smita

    Amorphous and semi-crystalline thermoplastic polymers have been widely investigated for injection molding of parts with microstructured surfaces. Microstructured surfaces injection molded from thermoplastic elastomers have emerging applications as superhydrobic surfaces and patterned adhesives, but there is a limited understanding of the factors affecting replication with these materials. This research was a continued investigation of block copolymer thermoplastic elastomers as well as the first in-depth examination of thermoplastic vulcanizates for injection molding microfeatures. The first focus of this research was the interactions between tooling aspect ratio and feature orientation (negative and positive tooling) and thermoplastic elastomer hard segment content on microfeature replication. Electroformed nickel tooling having positive and negative features with different geometries and aspect ratios of 0.02:1 to 2:1 were molded from three copolyester thermoplastic elastomers with similar chemistry and different hardness values. The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Results were correlated with elastomer properties. In the second parts of this research, the effects of microfeature spacing on the replication of thermoplastic elastomer features was investigated using micropillars with two diameters (10 and 20 mum) and three spacing ratios (0.5:1, 1:1, and 2:1). The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Feature spacing significantly affected the replication of micropillars using a thermoplastic elastomer. This replication was competition between cooling and pressurization of the melt. Wider spacing between smaller features allowed cooling in the tooling lands to dominate the feature filling. Higher pressures did

  19. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  20. The effect of mold materials on the overlay accuracy of a roll-to-roll imprinting system using UV LED illumination within a transparent mold

    Science.gov (United States)

    Choi, Sungwoo; Kook, YunHo; Kim, ChulHo; Yoo, SoonSung; Park, Kwon-Shik; Kim, Seok-min; Kang, Shinill

    2016-06-01

    Although several studies on the roll-to-roll (R2R) imprinting process have reported achieving flexible electronics, improving the alignment accuracy in the overlay process of R2R imprinting is recognized as the biggest problem for the commercialization of this technology. For an overlay technique with high alignment accuracy, it is essential to develop a roll mold with high positional accuracy. In this study, a method for fabricating a roll mold with high positional accuracy is proposed by wrapping a thin glass substrate flexible mold around the transparent roll base, because it can provide higher mechanical strength and thermal stability than a conventional polymer substrate. To confirm the usability of the proposed process, the prepared roll mold was used to fabricate a test pattern of thin-film transistor backplane for a rollable display. The positional and overlay accuracy of the roll mold with the proposed thin glass substrate flexible mold were compared with the roll mold with a conventional polymer substrate flexible mold. Large-area transparent flexible molds with a size of 470  ×  370 mm were fabricated by an ultraviolet (UV) imprinting process on thin glass and polyethylene terephthalate substrates, and these flexible molds were wrapped around a roll base of 125 mm radius through a precision alignment process. After an anti-adhesion treatment and the wrapping process, the roll mold with the polymer substrate showed a ~180 μm positional error, whereas the thin glass substrate showed a ~30 μm positional error. After the overlay process using the R2R imprinting system with the alignment system, an average overlay error of ~3 μm was obtained when the thin glass flexible wrapped roll mold was used, whereas a ~22 μm overlay error was obtained when the polymer substrate flexible wrapped roll mold was used.

  1. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    OpenAIRE

    Aizawa Tatsuhiko; Fukuda Tatsuya; Morita Hiroshi

    2015-01-01

    Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP), which was unstable at the high temperature stamping condition; and, was eas...

  2. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    OpenAIRE

    Xu, Daming; LI, XIN; Geving AN

    2004-01-01

    Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force fi...

  3. Injection molding of iPP samples in controlled conditions and resulting morphology

    Science.gov (United States)

    Sessa, Nino; De Santis, Felice; Pantani, Roberto

    2015-12-01

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  4. Injection molding of iPP samples in controlled conditions and resulting morphology

    Energy Technology Data Exchange (ETDEWEB)

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it [Department of Industrial Engineering, University of Salerno, 84084 Fisciano (Italy)

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  5. Injection molding of iPP samples in controlled conditions and resulting morphology

    International Nuclear Information System (INIS)

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy

  6. Validation of precision powder injection molding process simulations using a spiral test geometry

    OpenAIRE

    Marhöfer, Maximilian; Müller, Tobias; TOSELLO, Guido; Islam, Aminul; Hansen, Hans N.; Piotter, Volker

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant of precision powder injection molding for the production of metallic and ceramic micro parts raises more and more interest though. Consequently, in the entire field the demand for simulation tools inc...

  7. Study on Improving Thickness Uniformity of Microfluidic Chip Mold in the Electroforming Process

    OpenAIRE

    Liqun Du; Tong Yang; Ming Zhao; Yousheng Tao; Lei Luo; Lei Wang; Chong Liu

    2016-01-01

    Electroformed microfluidic chip mold faces the problem of uneven thickness, which decreases the dimensional accuracy of the mold, and increases the production cost. To fabricate a mold with uniform thickness, two methods are investigated. Firstly, experiments are carried out to study how the ultrasonic agitation affects the thickness uniformity of the mold. It is found that the thickness uniformity is maximally improved by about 30% after 2 h electroforming under 200 kHz and 500 W ultrasonic ...

  8. Treatment compliance in adults with cystic fibrosis.

    OpenAIRE

    J. Abbott; Dodd, M.; Bilton, D; Webb, A. K.

    1994-01-01

    BACKGROUND--The study comprised three interrelated aims: (1) to ascertain (a) patient compliance with physiotherapy, exercise, enzyme and vitamin regimens, (b) how compliance was perceived by patients, and (c) the reasons for poor compliance (2) to identify demographic and clinical variables associated with compliance; and (3) to determine how accurately patient compliance can be predicted by carers. METHODS--Demographic and medical history data were obtained from medical records and a patien...

  9. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    Science.gov (United States)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  10. Design of Injection Mold for Connector Based on MoldFlow Software%基于MoldFlow的接插件注射模设计

    Institute of Scientific and Technical Information of China (English)

    孙立新

    2010-01-01

    通过对接插件的结构和工艺的分析,合理确定了模具抽芯机构的结构,同时应用模流分析软件MoldFlow确定了模具的最佳浇口位置,并对塑件的质量进行了预测.

  11. MoldFlow软件在梳子注射模结构改进及其成型缺陷分析中的应用%The Application of MoldFlow Software in the Structure Improvement and Analysis of forming Defects of Comb Injection Molding

    Institute of Scientific and Technical Information of China (English)

    陈叶娣

    2012-01-01

    MoldFlow software is applied to improve the mold structure and solve molding defects according to the problems of comb injection molding during trying mold. These will be provided some valuable references. Aunusual power is provided for the wide application of MoldFlow software in the design of injection mold.%根据梳子注射模在试模过程中存在的一些问题,采用MoldFlow软件进行分析,为改进模具结构、解决其成型缺陷提供有价值的参考。

  12. Differential allergy induction by molds found in water-damaged homes**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  13. Micro/nanoimprinting of glass under high temperature using a CVD diamond mold

    International Nuclear Information System (INIS)

    For micro/nanoimprinting of glass, the appropriate combination of glass and mold material was clarified by an adhesion test using chemical vapor deposition (CVD) diamond, silicon, glassy carbon and sintered nitride ceramics as the mold material, and Pyrex, TEMPAX and BK7 as the glass material. The result of the adhesion test shows that CVD diamond is suitable for imprinting with a wide variety of glass materials under various temperature conditions. The method of fabricating the CVD diamond mold using focused ion beam (FIB) was examined, and it was clarified that the grain boundary of CVD diamond has little effect on the surface condition. Glass micro/nanoimprinting was performed using the CVD diamond mold. The effect of the molding conditions, such as the molding temperature and mold-release temperature, on the height of glass transcription was clarified. The effects of pattern size and shape were also investigated. On the basis of the results, a method of selecting the molding conditions to obtain the desired transcript height was developed. In this research, the entire flow of glass micro/nanoimprinting, including mold material selection, the mold fabrication process and molding process, was proposed experimentally, and the selection method of the molding conditions was shown

  14. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have, in...

  15. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ... SECURITY Federal Emergency Management Agency Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal... Emergency Management Agency (FEMA) is accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation... The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses related to...

  16. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Science.gov (United States)

    2010-10-01

    ... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non... molding compound in dough, sheet or extruded rope form, evolving flammable vapor must be packed in: wooden... flammable vapor or Plastic molding compounds in dough, sheet or extruded rope, evolving flammable vapor...

  17. The Role of Molding Compound Microstructure for Packaging Reliability

    NARCIS (Netherlands)

    Fischer, H.R.; Nabi, H.S.; Weiss, L.; Gielen, A.W.J.

    2015-01-01

    Molding compounds are key materials to deliver well packaged reliable IC’s for demanding applications, such as automotive electronics. With shrinking sizes of IC’s and the increased requirements with respect to loading conditions, application environment and lifetime, the reliability of the packagin

  18. Stability of FDTS monolayer coating on aluminum injection molding tools

    International Nuclear Information System (INIS)

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  19. Seating tool for preparing molded-plug terminations on FCC

    Science.gov (United States)

    Chambers, C. M.; Corum, C. C.

    1971-01-01

    Hand-operated tool positions and seats window piece and conductor spacer onto conductors of two stripped cables during process of terminating cables with molded plug. Tool accommodates cables up to 3 in. wide and is used in conjunction with folding tools.

  20. Phase structure evolution during compression molding of compatibilized polymer blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Dimzoski, Bojan; Michálková, Danuše

    2012-01-01

    Roč. 51, č. 10 (2012), s. 2026-2033. ISSN 0022-2348 R&D Projects: GA AV ČR IAA200500903 Institutional research plan: CEZ:AV0Z40500505 Keywords : coalescence * compatibilization * compression molding Subject RIV: BJ - Thermodynamics Impact factor: 0.628, year: 2012

  1. Ion channel recordings on an injection-molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann;

    2013-01-01

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made u...

  2. PHYSICAL PROPERTIES OF EXTRUDED AND INJECTION MOLDED CORN GLUTEN MEAL

    Science.gov (United States)

    This study was performed to investigate the compounding of corn gluten meal (CGM) and decanoic acid and to evaluate their mechanical properties. The mixture of CGM and 30% decanoic acid was compounded in a twin screw extruder, followed by injection molding. Scanning electron microscopy (SEM), tens...

  3. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    Directory of Open Access Journals (Sweden)

    A. Alvarado-Iniesta

    2012-11-01

    Full Text Available Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in products manufactured through injection molding. Five process parameters areemployed for being considered to be critical and have a great impact on the warpage of plastic components. Thisstudy used the finite element analysis software Moldflow to simulate the injection molding process to collect data inorder to train and test the recurrent neural network. Recurrent neural networks were used to understand the dynamicsof the process and due to their memorization ability, warpage values might be predicted accurately. Results show thedesigned network works well in prediction tasks, overcoming those predictions generated by feedforward neuralnetworks.

  4. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    , likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy....

  5. Natural formation of styrene by cinnamon mold flora.

    Science.gov (United States)

    Lafeuille, J-L; Buniak, M-L; Vioujas, M-C; Lefevre, S

    2009-08-01

    Tests on 106 dried pure cinnamon samples of diverse origins showed that some samples were naturally contaminated with high levels of styrene, up to 524 microg/g. Styrene taint can be associated with high water activity levels and thus with microorganism growth. The mold flora of a Korintji cinnamon sample in which styrene had been found at a 50 microg/g concentration was analyzed and 5 species of mold were isolated. An investigation into the ability of the 5 species of mold to produce styrene showed that 3 of them--namely, Penicillium citrinum, Penicillium oxalicum, Aspergillus niger--produced styrene in vitro in buffered peptone water at 25 degrees C within 5 d in the presence of several natural cinnamon volatile constituents containing the styrene structure. The conversion of these compounds into styrene by these 3 cinnamon fungal species has never been previously reported. A standardized inoculation with the 3 mold species was carried out on 10 g cinnamon samples of various origins followed by a 10-d incubation and highlighting styrene production except for Sri Lanka origin. PMID:19723212

  6. Incipient flocculation molding: A new ceramic-forming technique

    Science.gov (United States)

    Arrasmith, Steven Reade

    Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder

  7. Three-Dimensional Numerical Simulation of Mold Filling Process in Compression Resin Transfer Molding

    Science.gov (United States)

    Yang, Bo; Jin, Tianguo; Li, Jianguang; Bi, Fengyang

    2015-04-01

    Compression resin transfer molding (CRTM) is an effective process for the manufacturing of composite parts with large size and high fiber content, while the existence of open gap, the dynamically changing dimensions of cavity geometry and the deformation of preform during filling process bring great difficulties to the three-dimensional simulation of resin flow in CRTM. In order to develop a convenient and efficient three-dimensional simulation approach for CRTM filling process, a unified mathematical model for resin flow in both open gap and preform is established instead of considering the gap as high permeability preform, then the analysis of the clamping force and stress distribution are presented. In order to avoid direct solving the coupled equations of resin flow and cavity deformation, volume of fluid (VOF) multiphase flow technology and dynamic mesh model are applied to track the resin flow front and update the cavity geometry during filling simulation, respectively. The master-slave element method is used to modify the amount of resin release and ensure the resin mass conservation. The validity of the numerical approach is verified by comparison with analytical and experimental results, three-dimensional simulation examples are also presented.

  8. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  9. The fabrication of a flexible mold for high resolution soft ultraviolet nanoimprint lithography.

    Science.gov (United States)

    Koo, Namil; Plachetka, Ulrich; Otto, Martin; Bolten, Jens; Jeong, Jun-Ho; Lee, Eung-Sug; Kurz, Heinrich

    2008-06-01

    One key issue for all nanoimprint techniques is an appropriate method for the fabrication of desirable molds. We report on a novel flexible mold fabrication process-pressure-assisted molding (PAM)-for high resolution soft ultraviolet nanoimprint lithography (soft UV-NIL). In PAM, enhanced master filling is achieved by applying an external pressure during the mold fabrication process. Flexible molds, fabricated with PAM using different pressures in the range of 10-90 kPa, are compared to determine the role of pressures applied in the imprint performance. PMID:21825759

  10. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  11. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    Science.gov (United States)

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively. PMID:26479615

  12. Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    K.H.Chang; G.C.Jang; C.H.Lee; S.H.Lee

    2008-01-01

    In the squeeze casting process, loaded high pressure (over approximately 100 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermo- physical and mechanical properties of the steel mold.

  13. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    Directory of Open Access Journals (Sweden)

    Daming XU

    2004-08-01

    Full Text Available Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section prcision castings.

  14. Effects of centrifugal and Coriolis forces on the mold-filling behavior of titanium melts in vertically rotating molds

    Institute of Scientific and Technical Information of China (English)

    Xu Daming; Jia Limin; Fu Hengzhi

    2008-01-01

    The vertical centrifugal-casting technique is widely used in the manufacture of various irregularly-shaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with near-net shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidification-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Codolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-filling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors' computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the flow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugal-casting process. A "turn-back" mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confirmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-filling control. The simulated mold-filling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  15. Computational simulation and experimental analysis of the mold-filling process in µPIM

    International Nuclear Information System (INIS)

    The micro powder injection molding technique has developed in recent years to be a unique method to fabricate miniature components in the large scale. In this paper numerical simulation of the mold filling of a micro-sized cylinder and gearwheel on a substrate was carried out with the ANSYS CFX software. The feedstock consisted of 56 vol% of carbonyl iron powder and a thermoplastic binder. The simulation results found that inhomogeneity greatly influences the shape precision of the molded micro-sized parts, and the gears located far from the gate exhibited better morphology than those near the gate. A difference in shape accuracy was found in different regions of a molded compact due to the variation of the state of the mold filling and the heat exchange between the feedstock and the die wall. The experimental data testified to the validity of the numerical simulation of the mold-filling process in micro powder injection molding.

  16. EXPERIMENTAL MEASUREMENT OF MAGNETIC FIELD IN A NOVEL FLOW CONTROL OF MOLD

    Institute of Scientific and Technical Information of China (English)

    G.J. Xu; D.H. Li; J.C. He

    2002-01-01

    In order to know the distribution of magnetic field in a novel flow control of mold(NFC Mold) and to provide the experimental data for the electromagnetic structuredesign and the analysis of flow control in continuous casting mold, the magnetic fieldin a NFC Mold were measured by Tesla meter of Model CT-3. The method of vectorsynthesis was adopted in the measurement of magnetic fields. The results showed thatthe magnetic field in the NFC Mold was composed of two main magnetic areas thatwere symmetrical. Although there was leaking magnetic flux between the lower surfaceof the upper pole and the upper surface of the lower pole on the sides, it was restrainedby the main magnetic fields effectively. Therefore the NFC Mold was more preferablysatisfied to be used in controlling the molten steel flow in continuous casting mold.

  17. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  18. Increasing the life of molds for casting copper and its alloys

    Science.gov (United States)

    Smirnov, A. N.; Spiridonov, D. V.

    2010-12-01

    The work of the molds intended for casting copper and copper alloys in semicontinuous casters for producing flat billets is considered. It is shown that, to increase the resistance of mold plates, the inner space of the mold should have a taper shape toward the casting direction and take into account the shrinkage of the linear dimensions of the ingot during its motion in the mold. The taper shape increases the intensity and uniformity of heat removal due to close contact between the ingot and the mold inner surface. Testing of new design molds under industrial conditions demonstrates that their resistance increases by a factor of 4.0-4.5. The taper effect of the mold plates is much more pronounced in their narrow faces.

  19. Evaluation of Three-Dimensional Chitosan-Agarose-Gelatin Cryogel Scaffold for the Repair of Subchondral Cartilage Defects: An In Vivo Study in a Rabbit Model

    OpenAIRE

    Gupta, Ankur; Bhat, Sumrita; Jagdale, Pankaj R.; Bhushan P Chaudhari; Lidgren, Lars; Gupta, Kailash C.; Kumar, Ashok

    2014-01-01

    In this study, the potential of a chitosan-agarose-gelatin (CAG) cryogel scaffold for the repair of subchondral cartilage defects was explored in female New Zealand white rabbits. Custom-made CAG cryogel scaffold was implanted in a surgically created subchondral defect (diameter of 4 mm, depth of 4 mm) in knee joint of rabbit. The repair of the subchondral defect was evaluated at regular time interval by both macroscopic as well as microscopic examinations. The gross evaluation of the scaffol...

  20. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    Science.gov (United States)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  1. Measurement of solidification and melting behavior of resin in injection molding and detection of flaws molded parts by using ultrasonic waves

    International Nuclear Information System (INIS)

    Injection molding of thermoplastics is widely used in many industries. However, it is not so easy to design the mold and to determine the optimal injection conditions. Therefore, a number of CAR mold design software packages for simulating the injection molding process have been developed. In order to confirm the results obtained from CAE, it is necessary to compare the numerical results with the experimental ones. In practice, the filling behavior has been observed with an optical visualization technique, but the solidification behavior of melted resin filled into the cavity has not yet been observed. It has been indirectly detected by measuring the pressure in the mold cavity. On the other hand, the melting behavior of solid resin in the barrel of an infection molding machine has influence on the quality of a molded part. Therefore, it is important to observe the melting behavior of solid resin in the barrel. In this study a method for measuring the solidification behavior in the cavity and the melting behavior in the barrel have been developed by using ultrasonic waves. Moreover, a method of detecting a flaw or a different material included in the molded part has been developed by using ultrasonic waves. Especially, a flaw close to the surface of the molded part can be detected by separating the flaw echo from the surface echo of the molded part. It was determined that the thickness of the solid layer of the melted resin filled into the cavity can be measured by using ultrasonic waves. The melting behavior of the resin on the barrel surface can be observed by measuring the amplitude of the reflected echo on the interface between the barrel and resin. Moreover, the flaw close to the surface of the molded part can be detected by using the ultrasonic waves.

  2. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.

    Science.gov (United States)

    Adamatzky, Andrew I

    2014-01-01

    A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and

  3. 300 area TEDF permit compliance monitoring plan

    Energy Technology Data Exchange (ETDEWEB)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  4. Mobile Source Emissions Regulatory Compliance Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for all types of...

  5. Mobile Source Emissions Regulatory Compliance Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road...

  6. Enforcement and Compliance History Online (ECHO) Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Enforcement and Compliance History Online (ECHO) widget displays the compliance records of larger facilities within a user-specified area of interest as...

  7. Clean Air Markets - Compliance Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides...

  8. 300 area TEDF permit compliance monitoring plan

    International Nuclear Information System (INIS)

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease

  9. Modeling and simulation of heat transfer for glass bulb mold

    Institute of Scientific and Technical Information of China (English)

    ZHOU Huamin; LI Dequn

    2005-01-01

    Cooling system design in glass bulb pressing operation can greatly affect the productivity and the quality of the final product. The concept of cyclic-averaged steady temperature field is proposed in modeling. Heat transfer in the mold region is considered to be a cyclic-steady, three-dimensional conduction; heat transfer within the glass melt region is treated as a transient, one-dimensional conduction; heat exchange between the cooling system surface and coolant is treated as a steady heat convection. A hybrid model consisting of a three-dimensional boundary element method for the mold region and a finite-difference method with a variable mesh for the melt region is used for numerical simulation. Compared with the experimental data, the numerical model developed here is computationally efficient and sufficiently accurate.

  10. FPGA-Based Multiprocessor System for Injection Molding Control

    Directory of Open Access Journals (Sweden)

    Roque A. Osornio-Rios

    2012-10-01

    Full Text Available The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  11. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  12. Residue stress analysis of molding aspherical plastic lens

    Science.gov (United States)

    Hsu, Ming-Ying; Cheng, Yuan-Chieh; Chang, Shenq-Tsong; Huang, Ting-Ming

    2015-09-01

    The aspherical plastic lens is widely used in commercial optical products. Warpage and residue stress are two important factors that influence wavefront error. Several investigators have discussed warpage. We propose a methodology to study the effect of residue stress on wavefront error. Mold flow software was adopted to calculate the residue stress in injection processes. Optical software was used to find optical ray paths through the lens. Corresponding Optical Path Different (OPD) in each ray path was simulated by self-developed software. A 50-mm diameter plastic lens was used in this study. The mild- and high-frequency wavefront errors and the stress OPD effect at the injection area were found to be a result of the molding process. The proposed methodology was found to be very suitable for finding the effect of residue stress on wavefront error in plastic lenses.

  13. Reusable molds for casting U-Zr alloys

    International Nuclear Information System (INIS)

    Refractory oxides, carbides, nitrides and sulfides were examined as mold coating materials for use in casting nuclear fuel. The molds require excellent high temperature chemical and mechanical stability combined with reasonable room temperature ductility to allow for fuel removal. Coatings were applied onto quartz and refractory metal coupons using various techniques. Sessile drop tests employing molten U-10%Zr (by weight) at 1550 degrees C were used to characterize coating performance. Results indicate that NbC, TiN, and Y2O3 were non-wetting with U-10%Zr. However, only the Y2O3 coating completely prevented adhesion of the fuel. The paper describes coating methods and details of the sessile drop experiments

  14. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  15. Project Compliance with Enterprise Architecture

    NARCIS (Netherlands)

    Foorthuis, R.M.

    2012-01-01

    This research project set out to identify effective practices and models for working with projects that are required to comply with Enterprise Architecture (EA), and investigate the benefits and drawbacks brought about by compliance. Research methods used are canonical action research, a statistical

  16. Environmental policy, compliance and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Laffont, Jean-Jacques; Tirole, Jean (IDEI, Univ. des Sciences Sociales, Toulouse (France))

    1994-04-01

    This note provides an industrial organization perspective on the use of tradeable emissions permits in the context of SO[sub 2] pollution in the USA, and reports on some of our ongoing work on compliance and innovation in pollution abatement

  17. Audit-based compliance control

    NARCIS (Netherlands)

    Cederquist, J.G.; Corin, R.J.; Dekker, M.A.C.; Etalle, S.; Hartog, den J.I.; Lenzini, G.; Dimitrakos, T.; Martinelli, F.; Ryan, P.Y.A.; Schneider, S.

    2007-01-01

    In this paper we introduce a new framework for controlling compliance to discretionary access control policies [Cederquist et al. in Proceedings of the International Workshop on Policies for Distributed Systems and Networks (POLICY), 2005; Corin et al. in Proceedings of the IFIP Workshop on Formal A

  18. ETHICS AND COMPLIANCE IN BUSINESS

    Directory of Open Access Journals (Sweden)

    ANDREESCU Nicoleta Alina

    2015-05-01

    Full Text Available In this paper, we have studied the evolution of the business ethics concept through the prism of definitions from some renowned authors in the field and through the approach model of the business ethics and by implementing it in the company level. We have found out that in the last 40 years this concept has evolved from a theoretical aspect, as well as a practical one. Companies are motivated to implement ethics and compliance programs in business so that they can manage the changes that come from society. If, until recently, all that mattered for a company was profit, in the last decades, the situation changed. In order to develop a durable business, it is essential to have a good reputation. Owning and implementing an ethics and compliance program in business has become an imperative for companies, regardless of their activity sector. The role of the compliance department becomes more pregnant in each company: the employees need safety, the existence of communication lines provides comfort. From the partners in business’ point of view, owning such a program is a necessity, a condition, and not conforming to the principles of business ethics can lead to the isolation of the company. The ethics and compliance programs in business are instruments that protect the company by implementing certain proactive identification mechanisms that ensure the development of an ethical organizational culture.

  19. State regulatory issues in acid rain compliance

    International Nuclear Information System (INIS)

    This article discusses the results of a US EPA workshop for state regulators and commission staff on acid rain compliance concerns. The topics of the article include the results of market-based emissions control, how emissions trading is expected to reduce emissions, public utility commissions approval of compliance plans, the purposes of the workshop, market information, accounting issues, regulatory process and utility planning, multi-state compliance planning, and relationship to other compliance issues

  20. Metabolic Syndrome Patient Compliance with Drug Treatment

    OpenAIRE

    Nilcéia Lopes; Antonio Carlos Zanini; Antonio Casella-Filho; Antonio Carlos Palandri Chagas

    2008-01-01

    OBJECTIVES: 1) To evaluate the compliance with drug treatment in patients with metabolic syndrome. 2) To determine association between access to and use of medicines, as well as the level of knowledge of cardiovascular risk factors and compliance. INTRODUCTION: Low compliance has been one of the greatest challenges for the successful treatment of chronic diseases. Although this issue has been widely studied in patients with isolated hypertension, diabetes and dyslipidemia, compliance studies ...