WorldWideScience

Sample records for ag thick film

  1. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    Science.gov (United States)

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  2. Effect of Nanoscale Ag Film Thickness on the Electrical and Optical Properties of Transparent IZTO/Ag/IZTO Multilayer Films Deposited on Glass Substrates.

    Science.gov (United States)

    Oh, Dohyun; Lee, Nam Hyun; Cho, Woon-Jo; Kim, Tae Whan

    2015-07-01

    The effect of nanoscale Ag film thickness on the electrical and optical properties in transparent conducting oxide films consisting of an IZTO/Ag/IZTO multilayer were investigated. The homoge- neous morphologies of the Ag films sandwiched between the IZTO films affected the optical and electrical properties of the IZTO/Ag/IZTO multilayer films. The transmittance and resistivity of the IZTO/Ag/IZTO multilayer films decreased with increasing Ag film thickness. The resistivities of the IZTO/Ag/IZTO multilayer films grown on glass substrates were decreased by using an Ag thin inter- layer in comparison with that of the IZTO single layer.

  3. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Science.gov (United States)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-04-01

    The evidence is reported for enhancement of critical current density J(c) in YBa2Cu3O(7-delta) thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50 percent in J(c) (up to about 500 A/sq cm at T = 4.2 K) was obtained in films made from YBCO + 60 wt pct Ag powder, fabricated by the spin-on technique on (100) SrTiO3, which is correlated with improvements in structure. The resulting films are 10 microns thick, uniform, partially textured, and show good adherence. The critical temperature Tc is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  4. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D. (Institute of Micro- and Opto-electronics, Department of Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland (CH))

    1991-04-15

    The evidence is reported for enhancement of critical current density {ital J}{sub {ital c}} in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50% in {ital J}{sub {ital c}} (up to {similar to}500 A/cm{sup 2} at {ital T}=4.2 K) was obtained in films made from YBCO+60wt % Ag powder, fabricated by the spin-on technique on (100) SrTiO{sub 3}, which is correlated with improvements in structure. The resulting films are 10 {mu}m thick, uniform, partially textured, and show good adherence. The critical temperature {ital T}{sub {ital c}} is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  5. Thickness Dispersion of Surface Plasmon of Ag Nano-thin Films: Determination by Ellipsometry Iterated with Transmittance Method

    Science.gov (United States)

    Gong, Junbo; Dai, Rucheng; Wang, Zhongping; Zhang, Zengming

    2015-03-01

    Effective optical constants of Ag thin films are precisely determined with effective thickness simultaneously by using an ellipsometry iterated with transmittance method. Unlike the bulk optical constants in Palik's database the effective optical constants of ultrathin Ag films are found to strongly depend on the thickness. According to the optical data two branches of thickness dispersion of surface plasmon energy are derived and agreed with theoretical predication. The thickness dispersion of bulk plasmon is also observed. The influence of substrate on surface plasmon is verified for the first time by using ellipsometry. The thickness dependent effective energy loss function is thus obtained based on this optical method for Ag ultrathin films. This method is also applicable to other ultrathin films and can be used to establish an effective optical database for ultrathin films.

  6. Effect of strain on the critical current density of Bi-2223 thick films sandwiched between Ag sheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J.H. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Kong, Q.P. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Wang, S.X. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics); Han, H.M. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics)

    1994-08-16

    The tapes of (Bi, Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub x] (Bi-2223) thick film sandwiched between Ag sheets are known to have very high J[sub c]. In this note, the stress-strain behaviour and the strain dependence of critical current density of the Ag/Bi-2223/Ag tapes are investigated. The microstructure of superconducting thick films subjected to various amounts of deformation was examined with a scanning electron microscope (SEM). (orig.)

  7. Response of Ag Thick Film Microstripline due to Superstrate Strontium Substituted Bismuth Manganites

    Directory of Open Access Journals (Sweden)

    S.N. Mathad

    2014-06-01

    Full Text Available The purpose of this paper is to describe the use of strontium-substituted bismuth manganites bulk ceramic superstrate on Ag thick film microstripline, to modify its response and measure complex permittivity as a function of strontium. Bismuth strontium manganites (Bi1 − xSrxMnO3 have been synthesized by solid state sintering technique. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the Bi1 − xSrxMnO3 (0.20  x  0.50 overlay has been used to obtain the permittivity at microwave frequencies in X and Ku band range. Due to the overlay of Bismuth strontium manganites (BSM pellets a substantial increase in the effective dielectric constant was observed in X band more compared to Ku band. The in-touch overlay method provides ease loading and unloading. The perturbation obtained in the transmittance and reflectance of thick film microstripline due to the bismuth strontium manganites overlay has been used to obtain the permittivity.

  8. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...

  9. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yifang [Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)]. E-mail: yifangc@princeton.edu; Allameh, Seyed [Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Nankivil, Derek [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Sethiaraj, Steve [Department of Physics, University of Botswana, Private Bag UB 0022, Gaborone (Botswana); Otiti, Tom [Department of Physics, Makerere University, Kampala (Uganda); Soboyejo, Wole [Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2006-07-15

    This paper presents the results of nanoindentation experimental studies of the contact-induced deformation in Au and Ag thin films. The paper examines the effects of film thickness and substrate deformation restraint on the mechanical properties of electron beam (e-beam) deposited Au and Ag films. Following a brief description of film microstructure, surface topography, and contact-induced pile-up deformation, film mechanical properties (hardness and Young's modulus) were determined using nanoindentation techniques. The indentation size effects (ISE) observed in films with different thicknesses were explained using a mechanism-based strain gradient (MSG) theory. The intrinsic film yield strengths and hardnesses extracted from the MSG theory are shown to exhibit classical Hall-Petch dependence on the inverse square root of the average film grain size. Displacement bursts were also found to occur in Ag films at indentation load levels of 100 {mu}N. These were attributed to the initial onset of dislocation slip activity, when the shear stress exceeds the estimated theoretical shear strengths of the materials.

  10. Effect of Ag film thickness on the crystallization mechanism and photoluminescence properties of ZnO/Ag nanoflower arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micr/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.mse.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn, E-mail: changsj@mail.ncku.edu.tw [Institute of Microelectronics, Center for Micr/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Lin, Bo-Cheng [Department of Electronic Engineering National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hsieh, Wei-Kang [Institute of Microelectronics, Center for Micr/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [The Instrument Center, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2012-08-01

    Three dimensional (3D) zinc oxide (ZnO) nanoflowers have been successfully synthesized on oxidized silver clusters using a vapor transportation method on a 50 nm Ag layer. One dimensional (1D) ZnO nanorods can be fabricated on even the thinner Ag layers (2 nm and 10 nm). During the heating process, with a trace amount of oxygen present, the Ag layer (50 nm) melted and agglomerated forming silver oxide until the temperature reached the melting point of the zinc powder. Initially, the oxygen-rich phase ZnO formed and the zinc atoms diffused from the ZnO shell forming pistils and after an increase in time formed the zinc-rich ZnO nanoflowers. The ultraviolet (UV) emission (3.28 eV) from ZnO nanoflowers and nanorods revealed useful properties relating to the recombination of free excitons and the formation of zinc interstitials or zinc antisites as evidenced by the broad visible peak in the 50 nm Ag layer spectra.

  11. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  12. Percolation and electronic properties of superconducting (YBa sub 2 Cu sub 3 O sub 7 minus. delta. ) sub 1 minus x Ag sub x ceramics and thick films

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Pavuna, D.; Affronte, M.; Berger, H. (Swiss Federal Institute of Technology, Lausanne (Switzerland)); Tholence, J.L. (C.R.T.B.T., Grenoble (France))

    1989-09-01

    The authors present the percolation and electronic properties of (Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}){sub 1{minus}x}Ag{sub x} compounds in which silver fills the intergranular space without reducing {Tc}, which remains at 92 {plus minus} 1 K. Normal-state resistivity is decreased by up to two orders of magnitude when adding up to 50 wt.% Ag({Tc} = 87 K), and samples exhibit improved contact resistance, better mechanical properties, and resistance to water. They analyzed the percolation properties of these compounds and found that the critical indices t, s are in agreement with percolation theory, but p{sub c} is higher than expected, probably due to the effect of holes. The J{sub c} estimated from magnetization reaches 5 {center dot} 10{sup 4} A/cm{sup 2} (at T = 4.2 K, H = 0) and shows enhancement of 15-50% by addition of {approximately} 10 wt.% Ag, which exists also in samples having a higher J{sub c} due to preparation conditions (temperature). They present preliminary results on the 2D percolation problem in (Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}){sub 1{minus}x}Ag{sub x} samples, obtained by preparing Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thick films using the spin-on technique. Preliminary results show good adhesion but a reduced {Tc} of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films compared with bulk samples.

  13. Optical properties and structures of silver thin films deposited by magnetron sputtering with different thicknesses

    Institute of Scientific and Technical Information of China (English)

    Xilian Sun; Ruijin Hong; Haihong Hou; Zhengxiu Fan; Jianda Shao

    2006-01-01

    A series of thin Ag films with different thicknesses grown under identical conditions are analyzed by means of spectrophotometer. From these measurements the values of refractive index and extinction coefficient are calculated. The films are deposited onto BK7 glass substrates by direct current (DC) magnetron sputtering. It is found that the optical properties of the Ag films can be affected by films thickness.Below critical thickness of 17 nm, which is the thickness at which Ag films form continuous films, the optical properties and constants vary significantly with thickness increasing and then tend to a stable value up to about 40 nm. At the same time, X-ray diffraction measurement is carried out to examine the microstructure evolution of Ag films as a function of films thickness. The relation between optical properties and microstructure is discussed.

  14. Functional Ag porous films prepared by electrospinning

    Science.gov (United States)

    Dong, Guoping; Xiao, Xiudi; Liu, Xiaofeng; Qian, Bin; Liao, Yang; Wang, Chen; Chen, Danping; Qiu, Jianrong

    2009-06-01

    Face-centered cubic Ag porous films have been prepared directly from the heat treatment of AgNO 3-doped poly(vinyl alcohol) (PVA) electrospun nanofibers. Using Rhodamine B (RB) as the probing molecule, the surface-enhanced Raman scattering (SERS) effect of Ag porous films was demonstrated. The antibacterial activity of Ag porous films was also studied in this work. The propagation and biological activity of yeast cells were effectively inhibited by Ag porous films. These functional Ag porous films were expected to be applied in many fields, such as catalysis, diagnostics, sensors and antibacterial, etc.

  15. Pulsed laser deposition of nanostructured Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Tony [School of Physics, Trinity College, Dublin 2 (Ireland); Doggett, Brendan [School of Physics, Trinity College, Dublin 2 (Ireland); Lunney, James G. [School of Physics, Trinity College, Dublin 2 (Ireland)]. E-mail: jlunney@tcd.ie

    2006-04-30

    Ultra-thin (0.5-5 nm) films of Ag have been prepared by pulsed laser deposition in vacuum using a 26 ns KrF excimer laser at 1 J cm{sup -2}. The deposition was controlled using a Langmuir ion probe and a quartz crystal thickness monitor. Transmission electron microscopy showed that the films are not continuous, but are structured on nanometer size scales. Optical absorption spectra showed the expected surface plasmon resonance feature, which shifted to longer wavelength and increased in strength as the equivalent film thickness was increased. It is shown that Maxwell Garnett effective medium theory can be used to calculate the main features of optical absorption spectra.

  16. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  17. Underlayer Roughness Influence on the Properties of ag Thin Film

    Science.gov (United States)

    Zhao, Pei; Wang, Reng; Liu, Dingquan; Zhang, Fengshan; Su, Weitao; Xu, Xiaofeng

    The effects of the roughness of ZnS underlayer on the microstructure, optical, and electrical properties of nanometer Ag thin film have been investigated in this paper. Nanometer Ag thin films in glass/ZnS/7.5 nm Ag/30 nm ZnS stacks have been deposited and analyzed. In the stacks, the underlayers of ZnS have been sputtered with various thicknesses to generate various surface roughnesses. The X-ray diffraction (XRD) has been used to study the crystal structure of Ag films. The surface topography and the roughness of ZnS underlayer have been analyzed by atomic force microscopy. The sheet resistant will become larger as the increasing of the roughness. The optical constants can be derived by fitting the transmission and reflectance spectrum. From optical constants comparison of Ag films, with the surface of the stack becoming rougher, it was found that the refractive index will increase but the extinction coefficient will decrease.

  18. Photocatalytic degradation of methylene blue using undoped and Ag-doped TiO{sub 2} thin films deposited by a sol-gel process: Effect of the ageing time of the starting solution and the film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Santiago, A.; Mayen, S.A.; Torres-Delgado, G.; Castanedo-Perez, R. [Laboratorio de Investigacion en Materiales, CINVESTAV-IPN, U. Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Maldonado, A. [Departamento de Ingenieria. Electrica-SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Olvera, M. de la L, E-mail: molvera@cinvestav.mx [Departamento de Ingenieria, Electrica-SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2010-10-25

    Undoped and Ag-doped TiO{sub 2} thin films were deposited on glass substrates by the sol-gel method. A novel propose to prepare the solution is the use of titanium monohydrate oxyacetyl acetonate as the starting reagent. The effect of the ageing time of the starting solution as well as the number of coatings on the photocatalytic degradation of methylene blue (MB) was studied. The variation of the absorption spectra shows the degradation of MB dissolved in water, as a result of the reaction produced on the surface of the films, and promoted by ultraviolet irradiation during 5 h. The results show an optimum photocatalytic activity, in the order of 35%, presented in the 5-immersion Ag-doped TiO{sub 2} thin films, deposited from 7- and 14-day aged solutions. On the other hand, the Ag-doped TiO{sub 2} films deposited at different coatings show small changes in the photocatalytic activity. Morphological studies show the presence of silver particles on the film surface, due to the different number of coatings, affecting the photocatalytic performance.

  19. Grain size and film thickness effect on the thermal expansion coefficient of FCC metallic thin films.

    Science.gov (United States)

    Hwang, Seulgi; Kim, Youngman

    2011-08-01

    Thin films are used in wide range of applications in industry, such as solar cells and LEDs. When thin films are deposited on substrates, various stresses are generated due to the mechanical difference between the film and substrate. These stresses can cause defects, such as cracking and buckling. Therefore, knowledge of the mechanical properties is important for improving their reliability and stability. In this study, the thermal expansion coefficient of FCC metallic thin films, such as Ag and Cu, which have different grain sizes and thicknesses, were calculated using the thermal cycling method. As a result, thermal expansion coefficient increased with increasing grain size. However, the film thickness had no remarkable effect.

  20. Micro-droplets lubrication film thickness dynamics

    Science.gov (United States)

    Huerre, Axel; Theodoly, Olivier; Cantat, Isabelle; Leshansky, Alexander; Valignat, Marie-Pierre; Jullien, Marie-Caroline; MMN Team; LAI Team; IPR Team; Department of Chemical Engineering Team

    2014-11-01

    The motion of droplets or bubbles in confined geometries has been extensively studied; showing an intrinsic relationship between the lubrication film thickness and the droplet velocity. When capillary forces dominate, the lubrication film thickness evolves non linearly with the capillary number due to viscous dissipation between meniscus and wall. However, this film may become thin enough that intermolecular forces come into play and affect classical scalings. We report here the first experimental evidence of the disjoining pressure effect on confined droplets by measuring droplet lubrication film thicknesses in a microfluidic Hele-Shaw cell. We find and characterize two distinct dynamical regimes, dominated respectively by capillary and intermolecular forces. In the former case rolling boundary conditions at the interface are evidenced through film thickness dynamics, interface velocity measurement and film thickness profile.

  1. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  2. Optical and water repellant properties of Ag/SnO2 bilayer thin films

    Directory of Open Access Journals (Sweden)

    Ravipati Praveena

    2016-02-01

    Full Text Available The optical and water repellant properties of single layer and bilayer films of Ag and SnO2 deposited on glass substrates by thermal evaporation have been reported. Ag/SnO2 bilayers were deposited in two sequences wherein the deposition of SnO2 layer was followed by Ag deposition and vice versa. X-ray diffraction studies show that the Ag films crystallize in the FCC structure and SnO2 is amorphous, while atomic force microscopy images indicate the formation of large clusters of the order of 12 nm. The single layer Ag films exhibit localized surface plasmon resonance (LSPR that shifts from visible region to the infrared with increase in thickness from 5 to 12 nm. It is observed that, only the Ag films of thickness ≤ 8 nm exhibits LSPR peak whereas the critical thickness is 5 nm for Ag/SnO2 films. A blue shift is observed in the LSPR peak position when the SnO2 layer caps the Ag film. Whereas, the LSPR of Ag is suppressed significantly when the SnO2 layer is introduced between the glass and the Ag film and also when Ag and SnO2 were co-evaporated. Water repellant properties indicate that the pure Ag film has an average contact angle of 104o which decreases to 100o when SnO2 caps the Ag layer and 97o when Ag is deposited on top of the SnO2 buffer layer. Co-evaporated Ag-SnO2 films show a contact angle of 93o.

  3. Film thickness determination by grazing incidence diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, G. A.; Gerbasi, R. [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati

    1996-09-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.

  4. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  5. Embedment of nano-sized Ag layer into Ag-doped In2O3 films for use as highly transparent and conductive anode in organic solar cells

    Science.gov (United States)

    Cho, Da-Young; Na, Seok-In; Chung, Kwun-Bum; Kim, Han-Ki

    2015-08-01

    By inserting a nano-sized Ag layer between bottom Ag-doped In2O3 (AIO) and a top AIO layer, we were able to control the sheet resistance and optical transmittance of AIO films for application in organic solar cells (OSCs) as a transparent electrode. To optimize the AIO/Ag/AIO multilayer, we investigated the electrical, optical, structural and morphological properties of the AIO/Ag/AIO multilayer as a function of Ag interlayer thickness with a constant bottom and top AIO thickness of 35 nm. The optimized AIO/Ag/AIO multilayer showed a much lower resistivity of 3.988 × 10-5 Ω cm and a higher optical transmittance of 84.79% than the values (4.625 × 10-4 Ω cm and 78.36%) of the single AIO film, due to the high conductivity of the metallic Ag layer and the antireflection effect of the symmetric AIO/Ag/AIO structure. In addition, we investigated the performances of OSCs with AIO/Ag/AIO electrodes as a function of Ag interlayer thickness to determine the optimal Ag thickness to produce a high power conversion efficiency (PCE) of the OSCs. Based on the PCE of the OSCs, we correlated the performance of the OSCs with the Ag interlayer thickness in the AIO/Ag/AIO multilayer and suggested a possible mechanism to explain the dependency of PCE on Ag thickness in AIO/Ag/AIO multilayer electrodes.

  6. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Khim, T.-Y. [c-CCMR and Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Shin, M.; Lee, H., E-mail: easyscan@sookmyung.ac.kr, E-mail: jhp@postech.ac.kr [Department of Chemistry, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Park, B.-G. [Pohang Accelerator Laboratory (PAL), Pohang 790-784 (Korea, Republic of); Park, J.-H., E-mail: easyscan@sookmyung.ac.kr, E-mail: jhp@postech.ac.kr [c-CCMR and Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Division of Advanced Materials Science, POSTECH, Pohang 790-784 (Korea, Republic of); Max Plank POSTECH Center for Complex Phase Materials, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-06-21

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  7. Structural, morphological, electrical, and optical properties of silver thin films of varying thickness deposited on cupric oxide

    Science.gov (United States)

    Hajakbari, Fatemeh; Shafieinejad, Farzaneh

    2016-03-01

    In this investigation, silver (Ag) films of varying thickness (25-100 nm) were grown on cupric oxide (CuO) on silicon and quartz. The CuO preparation was carried out by the thermal oxidation annealing of copper (Cu) thin films deposited by DC magnetron sputtering. The physical properties of the prepared films were studied by different techniques. Rutherford backscattering spectroscopy (RBS) analysis indicated that the Ag film thickness was about 25-100 nm. X-ray diffraction (XRD) results showed that by increasing Ag thickness, the film crystallinity was improved. Also, atomic force microscopy (AFM) and scanning electron microscopy (SEM) results demonstrated that the surface morphology and the grain size were affected by the Ag film thickness. Furthermore, the electrical resistivity of films determined by four-point probe measurements versus the Ag film thickness was discussed. A reduction in the optical band gap energy of CuO is observed from 1.51 to 1.42 eV with an increase in Ag film thickness to 40 nm in Ag/CuO films.

  8. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    Science.gov (United States)

    Kumar, Duguta Suresh; Suri, Nikhil; Khanna, P. K.; Sharma, R. P.

    2016-03-01

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  9. Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film

    Science.gov (United States)

    Loka, Chadrasekhar; Lee, Kee-Sun

    2017-09-01

    The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.

  10. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit.

    Science.gov (United States)

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10(-2 ) Ω(-1) for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10(-5 ) Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses.

  11. Microstructures and magnetic properties of [SiO2/FePt]5/Ag thin films

    Institute of Scientific and Technical Information of China (English)

    FAN Jiu-ping; XU Xiao-hong; JIANG Feng-xian; TIAN Bao-qiang; WU Hai-shun

    2008-01-01

    [SiO2/FePt]5/Ag thin films were deposited by RF magnetron sputtering on the glass substrates and post annealing at 550 ℃for 30 min in vacuum. Vibrating sample magnetometer and X-ray diffraction analyser were applied to study the magnetic properties and microstructures of the films. The results show that without Ag underlayer [SiO2/FePt]5 films deposited onto the glass are FCC disordered; with the addition of Ag underlayer [SiO2/FePt]5/Ag films are changed into L10 and (111) mixed texture. The variation of the SiO2 nonmagnetic layer thickness in [SiO2/FePt]5/Ag films indicates that SiO2-doping plays an important role in improving the order parameter and the perpendicular magnetic anisotropy, and reducing the grain size and intergrain interactions. By controllingSiO2 thickness the highly perpendicular magnetic anisotropy can be obtained in the [SiO2 (0. 6nm)/FePt (3 nm)]5/Ag (50 nm) films and highly (001)-oriented films can be obtained in the [SiO2 (2 nm)/FePt (3 nm)]5/Ag (50 nm) films.

  12. Effect of microstructure on thermal conductivity of Cu, Ag thin films.

    Science.gov (United States)

    Ryu, Sang; Juhng, Woonam; Kim, Youngman

    2010-05-01

    Thin film type materials are widely used in modern industries, such as semiconductor devices, functional superconductors, machining tools, and so on. The thermal properties of material in semiconductor are very important factors for stable operation because the heat generated during device operation may increase clock frequency. Even though thermal properties of thin films may play a major role in assessing reliability of parts, the measurement methods of thin film thermal properties are generally known to be complex to devise. In this study, a temperature distribution method was applied for the measurement of thermal conductivity of Cu and Ag thin film on borosilicate glass substrate. Cu and Ag thin films were deposited on borosilicate glass using thermal evaporation processes. To measure the thermal conductivity changes according to the microstructure of metallic thin film, the processing variables for the Cu and Ag thin film deposition were changed. To minimize the effect of film thickness, the film thickness was fixed to the thickness of approximately 500 nm throughout experiments. The thermal conductivities of thin films were measured to be much lower than those of bulk materials. Thin film with larger grain size showed higher thermal conductivity probably due to the lower number density of grain boundary. Weidman-Franz law could be applied to thin films produced in this study. Thermal conductivity was also estimated from the resistivity of thin film and Lorenz number of bulk material.

  13. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    Science.gov (United States)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  14. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  15. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel; Le, Minh [Intermolecular, Inc., 3011 North First Street, San Jose, CA 95134 (United States)

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  16. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Directory of Open Access Journals (Sweden)

    Guowen Ding

    2015-11-01

    Full Text Available The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C, with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  17. Ferroelectric domain of epitaxial AgNbO3 thin film

    Science.gov (United States)

    Ahn, Yoonho; Seo, Jeongdae; Lee, Kwang Jo; Son, Jong Yeog

    2016-03-01

    We investigated ferroelectric properties of silver niobate (AgNbO3) thin film grown on Nb-doped SrTiO3 substrate by pulsed laser deposition. The AgNbO3 thin film exhibited room temperature ferroelectricity with a large remanent polarization of about 31 μC/cm2 (2Pr~62 μC/cm2) and fast switching behavior within 120 ns. Triangular grains of AgNbO3 thin film were observed by atomic force microscopy (AFM). The piezoelectric force microscopy (PFM) study revealed that the AgNbO3 thin film had mosaic-like ferroelectric domain structure. In comparison with PbTiO3 thin films, domain size of the AgNbO3 thin films was smaller than that of PbTiO3 thin films. Based on Landau, Lifshitz, and Kittel (LLK) scaling law of the domain size versus film thickness curves, it is inferred that AgNbO3 thin films have slightly lower domain wall energy than that of PbTiO3 thin films.

  18. Nano-Hydroxyapatite Thick Film Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India)

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  19. Polarization-sensitive photocurrent in the resistive Ag/Pd films

    Science.gov (United States)

    Saushin, A. S.; Zonov, R. G.; Mikheev, K. G.; Shamshetdinov, R. R.; Mikheev, G. M.

    2016-08-01

    We report on the observation of helicity dependent photocurrent of the 20 μm thick silver-palladium (Ag/Pd) films manufactured by the thick-film technology. The transverse photocurrent is observed at oblique incidence of laser radiation with different wavelengths in the spectral range of 266 - 2100 nm. At the wavelength range of 532 - 2100 nm the polarity of the transverse photocurrent is positive (negative) for the left- (right-) circular polarized beam. We show that action of high temperature on the films in vacuum results in the decrease of longitudinal photocurrent due to the reduction of PdO content. The photon drag effect is suggested to be the origin of the polarization-sensitive photocurrent in the Ag/Pd films. The obtained results show that the Ag/Pd resistive films may be of interest for polarization- sensitive measurements.

  20. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  1. Properties of conductive thick-film inks

    Science.gov (United States)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  2. Conduction Mechanisms in Thick Film Microcircuits

    Science.gov (United States)

    1975-12-01

    AREMCO 3100 Screen Printing Machine 53 3.11 Squeegee Design 55 3.12 Effect of Screen Printer Parameters on Filin Weight Deposited 59 3.13 Variation of...deviation of printing performance. This is discussed in greater detail sIfter the materials and machine are described. 3.5.2 Screening Material and...beyoni the range of monolithic technology can be satisfied by combining monolithic and thick film technologies. Design functions such as flexibility

  3. Flow fields in soap films: Relating viscosity and film thickness

    Science.gov (United States)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  4. Microstructure and optical properties of nano Ag-ITO films

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Nano Ag-ITO films with Ag volume fraction of 0.3%-1.0% were prepared by radio-frequency magnetron co-sputtering and analyzed by X-ray diffraction,scanning electron microscopy and ultraviolet-visible spectroscopy.Microstructure analysis shows that the films are composed of polycrystalline ITO matrix embedded with Ag nanoparticles with a mean size of 60-100 nm.Transmissivity spectra of Ag-ITO films indicate that the visible light transmissivity of the films decreases with increasing the Ag fraction.The transmissivity of the annealed films is higher than that of the as-deposited films.The volume 0.3% Ag-ITO films have the highest light reflectance.The annealed films exhibit lower light absorptance than as-deposited films.A surface plasmon resonance(SPR) peak of volume 0.3% Ag-ITO films is located around 510 nm.Compared with the annealed ITO film,the annealed volume 0.3% Ag-ITO film shows 10% higher reflectivity,while its transmittance is almost the same as that of the annealed ITO film,indicating its potential application in new-type transflective displays.

  5. Residual Stress Analysis in Thick Uranium Films

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, A M; Foreman, R J; Gallegos, G F

    2004-12-06

    Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.

  6. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  7. Study of lead free ferroelectrics using overlay technique on thick film microstrip ring resonator

    Directory of Open Access Journals (Sweden)

    Shridhar N. Mathad

    2016-03-01

    Full Text Available The lead free ferroelectrics, strontium barium niobates, were synthesized via the low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. The X band response (complex permittivity at very high frequencies of Ag thick film microstrip ring resonator perturbed with strontium barium niobates (SrxBa1-xNb2O6 in form of bulk and thick film was measured. A new approach for determination of complex permittivity (ε′ and ε′′ in the frequency range 8–12 GHz, using perturbation of Ag thick film microstrip ring resonator (MSRR, was applied for both bulk and thick film of strontium barium niobates (SrxBa1-xNb2O6. The microwave conductivity of the bulk and thick film lie in the range from 1.779 S/cm to 2.874 S/cm and 1.364 S/cm to 2.296 S/cm, respectively. The penetration depth of microwave in strontium barium niobates is also reported.

  8. Thickness Dependence of Resistivity and Optical Reflectance of ITO Films

    Institute of Scientific and Technical Information of China (English)

    GAO Mei-Zhen; JOB R; XUE De-Sheng; FAHRNER W R

    2008-01-01

    @@ Indium-tin-oxide (ITO) films deposited on crystalline silicon wafer and Coming glass are prepared by directcurrent magnetron sputtering method at room temperature with various thicknesses. The thickness dependences of structure, resistance and optical reflectance of ITO films are characterized. The results show that when the film thickness is less than 4Ohm, the resistivity and optical reflectance of the ITO tilm changes remarkably with thickness. The optoelectrical properties trend to stabilize when the thickness is over 55 nm. The GXRD result implies that the ITO film begins to crystallize if only the thickness is large enough.

  9. Determination of thin film refractive index and thickness by means of film phase thickness

    Science.gov (United States)

    Nenkov, Milen; Pencheva, Tamara

    2008-06-01

    A new approach for determination of refractive index dispersion n(λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38-0.78 μm and their n(λ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.

  10. Oriented Growth of PZT thick film embedded with PZT nanoparticles

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhong-xia; YUAN Jie; ZHAO Quan-liang; LU Ran; CAO Mao-sheng

    2009-01-01

    This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb(Zr0.52Ti0.48)O3,PZT) thick film embedded with PZT nanoparticles has been successfully fabricated on Pt/Cr/SiO2/Si substrate by using PT transition layer and PVP additive. The thick film possesses single-phase perovskite structure and perfectly (100) oriented. The (100) orientation degree of the PZT films strongly depended on annealing time and for the 4 μm-thick PZT film which was annealed at 700 ℃ for 5 min is the largest. The (100) orientation degree of the PZT thick film gradually strengthen along with the thickness of film decreasing. The 3 μm-thick PZT thick film which was annealed at 700 ℃ for 5 min has the strongest (100) orientation degree, which is 82. 3%.

  11. Alloy formation during the electrochemical growth of a Ag-Cd ultrathin film on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, M.C. del; Garcia, S.G. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina); Salinas, D.R., E-mail: dsalinas@uns.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina)

    2009-12-30

    The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag{sup +} or Cd{sup 2+} ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.

  12. Effect of Ag underlayer on microstructures and perpendicular magnetic properties of CoPt nanocomposite thin films.

    Science.gov (United States)

    Shen, C L; Kuo, P C; Li, Y S; Lin, G P; Huang, K T; Ou, S L; Chen, S C

    2011-12-01

    CoPt/Ag films were prepared by magnetron sputtering on glass substrates and subsequent annealing. The dependence of degree of ordering and magnetic properties on Ag film thickness and annealing conditions were investigated. It was found that the Ag underlayer played a dominant role in inducing the (001) texture of the CoPt film after annealing. CoPt films with a thickness about 20 nm and Ag underlayers with a thickness about 70 nm are easy to obtain a large degree of ordering and a perpendicular magnetic anisotropy after annealing at 700 degrees C for 30 min. CoPt/Ag films with out-of-plane coercivity (Hc (perpendicular)) in the range of 13.5-14.0 kOe and a out-of-plane squareness (S(perpendicular)) of 0.97 were obtained after annealing at 700 degrees C for 30 min. Ag underlayer is beneficial to enhance the Hc(perpendicular)and S(perpendicular) of CoPt film significantly. The degree of ordering and perpendicular magnetic properties of the CoPt films which deposited on Ag underlayer are larger than those of the single layer CoPt films.

  13. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    Science.gov (United States)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  14. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    Science.gov (United States)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  15. Thick film traps with an irregular film. Preparation and evaluation.

    Science.gov (United States)

    Kloskowski, Adam; Pettersson, Johan; Roeraade, Johan

    2004-05-07

    A new method for preparation of sorbent-based ultra-thick film traps for concentration of trace volatile components from gaseous matrices is described. The procedure is based on blowing a prepolymer (polydimethylsiloxane) through a capillary tube, forming an irregular film of stationary phase. Subsequently, the prepolymer is immobilized in a few seconds by heating to 200 degrees C. Evaluation of the performance of the new traps showed that the loss of efficiency, compared to regular smooth film traps is only on the order of 20-30%. In terms of breakthrough volume, this loss in performance is rather insignificant. The technology is extremely simple and allows a rapid and cheap production of a large number of ultra-thick film traps, even in non-specialized laboratories. The method can be applied to any type of cross-linkable stationary phase, thereby expanding the scope of sorbent-based trapping and preconcentration concept. Many applications are anticipated in trace and ultra-trace analysis in a wide range of fields, such as environmental chemistry, polymers, food and process analysis.

  16. Sputtered Ag thin films with modified morphologies: Influence on wetting property

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, P., E-mail: perrine.dutheil@univ-orleans.fr [GREMI, UMR 7344- Université D’Orléans, 14 rue d’Issoudun, BP 6744, Orléans 45067 (France); Thomann, A.L.; Lecas, T.; Brault, P. [GREMI, UMR 7344- Université D’Orléans, 14 rue d’Issoudun, BP 6744, Orléans 45067 (France); Vayer, M. [ICMN, UMR 7374- Université D’Orléans, 1b rue de la Férollerie, Orléans 45071 (France)

    2015-08-30

    Graphical abstract: - Highlights: • Ag thin films are deposited by DC magnetron sputtering on Si and W/Si layers. • The influence of the W underlayer morphology on Ag film growth is evidenced. • Variation of the Ag growth mode and roughness is investigated by SEM and AFM. • Wetting property is correlated to the roughness of Ag deposits on Si and W layers. - Abstract: Silver thin films with thickness ranging from 3 nm to 33 nm were sputter deposited onto silicon wafers and tungsten layers. Those W layers were previously synthesized in the same DC magnetron sputter deposition system with various experimental conditions (argon pressure, target to substrate distance) in order to stabilize different surface morphologies. SEM observations and AFM images showed that the growth mode of Ag films is similar on Si substrates and on the smoothest W layers, whereas it is modified for rough W layers made of sharp grains. The effect of the W layer morphology on Ag film growth was clearly evidenced when the deposition took place at high temperature. It is seen that performing the deposition onto substrates of various morphologies allows tailoring the wetting property of the Ag deposit.

  17. Measurement Method of the Thickness Uniformity for Polymer Films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.

  18. OBTAINING AND PROPERTIES OF AgInS2 FILMS

    Directory of Open Access Journals (Sweden)

    M. A. Abdullaev

    2016-01-01

    Full Text Available Aim. The aim is to obtain AgInS2 films and study their electrical and optical properties.Methods. The samples of thin AgInS2 films for measurement were obtained by the method of magnetron sputtering with direct current. The structure, phase and elemental composition were studied using DRON-2 X-ray diffractometer (СuKа - radiation and the microscope LEO-1450 with EDS attachment for X-ray microanalysis. The optical transmittance and absorption were examined using MDR-2 monochromator in the wavelength range of 400-800 nm with the Keitley electrometer and FD-10G; we applied the spectral resolution of ± 1 meV. The electrical conductivity, Hall effect was measured by the four-point probe method with indium ohmic contacts. Measurements were carried out in the temperature range of 77-400 K.Findings. We obtained indium disulfide and silver films with the thickness of up to 1 μm on quartz substrates by magnetron sputtering. It is shown that increasing the substrate temperature to about 450 0С allows to obtain single phase film with a chalcopyrite structure with a band gap of 1.88 eV and high absorption coefficient (>104см-1.Conclusions. The possibility of obtaining films in a wide range of the electrical resistance and variation of the electrical parameters at constant stoichiometry is of interest for efficient technologies of phototransduction.

  19. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  20. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  1. Integrated thick-film nanostructures based on spinel ceramics.

    Science.gov (United States)

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-03-26

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications.

  2. Integrated thick-film nanostructures based on spinel ceramics

    OpenAIRE

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for...

  3. Performance Comparison of Thin and Thick Film Microstrip Rejection Filters

    OpenAIRE

    Mandhare, M. M.; S.A. Gangal; M. S. Setty; Karekar, R. N.

    1988-01-01

    A performance comparison of microstripline circuits using thin and thick film techniques has been studied, in which a Microstrip rejection filter, in the X-band of microwaves, is used as test circuit. A thick film technique is capable of giving good adhesive films with comparable d.c. sheet resistivity, but other parameters such as open area (porosity), particle size, and edge definition are inferior to thin-film microstrip filters. Despite this drawback, the average value of transmission, tr...

  4. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films

    Institute of Scientific and Technical Information of China (English)

    Chatnapa Duangdee; Noppadon Tangpukdee; Srivicha Krudsood; Polrat Wilairatana

    2012-01-01

    Objective: To determine the frequency of malaria parasite detection from the buffy coat blood ilms by using capillary tube in falciparum malaria patients with negative conventional thick ilms. Methods: Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification.Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. Conclusions: The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  5. Shell Thickness-Dependent Strain Distributions of Confined Au/Ag and Ag/Au Core-Shell Nanoparticles

    OpenAIRE

    Feng Liu; Honghua Huang; Ying Zhang; Ting Yu; Cailei Yuan; Shuangli Ye

    2015-01-01

    The shell thickness-dependent strain distributions of the Au/Ag and Ag/Au core-shell nanoparticles embedded in Al2O3 matrix have been investigated by finite element method (FEM) calculations, respectively. The simulation results clearly indicate that there is a substantial strain applied on both the Au/Ag and Ag/Au core-shell nanoparticles by the Al2O3 matrix. For the Au/Ag nanoparticles, it can be found that the compressive strain existing in the shell is stronger than that on the center of ...

  6. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  7. Incommensurate growth of Co thin film on close-packed Ag(111) surface

    Science.gov (United States)

    Barman, Sukanta; Menon, Krishna Kumar S. R.

    2016-05-01

    Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ˜2ML). The evolution of the LEED pattern was studied with increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (˜13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.

  8. CVD elaboration of nanostructured TiO2-Ag thin films with efficient antibacterial properties

    OpenAIRE

    Mungkalasiri, Jitti; Bedel, Laurent; Emieux, Fabrice; Dore, Jeanne; Renaud, François N. R.; Sarantopoulos, Christos; Maury, Francis

    2010-01-01

    Nanostructured TiO2-Ag composite coatings are deposited by direct liquid injection metal-organic (DLI-MO) CVD at 683K in a one-step process. Silver pivalate (AgPiv) and titanium tetra-iso-propoxide (TTIP) are used as Ag and Ti molecular precursors, respectively. Metallic silver nanoparticles are co-deposited with anatase TiO2 on stainless steel, glass, and silicon wafers. The silver particles are uniformly embedded in the oxide matrix through the entire film thickness. The influence of the gr...

  9. Synthesis of Photochromic AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2012-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 solution, and a liquid-state urethane resin as starting materials. The obtained composite films showed a photochromic property. The rate of darkening of the composite film increased after mixing with CuCl2. The AgCl particle size in the film without heat treatment was 6–20 nm, and that of the heat-treated film was 25–80 nm; these results were confirmed using TEM observations. The fading rate of the film without heat treatment was higher than that of the heat-treated films.

  10. High quality transparent conductive Ag-based barium stannate multilayer flexible thin films.

    Science.gov (United States)

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2017-03-07

    Transparent conductive multilayer thin films of silver (Ag)-embedded barium stannate (BaSnO3) structures have been deposited onto flexible polycarbonate substrates by magnetron sputtering at room temperature to develop an indium free transparent flexible electrode. The effect of thicknesses of Ag mid-layer and barium stannate layers on optical and electrical properties were investigated, and the mechanisms of conduction and transmittance were discussed. The highest value of figure of merit is 25.5 × 10(-3) Ω(-1) for the BaSnO3/Ag/BaSnO3 multilayer flexible thin films with 9 nm thick silver mid-layer and 50 nm thick barium stannate layers, while the average optical transmittance in the visible range from 380 to 780 nm is above 87%, the resistivity is 9.66 × 10(-5) Ω · cm, and the sheet resistance is 9.89 Ω/sq. The change rate of resistivity is under 10% after repeated bending of the multilayer flexible thin films. These results indicate that Ag-based barium stannate multilayer flexible thin films can be used as transparent flexible electrodes in various flexible optoelectronic devices.

  11. Film thickness in grease lubricated slow rotating rolling bearings

    NARCIS (Netherlands)

    Morales-Espejel, G.E.; Lugt, Pieter Martin; Pasaribu, H.R.; Cen, H.

    2014-01-01

    Film thickness measurements in grease lubricated contacts are presented for different greases. The conditions used in the experiments are similar to the ones expected in fully-flooded slow rotating bearings. The results show that at very low speeds grease produces film thicknesses substantially thic

  12. Thickness dependence of vortex critical velocity in wide Nb films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, Gaia [CNR-INFM Regional Laboratory SuperMat, Via S. Allende, Baronissi, SA, I-84081 (Italy)], E-mail: grimaldi@sa.infn.it; Leo, Antonio; Nigro, Angela; Pace, Sandro; Cirillo, Carla; Attanasio, Carmine [CNR-INFM Regional Laboratory SuperMat, Via S. Allende, Baronissi, SA, I-84081 (Italy); Dipartimento di Fisica ' E.R. Caianiello' , Universita di Salerno, Via S. Allende, Baronissi, SA, I-84081 (Italy)

    2008-04-01

    Pulsed I-V measurements performed on wide Nb films of different thickness show the electronic instability, at high driving currents, predicted by Larkin and Ovchinnikov (LO). We find that the associated vortex critical velocity v* decreases with the film thickness, and its temperature and magnetic field dependences exhibit some discrepancies with respect to the LO theoretical results.

  13. Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters

    Science.gov (United States)

    Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Yi, Insook; Chung, Ilsub

    2014-07-01

    Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 μm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq-1) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq-1 and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.

  14. Ag films grown by remote plasma enhanced atomic layer deposition on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Gargouri, Hassan; Wandel, Klaus; Pinnow, Cay [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2016-01-15

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

  15. Alginate-magnesium aluminum silicate composite films: effect of film thickness on physical characteristics and permeability.

    Science.gov (United States)

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2008-01-04

    The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films.

  16. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting

    Science.gov (United States)

    Oh, Yoonseok; Lee, Myeongkyu

    2017-03-01

    In this study, we show that Ag thin films deposited on glass can be transformed into nanoparticles by laser-induced dewetting using a nanosecond-pulsed Nd:YAG laser. The film could be completely dewetted by a single pulse and the pulse energy density required for a 10 nm-thick Ag film was 86 mJ/cm2 at λ = 1064 nm. This made it possible to dewet a film area of ∼10 cm2 by a single pulse with energy of 850 mJ. The produced particles exhibited a monomodal size distribution and the mean particle size increased as the initial film thickness increased. Repeated exposure to pulses induced no noticeable change in the particle size distribution. The initial film thickness was the only factor that determined the mean particle size. The absorption spectra of dewetted films were well consistent with the surface plasma resonance behaviors of metal nanoparticles. This process provides a facile and scalable method of forming metal nanoparticle arrays for plasmonic and other applications.

  17. Film-thickness Error Analysis of Optical Disk Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yang; GU Donghong; GAN Fuxi

    2001-01-01

    It is difficult to exactly control the film thickness of optical disk multilayer in the actual coating process. The thickness error becomes a main factor affecting the optical characters of the film system. The thickness error′s sensitivity factor of dielectric optical multilayer is derived from the optical matrix in this paper. The effect of the thickness error on the reflectivity or reflectivity contrast of the optical disk multilayer is analyzed with a numerical calculation. The sensitivities to thickness error for different layers or in different film-thickness ranges are compared and discussed. A sketchy method defining allowable thickness error is given. Some experimental results verify the applicability of our theoretical analysis.

  18. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  19. Thick antiwear films in elastohydrodynamic contacts. I. Film growth in rolling/sliding EHD contacts

    Energy Technology Data Exchange (ETDEWEB)

    Lacey, I.N.; Kelsall, G.H.; Spikes, H.A.; Macpherson, P.B.

    1986-07-01

    The formation and characteristics of thick films in elastohydrodynamic (EHD) contacts using pure phosphonate additives are described. Several alkyl and aryl group, pure phosphonate additives were added to rolling/sliding EHD contacts; the performance of the phosphonate additives is evaluated. It is observed that all phosphonates formed thick films from base oil solutions in rolling EHD contacts; the films have a thickness greater than a half a micron, withstand up to 10 percent sliding, and are formed in the presence of other additives. The effects of phosphonate group and temperature on the rate of film formation are investigated. The chemical properties of the viscous reaction product and the thick films formed by the phosphonates are analyzed. The reaction product and films consist of an iron-phosphate-monoester polymer with the phosphate acting as a bridge between iron(III) species. The use of the thick antiwear films to increase specific film thickness in EHD lubrication is discussed. 31 references.

  20. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, Ru.G., E-mail: rumen_nikov24@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Hirsch, D.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), 15 Permoserstrasse, D-04318 Leipzig (Germany); Grochowska, K.; Sliwinski, G. [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland)

    2016-06-30

    Highlights: • Laser processing of Ag films produces nanoparticles with narrow size distribution. • The parameters of the nanoparticle array depend on the environment at annealing. • Raman analysis indicates that the fabricated structures can be used in SERS. - Abstract: The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  1. Advantages of PZT thick film for MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lou-Moller, R.; Hansen, K.;

    2010-01-01

    For all MEMS devices a high coupling between the mechanical and electrical domain is desired. Figures of merit describing the coupling are important for comparing different piezoelectric materials. The existing figures of merit are discussed and a new figure of merit is introduced for a fair...... comparison of piezoelectric thin and thick films based MEMS devices, as cantilevers, beams, bridges and membranes. Simple analytical modeling is used to define the new figure of merit. The relevant figure of merits is compared for the piezoelectric material of interest for MEMS applications: ZnO, AIN, PZT...... thin film and PZT thick film. It is shown that MEMS sensors with the PZT thick film TF2100 from InSensor A/S have potential for significant higher voltage sensitivities compared to PZT thin film base MEMS sensors when the total thickness of the MEMS cantilever, beam, bridge or membrane is high...

  2. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  3. Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications

    Energy Technology Data Exchange (ETDEWEB)

    Leftheriotis, G.; Yianoulis, P.; Patrikios, D. [Patras Univ. (Greece). Dept. of Physics

    1997-08-28

    Dielectric/Metal/Dielectric (D/M/D) thin films deposited on glass offer the possibility of significant energy savings in buildings and can find other applications as components of advanced materials design. In an effort to reduce the complexity and cost of production of D/M/D films, physical vapour deposition was used for the laboratory manufacture of ZnS/Ag/ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Ag was used because of its low absorption in the visible spectrum. The films produced were of good quality, with luminous transmittance as high as 83.9%, IR reflectance above 90% and total hemispherical emittance equal to 6%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilise the ZnS/Ag/ZnS film, improve its adherence on glass and increase the film thermal resistance up to 240 C. A multipurpose computational optics tool based on the characteristic matrix formulation has been developed for the design and optimisation of the D/M/D films: The optimum thickness of each dielectric layer required to maximise the film luminous transmittance for a given metal layer thickness was established. The optical properties of the films designed were also predicted and the most suitable materials were identified. The optical properties of the films produced were measured and were found to compare favourably with the theoretical predictions. (orig.) 29 refs.

  4. Morphology and N2 Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes

    Directory of Open Access Journals (Sweden)

    Ekain Fernandez

    2016-02-01

    Full Text Available The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM, and the results indicate an increase of the grain size from 120 to 250–270 nm and film surface roughness from 4–5 to 10–12 nm when increasing the temperature from around 360–510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5–2-µm thick films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO2 3-nm top layer supports (smallest pore size among all tested present high N2 permeance in the order of 10−6 mol·m−2·s−1·Pa−1 at room temperature.

  5. Emission enhancement in indium zinc oxide(IZO)/Ag/IZO sandwiched structure due to surface plasmon resonance of thin Ag film

    Science.gov (United States)

    Kiba, Takayuki; Yanome, Kazuki; Kawamura, Midori; Abe, Yoshio; Kim, Kyung Ho; Takayama, Junichi; Murayama, Akihiro

    2016-12-01

    We report on a photoluminescence (PL) enhancement in IZO/Ag/IZO sandwiched structure via surface plasmonic effects of 14 nm-thick Ag film. In the presence of Ag thin film, the 2-8-fold enhancement was observed for the broad PL around 2.34 eV, which can be originated from defect states in amorphous IZO film. The results of time-resolved PL spectra suggested that the increase in radiative recombination rate, and the maximum Purcell factor of 19 was estimated from the analysis of the PL decay profiles. The comparison between the results of static- and dynamic-PL measurement suggests that the non-radiative process after the excitation of the surface plasmon of the silver film also affects the total efficiency of the emission enhancement.

  6. Surface plasmon enhanced photoluminescence in amorphous silicon carbide films by adjusting Ag island film sizes

    Institute of Scientific and Technical Information of China (English)

    Yu Wei; Wang Xin-Zhan; Dai Wan-Lei; Lu Wan-Bing; Liu Yu-Mei; Fu Guang-Sheng

    2013-01-01

    Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (α-SiC∶H) films,and the influences of Ag island films on the optical properties of the α-SiC∶H films are investigated.Atomic force microscope images show that Ag nanoislands are formed after Ag coating,and the size of the Ag islands increases with increasing Ag deposition time.The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained,and the resonance peak shifts toward longer wavelength with increasing Ag island size.The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands,and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min.Analyses show that the influence of surface plasmons on the PL of α-SiC:H is determined by the competition between the scattering and absorption of Ag islands,and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.

  7. Refractive index of nanoscale thickness films measured by Brewster refractometry

    CERN Document Server

    Tikhonov, E A; Malyukin, Yu V

    2015-01-01

    It is shown that reflective laser refractometery at Brewster angle can be usefull for precision measurements of refractive indexes (RI) in the transparency band of various films of nanoscale thickness. The RI measurements of nanoscale porous film on the basis of gadolinium orthosilicate and quartz have been carried out as first experience. It is shown that surface light scattering in such films that is connected with clustering of nanoscale pores can decrease the accuracy of the RI measurements at Brewster angle. Estimated physical dependence RI stipulated by the film thickness reduction (3D-2D transition) in the range of (20-160)nm has not been not detected.

  8. Liquid film thickness measurement by two-line TDLAS

    Science.gov (United States)

    Yang, Huinan; Chen, Jun; Cai, Xiaoshu; Greszik, Daniel; Dreier, Thomas; Schulz, Christof

    2014-04-01

    A fiber-based two-line tunable diode-laser absorption sensor with two near-infrared (NIR) distributed-feedback (DFB) diode lasers at ˜1.4 μm was used for non-intrusive time-resolved liquid water film thickness measurement. When probing the liquid film at two different wavelengths with significantly different absorption cross-sections, the additional signal losses due to surface fowling, reflection and beam steering can be eliminated. In this work, the evaporation process of a liquid film on transparent quartz plate was tracked and large fluctuations of film thickness were found at the end of the evaporation.

  9. Liquid film thickness measurement by two-line TDLAS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huinan [School of Energy and Power Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China and IVG, University of Duisburg-Essen, 47057, Duisburg (Germany); Chen, Jun; Cai, Xiaoshu [School of Energy and Power Engineering, University of Shanghai for Science and Technology, 200093, Shanghai (China); Greszik, Daniel; Dreier, Thomas; Schulz, Christof [IVG, University of Duisburg-Essen, 47057, Duisburg (Germany)

    2014-04-11

    A fiber-based two-line tunable diode-laser absorption sensor with two near-infrared (NIR) distributed-feedback (DFB) diode lasers at ∼1.4 μm was used for non-intrusive time-resolved liquid water film thickness measurement. When probing the liquid film at two different wavelengths with significantly different absorption cross-sections, the additional signal losses due to surface fowling, reflection and beam steering can be eliminated. In this work, the evaporation process of a liquid film on transparent quartz plate was tracked and large fluctuations of film thickness were found at the end of the evaporation.

  10. Self-assembled film thickness determination by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Dejeu, J. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)], E-mail: jerome.dejeu@univ-fcomte.fr; Salut, R. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Spajer, M. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Membrey, F.; Foissy, A. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Charraut, D. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)

    2008-06-30

    The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers)

  11. Tailoring the structural and optical properties of TiN thin films by Ag ion implantation

    Science.gov (United States)

    Popović, M.; Novaković, M.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Titanium nitride (TiN) thin films thickness of ∼260 nm prepared by dc reactive sputtering were irradiated with 200 keV silver (Ag) ions to the fluences ranging from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. After implantation TiN layers were annealed 2 h at 700 °C in a vacuum. Ion irradiation-induced microstructural changes were examined by using Rutherford backscattering spectrometry, X-ray diffraction and transmission electron microscopy, while the surface topography was observed using atomic force microscopy. Spectroscopic ellipsometry was employed to get insights on the optical and electronic properties of TiN films with respect to their microstructure. The results showed that the irradiations lead to deformation of the lattice, increasing disorder and formation of new Ag phase. The optical results demonstrate the contribution of surface plasmon resonace (SPR) of Ag particles. SPR position shifted in the range of 354.3-476.9 nm when Ag ion fluence varied from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. Shift in peak wavelength shows dependence on Ag particles concentration, suggesting that interaction between Ag particles dominate the surface plasmon resonance effect. Presence of Ag as second metal in the layer leads to overall decrease of optical resistivity of TiN.

  12. Effect of annealing on the optical properties of Ag 33Sb 31Se 36 thin films

    Science.gov (United States)

    El-Wahabb, E. Abd; Bekheet, A. E.

    2001-03-01

    Ag 33Sb 31Se 36 thin films were prepared by thermal evaporation technique on glass substrates. X-ray diffraction analysis for the as-deposited films showed that they have amorphous structure. On annealing at 200°C films have a polycrystalline structure. The optical constants n and k of the as-deposited and annealed films have been calculated from optical transmittance and reflectance data in the wavelength range 400-1500 nm using Murmann's equations. Both n and k are practically independent on the film thickness in the range 182-478 nm. Analysis of the refractive index n yields a low frequency dielectric constant. The optical transitions are found to be allowed indirect for the as-deposited and annealed films, and the corresponding energy gaps increase with increasing annealing temperature.

  13. Structural, optical and electronic properties of Ag-TiO2 nanocomposite thin film

    Science.gov (United States)

    Sharma, Himanshu; Singhal, R.; Siva Kumar, V. V.; Asokan, K.

    2016-12-01

    Nanocomposite thin films of Ag nanoparticles in TiO2 matrices were synthesised by RF magnetron co-sputtering and characterised by X-ray diffraction (XRD), Rutherford back scattering (RBS) spectrometry, UV-Vis, high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The composition of Ag was varied from 0 to 45 at.%. The thickness and the concentrations of Ag in the nanocomposite thin film were revealed by RBS. XRD analysis confirmed that the TiO2 matrix is in anatase phase and shows change in phase with Ag concentration. The UV-visible absorption spectroscopy revealed low-intense and broad surface plasmon resonance (SPR) peak at 500 nm for the thin film with 33 at.% Ag content that was red-shifted to 525 nm with increasing its intensity for 45 at.% of Ag. The red shift in SPR peak understood by Maxwell-Garnett theory and explained further nonexistence of SPR by interparticle separation from HR-TEM images and crystallinity. This HR-TEM image analysis confirmed the formation of Ag nanoparticles, and average radii were 5, 12, 15 nm. The Tauc plot reveals reduction in band gap from 3.05 to 2.25 eV with increase in Ag content. Above results are understood based on the XPS analysis which shows a strong interaction between the Ag nanoparticle and TiO2. This decrease in band gap was advantageous to enhance the properties like photocatalytic and bioactivities through SPR.

  14. Development of solid state thick film zirconia oxygen gas sensors.

    OpenAIRE

    Ioannou, Andreas Stylianou

    1992-01-01

    Aspects relating to and including the development of thick film amperometric zirconia oxygen sensors were investigated. These devices, which were operated in the range 550-950°C, had a laminated structure in which a cathode, an electrolyte and an anode were printed, in that order, onto a planar alumina substrate. The anode and electrolyte were porous and during sensor Operation also acted as a diffusion barrier, restricting the rate of oxygen diffusion to the cathode. A thick film platinum he...

  15. Electrophoretic deposition and constrained sintering of strontium titanate thick films

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Luís; Vilarinho, Paula M., E-mail: paula.vilarinho@ua.pt; Senos, Ana M.R.

    2015-01-15

    Thick films of functional oxides are currently substituting counterparts bulk ceramics, as in the case of low loss dielectrics. For SrTiO{sub 3} (ST) based compositions it is demonstrated that electrophoretic deposition (EPD), using acetone as a suspension media with iodine addition, is a suitable technology to fabricate 12 μm thick films. The microstructural analysis of the films sintered at 1500 °C shows that highly densified microstructures can be obtained and, by slightly varying the Sr/Ti stoichiometry in the powder composition, increased densification and grain size and enlargement of the distribution with decreasing Sr/Ti ratio can be observed. In spite of the high densification of the films, it is also demonstrated that due to the constraint imposed by the substrate a smaller grain size is observed in thick films as compared to equivalent bulk ceramics. In addition, a preferential vertical pore orientation is observed in ST thick films. These results may have broad implications if one considers that the dielectric losses and dielectric tunability is affected by pore orientation, since it affects the electric field distribution. - Highlights: • Nonstoichiometry effect on microstructure of constrained sintered thick films and bulk is similar. • Increased densification and grain size and enlargement of distribution with decreasing Sr/Ti ratio. • Independent of Sr/Ti ratio smaller grain size for thick films compared to ceramics. • Preferential vertical pore orientation for constrained sintering of thick films. • Anisotropic porosity as tailoring factor to engineer permittivity and tunability.

  16. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  17. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  18. Film thickness effect on the performance of small molecular solar cell

    Institute of Scientific and Technical Information of China (English)

    LIN Hui; YU Jun-sheng; HUANG Jiang; JIANG Ya-dong

    2008-01-01

    An efficient organic photovoltaic (OPV) cell with an indium-tin-oxide/CuPc/C60/Ag structure has been investigated by changing the film thickness of organic layers. A high open-circuit voltage (Voc) of 0.5 V, a short-circuit current density (JSC) of 5.81 mA/cm2, and a high power conversion efficiency (ηp) of 1.2% were achieved at an optimum film thickness. The results demonstrate that material thickness is an important factor to cell optimization, especially for maximizing the absorption rate as well as reducing the cell resistance. Experimental results also indicate that the power conversion efficiency increases from 1.2% to 1.54% as a BCP exciton blocking layer of 10 nm is introduced.

  19. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties.

    Science.gov (United States)

    Huang, Yi-Hsiu; Chen, Mark Hung-Chih; Lee, Bing-Heng; Hsieh, Kuo-Huang; Tu, Yuan-Kun; Lin, Jiang-Jen; Chang, Chih-Hao

    2014-11-26

    A tricomponent nanohybrid dispersion in water comprising silver nanoparticles (AgNP), nanometer-thick silicate platelets (NSP), and water-based polyurethane (PU) was developed for surface coating on orthopedic metal plates. The previously developed AgNP-on-NSP nanohybrid was homogeneously blended into a selected waterborne PU dispersion at varied weight ratios from 1/0.1 to 1/10 (w/w). PU was used to adhere the Ag nanohybrid to the metal surface. The resultant dispersions were analyzed and found to contain AgNP 2-18 nm in diameter and characterized by using UV absorption and TEM micrograph. The subsequent coating of AgNP/NSP-PU dispersion generated a film of 1.5 μm thickness on the metal plate surface, further characterized by an energy dispersive spectroscope (EDS) to show the homogeneous distribution of Ag, Si, and C elements on the metal plates. The surface antimicrobial efficacy was proven for the coating composition of AgNP/NSP to PU ranging from 1/1 to 1/5 by weight ratio but irrelevant to the thickness of the coated materials. The metal plate coated with the high Ag content at 1/1 (w/w) ratio was shown to have very low cytotoxicity toward the contacted mammal fibroblasts. Overall, the optimized tricomponent Ag/silicate/PU in water dispersion from 1/2 to 1/3 (w/w) could generate a stable film on a metal surface exhibiting both antimicrobial and biocompatible properties. The facile coating technique of the AgNP/NSP in waterborne PU is proven to be viable for fabricating infection- and cytotoxicity-free medical devices.

  20. Effects of Ru and Ag cap layers on microstructure and magnetic properties of FePt ultrathin films.

    Science.gov (United States)

    Liu, Mingfeng; Jin, Tianli; Hao, Liang; Cao, Jiangwei; Wang, Ying; Wu, Dongping; Bai, Jianmin; Wei, Fulin

    2015-01-01

    The effects of Ru and Ag cap layers on the microstructure and magnetic properties of the FePt ultrathin films have been investigated. The results indicate that i) The Ag cap layer segregates from the FePt/Ag bilayer, lowers the FePt ordering temperature, promotes the FePt thin films to form island structure, and enhances the coercivity; ii) The Ru cap layer increases the FePt ordering temperature, helps to maintain smooth continuous structure film, and restrains the FePt (001) orientation and perpendicular magnetic anisotropy (PMA). The effects become more pronounced for the 3-nm-thick FePt thin films. The effects can be mainly attributed to the different melting point and thermal expansion stress between the cap layer and FePt thin films.

  1. Effects of Ru and Ag cap layers on microstructure and magnetic properties of FePt ultrathin films

    Science.gov (United States)

    Liu, Mingfeng; Jin, Tianli; Hao, Liang; Cao, Jiangwei; Wang, Ying; Wu, Dongping; Bai, Jianmin; Wei, Fulin

    2015-04-01

    The effects of Ru and Ag cap layers on the microstructure and magnetic properties of the FePt ultrathin films have been investigated. The results indicate that i) The Ag cap layer segregates from the FePt/Ag bilayer, lowers the FePt ordering temperature, promotes the FePt thin films to form island structure, and enhances the coercivity; ii) The Ru cap layer increases the FePt ordering temperature, helps to maintain smooth continuous structure film, and restrains the FePt (001) orientation and perpendicular magnetic anisotropy (PMA). The effects become more pronounced for the 3-nm-thick FePt thin films. The effects can be mainly attributed to the different melting point and thermal expansion stress between the cap layer and FePt thin films.

  2. Sputtering of Thick Deuterium Films by KeV Electrons

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Svendsen, Winnie Edith; Schou, Jørgen;

    1994-01-01

    Sputtering of thick films of solid deuterium up to several μm by keV electrons is reported for the first time. The sputtering yield increases within a narrow range of thicknesses around 1.6 μm by about 2 orders of magnitude for 1.5 keV electrons. A similar behavior has not been observed for ion...

  3. TRIBOLOGICAL PROPERTIES OF CrAgN THIN FILMS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2013-04-01

    Full Text Available CrN and CrAgN thin films were magnetron sputtered onto the substrate made from Vanadis 6 cold work tool steel. The films were examined on tribological properties using a high temperature Pin-on-disc tribometer. Obtained results show that there is almost no effect of Ag addition on the friction coefficient when tested at a room temperature against alumina. The testing against the same counterpart at higher temperature gave positive effect of the silver addition on the friction coefficient. The testing against 100Cr6 ball bearing steel gave higher friction coefficient than that against alumina while the testing against CuSn6-bronze led to much lower μ. When tested at a room temperature, the wear performance of the films was positively affected only in the case of the CrAg3N film developed at 500 °C. On the other hand, addition of 3 wt% Ag into the CrN increased the wear performance at elevated temperatures while the addition of 15 wt% Ag has made the film too soft and sensitive to wear.

  4. Tribological properties of CrAgN thin films

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2013-02-01

    Full Text Available CrN and CrAgN thin films were magnetron sputtered onto the substrate made from Vanadis 6 cold work tool steel. The films were examined on tribological properties using a high temperature Pin-on-disc tribometer. Obtained results show that there is almost no effect of Ag addition on the friction coefficient when tested at a room temperature against alumina. The testing against the same counterpart at higher temperature gave positive effect of the silver addition on the m. The testing against 100Cr6 ball bearing steel gave higher friction coefficient than that against alumina while the testing against CuSn6-bronze led to much lower m. When tested at a room temperature, the wear performance of the films was positively affected only in the case of the CrAg3N film developed at 500 oC. On the other hand, addition of 3 wt% Ag into the CrN increased the wear performance at elevated temperatures while the addition of 15 wt% Ag has made the film too soft and sensitive to wear.

  5. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    Directory of Open Access Journals (Sweden)

    Kun-Neng Chen

    2017-02-01

    Full Text Available We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□ and high optical transmittance (88.1% at room temperature without postannealing processing on the deposited thin films.

  6. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    Science.gov (United States)

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-01-01

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586

  7. On the optical properties of wedge-shaped thin films of Ag-photodoped As 30S 70 glass

    Science.gov (United States)

    Márquez, E.; Ramirez-Malo, J. B.; Fernández-Peña, J.; Jiménez-Garay, R.; Ewen, P. J. S.; Owen, A. E.

    1993-07-01

    Thin films of a-As 30S 70 prepared by thermal evaporation were photodoped with Ag. The optical transmission was measured over the 0.3 to 2.0 μm spectral region in order to derive the refractive index and absorption coefficient of these Ag-photodoped chalcogenide films. Furthermore, the analytical expressions proposed by Swanepoel, enabling the calculation of the optical constants of a thin film with non-uniform thickness, have successfully been applied. In addition, thickness measurements made by a surface-profiling stylus were also carried out to cross-check the results corresponding to the envelope method. On the other hand, the dispersion of n was discussed in terms of the single-oscillator Wemple and DiDomencio model. Finally, the value of the optical band gap decreased from 2.47 eV in the case of the undoped films down to 1.91 eV in the almost saturated Ag-photodoped films. It is plausible that the decrease in Eoptg by the incorporation of Ag arises from the smaller binding energy of Ag-S and As-As bonds compared to that of As-S bonds.

  8. Atomic scale analysis of phase formation and diffusion kinetics in Ag/Al multilayer thin films

    Science.gov (United States)

    Aboulfadl, Hisham; Gallino, Isabella; Busch, Ralf; Mücklich, Frank

    2016-11-01

    Thin films generally exhibit unusual kinetics leading to chemical reactions far from equilibrium conditions. Binary metallic multilayer thin films with miscible elements show some similar behaviors with respect to interdiffusion and phase formation mechanisms. Interfacial density, lattice defects, internal stresses, layer morphologies and deposition conditions strongly control the mass transport between the individual layers. In the present work, Ag/Al multilayer thin films are used as a simple model system, in which the effects of the sputtering power and the bilayer period thickness on the interdiffusion and film reactions are investigated. Multilayers deposited by DC magnetron sputtering undergo calorimetric and microstructural analyses. In particular, atom probe tomography is extensively used to provide quantitative information on concentration gradients, grain boundary segregations, and reaction mechanisms. The magnitude of interdiffusion was found to be inversely proportional to the period thickness for the films deposited under the same conditions, and was reduced using low sputtering power. Both the local segregation at grain boundaries as well as pronounced non-equilibrium supersaturation effects play crucial roles during the early stages of the film reactions. For multilayers with small periods of 10 nm supersaturation of the Al layers with Ag precedes the polymorphic nucleation and growth of the hcp γ-Ag2Al phase. In larger periods the γ phase formation is triggered at junctions between grain boundaries and layers interfaces, where the pathway to heterogeneous nucleation is local supersaturation. Other Ag-rich phases also form as intermediate phases due to asymmetric diffusion rates of parent phases in the γ phase during annealing.

  9. Electronic transport in heavily doped Ag/n-Si composite films

    Directory of Open Access Journals (Sweden)

    Clayton W. Bates Jr.

    2013-10-01

    Full Text Available Hall measurements characterized Ag/n-Si composite films 1 micron thick produced by magnetron co-sputtering onto high resistivity Si (111 substrates at 550°C. The targets were Ag and n-type Si doped with 3 × 1019/cm3 of antimony. Films were prepared with 13, 16 and 22 at. % Ag and measured over a temperature range 77–500°K. Conduction takes place at low temperatures by variable rang hopping in localized states at the Fermi level and by thermal activation over grain boundaries at higher temperatures. The Log Resistivity vs 1/kT curves for the three Ag concentrations vary in a similar manner, but decrease in magnitude with increasing Ag due to the smaller number of grain boundaries between Ag nanoparticles occurring with increasing Ag concentration. At low temperatures Hall mobilities are essentially independent of temperature as the carrier densities for the three Ag concentrations are constant from 77 to slightly under 300°K with resistivities varying by small amounts. The mobilities at all Ag concentrations increase with temperature and approach each other as the effects of grain boundaries become less important. This work presents for the first time the effects of metal particles embedded in a semiconductor on the transport properties of carriers in the semiconductor. Though these effects are for a given average particle size most of the results are expected to hold over a range of particle sizes. Free electrons produced in films containing 13 and 16 at. % Ag result in concentrations of 1.5 × 1019/cm3, one half the antimony doping, while those with 22 at. % Ag, the carrier concentrations are three orders of magnitude higher. These constant carrier concentrations are due to the metal-insulator transition that occurs in doped crystalline and polycrystalline silicon for carrier densities nc >3.9 × 1018/cm3. The three orders of magnitude higher carrier concentration produced in films with 22 at. % Ag is argued to be due to doping of the Si

  10. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  11. Photodegradation properties and optics of Ag/TiO{sub 2} films; Propiedades de fotodegradacion y opticas de peliculas Ag/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Valenzuela Z, M. A., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-10-15

    In the thin semiconductor films of Ag/TiO{sub 2} the topographic properties were recorded by atomic force microscopy and the main parameters of roughness were determined; the optical properties were also recorded when determining their transmittance degree, their refractive indexes, their thickness and the bandwidth of the semiconductor Eg, both for pure TiO{sub 2} films and the modified Ag/TiO{sub 2} films with various layers of the Ag catalyst. The Ag/TiO{sub 2} films that were grown by sol-gel and repeated immersion, chemical technique that has been used in the development of thin film technology, were carried out in photo catalysis, when are used in photo degradation of methyl orange at an aqueous concentration of 14 ppm, once they are characterized with several techniques required to be able to explain the possible photo catalytic reactions at the solid-aqueous interface, when irradiated with UV; with the possible application in water treatment. The photoluminescence spectra of the prepared Ag/TiO{sub 2} samples are reported, which resulted in a green emission, characteristic of the visible, in addition to emissions in the UV range. (Author)

  12. Effect of Ag nanostructures and annealing process on the localized surface plasmon resonance properties of Ag-based AZO films

    Science.gov (United States)

    Jin, Jing; Hui, Chaoxian; Liu, Can; Shi, Weimin

    2017-08-01

    Ag nanoparticles were obtained in Ag/AZO and AZO/Ag/AZO films by magnetron sputtering method at room temperature with different deposition time. The morphology of Ag nanoparticles is strongly affected by the particle size, shape and distribution as well as annealing temperatures, which determine the optical response of films. The high quality of AZO film with better crystallinity can enhance the optical transmittance and a good coverage by AZO as top layer on Ag nanoparticles can also enhance the surface plasmon resonance (SPR) absorption of Ag in long wavelengths. The mechanisms involved in shifts and broadening of SPR peaks have been explained detailedly. The effect of annealing process on SPR of Ag and photoelectric properties of AZO/Ag/AZO films can be also discussed. It is shown that the SPR peak of 664 nm only appears in AZO/Ag (5 s)/AZO film and no SPR peaks are found in annealed AZO/Ag/AZO films. The AZO/Ag (20 s)/AZO film annealed at 300 °C shows a great figure of merit (F_{{TC}}) of 4.8 × 10-2 Ω-1 because of high visible optical average transmittance of 85% and low sheet resistance (R_{{S}}) of 4.1 Ω/sq. The overall results reveal that annealing process can improve the electrical property of film and may not be able to promote the SPR of Ag nanoparticles, especially when AZO top layer is added. The introduction of Ag nanoparticles in AZO/Ag/AZO films should be very effective for improving the SPR or photoelectric properties of films depending on deposition conditions and annealing process.

  13. Determination of Solid State Solubility of the Components in the Ag-Ge Film System

    Directory of Open Access Journals (Sweden)

    A.A. Minenkov

    2014-11-01

    Full Text Available The efficiency of determination of solid state solubility of the components in the system with an eutectic type of interaction (Ag-Ge by means of measuring the sample electrical resistance during thermal cycling has been shown. Film systems were formed in a vacuum by sequential condensation of components. The solubility curve of germanium in silver, obtained from the study of the samples with silver film thickness of 100 nm, is in good agreement with available literature data. The activation energy of grain-boundary diffusion has been estimated as 0,8 eV.

  14. Feasibility of ZnO:Al/Ag/ZnO:Al multilayer source/drain electrode to achieve fully transparent HfInZnO thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072 (China); Zhang, Jian-Hua, E-mail: jhzhang@staff.shu.edu.cn [Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072 (China); Jiang, Xue-Yin [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Zhang, Zhi-Lin [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072 (China)

    2016-04-30

    We fabricated fully transparent hafnium indium zinc oxide (HfInZnO) thin film transistors (TFTs) with ZnO:Al(AZO)/Ag/ZnO:Al multilayer source/drain (S/D) electrodes. The effect of Ag interlayer thickness on the electrical and optical properties of AZO(60 nm)/Ag/AZO(60 nm) multilayer films was investigated. The AZO(60 nm)/Ag(10 nm)/AZO(60 nm) multilayer film shows a low sheet resistance of 10.5 Ω/square and a transmittance of 87%. Compared with HfInZnO-TFT with AZO electrode, the performance of the device with AZO/Ag/AZO multilayer electrode was significantly improved. The field effect mobility increased from 3.2 to 5.8 cm{sup 2}/V s, and the threshold voltage reduced from 2.3 to 0.1 V. The improvement was attributed to the lower resistivity of AZO/Ag/AZO multilayer film. The result indicates that AZO/Ag/AZO multilayer electrode is a promising S/D electrode for fully transparent HfInZnO-TFTs. - Highlights: • ZnO:Al/Ag/ZnO:Al multilayer films prepared by sputtering. • ZnO:Al/Ag/ZnO:Al multilayer films used as source/drain electrode. • Improved performance of HfInZnO thin film transistors (TFTs) with the multilayer film. • Contact resistance of HfInZnO-TFTs calculated.

  15. Blue and green organic light-emitting devices with various film thicknesses for color tuning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Blue and green organic light-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1 '-biphenyl-4,4'-diamine (NPB)/aluminum(Ⅲ) bis(2-methyl-8-quinolinato)4 -phenylphenolato (BAlq)/tris(8-hydroxyquinolate)-aluminum (Alq3)/Mg:Ag have been fabricated. Blue to green light emission has been achieved with the change of organic film thickness. Based on energy band diagram and charge carrier tunneling theory, it is concluded that the films of different thicknesses play a role as a color-tuning layer and the color-variable electroluminescence (EL) is ascribed to the modulation function within the charge carrier recombination zone. In the case of heterostructure devices with high performance, the observed EL spectra varies significantly with the thickness of organic films, which is resulted from the shift of recombination region site. It has not been hitherto indicated that the devices compose of identical components could be implemented to realize different color emission by changing the film thickness of functional layers.

  16. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness

    Science.gov (United States)

    Huang, Xinru; Roth, Connie B.

    2016-06-01

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ˜20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ˜120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  17. Thickness of residual wetting film in liquid-liquid displacement

    Science.gov (United States)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-08-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  18. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  19. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  20. Thick-film materials for silicon photovoltaic cell manufacture

    Science.gov (United States)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  1. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  2. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    Science.gov (United States)

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  3. Fabrication of BIT thick films patterned by proton beam writing

    Science.gov (United States)

    Yamaguchi, Masaki; Watanabe, Kazuki; Nishikawa, Hiroyuki; Masuda, Yoichiro

    2017-07-01

    In this study, we fabricated thick films with polyvinylpyrrolidone (PVP) added to bismuth titanate (Bi4Ti3O12) to form a lead-free ferroelectric material. We examined the direct patterning of these materials by using proton-beam irradiation. When 50% PVP was added to the organic source solution, the c-axis orientation was promoted and cracks were suppressed due to stress relaxation. In addition, a dot and an arbitrary-shape micro-pattern were formed on bismuth-titanate thick film by micromachining using a proton beam.

  4. Electroplated thick-film cobalt platinum permanent magnets

    Science.gov (United States)

    Oniku, Ololade D.; Qi, Bin; Arnold, David P.

    2016-10-01

    The material and magnetic properties of multi-micron-thick (up to 6 μm) L10 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25-200 mA/cm2), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L10 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (Br ~0.8 T, Hci ~800 kA/m, squareness close to 0.9, and BHmax of 100 kJ/m3) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm2, pH of 7, and subsequently annealed at 675 °C for 30 min.

  5. The effect of Ag layer on the structural and magnetic properties of (001)-oriented [C/CoPt/Ag]{sub 5} films

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaohong [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China)]. E-mail: xuxh@dns.sxnu.edu.cn; Jin Tao [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China); Li Xiaoli [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China); Wang Fang [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China); Jiang Fengxian [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China); Wu Haishun [School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004 (China)

    2007-02-26

    Ordered [C/CoPt/Ag]{sub 5} thin films with (001) preferred orientation have been deposited onto glass substrates by magnetron sputtering. The effects of the Ag layer on the structural and magnetic properties of the [C/CoPt/Ag]{sub 5} films were investigated. We have found that the presence of C sublayer together with the suitable thickness of Ag sublayer can provide a driving force for the chemical ordering of the L1{sub 0} CoPt phase, as well as give an opportunity for the (001)-oriented growth of CoPt grains. It was found that the structural and magnetic properties of CoPt films are strongly related to the strain arising from the misfit between Ag and CoPt layers as well as the C atom diffusion. These three element composite films with a high (001)-oriented growth, a strong perpendicular magnetic anisotropy, and a weak intergrain interactions can satisfy the requirements for ultra-high-density perpendicular recording medium.

  6. Photocatalytic Activity of Vis-Responsive Ag-Nanoparticles/TiO2 Composite Thin Films Fabricated by Molecular Precursor Method (MPM

    Directory of Open Access Journals (Sweden)

    Mitsunobu Sato

    2013-07-01

    Full Text Available The Ag-nanoparticles (Ag-NP/TiO2 composite thin films with various amounts of Ag (10 mol% ≤ n ≤ 80 mol% were examined as a potential photocatalyst by decoloration reaction of methylene blue (MB in an aqueous solution. These composite thin films of ca. 100 nm thickness were fabricated by the MPM at 600 °C in air. The decoloration rates monitored by the absorption intensity of the MB solution indicated that the composite thin films of Ag with an amount less than 40 mol% are not effective under vis-irradiation, though they can work as a photocatalyst under UV-irradiation. Further, the UV-sensitivity of the composite thin films gradually decreased to almost half the level of that of the TiO2 thin film fabricated under the identical conditions when the Ag amount increased from 10 to 40 mol%. Contrarily, the composite thin films of Ag content larger than 50 mol% showed the vis-responsive activity, whose level was slightly lower than the decreased UV-sensitivity. Diffuse reflectance spectra suggested that the vis-responsive activity of the composite thin films is due to the conductivity, localized surface plasmon resonance and surface plasmon resonance of Ag-NP. It was also elucidated that the vis-responsive level of the composite thin films corresponds to their electrical conductivity that depends on the Ag content.

  7. The thickness dependence of dielectric permittivity in thin films

    Science.gov (United States)

    Starkov, Ivan A.; Starkov, Alexander S.

    2016-08-01

    It is well known that the physical properties of thin films depend on their thickness. For a description of such dependences, it is proposed to use a classical model taking into account the presence of film interfaces. A dielectric ball near the half-space was chosen to adopt the approach. The dependence of the effective permittivity of the ball on geometrical and physical parameters of the system is analyzed. It is demonstrated that the dielectric constant of a film can be presented as a sum of the constant of a bulk material and the interface term.

  8. Effect of different substrate on optical properties of Se92Te4Ag4 films

    Science.gov (United States)

    Singh, D.; Kumar, S.; Thangaraj, R.

    2014-01-01

    Present work reports the effect of substrate on the optical properties of Se92Te4Ag4 thin films. Thin films of thickness 2500 Å were prepared by the thermal evaporation of the bulk samples. Amorphous nature of thin films is confirmed by the X-ray diffraction spectra. The transmittance spectra of Se92Te4Ag4 thin films were obtained in the spectral region in the range 300-1100 nm. The optical band gap (Eg) and extinction coefficient (k) has been calculated from the absorbance data. The value of refractive index (n) has been determined from Swanepoel's method. The band gap of the film deposited on mica substrate (1.24 eV) is smallest as compared to the band gap of the films deposited on microscopic glass (1.29 eV) and quartz (1.26 eV). The change in value of optical parameters with change in substrate is explained in terms of disorder and defects, which confirms the dependence of optical parameters on types of substrates.

  9. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  10. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain;

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  11. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  12. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  13. Presentation and characterization of novel thick-film PZT microactuators

    Energy Technology Data Exchange (ETDEWEB)

    Chalvet, Vincent; Habineza, Didace, E-mail: didace.habineza@femto-st.fr; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  14. Screen-printed piezoceramic thick films for miniaturised devices

    DEFF Research Database (Denmark)

    Lou-Moeller, R.; Hindrichsen, Christian Carstensen; Thamdrup, Lasse Højlund;

    2007-01-01

    The development towards smaller devices with more functions integrated calls for new and improved manufacturing processes. The screen-printing process is quite well suited for miniaturised and integrated devices, since thick films can be produced in this manner without the need for further machin...

  15. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  16. Polymer thick-film sensors: possibilities for smartcard biometrics

    NARCIS (Netherlands)

    Henderson, N.J.; Papakostas, T.V.; White, N.M.; Hartel, P.H.

    2002-01-01

    In this paper the potential of polymer thick-film sensors are assessed for use as biometric sensors on smartcards. Piezoelectric and piezoresistive sensors have been printed on flexible polyester, then bonded to smartcard blanks. The tactile interaction of a person with these sensors has been invest

  17. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  18. Element-specific study of epitaxial NiO/Ag/CoO/Fe films grown on vicinal Ag(001) using photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Y.; Li, J.; Tan, A.; Jin, E.; Son, J.; Park, J. S.; Doran, A.; Young, A. T.; Scholl, A.; Arenholz, E.; Wu, J.; Hwang, C.; Zhao, H. W.; Qiu, Z. Q.

    2011-01-10

    NiO/Ag/CoO/Fe single crystalline films are grown epitaxially on a vicinal Ag(001) substrate using molecular beam epitaxy and investigated by photoemission electron microscopy. We find that after zero-field cooling, the in-plane Fe magnetization switches from parallel to perpendicular direction of the atomic steps of the vicinal surface at thinner CoO thickness but remains in its original direction parallel to the steps at thicker CoO thickness. CoO and NiO domain imaging result shows that both CoO/Fe and NiO/CoO spins are perpendicularly coupled, suggesting that the Fe magnetization switching may be associated with the rotatable-frozen spin transition of the CoO film.

  19. Microstructure and Raman spectra of Ag-MgF2 cermet films

    Institute of Scientific and Technical Information of China (English)

    Shouhua Shi(史守华); Zhuoliang Cao(曹卓良); Zhaoqi Sun(孙兆奇)

    2003-01-01

    Ag-MgF2 cermet films with different Ag fractions were prepared by vacuum evaporation. The microstruc-ture of the films was examined by Raman scattering technique. The surface-enhanced Raman spectrumfor MgF2 molecules in the cermet film strongly suggests the existence of Ag nanoparticles dispersed inMgF2 matrix. The intensities of the Raman spectra of Ag-MgF2 cermet films increase with Ag fraction.The enhancement of Raman scattering disappears when Ag content reaches wt.20%. The analyses withthe transmission electron microscopy showed that Ag-MgF2 cermet films are mainly composed of amor-phous MgF2 matrix with embedded faced-center-cubic Ag nanoparticles. It suggests that the percolationthreshold should be around wt.20% of Ag content.

  20. Laser Direct Writing of Ag Films from Solution on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    Ke SUN; Caibei ZHANG; Yan ZHAO

    2003-01-01

    Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energy4absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.

  1. Effect of Film Thickness on Properties of a-Si∶H Films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The a-Si∶H films with different thickness smaller than 1μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.

  2. Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag-Ti thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kao, K.S. [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Cheng, D.L., E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Chang, S.H. [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Hsieh, P.T. [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan (China); Chin, H.S. [Opto-Electronics System Section Metal Industries Research and Development Center, Kaohsiung, Taiwan (China); Lin, H.K. [Laser Application Technology Center/Industrial Technology Research Institute South, Liujia Shiang, Taiwan (China)

    2010-10-01

    In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 deg. C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% - 500 nm and the low resistivity of 1.2 x 10{sup -5} {Omega}-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% - 500 nm with resistivity of 1.02 x 10{sup -5} {Omega}-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.

  3. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  4. Influence of substrate and film thickness on polymer LIPSS formation

    Science.gov (United States)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A.; Rebollar, Esther

    2017-02-01

    Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200-380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  5. A Solid Ag Film Deposited from Solution on Self-assembled Mercaptopropyltrimethoxysilane (MPTS) Monolayer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mercaptopropyltrimethoxysilane (MPTS) bearing mercapto groups was used to form self-assembly monolayers (SAMs) on glass substrates by solution extraction. SEM, XRD and rubbing test analysis illustrated that the Ag film on the SAMs-modified glass was more durable than that on the commonly-modified glass and that the crystallinity of Ag film on the SAMs-modified glass was identical with those of the Ag film on the commonly-modified glass and pure Ag.

  6. Growth of ultrathin vanadium oxide films on Ag(100)

    Science.gov (United States)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  7. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Adnan, E-mail: adnan.nazir@iit.it [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Toma, Andrea [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Panaro, Simone [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Butt, Sajid [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Sagar, Rizwan ur Rehman [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Raja, Waseem [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Rasool, Kamran [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering Pakistan, Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Maqsood, Asghari [Department of Physics, Air University, Islamabad (Pakistan)

    2014-10-01

    Highlights: • Polycrystalline CdS thin films are fabricated by means of Close Spaced Sublimation technique. • Ag is doped by simple ion-exchange technique in order to reduce resistivity of CdS thin films. • Remarkable reduction in resistivity without introducing many transparency losses. - Abstract: Cadmium sulfide (CdS) polycrystalline thin films of different thicknesses (ranging from 370 nm to 750 nm) were fabricated on corning glass substrates using Close Spaced Sublimation (CSS) technique. Optical and electrical investigation revealed that CdS thin films show an appreciable transparency (50–70% transmission) in visible range and a highly resistive behavior (10{sup 6} Ω cm). Samples were doped by silver (Ag) at different concentrations, using ion exchange technique, in order to reduce the resistivity of CdS thin films and to improve their efficiency as a window layer for solar cell application. The doping of Ag in pure CdS thin films resulted into an increase of surface roughness and a decrease both in electrical resistivity and in transparency. By optimizing annealing parameters, we were able to properly control the optical properties of the present system. In fact, the Ag doping of pure CdS films has led to a decrease of the sample resistivity by three orders of magnitude (10{sup 3} Ω cm) against a 20% cut in optical transmission.

  8. The Ag shell thickness effect of Au@Ag@SiO2 core-shell nanoparticles on the optoelectronic performance of dye sensitized solar cells.

    Science.gov (United States)

    Wang, Yang; Zhai, Jin; Song, Yanlin; He, Ling

    2016-02-07

    To tailor the Au@Ag@SiO2 LSPR effect by varying the Ag shell thickness, the Au@Ag@SiO2 core-ultra-thin shell nanoparticles are fabricated and introduced into DSSC for improving light harvesting and decreasing the recombination of photo-carriers. The Au@Ag@SiO2 electrode exhibits a photo-conversion efficiency of 23.42% (486.7 nm, 10 mW cm(-2)).

  9. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    Science.gov (United States)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  10. Anisotropic resistivity in plasma-sprayed silicon thick films

    Science.gov (United States)

    Kharas, Boris Dave; Sampath, Sanjay; Gambino, Richard J.

    2005-05-01

    Silicon thick films deposited by thermal plasma spray are of interest as inexpensive electronic materials for conformal meso-scale electronics applications. In addition they also serve as a model system for the investigation of electrical properties of coatings with layered anisotropy. In this study impedance spectroscopy was used to measure the complex resistivity of free-standing 64μm-thick polycrystalline silicon films deposited by thermal plasma spraying in an atmospheric ambient. Impedance spectroscopy measurements were taken in the through-thickness (across-splat) and edge-to-edge (in-splat) directions and revealed a resistivity difference of approximately 7.5±0.23 between the two directions. The complex resistivity results are explained on the basis of a brick-layer type model, associated with the layered splat microstructure obtained from cross-sectional transmission electron microscope imaging of the films. In addition a circuit-based model made up of parallel, resistor-capacitor elements in series, and Cole-Cole and Davidson-Cole impedance functions were used to fit the impedance data to extract material parameters and contributions from the grains and splat boundaries. Furthermore, thermal processing and phosphorus doping is shown to lead to higher and lower resistivity, respectively, in the films.

  11. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    Güvenç Akgül

    2014-02-01

    Effects of thickness on the electronic structure of e-beam evaporated thin titanium films were studied using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium 2,3 edge in total electron yield (TEY) mode and transmission yield mode. Thickness dependence of 2,3 branching ratio (BR) of titanium was investigated and it was found that BR below 3.5 nm shows a strong dependence on film thickness. Mean electron escape depth () in titanium, an important parameter for surface applications, was determined to be = 2.6 ± 0.1 nm using 2,3 resonance intensity variation as a function of film thickness. The average 3/2 white line intensity ratio of titanium was obtained as 0.89 from the ratio of amplitudes of each 3 and 2 peaks and 0.66 from the integrated area under each 3 and 2 peaks. In addition, a theoretical calculation for pure titanium was presented for comparison with experimental data.

  12. ZnO sensing film thickness effects on the sensitivity of surface plasmon resonance sensors with angular interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Bao Ming; Li Ge; Jiang Dongmei; Cheng Wenjuan [State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062 (China); Ma Xueming, E-mail: xmma@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062 (China)

    2010-07-25

    The effects of ZnO sensing film thickness on the surface plasmon resonance (SPR) curve have been investigated. ZnO sensing films with the thickness of 20 nm, 30 nm, 200 nm, 220 nm and 240 nm have been deposited onto Ag/glass substrates by radio frequency magnetron (RF) sputtering and thermally treated at 300 deg. C in air for 1 h. The surface morphology of the sample was inspected using an atomic force microscope (AFM). The refractive index of the ZnO films was extracted by using spectroscopic ellipsometry (SE). Theoretical analysis of the sensitivity of the SPR sensors with different ZnO sensing film thickness is discussed, and the experimental results are in agreement with the calculated value. Also, the theoretical calculation of the effects of ZnO film thickness on the SPR curves in the presence of different analytes are presented and studied. It is demonstrated that SPR sensors with angular interrogation may attain higher sensitivity and can detect higher surface environment refractive index with proper ZnO sensing film thickness.

  13. Effect of film thickness on microstructure parameters and optical constants of CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.co [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt); Afify, N. [Physics Department, Assiut University, Assiut (Egypt); El-Taher, A. [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt)

    2009-08-12

    Different thickness of cadmium telluride (CdTe) thin films was deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The XRD experiments showed that the films are polycrystalline and have a zinc-blende (cubic) structure. The microstructure parameters, crystallite size and microstrain were calculated. It is observed that the crystallite size increases and microstrain decreases with the increase in the film thickness. The fundamental optical parameters like band gap and extinction coefficient are calculated in the strong absorption region of transmittance and reflectance spectrum. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.481 to 1.533 eV with the increase in the film thickness. It was found that the optical band gap increases with the increase in thickness. The refractive indices have been evaluated in transparent region in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index can be extrapolated by Cauchy dispersion relationship over the whole spectral range, which extended from 400 to 2500 nm. It is observed that the refractive index, n increases on increasing the film thickness up to 671 nm and then the variation of n with higher thickness lie within the experimental errors.

  14. Studies on photocatalytic activity of Ag/TiO2 films

    Institute of Scientific and Technical Information of China (English)

    Hou Xinggang; Wu Xiaoling; Liu Andong

    2006-01-01

    Ag/TiO2 photocatalytic films were produced by hybrid sol-gel method.The photocatalytic degradation of methyl orange (MO) in aqueous solution under 365 nm irradiation on TiO2 and Ag/TiO2 thin films was investigated.The state and amount of Ag species within the film and the enhancement mechanism of photocatalytic activity of Ag/TiO2 were discussed.With a loading molar ratio of Ag/Ti = 0.135 in TiO2 film,the maximum catalytic efficiency was observed.

  15. Chemical vapor deposition reactor. [providing uniform film thickness

    Science.gov (United States)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  16. Thickness dependent electronic structure and morphology of rubrene thin films on metal, semiconductor, and dielectric substrates

    Science.gov (United States)

    Sinha, Sumona; Mukherjee, M.

    2013-08-01

    The evolution of the electronic structure and morphology of rubrene thin films on noble-metal, semiconductor and dielectric substrates have been investigated as a function of thickness of deposited films by using photoelectron spectroscopy and atomic force microscopy. The clean polycrystalline Au and Ag were used as noble-metals, whereas, H passivated and SiO2 coated Si (100) were used as semiconductors and dielectric substrates. Discussion and comparison on interface dipole, energy level alignment, and surface morphology for the four cases are presented. The formation of dipole at metallic interfaces is found to occur due to push back effect. S parameter obtained from the variation of barrier height with the change of work function of the contacting metal indicates moderately weak interaction between rubrene and the metal substrates. The thickness dependent energy level alignment of the physisorbed rubrene films on different substrates is explained by a dielectric model in terms of electrostatic screening of photo-holes or photoemission final state relaxation energy. Films on all the substrates are found to grow following Stranski-Krastnov type growth mode and are more ordered at higher coverage.

  17. Two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Linhua, E-mail: congyu3256@tom.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Optics and Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Zheng, Gaige; Zhao, Lilong; Pei, Shixin [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Optics and Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-02-15

    Ag-doped ZnO thin films were prepared by a sol–gel method. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis and photoluminescence spectra. The results show that the Ag in the ZnO thin films annealed at 500 °C for 1 h substitutes for Zn and exists in the form of Ag{sup +} ion (Ag{sub Zn}) while the Ag in the ZnO thin films without a post-annealing mainly exists in the form of simple substance (Ag{sup 0}). The incorporation of Ag indeed can improve the ultraviolet emission of ZnO thin films and suppress the visible emissions at the same time. However, the mechanisms on the ultraviolet emission enhancement in the annealed and unannealed Ag-doped ZnO thin films are very different. As for the post-annealed Ag-doped ZnO thin films, the UV emission enhancement maybe mainly results from more electron–hole pairs (excitons) due to Ag-doping while for the unannealed Ag-doped ZnO thin films; the UV emission enhancement is attributed to the resonant coupling between exciton emission in ZnO and localized surface plasmon in Ag nanoparticles. - Highlights: • Ag-doped ZnO thin films have been prepared by the sol–gel method. • Ag-doping can enhance ultraviolet emission of ZnO thin films and depress the visible emissions at the same time. • There are two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films. • The UV emission enhancement from the resonant coupling between excitonic emissions and localized surface plasmon in Ag nanoparticle is very attractive.

  18. AgSbSe{sub 2} and AgSb(S,Se){sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Rodriguez, A.C.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-10-01

    Silver antimony selenide (AgSbSe{sub 2}) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb{sub 2}S{sub 3}), silver selenide (Ag{sub 2}Se), selenium (Se) and silver (Ag). Sb{sub 2}S{sub 3} thin film was prepared from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}, Ag{sub 2}Se from a solution containing AgNO{sub 3} and Na{sub 2}SeSO{sub 3} and Se thin films from an acidified solution of Na{sub 2}SeSO{sub 3}, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10{sup -3} Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe{sub 2} or AgSb(S,Se){sub 2} depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe{sub 2}/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V{sub oc} = 435 mV and J{sub sc} = 0.08 mA/cm{sup 2} under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe{sub 2} as an absorber material by a non-toxic selenization process is achieved.

  19. Discrete component bonding and thick film materials study

    Science.gov (United States)

    Kinser, D. L.

    1975-01-01

    The results are summarized of an investigation of discrete component bonding reliability and a fundamental study of new thick film resistor materials. The component bonding study examined several types of solder bonded components with some processing variable studies to determine their influence upon bonding reliability. The bonding reliability was assessed using the thermal cycle: 15 minutes at room temperature, 15 minutes at +125 C 15 minutes at room temperature, and 15 minutes at -55 C. The thick film resistor materials examined were of the transition metal oxide-phosphate glass family with several elemental metal additions of the same transition metal. These studies were conducted by preparing a paste of the subject composition, printing, drying, and firing using both air and reducing atmospheres. The resulting resistors were examined for adherence, resistance, thermal coefficient of resistance, and voltage coefficient of resistance.

  20. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO{sub 3} film by decorating with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shen, Mingrong; Fang, Liang, E-mail: lfang@suda.edu.cn [College of Physics, Optoelectronics and Energy and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Zhou, Yang; You, Lu; Wang, Junling [School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore 639798 (Singapore)

    2016-01-11

    Polycrystalline BiFeO{sub 3} (BFO) films are fabricated on Pt/Ti/SiO{sub 2}/Si(100) substrate as photoelectrode using sol-gel method. The microstructure, optical, and photoelectrochemical (PEC) properties of the films are characterized and optimized by controlling the film thickness. Moreover, the PEC properties of the BFO films are dependent on ferroelectric polarization, which is mainly ascribed to the modulation of band structure at the BFO/electrolyte interface by the polarization. Further enhancement of PEC properties is obtained by decorating the samples with appropriate amounts of Ag nanoparticles, which is attributed to the reduced electron-hole recombination, and localized surface plasmon resonance effect of Ag nanoparticles.

  1. Effects of Ag layers on the SiO2/FePt thin films deposited by magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    FAN Jiuping; XU Xiaohong; WANG Fang; JIANG Fengxian; TIAN Baoqiang; JIN Tao

    2008-01-01

    The effects of Ag Iayers with different locations and thicknesses on the structural and magnetic property of SiO2/FePt multilayer films were investigated.The non-magnetic Ag layer plays an important role in inducing(001)orientation and ordering of FePt grains,as well as the SiO2-doping reducing the grin size and the magnetic exchange coupling between grains.When the 10 nm Ag layer is moved from the bottom to the top of the SiO2/FePt multilayer film,the coercivity gradually decreases;the largest difference betwogn the out-of-plane coercivity and the in-plane one is obtained in the sample of[SiO2(2 nm)/FePt(3 nm)]3/Ag(10 nm)/[SiO2(2 nm)//FePt(3 nm)]2.Furthermore,the location of Ag layers was fixed and the thickness was changed.The XRD curves suggest that the intensity of the(001)peak becomes the strongest with the addition of 10 nm Ag layers.

  2. Synthesis and properties of Ag-doped ZnO films with room temperature ferromagnetism

    Science.gov (United States)

    Xu, Qin; Wang, Zhi-Jun; Chang, Ze-Jiang; Liu, Jing-Jin; Ren, Ya-Xuan; Sun, Hui-Yuan

    2016-12-01

    A series of Ag-doped ZnO films were prepared by DC magnetron sputtering. XRD and SEM results showed that the doping amount of Ag had a great influence on the films' morphology and ferromagnetism, and their magnetism can be improved by doping an appropriate amount of Ag. The theoretical analysis suggested that the magnetism resulted mainly from the film grain boundary surfaces. Further research revealed that these films had strong timeliness. Such a result indicated that the room temperature ferromagnetism of Ag-doped ZnO films did not stem from the cation vacancies but from the oxygen vacancies on the boundary surfaces.

  3. A sensitive magnetic field sensor using BPSCCO thick film

    Indian Academy of Sciences (India)

    S Vijay Srinivas; Abhijit Ray; T K Dey

    2001-08-01

    A highly sensitive magnetic sensor operating at liquid nitrogen temperature and based on BPSCCO screen-printed thick film, is reported. The sensor resistance for an applied magnetic field of 100 × 10–4T(100 gauss) exhibits an increase by 360% of its value in zero field at 77.4 K. The performance of the sensor in presence of magnetic field, the hysteretic features and the effect of thermal cycling, has been discussed.

  4. High-performance PMN-PT thick films.

    Science.gov (United States)

    Kosec, Marija; Ursic, Hana; Holc, Janez; Hrovat, Marko; Kuscer, Danjela; Malic, Barbara

    2010-10-01

    This article describes some of our work on ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃ (0.65PMN-0.35PT) thick films printed on alumina substrates. These thick films, with the nominal composition ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃, were produced by screen-printing and firing a paste prepared from an organic vehicle and pre-reacted fine particles of avery chemically homogeneous powder. To improve the adhesion of the 0.65PMN-0.35PT to the platinized alumina substrate,a Pb(Zr₀.₅₃Ti₀.₄₇)O₃ layer was deposited between the electrode and the substrate. The samples were then sintered at 950 °C for 2 h with various amounts of packing powder on the alumina (Al₂O₃) substrates. The sintering procedure was optimized to obtain dense 0.65PMN-0.35PT films. The films were then characterized using scanning electron microscopy as well as measurements of the dielectric and piezoelectric constants.The electrostrictive behavior of the 0.65PMN-0.35PT thick films was investigated using an atomic force microscope(AFM). Finally, substrate-free, large-displacement bending type actuators were prepared and characterized, and the normalized displacement (i.e., the displacement per unit length) of the actuators was determined to be 55 μm/cm at 3.6 kV/cm.

  5. The Effect of Thickness of Aluminium Films on Optical Reflectance

    Directory of Open Access Journals (Sweden)

    Robert Lugolole

    2015-01-01

    Full Text Available In Uganda and Africa at large, up to 90% of the total energy used for food preparation and water pasteurization is from fossil fuels particularly firewood and kerosene which pollute the environment, yet there is abundant solar energy throughout the year, which could also be used. Uganda is abundantly rich in clay minerals such as ball clay, kaolin, feldspar, and quartz from which ceramic substrates were developed. Aluminium films of different thicknesses were deposited on different substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306. The optical reflectance of the aluminium films was obtained using a spectrophotometer (SolidSpec-3700/DUV-UV-VIS-NIR at various wave lengths. The analysis of the results of the study revealed that the optical reflectance of the aluminium films was above 50% and increased with increasing film thickness and wavelength. Thus, this method can be used to produce reflector systems in the technology of solar cooking and other appliances which use solar energy.

  6. Effects of Ag addition on FePt L10 ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    Science.gov (United States)

    Wang, Lei; Gao, Tenghua; Yu, Youxing

    2015-12-01

    FePt and (FePt)91.2Ag8.8 alloy films were deposited by magnetron sputtering. The average coercivity of (FePt)91.2Ag8.8 films reaches 8.51 × 105 A/m, which is 0.63 × 105 A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L10 ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L10 ordering transition.

  7. Nonlinear optical properties of quaternary amorphous Se80.5Bi1.5Te18-yAy (A = Sb, Ag) thin films

    Science.gov (United States)

    Kumar, Anup; Heera, Pawan; Sharma, Raman

    2014-04-01

    Effect of Sb and Ag addition on the optical constants of Se80.5Bi1.5Te18-yAy (A = Sb, Ag and y = 2.0 at. %) thin films, prepared by thermal vacuum evaporation technique, is investigated using Swanepoel method. The optical constants i.e. refractive index (n), film thickness, absorption coefficient and optical energy gap are calculated from the transmission spectra. It has been found that refractive index increases with an increase in Sb or Ag content and the absorption coefficient is also found to increases with increase in optical energy. Whereas the optical band gap decreases with an increase in Sb content and increases with an increase in Ag content. Hence, the present results reveals that the addition of Sb and Ag produce remarkable change on the nonlinear optical properties of the thin film.

  8. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  9. An Investigation of the Relationship between Resistance and Thickness of Deposited Nickel Thin Film Resistors

    Directory of Open Access Journals (Sweden)

    Ericam R.R. Mucunguzi-Rugwebe

    2013-09-01

    Full Text Available The main purpose of this study is finding the relationship between resistance and thickness of deposited Nickel Thin Film Resistors. It was found that the Sheet Resistance, Rs, is inversely proportional to the thickness of the film on the substrate. It was also observed that when the film thickness is greater than 50 nm, films behave like ordinary resistors. In other words in bulk, films obey Ohm’s law if other physical quantities remain constant.

  10. Optical and photoelectrochemical studies on Ag{sub 2}O/TiO{sub 2} double-layer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan, Taiwan 32001 (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan 24301 (China); Cheng, J.C. [Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan 10608 (China); Huang, C.C. [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China)

    2014-11-03

    When two different oxides films stacked together, if the absorption (upper) layer has both its conduction and valence bands more negatively lower than that of the layer underneath, then the photo-excited electrons can be forwarded to the underneath layer to become an effect of energy storage. Recent studies discovered that the double-layers of Cu{sub 2}O/TiO{sub 2} films possess such capacity. In order to investigate this specific phenomenon, we use a DC magnetron reactive sputtering to deposit a double-layer of Ag{sub 2}O/TiO{sub 2} films on glass substrate. The film thicknesses of the double-layer are 300 nm and 200 nm respectively. X-Ray diffraction (XRD), scanning electron microscope (SEM) and UV–VIS–NIR photospectrometer and photoluminance tests were used to study the structure, morphology, optical absorption and band gaps of the stacked films. From XRD and SEM, we can confirm the microstructures of each layer. The UV–VIS–NIR spectrum revealed that the optical absorption of Ag{sub 2}O/TiO{sub 2} fell in between the single film of Ag{sub 2}O and TiO{sub 2}. Further, two band gaps were estimated for Ag{sub 2}O/TiO{sub 2} films based on the Beer-Lambert law and Tauc plot. Photoluminance and photoelectrochemical tests indicated that delayed emission by electron-hole recombination and photoelectrical current was effectively support the mechanism of electrons transfer from Ag{sub 2}O to TiO{sub 2} at Ag{sub 2}O/TiO{sub 2} interface in the double-layer films. - Highlights: • A double-layer of Ag{sub 2}O/TiO{sub 2} films was deposited on glass substrate by sputtering. • XRD confirms the nanocrystalline structures of the stack deposited films. • UV–VIS–NIR spectroscopy shows the enhanced of optical absorption in Ag{sub 2}O/TiO{sub 2}. • Photoluminance and photoelectrochemical tests show electron-hole separation effect.

  11. Effect of film thickness on the columnar packing structures of discotic supramolecules in thin films.

    Science.gov (United States)

    Kim, Hyo-Sik; Choi, Sung-Min; Pate, Brian D; Park, Po Gyu

    2009-10-19

    The effects of film thickness on the columnar packing structure of discotic supramolecules in a thin supported film have been investigated by grazing-incidence small-angle X-ray scattering technique using magnetically aligned cobalt octa(n-decylthio)porphyrazine (CoS10) films on octadecyltrichlorosilane (OTS)-functionalized substrates as model systems. Magnetically aligned CoS10 films with a range of film thicknesses (49-845 nm) form uniaxially oriented 'edge-on' columnar superstructures with their columnar directors perpendicular to the applied magnetic field. However, the orientational ordering of the columnar packing in the plane perpendicular to the applied magnetic field is strongly dependent on the film thickness. While being damped by the elasticity of the side chains of CoS10, the strong interfacial interaction at the film-substrate interface propagates up to 50-100 nm from the substrate, maintaining the orientation of columnar packing in the plane perpendicular to the applied magnetic field. When the distance from the film-substrate interface becomes larger than about 100 nm, symmetric tilting of columnar layer orientation, which saturates at 11.5 degrees , occurs due to longitudinal edge dislocations induced by accumulated elastic deformation.

  12. Film thickness of mechanically worked lubricating grease at very low speeds

    NARCIS (Netherlands)

    Cen, H.; Lugt, Pieter Martin; Morales-Espejel, G.E.

    2014-01-01

    Several different types of commercially available greases, aged in a roll stability tester, have been tested in a ball-on-disc machine where the film thickness was measured using the interferometry method. The grease film thickness at very low speed is thicker than the base oil film thickness due to

  13. Preparation and Properties of Ag-TiO2 Thin Films on Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ag-TiO2 thin films were prepared on glasses.The morphology and structure of Ag-TiO2 films were investigated by XRD, SEM and FT-IR.The photocatalytic and hydrophilic properties of Ag-TiO2 thin films were also evaluated by examining photocatalytic degradation dichlorophos under sunlight illumination and the change of contact angle respectively.The research results show that the Ag-TiO2 thin film is mainly composed of 20-100nm Ag and TiO2 particles.The Ag-TiO2 thin films possess a super-hydrophilic ability and higher photocatalytic activity than that of pure TiO2 thin film.

  14. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    Science.gov (United States)

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  15. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  16. Influence of films thickness and structure on the photo-response of ZnO films

    Science.gov (United States)

    Ali Yıldırım, M.; Ateş, Aytunç

    2010-04-01

    ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 10 5 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.

  17. Surface-enhanced Raman scattering: effective optical constants for electric field modelling of nanostructured Ag films

    Science.gov (United States)

    Perera, M. Nilusha M. N.; Schmidt, Daniel; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2016-09-01

    Surface-enhanced Raman scattering (SERS) is drawing increasing interest in fields such as chemical and biomolecular sensing, nanoscale plasmonic engineering and surface science. In addition to the electromagnetic and chemical enhancements in SERS, several studies have reported a "back-side" enhancement when nanostructures are excited through a transparent base rather than directly through air. This additional enhancement has been attributed to a local increase in the electric field for propagation from high to low refractive index media. In this study, Mueller matrix ellipsometry was used to derive the effective optical constants of Ag nanostructures fabricated by thermal evaporation at oblique angles. The results confirm that the effective optical constants of the nanostructured Ag film depart substantially from the bulk properties. Detailed analysis suggests that the optical constants of the nano-island Ag structures exhibit uniaxial optical properties with the optical axis inclined from the substrate normal towards the deposition direction of the vapour flux. The substrates were functionalized with thiophenol and used to measure the wavelength dependence of the additional SERS signal. Further, a model based on the Fresnel equations was developed, using the Ag film optical constants and thickness as determined by ellipsometry. Both experimental data and the model show a significant additional enhancement in the back-side SERS, blue shifted from the plasmon resonance of the nanostructures. This information will be useful for a range of applications where it is necessary to understand the effective optical behaviour of thin films and in designing miniaturized optical fibre sensors for remote sensing applications.

  18. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  19. Tensoresistive Properties of Thin Film Systems Based on Ag and Co

    Directory of Open Access Journals (Sweden)

    I.M. Pazukha

    2012-10-01

    Full Text Available The results of research strain deformation properties of thin films Ag, Co and two-layers films Ag/Co in the range of deformation Δεl = 0-1 % were presented. The plastic deformation in Co layer caused a similar deformation in the entire film system, even if the strain range Ag layer is not reached the limits of the transition elastic/plastic deformation. The increasing of gauge factor value of two-layer systems in comparison with thin films Ag and Co appears as a result of electron interface scattering.

  20. Optimized Performances of Thick Film Organic Lighting-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-Ru; ZHANG Zhi-Qiang; MA Dong-Ge; SUN Run-Guang

    2008-01-01

    @@ The performance of organic light-emitting diodes (OLEDs) with thick film is optimized.The alternative vana-dium oxide (V2O5) and N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) layers are used to enhance holes in the emissive region, and 4,7-dipheny-1,10-phenanthroline (Bphen) doped 8-tris-hydroxyquinoline alu-minium (Alq3) is used to enhance electrons is the emissive region, thus ITO/V2O5 (8nm)/NPB (52nm)/V2O5 (8nm)/NPB (52 nm)/Alq3 (30 and 45 nm)/Alq3:Bphen (30wt%, 30 and 45 nm)/LiF (1 nm)/Al (120nm) devices are fabricated.The thick-film devices show the turn-on voltage of about 3 V and the maximal power efficiency of 4.51m/W, which is 1.46 times higher than the conventional thin-film OLEDs.

  1. Deposition of ZnO Films on Freestanding CVD Thick Diamond Films

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; BAI Yi-Zhen; YANG Tian-Peng; XU Yi-Bin; WANG Xin-Sheng; DU Guo-Tong; WU Han-Hua

    2006-01-01

    @@ For ZnO/diamond structured surface acoustic wave (SAW) filters, performance is sensitively dependent on the quality of the ZnO films. In this paper, we prepare highly-oriented and fine grained polycrystalline ZnO thin films with excellent surface smoothness on the smooth nucleation surfaces of freestanding CVD diamond films by metal organic chemical vapour deposition (MOCVD). The properties of the ZnO films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrum. The influences of the deposition conditions on the quality of ZnO films are discussed briefly. ZnO/freestanding thick-diamond-film layered SAW devices with high response frequencies are expected to be developed.

  2. Electrically conductive properties of Ag/Si composite nanoparticle assembled films prepared with a plasma-gas-condensation cluster source

    Science.gov (United States)

    Kurokawa, Yuichiro; Hihara, Takehiko

    2014-11-01

    Ag1-x/Six composite nanoparticle assembled films were prepared using a plasma-gas-condensation cluster beam deposition apparatus. The electrical conductivity σ and Hall coefficient |RH| of Ag1-x/Six nanoparticle assembled films obey a power law of the volume fraction of Ag pAg. The marked change at around pAg = pc indicates that the percolation of Ag nanoparticles takes place at the threshold value pc. Moreover, we found that the |RH| at T = 5 K of the Ag1-x/Six nanoparticle assembled film with the closest pAg to pc is 20 times higher than that of the bulk Ag.

  3. Effect of film thickness on the phase behaviors of diblock copolymer thin film.

    Science.gov (United States)

    Jung, Jueun; Park, Hae-Woong; Lee, Sekyung; Lee, Hyojoon; Chang, Taihyun; Matsunaga, Kazuyuki; Jinnai, Hiroshi

    2010-06-22

    A phase diagram was constructed for a polystyrene-block-polyisoprene (PS-b-PI, M(W) = 32 700, f(PI) = 0.670) in thin films on Si wafer as a function of film thickness over the range of 150-2410 nm (7-107L(0) (L(0): domain spacing)). The PS-b-PI exhibits a variety of ordered phases from hexagonally perforated lamellar (HPL) via double gyroid (DG) to hexagonally packed cylinder (HEX) before going to the disordered (DIS) phase upon heating. The morphology of the PS-b-PI in thin film was investigated by grazing incidence small-angle X-ray scattering, transmission electron microscopy, and transmission electron microtomography. In thin film, the phase transition temperature is difficult to be determined unequivocally with in situ heating processes since the phase transition is slow and two phases coexist over a wide temperature range. Therefore, in an effort to find an "equilibrium" phase, we determined the long-term stable phase formed after cooling the film from the DIS phase to a target temperature and annealing for 24 h at the temperature. The temperature windows of stable ordered phases are strongly influenced by the film thickness. As the film thickness decreases, the temperature window of layer-like structures such as HPL and HEX becomes wider, whereas that of the DG stable region decreases. For the films thinner than 160 nm (8L(0)), only the HPL phase was found. In the films exhibiting DG phase, a perforated layer structure at the free surface was found, which gradually converts to the internal DG structure. The relief of interfacial tension by preferential wetting appears to play an important role in controlling the morphology in very thin films.

  4. Thickness Dependence of Magnetic Properties in DyFeCo Films

    Institute of Scientific and Technical Information of China (English)

    Xiong Rui; Liu Hai-lin; Mei Xue-fei; Li Zuo-yi; Yang Xiao-fei; Shi Jing

    2004-01-01

    Films of amorphous DyFeCo were deposited on glass substrates using RF sputtering deposition system. The thickness dependence of the coercivity of DyFeCo films prepared under the same sputtering conditions was investigated. It is found that the composition is nearly thickness independent, while the coercivity is shown to increase with the film thickness increasing at the beginning, then above a certain thickness decrease with the thickness increasing. The thickness dependence of the coercivity is believed to be due to microstructure-induced variations in the short-range order during the film growth.

  5. Microlandscaping on a graphene oxide film via localized decoration of Ag nanoparticles.

    Science.gov (United States)

    Teoh, Hao Fatt; Dzung, Pham; Lim, Wan Qi; Chua, Jun Hui; Lee, Kian Keat; Hu, Zhibin; Tan, Huiru; Tok, Eng Soon; Sow, Chorng Haur

    2014-03-21

    A direct and facile method for micro-landscaping of Ag nanoparticles on reduced graphene oxide (rGO) is presented. This method employs a focused laser beam to achieve local reduction of Ag(+) ions to Ag NPs by laser irradiation on a GO film that is submerged in AgNO3 solution. Using this method, the Ag nanoparticles can be directly anchored on a rGO film, creating a microlandscape of Ag nanoparticles on the rGO film. In addition, varying the intensity of the laser beam can control the shapes, sizes and distributions of Ag nanoparticles. The resulting hybrid materials exhibit surface enhanced Raman scattering of up to 16 times depending on the size and number density of silver nanoparticles. In addition, the hybrid Ag-rGO material shows superior photoresponse when compared to rGO.

  6. Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films

    Science.gov (United States)

    Prathap, P.; Revathi, N.; Venkata Subbaiah, Y. P.; Ramakrishna Reddy, K. T.

    2008-01-01

    Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity.

  7. Biaxially textured Ag films by grazing ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Daniel F., E-mail: foerster@ph2.uni-koeln.d [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany); Bleikamp, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany)

    2010-11-01

    The effect of grazing incidence 4 keV Ar{sup +} ion irradiation on the early stage of Ag thin film growth on amorphous Si was investigated. The double effect of axial and surface channeling resulted in grains oriented along the <110> axis in-plane, while the (111) out-of-plane texture was maintained. A slight average tilt of the (111) out-of-plane texture axis towards the ion beam direction is proposed to result from the difference between terrace and step edge sputtering yield. The observed tilt is consistent with a minimum erosion orientation of the surface profile.

  8. Visible light responsive photocatalytic ZnO:Al films decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, M., E-mail: monserrat@iim.unam.mx; Martínez-Padilla, E.

    2014-02-28

    The spray pyrolysis technique was used to grow ZnO:Al films decorated with silver nanoparticles in their surface, in order to increase and stabilize the photocatalytic activity of ZnO. The appropriate amount of Ag nanoparticles was determined varying the concentration of an AgNO{sub 3} solution and the spraying time. The films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersed spectroscopy. The photocatalytic activity of the films was evaluated by the degradation of a methyl orange dye solution. The stability of the photocatalytic activity was studied along five degradation cycles while exposed to simulated sunlight, white light and UV light. We found that a spraying time of 8 min of the AgNO{sub 3} solution gives nearly 3 at% of Ag in the ZnO:Al films. This amount of Ag nanoparticles stabilized the photoactivity under UV and sunlight along five degradation cycles, showing a synergistic effect between Al and Ag that greatly improved the photocatalytic performance of ZnO films. - Highlights: • ZnO:Al/Ag films were produced in a two step process by spray pyrolysis. • ZnO:Al/Ag films presented a high photocatalytic activity under visible light. • Ag nanoparticles stabilized the photocatalytic efficiency after several reuses. • Al and Ag impurities gave a synergistic effect that improved ZnO photocatalytic performance.

  9. Structural and electronic properties of V2O3 ultrathin film on Ag(001): LEED and photoemission study

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    V2O3 ultrathin films were grown on Ag(001) substrate by reactive evaporation of vanadium (V) metal in presence of oxygen and their structural and electronic properties were studied by Low Energy Electron Diffraction (LEED), X-ray Photo Electron Spectroscopy (XPS) and Angle Resolved Photoemission Spectroscopic (ARPES) techniques, respectively. On top of square symmetry substrate Ag(001), hexagonal surface of V2O3 (0001) is stabilized in the form of two domain structure, rotated by 30°(or 90°)to each other, has been observed by LEED. Rather than epitaxial flat monolayer, formation of well-ordered V2O3 (0001) island has been confirmed from the LEED and the Photoemission Spectroscopic (PES) study. Stoichiometry of the grown film was confirmed by the XPS study. Evolution of valance band electronic structure of V2O3 (0001) surface has been studied as a function of film thickness by ARPES.

  10. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    Science.gov (United States)

    Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Ge, Shihui (Inventor); Zhang, Zongtao (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  11. Thick film fabrication of aluminum nitride microcircuits. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Perdieu, L.H.

    1994-03-01

    A new substrate material, aluminum nitride (AlN), and 11 new thick film inks were analyzed to determine their chemical compatibility, their electrical properties, their mechanical properties, and their overall suitability for use in the manufacturing of high-power microcircuits with efficient thermal properties. Because high-power chips emit a great deal of heat in a small surface area, a new substrate material was needed to dissipate that heat faster than the substrate material currently in use. Overall, the new materials were found to be acceptable for accomplishing this purpose.

  12. Laser sintering of thick-film conductors for microelectronic applications

    Science.gov (United States)

    Kinzel, Edward C.; Sigmarsson, Hjalti H.; Xu, Xianfan; Chappell, William J.

    2007-03-01

    This paper investigates fabrication of functional thick metal films using simultaneous laser sintering and patterning along with the fundamental physical phenomena that govern the laser sintering process. The effects of the processing parameters on the quality of the fabricated components are investigated through a heat transfer analysis. We show that our process has potentials for metallization of microelectronics directly onto substrates whose melting temperatures are much lower than the temperature needed for sintering, which is only possible by properly controlling the temperature field during laser sintering. Optimum properties of the fabricated components are obtained when certain thermal conditions are produced during laser heating.

  13. Effect of film thickness on magnetic properties of Cr/SmCo/Cr films

    Institute of Scientific and Technical Information of China (English)

    LI Ning; LI Baohe; FENG Chun; LI Minghua; YU Guanghua

    2012-01-01

    Cr/SmCo/Cr films with different SmCo thickness were deposited on glass substrates by magnetron sputtering,followed by an annealing process at 550℃for 20 min.Experimental results showed that the SmCo fihn of 30 nm exhibited two-phase behavior in the demagnetization process,the obvious kink was observed near zero.For the SmCo film of 50 nm,the kink was invisible,and a single phase like behavior was obtained in the demagnetization process.The reversal behavior became consistent in the thicker films.Moreover,the coercivity reduced and the saturated magnetization increased obviously with the increasing thickness.X-ray diffraction results indicated that the average grain size of SmCo5 in the thicker films were almost 30 nm,but the quantity of SmCo5 grains increased with the increasing thickness,which enhanced the intergrain exchange coupling (IEC) of the SmCo5 hard phases.The increase of lEC improved the magnetic properties of SmCo films with increasing thickness.

  14. Optical and structural properties of Cr and Ag thin films deposited on glass substrate

    Science.gov (United States)

    Rauf, A.; Ahmed, K.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Most of the rotating or noting patterns are being developed by using silver plating through chemical coating. Silver layers deteriorate with the passage of time and become less reflective while undergo through cleaning process due to its softness and the results become unpredictable. In this paper an alternate method for development of above mentioned pattern has been demonstrated. Chromium (Cr) and Silver (Ag) thin films of 200nm and 160nm thick respectively have been realized using electron beam evaporation (PVD technique) on quartz substrate. Structural analysis has been carried out by XRD and SEM while optical transmission/reflection has been studied using spectrophotometer. XRD analysis shows that Ag coated thin films exhibit FCC structure while Cr coated thin films reveals a BCC structure. SEM analysis shows almost smooth and uniform surfaces in both cases. After passing through high and low temperature cycles it was found that the results of pattern structures developed by chromium coating were more reliable than obtained through silver platting process.

  15. Photocatalytic activity of Ag/ZnO core–shell nanoparticles with shell thickness as controlling parameter under green environment

    Science.gov (United States)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core–shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet–visible (UV–Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core–shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core–shell nanoparticles. The Photocatalytic activities of Ag/ZnO core–shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core–shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core–shell NPs is found to be enhanced with increase in shell thickness.

  16. A novel in-situ technique to fabricate thin films with controlled lateral thickness modulations

    Science.gov (United States)

    Zhang, Chi

    and electron beam evaporation were used to deposit Ag, Co or TiOx thin films on to single crystal Si(100) substrates. Typical deposition rates used in this work were 0.1 to 1 nm/min. Simultaneous deposition with irradiation of the Si surface with two-beam interference patterns resulted in films with periodic thickness modulations, producing line-like structures. (Abstract shortened by UMI.)

  17. Thickness optimization of Mo films for Cu(InGa)Se2 solar cell applications

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Zhao Yan-Min; Liu Xing-Jiang; Ao Jian-Ping; Sun Yun

    2011-01-01

    Mo thin films are deposited on soda lime glass (SLG) substrates using DC magnetron sputtering. The Mo film thicknesses are varied from 0.08 μm to 1.5 μm to gain a better understanding of the growth process of the film. The residual stresses and the structural properties of these films are investigated, with attention paid particularly to the film thickness dependence of these properties. Residual stress decreases and yields a typical tensile-to-compressive stress transition with the increase of film thickness at the first stages of film growth. The stress tends to be stable with the further increase of film thickness. Using the Mo film with an optimum thickness of 1 μm as the back contact, the Cu(InGa)Se2 solar cell can reach a conversion efficiency of 13.15%.

  18. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    Science.gov (United States)

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200°C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200°C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2.

  19. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances

    Science.gov (United States)

    Demirci, Selim; Dikici, Tuncay; Yurddaskal, Metin; Gultekin, Serdar; Toparli, Mustafa; Celik, Erdal

    2016-12-01

    In this study, undoped and silver (Ag) doped titanium dioxide (TiO2) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO2 films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO2 films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO2 films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO2 matrix enhanced the photocatalytic activity of TiO2 films under UV light irradiation as compared to the undoped TiO2 film. Furthermore, the results indicated that the 0.7% Ag doped TiO2 film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO2 films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  20. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Janghsing Hsieh

    2016-11-01

    Full Text Available Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD, atomic force microscopy (AFM, FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag.

  1. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  2. Enhanced Jc's of YBa2Cu3O7-x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    DEFF Research Database (Denmark)

    Clausen, Thomas; Ejrnæs, Mikkel; Olesen, Michael Wiinberg

    1995-01-01

    A 5x increase of the critical current density (J(c)) at 77 K was obtained by coating a coevaporated 500 nm thick Y, BaF2, Cu film with 50 nm Ag prior to the ex situ annealing. J(c) increased from 0.2 for uncoated samples to 1 MA/cm(2) for the Ag-coated sample without severely affecting the zero...

  3. Environmentally compatible solder materials for thick film hybrid assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L. [Sandia National Labs., Albuquerque, NM (United States). Materials and Process Sciences Center

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  4. Effect of Chromium Interlayer Thickness on Optical Properties of Au-Ag Nanoparticle Array

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2014-01-01

    Full Text Available The effect of chromium interlayer thickness on optical properties of array of hybrid Au-Ag triangular nanoparticles is systematically investigated. The optical spectrum simulated by discrete dipole approximation (DDA numerical method shows that with increase of the chromium interlayer thickness both refractive index sensitivity (RIS and figure of merit (FOM of localized surface plasmon resonance from the hybrid nanostructures experience remarkable change and the intensity of the extinction efficiency decreases. The nanosphere lithography (NSL is used to fabricate the hybrid nanostructure arrays with different chromium interlayer thicknesses. The experiment demonstrates that the spectrum as measured from the as-fabricated hybrid nanostructure arrays is essentially in agreement with the simulated results.

  5. Transmission electron microscope study of the topotactic reaction of (0 0 1), (0 1 1) and (1 1 1) Ag films and Te

    Energy Technology Data Exchange (ETDEWEB)

    Safran, G.; Geszti, O.; Radnoczi, G

    2003-09-01

    The formation, structure and morphology of silver telluride was investigated in the reaction of (0 0 1), (0 1 1) and (1 1 1) single crystalline Ag films with vacuum deposited Te. Silver films 30-40 nm in thickness were deposited by thermal evaporation onto water- and chlorine-treated NaCl. Onto this silver 1-40 nm of tellurium were deposited at 100 and 200 deg. C. The Ag-Te reaction occurred during Te deposition. Accordingly, formation of the compound phase was investigated from the nucleation stage through complete tellurization on either side of the polymorphic phase transformation temperature (T{sub c}=150 deg. C). Transmission electron microscope and selected area electron diffraction showed that monoclinic silver telluride (Ag{sub 2}Te) of different morphology and texture was always formed. The orientation of silver and monoclinic phase upon differently oriented monocrystalline Ag films and at deposition temperatures around T{sub c} is discussed.

  6. Electronic structure of LaAg{sub 5} alloy films on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Seibel, Christoph; Bentmann, Hendrik; Forster, Frank [Universitaet Wuerzburg, Experimentelle Physik VII, Am Hubland, D-97074 Wuerzburg (Germany); Moreschini, Luca [Ecole Polytechnique Federale de Lausanne (EPFL), Institut de Physique des Nanostructures, CH-1015 Lausanne (Switzerland); Bihlmayer, Gustav [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany); Reinert, Friedrich [Universitaet Wuerzburg, Experimentelle Physik VII, Am Hubland, D-97074 Wuerzburg (Germany); Forschungszentrum Karlsruhe, Gemeinschaftslabor fuer Nanoanalytik, D-76021 Karlsruhe (Germany)

    2010-07-01

    We have characterized the growth of La on Ag(111) by UPS, XPS and LEED. At La coverages of about 4 ML or higher and subsequent annealing we observe an ordered (2x2) surface structure that is rotated by 30 with respect to the substrate. In analogy to the well-studied system CePt{sub 5}, we identify our system as a LaAg{sub 5} alloy in a CaCu{sub 5}-type structure. Employing angle-resolved photoelectron spectroscopy (ARPES) we measured the band structure along high symmetry lines and the Fermi surface (FS) of the LaAg{sub 5} films. We find several sharp bands near the Fermi level and a high anisotropy in the FS. Our results are compared to ARPES results on CePt{sub 5} and LaPt{sub 5} as well as first-principles calculations. The system shall serve as a reference for iso-structural alloys composed of other lanthanoids, such as Ce or Gd, potentially showing Kondo physics or other magnetic effects.

  7. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    R S Khadayate; R B Waghulde; M G Wankhede; J V Sali; P P Patil

    2007-04-01

    This paper presents ethanol vapour sensing properties of WO3 thick films. In this work, the WO3 thick films were prepared by standard screen-printing method. These films were characterized by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM). The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery time.

  8. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  9. Photodegradation inhibitors for polyacrylonitrile/Ag (PAN/Ag) films. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Sergides, C.A.; Chughtai, A.R.; Smith, D.M.

    1985-09-01

    Three types of UV stabilizers have been investigated for the photostabilization of PAN/Ag films. First, the effect of UV-absorber stabilizers, like the hydrohybenzophenone derivatives (UVINUL SERIES, BASF) absorbing UV radiation in the same region as PAN, was studied. Such additives generally had little effect, while in some cases, photodegradation of PAN was enhanced because of photosensitization. Second, the effect of quencher stabilizers like nickel chelate complexes (Irgastab 2002, CIBA-GEIGY) on the photodegradation of PAN/Ag films was examined. They resulted in marked decreases in the photodegradation of the polymer. Thirdly, antioxidant stabilizers, such as 2,6-di-tert-butyl-4-methylphenol derivatives (Irganox 1010, CIBA-GEIGY), were studied and also found to have a significant inhibiting effect on the photodegradation of PAN. Increasing the concentration of an effective stabilizer was observed to further decrease the photodegradation. The stabilizer concentration was kept generally low, and a combination of 1% wt antioxidant (Irganox 1010) and 0.5% wt quencher (Irgastab 2002) proved to be optimum. Irganox 1010 and Irgastab 2002 in separate preliminary experiments (in the absence of the polymer) were found to be stable to ultraviolet radiation of air mass one (WG 305).

  10. Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties

    Science.gov (United States)

    Liu, Fajia; Liu, Hu; Li, Xiaoyun; Zhao, Huanyu; Zhu, Danping; Zheng, Yingying; Li, Chaorong

    2012-03-01

    The antibacterial and photocatalytic PVC film was prepared by doping heteronanostructure of TiO2 nanowire@Ag nanoparticles. TiO2 nanowire with 50-60 nm in diameter and 0.1 mm in length was prepared by a hydrothermal method, and Ag nanopartical about 5-10 nm in diameter was grafted on the surface of TiO2 nanowire evenly in the solution. The antimicrobial ability and the photocatalytic properties of the nano-TiO2@Ag/PVC film were systematically investigated by changing the influence factors such as the content of nano-TiO2@Ag, pH value and the cultivation condition. It confirmed that the nano-TiO2@Ag nanostructure could increase the antibacterial efficiency of the PVC film. Further, nano-TiO2@Ag/PVC film also showed enhanced photocatalytic activity to decompose Rhodmine B (RhB).

  11. γ-radiation Sensor Using Optical and Electrical Properties of Manganese Phthalocyanine (MnPc Thick Film

    Directory of Open Access Journals (Sweden)

    K. Arshak

    2002-05-01

    Full Text Available Manganese phthaloyanine polymer thick films were fabricated using screenprinting techniques. The optical parameters were obtained from the analysis of the absorption spectra over a wavelength range of 385-900nm. The d.c. electrical measurements were carried out in a range of 0-30 volts. The effects of γ-radiation on the optical and the electrical properties were investigated for dosimetry applications. The optical energy band gaps of these films showed a decrease in their values with the increase in the radiation dose. The electronic transition has changed from direct allowed for the as-printed films (unexposed to γ-rays to indirect allowed for the irradiated samples. Both the as-printed and irradiated Ag/MnPc/Ag devices demonstrated a Schottky conduction mechanism. Both the absorbance and the capacitance of the MnPc thick films displayed a highly consistent linear response to γ-ray exposure.

  12. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  13. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  14. Optical constants and their dispersion of Ag-MgF2 nanoparticle composite films

    Institute of Scientific and Technical Information of China (English)

    Zhaoqi Sun(孙兆奇); Daming Sun(孙大明)

    2004-01-01

    Ag-MgF2 composite films with different Ag fractions were prepared through a co-evaporation method.Microstructure analysis shows that the films are composed of amorphous MgF2 matrix and embedded fcc-Ag nanoparticles. The optical constants and their dispersion of the films, within the wavelength range of 250 - 650 nm, were measured by reflecting spectroscopic ellipsometry. The maximum of the imaginary part ε" of the complex dielectric permittivity attributing to the surface plasmon resonance polarization of the Ag nanoparticles in an Ag-MgF2 film, and the tangent of the phase-shift angle δ resulting from the dielectric loss of the film, occur at λ = 435 nm and λ = 420 nm, respectively. Based on Maxwell-Garnett effective medium theory, the experimentally observed dispersion spectra were reasonably described.

  15. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  16. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    Science.gov (United States)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq‑1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq‑1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  17. The effect of Ag addition on the optical properties of Se{sub 90}Te{sub 10} films

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, A.E., E-mail: ashraf_bekheet@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, El-Makrizi, Roxy, Cairo 9004 (Egypt); Hegab, N.A.; Afifi, M.A.; Atyia, H.E.; Sharaf, E.R. [Physics Department, Faculty of Education, Ain Shams University, El-Makrizi, Roxy, Cairo 9004 (Egypt)

    2009-02-01

    Se{sub 90}Te{sub 10-x}Ag{sub x} (0 {<=} x {<=} 6) compositions were prepared by quenching technique. Thin films with different thicknesses of the obtained compositions were deposited on dry clean glass substrates by thermal evaporation technique. Energy dispersive X-ray spectroscopy (EDX) indicates that samples are nearly stoichiometric. X-ray diffraction patterns indicate that they are in the amorphous state. The optical constants, the refractive index n and the absorption index k, have been calculated from transmittance T and reflectance R through the spectral range of 400-2500 nm for the studied films with different thicknesses (165-711 nm). From the analysis of refractive index n data, high frequency dielectric constant {epsilon}{sub {infinity}} was determined. Both {epsilon}{sub {infinity}} and n are found to decrease with the increase of Ag content. The optical band gap E{sub g}{sup opt} is calculated for all compositions from the absorption coefficient analysis. The effect of the Ag addition on the obtained optical parameters has been discussed. The analysis of absorption index k data, revealed the existence of allowed indirect transitions for all compositions. It is indicated also that E{sub g}{sup opt} increase with increasing Ag content.

  18. Film thickness dependent ordering dynamics of lamellar forming diblock copolymer thin films.

    Science.gov (United States)

    Peters, Robert D; Dalnoki-Veress, Kari

    2012-12-01

    Ellipsometry is used in a novel way to study the ordering dynamics of symmetric poly(styrene-methyl methacrylate) diblock copolymer thin films. Ordered thin films form lamellae parallel to the substrate which can form islands or holes at the free surface to ensure commensurability of the layers. The sensitivity of ellipsometry provides the unique ability to probe morphological changes during the ordering process before the ultimate formation of islands or holes at the free surface. We observe three distinct stages in the ordering process: i) an ordering into an intermediate state, ii) an incubation time where the film structure remains constant and iii) the nucleation of islands or holes to achieve equilibrium lamellar morphology. The time-resolved measurement of an incubation period and initial ordering stage provides a means for studying the effect of thickness on the ordering kinetics. The dependence of incubation time on the commensurability of the initial film height is explained using strong segregation theory.

  19. Temperature- and thickness-dependent elastic moduli of polymer thin films.

    Science.gov (United States)

    Ao, Zhimin; Li, Sean

    2011-03-22

    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  20. Overlay mark optimization for thick-film resist overlay metrology

    Institute of Scientific and Technical Information of China (English)

    Zhu Liang; Li Jie; Zhou Congshu; Gu Yili; Yang Huayue

    2009-01-01

    For thick resist implant layers, such as a high voltage P well and a deep N well, systematic and uncorrectable overlay residues brought about by the tapered resist profiles were found. It was found that the tapered profile is closely related to the pattern density. Potential solutions of the manufacturing problem include hardening the film solidness or balancing the exposure density. In this paper, instead of focusing on the process change methodology,we intend to solve the issue of the overlay metrology error from the perspective of the overlay mark design. Based on the comparison of the overlay performances between the proposed overlay mark and the original design, it is shown that the optimized overlay mark target achieves better performance in terms of profiles, dynamic precision,tool induced shift (TIS), and residues. Furthermore, five types of overlay marks with dummy bars are studied, and a recommendation for the overlay marks is given.

  1. Preparation of Lead-free Thick-film Resistor Pastes

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; LI Shihong; LIU Jisong; CHEN Liqiao; YING Xingang; WANG Ke

    2012-01-01

    The preparation of lead-free thick-film resistors are reported:using RuO2 and ruthenates as conductive particles,glass powders composed of B2O3,SiO2,CaO and Al2O3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al2O3 substrates,and then sintering in a belt furnace.X-ray diffraction (XRD) and electron scanning microscopy (SEM) have been used to characterize the conductive particles.The resistors exhibit good retiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80 Ω/□ to 600 Ω/□.The resistors prepared are qualified for common use.

  2. Development of metal oxide impregnated stilbite thick film ethanol sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mahabole, M. P., E-mail: kashinath.bogle@gmail.com; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (India)

    2016-05-06

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO{sub 2} and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  3. The effect of grain size and film thickness on the thermal expansion coefficient of copper thin films.

    Science.gov (United States)

    Hwang, Seulgi; Kim, Youngman

    2011-02-01

    Cu thin films underwent thermal cycling to determine their coefficient of thermal expansion (CTE). The thermal stress of the Cu thin films with various microstructures (different grain size and film thickness) was measured using a curvature measurement system. The thermal expansion coefficients of the films were obtained from the slope of the stress-temperature curve with the knowledge of the Young's modulus and Poisson's ratio. The change in thermal stress with temperature of the Cu thin films tended to decrease with increasing grain size, resulting in an increase in the CTE. The thickness of Cu thin film had little effect on the thermal stress or the CTE.

  4. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography.

    Science.gov (United States)

    Aranha Dos Santos, Valentin; Schmetterer, Leopold; Gröschl, Martin; Garhofer, Gerhard; Schmidl, Doreen; Kucera, Martin; Unterhuber, Angelika; Hermand, Jean-Pierre; Werkmeister, René M

    2015-08-10

    Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new non-invasive fully automated approach to measure tear film thickness based on spectral domain optical coherence tomography and on an efficient delay estimator. Silicon wafer phantom were used to validate the thickness measurement. The technique was applied in vivo in healthy subjects. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the in vivo central tear film thickness measurements are precise and repeatable with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented approach could be used in clinical setting to study patients with dry eye disease and monitor their treatments.

  5. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  6. Growth of ultra-thin FeO(100) films on Ag(100): A combined XPS, LEED and CEMS study

    Science.gov (United States)

    Abreu, G. J. P.; Paniago, R.; Pfannes, H.-D.

    2014-01-01

    The production and characterization of ultra-thin iron oxide films grown on an atomically clean Ag(100) surface by molecular beam epitaxy (MBE) is presented. The goal of this work was to prepare ultra-thin FeO(100) with excellent crystallographic quality. The films were prepared with high purity 57Fe and O2 and afterwards analyzed in situ by means of Low Energy Electron Diffraction (LEED), X-Ray Photoelectron Spectroscopy (XPS) and Conversion Electron Mössbauer Spectroscopy (CEMS). During preparation the evaporation rate, the O2 partial pressure, film thickness and annealing procedures were varied. The analysis of the various samples showed that in general a mixture of FeO and Fe3O4 phases is obtained. We determined the best conditions to produce the desired oxide (FeO). Besides the paramagnetic phase, the antiferromagnetic phase of the FeO films was characterized by low temperature Mössbauer spectra.

  7. CO2 Selective Potentiometric Sensor in Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2008-08-01

    Full Text Available A potentiometric sensor device based on screen-printed Nasicon films was investigated. In order to transfer the promising sensor concept of an open sodium titanate reference to thick film technology, “sodium-rich” and “sodium-poor” formulations were compared. While the “sodium-rich” composition was found to react with the ion conducting Nasicon during thermal treatment, the “sodium-poor” reference mixture was identified as an appropriate reference composition. Screen-printed sensor devices were prepared and tested with respect to CO2 response, reproducibility, and cross-interference of oxygen. Excellent agreement with the theory was observed. With the integration of a screen-printed heater, sensor elements were operated actively heated in a cold gas stream.

  8. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  9. Novel Ballistic Processing of Sn-0.7Cu Thick Films

    Science.gov (United States)

    Cavero, D.; Stewart, K.; Morsi, K.

    2016-11-01

    The present paper discusses a novel process (Ballistic Processing) for the ultra-rapid processing of textured and un-textured thick and potentially thin films. The effect of processing velocity (14.6 to 36.1 m/s) on the developed external structure and internal microstructure of Sn-0.7Cu thick film is discussed. Film thicknesses ranging from 6.08 to 12.79 μm were produced and characterized by two-dimensional hypoeutectic microstructures. Both film thickness and dendrite arm spacing decreased with an increase in processing velocity.

  10. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    Science.gov (United States)

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  11. Non-linear dynamics of inlet film thickness during unsteady rolling process

    Science.gov (United States)

    Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping

    2016-05-01

    The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.

  12. Mn$_3$O$_4$(001) film growth on Ag(001) - a systematic study using NEXAFS, STM, and LEED

    CERN Document Server

    Gillmeister, Konrad; Shantyr, Roman; Trautmann, Martin; Meinel, Klaus; Chassé, Angelika; Schindler, Karl-Michael; Neddermeyer, Henning; Widdra, Wolf

    2015-01-01

    The film growth of Mn$_3$O$_4$(001) films on Ag(001) up to film thicknesses of almost seven unit cells of Mn$_3$O$_4$ has been monitored using a complementary combination of near-edge X-ray absorption fine structure spectroscopy (NEXAFS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED). The oxide films have been prepared by molecular beam epitaxy. Using NEXAFS, the identity of the Mn oxide has clearly been determined as Mn$_3$O$_4$. For the initial stages of growth, oxide islands with p(2$\\times$1) and p(2$\\times$2) structures are formed, which are embedded into the substrate. For Mn$_3$O$_4$ coverages up to 1.5 unit cells a p(2$\\times$1) structure of the films is visible in STM and LEED. Further increase of the thickness leads to a phase transition of the oxide films resulting in an additional c(2$\\times$2) structure with a 45$^\\circ$ rotated atomic pattern. The emerging film structures are discussed on the basis of a sublayer model of the Mn$_3$O$_4$ spinel unit cell. While t...

  13. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  14. Microstructure and texture analysis of YBCO thick film with peritectic growth on unoriented silver substrate

    Institute of Scientific and Technical Information of China (English)

    WANG Jue; MALOUFI Nabila; FAN Zhanguo; XUE Xiangxin; ESLING Claude

    2009-01-01

    YBCO textured thick film was prepared by direct periteetic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative texture analysis. The main difficulty in resolving the ori-entation of YBCO pseudo-cubic structure was investigated. Automated orientation mapping was performed on YBCO thick film. Local tex-ture was presented in the form of orientation maps. Misorientation distribution and crystal growth characterization in the YBCO thick film were revealed. Large domains with well-aligned YBCO grains were formed. Each domain presented clear in-plane and out-plane textures.

  15. One-pot Synthesis of Mesostructured Ag/Silica Composite Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Mesoporous silica films embedded with Ag nanoparticles were directly synthesized by a solgel dip-coating process, combining alkyl (ethylene oxide) surfactant as temple and tetraethoxysilane as inorganic precursor. The addition of Ag+ ion to the reaction sol was prior to the formation of films, followed by the heat treatment at 150 ℃ led to the creation of Ag nanoparticies. The formation of Ag nanoparticles and the change of its surface plasma resonance absorption were characterized by Uv-vis. The small angle XRD test indicated that the films had an ordered hexagonal mesoporous structure, of which the unit cell parameter was about 4.26 nm. The TEM images and EDS spectra of the samples have directly verified the presence of mono-dispersed Ag nanoparticles within the films, due to the confine effects of mesopores.

  16. Texture formation in Ag thin films: Effect of W-Ti diffusion barriers

    Science.gov (United States)

    Bhagat, S. K.; Alford, T. L.

    2008-11-01

    Pure Ag films were deposited on SiO2/Si with and without introduction of W0.7Ti0.3 barrier layers. The films were annealed in vacuum for 1 h at temperatures up to 650 °C. X-ray diffraction pole figure analysis was used to investigate the texture information in as-deposited and annealed films. After annealing, the {111} texture in Ag films increased; however, the degree of increase was significantly higher in Ag/W-Ti/SiO2. In Ag/SiO2 structures, the {200} texture also increased. In Ag/W-Ti/SiO2 structures, no significant increase in {200} texture was observed; however, {111} twin related {511} texture evolved. In as-deposited samples, {111} pole figure revealed that {111} absolute intensity was higher in Ag/SiO2 than in Ag/W-Ti/SiO2. After annealing, Ag {111} intensity was always higher in Ag/W-Ti/SiO2. Sources for the texture evolution were discussed in detail. Field emission scanning electron microscope showed the presence of twins and abnormal grain growth. After annealing at 650 °C, both the roughness and resistivity of Ag increased significantly.

  17. Noise Properties Of Thick-Film Conducting Lines For Integrated Inductors

    Directory of Open Access Journals (Sweden)

    Stadler Adam Witold

    2015-06-01

    Full Text Available Studies of noise properties of thick-film conducting lines from Au or PdAg conductive pastes on LTCC or alumina substrates are reported. Experiments have been carried out at the room temperature on samples prepared in the form of meanders by traditional screen-printing or laser-shaping technique. Due to a low resistance of the devices under test (DUTs, low-frequency noise spectra have been measured for the dc-biased samples arranged in a bridge configuration, transformer-coupled to a low-noise amplifier. The detailed analysis of noise sources in the signal path and its transfer function, including the transformer, has been carried out, and a procedure for measurement setup self-calibration has been described. The 1/f noise component originating from resistance fluctuations has been found to be dominant in all DUTs. The analysis of experimental data leads to the conclusion that noise is produced in the bends of meanders rather than in their straight segments. It occurs that noise of Au-based laser-shaped lines is significantly smaller than screen-printed ones. PdAg lines have been found more resistive but simultaneously less noisy than Au-based lines.

  18. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    Directory of Open Access Journals (Sweden)

    S. R. Chalana

    2015-10-01

    Full Text Available Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD, atomic force microscopy (AFM, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDS, micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  19. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    Energy Technology Data Exchange (ETDEWEB)

    Chalana, S. R.; Mahadevan Pillai, V. P., E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Thiruvananthapuram– 695581, Kerala (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore- 452017, Madhyapradesh (India)

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  20. Perpendicular Magnetization Behavior of Low- Temperature Ordered FePt Films with Insertion of Ag Nanolayers

    Directory of Open Access Journals (Sweden)

    Da-Hua Wei

    2016-03-01

    Full Text Available FePt-Ag nanocomposite films with large perpendicular magnetic anisotropy have been fabricated by alternate-atomic-layer electron beam evaporation onto MgO(100 substrates at the low temperature of 300 °C. Their magnetization behavior and microstructure have been studied. The surface topography was observed and varied from continuous to nanogranular microstructures with insertion of Ag nanolayers into Fe/Pt bilayer films. The measurement of angular-dependent coercivity showed a tendency of the domain-wall motion as a typical peak behavior shift toward more like a coherent Stoner-Wohlfarth rotation type with the insertion of Ag nanolayers into the FePt films. On the other hand, the inter-grain interaction was determined from a Kelly-Henkel plot. The FePt film without insertion of Ag nanolayers has a positive δM, indicating strong exchange coupling between neighboring grains, whereas the FePt film with insertion of Ag nanolayers has a negative δM, indicating that inter-grain exchange coupling is weaker, thus leading to the presence of dipole interaction in the FePt–Ag nanogranular films. The magnetic characteristic measurements confirmed that the perpendicular magnetization reversal behavior and related surface morphology of low-temperature-ordered FePt(001 nanogranular films can be systematically controlled by the insertion of Ag nanolayers into the FePt system for next generation magnetic storage medium applications.

  1. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films.

    Science.gov (United States)

    Wojcieszak, D; Mazur, M; Kaczmarek, D; Mazur, P; Szponar, B; Domaradzki, J; Kepinski, L

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti-Ag and Nb-Ag thin films have been carried out. Ti-Ag and Nb-Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti-Ag and Nb-Ag thin films were nanocrystalline. In the case of Ag-Ti film presence of AgTi3 and Ag phases was identified, while in the structure of Nb-Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb-Ag thin films was covered with Ag-agglomerates, while Ti-Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h.

  2. Nanostructured SnO2 thick films for gas sensor application: analysis of structural and electronic properties

    Science.gov (United States)

    Miskovic, Goran; Aleksic, Obrad S.; Nikolic, Maria V.; Nicolics, Johann; Radosavljevic, Goran; Vasiljevic, Zorka Z.; Lukovic, Miloljub D.; Smetana, Walter

    2016-03-01

    This research is focused on structural and electrical characterisation of tin oxide (SnO2) applied as a thick film and investigation of its properties as gas sensitive material. Micron sized SnO2 powder was milled in an agate mill for six hours to fabricate SnO2 nanopowder, which was afterwards sieved by 325 mesh sieve and characterized by XRD and SEM. This powder was used as functional part in the production of thick film tin oxide paste containing a resin vehicle with 4 wt. % nanosize glass frits acting as permanent binder. The glass frits where additionally milled for twelve hours in the agate mills to nanosized powder and sieved by a 325 mesh sieve as well. The achieved thick film paste was screen printed on alumina and fired at 850oC peak temperature for 10 minutes in air. After the sintering process, thick film samples where characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The reflectivity was measured on the same samples by UV-VIS spectrophotometer: the band gap was determined from the slope of reflectance. After that a matrix of different interdigitated electrode structure of PdAg paste was printed and sintered using the mentioned sintering conditions. The tin oxide thick film was printed over the interdigitated electrodes as a top layer and sintered again under the same conditions. The total electrical resistance was measured as a function of the electrode spacing and temperature. A negative temperature coefficient (NTC) was identified and measured in the range from room temperature (27°C) to 180°C in a climate chamber. Finally the samples were placed into a gas reactor with NOx and CO gas and the resistance was measured in the same temperature range (27°C-200°C).

  3. Potentiometric RuO2-Ta2O5 pH sensors fabricated using thick film and LTCC technologies.

    Science.gov (United States)

    Manjakkal, Libu; Zaraska, Krzysztof; Cvejin, Katarina; Kulawik, Jan; Szwagierczak, Dorota

    2016-01-15

    The paper reports on the preparation, properties and application of potentiometric pH sensors with thick film RuO2-Ta2O5 sensing electrode and Ag/AgCl/KCl reference electrode screen printed on an alumina substrate. Furthermore, it presents fabrication procedure and characterization of a new miniaturized pH sensor on LTCC (low temperature cofired ceramics) substrate, destined for wireless monitoring. The crystal structure, phase and elemental composition, and microstructure of the films were investigated by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Potentiometric characterization was performed in a wide pH range of 2-12 for different storage conditions and pH loops. The advantages of the proposed thick film pH sensors are: (a) low cost and easy fabrication, (b) excellent sensitivity close to the Nernstian response (56mV/pH) in the wide pH range, (c) fast response, (d) long lifetime, (e) good reproducibility, (f) low hysteresis and drift effects, and (g) low cross-sensitivity towards Li(+), Na(+) and K(+) as interfering ions. The applicability of the sensors for pH measurement of river, tap and distilled water, and some drinks was also tested.

  4. Thickness dependent CARS measurement of polymeric thin films without depth-profiling.

    Science.gov (United States)

    Choi, Dae Sik; Jeoung, Sae Chae; Chon, Byung-Hyuk

    2008-02-18

    Coherent anti-Stokes Raman scattering (CARS) microscopy is demonstrated to be a promising optical method for the characterization of polymer films with film thickness varying between 180 nm to 4300 nm. In case of PMMA films with a thickness of few hundreds of nanometers, the observed CARS signal was mainly associated with the interference effect of large nonresonant CARS field from glass substrate and the weak resonant field of PMMA. The dependence of resonant CARS intensity of PMMA film on film thickness is in good agreement with the theoretical prediction on a CARS field. The current work offers potential possibilities of noninvasive thickness measurement of polymeric thin film of thickness less than 180 nm by multiplex CARS microscopy without depth-profiling.

  5. Development of Dual-light Path Monitoring System of Optical Thin-film Thickness

    Institute of Scientific and Technical Information of China (English)

    XU Shi-jun

    2005-01-01

    The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.

  6. Preparation and characterization of microcrack-free thick YBa2Cu3O7-δ films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High quality epitaxial YBa2Cu3O7-δ (YBCO) superconducting films were fabricated on (00l) LaAlO3 substrates using the direct-current sputtering method. The attainment of an unusually high film thickness (up to 2.0 μm) without microcracking was attributed in part to the presence of pores correlated with yttrium-rich composition in the films. The influence of the film thickness on the microstructure was investigated by X-ray diffraction conventional scan (θ-2θ, ω-scan, pole figure) and high-resolution reciprocal space mapping. The films were c-axis oriented with no a-axis-oriented grains up to the thickness of 2 μm. The surface morphology and the critical current density (Jc) strongly depended on the film thickness.Furthermore, the reasons for these thickness dependences were elucidated in derail.

  7. Effect of silver growth temperature on the contacts between Ag and ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    LI XinKun; LI QingShan; LIANG DeChun; XU YanDong; XIE XiaoJun

    2009-01-01

    Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were depos-ited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts be-tween Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150℃ and 200℃. Ohmic contacts were formed while the growth temperatures were lower than 150℃ or higher than 200℃. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

  8. Effect of silver growth temperature on the contacts between Ag and ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures,200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150 ℃ and 200℃. Ohmic contacts were formed while the growth temperatures were lower than 150℃ or higher than 200 ℃. After analysis,the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

  9. Preparation and Structural Characterization of Superionic Conductor RbAg4I5 Crystalline Grain Film

    Science.gov (United States)

    Cao, Yang; Sun, Hong-San; Sun, Jia-Lin; Tian, Guang-Yan; Xing, Zhi; Guo, Ji-Hua

    2003-05-01

    Superionic conductor RbAg4I5 crystalline grain films were prepared by vacuum thermal evaporation on NaCl crystalline substrates. The surface morphology, microstructure and the electronic energy states of the films were examined by atomic force microscopy, transmission-electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the obtained RbAg4I5 layer has an epitaxial film of perfect crystalline structure, and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system. The principal x-ray diffraction peaks at d = 3.7447 and 1.8733 Å are related to the structure of ternary compound RbAg4I5 films.

  10. Effect of Ag Nanoparticles on Optical Properties of R6G Doped PMMA Films

    Institute of Scientific and Technical Information of China (English)

    DENG Yan; SUN You-Yi; WANG Pei; ZHANG Dou-Guo; JIAO Xiao-Jin; MING Hai; ZHANG Qi-Jing; JIAO Yang; SUN Xiao-Quan

    2007-01-01

    The composite PMMA films containing Ag nanoparticles and rhodamine 6G are prepared.We investigate the fluorescence Droperties and nonlinear optical properties of R6G/PMMA films influenced by Ag nanoparticles.The fluorescence enhancement factor is about 3.3.The corresponding nonlinear refractive index is measured to be-2.423×10-8 esu using the Z-scan technique,which is much enhanced compared with the R6G/PMMA film.The results indicate that these enhancements are attributed to surface plasmon resonance of Ag nanoparticles.

  11. Layer-by-layer assembly of nanocomposite films with thickness up to hundreds of nanometers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling-de; YAN Yu-hua; YU Hai-hu; GU Er-dan; JIANG De-sheng

    2006-01-01

    Polyelectrolyte/polyelectrolyte, organic molecule/colloidal CdS and polyelectrolyte/MWCNT films were fabricated via the layer-by-layer assembling technique. The assembled films were characterized by UV-vis spectrophotometer, X-ray diffractometry,nano profilometer and scanning electron microscopy. The results demonstrate that the layer-by-layer assembling technique can be used to make the nanoscaled films from polyelectrolytes and thicker composite films from suitable precursor materials. Both organic molecule/colloidal CdS films and PEI/MWCNT films with thickness of hundreds of nanometers were obtained. For the organic molecule/colloidal CdS films, a reasonable explanation for the result is that both the organic molecules and the CdS particles aggregate in the films. For the PEI/MWCNT films, obviously, it is the MWCNT that makes the great contribution to the film thickness.

  12. A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite film for water purification and antibacterial application under solar light irradiation.

    Science.gov (United States)

    Zhu, Qi; Hu, Xiaohong; Stanislaus, Mishma S; Zhang, Nan; Xiao, Ruida; Liu, Na; Yang, Yingnan

    2017-01-15

    TiO2-based thin films have been intensively studied in recent years to develop efficient photocatalyst films to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, P/Ag/Ag2O/Ag3PO4/TiO2 composite films on the inner-surface of glass tube were successfully prepared via sol-gel approach. P/Ag/Ag2O/Ag3PO4/TiO2 composite films with 3 coating layers, synthesized at 400°C for 2h, showed the optimal photocatalytic performance for rhodamine B (Rh B) degradation. The results indicated that degradation ratio of Rh B by P/Ag/Ag2O/Ag3PO4/TiO2 composite film reached 99.9% after 60min under simulated solar light, while just 67.9% of Rh B was degraded by pure TiO2 film. Moreover, repeatability experiments indicated that even after five recycling runs, the photodegradation ratio of Rh B over composite film maintained at 99.9%, demonstrating its high stability. Photocatalytic inactivation of E. coli with initial concentration of 10(7)CFU/mL also showed around 100% of sterilization ratio under simulated solar light irradiation in 5min by the composite film. The radical trapping experiments implied that the major active species of P/Ag/Ag2O/Ag3PO4/TiO2 composite films were photo-generated holes and O2(-) radicals. The proposed photocatalytic mechanism shows that the transfer of photo-induced electrons and holes may reduce the recombination efficiency of electron-hole pairs and potential photodecomposition of composite film, resulting in enhanced photocatalytic ability of P/Ag/Ag2O/Ag3PO4/TiO2 composite films.

  13. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  14. Enhanced photoelectrochemical performance of Ag-ZnO thin films synthesized by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Tarwal, N.L. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Vidyanagar, Kolhapur 416004, Maharashtra (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Vidyanagar, Kolhapur 416004, Maharashtra (India)

    2011-07-15

    Highlights: > Synthesis of Ag-ZnO nanocomposites by spray pyrolysis technique. > Examine the effect of Ag doping on the structural, morphological optical, and photoelectrochemical properties. > Surface Plasmon Resonance phenomenon of the spray deposited Ag-ZnO nanocomposites. > Enhancement in photoelectrochemical performance of ZnO thin films after Ag doping. - Abstract: Silver doped zinc oxide (Ag-ZnO) thin films were deposited on glass and tin doped indium oxide (ITO) coated glass substrates by using pneumatic spray pyrolysis technique (SPT) at 450 deg. C from aqueous solutions of zinc acetate and silver nitrate precursors. The effect of silver doping on structural, morphological and optical properties of films was studied. The XRD spectra of the Ag-ZnO films indicate the polycrystalline nature having hexagonal crystal structure. SEM micrographs show the uniform distribution of spherical grains of about 80-90 nm grain size for the pure ZnO thin films. The Ag nanoparticles are clearly visualized in SEM images of Ag-ZnO samples. The optical band gap energy decreases as the percentage of silver doping increases. Surface Plasmon Resonance (SPR) related phenomena are observed and correlated to the optical properties of Ag-ZnO thin films. The overall photoelectrochemical (PEC) performance of the samples was investigated and discussed. Moreover, the samples are more photoactive as compare to the pure ZnO sample and the sample ZnOAg{sub 15} shows the highest current. The photocurrent increases upto 249 {mu}A cm{sup -2} and 303 {mu}A cm{sup -2} in visible light and in UV illumination, respectively, and then decreases as the Ag doping increases into the film.

  15. Photochromic and self-cleaning properties of TiO2-AgCl/TiO2-xCu thin film.

    Science.gov (United States)

    Sangchay, Weerachai; Sikong, Lek; Kooptarnond, Kalayanee

    2013-02-01

    The TiO2-AgCl/TiO2-xCu thin films were prepared by sol-gel method and dip coated on glass slide. The prepared films were synthesized at the temperature of 400 degrees C for 2 h with a heating rate of 10 degrees C/min. The microstructure and properties of synthesized TiO2-AgCl/TiO2-xCu thin films were characterized by X-ray diffraction, scanning electron microscopy, atomic forced microscope and UV-vis diffuse reflectance spectroscopy. Finally, the hydrophilic property was evaluated by means of contact angle of water droplet on the films. The results show all samples have film thickness in range of 400-500 nm and their surfaces are dense and strong with a large surface area according to the image of atomic forced microscope. It can be noted that TiO2-AgCl/TiO2-5Cu thin films exhibit the highest photochromic (or the lowest capability of light transmittance) at 250-400 nm. The TiO2-AgCl/TiO2-xCu thin films can block UV C, UV B and UV A rays and exhibit self-cleaning effect (small contact angle, 3.9 degrees ) under UV irradiation.

  16. Stabilization of polar Mn3O4(001) film on Ag(001): Interplay between kinetic and structural stability

    Science.gov (United States)

    Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.

    2017-10-01

    Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar Mn3O4 film and as a consequence of that a strong interplay between structural and kinetic stability in the Mn3O4 film has been observed. Further, stripe-like LEED pattern has been observed from the Mn3O4(001) surface, for the film grown at higher oxygen partial pressure (> 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

  17. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 12...

  18. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fiber roving.

    Science.gov (United States)

    Ubolchonlakate, Kornkanok; Sikong, Lek; Tontai, Tienchai

    2010-11-01

    The photocatalytic Ag doped TiO2 porous films were prepared by sol-gel method and dip coated on glass fiber roving. The sol composed of titanium (IV) isopropoxide, triethanolamine, ethanol and nitric acid followed by calcination of the film at 500 degrees C for 1 hour with a heating rate of 3 degrees C/min. The surface morphology and properties of synthesized TiO2 films were characterized by X-ray diffraction, atomic forced microscope and scanning electron microscope. A laboratory photocatalytic reactor was set up to carry out photoactivity of the prepared catalysts. The results show that TiO2-Ag and TiO2-Ag-TEA porous films give highest rate of formaldehyde gas degradation. It can be noted that triethanolamine exhibits two effects on TiO2 composite films; one is its effect on porous film structure and second is a reverse effect of hindrance of anatase growth.

  19. Enhanced optical absorption by Ag nanoparticles in a thin film Si solar cell

    Institute of Scientific and Technical Information of China (English)

    Chen Feng-Xiang; Wang Li-Sheng; Xu Wen-Ying

    2013-01-01

    Thin film solar cells have the potential to significantly reduce the cost of photovoltaics.Light trapping is crucial to such a thin film silicon solar cell because of a low absorption coefficient due to its indirect band gap.In this paper,we investigate the suitability of surface plasmon resonance Ag nanoparticles for enhancing optical absorption in the thin film solar cell.For evaluating the transmittance capability of Ag nanoparticles and the conventional antireflection film,an enhanced transmittance factor is introduced.We find that under the solar spectrum AM1.5,the transmittance of Ag nanoparticles with radius over 160 nm is equivalent to that of conventional textured antireflection film,and its effect is better than that of the planar antireflection film.The influence of the surrounding medium is also discussed.

  20. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...

  1. On the film thickness of grease-lubricated contacts at low speed

    NARCIS (Netherlands)

    Cen, H.; Lugt, Pieter Martin; Morales-Espejel, G.E.

    2014-01-01

    The contribution of the thickener to the thickness of the lubricating film in grease-lubricated contacts is investigated. Four different types of greases were tested in a ball/spherical roller-on-disc machine, where the film thickness was measured using the interferometry method, varying the tempera

  2. Raman micro-spectroscopy for quantitative thickness measurement of nanometer thin polymer films

    NARCIS (Netherlands)

    Liszka, Barbara M.; Lenferink, Aufried T.M.; Witkamp, Geert-Jan; Otto, Cees

    2015-01-01

    The sensitivity of far-field Raman micro-spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error ma

  3. Piezoelectric ceramic thick films deposited on silicon substrates by screen printing

    Science.gov (United States)

    Yao, Kui; He, Xujiang; Xu, Yuan; Chen, Meima

    2004-07-01

    Screen-printing processes offer advantages in producing directly patterned and integrated piezoelectric elements, and fill an important technological gap between thin film and bulk ceramics. However, several existing problems in the screen-printed piezoelectric thick films, such as the poor reliability and the required high sintering temperature, are significantly limiting their applications. In this work, lead zirconate titanate (PZT) ceramic films of 30 μm in thickness were deposited on Pt-coated silicon substrates by the screen-printing process, in which the ceramic pastes were prepared through a chemical liquid-phase doping approach. Porous thick films with good adhesion were formed on the substrates at a temperature of 925°C. Stable out-of-plane piezoelectric vibration of the thick films was observed with a laser scanning vibrometer (LSV), and the piezoelectric dilatation magnitude was determined accordingly. Our piezoelectric measurements through the areal displacement detection with LSV exhibited distinct advantages for piezoelectric film characterization, including high reliability, high efficiency, and comprehensive information. The longitudinal piezoelectric coefficients of the thick films were calculated from the measured dilatation data through a numerical simulation. High piezoelectric voltage constants were obtained due to the very low dielectric constant of the porous thick films. The application potentials of our screen-printed thick films as integrated piezoelectric sensors are discussed.

  4. Growth of ultra-thin FeO(100) films on Ag(100): A combined XPS, LEED and CEMS study

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, G.J.P., E-mail: guilafis@gmail.com [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Depto. de Física, ICEx, Universidade Federal de Minas Gerais, CP702 Belo Horizonte - MG (Brazil); Paniago, R.; Pfannes, H.-D. [Depto. de Física, ICEx, Universidade Federal de Minas Gerais, CP702 Belo Horizonte - MG (Brazil)

    2014-01-15

    The production and characterization of ultra-thin iron oxide films grown on an atomically clean Ag(100) surface by molecular beam epitaxy (MBE) is presented. The goal of this work was to prepare ultra-thin FeO(100) with excellent crystallographic quality. The films were prepared with high purity {sup 57}Fe and O{sub 2} and afterwards analyzed in situ by means of Low Energy Electron Diffraction (LEED), X-Ray Photoelectron Spectroscopy (XPS) and Conversion Electron Mössbauer Spectroscopy (CEMS). During preparation the evaporation rate, the O{sub 2} partial pressure, film thickness and annealing procedures were varied. The analysis of the various samples showed that in general a mixture of FeO and Fe{sub 3}O{sub 4} phases is obtained. We determined the best conditions to produce the desired oxide (FeO). Besides the paramagnetic phase, the antiferromagnetic phase of the FeO films was characterized by low temperature Mössbauer spectra. - Highlights: • Highly ordered iron oxide ultra-thin film was grown on Ag(100) single crystal. • The samples were submitted to annealing at various temperatures. • The changes in the iron oxide phases were checked by LEED, XPS and CEMS. • The best conditions to prepare the wüstite and magnetite phases were determined.

  5. Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Shunhua Wang

    2013-01-01

    Full Text Available Flexible, transparent, and conductive films based on random networks of Ag nanowires were prepared by vacuum-filtrating method. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby achieving a high aspect ratio (>1000. The films fabricated by Ag nanowires exhibit the excellent transparency with a 92% optical transmittance and a low surface resistivity of 11 Ωsq−1. Importantly, both the transmittance and sheet resistance decrease with the increasing of the Ag nanowires contents. When the contents of Ag nanowires are up to 200 mg/m2 especially, the surface resistivity quickly falls below 5 Ωsq−1. Also, these films are robust, which have almost no change in sheet resistance after the repeating bends over 200 cycles. These encouraging results may have a potential application in flexible and transparent electronics and other heating systems.

  6. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    Science.gov (United States)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  7. Measurement of the refractive index and thickness for infrared optical films deposited on rough substrates.

    Science.gov (United States)

    Saito, M; Nakamura, S; Miyagi, M

    1992-10-01

    A novel method is proposed to evaluate the refractive index and thickness of dielectric thin films in the infrared wavelength range. The method is useful for measurement of thin films that are formed on such rough substrates as metal plates, since it utilizes only the wavelengths of interference peaks, which is slightly affected by surface roughness of the sample. The method was applied to the measurement of germanium, zinc selenide, and lead fluoride films deposited on copper substrates. Measured thicknesses agreed well with the values that were obtained by ellipsometry, and refractive indices exhibited a tendency to increase with the film thickness.

  8. Laser desorption of NO from a thick C 60 film

    Science.gov (United States)

    Hoger, T.; Marzok, C.; Jongma, R. T.; Zacharias, H.

    2006-09-01

    The desorption of NO molecules from a thick C 60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot( v″ = 0) = 370 K, Trot( v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10 -17 cm 2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.

  9. Relationship between Supplied Oil Flow Rates and Oil Film Thicknesses under Starved Elastohydrodynamic Lubrication

    Directory of Open Access Journals (Sweden)

    Taisuke Maruyama

    2015-04-01

    Full Text Available Many studies have already considered starved lubrication. However, there have been no reports on the oil film thicknesses under steady starved EHL (elastohydrodynamic lubrication, where the ultra-low volume of oil supplied per unit time is uniform. The present study examined the relationship between the supplied oil flow rate and oil film thickness under steady starved lubrication. A ball-on-disk testing machine was used in experiments to measure the oil film thickness by means of optical interferometry. A microsyringe pump was used to accurately control the supplied oil flow rate. The supplied oil flow rate was kept constant, and the minimum oil film thickness was measured for 1 h after the start of the tests to determine the relationship between the supplied oil flow rate and oil film thickness.

  10. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films.

  11. Preparation and characterisation of novel thick sol-gel titania film photocatalysts.

    Science.gov (United States)

    Mills, Andrew; Elliott, Nicholas; Hill, George; Fallis, David; Durrant, James R; Willis, Richard L

    2003-05-01

    The preparation and characterization of thick (9 microns), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003, using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.

  12. Preparation and Structural Characterization of Superionic Conductor RbAg4I5 Crystalline Grain Film

    Institute of Scientific and Technical Information of China (English)

    曹阳; 孙红三; 孙家林; 田广彦; 邢志; 郭继华

    2003-01-01

    Superionic conductor RbAg4I5 crystalline grainfilms were prepared by vacuum thermal evaporation on NaCl crystalline substrates. The surface morphology, microstructure and the electronic energy states of the films were examined by atomic force microscopy, transmission-electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the obtained RbAg4I5 layer has an epitaxial film of perfect crystalline structure, and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system. The principal x-ray diffraction peaks at d = 3.7447 and 1.8733A are related to the structure of ternary compound RbAg4I5films.

  13. Study of 200 MeV Ag{sup 15+} ion induced amorphisation in nickel ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Gagan, E-mail: gagandikshit@yahoo.i [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Singh, Jitendra Pal, E-mail: Jitendra_singh2029@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Srivastava, R.C., E-mail: rcsri@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Agrawal, H.M., E-mail: hma001@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India)

    2011-01-15

    Thin films of nickel ferrite of thickness {approx}100 and 150 nm were deposited by pulsed laser deposition. The films were irradiated with a 200 MeV Ag{sup 15+} beam of three fluences 1 x 10{sup 12}, 2 x 10{sup 12} and 4 x 10{sup 12} ions/cm{sup 2}. X-ray diffraction showed a decrease in the intensity of peaks indicating progressive amorphisation with increased irradiation fluence. Fourier transform infra-red and Raman spectra of pristine and irradiated films were also recorded which showed a degradation of the crystallinity of the samples after irradiation. The damage cross section of the infra-red bands was determined. It was found that the two bands at 557 and 614 cm{sup -1} did not show similar behaviour with fluence.

  14. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Bagheri R.

    2013-06-01

    Full Text Available Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C. Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI, Panavia F (Kuraray, Varioloink II (Ivoclar, Maxcem (Kerr, Nexus2 (Kerr and two resin-modified glass-ionomer luting cements (RM-GICs; GC Fuji Plus (GC Corporation, and RelyX Luting 2 (3 M/ESPE. The film thickness and flow rate of each cement (n=15 was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements pro-duced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm.Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature.

  15. Spectral characteristics of nanometer-thick chromium films in terahertz frequency range

    Science.gov (United States)

    Andreev, V. G.; Angeluts, A. A.; Vdovin, V. A.; Lukichev, V. F.

    2015-02-01

    The spectral characteristics (reflection, transmission, and absorption coefficients) of thin chromium films on silica substrates have been measured using a pulsed source of terahertz radiation. The spectra of optical coefficients were obtained in a frequency range of 0.25-1.1 THz. Dependences of the optical coefficients on the metal film thickness at 1 THz were constructed. The maximum absorption coefficient (43%) was observed at a film thickness of 10 nm.

  16. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    Science.gov (United States)

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering.

  17. Effect of thickness and temperature of copper phthalocyanine films on their properties

    Directory of Open Access Journals (Sweden)

    Alieva Kh. S.

    2012-06-01

    Full Text Available The research has shown that copper phthalocyanine films, having a set of unique properties, can be successfully used as gas-sensitive coating of resistive structures. The thickness of the film, in contrast to its temperature, is not the determining factor for high sensitivity. Low operating temperature of structures with copper phthalocyanine films allows to exploit them in economy mode.

  18. Influence of Ag and Sn incorporation in In2S3 thin films

    Science.gov (United States)

    Lin, Ling-Yan; Yu, Jin-Ling; Cheng, Shu-Ying; Lu, Pei-Min

    2015-07-01

    Ag- and Sn-doped In2S3 thin films were deposited on glass substrates using the thermal evaporation technique. The doping was realized by thermal diffusion. The influences of Ag and Sn impurities on the electrical, structural, morphological, and optical properties of the In2S3 films were investigated. In all deposited samples, the x-ray diffraction spectra revealed the formation of cubic In2S3 phase. A significant increase in the crystallite size was observed after Ag doping, while the doping of Sn slightly decreased the crystallite size. The x-ray photoelectron spectroscopy verified the diffusion of Ag and Sn into the In2S3 films after annealing. The optical study illustrated that Ag doping resulted in a reduction of the optical band gap while Sn doping led to a widening of the gap. Optical properties were investigated to determine the optical constants. Besides, it was found that the resistivity decreases significantly either after Ag or Sn incorporation. The study demonstrates that the Sn-doped In2S3 thin films are more suitable for buffer layer application in solar cells than the Ag-doped In2S3 thin films. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076063, 61340051, and 61306120) and the Natural Science Foundation of Fujian Province, China (Grant No. 2014J05073).

  19. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    Science.gov (United States)

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties.

  20. Microstructural parameters and optical constants of ZnTe thin films with various thicknesses

    Science.gov (United States)

    Shaaban, Essam R.; Kansal, Ishu; Mohamed, S. H.; Ferreira, Joés M. F.

    2009-11-01

    Different thickness of polycrystalline ZnTe films have been deposited onto glass substrates at room temperature by vacuum evaporation technique. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a zinc blende (cubic) structure. The calculated microstructure parameters revealed that the crystallite size increases and microstrain decreases with increasing film thickness. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 400-2500 nm. For ZnTe films of different thicknesses, the dependence of absorption coefficient, α on the photon energy showed the occurrence of a direct transition with band gap energy Egopt=2.21±0.01 eV (For ZnTe films of different thicknesses) confirming the independency of deduced energy gap on film thickness. The refractive indices have been evaluated in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. It was observed that the refractive index, n increased upon increasing the film thickness up to 508 nm, lying within the experimental error for further increases in film thickness.

  1. Characterization and antibacterial functions of Ag-TiO2 and W-TiO2 nanostructured thin films prepared by sol-gel/laser-induced technique

    Science.gov (United States)

    Joya, Y. F.; Liu, Z.; Wang, T.

    2011-11-01

    A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W-TiO2, Ag-TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75-85 mJ/cm2 fluence in W-TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag-TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.

  2. Thickness-dependent stress in plasma-deposited silicon dioxide films

    Science.gov (United States)

    Au, V.; Charles, C.; Bulla, D. A. P.; Love, J. D.; Boswell, R. W.

    2005-04-01

    Thick silicon dioxide (SiO2) films up to 5 μm have been deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) as both bilayer and trilayer structures, and the film stress was investigated in the context of optical waveguide fabrication. A model for stress in the SiO2-Si bilayer as a function of film thickness is formulated and interpreted in terms of Volmer-Weber film growth mechanisms. We find that island coalescence begins at a film thickness of less than 165 nm and continues until about 700 nm. Above approximately 1 μm thickness, the film continues growth as a continuous film. The stress in a deposited SiO2 film in an SiO2-Si-SiO2 trilayer structure was investigated by adapting the established Stoney's equation for a trilayer system, and comparing it with a thermally grown SiO2 trilayer. A constant value of stress is obtained for the deposited SiO2 film for film thickness >1μm which was consistently less than both measured and previously reported values of stress in thermally grown SiO2.

  3. Aging and annealing effects on properties of Ag-N dual-acceptor doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, R.; Amiruddin, R.; Santhosh Kumar, M. C. [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli -620 015 (India)

    2013-02-05

    Ag-N dual acceptor doping into ZnO has been proposed to realize p-ZnO thin film of different concentrations (1, 2 and 4 at.%) by spray pyrolysis at 623 K and then 4 at.% films annealed at 673 K and 723 K for 1 hr. X-ray diffraction studies reveal that all the films are preferentially oriented along (002) plane. Energy dispersive spectroscopy (EDS) confirms the presence of Ag and N in 2 at.% ZnO:(Ag, N) film. Hall measurement shows that 4 at.% ZnO:(Ag, N) film achieved minimum resistivity with high hole concentration. The p-type conductivity of the ZnO:(Ag, N) films is retained even after 180 days. Photoluminescence (PL) spectra of ZnO:(Ag, N) films show low density of native defects.

  4. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film

    Science.gov (United States)

    Bensouici, F.; Souier, T.; Dakhel, A. A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M.

    2015-09-01

    In this study, structure, microstructure, optical properties and photocatalytic degradation of Rhodamine B (RhB) have been investigated in an aqueous heterogeneous media containing pure and Ag doped TiO2 nanostructures thin films which were prepared by a simple sol-gel route. Thermal analysis demonstrated that Ag content decreased the temperature of anatase-to-rutile phase transformation. X-ray diffraction analysis confirmed that the prepared nanostructures crystallize within anatase-type structure and that the dopant Ag ions were not fully incorporated within TiO2 host lattice, meanwhile both the refractive index and optical band gap were affected by Ag concentration. The photodegradation of Rhodamine B under UV-C radiation by using pure and Ag-doped TiO2 nanostructures showed that Ag played an important role in a significant improvement of the photodegradation efficiency and that the optimum content of Ag ions was found to be 0.5% molar ratio.

  5. The effect of annealing temperature on electrical and optical properties of transparent and conductive thin films fabicated of multi-walled carbon nanotube/Ag nanowires

    Directory of Open Access Journals (Sweden)

    A zilaee

    2017-02-01

    Full Text Available Transparent and conductive thin films of multi-walled carbon nanotube/ Ag nanowires were fabricated using spin coating technique. In order to improve the electrical conductivity and the optical properties, the layers were annealed from room temperature to 350 °C for 30 minutes. The measurements revealed that annealing caused electrical conductivity of fabricated thin layes to be improved. The optimum annealing temperature for improving these properties was deduced 285 °C. For all different film thicknesses from about 89 to 183 nm it was observed that the presence of nanowires has improved the film’s electrical conductivity in all tempretures. The best ratio of DC conductivity to optical conductivity of the films, which is accounted as films figure of merit, was measured at 285 °C for all Ag percentages. Sheet resistance and optical transmittance were measured by four-point probe technique and UV-Vis spectrophotometer, respectively

  6. Preparation of Ag-doped TiO2 Thin Film by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ag-TiO2 thin film has been prepared on glass substrate by sol-gel process. The structure and properties of the materials were studied by DTA, XRD, and EPR.The photocatalytic activity was examined by the photocatalytic degradation of dichlorophos. The analysis results indicate that the photocatalytic activity of the Ag-TiO2 thin film is higher than that of pure TiO2 thin film. It is also influenced by the content of anatase and heating temperature. The ESR result shows that the Ag-TiO2 thin film has more hydroxide radicals than pure TiO2 thin film after illuminated by UV light.

  7. Influence of Oxygen in Sputtering and Annealing Processes on Properties of ZnO:Ag Films Deposited by rf Sputtering

    Institute of Scientific and Technical Information of China (English)

    DUAN Li; GAO Wei

    2011-01-01

    ZnO:Ag films were prepared by rf sputtering on Si substrates.A detailed study on as-grown and annealed films was carried out using x-ray diffraction(XRD).The results indicate that the film crystalline quality and the Ag doping efficiency were both influenced by oxygen in the sputtering and annealing atmosphere.The optimum conditions are found. Ultraviolet and green emissions of annealed ZnO:Ag films were observed at room temperature.Photoluminescence results show that oxygen in annealing atmosphere reduces the deep-level defects in ZnO:Ag and increases the film quality .

  8. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    Science.gov (United States)

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-07-17

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p corneal thickness and volume were observed after surgical correction of conjunctivochalasis.

  9. Influence of microstructure and surface topography on the electrical conductivity of Cu and Ag thin films obtained by magnetron sputtering

    Science.gov (United States)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.

    2017-05-01

    Conductive thin films formation by copper and silver magnetron sputtering is one of high technological areas for industrial production of solar energy converters, energy-saving coatings, flat panel displays and touch control panels because of their high electrical and optical properties. Surface roughness and porosity, average grain size, internal stresses, orientation and crystal lattice type, the crystallinity degree are the main physical properties of metal films affecting their electrical resistivity and conductivity. Depending on the film thickness, the dominant conduction mechanism can affect bulk conductivity due to the flow of electron gas, and grain boundary conductivity. The present investigation assesses the effect of microstructure and surface topography on the electrical conductivity of magnetron sputtered Cu and Ag thin films using X-ray diffraction analysis, scanning electron and laser interference microscopy. The highest specific conductivity (78.3 MS m-1 and 84.2 MS m-1, respectively, for copper and silver films at the thickness of 350 nm) were obtained with the minimum values of roughness and grain size as well as a high degree of lattice structuredness.

  10. Intrinsic flux pinning mechanisms in different thickness MgB2 films

    Directory of Open Access Journals (Sweden)

    C. Yang

    2017-03-01

    Full Text Available MgB2 films in four thickness (60 nm, 200nm, 600nm and 1μm have been fabricated by hybrid physical–chemical vapor deposition technique (HPCVD. By measuring the magnetization hysteresis loops and the resistivity, we have obtained the transport and magnetic properties of the four films. After that, the pinning mechanisms in them were discussed. Comparing the pinning behaviors in these ultrathin films, thin films and thick films, it was found that there exist different pinning types in MgB2 films of different thickness. In combination with the study of the surface morphology, cross-section and XRD results, we concluded that MgB2 films had different growth modes in different growth stages. For thin films, films grew along c axis, and grain boundaries acted as surface pinning. While for thick films, films grew along c axis at first, and then changed to a-b axis growth. As a result, the a-b axis grains acted as strong volume pinning.

  11. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Batenina, I.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Kuptsov, K.A. [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Zhitnyak, I.Y.; Anisimova, N.Yu.; Gloushankova, N.A. [N.N. Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation)

    2013-11-15

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4–4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC{sub 0.5}–Ca{sub 3}(PO{sub 4}){sub 2} target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  12. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Science.gov (United States)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  13. Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films

    Indian Academy of Sciences (India)

    A U Ubale; D K Kulkarni

    2005-02-01

    Zinc sulfide thin films have been deposited onto glass substrates by chemical bath deposition. The various deposition parameters such as volume of sulfide ion source, pH of bath, deposition time, temperature etc are optimized. Thin films of ZnS with different thicknesses of 76–332 nm were prepared by changing the deposition time from 6–20 h at 30°C temperature. The effect of film thickness on structural and electrical properties was studied. The electrical resistivity was decreased from 1.83 × 105 -cm to 0.363 × 105 -cm as film thickness decreased from 332 nm to 76 nm. The structural and activation energy studies support this decrease in the resistivity due to improvement in crystallinity of the films which would increase the charge carrier mobility and decrease in defect levels with increase in the thickness.

  14. The preparation, processing and properties of thin and thick films for microelectric applications

    Science.gov (United States)

    Bagley, B. G.; Greene, L. H.; Barboux, P.; Tarascon, J. M.; Venkatesan, T.

    High-Tc thin and thick films of YBa2Cu2O(7-y) and thick films based on the Bi-Sr-Ca-Cu and Tl-Ba-Ca-Cu systems were prepared and their properties investigated. It was found that YB2Cu3O(7-y) thin films prepared at temperatures up to 400 C, have amorphous structures, and those prepared in the 400-650 C region exhibit polyphase microstructure, due to the rapid crystallization kinetics of the competing phases. Methods for bipassing the 'forbidden' temperature region are described. Preparation of YBa2Cu2O(7-y) thick films was achieved via an aqueous sol-gel technique. Bi-Sr-Ca-Cu- and Tl-Ba-Ca-Cu-based thick films were prepared via the decomposition of glycerol-based solutions containing nitrates of the elements.

  15. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    Science.gov (United States)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  16. Effect of thickness on nonlinear absorption properties of graphite oxide thin films

    Science.gov (United States)

    Sreeja, V. G.; Cheruvalathu, Ajina; Reshmi, R.; Anila, E. I.; Thomas, Sheenu; Jayaraj, M. K.

    2016-10-01

    We report the thickness dependent structural, linear and nonlinear optical properties of graphite oxide (GO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned by the film thickness in GO. The nonlinear absorption studies by open aperture z scan technique exhibited a saturable absorption. The nonlinear absorption coefficient and saturation intensity varies with film thickness which is attributed to increased localized defect states in the energy band gap. Our results emphasize relatively large thickness dependent optical nonlinearity of GO thin films and its potential for optical pulse generation, exploring the way to GO based nonlinear applications in Q switched mode locking laser systems. All the coated GO films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  17. Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors

    Indian Academy of Sciences (India)

    G H Jain; L A Patil; P P Patil; U P Mulik; K R Patil

    2007-02-01

    Barium strontium titanate ((Ba0.87Sr0.13)TiO3–BST) ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The effect of film thickness on gas response was also studied. As prepared BST thick films were surface modified by dipping them into an aqueous solution of titanium chloride (TiCl3) for different intervals of time. Surface modification shifted response to H2S gas suppressing the responses to ammonia and other gases. The surface modification, using dipping process, altered the adsorbate–adsorbent interactions, which gave the unusual sensitivity and selectivity effect. Sensitivity, selectivity, thermal stability, response and recovery time of the sensor were measured and presented.

  18. The Structure and Emission Properties of SiO2 Nanometer Film Containing Ag

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Colloidal silver particles are formed on float glass by heat treatment with coated silica film containing Ag by sol-gel process.The Sn2+on surface of float glass influences the formation of colloidal Ag particles.The microstructure of the film and the granularity of silver particles were studied by TEM and HEED.The emission property of the samples was measured.The results show that aggregation of metal particles degrades emission intensity,and that content of Ag,withdrawing speed and heat treatment temperature of samples has a greater effect on photoluminescence.

  19. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  20. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Science.gov (United States)

    Tune, Daniel D.; Shapter, Joseph G.

    2013-01-01

    The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs) on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  1. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    Science.gov (United States)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  2. Influence of Thickness on Ethanol Sensing Characteristics of Doctor-bladed Thick Film from Flame-made ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-02-01

    Full Text Available ZnO nanoparticles were produced by flame spray pyrolysis (FSP using zincnaphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%. The particleproperties were analyzed by XRD, BET, and HR-TEM. The sensing films were produced bymixing the particles into an organic paste composed of terpineol and ethyl cellulose as avehicle binder and were fabricated by doctor-blade technique with various thicknesses (5,10, 15 μm. The morphology of the sensing films was analyzed by SEM and EDS analyses.The gas sensing characteristics to ethanol (25-250 ppm were evaluated as a function of filmthickness at 400°C in dry air. The relationship between thickness and ethanol sensingcharacteristics of ZnO thick film on Al2O3 substrate interdigitated with Au electrodes wereinvestigated. The effects of film thickness, as well as the cracking phenomenon, though,many cracks were observed for thicker sensing films. Crack widths increased withincreasing film thickness. The film thickness, cracking and ethanol concentration havesignificant effect on the sensing characteristics. The sensing characteristics with variousthicknesses were compared, showing the tendency of the sensitivity to ethanol decreasedwith increasing film thickness and response time. The relationship between gas sensingproperties and film thickness was discussed on the basis of diffusively and reactivity of thegases inside the oxide films. The thinnest sensing film (5 μm showed the highest sensitivityand the fastest response time (within seconds.

  3. Effect of film thickness on optical constants of metal film%膜层厚度对金属薄膜光学常数的影响

    Institute of Scientific and Technical Information of China (English)

    卢进军; 李向阳; 孙雪平

    2012-01-01

    The theoretical basis that the thickness has an effect on the optical constants n, k of the ultra-thin metal film is obtained based on the Maxwell's equations. Different thickness of Cu film, Cr film and Ag film with the methods of resistance thermal evaporation and electron beam heating are deposited on the K9 glass substrates. The samples are detected by ellipsometry and simulated by Drude model. Therefore, the change rules that the optical constant n, k of the three films change with the wavelength A is gained. The optical constants between ultra-thin metal films and bulk metal films vary widely and with the increase of the thickness of the film the value of n, k is close to bulk metal's. Absorption and dispersion analysis shows that in the visible band the continuous metal film has a high absorption of the long-wave and the average dispersion rate is higher in 10nm~102nm orders of magnitude than the dielectric thin films.%从麦克斯韦方程出发,可以得到超薄金属膜层光学常数n、k与其厚度有关系的理论依据.采用电阻热蒸发和电子束热蒸发的方法在K9玻委基底上分别沉积了不同厚度的Cu膜、Cr膜、Ag膜,由椭偏法检测、Drude模型拟合,获得了不同厚度Cu膜、Cr膜、Ag膜光学常数n、k随波长λ的变化规律.超薄金属薄膜与块状金属的光学常数相差较大,随着薄膜厚度的增加,n、k值趋近于块状金属.通过对样品膜层吸收、色散特性的分析,发现连续金属薄膜在可见光波段对长波的吸收较大,而且相比于介质薄膜平均色散率高10mn~102 nm量级.

  4. Field electron emission from undoped, continuous, submicron-thick diamond films

    Science.gov (United States)

    Ternyak, O.; Akhvlediani, R.; Hoffman, A.; Wong, W. K.; Lee, S. T.; Lifshitz, Y.; Daren, S.; Cheifetz, E.

    2005-12-01

    The present work shows that the field electron emission (FEE) properties of polycrystalline diamond films can be enhanced by control over the film thickness. The FEE properties of undoped, continuous, and smooth submicron-thick diamond films with initial nucleation densities of ˜5×1010particles/cm2 were investigated as a function of diamond film thickness. A set of films with thickness ranging from 70-100to830nm yielded turn-on field values of 6-8V/μm and threshold field values of 8.5-17.5V/μm (for 0.3μA/cm2), respectively, without any conditioning. It was found that the films of thickness up to ˜370nm can sustain stable current density as high as 0.1A/cm2 without morphological modification. The thicker films, however, suffer from a strong degradation of the film and breakdown. The best FEE (lower turn-on and threshold fields and morphological stability) was obtained for a thin (100nm) continuous diamond film. This result is suggested to be attributed mainly to the efficient electron conduction from the back contact to the surface.

  5. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range

    Science.gov (United States)

    Khorin, I.; Orlikovsky, N.; Rogozhin, A.; Tatarintsev, A.; Pronin, S.; Andreev, V.; Vdovin, V.

    2016-12-01

    Ultrathin (1-10 nm) Cu and Au films were prepared on the silicon and quartz substrates by magnetron sputtering at room temperature. We measured the transmission coefficient of the films at a wavelength of 3cm and analyzed a surface morphology of these films. It was shown that the films with thicknesses less than 7.5 nm (Au) and 3 nm (Cu) are almost transparent for microwaves. This effect is explained by quick oxidation of Cu and the complex surface morphology of nanometer thick films. The Au film morphology is evolved with increasing average Au thickness d from hemispherical islands initially (1.0 nm

  6. Evaluation of feasibility of measuring EHD film thickness associated with cryogenic fluids

    Science.gov (United States)

    Kannel, J. W.; Merriman, T. L.; Stockwell, R. D.; Dufrane, K. F.

    1983-08-01

    The feasibility of measuring elastohydrodynamic (EHD) films as formed with a cryogenic (LN2) fluid is evaluated. Modifications were made to an existing twin disk EHD apparatus to allow for disk lubrication with liquid nitrogen. This disk apparatus is equipped with an X-ray system for measuring the thickness of any lubricant film that is formed between the disks. Several film thickness experiments were conducted with the apparatus which indicate that good lubrication films are filmed with LN2. In addition to the film thickness studies, failure analyses of three bearings were conducted. The HPOTP turbine end bearings had experienced axial loads of 36,000 to 44,000 N (8,000 to 10,000 lb). High continuous radial loads were also experienced, which were most likely caused by thermal growth of the inner race. The resulting high internal loads caused race spalling and ball wear to occur.

  7. Effect of Thickness of Single-Phase Antimony and Tellurium Thin Films on Their Thermal Conductivities.

    Science.gov (United States)

    Park, No-Won; Park, Sang-In; Lee, Sang-Kwon

    2015-09-01

    We present the effects of film thickness and grain size on the out-of-plane thermal conductivities of single-phase Sb and Te thin films, which are of great interest for thermoelectric device applications. The thermal conductivities of the films were measured by the four-point-probe 3Ωo method, at room temperature. For this study, 50-, 100-, and 200-nm-thick Sb and Te thin films were prepared by electron-beam evaporation at room temperature. From the measured thermal conductivities, we evaluated that the average thermal conductivities of the Sb and Te thin films were 5.9-10.2 W/(m x K) and 0.8-1.2 W/(m x K), respectively, at room temperature. This result reveals that the thickness and grain size of each thin film strongly affect the modulation of its thermal conductivity at room temperature.

  8. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M., E-mail: maura.cesaria@le.infn.it; Caricato, A. P.; Martino, M. [Department of Mathematics and Physics “Ennio De Giorgi,” University of Salento, Via Arnesano, I-73100 Lecce (Italy)

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  9. The Thickness Distribution of Oxidation Film on Tapered Pipe Surface in Dieless Drawing

    Directory of Open Access Journals (Sweden)

    Fang Qin

    2011-01-01

    Full Text Available The thickness distribution of oxidation film on the surface of AISI304 stainless steel tapered pipe, its influence factors, and the effect of metal matrix deformation on oxidation behavior during dieless drawing were studied in this paper. The results showed that oxidation rate was affected strongly by induction heating temperature and deformation degree. The thickness distribution of oxidation film was uneven and increased from the larger diameter end to the smaller diameter end along the axial direction of tapered pipe. When induction heating temperature raised or the distance between heat and cold sources was increased, or feed speed was decreased, oxidation rate was accelerated and oxidation film on the tapered pipe surface thickened significantly, due to massive cracks in oxidation film induced by deformation of metal matrix. The density and width of cracks in oxidation film were enlarged, and the thickness of oxidation film increased with the increase in deformation degree.

  10. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  11. Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Meijuan; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Lu, Yuming; Fan, Feng; Cai, Chuanbing, E-mail: cbcai@t.shu.edu.cn

    2015-12-15

    Highlights: • MOD was employed to fabricate (YGd)BaCuO films together with Ag addition for the first time. • Better connectivity of grains was obtained by Ag addition. • Pyrolysis rate and surface morphology were able to be improved by Ag addition. • Gd substitution and relevant ion defects are emerged in the studied (YGd)BaCuO films. • Better c-axis orientation, superior surface microstructure and improved superconducting performance are obtained by co-doping of Gd and Ag. - Abstract: Y{sub 1–x}Gd{sub x}Ba{sub 2}Cu{sub 3}O{sub 7–δ}-Ag (x = 0, 0.25, 0.5, 0.75, 1) thin films were prepared on oxide buffered Hastelloy substrates by low fluorine metalorganic depostion (MOD) process. The effects of co-doping of Ag and Gd on the microstructures and superconducting properties of YBCO thin films are investigated with respect to improvement on texture and superconducting performance in case of optimized doping content. It is found that optimum addition of Ag and Gd may lead to better c-axis orientation, superior surface microstructure and finally give rise to much improvement of superconducting performance.

  12. Effect of Ag Doping on Optical and Electrical Properties of ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    XU Jin; ZHANG Zi-Yu; ZHANG Yang; LIN Bi-Xia; FU Zhu-Xi

    2005-01-01

    @@ ZnO thin films were prepared on p-type Si (100) substrates by the sol-gel process. The influence of Ag doping at a content of 0.002 % on the photoluminescence and current-voltage (Ⅰ - Ⅴ) characteristics of ZnO thin films has been investigated. It is found that Ag doping leads to a pronounced increase in the intensity of near band edge emission at 3.23 eV and a remarkable red shift of the visible broadband at room temperature. The Ⅰ - Ⅴ characteristics of ZnO/p-Si hetero junctions are also changed. These results could be explained by Ag substituting for Zn in Ag doped ZnO thin films.

  13. Abnormal Cutoff Thickness of Long-Range Surface Plasmon Polariton Modes Guided by Thin Metal Films

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; RAO Yi; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2007-01-01

    Long-range surface plasmon polariton(LRSPP) modes guided by a thin metal film surrounded by semi-infinite dielectrics with different refractive indices are studied.Our cMculation results show that the cutoff thickness of the metal film does not monotonically increase with refractive index difference △n between the SHbstrate and superstrate.Just because of this abnormal behaviour of cutoff thickness,the existence of LRSPP illustrates complicated situations in asymmetric configurations.For a certain metal film thickness,LRsPP may exist in one.two or three refractive index difference △n regions.

  14. Ultrasonic oil-film thickness measurement: An angular spectrum approach to assess performance limits

    OpenAIRE

    Zhang, J.; Drinkwater, B.W.; Dwyer-Joyce, R.S.

    2007-01-01

    The performance of ultrasonic oil-film thickness measurement in a ball bearing is quantified. A range of different viscosity oils (Shell T68, VG15, and VG5) are used to explore the lowest reflection coefficient and hence the thinnest oil-film thickness that the system can measure. The results show a minimum reflection coefficient of 0.07 for both oil VG15 and VG5 and 0.09 for oil T68 at 50 MHz. This corresponds to an oil-film thickness of 0.4 μm for T68 oil. An angular spectrum (or Fourier d...

  15. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    Science.gov (United States)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  16. Effect of Substrate Temperature on the Structural and Raman Properties of Ag-Doped ZnO Films

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Na; HU Li-Zhong; ZHANG He-Qiu; QIU Yu; LANG Ye; LIU Guo-Qiang; QU Guang-Wei; JI Jiu-Yu; MA Jin-Xue

    2012-01-01

    Ag-doped ZnO (ZnO:Ag) Rims are prepared on c-plane sapphire substrates by pulsed laser deposition at different substrate temperatures. The effect of substrate temperature on the ZnO:Ag Rim is studied in detail by EDX, XRD and Raman spectroscopy. The results reveal that raising the substrate temperature is beneficial for incorporating Ag into ZnO:Ag films in the range of our experimental temperatures and a number of Ag atoms incorporation into ZnO:Ag films may cause the (002) peak positions of the XRD spectra shift to a lower angle direction, but hardly affect the c-axis orientation of the Rims. The (002) peak shift ought to be due to the increase of lattice constant in the c-axis direction caused by the partial substitution of Zn2+ ions by Ag+ ions. In addition, a local vibrational mode (LVM) at 492cm-1 induced by doping Ag occurred in the Raman spectra of all the ZnO:Ag Rims and its peak position hardly shifted with increasing substrate temperature. It means that the LVM can act as an indication of Ag incorporation into ZnO:Ag Rim.%Ag-doped ZnO (ZnO:Ag) films are prepared on c-plane sapphire substrates by pulsed laser deposition at different substrate temperatures.The effect of substrate temperature on the ZnO:Ag film is studied in detail by EDX,XRD and Raman spectroscopy.The results reveal that raising the substrate temperature is beneficial for incorporating Ag into ZnO:Ag films in the range of our experimental temperatures and a number of Ag atoms incorporation into ZnO:Ag films may cause the (002) peak positions of the XRD spectra shift to a lower angle direction,but hardly affect the c-axis orientation of the films.The (002) peak shift ought to be due to the increase of lattice constant in the c-axis direction caused by the partial substitution of Zn2+ ions by Ag+ ions.In addition,a local vibrational mode (LVM) at 492cm-1 induced by doping Ag occurred in the Raman spectra of ali the ZnO:Ag films and its peak position hardly shifted with increasing substrate

  17. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

    Science.gov (United States)

    de Caro, Liberato; Altamura, Davide; Arciniegas, Milena; Siliqi, Dritan; Kim, Mee R.; Sibillano, Teresa; Manna, Liberato; Giannini, Cinzia

    2016-01-01

    Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films.

  18. Phase thickness approach for determination of thin film refractive index dispersion from transmittance spectra

    Science.gov (United States)

    Nenkov, M. R.; Pencheva, T. G.

    2008-06-01

    A novel approach for determination of refractive index dispersion n(λ ) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate and titanium oxide thin films are investigated and their n(λ ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thinner films when measured transmittance spectra have one minimum and one maximum only.

  19. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    Science.gov (United States)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  20. Gas Sensing Performance of Pure and Modified BST Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    G. H. JAIN

    2008-04-01

    Full Text Available Barium Strontium Titanate (BST-(Ba0.87Sr0.13TiO3 ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The pure BST film was surface modified by surfactant CrO3 by using dipping technique. The surface modified film suppresses the response to ammonia and enhances to H2S gas. The surface modification of films changes the adsorption-desorption relationship with the target gas and shifts its selectivity. The gas response, selectivity, response and recovery time of the pure and modified films were measured and presented.

  1. Thickness measurement of organic films using Compton scattering of characteristic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Yun, E-mail: kjy@kaeri.re.kr [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 1045, Dukjin-dong Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Yong Suk; Park, Yong Joon; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 1045, Dukjin-dong Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Jung, Sung-Hee [Division of Radioisotope R and D, Korea Atomic Energy Research Institute, Daedeok-daero 1045, Dukjin-dong Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hussein, Esam M.A. [Laboratory for Threat Materials Detection, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)

    2011-09-15

    An X-ray scattering method is presented for determining the thickness of an organic film placed on a steel substrate. The strong peaks of characteristic X-rays are taken as an advantage to measure the intensity of backscattered photons. It is shown that the intensity of Compton scattering of characteristic X-rays is proportional to film thickness, up to the thickness of 250 {mu}m of acrylic adhesive layers. In addition, the measurement time was 300 ms, providing a simple and convenient method for on-line for thickness monitoring.

  2. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  3. The Electrical Conductivity of the Three-layer Polycrystalline Films Co / Ag(Cu / Fe in the Conditions of Atoms Interdiffusion

    Directory of Open Access Journals (Sweden)

    V.B. Loboda

    2014-04-01

    Full Text Available The paper presents results of experimental studies of crystal structure and electrical resistivity in the three-layer Co / Ag / Fe and Co / Cu / Fe nanocrystalline films and. It has been shown that all the samples, annealed at 700 K with dCu,Ag > 5 nm, are three-phase (FCC-Co, FCC-Ag, FCC-Cu, respectively, and BCC-Fe. The dependence of the three-layer films resistivity on the layer thickness has been obtained experimentally. It has been detected that the above-mentioned dependence is nonmonotonic, which is conditioned by the diffuse nature of the interaction of electrons with interfaces of the conductor.

  4. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  5. Mechanical properties of Pb-free solder alloys on thick film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.; Hosking, F.M.

    1998-03-10

    The technology drivers of the electronics industry continue to be systems miniaturization and reliability, in addition to addressing a variety of important environmental issues. Although the Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has drawn environmental concern due to its Pb content. The solder acts both as an electrical and mechanical connection within the different packaging levels in an electronic device. New Pb-free solders are being developed at Sandia National Laboratories. The alloys are based on the Sn-Ag alloy, having Bi and Au additions. Prototype hybrid microcircuit (HMC) test vehicles have been assembled to evaluate Pb-free solders for Au-Pt-Pd thick film soldering. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). The mechanical properties of the joints were evaluated. The reflow profiles and the solid state intermetallic formation reaction will also be presented. Improved solder joint manufacturability and increased fatigue resistance solder alloys are the goals of these materials.

  6. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Arce, R.D.; Schmidt, J.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknessesFilm thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness.

  7. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique

    Science.gov (United States)

    Zhang, Li; Wang, Cong; Zhang, Yi

    2012-05-01

    A facile strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)-silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI-Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV-vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV-vis characteristic absorbances of {PEI-Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core-shell structures in the TEM images confirm the formation of bimetallic Au-Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20-25 nm. The resulting {PEI-Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI-Ag/Au}n films are more attractive compared to {PEI-Ag/PSS}n and {PEI/Au}n films.

  8. Systematic experimental study of pure shear type dielectric elastomer membranes with different electrode and film thicknesses

    Science.gov (United States)

    Hodgins, M.; Seelecke, S.

    2016-09-01

    An approach to reduce the voltage required for dielectric elastomer actuators is to reduce film thickness. However, if the electrode thickness is not similarly reduced, the electrode’s mechanical behavior can increasingly and negatively impact the overall actuator behavior. This effect is yet to be studied and quantified for pure shear type specimens; a type recommended in a recent DE standardization journal publication. Therefore, in this work, using pure shear specimens, a comparative study of membrane actuators of different film thickness (20, 50 and 100 μm) is performed. Electrodes of different thicknesses are screen printed and tested in a uniaxial test device. The stiffening effect due to the solid-state electrodes is demonstrated by performing force-elongation tests for specimens with and without electrodes. Additionally the importance of thin electrodes (relative to film thickness) was demonstrated through a number of electromechanical tests. Isotonic tests revealed a lower electro-mechanical sensitivity for the 20 μm film when compared with the 50 and 100 μm films. This was attributed to the relatively thick electrodes. Best actuation results were achieved when the total electrode thickness was at least 15x thinner than the dielectric membrane thickness.

  9. Thickness dependence of Jc (0) in MgB2 films

    Science.gov (United States)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-06-01

    MgB2 superconducting films, whose thicknesses range from 10 nm to 8 μm, have been fabricated on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD) method. It is the first time that the Tc and the Jc of MgB2 films are studied on such a large scale. It is found that with the increasing of thickness, Tc elevates first and then keeps roughly stable except for some slight fluctuations, while Jc (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum Jc (5 K, 0 T) = 2.3 × 108 A cm-2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB2 films.

  10. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Science.gov (United States)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy

    2016-11-01

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50-300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (TA) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing TA, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing TA and changing annealing conditions.

  11. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    Science.gov (United States)

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  12. Influence of film thickness and In-doping on physical properties of CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Sajid, E-mail: sajidarif@hotmail.com [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Nazir, Adnan [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Ali, Zulfiqar [Optics Laboratories, P. O. Box 1021, Islamabad (Pakistan); Maqsood, Asghri [CESET, Center for Emerging Sciences, Engineering and Technology, Islamabad (Pakistan)

    2014-02-25

    Highlights: • Fabrication of polycrystalline CdS thin films by Close Spaced Sublimation technique. • The direct band gap of 2.44 eV and the electrical resistivity in the order of 10{sup 6}–10{sup 8} Ω cm was measured. • Resistivity was reduced to the order of 10{sup –2}–10{sup 1} Ω m by the thermally diffusion of indium into CdS films. -- Abstract: Polycrystalline CdS thin films were deposited on glass substrates by close spaced sublimation technique. Samples of various thicknesses, ranging from 250 to 940 nm were obtained. The optical and electrical properties of pure CdS thin films were studied as a function of film thickness. The resistivity of as-deposited CdS films was in the order of 10{sup 6}–10{sup 8} Ω cm, depending upon the film thickness. In the high temperature region, carriers are transported over the grain boundaries by thermionic emission. Resistivity was reduced to the order of 10{sup −2}–10{sup 1} Ω cm by the thermally diffusion of indium into CdS films, without changing the type of carriers. The annealing temperature dependence of structural, optical and electrical properties of In-doped CdS films showed that the samples annealed at 350 °C and 400 °C exhibited better results.

  13. Thickness dependence of temperature coefficient of resistivity of polycrystalline bismuth films

    Science.gov (United States)

    Kumar, Ajay; Katyal, O. P.

    1991-04-01

    Results for the temperature coefficient of resistivity (TCR) of polycrystalline bismuth films deposited on to glass substrate are reported for the thickness range 30 300 nm. The film TCR is found to be negative for all thicknesses studied and its absolute value exhibits a maximum of 3.70×10-3 K-1 near 72.5 nm. The variation of charge carrier density with film thickness has been estimated from the presence of surface states. To include the thickness dependence of charge carrier density, a modified theory has been used to explain the observed behaviour of the TCR. The experimental results for the TCR of Bi films are found to be consistent with the theoretical values. The existence of the extremum is theoretically verified. From the analysis, the specularity parameter p is about 0.44 and the reflection coefficient R is 0.1.

  14. Measurement of material thickness in the presence of a protective film

    Science.gov (United States)

    Ramamurthy, Rajesh; Harding, Kevin

    2017-05-01

    Many sheet products from plastic to structural composites are produce in tightly controlled thickness needed for functional applications. There are many methods that have been used to measure such sheeting from mechanical rollers to optical micrometers. However, many materials are produced with a thin protective film on either side that may not have critical dimensional controls. This paper addresses the challenge of measuring sheet products to critical thickness values in the presence of protective plastic films using high speed optical gaging methods. For this application, the protective films are assumed to be transparent though not necessarily scatter free, and have thickness variations that are comparable to the tolerances of the sheet product. We will examine the pros and cons of a number of different optical measurement methods in light of resolution, speed and robustness to the film thickness variation and present an approach able to address the desired sheet measurement tolerances.

  15. Determination of Thickness of an Inaccessible Thin Film under a Multilayered System from Natural Frequencies

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chang-Zhi; LI Ming-Xuan; MAO Jie; WANG Xiao-Min

    2008-01-01

    @@ We investigate the relationship between natural frequencies of a multilayered system of different elastic materials and the thickness of the undermost thin film. The natural frequencies are numerically calculated from the reflection coefficient of a sample system of "steel-epoxy resin-aluminium-thin polymer' with normal incidence.Strain energy ratio is defined and calculated to give the physics explanation why some frequencies are sensitive to thickness of the thin film in certain range. Experiments of three specimens indicate that the measured natural frequencies agree well with the theoretical ones. It is found in our experiments that the ratio of the lowest film thickness to wavelength is about 1/5. The average relative errors for the inverted polymer film thicknesses are found to be 11.8%, -4.8% and -1.3%, respectively.

  16. Enhancement of light trapping in thin-film solar cells through Ag

    Institute of Scientific and Technical Information of China (English)

    Yiming Bai; Han Zhang; Jun Wang; Nuofu Chen; Jianxi Yao; Tianmao Huang; Xingwang Zhang; Zhigang Yin; Zhen Fu

    2011-01-01

    Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles. Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated. The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively. When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles. Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.%@@ Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.

  17. Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films

    Institute of Scientific and Technical Information of China (English)

    Hongxiang Song; Chengxun Wu

    2007-01-01

    Electro-optic (EO) effect and thermo-optic (TO) effect are jointly considered on the basis of field-induced and temperature-affected perturbations of the operating point in waveguide components. TO coefficients of EO fluorinated polyimide films with side-chain azobenzene chromophore were measured by attenuatedtotal-reflection (ATR) technique at different temperatures with TE- and TM-polarized lights, respectively.It is found that the absolute values of TO coefficients increase with the increments of both chromophore concentration and film thickness, but the polarization dependence of TO coefficients increases with the increment of chromophore concentration and decreases with the increment of film thickness.

  18. Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Liviu Duta

    2016-01-01

    Full Text Available We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS, X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility.

  19. Influence of the thickness absorbing film on the PETN ignition threshold by a laser pulse

    Directory of Open Access Journals (Sweden)

    Dolgachev Vadim A.

    2015-01-01

    Full Text Available Numerical simulation of the PETN ignition by a film, which is heated by a laser pulse was conducted. There are shown that dependence of threshold energy of ignition of PETN by a laser pulse has a linear dependence from the thicknesses of the absorbing film. Calculations shown that critical the temperature on the boundary of two materials by the end of a laser pulse with threshold density doesn’t depend from the thickness of the absorbing film. The ignition delay time of PETN by the thick film less than the ignition delay time of PETN by the thin film. The reason is that the thicker contain more heat then in the thinner one.

  20. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D. [Institute of Thermophysics, Novosibirsk (Russian Federation)] [and others

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  1. Monolithic Pellets, Composites and Thick Films of Hydroxyapatite: Correlation of Mechanical Properties with Microstructure.

    Science.gov (United States)

    Wang, Pauchiu Either

    Hydroxyapatite Ca_{10}(PO _4)_6(OH)_2 (abbreviated as HA) has great biocompatibility. Poor mechanical properties of HA implants and decomposition of HA during processing are the major obstacles for widespread uses of HA. In the present thesis we have attempted to understand the sintering behavior of monolithic HA and metal-reinforced HA-matrix composites, and the mechanism of formation of HA coating in the solutions at the normal temperature. The powders of two calcium phosphates, namely hydroxyapatite and dicalcium phosphate (DCP: chemical formula Ca_2P_2O_7), were sintered at various temperatures and in various environments. The density, flexural strength and knoop hardness of both phosphates sintered in air for 4 h initially increased with the sintering temperature, reaching maxima at around 1000-1150 ^circC, and then decreased due to decomposition. To reduce dehydroxylation, HA powder was sintered in moisture at various temperatures up to 1350^circ C and X-ray diffraction study did not indicate any decomposition at the highest sintering temperature. It is seen that dehydroxylation did not hinder sintering, but decomposition obstructed sintering of both HA and DCP. Ductile-phase reinforcement of hydroxyapatite was achieved by addition of silver particulates (5-30 vol.%) in HA powder compacts. A composite made by sintering 10 vol.% Ag and balance HA at 1200^circ C for 1 h in air had flexural strength of 75 +/- 7 MPa, which was almost double that of pure HA sintered under an identical condition. Silver in the composite melted during sintering, but due to poor wetting, did not spread in between HA particles. The increase in the flexural strength of the composites was thought to be due to crack-bridging and crack-arrest by silver inclusions. Thick films (several μm) of hydroxyapatite were deposited on silicon single crystal placed in close proximity to a plate of apatite- and wollastonite -containing glass and dipped into a simulated body fluid (SBF) at 36^circ

  2. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    Science.gov (United States)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  3. The optical and mechanical properties of PVA-Ag nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, A.G.; Attia, W.; Abd El-Kader, K.M., E-mail: kamalmarei@yahoo.com

    2014-03-25

    Highlights: • We prepared PVA -Ag composite films which used in different filed of applications. • The XRD results showed Ag nanoparticles entering the polymer PVA matrix. • Optical band gap as a result of doping has been found to be reduced significantly. • Young's modulus increases while the strain decreases due to increasing Ag content. -- Abstract: Poly (vinyl alcohol) (PVA) loaded silver (Ag) nanoparticles were successfully prepared by chemical reduction methods. The synthesized nanoparticles are characterized using UV–visible spectrophotometer, X-ray diffractometer (XRD) and Transmission electron microscope (TEM). The contents of the inorganic phase in the nanocomposites were determined by using atomic absorption spectroscopy (AA) for silver, and were found to be 0.2, 0.4, 0.8 and 1.5 wt.%. Optical absorption studies in the wavelength range 190–900 nm showed additional peak at 420 nm for differently doped films, in addition to the peak at 200 nm for undoped PVA film. There is observable change in the absorbed intensity at 420 nm with filling levels. This is due to the link between the Ag metal ion and the polymer OH- groups. The indirect energy gaps were calculated. It was found that Young’s modulus and the strength at the break increase, while the energy gaps and the strain decrease as the concentration of Ag content is increased. The XRD results showed that the Ag nanoparticles entering the polymer PVA matrix and the crystallinity was strongly influenced by the amount of Ag nanoparticles. The electron diffraction image for the highest concentration sample shows the crystalline nature of the silver metal nanoparticles. TEM of the nanocomposite films revealed the presence of Ag particles with average diameter of 12 nm.

  4. Photometric method of determining gold film thickness of nuclear radiation silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, B.A.; Zakharchuk, D.V.; Kovalev, I.I.; Nikolaeva, T.V.; Serushkina, E.S.

    1987-07-01

    The authors examine a photometric method of assessing a nuclear radiation silicon detector's gold film thickness based on the photocurrent from a light passed through the sputtered metal layer. The surface-barrier detectors of nuclear radiations with a gold front contact are characterized by a high sensitivity to light in the 0.4-1.0 micrometer wavelength band. The relative error of determining the gold film thickness using the method examined here is of the 7% order.

  5. Investigation of thickness effects on the dielectric constant barium strontium titanate thin films

    CERN Document Server

    Grattan, L J

    2002-01-01

    The collapse in dielectric constant at small thickness commonly observed in ferroelectric thin films was measured and investigated in barium strontium titanate (Ba sub 0 sub . sub 5 Sr sub 0 sub . sub 5 TiO sub 3). The possible mechanisms responsible for this effect are reviewed. Functional measurements were performed on BST thin films, of 7.5 to 950 nm, by incorporating them into capacitor structures with bottom electrodes of strontium ruthenate (SRO) and thermally- evaporated Au top electrodes. A discussion on thin film growth considerations, optimal PLD conditions and the measurement techniques employed in the project is presented. The experimentally determined dielectric constant - thickness profile was fitted using the series capacitor model assuming low dielectric constant interfacial layers in series with the bulk. Consideration of the case where the combined 'dead layer' thickness was close to the total BST thickness revealed that, for this system, the total 'dead layer' thickness had to be less than ...

  6. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    Science.gov (United States)

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  7. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    Science.gov (United States)

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  8. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2011-08-01

    Full Text Available Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.

  9. A study of Ag/Ag(100) thin film growth with scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.

    1995-11-01

    Thin films are attracting more and more attention in both the industrial and scientific communities. Many applications of thin films have been developed in industry. By using various growth methods, thin films can be used in optics, microelectronic devices, magnetic recording media, and as protective coatings. In order to improve existing applications and to find new ones, it is essential to understand what makes them so useful in applications and what factors affect their properties. Therefore, an understanding of film growth processes is necessary. Scientifically, many fundamental interactions, such as the interaction between the atoms that comprise the film and substrate, or the interaction between film atoms, are of great interest to surface scientists; studies of these interactions can provide dramatic insights into the nature of thin films and therefore, can further drive technology forward. In every application, the film structures, including morphology and microstructure, and adhesion between film and substrate are critical to the film`s properties and therefore its performance. Studies of the mechanisms that control film morphology, microstructure and adhesion thus are important. Film growth kinetics can provide important information regarding the film structure and adhesion. Film growth is an atomistic process. The chemistry and physics of the system can be better understood if the information provided is at an atomic level.

  10. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

    Science.gov (United States)

    Bouguila, N.; Kraini, M.; Halidou, I.; Lacaze, E.; Bouchriha, H.; Bouzouita, H.

    2016-01-01

    Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75-2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple-Didomenico model was used to determine the values of single oscillator energy ( E 0), dispersion energy ( E d), optical band gap ( E g) and high frequency dielectric constant ( \\varepsilon_{∞} ). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

  11. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  12. Thickness dependence of magnetic properties in La–Co substituted strontium hexaferrite films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yajuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Weiming, E-mail: wmcheng@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yan, Peng [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jincai [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-09-15

    The thickness dependence of magnetization reversal and coercivity behavior for La–Co substituted strontium hexaferrite (Sr-M) films was investigated. It is found that perpendicular anisotropy appears only when film thickness (t) is above 110 nm. With increasing t, perpendicular anisotropy energy (K{sub u⊥}) increases gradually to its maximum of 1.76×10{sup 6} erg/cm{sup 3} at t=300 nm, but turns to decrease when t>300 nm. Moreover, when t>110 nm, those films exhibit domains pinning or Stoner–Wohlfarth reversal model, present large K{sub u⊥} values and a rapid increase in H{sub c⊥}. However, while t≤110 nm, Sr-M films show nucleation model of magnetization reversal and perform low coercivity. The origin of the coercivity varying with thickness should be correlated with the grain size and preferred orientations in Sr-M films. - Highlights: • Thickness dependence in submicro-scale bulk system is investigated for La–Sr–Co–Fe–O films. • (0 0 1) preferred orientation gradually increases until t=300 nm and then declines. • The magnetization reversal presents different models with thickness. • Perpendicular anisotropy energy increases to maximum value of 1.76×10{sup 6} erg/cm{sup 3} at t=300 nm. • The coercivity varying with thickness is correlated with the grain size and preferred orientation.

  13. Magnetic properties of permalloy films with different thicknesses deposited onto obliquely sputtered Cu underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyu; Sun, Xiaojun; Wang, Jianbo; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn

    2015-03-01

    In this work, the influence of obliquely sputtered Cu underlayer of 10 nm on the magnetic properties of normally sputtered Permalloy thin films with different thicknesses from 10 nm to 150 nm has been investigated. It has been found that the samples with the Permalloy layer thickness ranging from 10 nm to 70 nm exhibit a good in-plane uniaxial magnetic anisotropy, and the increase of the film thickness leads to a decrease of the anisotropy field and the natural resonance frequency. The critical Permalloy layer thickness for stripe domain initiation of these films is about 80 nm, which is thinner than that of obliquely sputtered Permalloy thin films without an underlayer. The characteristic shapes of hysteresis loops which can be called ''transcritical'' are observed above the critical thickness. The condition and mechanism of appearing stripe domain structure were discussed and it has been found that the frequency response of permeability of the anisotropic films shows the characteristics of multi-peak resonance. - Highlights: • Py films were fabricated on obliquely sputtered Cu underlayers by RF magnetron sputtering. • Effects of Py layer thickness on anisotropy, ferromagnetic resonance frequency have been studied. • Samples with Py layer (<70 nm) show a good in-plane uniaxial magnetic anisotropy. • Samples with Py layer (>80 nm) show stripe domains and multi-peaks in permeability spectra.

  14. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects

    Energy Technology Data Exchange (ETDEWEB)

    Innis-Samson, Vallerie Ann; Sakurai, Kenji, E-mail: sakurai@yuhgiri.nims.go.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2011-11-02

    We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at {approx}70 {sup 0}C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d {<=} R{sub g}, the onset of such a transition is affected by the film thickness while very thick films, d >> R{sub g}, yielded higher contact angles. Annealing the MC thin films with thicknesses {approx}200 A (near the radius of gyration, R{sub g}, of the polymer) below the bulk glass transition temperature (T{sub g} {approx} 195 deg. C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T{sub g} would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications. (paper)

  15. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects.

    Science.gov (United States)

    Innis-Samson, Vallerie Ann; Sakurai, Kenji

    2011-11-02

    We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ∼70 °C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ≫ R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ∼200 Å (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ∼ 195 ° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.

  16. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects

    Science.gov (United States)

    Innis-Samson, Vallerie Ann; Sakurai, Kenji

    2011-11-01

    We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ˜70 °C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ Rg, the onset of such a transition is affected by the film thickness while very thick films, d ≫ Rg, yielded higher contact angles. Annealing the MC thin films with thicknesses ˜200 Å (near the radius of gyration, Rg, of the polymer) below the bulk glass transition temperature (Tg ˜ 195 ° C) would not change the hydrophobic switch nature of the film but annealing ‘at’ and above the bulk Tg would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.

  17. Quantifying Local Thickness and Composition in Thin Films of Organic Photovoltaic Blends by Raman Scattering

    KAUST Repository

    Rodríguez-Martínez, Xabier

    2017-07-06

    We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility to make quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

  18. Gas sensing properties of Cu and Cr activated BST thick films

    Indian Academy of Sciences (India)

    G H Jain; L A Patil

    2006-08-01

    H2S gas sensing properties of BST ((Ba0.67Sr0.33)TiO3) thick films are reported here for the first time. BST ceramic powder was prepared by mechanochemical process. Thick films of BST were prepared by screen-printing technique. The sensing performance of the films was tested for various gases. The films were surface customized by dipping them into aqueous solutions of CuCl2 and CrO3 for various intervals of time. These surface modified BST films showed improved sensitivity to H2S gas (100 ppm) than pure BST film. Chromium oxide was observed to be a better activator than copper oxide in H2S gas sensing. The effect of microstructure and amount of activators on H2S gas sensing were discussed. The sensitivity, selectivity, stability, response and recovery time of the sensor were measured and presented.

  19. Angular multiplexing holograms of four images recorded on photopolymer films with recording-film-thickness-dependent holographic characteristics

    Science.gov (United States)

    Osabe, Keiichi; Kawai, Kotaro

    2017-03-01

    In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.

  20. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...

  1. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati...

  2. Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

    Science.gov (United States)

    Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.

    2017-01-01

    Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

  3. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    OpenAIRE

    Bakrania, Smitesh D.; Margaret S. Wooldridge

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition meth...

  4. The Influence of Electrical Pulses on Thick Film (Du Pont 1421 Birox) Resistors

    OpenAIRE

    Tancula, M.; Kozlowski, J. M.

    1982-01-01

    This paper presents data on the effect of electric pulses on thick film resistors made using Du Pont 1421 Birox resistor pastes.Resistance changes during the application of the electric pulses were investigated. Two types of change were observed: reversible and irreversible (i.e. catastrophic).In order to illustrate the causes of these changes, observations of the film on a scanning electron microscope were made. Microcracks were observed in the film, which were mostly responsible for the per...

  5. Characterization of nanostructured TiO2:Ag films: structural and optical properties

    Science.gov (United States)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-10-01

    TiO2:Ag nanocomposites have been prepared by sol-gel method with varying silver concentration. Different technological approaches are employed to study the formation of Ag nanoparticles in titanium dioxide matrix. The obtained thin films are either thermally treated at temperatures from 300 to 600oC or UV irradiated for 15 minutes between layer deposition. XRD and FTIR studies reveal that Ag is incorporated in TiO2 films as nanoparticles and no Ag oxide phases are detected. Optical characterization performed by UV-VIS spectroscopy confirms the formation of silver nanoparticles. The influence of thermal treatment and UV radiation on the optical and structural properties is studied.

  6. Controllable crystallization and enhanced amorphous stability of Sb-Te films modified by Ag-doping

    Science.gov (United States)

    Zhong, Juechen; Luo, Yang; Gu, Ting; Wang, Zhenglai; Jiang, Kefeng; Wang, Guoxiang; Lu, Yegang

    2016-10-01

    Ag-doped Sb-Te films were deposited by magnetron co-sputtering and the structure, electrical, optical and thermal properties were analyzed. The results show that Ag-doping restrains crystal grain size, and changes a preferred orientation of the crystalline phase. The crystallization temperature is increased due to the Ag addition. Both amorphous resistance and crystalline resistance are enhanced and the resistance ratio reaches ˜104. Compared with Ge2Sb2Te5, Ag26.82(Sb3Te)73.18 film exhibits a better amorphous thermal stability, a higher crystallization temperature (˜166 °C), a wider optical band gap (0.515 eV), a larger crystallization activation energy (3.17 eV) as well as a better 10 years data retention at 92 °C.

  7. A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeO{sub x} films with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Vijayarangamuthu, K.; Singh, Chaman; Rath, Shyama [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kabiraj, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2011-09-15

    Sub-stoichiometric GeO{sub x} films were fabricated by electron-beam evaporation method. The films were irradiated with 100 MeV Ag{sup 7+} ions at fluences between 1 x 10{sup 12} and 1 x 10{sup 14} ions-cm{sup -2}. Spectroscopic ellipsometric measurements were performed in air at room temperature. The values of the layer thickness and refractive index were extracted from ellipsometry using a multilayer analysis and the Tauc Lorentz model. The refractive index (at 633 nm) of the as-deposited GeO{sub x} film was estimated to be 1.860 and decreased to 1.823 for films irradiated at an ion fluence of 1 x 10{sup 14} ions-cm{sup -2}. The thickness of the films also decreased after irradiation and is due to a sputtering induced by the ion beam. The change in the refractive index with ion fluence is attributed to a stoichiometric change and structural transformation represented by GeO{sub x}{yields} Ge + GeO{sub y} (y > x) occurring due to a thermal spike induced by ion irradiation. Swift heavy ions thus provide a scope for modulating the refractive index of GeO{sub x} films. The thickness and stoichiometric changes are supported by Rutherford backscattering measurements.

  8. Thickness dependency of sol-gel derived ZnO thin films on gas sensing behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, Nitul; Jee, Seung Hyun; Kim, Su Hyun; Oh, Jun Young; Yoon, Young Soo, E-mail: yoonys@yonsei.ac.k

    2010-10-29

    ZnO thin films were fabricated by a sol-gel method using Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O as starting material in order to prepare an acetone gas sensor. A homogeneous and stable solution was prepared by dissolving the zinc acetate in a solution of ethanol and monoethanolamine. The sol-gel solution is coated on alumina substrates with various thicknesses by spin coating technique and heat treated to grow crystalline ZnO thin films. The effect of thickness on physical and electrical properties of as deposited ZnO thin films has been studied. The as deposited ZnO thin films were characterized by X-ray diffraction spectroscopy, field emission scanning electron microscopy and atomic force microscopy. The root mean square surface roughness factors increase with thickness of the films and found 3.9, 6.6, 9.0, and 11.28 nm for 80-, 220-, 450- and 620-nm-thin films respectively. The activation energies of the films are calculated from the resistance temperature characteristics. The sensitivities of the ZnO films towards the acetone gas were determined at an operating temperature of 200 {sup o}C. The sensitivity towards acetone vapor is strongly depending on surface morphology of the ZnO thin films.

  9. Spacer Thickness-Dependent Electron Transport Performance of Titanium Dioxide Thick Film for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reda E. El-Shater

    2015-01-01

    Full Text Available A titanium dioxide (P25 film was deposited by cast coating as conductive photoelectrode and subsequently immersed in dye solution (N719 to fabricate the photoanode of dye-sensitized solar cells (DSSCs. A plastic spacer was used as a separation and sealant layer between the photoanode and the counter electrode. The effect of the thickness of this spacer on the transfer of electrons in the liquid electrolyte of the DSSCs was studied by means of both IV curves and electrochemical impedance. Using a spacer thickness range of 20 μm to 50 μm, efficiency ranges from 3.73% to 7.22%. The highest efficiency of 7.22% was obtained with an optimal spacer thickness of 40 μm.

  10. Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films.

    Science.gov (United States)

    Goh, Wei-Peng; Williams, Evan L; Yang, Ren-Bin; Koh, Wee-Shing; Mhaisalkar, Subodh; Ooi, Zi-En

    2016-02-01

    Embedding metal nanoparticles in the active layer of organic solar cells has been explored as a route for improving charge carrier generation, with localized field enhancement as a proposed mechanism. However, embedded metal nanoparticles can also act as charge recombination sites. To suppress such recombination, the metal nanoparticles are commonly coated with a thin insulating shell. At the same time, this insulating shell limits the extent that the localized enhanced electric field influences charge generation in the organic medium. It is presumed that there is an optimal thickness which maximizes field enhancement effects while suppressing recombination. Atomic Layer Deposition (ALD) was used to deposit Al2O3 layers of different thicknesses onto silver nanoparticles (Ag NPs), in a thin film of P3HT. Photoinduced absorption (PIA) spectroscopy was used to study the dependence of the photogenerated P3HT(+) polaron population on the Al2O3 thickness. The optimal thickness was found to be 3-5 nm. This knowledge can be further applied in the design of metal nanoparticle-enhanced solar cells.

  11. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    Science.gov (United States)

    Oh, Dohyun; Yoo, Chan Ho; No, Young Soo; Kim, Su Youn; Kim, Tae Whan; Cho, Woon-Jo; Kim, Jin Young

    2012-05-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of -1.0 and -1.5 mA/cm2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  12. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dohyun [Hanyang University, Seoul (Korea, Republic of); Korea Institute of Science and Technology, Seoul (Korea, Republic of); Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan [Hanyang University, Seoul (Korea, Republic of); Cho, Woonjo [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Jinyoung [Kwangwoon University, Seoul (Korea, Republic of)

    2012-05-15

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm{sup 2} were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  13. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film

    Science.gov (United States)

    Yasui, Takeshi; Yasuda, Takashi; Sawanaka, Ken-Ichi; Araki, Tsutomu

    2005-11-01

    We propose a paintmeter for noncontact and remote monitoring of the thickness and drying progress of a paint film based on the time-of-flight measurement of the echo signal of a terahertz (THz) electromagnetic pulse. The proposed method is effectively applied to two-dimensional mapping of the painting thickness distribution for single-layer and multilayer paint films. Furthermore, adequate parameters for the drying progress are extracted from the THz pulse-echo signal and effectively applied to monitor the wet-to-dry transformation. The THz paintmeter can be a powerful tool for quality control of the paint film on the in-process monitoring of car body painting.

  14. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Fluid Science (IFS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  15. Optimizing diode thickness for thin-film solid state thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce [Department of Materials and Science, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, George R.; Allee, David [Flexible Display Center at Arizona State University, Tempe, Arizona 85284 (United States)

    2012-10-01

    In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  16. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  17. Investigation of magnetic properties in thick CoFeB alloy films for controllable anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Huang, Ya; Chen, Ruofei; Xu, Zhan [Huaqiao University, College of Information Science and Engineering, Xiamen City (China)

    2016-02-15

    CoFeB alloy material has attracted interest for its wide uses in magnetic memory devices and sensors. We investigate magnetic properties of thick Co{sub 40}Fe{sub 40}B{sub 20} films in the thickness range from 10 to 100 nm sandwiched by MgO and Ta layers. Strong in-plane uniaxial magnetic anisotropy is revealed in the as-deposited amorphous films by angular dependent magnetic measurements, and the growth-induced anisotropy is found to strongly depend on the film thickness. A fourfold cubic magnetic anisotropy develops with annealing, as a result of improved crystalline structure in films confirmed by X-ray diffraction measurements. The observed magnetic properties can be explained by the superposition of the uniaxial and additional cubic magnetic anisotropy, tuned by annealing temperature. (orig.)

  18. Investigation of magnetic properties in thick CoFeB alloy films for controllable anisotropy

    Science.gov (United States)

    Wang, Ke; Huang, Ya; Chen, Ruofei; Xu, Zhan

    2016-02-01

    CoFeB alloy material has attracted interest for its wide uses in magnetic memory devices and sensors. We investigate magnetic properties of thick Co40Fe40B20 films in the thickness range from 10 to 100 nm sandwiched by MgO and Ta layers. Strong in-plane uniaxial magnetic anisotropy is revealed in the as-deposited amorphous films by angular dependent magnetic measurements, and the growth-induced anisotropy is found to strongly depend on the film thickness. A fourfold cubic magnetic anisotropy develops with annealing, as a result of improved crystalline structure in films confirmed by X-ray diffraction measurements. The observed magnetic properties can be explained by the superposition of the uniaxial and additional cubic magnetic anisotropy, tuned by annealing temperature.

  19. Electromechanical Properties of Microcantilever Actuated by Enhanced Piezoelectric PZT Thick Film

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Mei; ZHAO Quan-Liang; CAO Mao-Sheng; YUAN Jie; DUAN Zhong-Xia; QIU Cheng-Jun

    2008-01-01

    Pb(Zro.53,Tio.47)O3 (PZT) films with thicknesses of 0.8μm, 2μm and 4μm are prepared by a sol-gel method and their longitudinal piezoelectric coefficients are analysed. The results show that the PZT thick films, whose density is closer to bulk PZT, has the better crystallization, with d33 and density much larger than those of PZT thin films. A piezoelectric microcantilever actuated by a 4-μm-thick PZT film is fabricated and its displacement is measured in different frequencies and voltages. The displacement increases linearly with the increasing bias,and the maximum displacement of 0.544 μm is observed at 30kHz for 5V bias. The resonant frequency obtained in the experiment matches quite well with the theoretical result, and it is shown that the resonant frequency of PZT microcantilever could be controlled and predicated.

  20. Lift-off PMN-PT Thick Film for High Frequency Ultrasonic Biomicroscopy.

    Science.gov (United States)

    Zhu, Benpeng; Han, Jiangxue; Shi, Jing; Shung, K Krik; Wei, Q; Huang, Yuhong; Kosec, M; Zhou, Qifa

    2010-10-01

    Piezoelectric 0.65Pb(Mg(1/3)Nb(2/3))O(3)-0.35PbTiO(3) (PMN-35PT) thick film with a thickness of approximately 12 µm has been deposited on the platinum buffered Si substrate via a sol-gel composite method. The separation of the film from the substrate was achieved using a wet chemical method. The lifted-off PMN-35PT thick film exhibited good dielectric and ferroelectric properties. At 1 kHz, the dielectric constant and the dielectric loss were 3,326 and 0.037, respectively, while the remnant polarization was 30.0 µC/cm(2). A high frequency single element acoustic transducer fabricated with this film showed a bandwidth at -6 dB of 63.6% at 110 MHz.

  1. Influence of Thickness on Field Emission Characteristics of Nanometre Boron Nitride Thin Films

    Institute of Scientific and Technical Information of China (English)

    顾广瑞; 李英爱; 陶艳春; 何志; 李俊杰; 殷红; 李卫青; 赵永年

    2003-01-01

    Nanometre boron nitride (BN) thin films with various thickness (54-135 nm) were prepared on Si(100) by rf magnetic sputtering physical vapour deposition. The field emission characteristics of the BN thin films were measured in an ultrahigh vacuum system. A threshold electric field of 11 V/μm and the highest emission current density of 240 μA/cm2 at an electric field of 23 V/μm were obtained for the about 54-nm-thick BN film. The threshold electric field increases with increasing the thickness in the nanometre range. The Fowler-Nordheim plots show that electrons were emitted from BN to vacuum by tunnelling through the potential barrier at the surface of BN thin films.

  2. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  3. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  4. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-01

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  5. Microstructure parameters and optical properties of cadmium ferrite thin films of variable thickness

    Science.gov (United States)

    Shaaban, E. R.

    2014-06-01

    CdFe2O4 thin films of different thicknesses were deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The microstructure parameters, crystallite size, and microstrain were calculated. It is observed that both the crystallite size increases and microstrain increase with increasing with the film thickness. The fundamental optical parameters like absorption coefficient and optical band gap are calculated in the strong absorption region of transmittance and reflectance spectrum. The refractive indices have been evaluated in terms of the envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index can be extrapolated by the Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The refractive index, n, increases on increasing the film thickness up to 733 nm and the variation of n with higher thickness lies within the experimental errors.

  6. Effect of withdrawal speed on film thickness and hexagonal pore-array dimensions of SBA-15 mesoporous silica thin film.

    Science.gov (United States)

    Hwang, Junho; Shoji, Naoko; Endo, Akira; Daiguji, Hirofumi

    2014-12-30

    Two-dimensional hexagonal mesoporous silica thin films of SBA-15 were synthesized on Si substrates via dip-coating using an evaporation-induced self-assembly process. The effect of the withdrawal speed on the thicknesses, one-dimensional pore alignments, and two-dimensional hexagonal pore arrays of the films was elucidated. Detailed analyses of FE-SEM and TEM images and XRD and XRR patterns of the synthesized thin films clarified that the pore sizes, interplanar spacings, and film thicknesses depend on the withdrawal speed. Furthermore, the same films were synthesized on Si substrates with microtrenches. The local flow of coating solutions around microtrenches affects the pore direction as well as the film thickness. In order to form well-ordered mesoporous silica thin films with large surface areas, it is important to control the synthetic conditions such as the local flow of the coating solutions as well as the physicochemical properties of the silica precursor solutions or template molecules.

  7. NUMERICAL CHARACTERIZATION OF CURRENT-INDUCED CHANGES IN SURFACE MORPHOLOGY OF THIN Ag FILMS

    Institute of Scientific and Technical Information of China (English)

    A. V. Panin; H.-G. Chun; A.R. Shugurov; S. V. Panin; N. V. Pykhtin

    2003-01-01

    The changes in surface topography of thin conducting Ag films under high-density current condition are studied by optical and scanning tunnelling microscopy (STM).It is established that the loss of conductivity in specimens occurs through depletion of the material due to their overheating and electromigration process. It has been shown that the r.m.s. Roughness, the fractal dimension of voids and the fractal dimension of the surface allow complete numerical characterization of surface topography changes in thin Ag films.

  8. Correlations between IMC thickness and three factors in Sn-3Ag-0.5Cu alloy system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of Ni content, soldering temperature and time on the IMC thickness in Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.2Co alloys were researched using uniform design method and computer programs. For each alloy, the factors were divided into three levels in the experiment. Two correlative equations are given by regression. They indicate that the effects of three factors on the function are in the mutual and quadratic forms. And the analysis of variance shows the equations are sound and meaningful. Using the equations, it is easy to search, predict and control the IMC thickness. The existence of element Co accelerates the crystallization and growing up of IMC.

  9. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    Science.gov (United States)

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  10. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Kuo

    2007-04-01

    Full Text Available Lead Zirconate Titanate oxide (PZT thick films with thicknesses of up to 10 μmwere developed using a modified sol-gel technique. Usually, the film thickness is less than1 μm by conventional sol-gel processing, while the electrical charge accumulation whichreveals the direct effect of piezoelectricity is proportional to the film thickness and thereforerestricted. Two approaches were adopted to conventional sol-gel processing – precursorconcentration modulation and rapid thermal annealing. A 10 μm thick film was successfullyfabricated by coating 16 times via this technique. The thickness of each coating layer wasabout 0.6 μm and the morphology of the film was dense with a crack-free area as large as 16mm2. In addition, the structure, surface morphology and physical properties werecharacterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomicforce microscopy (AFM and electrical performance. The dielectric constant and hysteresisloops were measured as electric characteristics. This study investigates the actuation andsensing performance of the vibrating structures with the piezoelectric thick film. Theactuation tests demonstrated that a 4 mm x 4 mm x 6.5 μm PZT film drove a 40 mm x 7 mmx 0.5 mm silicon beam as an actuator. Additionally, it generated an electrical signal of 60mVpp as a sensor, while vibration was input by a shaker. The frequencies of the first twomodes of the beam were compared with the theoretical values obtained by Euler-Bernoullibeam theory. The linearity of the actuation and sensing tests were also examined.

  11. An estimation method on failure stress of micro thickness Cu film-substrate structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.

  12. An estimation method on failure stress of micro thickness Cu film-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG XiShu; LI Ying; MENG XiangKang

    2009-01-01

    The failure of thin film-substrate structure occurs mainly at the thin film or the interface.However,the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size,interface and stress state on the failure behavior of thin film-substrate structure.Based on the scanning electron microscope(SEM)in-situ investigation on the failure models of the Cu thin film-substrata structure and the nano scratched testing results,the failure stresses in different thicknesses of the Cu film-substrate were characterized,which were compared and confirmed by other methods,such as Stoney formula and other empiric equations.These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods.The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film.Therefore,the novel estimating method of failure stress assists people to understand the critical interracial strength and to set up the failure criterion of thin film-substrate structure.

  13. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Komada, Suguru [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Noa Yotsuya Building 2F, 1-13, Yotsuya-Douri, Chikusa-ku, Nagoya 464-0819 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-11-30

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  14. Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance

    Energy Technology Data Exchange (ETDEWEB)

    BANDEY, HELEN L.; BROWN, MARK J.; CERNOSEK, RICHARD W.; HILLMAN, A. ROBERT; MARTIN, STEPHEN J.

    1999-09-16

    We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.

  15. Impact of film thickness on the morphology of mesoporous carbon films using organic-organic self-assembly.

    Science.gov (United States)

    Vogt, Bryan D; Chavez, Vicki L; Dai, Mingzhi; Arreola, M Regina Croda; Song, Lingyan; Feng, Dan; Zhao, Dongyuan; Perera, Ginusha M; Stein, Gila E

    2011-05-03

    Mesoporous polymer and carbon thin films are prepared by the organic-organic self-assembly of an oligomeric phenolic resin with an amphiphilic triblock copolymer template, Pluronic F127. The ratio of resin to template is selected such that a body-centered cubic (Im3m) mesostructure is formed in the bulk. However, well-ordered mesoporous films are not always obtained for thin films (body-centered cubic symmetry with a preferential orientation of the closest-packed (110) plane parallel to the substrate. Film thickness and initial composition of the carbonizable precursors in the template are critical factors in determining the morphology of mesoporous carbon films. These results provide insight into why difficulties have been reported in producing ultrathin ordered mesoporous carbon films using cooperative organic-organic self-assembly.

  16. In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag

    Science.gov (United States)

    Li, Jin; Chen, Y.; Wang, H.; Zhang, X.

    2017-03-01

    Recent studies have shown that twin boundaries are effective defect sinks in heavy ion irradiated nanotwinned (nt) metals. Prior in situ radiation studies on nt Ag at room temperature indicate that the accumulative defect concentration is higher in center areas in the 60-nm-thick twins, and twin boundaries are distorted and self-heal during the absorption of different types of defect clusters. In this follow-up study, we show that the spatial distribution of accumulative defect concentrations in nt metals has a clear dependence on twin thickness, and in certain cases, the trend of spatial distribution is reversed. Potential mechanisms for the counterintuitive findings are discussed.

  17. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    Science.gov (United States)

    Anand, S. V.; Arvind, K.; Bharath, P.; Mahapatra, D. Roy

    2010-04-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications.

  18. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation.

    Science.gov (United States)

    Akhavan, O

    2009-08-01

    Photodegradation of Escherichia coli bacteria in presence of Ag-TiO(2)/Ag/a-TiO(2) nanocomposite film with an effective storage of silver nanoparticles was investigated in the visible and the solar light irradiations. The nanocomposite film was synthesized by sol-gel deposition of 30 nm Ag-TiO(2) layer on approximately 200 nm anatase(a-)TiO(2) film previously doped by silver nanoparticles. Both Ag/a-TiO(2) and Ag-TiO(2)/Ag/a-TiO(2) films were transparent with a SPR absorption band at 412 nm. Depth profile X-ray photoelectron spectroscopy showed metallic silver nanoparticles with diameter of 30 nm and fcc crystalline structure were self-accumulated on the film surface at depth of 5 nm of the TiO(2) layer and also at the interface of the Ag-TiO(2) and a-TiO(2) films (at depth of 30 nm). Both OH(-) bounds and H(2)O contents were concentrated on the film surface and at the interface, as a profit in releasing more ionic (not metallic) silver nanoparticles. Antibacterial activity of the nanocomposite film against E. coli bacteria was 5.1 times stronger than activity of the a-TiO(2), in dark. Photo-antibacterial activity of the nanocomposite film exposed by the solar light was measured 1.35 and 6.90 times better than activity of the Ag/a-TiO(2) and a-TiO(2), respectively. The main mechanism for silver ion releasing was inter-diffusion of water and silver nanoparticles through pores of the TiO(2) layer. Durability of the nanocomposite film was at least 11 times higher than the Ag/a-TiO(2) film. Therefore, the Ag-TiO(2)/Ag/a-TiO(2) photocatalyst can be nominated as one of the effective and long-lasting antibacterial nanocomposite materials.

  19. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  20. Humidity sensing properties of WO{sub 3} thick film resistor prepared by screen printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Garde, Arun S, E-mail: arungarde@yahoo.co.in

    2014-12-25

    Highlights: • Polycrystalline WO{sub 3} Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm{sup −1} shows stretching vibrations attributed to W-OH of adsorbed H{sub 2}O. • Absorption peaks in the range 879–650 cm{sup −1} are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO{sub 3} thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm{sup −1} clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm{sup −1} are attributed to the stretching W-O-W bonds (i.e. ν [W-O{sub inter}-W]). The peak located at 983 cm{sup −1} belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO{sub 3} thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO{sub 3} film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO{sub 3} film sensors have been evaluated.

  1. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Manju, E-mail: manjubala474@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Tripathi, Tripurari S. [Aalto University, Värmemansgränden 2, 02150 Espoo (Finland); Varma, Shikha [Institute of Physics, Bhubaneshwar, Odisha 751005 (India); Tripathi, Surya K. [Department of Physics, Panjab University, Chandigarh 160 014 (India); Asokan, K., E-mail: asokaniuac@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, Devesh K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  2. Influence of Annealing and UV Irradiation on Hydrophilicity of Ag-TiO Nanostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Fanming Meng

    2012-01-01

    Full Text Available Ag-TiO2 nanostructured thin films with silver content of 5 vol% have been deposited on silicon, glass, and quartz substrates by RF magnetron sputtering and annealed in ambient air at 900°C for 15, 30, 60, 90, and 120 min. Their crystal structure, surface morphology, and hydrophilicity have been characterized by X-ray diffractometer, atomic force microscope, and water contact angle apparatus, respectively. The influence of annealing time and UV irradiation time on hydrophilic property of Ag-TiO2 thin films have been studied in detail. It is shown that annealing time influences crystal structure of Ag-TiO2 thin films. The unannealed film is amorphous and shows poor hydrophilicity. With the increase of annealing time from 15 to 120 min, the grain-size slowly increases and tends to uniformity. A suitable annealing time can significantly enhance the hydrophilic behavior of Ag-TiO2 films. Water contact angle decreases with the increase of irradiation time. The mechanism of hydrophilicity has been proposed and can be attributed to the increase of oxygen anion radicals O2− and reactive center of surface Ti3+.

  3. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    Science.gov (United States)

    Park, Sung-Hyeon; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon; Kim, Hak-Sung

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects.

  4. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mene, Ravindra U. [PDEA' s, Annasaheb Waghire College of Science, Arts and Commerce, Otur 412409, M.S. (India); School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India); Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India); Mohite, K.C. [Haribhai. V. Desai College, Pune 411002, M.S. (India); Khairnar, Rajendra S., E-mail: rskhairnarsps@gmail.com [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India)

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  5. Impact of thickness on microscopic and macroscopic properties of Fe-Te-Se superconductor thin films

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2015-04-01

    Full Text Available A series of iron based Fe-Te-Se superconductor thin films depositing on 0.7wt% Nb-doped SrTiO3 at substrate temperatures in the 250°C -450°C range by pulsed laser ablation of a constituents well defined precursor FeTe0.55Se0.55 target sample. We study the possible growth mechanism and its influence on the superconductor properties. Experimental results indicate the superconductive and non-superconductive properties are modulated only by the thickness of the thin films through the temperature range. The films appear as superconductor whenever the thickness is above a critical value ∼30nm and comes to be non-superconductor below this value. Relative ratios of Fe to (Te+Se in the films retained Fe/(Te+Se1 for non-superconductor no matter what the film growth temperature was. The effect of film growth temperature takes only the role of modulating the ratio of Te/Se and improving crystallinity of the systems. According to the experimental results we propose a sandglass film growth mechanism in which the interfacial effect evokes to form a Fe rich area at the interface and Se or Te starts off a consecutive filling up process of chalcogenide elements defect sides, the process is significant before the film thickness reaches at ∼30nm.

  6. Electrically Conductive Thick Film Made from Silver Alkylcarbamates

    Science.gov (United States)

    Liu, Jianguo; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan

    2010-10-01

    A homogeneous electrically conductive silver paste without solid or particle phase was developed using silver alkylcarbamates [(C n H2 n-1NHCOO)2Ag, n ≤ 4] as the precursor of the functional phase. The silver alkylcarbamates were light insensitive and had a low decomposition temperature (below 200°C). The paste was a non-Newtonian fluid with viscosity significantly depending on the content of the thickening agent ethyl cellulose. Array patterns with a resolution of 20 μm were obtained using this paste by a micropen direct-writing method. After the paste with about 48 wt.% silver methylcarbamate [(CH3NHCOO)2Ag] precursor was sintered at 180°C for 15 min, an electrically conductive network consisting of more than 95 wt.% silver was formed, and was found to have a volume electrical resistivity on the order of 10-5 Ω cm and a sheet electrical resistivity on the order of 10-2-10-3 Ω/□. The cohesion strength within the sintered paste and the adhesion strength between the sintered paste layer and the alumina ceramic substrate were tested according to test method B of the American Society for Testing and Materials standard D3359-08. None of the sintered paste layer was detached under the test conditions, and the cohesion and adhesion strengths met the highest grade according to the standard.

  7. Cap effect of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} thick films during post-annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, T. [Department of Electrical and Electronic Engineering, Tottori University, 4-101, Koyama-Minami, Tottori 680-8552 (Japan); Honda, S., E-mail: b03t3052@faradayele.tottori-u.ac.j [Department of Electrical and Electronic Engineering, Tottori University, 4-101, Koyama-Minami, Tottori 680-8552 (Japan); Kinoshita, K.; Kishida, S. [Department of Electrical and Electronic Engineering, Tottori University, 4-101, Koyama-Minami, Tottori 680-8552 (Japan)

    2009-10-15

    We prepared (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BiPb-2223) thick films on MgO substrates by a spin coating method and investigated their superconducting property. The surface of BiPb-2223 thick films was capped with MgO, Ag or BiPb-2223/MgO during sintering process. From the results of X-ray diffraction patterns and resistance-temperature characteristics, we found that the caps of MgO and Ag were useful for obtaining the 30 mum-BiPb-2223 thick films with the T{sub c} above 100 K. Although the T{sub c} of the thick films with the thickness less than 5 mum decreased, the T{sub c} of the BiPb-2223 films with the thickness less than 5 mum was improved by use of the BiPb-2223/MgO cap.

  8. Double-layer antireflection from silver nanoparticle integrated SiO2 layer on silicon wafer: effect of nanoparticle morphology and SiO2 film thickness

    Science.gov (United States)

    Parashar, Piyush K.; Sharma, R. P.; Komarala, Vamsi K.

    2017-01-01

    Optical properties of silver nanoparticles (Ag NPs) on SiO2 thin films of variable thickness, as a plasmonic double layer on a plain silicon wafer, are investigated for broadband antireflection. The light confinement into the silicon is found to be sensitive to the SiO2 film thickness of a few nanometers due to an evanescent character of the Ag NPs’ near-fields. The Ag NPs’ size anisotropy plays a pivotal role in incident light coupling due to the sub-wavelength spatial variation of near-fields at the interface, which leads to reflectance spectrum oscillation behavior in the nanoparticles’ surface plasmon resonance and off-resonance regions. With an optimized SiO2/Ag NP double layer, the average reflectance in the 300-1200 nm spectral range is reduced to 14% in comparison to 42% in bare silicon, with a flat minimum reflectance of 3.5% in the 725-1020 nm spectral region. Finite difference time domain calculations are performed for spatial variation of near-fields and their angular distribution of far-fields at different inhomogeneous interfaces (where near-fields exist). The total reflectance from various configurations is simulated theoretically by considering the experimentally optimized physical parameters of the plasmonic double layer to support the observations. To verify the role of SiO2 surface topology apart from the nanoparticle morphology in plasmon near-field coupling, thermally grown SiO2 films are investigated along with the sputtered SiO2 thin films.

  9. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel D. Tune

    2013-12-01

    Full Text Available The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  10. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Yu, Youxing, E-mail: yuyouxing@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Gao, Tenghua [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-12-21

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.

  11. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    OpenAIRE

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. ...

  12. Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M.; Hamzaoui, S. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria); Amrani, B. [Department of Physics, Centre Universitaire de Mascara, Mascara 29000 (Algeria)], E-mail: abouhalouane@yahoo.fr; Reshak, Ali H. [Institute of Physical Biology-South Bohemia University, Institute of System Biology and Ecology-Academy of Sciences, Nove Hrady 37333 (Czech Republic); Adnane, M.; Sahraoui, T.; Zerdali, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)

    2008-09-01

    Undoped ZnO thin films of different thicknesses were prepared by r.f. sputtering in order to study the thickness effect upon their structural, morphological, electrical and optical properties. The results suggest that the film thickness seems to have no clear effect upon the orientation of the grains growth. Indeed, the analysis with X-ray diffraction show that the grains were always oriented according to the c(0 0 2)-axis perpendicular to substrate surface whatever the thickness is. However, the grain size was influenced enough by this parameter. An increase in the grain size versus the thickness was noted. For the electrical properties, measurements revealed behaviour very dependent upon thickness. The resistivity decreased from 25 to 1.5x10{sup -3} {omega} cm and the mobility increased from 2 to 37 cm{sup 2} V{sup -1} s{sup -1} when the thickness increased from 70 to 1800 nm while the carrier concentration seems to be less affected by the film thickness and varied slightly remaining around 10{sup 20} cm{sup -3}. Nevertheless, a tendency to a decrease was noticed. This behaviour in electrical properties was explained by the crystallinity and the grain size evolution. The optical measurements showed that all the samples have a strong transmission higher than 80% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the thickness increased. This result shows that the band gap is slightly decreases from 3.37 to 3.32 eV with the film thickness vary from 0.32 to 0.88 {mu}m.

  13. Electrical and switching properties of the Se{sub 90}Te{sub 10-x}Ag{sub x} (0<=x<=6) films

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, M.A.; Hegab, N.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Bekheet, A.E., E-mail: ashraf_bekheet@hotmail.co [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Sharaf, E.R. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)

    2009-08-01

    Amorphous Se{sub 90}Te{sub 10-x}Ag{sub x} (0<=x<=6) films are obtained by thermal evaporation technique under vacuum from the synthesized bulk materials on pyrographite and glass substrates. X-ray analysis shows the amorphous nature of the obtained films. The dc electrical conductivity was studied for different thicknesses (165-711 nm) as a function of temperature in the range (298-323 K) below the corresponding T{sub g} for the studied films. The obtained results show that the conduction activation energy has a single value through the investigated range of temperature which can be explained in accordance with Mott and Davis model. The I-V characteristic curves for the film compositions are found to be typical for a memory switch. The mean value of the threshold voltage V{sub th}-bar increases linearly with increasing film thickness (165-711 nm), while it decreases exponentially with increasing temperature in the investigated range for the studied compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Ag on the studied parameters is also investigated.

  14. Thick barium ferrite films use for passive isolators

    Energy Technology Data Exchange (ETDEWEB)

    Capraro, Stephane; Chatelon, Jean Pierre; Rouiller, Thomas; Rousseau, Jean Jacques [DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne cedex (France); Berre, Martine Le; Barbier, Daniel [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne cedex (France); Joisten, Helene [CEA-LETI, 17 rue des martyrs, 38041 Grenoble cedex (France)

    2004-12-01

    Ferrites have magnetic properties suitable for electronic applications, especially in the microwave range (circulators and isolators). Hexagonal ferrite, such as barium ferrite, are of great interest for microwave device applications because of their large resistivity and high permeability at high frequencies. BaM films are deposited under optimized conditions by RF magnetron sputtering on alumina substrates. In order to crystallize the films that are amorphous after deposition, a post deposition annealing at 800 C is implemented. All samples present a good crystallization, a smooth surface and a good in-depth uniformity. The magnetic properties of BaM films show an optimized coercive force and saturation magnetization of 330 kA/m and 500 mT respectively. These values are close to that of the bulk BaM. Isolators are then realized and measured by a vector network analyzer and a probing system. Results on transmission coefficients show a non reciprocal effect, which reaches 8.3 dB/cm at 50 GHz. This proves that such a component behaves like an isolator in the 50 GHz band. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Unusual Contact-Line Dynamics of Thick Films and Drops

    Science.gov (United States)

    Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia

    1999-01-01

    We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.

  16. Critical thickness for ferromagnetism in insulating LaMnO3 films

    Science.gov (United States)

    Renshaw Wang, X.; Poccia, N.; Leusink, D. P.; Paudel, Tura R.; Tsymbal, E. Y.; Li, C. J.; Lv, W. M.; Venkatesan, T.; Ariando, Ariando; Hilgenkamp, H.

    2014-03-01

    The interplay between exchange interactions, interfacial charges, and confinement effects controls the electronic, magnetic, and transport properties of complex oxide thin films. Here we report the emergence of ferromagnetism in insulating LaMnO3 thin films grown on SrTiO3 substrates beyond a critical thickness. LaMnO3 (001) films are deposited by a pulsed laser deposition technique with thicknesses varying from 1 unit cell to 24 unit cells. The position dependent local magnetization is then mapped with micrometer resolution using scanning superconducting quantum interference device microscopy. We find that the magnetic ground state switches from non-ferromagnetic to ferromagnetic within a change of one unit cell above the critical thickness of 5 unit cells with characteristic domain size of about 20 μm. Further increase of film thickness up to 24 unit cells leads to reduction of the domain size to about 10 μm. The critical thickness is qualitatively explained in terms of the charge transfer in polar LaMnO3 (001) thin films based on results of additional experimental data, density-functional calculations, and the electrostatic modeling.

  17. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  18. Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films

    Science.gov (United States)

    Arasu, Velu; Reddy Dugasani, Sreekantha; Son, Junyoung; Gnapareddy, Bramaramba; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    Although the preparation of DNA thin films with well-defined thicknesses controlled by simple physical parameters is crucial for constructing efficient, stable, and reliable DNA-based optoelectronic devices and sensors, it has not been comprehensively studied yet. Here, we construct DNA and surfactant-modified DNA thin films by drop-casting and spin-coating techniques. The DNA thin films formed with different control parameters, such as drop-volume and spin-speed at given DNA concentrations, exhibit characteristic thickness, surface roughness, surface potential, and absorbance, which are measured by a field emission scanning electron microscope, a surface profilometer, an ellipsometer, an atomic force microscope, a Kelvin probe force microscope, and an UV–visible spectroscope. From the observations, we realized that thickness significantly affects the physical properties of DNA thin films. This comprehensive study of thickness-dependent characteristics of DNA and surfactant-modified DNA thin films provides insight into the choice of fabrication techniques in order for the DNA thin films to have desired physical characteristics in further applications, such as optoelectronic devices and sensors.

  19. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  20. Epitaxial Cu(001) films grown on a Cr/Ag/Fe/GaAs(001) buffer system

    Energy Technology Data Exchange (ETDEWEB)

    Gottlob, Daniel M., E-mail: d.gottlob@fz-juelich.de [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47048 Duisburg (Germany); Jansen, Thomas [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich (Germany); Hoppe, Michael [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Bürgler, Daniel E. [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich (Germany); and others

    2014-07-01

    We present a procedure to prepare single-crystalline, high-purity Cu(001) films (templates) suitable as substrates for subsequent epitaxial thin-film growth. The template films were grown in a dedicated molecular-beam epitaxy system on a Cr/Ag/Fe/GaAs(001) buffer layer system. Low-energy electron diffraction and X-ray diffraction were applied to determine the surface orientation and the epitaxial relationship between all layers of the stack. Post-annealing at moderate temperatures enhances the quality of the film as shown by low-energy electron diffraction and atomic force microscopy. X-ray photoemission and Auger electron spectroscopy confirm that no atoms of the buffer layers diffuse into the Cu film during the initial preparation and the post-annealing treatment. The completed Cu(001) template system can be exposed to air and afterwards refurbished by Ar{sup +}-ion bombardment and annealing, enabling the transfer between vacuum systems. The procedure provides suitable conductive thin film templates for studies of epitaxial thin films, e.g. on the magnetic and magnetotransport properties of Co and Ni based films and multilayers. - Highlights: • Preparation of epitaxial Cu(001) template films on an insulating substrate • Characterization of template structure, orientation, cleanness, and roughness • Template films can be exposed to air and refurbished in different vacuum system. • Template films are suitable for further thin film growth at up to 570 K.

  1. WS{sub 2} nanotube formation by sulphurization: Effect of precursor tungsten film thickness and stress

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sheung Mei; Wong, Hon Fai; Wong, Wang Cheung; Tan, Choon Kiat; Choi, Sin Yuk; Mak, Chee Leung; Li, Gui Jun [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Dong, Qing Chen [MOE Key Laboratory for Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024 (China); Leung, Chi Wah, E-mail: dennis.leung@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2016-09-15

    Transition metal dichalcogenides can exhibit as 2-dimensional layers, 1-dimensional nanotubes or 0-dimensional quantum dot structures. In general, dichalcogenide nanotubes are grown under stringent conditions, using high growth temperatures with tedious processes. Here, we report the controlled formation of tungsten disulphide (WS{sub 2}) nanostructures by manipulating the precursor film thickness, followed by a direct sulphurization process. WS{sub 2} nanotubes were formed by ultra-thin tungsten precursor films, while particle-like WS{sub 2} were obtained from thicker tungsten films under identical sulphurization conditions. To elucidate the origin of WS{sub 2} nanostructure formation, micron-sized tungsten film tracks were prepared, and such patterned films were found to suppress the growth of WS{sub 2} nanotubes. We attribute the suppression of nanotube formation to the relieving of film stress in patterned precursor films. - Highlights: • WS{sub 2} were obtained by sulphurization of sputtered tungsten films on Si substrates. • Resultant WS{sub 2} nanostructure morphology was dependent on precursor film thickness. • Patterning into micro-size W tracks suppressed the formation of nanotubes. • Stress relaxation was attributed as controlling factor for WS{sub 2} structure formation.

  2. Microdomain orientation dependence on thickness in thin films of cylinder-forming PS-b-PMMA.

    Science.gov (United States)

    Zucchi, I A; Poliani, E; Perego, M

    2010-05-07

    The self-assembly of block-copolymer thin films in periodic nanostructures has received considerable attention during the last decade due to their potential applications in nanofabrication and nanolithography. We followed the morphologies developed in thin films of a cylinder-forming diblock copolymer polystyrene-b-poly(methylmethacrylate) ((PS-b-PMMA), PS 46.1 kg mol( - 1), PMMA 21.0 kg mol( - 1), lattice spacing L(0) = 36 nm), as a function of the film thickness (t), analyzing the effect of thickness commensurability on domain orientation in respect to the substrate. The study was circumscribed to the unexplored range of thickness below L(0). Two thickness windows with perpendicular orientation of the PMMA domains were identified: a well-known window at t approximately L(0) and a new window at t approximately L(0)/2. A half-parallel cylinder morphology was observed for [Formula: see text] with a progressive change in morphology [Formula: see text] when thickness increases from L(0)/2 to L(0). This experimental evidence provides new insights on the mechanism of block copolymers self-organization and indicates the possibility to tune the thickness of the nanostructured polymeric film below L(0), allowing the fabrication of ultrathin soft masks for advanced lithographic processes.

  3. Formulation and Characterization of Cu Doped ZnO Thick Films as LPG Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. V. PATIL

    2010-12-01

    Full Text Available Thick films of pure and various concentrations (1 wt. %, 3 wt. %, 5 wt. %, 7 wt. % and 10 wt. % of Cu-doped ZnO were prepared on alumina substrates using a screen printing technique. These films were fired at a temperature of 700ºC for two hours in an air atmosphere. Morphological, compositional and structural properties of the samples were obtained using the scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDAX and X-ray diffraction techniques respectively. The LPG gas sensing properties of these thick films were investigated at different operating temperatures and LPG gas concentrations. The surface resistance of thick films decreases when exposed to LPG gas. The Cu doped films show significant sensitivity to LPG gas than pure ZnO film. 5 wt. % Cu-doped ZnO film was found to be more sensitive (87.3 % to LPG gas exposed at 300 oC than other doping concentrations with fast response and recovery time.

  4. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.

    Science.gov (United States)

    Chen, Meng; Fan, Fei; Shen, Si; Wang, Xianghui; Chang, Shengjiang

    2016-08-10

    The film thickness sensing based on metamaterial is investigated in the terahertz (THz) region. We fabricated the metamaterial sensor, and demonstrated its resonance by using the THz time-domain spectroscopy system. The results show that the resonant dip redshifts as the film thickness increases, which achieves reliable film sensing in the THz band. Its sensitivity is larger than 9.4 GHz/μm with a film thinner than λ/90. Meanwhile, the sensing mechanism is revealed by the simulation of near-field resonance distribution, which shows that the resonant intensity is stronger when the field is closer to the interface between the metamaterial surface and polyvinyl alcohol film. Therefore, the nonlinear type of the sensing sensitivity in our experiment can be well explained, and a higher sensitive sensing can be obtained when the film thickness is smaller. This simple and flexible method can realize the ultrathin film sensing in the THz region, and has application potential in the real-time monitoring of sample quality.

  5. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    Science.gov (United States)

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance.

  6. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    Science.gov (United States)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  7. Study of $\\beta$-phase development in spin-coated PVDF thick films

    Indian Academy of Sciences (India)

    BHOOPESH MAHALE; DHANANJAY BODAS; S A GANGAL

    2017-06-01

    A study was conducted to ascertain the effect of variation in spin speed and baking temperature on $\\beta$-phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films ($\\sim$4−25 $\\mu$m). Development of $\\beta$-phase is dependent on film stretching and crystallization temperature. Therefore, to study the development of $\\beta$-phase in films, stretching is achieved by spinning and crystallization temperature is adjusted by means of baking. PVDF films are characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electronmicroscopy. It is observed that crystallization temperature lower than 60$^{\\circ}$C and increase in spin speed increases the $\\beta$-phasecontent in PVDF films. Crystallization temperature above 60$^{\\circ}$C reduces $\\beta$-phase content and increases α-phase content. It was also observed that viscosity of the PVDF solution affects the β-phase development in films at a particular spin speed.

  8. Bio-interfaces--interaction of PLL/HA thick films with nanoparticles and microcapsules.

    Science.gov (United States)

    Skirtach, Andre G; Volodkin, Dmitry V; Möhwald, Helmuth

    2010-03-15

    The interaction of biocompatible, exponentially grown films composed of poly-L-lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non-aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near-infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.

  9. Adsorbed films of three-patch colloids: Continuous and discontinuous transitions between thick and thin films

    Science.gov (United States)

    Dias, C. S.; Araújo, N. A. M.; Telo da Gama, M. M.

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed.

  10. Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors

    Science.gov (United States)

    Hsieh, J. H.; Yu, R. B.; Chang, Y. K.; Li, C.

    2012-01-01

    TiO2 (rutile and anatase) thin films was first prepared using reactive sputtering, in an Ar+O2 plasma. In the 2nd stage of the experiment, various amounts (3, 7, and 10 at. %) of Ag was doped into the rutile film in order to form TiO2-Ag thin films. These films were annealed for one hour in Ar atmosphere, at 300, 400, and 500 °C. The films' structures were then examined using X-ray diffractometry. FESEM (field-emission scaning electron microscopy) was used to investigate the surface emergence of Ag particles. As for the examination of optical band gaps and absorption of these films, UV-Vis-NIR photometer was used. The results show that, in as-deposited condition, the addition of Ag might disrupt the growth of crystalline structure and cause the formation of amorphous films. After annealing, it is found that the structure tends to become anatase phase which is a metastable phase between amorphous titanium oxide and rutile. More importantly, the absorption of the Ag-doped films would be enhanced in the visible-light range. Some of the enhancement is clearly due to plasmon resonance effect. The Ag-doped samples have shown some antibacterial effect in dark. When irradiated with light, the samples show a synergistic behavior combining the bactericidal effect of Ag ions and photocatalytic effect of TiO2.

  11. Synthesis of antibacterial film CTS/PVP/TiO2/Ag for drinking water system.

    Science.gov (United States)

    Zhang, Liang; Bai, Xue; Tian, Hua; Zhong, Lvling; Ma, Cailian; Zhou, Yuanzhen; Chen, Shuangli; Li, Dongliang

    2012-08-01

    A CTS/PVP/TiO2/Ag functional film was prepared as an antibacterial composite used in storing drinking water. The orthogonal experiment showed that the optimal conditions for preparing membranes with best antibacterial activity and tensile strength are c(AgNO3)=0.08%, c(TiO2)=0.20%, c(CTS)=2.25%, and c(PVP)=3.00%. The FT-IR spectrum implies that hydrogen bands are formed between acetyl in PVP and hydroxyl in CTS molecule, and -NH and -OH of CTS have some interactions with sliver nano-particles (nano-Ags) which were reduced in situ. The SEM images show that the TiO2 particles are displayed on the surface and embedded in the film. And nano-Ags are further proved through XRD and SEM images. The DSC curves show that the film has a favorable compatibility and heat stability. In application study, it is proved that this film has sustainable antibacterial activity and is safe in use.

  12. Preparation and photoelectrochemical performance of TiO2/Ag2Se interface composite film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Coupling TiO2 with a narrow band gap semiconductor acting as the photosensitizer has attracted much attention in solar energy exploitation. In this work,the porous TiO2 film was first formed on the conducting glass plate (CGP) substrate by the decomposition of polyethylene glycol (PEG) mixing in titanium hydroxide sol at 450℃. Then,the TiO2/Ag2Se interface composite film was fabricated by interface reaction of AgNO3 with NaSeSO3 on the activated surface of porous TiO2 film. The results of SEM and XRD analyses indicated that the porous TiO2 layer was made up of the anatase crystal,and the Ag2Se layer was made up of congregative small particles that have low-temperature α-phase structure. Due to its efficient charge separation for the photo-induced electron-hole pairs,the TiO2/Ag2Se interface composite film as-prepared has good photovoltaic property and high photocurrent response for visible light,which have been confirmed by the photoelectrochemical measurements.

  13. A study on photocatalytic activity of micro-arc oxidation TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, N. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Song, R.G., E-mail: songrg@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Xiang, B.; Li, H.; Wang, Z.X.; Wang, C. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-08-30

    Highlights: • The optimum voltage and concentration of micro-arc oxidation (MAO) for photocatalytic activity have been studied. • The most superior treatment time and concentration for Ag{sup +} impregnation have been discussed under the optimum MAO condition above. • Mechanism of influence on impregnation time for Ag+MAO-TiO{sub 2} composite films have been well investigated. • MAO-TiO{sub 2} films and Ag+MAO-TiO{sub 2} composite films were compared each other on photocatalytic efficiency. - Abstract: First, micro-arc oxidation (MAO) TiO{sub 2} films have been prepared on pure titanium in a phosphate-based electrolyte, and then the Ag{sup +}/MAO-TiO{sub 2} composite films have been fabricated by Ag{sup +} impregnation in this paper. The microstructure and composition of MAO-TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films have been studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The photocatalytic activity of both films was evaluated by photocatalytic decolorization of methylene blue (MB) in aqueous solution as a model pollutant under sunlight irradiation simulation with homemade ultraviolet–visible spectroscopy (UV–vis). The results showed that the photocatalytic activity of MAO-TiO{sub 2} films increased with increasing the applied voltage and concentration in a certain scope. The morphology of Ag{sup +}/MAO-TiO{sub 2} composite films were of significantly difference and superior photocatalytic activity compared to the MAO-TiO{sub 2} film. Also, Ag{sup +} impregnation was able to enhance the photocatalytic efficiency of MAO-TiO{sub 2} film.

  14. Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Krylova, V.; Žalenkienė, S.; Dukstienė, N. [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254, Kaunas (Lithuania); Baltrusaitis, J., E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-10-01

    Highlights: • We investigated deposition of a mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S on polyamide. • A single chalcogen precursor – K{sub 2}SeS{sub 2}O{sub 6} – was used. • AAS showed five- to ten-fold excess of chalcogens diffused into PA. • Addition of AgNO{sub 3} resulted in subsurface Ag{sub 2}Se–Ag{sub 2}S formation. - Abstract: Thin mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S films were deposited on a polyamide 6 (PA) surface by successfully using a cation-exchange reaction between Cd{sup 2+} and Ag{sup +} to convert CdSe-CdS into Ag{sub 2}Se-Ag{sub 2}S. These were deposited using a K{sub 2}SeS{sub 2}O{sub 6} precursor solution at 60 °C followed by cadmium acetate (Cd(CH{sub 3}COO){sub 2}). An aqueous AgNO{sub 3} solution was used as the Ag source. XRD patterns showed a complex PA-Cd-S-Se-Ag film crystalline composition with CdS, CdSe, Ag{sub 2}S and Ag{sub 2}Se peaks. Calculated dislocation density ranged within 5–15 × 10{sup 13} lines·m{sup −2} indicating high quality atomic layers. Atomic Absorption Spectroscopy (AAS) showed five- to ten-fold excess of chalcogens to metals in the thin films formed. No chalcogenides were observed on the sample surface during XPS analysis after Ag exchange due to the desorption of CdS and CdSe layers, not diffused into the bulk of the polymer suggesting that silver chalcogenides were located subsurface, as opposed to the outermost layer, likely comprised of Ag{sub 2}O.

  15. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate

    Science.gov (United States)

    Li, Ruoping; Yang, Jingliang; Han, Junhe; Liu, Junhui; Huang, Mingju

    2017-04-01

    A Raman method employing silver nanoparticle (Ag NP) monolayer film as Surface-enhanced Raman Scattering (SERS) substrate was presented to rapidly detect melamine in milk. The Ag NPs with 80 nm diameter were modified by polyvinylpyrrolidone to improve their uniformity and chemical stability. The treatment procedure of liquid milk required only addition of acetic acid and centrifugation, and required time is less than 15 min. The Ag NP monolayer film significantly enhanced Raman signal from melamine and allowed experimentally reproducible determination of the melamine concentration. A good linear relationship (R2=0.994) between the concentration and Raman peak intensity of melamine at 681 cm-1 was obtained for melamine concentrations between 0.10 mg L-1 and 5.00 mg L-1. This implies that this method can detect melamine concentrations below 1.0 mg L-1, the concentration currently considered unsafe.

  16. High-performance piezoelectric thick film based energy harvesting micro-generators for MEMS

    DEFF Research Database (Denmark)

    Zawada, Tomasz; Hansen, Karsten; Lou-Moeller, Rasmus

    2010-01-01

    Energy harvesting, known also as energy scavenging, covers a great body of technologies and devices that transform low grade energy sources such as solar energy, environmental vibrations, thermal energy, human motion into usable electrical energy. In this paper vibrations are used as energy source...... and are transformed by the energy harvesting micro-generator into usable electrical signal. The micro-generator comprises a silicon cantilever with integrated InSensor® TF2100 PZT thick film deposited using screen-printing. The output power versus frequency and electrical load has been investigated. Furthermore......, devices based on modified, pressure treated thick film materials have been tested and compared with the commercial InSensor® TF2100 PZT thick films. It has been found that the structures based on the pressure treated materials exhibit superior properties in terms of energy output....

  17. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  18. Critical heat flux enhancement regarding to the thickness of graphene films under pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Man; Park, Hyun Sun [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Park, Youngjae; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Dong Eok [Kyungpook Nat. Univ., Sangju (Korea, Republic of); Kim, Moo Hwan [Korea Inst. of Nuclear Safety, Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat. Univ., Incheon (Korea, Republic of)

    2014-05-15

    The large thermal conductivity of the graphene films inhibits the formation of hot spots, thereby increasing the CHF. An infrared high-speed visualization showed graphene effect on boiling characteristics during operation. The graphene-coated heater showed an increase in BHT and CHF. As the thickness of the graphene films increased, the CHF also increased up to an asymptotic limit when the graphene layer was approximately 150 nm thick. The increased BHT was explained by the slight decrease in the wettability and the folded edges of the RGO flakes, which led to a decrease in the diameter of the departing bubbles, a larger bubble generation frequency, and an increase in the areal density of the bubble nucleation sites. The increase in the CHF was explained by considering the thermal activity of the graphene films, and the dependence thereof on the thickness and thermal properties of the layer, which was calculated based on high-speed IR visualization data.

  19. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    Science.gov (United States)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  20. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The sil

  1. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The

  2. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The sil

  3. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  4. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application.

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-18

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag(0) state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm(-2) and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  5. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  6. Thickness-dependent magnetic properties of Ce{sub 9}Fe{sub 91} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xueyun; Wang, Dianyuan; Yu, Jianmin [Faculty of Science, Jiujiang University, Jiujiang City, Jiangxi Province (China); Wang, Zhenkun; Ge, Shihui [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University (China); Yao, Dongsheng [Tianjin Key Laboratory of Low-Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University (China)

    2014-12-01

    Ce{sub 9}Fe{sub 91} films with different thickness were fabricated by a rf magnetron sputtering method. The critical thickness t{sub c} for spin reorientation transition has been determined to be approximately 90 nm using the stripe domain model and magnetic force microscope. Above t{sub c}, the films exhibit Bloch stripe domain structure and a superhigh resonance frequency at 6 GHz is found for the parallel stripe configuration. However, below t{sub c}, the films possess an in-plane uniaxial anisotropy caused by order interface tension between the film and substrate, and the resonance frequency breaks through the Snoek limit. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    Science.gov (United States)

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  8. Thick and hard anodized aluminum film with large pores for surface composites

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; WANG Hao-wei

    2004-01-01

    Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-based solution. The effects of additive containing organic carboxylic acid and Ce salt on the properties of the oxide film and mechanism were investigated in detail with SEM and EDAX analyses. The results show that the pore diameter is about 100 nm, the film thickness increases by 4 -5 times, and the Vickers hardness improves by about 50% through adding some amount of organic carboxylic acid and Ce salt. Such an improvement in properties is explained in terms of a lower film dissolving velocity and better film quality in compound solution.

  9. Interference-aided spectrum fitting method for accurately film thickness determination

    CERN Document Server

    Liu, Xingxing; Xia, Hui; Zhang, Xutao; Ji, Ruonan; Li, Tianxin; Lu, Wei

    2016-01-01

    A new approach was proposed to accurately determine the thickness of film, especially for ultra-thin film, through spectrum fitting with the assistance of interference layer. The determination limit can reach even less than 1 nm. Its accuracy is far better than traditional methods. This determination method is verified by experiments and the determination limit is at least 3.5 nm compared with the results of AFM. Furthermore, double-interference-aided spectra fitting method is proposed to reduce the requirements of determination instruments, which allow one to determine the film thickness with a low precision common spectrometer and largely lower the cost. It is a very high precision determination method for on-site and in-situ applications, especially for ultra-thin films.

  10. Nonreciprocal optical transmission through a single conical air hole in an Ag film.

    Science.gov (United States)

    Peng, Nan; Li, Xiaokang; She, Weilong

    2014-07-14

    In this paper, we propose a simple metal micro-nano structure having the character of nonreciprocal optical zero-order transmission. The structure is a single conical air hole (CAH) in an Ag film whose optical absorption with geometric asymmetry breaks the time reversal symmetry of the electromagnetic field. By comparing the transmissions of Ag CAH with those of ideal conductor (IC) CAH, three effects of Ag CAH, including diffraction, Fabry-Perot-like (FPL) resonance and localized surface plasmon (LSP) resonance, are analyzed and discussed. Under optimized conditions, we find that the ratio of forward transmission to backward one can be larger than 9 at a proper wavelength in visible range. This kind of Ag CAH is expected to have the potential served as all-optical diode.

  11. Preparation of mesoporous Ag-containing TiO{sub 2} heterojunction film and its photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. Y., E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Qiao, J. L. [Jilin Agricultural University, College of Horticulture (China); Cui, X. Y. [Mudanjiang Medical University, School of Public Health (China); Zhong, J. S. [Hangzhou Dianzi University, College of Materials and Environmental Engineering (China); Xu, Y. B.; Zhang, S. H.; Zhang, Q. H.; Chang, P.; Li, M.; Zhang, C.; Gao, S. M., E-mail: gaosm@ustc.edu [Ludong University, School of Chemistry and Materials Science (China)

    2015-03-15

    Mesoporous Ag/TiO{sub 2} heterojunction films (Ag-MTHF) with enhanced photocatalytic activity were synthesized by a three-step approach including an electrochemical anodization technique followed by successive ionic layer adsorption and reaction (SILAR) and solvothermal methods. The distribution of Ag nanoparticles on the inner structure of the mesoporous TiO{sub 2} film was confirmed by field emission scanning electron (FE-SEM) and transmission electron microscopes (TEM). The formation progress of the novel mesoporous Ag/TiO{sub 2} nanojunction film with Ag average diameter of 17 nm was illuminated. The formed nanojunction between Ag and TiO{sub 2} nanoparticles largely enhanced the photocatalytic degradation of methyl orangey (MO), and the corresponding mechanism was proposed.

  12. Optical and Short-wavelength Recording Properties of Ag8In14Sb55Te23 Phase-change Films

    Institute of Scientific and Technical Information of China (English)

    LI Jinyan; HOU Lisong; GAN Fuxi

    2001-01-01

    The Ag-In-Sb-Te phase-change films were deposited on K9 glass substrates by RF magnetron sputtering technology with an Ag-In-Sb-Te alloy target. The spectral properties and short-wavelength optical storage properties of Ag8In13Sb55Te23 films were studied. X-ray diffraction results have indicated that the crystallization compounds include mainly AgSbTe2 with small amounts of Sb and AgInTe2. A comparatively large absorption has been observed in the visible wavelength range. The optical storage characteristics of Ag8In13Sb55Te23 thin films indicated that larger reflectivity contrast can be obtained at lower writing power and shorter writing pulse width.

  13. Design and Fabrication of Low Cost Thick Film pH Sensor using Silver Chlorinated Reference Electrodes with Integrated Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wiranto Goib

    2016-01-01

    Full Text Available This paper describes the design and fabrication of thick film pH sensor, in which the reference electrode has been formed by chlorination of Ag using FeCl3. The process was aimed to replace Ag/AgCl paste commonly used as reference electrodes. Fabricated using thick film screen printing technology on Al2O3 substrate, the pH sensor showed a measured sensitivity of -52.97, -53.17 and -53.68 mV/pH at 25°C, 45°C, and 65°C, respectively. The measured values were close to the theoretical Nernstian slope of -59 mV/pH 25°C.The sensor was also designed with an integrated Ruthenium based temperature sensor for future temperature compensation. The measured resistance temperature characteristics showed a linear reasponse over the range of 25 – 80°C. This miniaturised planar sensor should find wide application, especially in field water quality monitoring, replacing their glass type counterparts.

  14. Some limitations in applying classical EHD film-thickness formulae to a high-speed bearing

    Science.gov (United States)

    Coy, J. J.; Zaretsky, E. V.

    1980-01-01

    Elastohydrodynamic film thickness was measured for a 20 mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N. The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa. Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (1) synthetic paraffinic; (2) synthetic paraffinic with additives; (3) neopentylpolyol (tetra) ester; and (4) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions and are presented.

  15. Laser drilling of vias in dielectric for high density multilayer LSHI thick film circuits

    Science.gov (United States)

    Cocca, T.; Dakesian, S.

    1977-01-01

    A design analysis of a high density multilevel thick film digital microcircuit used for large scale integration is presented. The circuit employs 4 mil lines, 4 mil spaces and requires 4 mil diameter vias. Present screened and fired thick film technology is limited on a production basis to 16 mil square vias. A process whereby 4 mil diameter vias can be fabricated in production using laser technology was described along with a process to produce 4 mil diameter vias for conductor patterns which have 4 mil lines and 4 mil spacings.

  16. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Directory of Open Access Journals (Sweden)

    Anna Behler

    2013-12-01

    Full Text Available A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  17. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  18. Piezoelectric sensors to monitor lubricant film thickness at piston-cylinder contacts in a fired engine

    OpenAIRE

    2013-01-01

    The contact between the piston ring and cylinder liner is the most important sealing interface in an automotive engine. Understanding the contact interactions and lubricant film formation at this interface is crucial for the development of fuel-efficient and low emission engines. This article outlines the development of an ultrasonic approach to enable non-invasive measurement of the lubricant film thickness formed between piston and cylinder wall of a fired engine. The sensor system consiste...

  19. MgB2 thick films with remarkable ductility on stainless steel substrate

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Cheng-gang; AN Ling; CHEN Li-ping; DING Li-li; ZHANG Kai-cheng; CHEN Chin-ping; XU Jun; FENG Qing-rong; GAN Zi-zhao

    2006-01-01

    We fabricated several superconducting MgB2 thick films on stainless steel (SS) substrates by using hybrid physical-chemical vapor deposition (HPCVD) technique.The thickness was in the 10 pμm to 20 pμm range,and the onset critical transition temperature Te (onset) and the width of the superconducting transition ( △ T) were about 37.8 and 1.2 K.They were dense and textured along (101) direction with high tenacity,despite the existence of a little amount of MgO and Mg.We bent the films at different degrees and studied the ductility and transport properties of these MgB2 thick films under applied force.The results demonstrated that the superconducting properties of these thick films,prepared by HPCVD,stay almost unaffected even with the films bent to a large degree with a curvature of 0.5 nun.This indicated that the superconducting wires or tapes of MgB2 with a core of SS had the advantages of avoiding rigidity and brittleness in industrial handling.The technique of HPCVD has,therefore,a high application potential.

  20. A novel multi-degree-of-freedom thick-film ultrasonic motor.

    Science.gov (United States)

    Aoyagi, Manaba; Beeby, Steve P; White, Neil M

    2002-02-01

    This paper describes a new multi-degree-of-freedom (MDOF) ultrasonic motor that comprises few parts and is based on low-cost thick-film technology. Conventional ultrasonic motors using bulk lead zirconate titanate (PZT) or thin-film PZT layers are relatively expensive at the present time. Thick-film printed PZT technology provides the opportunity to reduce the costs of ultrasonic motors. To demonstrate the feasibility of this approach, an ultrasonic motor was fabricated from alumina using thick-film printed PZT actuators. The thick-film PZT and electrode layers were printed on a thin alumina plate, and a tiny cylinder was mounted at its center. This cylinder magnifies the lateral displacement of the stator, holds the spherical rotor, and transmits the driving force to the sphere. Three bending vibrations, B22, B30, B03, of the plate were applied to rotate the sphere. Sufficient displacements for rotating the sphere were obtained near the resonance of B22 by applying an excitation voltage of 200 V peak-to-peak via a three-phase drive circuit. Rotations in three orthogonal directions have been observed by controlling the phase of the driving signal to the PZT electrodes, and a MDOF ultrasonic motor was successfully realized.

  1. Thickness dependence of structural and optical properties of cadmium iodide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Centre of Nanotechnology, King AbdulAziz University, Jeddah (Saudi Arabia); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Ismail, Yasser A.M.; Aboraia, A.M. [Department of Physics, Faculty of Science, Al-Azahar University, Assiut 71542 (Egypt); Shaaban, E.R., E-mail: esamramadan2008@yahoo.com [Department of Physics, Faculty of Science, Al-Azahar University, Assiut 71542 (Egypt)

    2015-07-05

    Highlights: • Different thicknesses of CdI{sub 2} films were prepared. • Both crystallite size and microstrain of the films has been determined. • The room temperature reflectance and transmittance data are analyzed. • The refractive index and energy gap are determined. - Abstract: Structural and optical properties as a function of film thickness have been studied for the thermally evaporated cadmium iodide (CdI{sub 2}) films. According to XRD structure, the thickness of investigated films extends from 272 to 696 nm, showing hexagonal structure and good c-axis alignment normal to glass substrate plane. Both of crystallite size and lattice strain have been determined in terms of Voight method of the main peak. The optical constants, refractive index (n), and extinction coefficient (k) have been determined using envelope method. The optical absorption data indicates an allowed direct inter – band transition near the absorption edge with an optical energy gap that decreases continuously from 3.572 to 3.767 eV. Both of optical constants and energy gap show thickness dependence that can be explained in terms of structure parameters, crystallite size, and lattice strain.

  2. Ultrasonic oil-film thickness measurement: an angular spectrum approach to assess performance limits.

    Science.gov (United States)

    Zhang, Jie; Drinkwater, Bruce W; Dwyer-Joyce, Rob S

    2007-05-01

    The performance of ultrasonic oil-film thickness measurement in a ball bearing is quantified. A range of different viscosity oils (Shell T68, VG15, and VG5) are used to explore the lowest reflection coefficient and hence the thinnest oil-film thickness that the system can measure. The results show a minimum reflection coefficient of 0.07 for both oil VG15 and VG5 and 0.09 for oil T68 at 50 MHz. This corresponds to an oil-film thickness of 0.4 microm for T68 oil. An angular spectrum (or Fourier decomposition) approach is used to analyze the performance of this configuration. This models the interaction of component plane waves with the measurement system and quantifies the effect of the key parameters (transducer aperture, focal length, and center frequency). The simulation shows that for a focused transducer the reflection coefficient tends to a limiting value at small oil-film thickness. For the transducer used in this paper it is shown that the limiting reflection coefficient is 0.05 and the oil-film measurement errors increase as the reflection coefficient approaches this value. The implications for improved measurement systems are then discussed.

  3. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    Science.gov (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  4. Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films

    Science.gov (United States)

    Mane, A. A.; Moholkar, A. V.

    2017-09-01

    The nanocrystalline V2O5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V5+ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V2O5 thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V2O5 thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V2O5 film of thickness 559 nm shows the NO2 gas response of 41% for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO2 gas concentration at 200 °C. Finally, NO2 gas sensing mechanism based on chemisorption process is discussed.

  5. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  6. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  7. Absorption Spectra and Ionic Conductivity of RbxCs1-xAg4I5 Superionic Conductors Thin Films

    Institute of Scientific and Technical Information of China (English)

    CAO Yang; SUN Jia-Lin; ZHANG Guo-Sheng; GUO Ji-Hua; WANG Zheng-Ping

    2005-01-01

    @@ A series of RbxCs1-xAg4I5 (x = 0-1) thin films were grown by vacuum evaporation on NaCl crystal substratesat 350K. The absorption spectra of these films were measured at 80 K in the wavelength range from 240nm to 400nm. It is shown that superionic conductor thin films of quaternary compound Rb0.5Cs0.5Ag4I5 and ternarycompound RbAg4I5 can be obtained at x = 0.5-0.6 and x = 0.7-1, respectively. At x = 0.65, the combinedcompound film of the mixture of 30mol% RbAg4I5 and 70mol% Rb0.5Cs0.5Ag4I5 is presented. Then, based on the spectral positions of the A1 and A2 peaks, we determined that the Rb0.5Cs0.5Ag4I5 exciton coupling energy Rex is 0.21 eV, the forbidden zone width Eg is 3.82eV and the exciton radius aex is 0.70nm. Furthermore, the ionic conductivities of superionic conductor thin films of RbAg4I5 and Rb0.5Cso.5Ag4I5 and their mixture film are investigated, respectively, in the temperature range 303 K-393 K.

  8. Smoothness improvement of micrometer- and submicrometer-thick nanocrystalline diamond films produced by MWPECVD

    Science.gov (United States)

    Cicala, G.; Magaletti, V.; Senesi, G. S.; Tamborra, M.

    2013-04-01

    Thick (around 3 μm) and thin (48-310 nm) nanocrystalline diamond (NCD) films have been produced from Ar-rich CH4/Ar/H2 (1/89/10 %) and H2-rich CH4/H2 (1/99 %) microwave plasmas, respectively. The deposition rate and the nucleation enhancement have been monitored in situ and in real time by pyrometric and laser reflectance interferometry for micrometer- and nanometer-thick films. For thick films, an improvement of the NCD films' smoothness has been obtained by a buffer layer between the films and the treated Si substrate. For thin films, a combinatorial approach, i.e., a treatment of the Si substrate in a suspension of mixed diamond powders of 250 nm and 40-60 μm, has been utilized. The present experimental results show that the buffer layer procedure allows good preservation of the surface of the treated Si substrate and the combinatorial approach promotes effectively the seeding of the Si surface.

  9. Image processing techniques for measuring non-uniform film thickness profiles

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr. [Rensselaer Polytechnique Institute, Troy, NY (United States)

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  10. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    Science.gov (United States)

    Sanders, Charlotte E.; Zhang, Chendong; Kellogg, Gary L.; Shih, Chih-Kang

    2014-12-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In this study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Dewetting in both cases is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film. We find that in the UHV environment, dewetting is determined by thermal processes, while under ambient conditions, thermal processes are not required. We conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.

  11. Thickness dependent phase transformation of magnetron-sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishnoi, Ritu; Singhal, Rahul; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Laboratory, Department of Physics and Center of Nanotechnology (India)

    2011-09-15

    In this study, the influence of film thickness on the first-order martensite-austenite phase transformation of Ni-Mn-Sn ferromagnetic shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni-Mn-Sn films (from {approx}100 to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 Degree-Sign C. X-ray analysis reveals that all the films exhibit austenitic phase with the L2{sub 1} cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film thickness, but the films with thickness above {approx}1,400 nm show structural deterioration due to the formation of MnSn{sub 2} and Ni{sub 3}Sn{sub 4} precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film-substrate interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of {approx}120 nm. For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better hysteresis as film thickness is increased up to {approx}1,400 nm, after which degradation of phase transformation phenomenon is observed. This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness {approx}1,400 nm possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias

  12. Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films

    OpenAIRE

    Chechenin, NG; van Voorthuysen, EHD; De Hosson, JTM; Boerma, DO

    2005-01-01

    Variations of phase composition and magnetic properties of electrodeposited nanocrystalline Co-Fe-Ni films with film thickness in the range of 50-500 nm were analyzed. The samples were magnetically soft with coercivity in the range H-c = 2-20 Oe and uni axial magnetic anisotropy up to H-k = 20 Oe. It was found that H-c decreases and H-k increases with increasing film thickness. The BCC phase dominates at small film thickness up to about 80 nm and the FCC phase increases when the film growths ...

  13. Microwave switching behaviors of Fe/Ag/Fe/Ag epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, D.-S. [Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei, Taiwan (China)]. E-mail: dshung@mcu.edu.tw; Tsai, C.S. [Department of Electrical and Computer Engineering, University of California, Irvine, CA (United States); Yu, C.-C. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Liou, Y. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Lee, Shang-Fan [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Chiang, P.-C. [Department of Chemical Engineering, Tunghai University, Taichung, Taiwan (China); Ho, C.-S. [Department of Chemical Engineering, Tunghai University, Taichung, Taiwan (China); Yao, Y.-D. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China)

    2006-09-15

    In this study, Fe/Ag/Fe/Ag ferromagnetic structures were epitaxially grown on a GaAs(1 0 0) substrate. Using the Network Analyzer (Agilent 8510C), FMR (ferromagnetic resonant) signals were observed in samples as the in-plane magnetic field was applied to either hard- or easy-axes. Of interest was that our sample demonstrated a FMR-switching behavior in hard-axis but not in easy-axis. The detecting data showed that the switch magnetic field was much smaller than what has been stated previously in Fe/Cu/Fe systems by other laboratories. In addition to the frequency switch in FMR, we also observed a magnetic reversal behavior in its M-H curve. Data presented that both of the FMR and magnetic reverse took place in the same direction (hard-axis)

  14. Effect of Layer and Film Thickness and Temperature on the Mechanical Property of Micro- and Nano-Layered PC/PMMA Films Subjected to Thermal Aging

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-Mohti

    2015-04-01

    Full Text Available Multilayered polymer films with biomimicking, layered structures have unique microstructures and many potential applications. However, a major limitation of polymer films is the deterioration of mechanical properties in working environments. To facilitate the design and development of multilayered polymer films, the impact of thermal aging on the mechanical behavior of micro- and nano-layered polymer films has been investigated experimentally. The composition of the polymer films that have been studied is 50 vol% polycarbonate (PC and 50 vol% poly(methyl methacrylate (PMMA. The current study focuses on the effect of film and layer thickness and temperature on the mechanical properties of the materials subjected to thermal aging. To study the effect of film and layer thickness, films with the same thickness, but various layer thicknesses, and films with the same layer thickness, but various film thicknesses, were thermally aged at 100 °C in a constant temperature oven for up to six weeks. The results show that as the layer thickness decreases to 31 nm, the film has a higher stiffness and strength, and the trend of the mechanical properties is relatively stable over aging. The ductility of all of the films decreases with aging time. To study the effect of temperature, the films with 4,096 layers (31 nm thick for each layer were aged at 100 °C, 115 °C and 125 °C for up to four weeks. While the 100 °C aging results in a slight increase of the stiffness and strength of the films, the higher aging temperature caused a decrease of the stiffness and strength of the films. The ductility decreases with the aging time for all of the temperatures. The films become more brittle for higher aging temperatures.

  15. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si (100) alloy thin films

    Science.gov (United States)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ˜200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ˜1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ˜75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  16. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Li, E-mail: zhlisuzh@163.com [Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China); Wang Cong; Zhang Yi [Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China)

    2012-05-01

    A facile strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)-silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {l_brace}PEI-Ag/Au{r_brace}{sub n} nanocomposite films were characterized by ultraviolet visible spectroscopy (UV-vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV-vis characteristic absorbances of {l_brace}PEI-Ag/Au{r_brace}{sub n} nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core-shell structures in the TEM images confirm the formation of bimetallic Au-Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20-25 nm. The resulting {l_brace}PEI-Ag/Au{r_brace}{sub n} films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {l_brace}PEI-Ag/Au{r_brace}{sub n} films are more attractive compared to {l_brace}PEI-Ag/PSS{r_brace}{sub n} and {l_brace}PEI/Au{r_brace}{sub n} films.

  17. Characterization and mechanical properties investigation of TiN-Ag films onto Ti-6Al-4V

    Science.gov (United States)

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Xiang, Dinggen

    2016-03-01

    To investigate their effect on fretting fatigue (FF) resistance of a Ti-6Al-4V alloy, hard solid lubricating composite films of TiN with varying silver contents (TiN-Ag) were deposited on a Ti-6Al-4V alloy using ion-assisted magnetron sputtering. The surface morphology and structure were analyzed by atomic force microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness, bonding strength, and toughness of films were tested using a micro-hardness tester, scratch tester, and a repeated press-press test system that was manufactured in-house, respectively. The FF resistance of TiN-Ag composite films was studied using self-developed devices. The results show that the FF resistance of a titanium alloy can be improved by TiN-Ag composite films, which were fabricated using hard TiN coating doped with soft Ag. The FF life of Ag0.5, Ag2, Ag5, Ag10 and Ag20 composite films is 2.41, 3.18, 3.20, 2.94 and 2.87 times as great as that of the titanium alloy, respectively. This is because the composite films have the better toughness, friction lubrication, and high bonding strength. When the atomic fraction of Ag changes from 2% to 5%, the FF resistance of the composite films shows the best performance. This is attributed to the surface integrity of the composite film is sufficiently fine to prevent the initiation and early propagation of FF cracks.

  18. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    Science.gov (United States)

    Khan, M. A. Majeed; Khan, Wasi

    2016-08-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap ( E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  19. Three dimensional phase field study on the thickness effect of ferroelectric polymer thin film

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The electromechanical behavior of poly(vinylidene fluoride-trifluoroethylene)[P(VDF -TrFE)]ferroelectric thin film was investigated using the three dimensional(3D) phase-field method. Various energetic contributions,including elastic,electrostatic,and domain wall energy were taken into account in the variational functional of the phase field model.Evolution of the microscopic domain structures of P(VDF-TrFE) polymer film was simulated.Effects of the in-plane residual stress,the film thickness and externa...

  20. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells

    Science.gov (United States)

    Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    2002-05-01

    N2-doped ZnTe was introduced onto 1-μm-thick CdTe absorbers in order to reduce the carrier recombination at the back contact of CdS/CdTe/C/Ag configuration solar cells. ZnTe films were grown by molecular beam epitaxy (MBE) on GaAs and Corning glass substrates to investigate the characteristics of the films. Epitaxial growth of ZnTe was realized on GaAs substrates and a hole concentration of 8 × 1018 cm-3 with a resistivity of 0.045 Ω \\cdotcm was achieved as a result of nitrogen doping. In contrast, polycrystalline ZnTe films were grown on Corning glass and CdTe thin films. Dark and photoconductivity of ZnTe films increased to 1.43 × 10-5 S/cm and 1.41 × 10-4 S/cm, respectively, while the Zn to Te ratio was decreased to 0.25 during MBE growth. These ZnTe films with different thicknesses were inserted into close-spaced sublimation (CSS)-grown 1-μm-thick CdTe solar cells. A conversion efficiency of 8.31% (Voc: 0.74 V, Jsc: 22.98 mA/cm2, FF: 0.49, area: 0.5 cm2) was achieved for a 0.2-μm-thick ZnTe layer with a cell configuration of CdS/CdTe/ZnTe/Cu-doped-C/Ag. Furthermore, to overcome the problem of possible recombination loss in the interface layer of CdTe and ZnTe, the intermediate ternary CdZnTe is investigated. The compositional factor in Cd1-xZnxTe:N alloy is varied and the dependence of the conductivity is evaluated. For instance, Cd0.5Zn0.5Te:N, with dark and photoconductivity of 2.13 × 10-6 and 2.9 × 10-5 S/cm, respectively, is inserted at the back contact of a 1-μm-thick CdTe solar cell. A conversion efficiency of 7.46% (Voc: 0.68 V, Jsc: 22.60 mA/cm2, FF: 0.49, area: 0.086 cm2) was achieved as the primary result for a 0.2-μm-thick Cd0.5Zn0.5Te:N layer with the cell configuration of CdS/CdTe/Cd0.5Zn0.5Te:N/Au.

  1. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    Science.gov (United States)

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.

  2. Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jung-Shiun; Liang, Jau-En; Yi, Han-Liou [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China); Chen, Shu-Hua [China Steel Corporation, Kaohsiung City 806, Taiwan, ROC (China); Hua, Chi-Chung, E-mail: chmcch@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China)

    2016-06-15

    Numerous recent applications with inorganic solar cells and energy storage electrodes make use of silver pastes through processes like screen-printing to fabricate fine conductive lines for electron conducting purpose. To date, however, there have been few studies that systematically revealed the properties of the silver paste in relation to the mechanical and electronic performances of screen-printing thick films. In this work, the rheological properties of a series of model silver pastes made of silver powders of varying size (0.9, 1.3, and 1.5 μm) and shape (irregular and spherical) were explored, and the results were systematically correlated with the morphological feature (scanning electron microscopy, SEM) and mechanical (peeling test) and electronic (transmission line method, TLM) performances of screen-printing dried or sintered thick films. We provided evidence of generally intimate correlations between the powder dispersion state in silver pastes—which is shown to be well captured by the rheological protocols employed herein—and the performances of screen-printing thick films. Overall, this study suggests the powder dispersion state and the associated phase behavior of a paste sample can significantly impact not only the morphological and electronic but also mechanical performances of screen-printing thick films, and, in future perspectives, a proper combination of silver powders of different sizes and even shapes could help reconcile quality and stability of an optimum silver paste. - Highlights: • Powder dispersion correlates well with screen-printing thick film performances. • Rheological fingerprints can be utilized to fathom the powder dispersion state. • Good polymer-powder interactions in the paste ensure good powder dispersion. • Time-dependent gel-like viscoelastic features are found with optimum silver pastes. • The size and shape of functional powder affect the dispersion and film performances.

  3. Analysis of water film thickness on contact lens by reflectometry technique

    Science.gov (United States)

    Wang, Michael R.; Lu, Hui; Wang, Jianhua; Shen, Meixiao

    2011-03-01

    We report the use of optical reflectometry technique for evaluation of water film on contact lens. The water film can be measured through the spectral dependent reflectance evaluation, which is carried out by illuminating the contact lens with a white light and collecting the returning light with an optical fiber coupled to a spectrometer. Water film thinning process has been observed on different soft contact lenses and minimum measurable thickness is about 0.85 μm. The measurement is fast and accurate. The water film measurement can be valuable for contact lens design to improve its hydrophilic properties. The technique can be extended for the study of tear film dynamics in an eye.

  4. Temperature and Thickness Effects on Electrical Properties of InP Films Deposited by Spray Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Rcfik Kayah; Mehmet Ari; Mustafa Oztas; Metin Bedir; Funda Aksoy

    2009-01-01

    InP film samples are prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which are atomized with compressed air as carrier gas onto glass substrates at 500 ℃ with different thicknesses of the films. The structural properties of the samples are determined by x-ray diffraction (XRD). It is found that the crystal structure of the InP films is polycrystailine hexagonal. The orientations of all the obtained films are along the c-axis perpendicular to the substrate. The electrical measurements of the samples are obtained by dc four-probe technique on rectangular-shape samples. The effects of temperature on the electrical properties of the InP films are studied in detail.

  5. Size-Selected SnO1.8: Ag Mixed Nanoparticle Films for Ethanol, CO, and CH4 Detection

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Joshi

    2007-01-01

    Full Text Available Mixed nanoparticle films of SnO1.8: Ag prepared by the gas phase condensation method using an aerosol route have been used for the detection of CO and CH4. Particle size as estimated by transmission electron microscopy is 20 nm for both SnO1.8 and Ag nanoparticles. The gas-sensing behavior of the films for these gases has been studied in detail as a function of Ag concentration in the films. A study has been made in order to distinguish the size effect and specific surface area effect in the ethanol gas-sensing behavior of SnO1.8: Ag mixed nanoparticle films. This distinction, which has not been possible using the traditional methods of the sensor fabrication, gives evidence of the dominance of size effect of the metal dopant over the surface area effect in the gas sensing of the films. The sensors show also an increased sensor signal with increase of Ag concentration in the films for CO and CH4. It is observed from the comparative study of the sensing behavior of SnO1.8: Ag films for CO and CH4 that the sensors are more sensitive towards CO as compared to CH4. The mixed nanoparticle films were also used for the detection of CO at 100 ppm level.

  6. Comparative analysis of serial and parallel laser patterning of Ag nanowire thin films

    Science.gov (United States)

    Oh, Harim; Lee, Myeongkyu

    2017-03-01

    Ag nanowire (AgNW) films solution-coated on a glass substrate were laser-patterned in two different ways. For the conventional serial process, a pulsed ultraviolet laser of 30 kHz repetition rate and ∼20 ns pulse width was employed as the laser source. For parallel patterning, the film was directly irradiated by a spatially-modulated Nd:YAG laser beam that has a low repetition rate of 10 kHz and a shorter pulse width of 5 ns. While multiple pulses with energy density ranging from 3 to 9 J/cm2 were required to pattern the film in the serial process, a single pulse with energy density of 0.16 J/cm2 completely removed AgNWs in the parallel patterning. This may be explained by the difference in patterning mechanism. In the parallel process using short pulses of 5 ns width, AgNWs can be removed in their solid state by the laser-induced thermo-elastic force, while they should be evaporated in the serial process utilizing a high-repetition rate laser. Important process parameters such as threshold energy density, speed, and available feature sizes are comparatively discussed for the two patterning

  7. Preparation of nano-Ag/TiO2 thin-film

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; WANG Jia; CHAI Li-yuan; MAO Ai-li; WANG Yun-yan

    2008-01-01

    Steady TiO2 water-sol was prepared by peptization and the effects of pH value, temperature, concentration of colloid and peptizator on sol were investigated. Laser grain analyzer was used to verify nano-particles in the sol. The photocatalytic degradation ratio and antibacterial property of nano-Ag/TiO2 thin-film on ceramics were used as the main index in addition to XRD analysis. The effect of film layers, embedding Ag+, annealing temperature and time on the degradation ratio and antibacterial property was studied. The temperature 30-80 ℃, pH 1.2-2.0, concentrations of 0.05-0.3 mol/L sol and 5% HNO3 would be the optimal parameters for the TiO2 water-sol preparation. The nano-Ag/TiO2 film of three layers with 3% AgNO3 embedded and treated at 350 ℃ for 2 h exhibits good performance. The elementary research on the kinetics of degradation shows that the reactions are on the first order kinetics equation.

  8. Optical nonlinearities in Ag/BaTiO{sub 3} multi-layer nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: gyang@hust.edu.cn; Zhou Youhua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Long Hua; Li Yuhua; Yang Yifa [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-07-31

    The multi-layer structure of barium titanate composite thin films containing Ag nanoparticles were grown on MgO (100) substrates using pulsed laser deposition technique under the nitrogen pressure of 7.4 Pa. The X-ray photoelectron spectroscopy analysis indicated that the samples were composed of metal Ag embedded in the BaTiO{sub 3} matrices. The optical absorption properties were measured from 300 nm to 800 nm, and the absorption peaks due to the surface plasmon resonance of Ag particles were observed. With the increasing of Ag concentration in composite films, the peak absorption increased and shifted to longer wavelength (red-shift). Furthermore, the third-order optical nonlinearities of the films were determined by z-scan method and the nonlinear refractive index, n{sub 2}, and nonlinear absorption coefficient, {beta}, were determined to be about - 1.91 x 10{sup -13} m{sup 2}/W and - 5.80 x 10{sup -7} m/W, respectively.

  9. Percolation effect in thick film superconductors: Using a Bi(Pb)SrCaCuO based paste to prepare a superconducting planar transformer

    Science.gov (United States)

    Sali, Robert; Harsanyi, Gabor

    1995-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  10. Thickness and optical constants calculation for chalcogenide-alkali metal Se80Te8(NaCl)12 thin film

    Science.gov (United States)

    Abd-Elrahman, M. I.; Abu-Sehly, A. A.; Bakier, Y. M.; Hafiz, M. M.

    2017-09-01

    Chalcogenide-alkali metal semiconducting thin films of four different thicknesses of Se80Te8(NaCl)12 are deposited from bulk by thermal evaporation technique. The crystallinity of the film improves with increasing of thickness as indicated by the recorded X-ray diffraction patterns. The transmission and reflection spectra are measured in the wavelength range of the incident photons from 250 to 2500 nm. The thickness and optical constants of the films are calculated based on Swanepeol method using the interference patterns appeared in the transmission spectra. It is found that the films have absorption mechanism which is an indirect allowed transition. The effect of the film thickness on the refractive index and the high-frequency dielectric constant are studied. With increasing the film thickness, both the absorption coefficient and high-frequency dielectric constant increase while the single-oscillator energy, optical band gap and extinction coefficient decrease.

  11. An experimental investigation of piezoelectric P(VDF-TrFE) thick film on flexible substrate as energy harvester

    Science.gov (United States)

    Khoon Keat, Chow; Swee Leong, Kok; Kok Tee, Lau

    2017-06-01

    This paper proposes an experimental inves tigation of energy harvester using poly(vinylidene fluoride-trifluoroethylene) or P(VDF-TrFE) thick-film on flexible substrate by using print screen and rod method. Polyester film being used as the substrate where a sandwiched layer of electrode-piezopolymer-electrode thick film is deposited on. The thick-film is then annealed at 100°C and polarized at 100 V for the film with a thickness of about 18µm, being inspected under EDX, FESEM and XRD. The fabricated energy harvester piezoelectric is able to generate a maximum output power of 4.36 µW at an externa l electrical load of 1 kΩ with a maximum peak-to-peak of about 3.0V when an impact free-fall force of 0.2N was applied on the thick-film.

  12. Predicting the Mean Liquid Film Thickness and Profile along the Annular Length of a Uniformly Heated Channel at Dryout

    Directory of Open Access Journals (Sweden)

    V.Y. Agbodemegbe

    2011-03-01

    Full Text Available The objective of this study was to predict the mean liquid film thickness and profile at high shear stress using a mechanistic approach. Knowledge of the liquid film thickness and its variation with two-phase flow parameters is critical for the estimation of safety parameters in the annular flow regime. The mean liquid film thickness and profile were predicted by the PLIFT code designed in Fortran 95 programming language using the PLATO FTN95 compiler. The film thickness was predicted within the annular flow regime for a flow boiling quality ranging from 40 to 80 % at high interfacial shear stress. Results obtained for a laminar liquid film flow were dumped into an excel file when the ratio of the actual predicted film thickness to the critical liquid film thickness lied within the range of 0.9 to unity. The film thickness was observed to decrease towards the exit of the annular regime at high flow boiling qualities and void fractions. The observation confirmed the effect of evaporation in decreasing the film thickness as quality is increased towards the exit of the annular regime.

  13. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Wen-Lei; Li, Da-Wei; Qu, Lu-Lu; Fossey, John S.; Long, Yi-Tao

    2011-12-01

    A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a ma